
Coroutine-based Combinatorial Generation

by

Sahand Saba

B.Sc., University of Victoria, 2010

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

c© Sahand Saba, 2014

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Coroutine-based Combinatorial Generation

by

Sahand Saba

B.Sc., University of Victoria, 2010

Supervisory Committee

Dr. Frank Ruskey, Supervisor

(Department of Computer Science)

Dr. Yvonne Coady, Departmental Member

(Department of Computer Science)

iii

Supervisory Committee

Dr. Frank Ruskey, Supervisor

(Department of Computer Science)

Dr. Yvonne Coady, Departmental Member

(Department of Computer Science)

ABSTRACT

The two well-known approaches to designing combinatorial generation algorithms

are the recursive approach and the iterative approach. In this thesis a third design

approach using coroutines, introduced by Knuth and Ruskey, is explored further. An

introduction to coroutines and their implementation in modern languages (in partic-

ular Python) is provided, and the coroutine-based approach is introduced using an

example, and contrasted with the recursive and iterative approaches. The coroutine

sum, coroutine product, and coroutine symmetric sum constructs are defined to create

an algebra of coroutines, and used to give concise definitions of coroutine-based al-

gorithms for generating ideals of chain and forest posets. Afterwards, new coroutine-

based variations of several algorithms, including the Steinhaus-Johnson-Trotter al-

gorithm for generating permutations in Gray order, the Varol-Rotem algorithm for

generating linear extensions in Gray order, and the Pruesse-Ruskey algorithm for

generating signed linear extensions of a poset in Gray order, are given.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Figures vii

Acknowledgements xi

Dedication xii

1 Introduction 1

1.1 Preface . 1

1.2 Outline . 3

1.3 Contributions of This Thesis . 4

1.4 Conventions And Notation . 5

2 Preliminaries and Previous Work 7

2.1 Coroutines And Their Implementations 7

2.1.1 Definition of Coroutine . 7

2.1.2 Coroutines in Python . 8

2.1.3 Coroutines And Multitasking 16

2.2 Approaches to Combinatorial Generation 20

v

2.2.1 Recursive Approach . 21

2.2.2 Iterative Approach . 22

2.2.3 Coroutine-based Approach . 23

2.2.4 Generalization To An Algebra of Coroutines 26

2.2.5 Summary . 29

3 New Work 30

3.1 Generating Multi-radix Numbers In Gray Order 30

3.1.1 Problem Definition . 30

3.1.2 Coroutine-based Algorithm . 31

3.2 Generating Ideals Of Chain Posets 33

3.2.1 Problem Definition . 33

3.2.2 Coroutine-based Algorithm . 34

3.2.3 Generalization To Ideals Of Forest Posets 39

3.3 Generating Permutations In Gray Order 41

3.3.1 Problem Definition . 41

3.3.2 Coroutine-Based Algorithm 43

3.4 Generating Linear Extensions . 46

3.4.1 Problem Definition . 46

3.4.2 Coroutine-based Algorithm . 47

3.5 Generating Signed Linear Extensions In Gray Order 51

3.5.1 Problem Definition . 51

3.5.2 Coroutine-based Algorithm . 52

4 Conclusions 60

A Supplementary Code 62

A.1 Permutations . 62

vi

A.2 Posets . 62

Bibliography 64

vii

List of Figures

Figure 2.1 Example flows of coroutines and subroutines. 9

Figure 2.2 Example flows of the same subroutine called three times v.s.

the same generator instance called three times. 10

Figure 2.3 Generating the Fibonacci sequence using a generator coroutine. 11

Figure 2.4 Usage of the Fibonacci sequence generator. 11

Figure 2.5 Example of a generator used with a recursive algorithm. . . . 11

Figure 2.6 Usage of the postorder recursive generator. 12

Figure 2.7 Recursive generators using the yield from syntax of Python 3. 12

Figure 2.8 Use of send, and yield as expressions, to pass values to exe-

cuting coroutines. 13

Figure 2.9 Functions loop and loop_alternative are semantically equiv-

alent. 14

Figure 2.10 Euler diagram of the hierarchy of coroutines, Python corou-

tines, Python generators, and subroutines. 15

Figure 2.11 Scaled average latency of various operations. Taken from [5]. . 17

Figure 2.12 Example of a hypothetical event-loop based server using callbacks. 19

Figure 2.13 Use of a event-loop (trampoline) to dispatch control to corou-

tines with dependencies (A needs result x from B). 20

Figure 2.14 Example of a hypothetical event-loop based server using corou-

tines. 21

Figure 2.15 Recursive generation of multi-radix numbers. 22

viii

Figure 2.16 Iterative generation of multi-radix numbers by scanning right

to left. 23

Figure 2.17 Generation of binary strings using “trolls”—arrows indicate se-

quences of pokes, empty circles indicate asleep troll, filled circles

indicate awake troll. 24

Figure 2.18 Coroutine to generate binary strings in lexicographic order. . . 25

Figure 2.19 Usage of the troll coroutine to generate binary strings in lex-

icographic order. 25

Figure 2.20 The barrier coroutine that repeatedly yields False. 26

Figure 2.21 The comultiply coroutine to multiply two coroutines X and

Y to get X × Y . 26

Figure 2.22 The coproduct of a sequence of coroutines. 27

Figure 2.23 Loco for binary strings with coproduct and barrier extracted. 28

Figure 2.24 Loco for generation of multi-radix numbers in lexicographic order. 28

Figure 2.25 Setup for generation of multi-radix numbers in lexicographic

order using coroutines. 28

Figure 3.1 Graph corresponding to multi-radix numbers with baseM0 = 3,

M1 = 2 and M2 = 3 with Hamiltonian path indicated using

arrows. 31

Figure 3.2 Reflected loco to generate multi-radix numbers in Gray order. 32

Figure 3.3 Hasse diagram of example chain poset ≺E with E = {−1, 1, 2, 5}. 34

Figure 3.4 Gray code sequence of ideals of chain poset given in Figure 3.3.

Filled circles represent 1 bits, empty circles 0. Order is left-to-

right, then top-to-bottom. 35

Figure 3.5 The coroutine sum (cosum) operator. 36

Figure 3.6 The coroutine join (cojoin) operator. 36

ix

Figure 3.7 The coroutine symmetric sum (cosymsum) operator. 37

Figure 3.8 The coroutine sum, symmetric sum, and product operations. . 37

Figure 3.9 Loco to generate ideals of a poset consisting of chains in Gray

order. 38

Figure 3.10 Setup of locos to generate ideals of a poset consisting of chains

in Gray order. 39

Figure 3.11 Hasse diagram of example tree poset. 40

Figure 3.12 Ideals of the poset given in Figure 3.11. Filled circles represent

1 bits, empty circles 0. Order is left-to-right, then top-to-bottom. 42

Figure 3.13 Iterative algorithm to generate all permutations in Steinhaus-

Johnson-Trotter Gray order. 44

Figure 3.14 Loco to generate permutations in Steinhaus-Johnson-Trotter

Gray order. 45

Figure 3.15 Zig-zag poset for n = 5 given by 1 ≺ 4 � 2 ≺ 5 � 3. 47

Figure 3.16 Linear extensions of the zig-zag poset for n = 5, as generated

by the Varol-Rotem algorithm. Order is left-to-right then top-

to-bottom. 48

Figure 3.17 Iterative Varol-Rotem algorithm for generating all linear exten-

sions of a poset. 49

Figure 3.18 Loco for generating all linear extensions of a poset in Varol-

Rotem order. 50

Figure 3.19 Poset with 1 ≺ 3 and 2 ≺ 4 and its linear extensions graph.

Adjacent linear extensions differ by one transposition. 52

Figure 3.20 Graph corresponding to signed linear extensions of poset with

1 ≺ 3 and 2 ≺ 4, and the Hamiltonian path traversed by the

Pruesse-Ruskey algorithm. 52

x

Figure 3.21 Sequence of a, b moves for odd number of possible b moves.

Left/right arrow next to a or b on edge labels indicates direction

of the move, − indicates a sign switch. 54

Figure 3.22 Sequence of a, b moves for even number of possible b moves.

Left/right arrow next to a or b on edge labels indicates direction

of the move, − indicates a sign switch. 55

Figure 3.23 Loco to generate signed linear extensions of a poset in Pruesse-

Ruskey Gray order. The code follows the paths given in Fig-

ures 3.21 and 3.22 . 56

Figure 3.24 Specialized coroutine product for the coroutine-based Pruesse-

Ruskey algorithm. 57

Figure 3.25 Specialized barrier coroutine for the coroutine-based Pruesse-

Ruskey algorithm. 58

Figure 3.26 Setup code for the coroutine-based Pruesse-Ruskey algorithm. 58

Figure 3.27 Using the lead coroutine in the coroutine-based Pruesse-Ruskey

algorithm. 59

Figure A.1 Transposing x and y in a permutation 62

Figure A.2 Left cyclic shift of a permutation starting from index i and

ending at index j. 62

Figure A.3 Moving i in a permutation in direction given by d while main-

taining π as a linear extension of the given poset. Used in SJT,

Varol-Rotem, and Pruesse-Ruskey algorithms. 63

Figure A.4 The zig-zag poset (AKA fence poset) defined programmatically. 63

Figure A.5 Adding unique minimum and maximum elements to a given

poset. 63

xi

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Frank Ruskey for his mentoring, support,

and encouragement. Having a good supervisor is perhaps the most important part of

a graduate-level degree, and I feel privileged and fortunate to have had Dr. Ruskey

as my supervisor. I would also like to thank Dr. Yvonne Coady for her enthusiastic

support and encouragement, and for dedicating her time to be on my supervising

committee. I am also grateful to Francine Beaujot for providing numerous helpful

suggestions that led to improvements of this thesis.

I was born not knowing and have had only

a little time to change that here and there.

Richard P. Feynman

xii

DEDICATION

I would like dedicate this thesis to my parents, Mohammad and Parvin, for their

never-ending encouragement and support.

Chapter 1

Introduction

1.1 Preface

Combinatorial generation algorithms are algorithms that exhaustively list a set of

combinatorial objects (e.g. strings, permutations, and graphs) one at a time, often

subject to some given constraints, and often in a desired order. Examples of gen-

eration orders are lexicographic order, and any order that minimizes the distance of

consequent objects, also known as a Gray order [8]. The definition of distance varies

depending on the combinatorial objects in question and the application, but in most

cases it is a measure of how many atomic operations one needs to perform to turn

one object to the next. For example, atomic operations can be single bit switches for

binary strings, and (possibly adjacent) transpositions for permutations.

Two common approaches to solving a combinatorial generation task are the re-

cursive approach and the iterative approach. In the recursive approach, the goal is to

find a subproblem structure in the objects to be generated that allows for a recursive

algorithm. For example, in the case of generating all the spanning trees of a given

graph, the subproblems could be given by the subgraph with an edge removed, and

2

the graph that results from contracting an edge into a vertex [15]. This approach can

be viewed as an instance of the divide-and-conquer problem-solving strategy.

In the iterative approach, the goal is to find a way to go from one given object to

the next in the desired order by analyzing the object and modifying it directly. For

example, a common approach to generate combinatorial objects such as strings and

permutations in lexicographic order is to scan the object right-to-left to find the first

index that can be incremented [8]. In some cases, algebraic or arithmetic properties

of the combinatorial objects may be used to iteratively generate them. For example,

binary strings can iteratively generated using simple counting in binary, and primitive

polynomials over F2 can be used to iteratively generate De Bruijn sequences using

linear feedback shift registers [4].

