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ABSTRACT

The applications of elastic membrane range from determining the mechanical prop-

erties of biological cells by indentation tests to predicting the deformed shape of a

large commercial tent structure. In this work, direct membrane theory and a partic-

ular Varga strain energy function are used to model the indentation and puncturing

of an isotropic spherical elastic membrane containing a fluid with a rigid indenter.

The balance laws are applied to obtain the governing differential equations and nu-

merical shooting method is used to solve them. Furthermore, a global mode of failure

is established by computing the energy stored at the punctured membrane and this

value determines a critical value for the energy of the membrane beyond which the

punctured state of the membrane is energetically preferred. An additional mode of

failure is identified in which the membrane loses local convexity requirements and it

corresponds to the local loss of elastic behaviour of the membrane.
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Chapter 1

Introduction

Membranes are thin structures with plane stresses and the basic assumption in mem-

brane theory is that the stress in the thickness direction is negligible. They have a

variety of applications and their mechanical behaviour has been studied extensively

in the literature for numerous problems. For example, membranes are used in large

commercial tent structures that can cover large areas effectively and membrane the-

ory as well as finite element analysis are used to study the deformation of membranes

in this context. Other examples of membranes include protective gloves, condoms,

biological cells and balloons that have applications such as angioplasty.

It should be noted that membranes do not have any bending stiffness and if they

are subject to negative plane stresses they buckle in a phenomenon known as wrin-

kling. Different algorithms for treatment of wrinkling has been proposed in the liter-

ature. For instance, tension field theory and relaxed strain energy density functions

are theories proposed by Dr. A. C. Pipkin, D. J. Steigmann and others to provide

analysis for wrinkling [8], [9].

In continuum mechanics theory, cavitation is an interesting phenomenon in which

a point maps into a finite curve which produces infinite stretch and not every strain

energy function can model such a singularity. J. M. Ball [1] extensively studied a class

of singular solutions for the equations of non-linear elastostatics containing a spherical

hole at the centre of a ball of isotropic material subject to prescribed surface traction

or displacement and he called this phenomenon cavitation. The existence of such

solutions depends on the behaviour of the strain energy function at large strains and

he proposed that any continuum mechanics theory that tries to model cavitation must

make assumptions on the material behaviour for arbitrary large strains. He showed

that at a critical boundary traction or displacement, the singular solution containing
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cavity bifurcates from a trivial homogeneous solution which becomes unstable.

Studying cavitation for membranes dates back to the works of D. M. Haughton.

In [2], he considered an incompressible, isotropic elastic membrane subjected to equi-

biaxial tension. He used several class of strain energy functions and in each case he

proved that solutions containing cavity could not exist. In [3], he considered a thin

disk made of Blatz-Ko compressible elastic material subjected to a uniform radial ten-

sion. He showed that solutions containing cavity exist as long as tension exceeds some

critical value. Moreover, he used a membrane theory derived from three-dimensional

theory of elasticity to show that cavitation is not possible for homogeneous, isotropic,

compressible Varga strain energy function for the same problem.

D. J. Steigmann [4], used the direct theory of membranes to study cavitation and

the qualitative behaviour of a two-dimensional version of the strain energy function

given in [3] for Varga material. Plane axisymmetric deformations of a solid circu-

lar disk with prescribed boundary displacements were considered and it was shown

that deformation containing a central hole is possible as long as the prescribed edge

displacements exceeds a critical value. Furthermore, it was shown that equilibrium

deformations with cavitation minimizes the energy in the class of plane axisymmetric

deformations.

According to D. J. Steigmann [6], in real applications puncturing is probably an

irreversible process and the use of elasticity theory in this problem can be rationalized

by viewing the cavitation as the growth of a pre-existing hole with small radius.

Moreover, C. O. Horgan and R. Abeyaratne [5] worked on a bifurcation plain strain

problem for cylinders made of Blatz-Ko material and explained the problem in terms

of the growth of a pre-existing micro-void. They prescribed the radial stretch for

the outer surface of an isotropic compressible elastic cylinder and interestingly, they

showed that the cavity in the center does not appear until the radial stretch at the

boundary reaches to a critical value.