In this thesis a third approach using coroutines, introduced by Donald Knuth and

Frank Ruskey [9], is further explored and used to introduce several new algorithms.

Coroutines, which can be seen as generalizations of subroutines, can encompass both

recursive and iterative algorithms. As such, they are very suitable mechanisms for

combinatorial generation. In fact, one of the most popular coroutine use patterns

in modern programming languages is the generator pattern, which will be discussed

in detail in the next section. As the name “generator” suggests, generators provide

a very convenient mechanism for implementing combinatorial generation algorithms,

recursive or iterative. Moreover, since coroutines are generalizations of subroutines,

we can exploit their generality to come up with combinatorial generation algorithms

that are somewhere between recursive and iterative. It is also possible to link corou-

tines in intricate and flexible ways, leading to a set of operations on coroutines such

as coroutine products and coroutine symmetric sums, which can be taken to form an

algebra of coroutines. This thesis introduces the coroutine-based approach to combi-

natorial generation by providing an introduction to coroutines first, and then gently

3

introducing the algebra of coroutines, and the various ways that they can be used to

tackle combinatorial generation problems. Ample examples, diagrams, and sample

programs are used to demonstrate the concepts and algorithms throughout the thesis.

1.2 Outline

Section 2.1 begins by defining coroutines and providing an introduction to their imple-

mentation in Python. Several examples are provided to illustrate coroutine use-cases

and behaviour. A brief introduction to the use of coroutines for multitasking is pro-

vided as well.

Afterwards, Section 2.2 delves into combinatorial generation by first reviewing the

two well-known approaches used, namely the recursive and the iterative approaches,

by using generation of multi-radix numbers in lexicographic order as the running

example. Once the existing approaches are reviewed, the coroutine-based approach

is introduced using the same example. This section finishes by abstracting some of

the patterns used in the given coroutine-based algorithm, and defining the concepts

of local coroutine and coroutine product, which will be used throughout the rest of

the thesis.

Section 3.1 starts by generalizing the results from Section 2.2.4 to generate multi-

radix numbers in Gray order instead. Generation of combinatorial objects in Gray or-

der will require the introduction of reflected local coroutines. Afterwards, Section 3.2

will tackle the equivalent problem of the generation of ideals of a poset consisting of

linear chains, using coroutines, and two further coroutine operations, the coroutine

sum and the coroutine symmetric sum, are introduced for this task. Section 3.2 will

use the same tools to generate forest poset ideals.

With the coroutine algebra and the related tools in place, the rest of Chapter 3

4

will give coroutine-based algorithms for generation of permutations in Gray order

(based on the Steinhaus-Johnson-Trotter algorithm), generation of linear extensions

of a poset (based on the Varol-Rotem algorithm), and generation of signed linear

extensions of a poset in Gray order (based on the Pruesse-Ruskey algorithm), af-

ter providing introductions to the problems. These examples will demonstrate the

versatility of the coroutine-based approach.

Chapter 4 concludes the thesis with a summary and a discussion of further possible

work.

1.3 Contributions of This Thesis

Coroutines have been receiving increasing attention in recent years as as general

control abstractions [12]. Many modern languages such as Python [29], JavaScript (in

version 1.7 [25]), and C# [21] include at least partial support for coroutines, and many

libraries for other languages have been created to add support for coroutines—for

example, libconcurrency for C [24] and Boost.Coroutine for C++ [20]. The use of

coroutines as “light-weight” or “pseudo” threads is partly responsible for this increase

in interest in coroutines.

The three main contributions of this thesis are the following.

• This thesis contains, to the best of our knowledge, the first introductory treat-

ment of coroutine-based combinatorial generation with working code in a mod-

ern programming language, which makes the treatment more accessible to those

unfamiliar with coroutines.

• While implicitly used in [9], an algebra of coroutines is explicitly introduced

and developed in more detail in this thesis, and used in multiple algorithms.

5

• Several new coroutine-based combinatorial generation algorithms that are based

on existing algorithms are introduced.

The coroutine-based approach to combinatorial generation, apart from being an

interesting example of the use of coroutines, is of interest for several reasons, a few of

which are listed below. First, using coroutines for combinatorial generation can lead

to code that is simpler and easier to understand. Secondly, the coroutines can also be

reused and linked with other coroutines in very versatile ways. This is demonstrated

in Chapter 3 with the use of the coroutine product and coroutine symmetric sum

operations. This abstraction of the coroutine operations can allow for both more for-

malization of correctness proofs as well as automated optimization strategies. Thirdly,

the coroutine-based implementations will also work seamlessly with event-loop envi-

ronments that support coroutines, such as Python 3.4’s asyncio module [27]. Finally,

the coroutine-based approach is a natural approach if a Gray code is desired, since

the coroutines can be seen as traversing the Hamiltonian path or cycle corresponding

to the Gray code in the underlying graph of the combinatorial objects.

1.4 Conventions And Notation

All the sample source code in this thesis is intended for Python 3.3 or newer, unless

otherwise indicated.

Sample source code both in figures and in text are typeset in monospaced font

and syntax highlighted: keywords and built-in functions and constants such as for

and True are in green, variables and user-defined functions such as myfunction are in

black, exception and error types such as StopIteration are in red, string constants

such as "String" are in dark red, and numeric constants such as 123 are in gray.

All the source code provided in this thesis is available online at https://github.

https://github.com/sahands/coroutine-generation

6

com/sahands/coroutine-generation.

https://github.com/sahands/coroutine-generation
https://github.com/sahands/coroutine-generation

7

Chapter 2

Preliminaries and Previous Work

2.1 Coroutines And Their Implementations

2.1.1 Definition of Coroutine

Subroutines are self-contained sequences of instructions that can be reused in different

parts of a program, or by different programs [17]. Calling a subroutine involves

pausing the execution of the current subroutine while keeping the current subroutine’s

state1, generally in a stack data structure called the call stack, and transferring the

control flow to the subroutine being called. The called subroutine then allocates space

for its local variables (often done by pushing on to the call stack, and upon completion,

popping from the call stack to deallocate them), runs its instructions in sequence, and

upon competition returns the control flow back to the calling subroutine.

Coroutines, on the other hand, can be called multiple times while retaining their

state in between calls, and can yield the control to another coroutine until they are

given the control again [7, 11]. The word coroutine was first introduced by Melvin

Conway [2], who defined it as “an autonomous program which communicates with

1State here refers to the value of the variables local to the subroutine, as well as where the
execution is pausing in the subroutine, which is often stored as an instruction pointer.

8

adjacent modules as if they were input or output subroutines.” That is, coroutines

are generalizations of subroutines that allow for multiple entry points, that can yield

multiple times, and that resume their execution when called again. On top of that,

coroutines can transfer execution to any other coroutine and not just the coroutine

that called them. Subroutines, being special cases of coroutines, have a single entry

point, can only yield once, and can only transfer execution back to the caller coroutine.

Figure 2.1 illustrates the difference between subroutines and coroutines using example

flow diagrams.

The term yielding is used to describe a coroutine pausing and passing the control

flow to another coroutine. Since coroutines can pass values along with the control

flow to another coroutine, the phrase yielding a value is used to describe yielding and

passing a value to the coroutine receiving the control.

The next section goes over the implementation of coroutines in Python and pro-

vides multiple examples of simple coroutines in Python.

2.1.2 Coroutines in Python

In Python, generators, which are coroutines with a few restrictions, were introduced

in PEP2 255 [29] and added to Python starting from version 2.2. Generators allow

for multiple entry-points, and can therefore yield multiple times. Figure 2.2 contrasts

calling a subroutine several times with calling the same instance of a generator several

times, to highlight that calling the same generator does not create multiple instances

of it.

Generators in Python are more restricted because they can only return the control

to the caller and not any arbitrary coroutine. This restriction can be visualized by

comparing Figure 2.2b, which shows an example flow diagram for a generator, with

2A Python Enhancement Proposal (PEP) is “a design document providing information to the
Python community, or describing a new feature for Python or its processes or environment.” [34]

9

A B C

Call B

Call C

Retu
rn

to
ca

lle
r

Retu
rn

to
ca

lle
r

(a) Example subroutine flow.

A B C

Yield to B

Yield to C

Yield
to A

Yield to C

Yiel
d to

B

(b) Example coroutine flow.

Figure 2.1: Example flows of coroutines and subroutines.

Figure 2.1b.

The syntax for defining generators in Python is very similar to that of Python

functions, with the main difference being the use of the yield keyword instead of

return to pause execution and yield to the caller. The syntax for using generators

is rather different from Python functions, and is in fact closer to how classes are

treated in Python: calling a generator function returns a newly created generator

object, which is is an instance of the coroutine independent of other instances. To call

10

A B B B

Call B

Retu
rn

to
A

Call B

Retur
n

to A

Call B

Return

to A

(a) Example flow of the same subrou-
tine called three times.

A G

Call G

Yiel
d fir

st

res
ult

Call G

Yiel
d

sec
on

d

res
ult

Call G

Yiel
d th

ird

res
ult

(b) Example flow of the same generator
instance called three times.

Figure 2.2: Example flows of the same subroutine called three times v.s. the same generator
instance called three times.

the generator, the next built-in function is used, and the generator object is passed

to next as the parameter. An example of a simple generator in Python is given in

Figure 2.3 which is taken, with minor modification, from PEP 255 [29]. Here we

11

have a generator that yields the Fibonacci numbers ad infinitum. Each call to the

generator slides the a and b variables ahead in the sequence, and then execution is

paused and b is yielded. Usage of the fib generator is shown in Figure 2.4.

def fib():
a, b = 0, 1
while True:

yield b
a, b = b, a + b

Figure 2.3: Generating the Fibonacci sequence using a generator coroutine.

from fib import fib

f = fib() # Create a new "instance" of the generator coroutine
print(next(f)) # Prints 1
print(next(f)) # Prints 1
print(next(f)) # Prints 2
print(next(f)) # Prints 3
print(next(f)) # Prints 5
print(next(f)) # etc...

Figure 2.4: Usage of the Fibonacci sequence generator.

def postorder(tree):
if not tree:

return

for x in postorder(tree[’left’]):
yield x

for x in postorder(tree[’right’]):
yield x

yield tree[’value’]

Figure 2.5: Example of a generator used with a recursive algorithm.

Before continuing, let us look at a simple example of a recursive algorithm imple-

mented using coroutines as well. In this example, the algorithm is a simple postorder

12

traversal of a binary tree. Notice how generators can be used recursively, with each re-

cursive call creating a new instance of the generator coroutine. Usage of the recursive

binary tree traversal is shown in Figure 2.6.

In Python 3, with PEP 380 [23], the above can be made even simpler by using the

yield from statement, which delegates generation to a subgenerator3. This shorter

syntax is shown in Figure 2.7.

from collections import defaultdict
from recursive_generator import postorder

tree = lambda: defaultdict(tree)
T = tree()
T[’value’] = ’*’
T[’left’][’value’] = ’+’
T[’left’][’left’][’value’] = ’1’
T[’left’][’right’][’value’] = ’3’
T[’right’][’value’] = ’-’
T[’right’][’left’][’value’] = ’4’
T[’right’][’right’][’value’] = ’2’

postfix = list(postorder(T))
print(postfix) # [’1’, ’3’, ’+’, ’4’, ’2’, ’-’, ’*’]

Figure 2.6: Usage of the postorder recursive generator.

def postorder(tree):
if not tree:

return
yield from postorder(tree[’left’])
yield from postorder(tree[’right’])
yield tree[’value’]

Figure 2.7: Recursive generators using the yield from syntax of Python 3.

Python generators were further generalized to allow for more flexible coroutines

in PEP 342 [28]. Prior to the enhancements in PEP 342, Python’s generators could

3The yield from semantics are more complicated than the given example demonstrates. Using
yield from to delegate to a subgenerator results in exceptions being delegated properly as well. It
is also possible to use yield from as an expression with the resulting semantics somewhat different
from using yield as an expression. These use cases are outside the scope of this thesis and the
interested reader is referred to PEP 380 [23] for a full treatment.

13

not accept new parameters after the initial parameters were passed to the coroutine.

With PEP 342’s send method, a coroutine’s execution can resume with further data

passed to it as well. This is implemented by allowing the yield keyword to be used

not just as a statement but also as an expression, the evaluation of which results in

the coroutine pausing until a value is passed to it via send, which will be the value

that the yield expression evaluates to. Figure 2.8 displays a simple example of a

coroutine that yields "Ready for x" and then waits until a value for x is sent to it.

Note that a StopIteration exception is raised as well. This exception is raised after

a coroutine runs its last instruction.

def coroutine():
x = yield "Ready for x" # Yield "Ready for x", then wait to be passed x
print(x)

def main():
c = coroutine()
value = next(c)
print(value) # Prints "Ready for x"
c.send("Here is x") # Prints "Here is x", and raises StopIteration

main()

Figure 2.8: Use of send, and yield as expressions, to pass values to executing coroutines.

Even though StopIteration is an exception, instances of it generally do not

indicate errors. This exception is simply used to send a signal to the caller that a

coroutine has finished running. Built-in Python loops (namely for and while loops)

catch this exception to know when to stop looping when they loop over generators. In

fact, this behaviour is standard for all Python iterators, as defined in PEP 234 [35],

and Python generators are also iterators (i.e. invoking iter on a generator object

simply gives back the generator object). Figure 2.9 shows the simple semantics of

looping over a generator, and how StopIteration is used to break out of a loop (the

two functions loop and loop_alternative are semantically equivalent).

14

def G():
yield 1
yield 2
yield 3

def loop():
for x in G():

print(x) # Prints 1, 2 and 3 on separate lines

def loop_alternative():
g = G()
while True:

try:
x = next(g)

except StopIteration:
break

else:
print(x)

Figure 2.9: Functions loop and loop_alternative are semantically equivalent.

It is worthwhile to note that even with PEP 342, Python’s generators do not

implement coroutines in full generality. To quote Python’s official language refer-

ence [31]:

All of this makes generator functions quite similar to coroutines; they yield

multiple times, they have more than one entry point and their execution

can be suspended. The only difference is that a generator function cannot

control where should the execution continue after it yields; the control is

always transferred to the generator’s caller.

Hence, unlike Knuth’s definition of coroutines, Python’s coroutines are not com-

pletely symmetric; an executing coroutine object is still coupled to the caller, which

creates asymmetry.

It is also important to mention that in some Python literature the word coroutine

means specifically coroutines that use yield in an expression and hence require the

15

use of send. See [19] for example (which is an excellent introduction to coroutines and

their uses in I/O operations, parsing, and more). This use of the word is somewhat

inaccurate, since coroutines are a general concept, and subroutines, generators with

next or send or both, all fall under the concept of coroutines. In this thesis the word

coroutine is used in its generality, as defined in the first paragraph of this section, in

accordance with how Knuth defines the word in [7].

To summarize, on an abstract level, the set of coroutines contains the set of

generators and subroutines, and more. See Figure 2.10 for an Euler diagram of of the

sets of coroutines, Python coroutines, generators, and subroutines.

Coroutines

Python PEP 342 Coroutines

Python PEP 255 Generators

Subroutines
(Python Functions)

Figure 2.10: Euler diagram of the hierarchy of coroutines, Python coroutines, Python
generators, and subroutines.

16

In most of the code in this thesis (with exceptions of examples in the next section

on multitasking and coroutines), only the generator pattern is used, and consequently

yield is used as a statement and not an expression. We will look at the use of

yield as an expression and send in more detail in the next subsection where a brief

introduction to multitasking using coroutines is given.

2.1.3 Coroutines And Multitasking

Coroutines are often used to implement lightweight threads. A full treatment of the

use of coroutines for multitasking is outside the scope of this thesis, but for the sake

of completeness, this section provides an introduction to the subject.

Consider a simplified file-server as an example. In this example, the server lis-

tens for incoming connections, and once an incoming connection is established, the

connecting client sends a request containing a filename to the server. The server

then processes the request and sends a response to the client. The processing will

involve reading from disk, an operation that can have a relatively high latency—see

Figure 2.11.

The simplest implementation of such a server would be a single-threaded loop

that waits for the next request, processes it, and then repeats. However, such a

server would have to wait until the current request is processed and the response is

sent completely before the next request is served. This is not ideal since, as can be

seen in Figure 2.11, much of the CPU time will be wasted waiting for file to be read

from disk, leading to other clients that are connecting simultaneously to have to wait

for their turn, which can lead to high wait-times and possible time-outs.

One solution to this conundrum is to use OS-level concurrency, that is threads

or processes, to process multiple requests concurrently, with the immediate solution

being to spawn a new process (or thread) for each request. This solution is considered

17

Event Latency Scaled Latency

1 CPU cycle 0.3 ns 1 s

Level 1 cache access 0.9 ns 3 s

Level 2 cache access 2.8 ns 9 s

Level 3 cache access 12.9 ns 43 s

Main memory access 120 ns 6 min

Solid-state disk I/O 50-150 μs 2-6 days

Rotational disk I/O 1-10 ms 1-12 months

Internet: SF to NYC 40 ms 4 years

Internet: SF to UK 81 ms 8 years

Internet: SF to Australia 183 ms 19 years

Figure 2.11: Scaled average latency of various operations. Taken from [5].

to be “heavy-weight” in terms of resource use, since creating new processes or threads

requires allocation of memory (each process will have its own memory space, and each

thread will have at least a stack allocated for it) and initialization of the process or

thread. In addition, the OS will then be in charge of switching between the tasks and

the switches will involve relatively CPU-expensive context-switches.

One approach to mitigating the issues with the previous solution is to use process

or thread pools. That is, a pool of request handler processes can be pre-allocated,

and requests can be assigned to the first available request handler process in the

pool. Alternatively, a pool of threads can be created and an available thread can be

assigned to (or a new one created for) a new request. The Apache web-server, for

example, can use a mix of these two strategies to handle requests [18], with a pool of

processes each with their own pool of threads.

Using pools mitigates the performance problems of multi-processing or multi-

threading servers to some extent, but the overhead of using multiple processes and

threads is not completely eliminated, since each individual thread or process will still

18

be spending the vast majority of its time waiting for operations with relative high-

latency. A better solution would be to use each individual process or thread more

efficiently. Furthermore, other complications such as deadlocks, race conditions, etc,̇

that arise with the use of multiple processes and threads, will still exist [26].

A different solution would be to work within a single-threaded environment, and

use an event-loop (sometimes also referred to as a trampoline, especially when corou-

tines are used with the event-loop) instead of threads and processes. In the event-loop

model, a single thread of execution continuously polls for events and executes corre-

sponding event-handlers when there are new events available. This allows the server

to continue to stay busy while operations with high latency such as disk I/O take

place and the result becomes available.

The file-server described earlier can be setup using a hypothetical event-loop based

environment as shown in Figure 2.12. Here, instead of sequentially executing the

instructions with high latencies, the request handler asks the event-loop to execute

the instructions and provides handlers to be run for when the instructions finish.

Event handlers such as the one in Figure 2.12 are often called callbacks.

Event-loop based environments such as above can be very efficient at handling

heavy requests loads using only a single process and a single thread. Since the envi-

ronment is single-threaded, concurrency issues such as deadlocks and race conditions

are also non-existent in these environments. However, event-loop based code using

callbacks can arguably become very unreadable and difficult to debug. Even the code

given in Figure 2.12, which is heavily simplified, portrays how unnatural programs

can become when callbacks are used to control the flow of data in the program. Once

error handling is added, this issue becomes even worse. To quote Guido van Rossum,

the creator of Python, “it requires super human discipline to write readable code

using callbacks [33].” Others have compared callbacks to modern-day equivalents

19

def handle_new_connection(event):
connection = event.connection

def close_connection():
connection.close()

def send_file(event):
connection.send(event.file_data, on_completed=close_connection)

def handle_new_request(event):
read_file(event.data, on_completed=send_file)

connection.read_line(on_completed=handle_new_request)

def run_main_loop():
listen_for_connections(on_new_connection=handle_new_connection)
while True:

event = get_next_event()
for handler in get_event_handlers(event):

handler(event)

Figure 2.12: Example of a hypothetical event-loop based server using callbacks.

of GOTO statements [22], with “callback hell” the modern equivalent of “spaghetti

code”.

An alternative to using callbacks that addresses issues surrounding code read-

ability and maintainability, as well as difficulties with error handling, is cooperative

multitasking using coroutines. The idea is to still have an event-loop that calls event

handlers but also resumes coroutines that are waiting on the result of another corou-

tine, or an event. This allows for handler coroutines to simply yield control back to

the event-loop when they need the results of a high-latency operation, such as a disk

I/O operation. When yielding, the coroutines also yield an instance of the coroutine

whose results they need to continue. Figure 2.13 portrays the use of a event-loop

using a flow diagram.

Using an event-loop setup that supports coroutines, the hypothetical server code is

given in Figure 2.14. The Python Tornado web-server [32], and Python 3.4’s asyncio

module [27], both provide coroutine-based event-loop environments that support code

20

Trampoline A B

Call A

Yiel
d B

Call B

Yield

resu
lt x

Sendx to A

Retu
rn

Figure 2.13: Use of a event-loop (trampoline) to dispatch control to coroutines with
dependencies (A needs result x from B).

similar to that given in Figure 2.14.

2.2 Approaches to Combinatorial Generation

To introduce the use of coroutines for combinatorial generation, first a short introduc-

tion to the other two approaches (the recursive approach and the iterative approach)

21

def handle_connection(connection):
filename = yield connection.read_line()
file_content = yield read_file(filename)
yield connection.send(file_content)
connection.close()

def main():
server = create_server(on_new_connection=handle_connection)
server.listen()

Figure 2.14: Example of a hypothetical event-loop based server using coroutines.

is provided to set the context and allow for easy comparison of the approaches.

Generation of multi-radix numbers in lexicographic order will be used as the run-

ning example in this section. A multi-radix base of length n is defined as a set of

positive integers {M0, . . . ,Mn−1} for n > 0. A multi-radix number a in base M is

then defined as any string of integers {a0, . . . , an−1} such that 0 ≤ ai < Mi for all

applicable i. In this section, to introduce the coroutine-based algorithms, we look at

three algorithms for generating all multi-radix numbers in lexicographic order given

a base M .

2.2.1 Recursive Approach

To use recursion, we need to reduce the problem to a subproblem. Given that M has

n items in it, we are producing multi-radix numbers with n digits. Let M ′ be a base

of length n−1 with M ′
i = Mi for 0 ≤ i < n−1. That is, M ′ is the first n−1 elements

of M . Then if we have a list of multi-radix numbers for base M ′ in lexicographic

order, we can extend that list to a list of lexicographic numbers for M by appending

0 to Mn−1 − 1 to each element of the list.

Letting Ak for k > 0 be the sequence of multi-radix numbers in lexicographic order

22

in base {M0,M1, . . . ,Mk−1}, the reduction to subproblems is given by the recursion

A0 = {ε}, (2.1)

Ak = {ax : 0 ≤ x < Mk−1 and a ∈ Ak−1}, (2.2)

where ε is the empty string and ax is a concatenated at the end with x.