D. J. Steigmann in [6] considered the problem of puncturing an isotropic elastic

membrane by a rigid indenter. According to this article, the puncturing induced by

indenter is fundamentally different from cavitation induced by prescribing boundary

data alone and puncturing is possible in membranes that can not sustain conven-

tional cavitation. Moreover, a relaxed strain energy function was considered and

the Legendre-Fenchel dual of the relaxed strain-energy was used to compute a com-

plementary energy associated with the relaxed strain energy. The requirement for

existence of the deformation gradient for a prescribed stress in this context was also
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mentioned. This complementary energy was used to obtain a lower bound on the

total stored energy that is strictly increasing function of the indenter displacement;

thus, establishing the existence of a critical displacement beyond which the penetrated

state of the membrane is energetically favourable. Moreover, some results were given

for the Varga strain-energy function.

In [7], B. Nadler and D. J. Steigmann considered a sequence of axisymmetric

equilibrium deformations of a flat circular membrane indented by a rigid cylindrical

indenter. A strain energy function that can sustain both penetration and cavitation

was developed which is an example of a class of energies discussed in [4]. Furthermore,

it was shown that if the prescribed boundary radius exceeds a certain value, cavitated

state in which the membrane is no longer in contact with the indenter and a central

traction-free hole is formed is possible.

There are many articles in the literature that discuss the deformation of mem-

branes in various problems and the following list provides a sample of those articles

and it is not a complete list.

In [8], A. C. Pipkin showed that tension filed theory can be integrated with the

ordinary theory of elastic membranes by using a suitable relaxed energy density func-

tion and consequently, no compressive stress appears in the solution of a membrane

problem. Therefore, the strain energy function of the material in wrinkled regions

can be substituted by a relaxed strain-energy function that satisfies all the required

convexity conditions and ensures the non-negativity of the stresses. Furthermore, the

necessary and sufficient conditions for Legendre-Hadamard inequality for isotropic

membranes were derived in this paper. In [10], he also argued that in the theory of

elastic membranes, the strain energy function is a function of deformation gradient

which is a matrix with dimension 3×2 and due to objectivity, it should be a function

of right Cauchy-Green deformation tensor. Material stability requires that the strain

energy to be a quasiconvex function of the deformation gradient tensor. It is not

easy to check the quasiconvexity property; however, if the strain energy is convex or

polyconvex then it is quasiconvex and quasiconvexity implies rank-one convexity and

these alternative conditions were investigated in this paper. Moreover, it is conve-

nient to treat deformation gradient matrix as a 2× 2 matrix rather than 3× 2 matrix

and in this article, he showed that by doing so, there is no loss of generality in the

sense that strain energy function is convex with respect to 3× 2 matrices if and only

if it is convex with respect to 2× 2 matrices.

W. W. Feng and P. Huang [11] studied the non-axisymmetric friction-less contact
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of an inflated membrane which is initially flat with a fixed rigid indenter. Minimum

potential energy principle was used to find the deformed configuration of the mem-

brane and as an example, a square plane membrane with Mooney strain energy was

considered

In [12], D. M. Haughton considered the loading of axisymmetric isotropic elastic

membranes by incompressible fluid and he showed that the deformed shape can be

determined by controlling the initial thickness of the membrane and a critical loading

was observed in which the membrane goes through a very sudden change of shape.

X. Li and D. J. Steigmann in [13] considered a pressurized hemispherical isotropic

elastic membrane subject to a concentrated force. A relaxed strain energy based on

Ogden’s incompressible three-term strain energy function was used to accommodate

wrinkling. It was shown that the solution exists as long as the strain energy satisfies

a certain growth condition which is satisfied by Ogden’s strain energy function but

fails for many other frequently used functions.

D. J. Steigmann used direct membrane theory in [14] to study bifurcation of a

thin square elastic sheet to a rectangle at a critical value of the equibiaxial dead load.