The above recursion leads to the recursive code given in Figure 2.15.

def multiradix_recursive(M, i):
if i < 0:

yield []
else:

for a in multiradix_recursive(M, i - 1):
for x in range(M[i]):

yield a + [x]

def gen_all(M):
return multiradix_recursive(M, len(M) - 1)

Figure 2.15: Recursive generation of multi-radix numbers.

2.2.2 Iterative Approach

For an iterative solution, a common strategy for lexicographic generation is to scan

the combinatorial object from right-to-left, looking for the first place an increment

can be made, and then to make the increment. The elements to the right of the

point that the increment is made need to then be reset to be the smallest possible in

lexicographic order. In the case of multi-radix numbers, this means scanning right to

left for an index i such that ai < Mi− 1, and setting the digits for which ai = Mi− 1

to 0 along the way. This iterative approach leads to the iterative algorithm given in

Figure 2.16.

23

def gen_all(M):
n = len(M)
a = [0] * n
while True:

yield a
k = n - 1
while a[k] == M[k] - 1:

a[k] = 0
k -= 1
if k < 0:

return
a[k] += 1

Figure 2.16: Iterative generation of multi-radix numbers by scanning right to left.

2.2.3 Coroutine-based Approach

The idea behind combinatorial generation with coroutines is to use multiple instances

of the same sequence of instructions, each with their own independent state, and

proper communication among them to generate the set of combinatorial objects. To

explain the first example of a coroutine-based combinatorial generation algorithm,

the allegory of a line of “friendly trolls” is borrowed from [9]. (The trolls were first

used by Knuth in a lecture given at University of Oslo [6].)

Imagine a line of n+1 friendly trolls, numbered −1 to n−1 (the rationale behind

the somewhat odd indexing is for indices to match Python’s zero-based indexing—troll

number −1 does not correspond to a bit in the binary string and hence the index for

it does not need to be a valid array index). Trolls 0 to n − 1 all behave the same

way, and each is either asleep or awake, with all trolls starting asleep. They behave

in the following way: when asleep and poked trolls 1 to n simply wake up and yell

“moved”. If awake when poked, the trolls simply poke their neighbour (defined as

the troll behind them in line, i.e. for troll number k, the neighbour is troll number

k − 1) without yelling anything, and fall asleep immediately after. Troll number −1

is special, and always simply yells “done” when poked. Troll number n− 1 is called

24

the lead troll. With this simple setup, poking the lead troll repeatedly, until either

“moved” or “done” is heard results in the generation of binary strings in lexicographic

order. Hearing “done”, which indicates the last troll is poked, indicates the end of the

combinatorial generation. The trolls here basically simulate our iterative algorithm

that was given in Figure 2.16 if all Mi = 2. See Figure 2.17 for an illustration of the

algorithm.

−1 0 1 2

Figure 2.17: Generation of binary strings using “trolls”—arrows indicate sequences of
pokes, empty circles indicate asleep troll, filled circles indicate awake troll.

In the above explanation, the trolls can naturally be implemented as coroutines,

with their awake or asleep state naturally taking place based on which instruction will

be run next. Finally, what the trolls yell can be passed on using the value they yield.

We will use True for “moved” and False for “done”. This leads to the coroutine

given in Figure 2.18.

To use this coroutine, we first need to setup n + 1 instances of it, and link them

to each other by passing the correct neighbour variable to each instance. We then

25

def troll(a, i=None, neighbour=None):
while True:

if neighbour is None:
yield False # If last troll in line, just yell "done"

else:
a[i] = 1 # Wake up
yield True # Yell "moved"
a[i] = 0 # Go to sleep
yield next(neighbour) # Poke neighbour

Figure 2.18: Coroutine to generate binary strings in lexicographic order.

start by poking the lead coroutine until False is yielded, which indicates the end of

the combinatorial generation task. The setup and use code is shown in Figure 2.19.

from binary_strings_coroutine import troll

def setup(n):
a = [0] * n
lead = troll(a, neighbour=None) # Start with the last troll in line
for i in range(n):

lead = troll(a, i, neighbour=lead)
return a, lead

def visit(a):
print(’’.join(str(x) for x in a))

def print_binary_strings_in_lex(n):
a, lead = setup(n)
while True:

visit(a)
if not next(lead):

break

print_binary_strings_in_lex(3)

Figure 2.19: Usage of the troll coroutine to generate binary strings in lexicographic
order.

26

2.2.4 Generalization To An Algebra of Coroutines

A few ideas can now be extracted from the example in the previous section and

generalized. First, the “barrier” coroutine that always yields False (which was troll

number −1), or variations of it, will be used in some of the later algorithms in

this thesis to signal the end of the combinatorial generation task. In mathematical

notation the symbol∅ is used for this coroutine. This coroutine is given in Figure 2.20.

def barrier():
while True:

yield False

Figure 2.20: The barrier coroutine that repeatedly yields False.

Another notable pattern is how the coroutines poke each other, from which we

can extract a pattern of linking coroutines that we will refer to as coroutine product

(abbreviated to coproduct4). To define coproduct, first coroutine multiplication (ab-

breviated to comultiplication) is defined. The comultiplication X × Y of X and Y

is defined as the coroutine that, given two coroutines X and Y , will repeatedly yield

True while Y yields True, and then yield what X yields. It is important to note that

the comultiplication operator × is associative, for reasons similar to why function

composition is associative. The Python code for X × Y is given in Figure 2.21.

def comultiply(X, Y):
while True:

while next(Y):
yield True

yield next(X)

Figure 2.21: The comultiply coroutine to multiply two coroutines X and Y to get X×Y .

The coproduct of a sequence of coroutines X1 to Xk, written in mathematical no-

4The “co” in coproduct (and later, cosum and cosymsum) stands for coroutine. These coroutines
are not meant to be directly related to the similarly named concepts in category theory.

27

tation as
∏k

i=1 Xi, is defined as the left-associative5 comultiplication of the coroutines.

That is, we have

k∏
i=1

Xi = (. . . (((X1 ×X2)×X3)× . . .)×Xk−1)×Xk. (2.3)

The code for coproduct is given in Figure 2.22.

from combgen.common import comultiply

def coproduct(*Xs):
iterator = iter(Xs)
lead = next(iterator)
for X in iterator:

lead = comultiply(lead, X)
return lead

Figure 2.22: The coproduct of a sequence of coroutines.

With these coroutines abstracted, the example from the previous section can quite

easily be generalized to generate multi-radix numbers in lexicographic order. From

here on, instead of “troll”, the coroutines that form the individual unit of coroutine-

based algorithms will be referred to as local coroutines, or simply locos, because they

act locally on the combinatorial object, following a well-defined subpath of the Hamil-

tonian path or cycle. In the current example the troll coroutine with the barrier

and coproduct parts extracted, becomes a simple loco: it simply switches ai and

yields False and True accordingly. See Figure 2.23 for this simplified loco. Letting

Xi be an instance of this loco for the given i, the full sequence can be generated using

simply
n−1∏
i=0

Xi. (2.4)

5Note that since the × operator is associative, the definition does not need to specify “left-
associative” explicitly. However, since the code implements coproduct left-associatively, this is
reflected in the definition to avoid any confusion.

28

def binary_strings_lex_local(a, i):
while True:

a[i] = 1
yield True
a[i] = 0
yield False

Figure 2.23: Loco for binary strings with coproduct and barrier extracted.

To generalize the previous loco to generate multi-radix numbers instead of binary

strings only, the only change necessary is to make the digit increment modulo Mi.

This loco is given in Figure 2.24.

def multiradix_lex_local(M, a, i):
while True:

a[i] = (a[i] + 1) % M[i]
yield a[i] != 0

Figure 2.24: Loco for generation of multi-radix numbers in lexicographic order.

Using the abstracted coproduct and barrier coroutines, the setup code is sim-

plified to that given in Figure 2.25, which simply sets up the coroutines and calculates

the coproduct corresponding to
∏n−1

i=0 Xi.

from combgen.common import coproduct
from .local import multiradix_lex_local

def setup(M):
n = len(M)
a = [0] * n
coroutines = [multiradix_lex_local(M, a, i) for i in range(n)]
lead = coproduct(*coroutines)
return a, lead

Figure 2.25: Setup for generation of multi-radix numbers in lexicographic order using
coroutines.

29

2.2.5 Summary

In the previous section, only a single operation on coroutines, namely coroutine prod-

uct, was defined. This operation is in many ways similar to recurisve calls; hence its

use in the problem given in that section. However, as the word algebra in the name

of the previous section suggests, more operations on coroutines are possible. The

next chapter introduces two other operations, namely coroutine sum and coroutine

symmetric sum, which together with coroutine products can be used to solve a variety

of combinatorial generations problems. With these operations, the coroutine-based

approach is reduced to the following. First, creating a loco that, independent of the

rest of the coroutines, makes the local changes needed to generate the combinatorial

objects. Afterwards, the instances of the loco need to be set up and linked to each

other using coroutine product, coroutine sum, or coroutine symmetric sum, resulting

in a lead coroutine. Finally, the initial combinatorial object needs to be set up, and

the lead coroutine can be called repeatedly until False is yielded, indicating the end

of the combinatorial generation task. In the next chapter, several combinatorial gen-

eration problems, in increasing order of difficulty, will be approached using coroutines

and the aforementioned operations.

30

Chapter 3

New Work

3.1 Generating Multi-radix Numbers In Gray Or-

der

3.1.1 Problem Definition

In this section, the coroutine-based algorithm from the previous section is generalized

to generate multi-radix numbers in Gray order instead of lexicographic order. A Gray

order for a set of combinatorial objects is a listing of the objects such that the distance

between consequent objects a and b is constant. For this definition to be meaningful,

a precise definition of distance needs to be provided. For this section, we define the

distance between two multi-radix numbers a = {a0, . . . , an−1} and b = {b0, . . . , bn−1}

in base M of length n to be

dist(a, b) =
n−1∑
i=0

|ai − bi|. (3.1)

With this definition, a Gray order for multi-radix numbers is one in which the

next number is generated by incrementing or decrementing a single digit by exactly

31

one. An example of a Gray code for base M0 = 3, M1 = 2 and M2 = 3 is given

in in Figure 3.1, where an edge exists between two vertices a and b if and only if

dist(a, b) = 1, and the arrows indicate the Gray code, with the initial multi-radix

number distinguished by being enclosed by a rectangle.

000

010

100

001

011

101

002

102

012

112

111

110

210

211

212

202

201

200

Figure 3.1: Graph corresponding to multi-radix numbers with base M0 = 3, M1 = 2 and
M2 = 3 with Hamiltonian path indicated using arrows.

3.1.2 Coroutine-based Algorithm

Assume that a loco X performs invertible operations α1, . . . , αk resulting in dis-

tinct combinatorial objects, after each of which it yields True and finally yields

False. Since for Gray codes the locos will need to perform a single atomic oper-

ation each time, define the reflected loco corresponding to X as the coroutine that

performs α1, . . . , αk first, yields True after each, then yields False, and then performs

32

α−1
k , . . . , α−1

1 , yields True after each, yields False, and then repeats the operations

from the beginning. Therefore the sequence of operations performed by the reflected

loco is:

α1, . . . , αk, α
−1
k , . . . , α−1

1 , α1, . . . , αk, α
−1
k , . . . , α−1

1 , . . . (3.2)

Note that the above collapses to the identity operation (i.e. leaving the combinatorial

object unchanged) if and only if the reflected loco is called 2mk times, for some integer

m ≥ 0. The significance of this is that if all reflected locos Xi are called 2miki times,

the resulting code will be a cyclical Gray code.

Section 2.2.3 provided a coroutine-based algorithm for generating multi-radix

numbers in lexicographic order. The reflected loco corresponding to the loco used

in that example is a loco that increments the digit at index i until the digit gets to

Mi − 1, yields True after each change, and then yields False. Afterwards, the loco

decrements the digit until it gets to 0, yields True after each change, and yields False

at the end. The whole process is then repeated ad infinitum. This loco is is given in

Figure 3.2.

def multiradix_gray_local(M, a, i):
while True:

while a[i] < M[i] - 1:
a[i] += 1
yield True

yield False
while a[i] > 0:

a[i] -= 1
yield True

yield False

Figure 3.2: Reflected loco to generate multi-radix numbers in Gray order.

With this loco, the problem of generating multi-radix numbers in Gray order is

achieved using the coroutine
n−1∏
i=0

Xi, (3.3)

33

where Xi is an instance of multiradix_gray_local for the given i.

3.2 Generating Ideals Of Chain Posets

3.2.1 Problem Definition

An equivalent problem to the generation of multi-radix numbers in Gray order is that

of generating ideals of a poset consisting of a set of chains in Gray order. Approaching

this problem with the different representation provides the opportunity to introduce

two new ways of linking coroutines, namely coroutine sum and symmetric coroutine

sum.

Given positive integers n and k, and a set of integer end-points given by

E = {e0, e1, e2, . . . , ek} (3.4)

with

−1 = e0 < e1 < e2 < · · · < ek = n− 1, (3.5)

let ≺E be the poset on the set {0, 1, . . . , n− 1} given by

ei + 1 ≺ ei + 2 ≺ · · · ≺ ei+1 − 1 ≺ ei+1 (3.6)

for 0 ≤ i < k. The Hasse diagram of an example is shown in Figure 3.3 for E =

{−1, 1, 2, 5}.

For any poset ≺ on the set S = {0, 1, . . . , n − 1}, an ideal is defined as a subset

I ⊆ S such that for any x, y ∈ S if y ∈ I and x ≺ y then x ∈ I. In terms of the Hasse

diagram, this means a subset of the vertices such that if a vertex is in the subset, so

are all its descendants. Ideals will be represented as binary strings of length n. That

34

is, ideal I ⊆ S will be represented as binary string a = {a0, a1, . . . , an−1} with ax = 1

if and only if x ∈ I. With this representation, the ideal condition becomes that if

x ≺ y then ax ≥ ay.

0

1

2 3

4

5

Figure 3.3: Hasse diagram of example chain poset ≺E with E = {−1, 1, 2, 5}.

Figure 3.4 shows all ideals of the poset given in Figure 3.3, of which there are a

total of 3× 2× 4 = 24, in Gray order.

3.2.2 Coroutine-based Algorithm

Let αi be the operation of setting ai to 1 and α−1
i be setting it to 0. Now, as an

example, consider having a single chain poset ≺E for E = {−1, 2} with n = 3. Then

the sequence of operations needed to get a reflected loco is:

α0, α1, α2, α
−1
2 , α−1

1 , α−1
0 . (3.7)

This order inspires the definition of two new coroutine operations. The first is

coroutine sum, or simply cosum, in mathematical notation +, which, given a list

of coroutines X1 to Xk, calls them in order until they each yield False, and then

yields False and repeats from the beginning again. Note that this operator is also

associative. The code for this coroutine is given in Figure 3.5. To allow for conciser

35

000000 000100 000110 000111

001111 001110 001100 001000

101000 101100 101110 101111

100111 100110 100100 100000

110000 110100 110110 110111

111111 111110 111100 111000

Figure 3.4: Gray code sequence of ideals of chain poset given in Figure 3.3. Filled circles
represent 1 bits, empty circles 0. Order is left-to-right, then top-to-bottom.

formulations, we also define

k∑
i=1

Xi = X1 +X2 + · · ·+Xk, (3.8)

as is common practice with associative + operators.

Given two coroutines X and Y define the coroutine join, or cojoin, X ∨ Y to be

36

def cosum(*Xs):
while True:

for X in Xs:
while next(X):

yield True
yield False

Figure 3.5: The coroutine sum (cosum) operator.

the coroutine that yields from X first until it yields False, and then yields from Y

until it yields False and then repeats ad infinitum. The cojoin operator, with code

given in Figure 3.6, will be used to define the next important operator.

def cojoin(*Xs):
while True:

for X in Xs:
while next(X):

yield True
yield False

Figure 3.6: The coroutine join (cojoin) operator.

Given a sequence of locos X1 to Xk, we can then define the coroutine symmetric

sum, or simply cosymsum, in mathematical notation ⊕, as the following:

k⊕
i=1

Xi = (X1 +X2 + · · ·+Xk) ∨ (Xk +Xk−1 + · · ·+X1) (3.9)

= (
k∑

i=1

Xi) ∨ (
k∑

i=1

Xk−i+1). (3.10)

The code for the cosymsum operator is given in Figure 3.7.

The three main operations defined on coroutines are demonstrated graphically in

Figure 3.8, which shows the sequence of coroutine calls for X + Y + Z, X ⊕ Y ⊕ Z,

and X × Y .

Now, to get a reflected loco for the purposes of this section, a binary equivalent of

37

from combgen.common import cosum, cojoin

def cosymsum(*Xs):
XY = cosum(*Xs)
YX = cosum(*reversed(Xs))
return cojoin(XY, YX)

Figure 3.7: The coroutine symmetric sum (cosymsum) operator.

Sum

X + Y + Z

X Y Z

Symmetric Sum

X ⊕ Y ⊕ Z

X Y Z

Product

X × Y

X Y

Figure 3.8: The coroutine sum, symmetric sum, and product operations.

the loco given in Figure 3.2 is needed. While we can use the same loco with Mi = 2

for all i, for simplicity a specialized reflected loco is provided in Figure 3.9.

Let Xi be an instance of this reflected loco for the given i, which switches bit i

38

def chain_poset_ideals_local(a, i):
while True:

a[i] = 1 - a[i]
yield True
yield False

Figure 3.9: Loco to generate ideals of a poset consisting of chains in Gray order.

and yields True then False after each switch. Then for each chain i ≺ i+ 1 ≺ · · · ≺

j − 1 ≺ j the coroutine given by

Xi ⊕Xi+1 ⊕ · · · ⊕Xj−1 ⊕Xj (3.11)

performs exactly the operations

αi, αi+1, . . . , αj−1, αj, α
−1
j , α−1

j−1, . . . , α
−1
i+1, α

−1
i (3.12)

in order, as needed. We then have the following coroutine to generate ideals of the

poset ≺E for a given set of end-points E = {e0, e1, e2, . . . , ek}, in Gray order:

k−1∏
i=0

ei+1⊕
j=ei+1

Xj. (3.13)

For example, for E = {−1, 1, 2, 5}, the ideals are generated by the coroutine

(X1 ⊕X0)×X2 × (X5 ⊕X4 ⊕X3). (3.14)

This leads to the setup code given in Figure 3.10.

It is interesting to note that the coroutines, linked in this way, can continue to

run after finishing the combinatorial generation task. In the cases of reflected locos,

calling the lead coroutine after the first generation results in the combinatorial objects

39

from combgen.common import cosymsum, coproduct
from .local import chain_poset_ideals_local as X

def setup(n, E):
a = [0] * n
Y = []
for j in range(len(E) - 1):

Z = [X(a, i) for i in range(E[j] + 1, E[j + 1] + 1)]
Y.append(cosymsum(*Z))

lead = coproduct(*Y)
return a, lead

Figure 3.10: Setup of locos to generate ideals of a poset consisting of chains in Gray order.

being generated in reverse order the second time around, and back to the initial order

the third time, and so on.

3.2.3 Generalization To Ideals Of Forest Posets

The results from the previous section can be generalized to generate ideals of forest

posets, leading to an algorithm quite similar to the Koda-Ruskey algorithm [10]. To

be more precise, we define forest posets as posets consisting of a set of disjoint tree

posets, and define a tree poset as a poset in which the Hasse diagram is a rooted tree,

with each non-root element covering exactly one other element. (An element y is said

to be covering another element x if x ≺ y and no other element z with x ≺ z ≺ y

exists.) Figure 3.11 shows an example of a tree poset.

Ideals are defined in the same as last section. Figure 3.12 shows all ideals of the

poset given in Figure 3.11 in Gray order, as produced by the algorithm given in this

section.

Assume that x is the root of a tree poset, and that y1, y2, . . . , yk are its immediate

successors. That is, x ≺ yi for all 1 ≤ i ≤ k and there exists no z such that

x ≺ z ≺ yi. For example, in Figure 3.11, x = 0 and y1 = 1, y2 = 3 and y3 = 7. Then

40

0

1

2

3

4 5

6

7

Figure 3.11: Hasse diagram of example tree poset.

each combination of ideals of subtrees rooted at each yi is an ideal of the whole tree

provided that x is included in the ideal. Letting C(z) be the coroutine that generates

all ideals of the tree rooted at z in Gray order, the following recursion holds:

C(x) = Xx ⊕
k∏

i=1

C(yi), (3.15)

with base case happening when k = 0, namely the leaves of the tree, for which

C(z) = Xz, where X is the exact same loco as in last section.

For example, in Figure 3.11, we have 2, 4, 6 and 7 as the leaves, giving

C(2) = X2, (3.16)

C(4) = X4, (3.17)

C(6) = X6, (3.18)

C(7) = X7. (3.19)

41

With those base cases, we have

C(1) = X1 ⊕ C(2) = X1 ⊕X2, (3.20)

C(5) = X5 ⊕ C(6) = X5 ⊕X6, (3.21)

C(3) = X3 ⊕ (C(4)× C(5)) = X3 ⊕ (X4 × (X5 ⊕X6)), (3.22)

C(0) = X0 ⊕ (C(1)× C(3)× C(7)) (3.23)

= X0 ⊕ (

C(1)︷ ︸︸ ︷
(X1 ⊕X2)× (X3 ⊕ (X4 ×

C(5)︷ ︸︸ ︷
(X5 ⊕X6))︸ ︷︷ ︸
C(4)

)

︸ ︷︷ ︸
C(3)

×X7). (3.24)

This lead coroutine generates the ideals of the tree poset in the Gray order given

in Figure 3.12. Extending this result to forests instead of just trees can be achieved by

using the coproduct of the coroutines that generate each independent tree in the for-

est. The result can also be further generalized to produce ideals of completely-acyclic

posets [9, 1].

3.3 Generating Permutations In Gray Order

3.3.1 Problem Definition

Define Sn for n ≥ 1 as the set of bijections from the set {1, 2, . . . , n} onto itself. A

function π in Sn is called a permutation of length n. In this thesis, when n ≤ 9,

permutations will be written in one-line notation, that is, as simple sequences of

digits. For example, the permutation π with π1 = 2, π2 = 3 and π3 = 1 will be

written as simply 231.

A transposition is a permutation σa,b such that σa,b
x = x for all x except for

exactly two distinct a and b such that σa,b
a = b and σa,b

b = a. That is, a transposition

42

00000000 10000000 10000001 10010001 10010000 10010100

10010101 10010111 10010110 10011110 10011111 10011101

10011100 10011000 10011001 11011001 11011000 11011100

11011101 11011111 11011110 11010110 11010111 11010101

11010100 11010000 11010001 11000001 11000000 11100000

11100001 11110001 11110000 11110100 11110101 11110111

11110110 11111110 11111111 11111101 11111100 11111000

11111001

Figure 3.12: Ideals of the poset given in Figure 3.11. Filled circles represent 1 bits, empty
circles 0. Order is left-to-right, then top-to-bottom.

is a permutation that switches the positions of exactly two elements. For example,

σ4,5 = 12354 ∈ S5 is a transposition of 4 and 5. Every permutation can be written

as a composition of transpositions, and while there may be many distinct ways of

43

composing the permutation as transpositions, for any given permutation the parity

of the number of transpositions that it can be transposed into is always the same

(see for example [13]). Based on this, the set Sn is partitioned into two sets, called

the set of even and the set of odd permutations, based on the parity of the number

of transpositions for any decomposition of the permutation into transpositions. For

example, 4312 can be written as σ1,3 ◦ σ1,2 ◦ σ1,4 and is hence an odd permutation.

An inversion of a permutation π is defined as a pair of indices (a, b) such that a < b

and πa > πb. In the previous example, the number of inversions of 4312 is 5, given by

pairs (1, 2), (1, 3), (1, 4), (2, 3), and (2, 4). Another basic result in abstract algebra is

that the parity of the number of inversions is the same as the parity of the number

of transpositions in any decomposition of the permutation into transpositions. The

parity of the permutation can therefore be calculated using the parity of the number

of inversions.

The Gray order for Sn is defined as any listing of the elements of Sn in which two

consequent permutations differ by exactly one transposition. In any Gray code for

Sn the parity of the permutations switches each time.

3.3.2 Coroutine-Based Algorithm

The coroutine-based algorithm in this section is based on Steinhaus-Johnson-Trotter

(SJT) [8]. Defined recursively, the SJT Gray order for Sn is given by first recursively

generating the SJT Gray order for Sn−1, and then inserting n into each permutation

starting from the very right and moving to the very left if the permutation is even,

and from the very left and to the right if the permutation is odd. The base case is

when n = 1, in which case Sn has only a single item 1. For example, for n = 2, the

base case permutation 1 is an even permutation, so 2 starts at the very right, giving

12 and then moves to the left giving 21. Continuing in this manner, for n = 3, we

44

start with 12 which is an even permutation, so 3 starts at the very right and moves

to the left, giving 123, 132 and 312, in that order. Then 21 is odd, so 3 starts at the

very left and moves right, giving 321, 231 and 213 in that order.

An iterative implementation of SJT is possible by keeping track of the direction

that each element in the permutation is moving in [3]. All elements begin with

negative direction, indicating movement to the left. At each point an active element

x is moved in its direction. Before the active element is moved, the next element

in the direction of its move, say y, is checked and if x is less than y (i.e. x < y), x

is not moved in that direction and instead the direction for x is switched, and the

active element is changed to x − 1. Otherwise, after every move, the active element

is changed to n. The code for this iterative algorithm is shown in Figure 3.13

from combgen.helpers.permutations import transpose

def gen_all(n):
pi = [n + 1] + list(range(1, n + 1)) + [n + 1]
inv = pi[:]
d = [-1] * (n + 2)
x = n # x is the active element
yield pi[1:-1]
while x > 0:

y = pi[inv[x] + d[x]] # y is the element next to x in direction d[x]
if x < y:

d[x] = -d[x] # Switch direction
x -= 1 # Change active element to x - 1

else:
transpose(pi, inv, x, y)
yield pi[1:-1] # New permutation is generated
x = n # Change active element to n

Figure 3.13: Iterative algorithm to generate all permutations in Steinhaus-Johnson-
Trotter Gray order.

The coroutine-based algorithm is similar to the iterative algorithm in that each

element maintains a direction of movement. However, unlike the iterative algorithm,

the active element is not maintained by the loco and ends up being maintained im-

45

plicitly based on how the locos are linked together using a coproduct.

For 1 ≤ x ≤ n let Xx be a reflected loco that moves x to left first until the element

to left of x is greater than x, yields False, and then moves x to the right until the

element to the right of x is greater than x, yields False, and then repeats the same

process again and again. For this process to terminate, a greater element in both

directions needs to exist. This is achieved by prepending and appending n + 1 to π.

That is, we always assume that π0 = πn+1 = n + 1 throughout. These two indexes

will never change and are simply used as “barriers”.

For example, the permutation 123 is represented as π = 41234, and with that π,

X3 performs the following operations:

σ3,2, σ3,1, σ3,1, σ3,2, σ3,2, σ3,1, (3.25)

Note that transpositions are involutions, meaning (σa,b)−1 = σa,b, so the above se-

quence of operations conforms to our definition for reflected locos.

The code for this loco is shown in Figure 3.14. The transpose function is provided

in the supplementary code given in Appendix A.1.

from combgen.helpers.permutations import transpose

def sjt_local(pi, inv, x):
d = -1
while True:

y = pi[inv[x] + d] # y is the element next to x in direction d
if x < y:

d = -d # Switch direction
yield False

else:
transpose(pi, inv, x, y)
yield True

Figure 3.14: Loco to generate permutations in Steinhaus-Johnson-Trotter Gray order.

With this reflected loco, the correct active element will be maintained by setting

46

the lead coroutine to be the coproduct

n∏
x=1

Xx, (3.26)

and the SJT Gray code for permutations can be generated using this lead coroutine.

3.4 Generating Linear Extensions

3.4.1 Problem Definition

In the previous section an algorithm for generating all permutations in Gray order

was given. Generation of all permutations can be seen as a special case of generating

all linear extensions of a poset. Assume P is a poset given by partial-order ≺ on

the set S = {1, 2, . . . , n}. We also make the assumption, by means of a relabelling if

necessary, that for all x, y ∈ S if x ≺ y then x < y. This extra assumption means

that, without loss of generality, the identity permutation ι = 123 . . . n is always a

valid linear extension, regardless of the poset in question, and therefore simplifies the

initialization step. The posets given in Section 3.1.2 are examples of posets satisfying

this assumption. A linear extension of P is defined as a permutation π of S such that

for all x, y ∈ S if x ≺ y then π−1(x) < π−1(y). That is, if x ≺ y then x occurs to the

left of y in the one-line notation for π.

The running example of poset used in this section will be the fence or zig-zag

poset, defined for n ≥ 1 as the poset on the set S = {1, 2, . . . , n} given by

1 ≺ dn
2
e+ 1 � 2 ≺ · · · � dn

2
e − 1 ≺ n � dn

2
e. (3.27)

47

For example, for n = 5 the poset is given by

1 ≺ 4 � 2 ≺ 5 � 3. (3.28)

The Hasse diagram for this example is shown in Figure 3.15.

1

4

2

5

3

Figure 3.15: Zig-zag poset for n = 5 given by 1 ≺ 4 � 2 ≺ 5 � 3.

Linear extensions of the zig-zag poset are sometimes referred to as alternating

permutations [30]. Figure 3.16 shows the linear extensions of the zig-zag poset for

n = 5, each linear extension represented as a linear Hasse diagram.

In code, posets will be represented using functions that take two variables a and

b and return True if a ≺ b and False otherwise. The code for the zig-zag poset is

given in Appendix A.2.

3.4.2 Coroutine-based Algorithm

The coroutine-based algorithm in this section is based on the Varol-Rotem algo-

rithm [16], which is an algorithm for generating all linear extensions of a poset in

a similar way as SJT. In Varol-Rotem, elements are transposed with elements to

their left until a “boundary” is hit, similar to SJT, except that in Varol-Rotem the

boundary is determined by the poset. The algorithm is as follows: let x be the active

element, initialized to n. At each step, let y be the element to the left of x. Then

there are two possibilities: either y ≺ x or y ‖ x, since if x ≺ y then the invariant

of the algorithm, namely that π will always be a linear extension of the given poset,

48

1

2

3

4

5

12345

1

2

3

5

4

12354

1

2

4

3

5

12435

1

3

2

4

5

13245

1

3

2

5

4

13254

3

1

2

4

5

31245

3

1

2

5

4

31254

2

1

3

4

5

21345

2

1

3

5

4

21354

2

1

4

3

5

21435

2

3

1

4

5

23145

2

3

1

5

4

23154

2

3

5

1

4

23514

3

2

1

4

5

32145

3

2

1

5

4

32154

3

2

5

1

4

32514

Figure 3.16: Linear extensions of the zig-zag poset for n = 5, as generated by the Varol-
Rotem algorithm. Order is left-to-right then top-to-bottom.

is violated. The algorithm then behaves based on these two possibilities. If y ≺ x

then x can not move to the left and the algorithm does a cyclic left-shift to place

x back where it had started at the beginning (i.e. index x, since the starting linear

extension is the identity permutation), and set the active element x to be x − 1.

Otherwise, the algorithm transposes x and y (meaning it moves x to the left) and set

the active element x to the initial element n. An iterative implementation is given

in Figure 3.17. The move helper function attempts to move x in the given direction

while maintaining π as a linear extension of the given poset. If such a move would

violate the partial-order, the function returns False without modifying the linear ex-

49

tension. Otherwise, if the move is successful, it returns True. The code for the helper

functions move, left_cyclic_shift and add_min_max is provided in Appendix A.1.

from combgen.helpers.permutations import move, LEFT, left_cyclic_shift
from combgen.helpers.posets import add_min_max

def gen_all(n, poset):
poset = add_min_max(poset, 0, n + 1)
pi = list(range(n + 2))
inv = pi[:]
yield pi[1:-1]
x = n
while x > 1:

if move(pi, inv, x, LEFT, poset):
yield pi[1:-1]
x = n

else:
left_cyclic_shift(pi, inv, inv[x], x)
x -= 1

Figure 3.17: Iterative Varol-Rotem algorithm for generating all linear extensions of a
poset.

For example, consider the zig-zag poset with n = 5 given in Figure 3.15. Starting

with the identity permutation 12345, the first step of the Varol-Rotem is to try to

move 5 to the left, which is possible since 4 6≺ 5, so the next linear extension is 12354.

Next, the algorithm tries to move 5 to the left again, but this time 3 ≺ 5 so such

a move is not possible and hence a cyclic left-shift is done to put 5 back where it

started, giving 12345 and the active element is changed to 4 which is then moved to

the left, giving 12435 since 3 6≺ 4, and the active element is reset back to be 5, but in

the next two steps, since 3 ≺ 5 and 2 ≺ 4, the linear extension gets set back to 12345

and the active element gets set to 3. Next, 3 is moved to the left since 3 6≺ 2, giving

13245, and the active element is reset to 5, which is then moved to the left giving

13254, etc.

This iterative algorithm is based on the recursive idea that linear extensions

of {1, 2, . . . , n − 1, n} can be generated by first generating all linear extensions of

50

{1, 2, . . . , n − 1} and then in each of them, placing n at the very right and then

moving it as far left as possible without violating the partial-order.

It is important to note that because of the cyclic left-shift in the algorithm, the

generated linear extensions will not be in Gray order. Because of this, our loco in this

section will not be a reflected loco. Instead, the loco for the coroutine-based algorithm

will follow the iterative algorithm closely, moving x to the left while possible, and

yielding True after each such successful move, and doing the cyclic left-shift and

yielding False when such a move is not possible. The code for this loco is given in

Figure 3.18.

from combgen.helpers.permutations import move, LEFT, left_cyclic_shift

def varol_rotem_local(poset, pi, inv, x):
while True:

while move(pi, inv, x, LEFT, poset):
yield True

left_cyclic_shift(pi, inv, inv[x], x)
yield False

Figure 3.18: Loco for generating all linear extensions of a poset in Varol-Rotem order.

With this loco, all linear extensions of a given poset can be generated by setting

the lead coroutine to be the coproduct

n∏
x=1

Xx, (3.29)

similar to the coroutine-based SJT algorithm given in the previous section.

The next section will provide an algorithm for generating signed linear extensions

of posets in Gray order, which can also be used to generate linear extensions in

near-Gray order, with adjacent linear extensions differing by one or two adjacent

transpositions.

51

3.5 Generating Signed Linear Extensions In Gray

Order

3.5.1 Problem Definition

In the previous section, the Varol-Rotem algorithm for generating linear extensions

of a poset, and a coroutine-based variation of it, were discussed. And as noted in

that section, the resulting sequence of linear extensions is not in Gray order due to

the cyclic left-shift once a boundary is hit. It is not always possible to generate linear

extensions in Gray order (with adjacent linear extensions differing by one adjacent

transposition), since the transposition graph of the linear extensions will always be

bipartite, and the number of vertices in the two parts of the bipartite graph do not

always differ by a maximum of one. The graph is bipartite because transpositions

always change the parity of the permutation.

Figure 3.19 shows an example of a poset for which no Gray order of linear exten-

sions exist: the associated adjacent transposition graph for the linear extensions of

the poset does not have a Hamiltonian path, since there are four odd linear extensions

and only two even linear extensions. The existence of a Gray code would imply that

the difference between the two numbers should be −1, 0 or 1.

Pruesse and Ruskey show in [14] that if each linear extension is given a sign, which

is either positive or negative, then the resulting set of signed linear extensions can be

generated by either transposing two adjacent elements in each step, or switching the

sign. This is equivalent to taking the Cartesian product of the transposition graph

with a single edge. An example of a Gray code of signed linear extensions for the

poset given in Figure 3.19 is shown in Figure 3.20.

52

1 2

3 4

Poset

1234

1324

2134 1243

2143

2413

Linear Extensions

Figure 3.19: Poset with 1 ≺ 3 and 2 ≺ 4 and its linear extensions graph. Adjacent linear
extensions differ by one transposition.

+1234

−1234
+2134

+1243

+1324

−1324

−1243

−2134

−2143

+2143
+2413

−2413

Figure 3.20: Graph corresponding to signed linear extensions of poset with 1 ≺ 3 and
2 ≺ 4, and the Hamiltonian path traversed by the Pruesse-Ruskey algorithm.

3.5.2 Coroutine-based Algorithm

The coroutine-based algorithm in this section is based on the Pruesse-Ruskey algo-

rithm [14].

A basic description of the Pruesse-Ruskey algorithm is provided here, and the

53

reader is referred to [14] for more details and correctness proofs. For a poset P

defined by partial-order ≺ on the set S, define P \A for some A ⊆ S to be the poset

on the set S \ A given by partial-order ≺′ with a ≺′ b if and only if a, b ∈ S \ A and

a ≺ b. In simpler terms, P \A is the poset given by removing elements of A from P .

Let M(P) be the set of minimal elements of poset P . More precisely, let

M(P) = {x ∈ S : there exists no y ∈ S such that y ≺ x}. (3.30)

For example, for the zig-zag poset with n = 5 given in Figure 3.15, M(P) =

{1, 2, 3}, and with the poset given in Figure 3.19, M(P) = {1, 2}. The Pruesse-

Ruskey algorithm is recursive, with the recursion having two cases. First, if M(P)

has exactly one element, say M(P) = {a}, then the signed linear extensions of P can

be generated by prepending a to all the signed linear extensions of the poset P \ {a}

while maintaining the same sign, since if a is the unique minimal element then it must

be the case that a ≺ x for all x 6= a.

If M(P) has more than one element, then pick distinct a and b in M(P) and let

P ′ = P \ {a, b}. Then for any signed linear extension of P ′, if the sign is positive

ab is prepended to the signed linear extension. Afterwards, the algorithm moves ab

and b to the left and right, with a always to the left of b, following a path as given in

Figures 3.21 and 3.22, depending on whether b can move an even or odd number of

times to the right before hitting a constraining element.

If the sign of the signed linear extension is negative prepend ba to the signed linear

extension and switch the sign to positive, and then similar to the previous case, follow

the paths given in Figures 3.21 and 3.22, except this time with a and b swapped (that

is, b will always be to the left of a.)

Calculating the a and b pairs can be done as a pre-calculation step, by processing

the poset using an algorithm that closely resembles a breadth-first search topological

54

b→
a→ −

b→
a→−a←a←

b→

a→a→−a←a←a←

b→

a→ a→ a→ − a← a←

b→

a→ a→ a→ − a← a← a←
b←

b←

b←

b←

b←

Figure 3.21: Sequence of a, b moves for odd number of possible b moves. Left/right arrow
next to a or b on edge labels indicates direction of the move, − indicates a sign switch.

sort. This algorithm (which is described fully in [14]) can also be used to setup the

initial linear extension. This is an important step since the Pruesse-Ruskey generation

algorithm makes the assumption that the a and b pairs are initially adjacent to each,

with unique minimal elements interjected in-between them.

Assuming that the a and b pairs are already calculated, the first part of the

coroutine-based Pruesse-Ruskey is creating a loco to traverse the paths given in Fig-

ures 3.21 and 3.22. Four variables are used by the pruesse_ruskey_local loco, as

shown in Figure 3.23. These variables are mra, mrb, mla and typical. The two vari-

ables mra and mrb keep track of how many times a and b, respectively, have moved

to the right. They are used to determine the correct number of moves when the loco

starts moving a or b, respectively, to the left. The typical variable is used to keep

track of whether a has moved to the right or not. In the atypical case, in which

typical is set to False, the path becomes simply b moving to the right, switching

sign, and then moving to the left. In the typical case, with typical set to True, the

55

b→
a→ −

b→
a→−a←a←

b→
a→ a→ a→ − a← a←

b→
a→a→a→−a←a←a←a←

a→ a→ a→ a→ − a← a← a←

b→

b→

a→a→a→−a←a←a←a←

−

b←

b←

b←

b←

b←

b←

Figure 3.22: Sequence of a, b moves for even number of possible b moves. Left/right arrow
next to a or b on edge labels indicates direction of the move, − indicates a sign switch.

path will resemble one of the paths given in Figures 3.21 and 3.22. Finally, the mla

variable holds how many times a needs to move to the left in each row of the path,

and is calculated depending on whether mrb is even or odd. The reader is encouraged

to carefully study the code and the diagrams to understand how the various cases in

the diagrams are handled by the code.

One difficulty here is that the product coroutine will need to know when the loco

switches sign during the path, since when that happens the product coroutine needs

to transpose a and b. For this reason, the loco for this algorithm will yield three

possible values. True and False will be used as before, to indicate a move along

the path, and reaching the end of the path, respectively. In addition, a constant

SWITCH_SIGN, defined to be −1, is used to indicate a change in sign. Since in Python

56

from combgen.helpers.permutations import move, LEFT, RIGHT

SWITCH_SIGN = -1 # Signals change of sign in a-b path

def pruesse_ruskey_local(poset, pi, inv, a, b):
def extended_poset(x, y): # Extend poset so that a < b

return (x, y) == (a, b) or poset(x, y)

while True:
mrb = 0
typical = False
while move(pi, inv, b, RIGHT, extended_poset):

mrb += 1
yield True
mra = 0
while move(pi, inv, a, RIGHT, extended_poset):

typical = True
mra += 1
yield True

if typical:
yield SWITCH_SIGN
mla = mra + (-1 if mrb % 2 else 1) # a left moves
for __ in range(mla):

move(pi, inv, a, LEFT)
yield True

if typical and mrb % 2 == 1:
move(pi, inv, a, LEFT)
yield True

else:
yield SWITCH_SIGN

for __ in range(mrb):
move(pi, inv, b, LEFT)
yield True

yield False

Figure 3.23: Loco to generate signed linear extensions of a poset in Pruesse-Ruskey Gray
order. The code follows the paths given in Figures 3.21 and 3.22

bool(-1) is True, this means that SWITCH_SIGN will still count as a move along the

path, as it should, provided the yielded result of the coroutines is treated as a boolean

(as is done when the result is given to an if conditional, for example). The code for

this loco is provided in Figure 3.23.

As mentioned, in this algorithm the product operation needs to transpose a and

b when the loco yields SWITCH_SIGN. This requires having a specialized product

57

operator that takes a coroutine X and the a and b pair, creates Ya,b and Yb,a (where

Ya,b is an instance of the loco given in Figure 3.23 for the given a and b), and initializes

the active right-hand-side coroutine Y to Ya,b. The operator then proceeds the same

way as the previously defined coproduct operator X × Y , with the addition that

whenever Y yields SWITCH_SIGN, the active right-hand-side coroutine is switched

(switching between Ya,b and Yb,a) and a and b are transposed in the linear extension.

The code for this specialized coroutine product is given in Figure 3.24.

from combgen.helpers.permutations import transpose
from .local import pruesse_ruskey_local, SWITCH_SIGN

def pruesse_ruskey_product(poset, pi, inv, X, a, b):
Y_ab = pruesse_ruskey_local(poset, pi, inv, a, b)
Y_ba = pruesse_ruskey_local(poset, pi, inv, b, a)
while True:

for result in Y_ab:
if not result:

break
yield result

for result in X:
if not result:

break
if result is SWITCH_SIGN:

transpose(pi, inv, a, b)
Y_ab, Y_ba = Y_ba, Y_ab

yield True
for result in Y_ab:

if not result:
break

yield result
yield False

Figure 3.24: Specialized coroutine product for the coroutine-based Pruesse-Ruskey algo-
rithm.

One final detail that is different in this algorithm is that the base-case consists of a

simple change of sign. Because of this, we use a variation of the barrier abstraction

that was mentioned in Section 2.2.4. The pruesse_ruskey_barrier coroutine con-

tinuously yields SWITCH_SIGN and then False and is shown in Figure 3.25. The locos

58

from .local import SWITCH_SIGN

def pruesse_ruskey_barrier():
while True:

yield SWITCH_SIGN
yield False

Figure 3.25: Specialized barrier coroutine for the coroutine-based Pruesse-Ruskey algo-
rithm.

and one instance of the barrier coroutine then need to be linked together using the

specialized coproduct, as shown in Figure 3.26. At the very top level, if SWITCH_SIGN

is yielded the sign of the linear extension is switched, as shown in Figure 3.27. This

algorithm can be used to generate all linear extensions in semi-Gray order (adjacent

linear extensions differing by one or two adjacent transpositions) by ignoring the sign

and reporting every other generated linear extension [14].

from .product import pruesse_ruskey_product
from .barrier import pruesse_ruskey_barrier

def setup(n, poset, a_b_pairs):
pi = list(range(n + 1))
inv = pi[:]
pi[0] = 1
lead = pruesse_ruskey_barrier()
for a, b in a_b_pairs[::-1]:

lead = pruesse_ruskey_product(poset, pi, inv, lead, a, b)
return lead, pi

Figure 3.26: Setup code for the coroutine-based Pruesse-Ruskey algorithm.

59

from .local import SWITCH_SIGN
from .setup import setup

def gen_all(n, poset, a_b_pairs):
lead, pi = setup(n, poset, a_b_pairs)
yield pi
for result in lead:

if not result:
return

if result is SWITCH_SIGN:
pi[0] = -pi[0]

yield pi

Figure 3.27: Using the lead coroutine in the coroutine-based Pruesse-Ruskey algorithm.

60

Chapter 4

Conclusions

In this thesis we presented the first comprehensive study of the use of coroutines as an

alternative approach to solving combinatorial generation problems. Several abstract

coroutine operations were introduced and used to provide coroutine-based algorithms

for a range of combinatorial generation problems. The abstract operations can be

reused in different algorithms, which means that solving new problems involves only

the design of a problem-specific local coroutine. The local coroutines then need to

be linked together using the abstracted operations (e.g. coproduct and cosymsum).

These abstractions together form an algebra of coroutines that allows for very concise

and mathematical formulation of the algorithms. Of the coroutine-based algorithms

given, generation of multi-radix numbers in lexicographic and Gray orders, generation

of permutations in Steinhaus-Trotter-Johnson order, generation of linear extensions

of posets in Varol-Rotem order, and generation of signed linear extensions of posets

in Pruesse-Ruskey order are new.

There are several opportunities for further research in this area. First, the com-

putational complexity of the coroutine-based algorithms can be formally studied.

The amortized run-time complexity of the algorithms would be of particular interest,

61

since that is the most often looked at measure for combinatorial generation algo-

rithms. With the algebraic abstractions, the possibility of proving general results

about the amortized run-time complexity of algorithms using the coroutine opera-

tions, as a function of the amortized complexity of the locos, can be an interesting

area of further research.

Secondly, the mentioned algebraic formulation of connected coroutines can be

further formalized and studied. This might allow for algebraic correctness proofs of

the algorithms, as well as potential for ways to optimize the run-time by algebraic

manipulation of coroutine expressions.

Thirdly, more problems and algorithms can be approached using coroutines and

the associated algebra. Particular problems that might allow for efficient coroutine-

based algorithms are generation of various forms of trees or graphs, in Gray order.

62

Appendix A

Supplementary Code

A.1 Permutations

def transpose(pi, inv, x, y):
i, j = inv[x], inv[y]
inv[x], inv[y] = j, i
pi[i], pi[j] = pi[j], pi[i]

Figure A.1: Transposing x and y in a permutation

def left_cyclic_shift(pi, inv, i, j):
x = pi[i]
for k in range(i, j):

t = pi[k + 1]
inv[t] -= 1
pi[k] = t

inv[x] = j
pi[j] = x

Figure A.2: Left cyclic shift of a permutation starting from index i and ending at index
j.

A.2 Posets

63

from .transpose import transpose

LEFT = -1
RIGHT = 1

def move(pi, inv, x, d, poset=None):
if inv[x] + d >= len(pi) or inv[x] + d < 1:

return False
y = pi[inv[x] + d]
if poset and ((d == LEFT and poset(y, x)) or (d == RIGHT and poset(x, y))):

return False
transpose(pi, inv, x, pi[inv[x] + d])
return True

Figure A.3: Moving i in a permutation in direction given by d while maintaining π as
a linear extension of the given poset. Used in SJT, Varol-Rotem, and Pruesse-Ruskey
algorithms.

def zigzag(n):
k = n // 2 + n % 2 # k = ceil(n/2)

def poset(a, b):
if a == 1:

return b == k + 1
if n % 2 and a == k:

return b == n
if a > k:

return False
return b in (a + k - 1, a + k)

return poset

Figure A.4: The zig-zag poset (AKA fence poset) defined programmatically.

def add_min_max(poset, minimum, maximum):
def poset_with_min_max(a, b):

return a == minimum or b == maximum or poset(a, b)

return poset_with_min_max

Figure A.5: Adding unique minimum and maximum elements to a given poset.

64

Bibliography

References

[1] Richard S Bird. “Spider spinning for dummies”. In: Advanced Functional Pro-

gramming. Springer, 2009, pp. 39–65.

[2] Melvin E. Conway. “Design of a Separable Transition-diagram Compiler”. In:

Commun. ACM 6.7 (June 1963), pp. 396–408. issn: 0001-0782.

[3] S. Even. Algorithmic combinatorics. Macmillan, 1973.

[4] Solomon W Golomb et al. Shift register sequences. Vol. 78. Aegean Park Press

Laguna Hills, CA, 1982.

[5] Brenden Gregg. Systems Performance: Enterprise and the Cloud. Prentice Hall,

2013, p. 20. isbn: 9780133390094.

[6] Donald E. Knuth. Selected Topics in Computer Science, Part II. Lecture Note

Series. See page 3 of the notes entitled ”Generation of combinatorial patterns:

Gray codes.” Blindern, Norway: University of Oslo, Institute of Mathematics,

Aug. 1973, p. 3.

[7] Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental

Algorithms, 2nd Edition. Addison-Wesley Professional, 1973.

BIBLIOGRAPHY 65

[8] Donald E. Knuth. The Art of Computer Programming, Volume 4A: Combina-

torial Algorithms. Addison-Wesley Professional, 2014.

[9] Donald E. Knuth and Frank Ruskey. “Deconstructing Coroutines”. In: Selected

Papers on Computer Languages. CSLI Publications, 2002, pp. 545–574.

[10] Yasunori Koda and Frank Ruskey. “A Gray code for the ideals of a forest poset”.

In: Journal of Algorithms 15.2 (1993), pp. 324–340.

[11] Christopher D. Marlin. Coroutines: A Programming Methodology, a Language

Design and an Implementation. Lecture Notes in Computer Science. Springer,

1980.

[12] Ana Lucia De Moura and Roberto Ierusalimschy. “Revisiting Coroutines”. In:

ACM Trans. Program. Lang. Syst. 31.2 (Feb. 2009), 6:1–6:31. issn: 0164-0925.

[13] C.C. Pinter. A Book of Abstract Algebra: Second Edition. Dover Publications,

2012.

[14] Gara Pruesse and Frank Ruskey. “Generating the Linear Extensions of Cer-

tain Posets by Transpositions”. In: SIAM Journal on Discrete Mathematics 4.3

(1991), pp. 413–422.

[15] Malcolm James Smith. “Generating Spanning Trees”. MA thesis. University of

Victoria, 1985.

[16] Yaakov. L. Varol and Doron Rotem. “An algorithm to generate all topological

sorting arrangements”. In: The Computer Journal 24.1 (1981), pp. 83–84.

[17] D. J. Wheeler. “The Use of Sub-routines in Programmes”. In: Proceedings of the

1952 ACM National Meeting (Pittsburgh). ACM ’52. ACM, 1952, pp. 235–236.

BIBLIOGRAPHY 66

Online Sources

[18] Apache MPM worker. url: http://httpd.apache.org/docs/2.2/mod/

worker.html.

[19] David Beazley. A Curious Course on Coroutines and Concurrency. Mar. 2009.

url: http://www.dabeaz.com/coroutines/.

[20] Boost Coroutines. url: http://www.boost.org/doc/libs/master/libs/

coroutine/doc/html/coroutine/coroutine.html.

[21] C# Language Specification Version 5.0. url: http://www.microsoft.com/en-

us/download/confirmation.aspx?id=7029.

[22] Evan Czaplicki. Escape from Callback Hell. url: http://elm- lang.org/

learn/Escape-from-Callback-Hell.elm.

[23] Gregory Ewing. PEP 380 – Syntax for Delegating to a Subgenerator. Feb. 2009.

url: http://legacy.python.org/dev/peps/pep-0380/.

[24] Light-weight concurrency for C featuring coroutines. url: https : / / code .

google.com/p/libconcurrency/.

[25] New in JavaScript 1.7. url: https://developer.mozilla.org/en-US/docs/

Web/JavaScript/New_in_JavaScript/1.7.

[26] John Ousterhout.Why Threads Are A Bad Idea (for most purposes). Sept. 1995.

url: http://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf.

[27] Guido van Rossum. PEP 3156 – Asynchronous IO Support Rebooted: the ”asyn-

cio” Module. Dec. 2012. url: http://legacy.python.org/dev/peps/pep-

3156/.

http://httpd.apache.org/docs/2.2/mod/worker.html
http://httpd.apache.org/docs/2.2/mod/worker.html
http://www.dabeaz.com/coroutines/
http://www.boost.org/doc/libs/master/libs/coroutine/doc/html/coroutine/coroutine.html
http://www.boost.org/doc/libs/master/libs/coroutine/doc/html/coroutine/coroutine.html
http://www.microsoft.com/en-us/download/confirmation.aspx?id=7029
http://www.microsoft.com/en-us/download/confirmation.aspx?id=7029
http://elm-lang.org/learn/Escape-from-Callback-Hell.elm
http://elm-lang.org/learn/Escape-from-Callback-Hell.elm
http://legacy.python.org/dev/peps/pep-0380/
https://code.google.com/p/libconcurrency/
https://code.google.com/p/libconcurrency/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/1.7
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/1.7
http://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf
http://legacy.python.org/dev/peps/pep-3156/
http://legacy.python.org/dev/peps/pep-3156/

BIBLIOGRAPHY 67

[28] Guido van Rossum and Phillip J. Eby. PEP 342 – Coroutines via Enhanced

Generators. May 2005. url: http://legacy.python.org/dev/peps/pep-

0342/.

[29] Neil Schemenauer, Tim Peters, and Magnus Lie Hetland. PEP 255 – Simple

Generators. May 2001. url: http://legacy.python.org/dev/peps/pep-

0255/.

[30] The On-Line Encyclopedia of Integer Sequences (OEIS) - Sequence A000111.

url: http://oeis.org/A000111.

[31] The Python Language Reference - Expressions. url: https://docs.python.

org/2/reference/expressions.html.

[32] The Tornado Web Sever. url: http://www.tornadoweb.org/en/stable/.

[33] Tulip: Async I/O for Python 3. url: https://www.youtube.com/watch?v=

1coLC-MUCJc.

[34] Barry Warsaw et al. PEP 1 – PEP Purpose and Guidelines. June 2000. url:

http://legacy.python.org/dev/peps/pep-0001/.

[35] Ka-Ping Yee and Guido van Rossum. PEP 234 – Iterators. Apr. 2001. url:

http://legacy.python.org/dev/peps/pep-0234/.

http://legacy.python.org/dev/peps/pep-0342/
http://legacy.python.org/dev/peps/pep-0342/
http://legacy.python.org/dev/peps/pep-0255/
http://legacy.python.org/dev/peps/pep-0255/
http://oeis.org/A000111
https://docs.python.org/2/reference/expressions.html
https://docs.python.org/2/reference/expressions.html
http://www.tornadoweb.org/en/stable/
https://www.youtube.com/watch?v=1coLC-MUCJc
https://www.youtube.com/watch?v=1coLC-MUCJc
http://legacy.python.org/dev/peps/pep-0001/
http://legacy.python.org/dev/peps/pep-0234/

	Supervisory Committee
	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Preface
	Outline
	Contributions of This Thesis
	Conventions And Notation

	Preliminaries and Previous Work
	Coroutines And Their Implementations
	Definition of Coroutine
	Coroutines in Python
	Coroutines And Multitasking

	Approaches to Combinatorial Generation
	Recursive Approach
	Iterative Approach
	Coroutine-based Approach
	Generalization To An Algebra of Coroutines
	Summary

	New Work
	Generating Multi-radix Numbers In Gray Order
	Problem Definition
	Coroutine-based Algorithm

	Generating Ideals Of Chain Posets
	Problem Definition
	Coroutine-based Algorithm
	Generalization To Ideals Of Forest Posets

	Generating Permutations In Gray Order
	Problem Definition
	Coroutine-Based Algorithm

	Generating Linear Extensions
	Problem Definition
	Coroutine-based Algorithm

	Generating Signed Linear Extensions In Gray Order
	Problem Definition
	Coroutine-based Algorithm

	Conclusions
	Supplementary Code
	Permutations
	Posets

	Bibliography