The stability requirements for homogeneous solutions of pure traction boundary-value

problems were established. As an example, the strain energy function proposed in [7]

was considered and it was shown that the solution is unstable if the square root of

the determinant of right Cauchy-Green deformation tensor exceeds a certain value.

B. Nadler [15] considered the contact of a spherical elastic and isotropic membrane

containing fluid with rigid parallel planes and used the relaxed strain energy function

introduced in [8] to provide an analysis for wrinkling. Moreover, N. Kumar and A.

DasGupta [16] considered the contact of an inflated spherical hyperelastic membrane

with rigid parallel plates for different contact conditions. Isotropic Mooney-Rivlin

strain energy function was used and certain results were established including the

minimum inflation necessary to avoid wrinkling at any point in the membrane.

A. Libai and D. Givoli [17] analysed a non-linear axisymmetric hyperelastic mem-

brane under pulling force. The governing differential equations in the tense and

wrinkled regions were obtained and a numerical algorithm based on shooting method

was used for solution. It was shown that the initial Gaussian curvature of the surface

has a profound effect on the response of the material.

B. Nadler and T. Tang [18] considered large deformation in the form of adhesion

and decohesion of a non-linear axisymmetric membrane with a rigid flat punch and

they showed that a non-linear analysis provides a behaviour that is substantially
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different than what linear theory predicts.

C. T. Nguyen, T. Vu-Khanh, P. I. Dolez and J. Lara [19] studied the puncturing of

elastomer membranes with sharp indenters and they showed that the behaviour and

mechanisms of puncture by conical indenters is quite different from those of sharp

needles.

T. Sohail and B. Nadler [20] considered the indentation of an elastic, homogeneous

and isotropic spherical membrane containing an incompressible fluid with a rigid

conical indenter and they showed that the sharpness of the indenter effects the stress

distribution in the membrane.

H. Andra, M. K. Warby and J. R. Whiteman in [23] discussed the inflation of an

incompressible isotropic hyperelastic membrane into a rigid mould caused by pressure

and the existence of the solution for various relaxed strain energy functions was

investigated.

M. R. Begley and T. J. Mackin in [24] considered the indentation of a clamped

circular membrane with a frictionless spherical indenter. Certain analytical and nu-

merical results were established that can be used to extract mechanical properties of

thin films for which the conventional uni-axial tension experiments are problematic.

S. P. Pearce, J. R. King and M. J. Holdsworth [25] used non-linear elasticity theory

and different strain-energy functions to model large deformations caused by indenta-

tion of an axisymmetric elastic membrane by a rigid body. Physical application of

such indentations include puncture of robber gloves by medical needles and stones

embedding into rubber tyres.

However, there is very little information on the indentation and puncturing of

spherical membranes in the literature and no article was found that considers this case

specifically. The goal of this research is to consider the indentation and penetration

of a spherical isotropic elastic membrane which contains a fluid by a rigid indenter.

This work provides more insight in the penetration and possibility of cavitation for

spherical membranes and it can possibly be extended to model real applications such

as cell indentation or injection.

In Chapter 2, the problem is formulated and direct membrane theory is used to

obtain governing ordinary differential equations. Moreover, strain energy function

is introduced and a suitable strain energy function is formulated which is used to

find the energy stored in the membrane at the punctured state. In addition, two

failure criteria considered in this work are introduced in this Chapter. In Chapter 3,

numerical algorithm used for the solution is explained. Initial inflation, approximation
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of derivatives at problematic points and computation of volume are also explained in

this Chapter. In Chapter 4, non-dimensional variables are introduced and numerical

results are presented and interpreted. Furthermore, additional numerical results are

given in appendix A. Finally in Chapter 5, the conclusions and recommendations of

this research are presented. The list of symbols that are used frequently throughout

this thesis is presented in Table 1.1.
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Table 1.1: List of Symbols
Symbol Definition

R referential radius of membrane
r0 inflated radius of the membrane
{φ, θ} curvilinear coordinates in the reference configuration

Gα, Gα covariant and contravariant basis in the reference configuration
gα, gα covariant and contravariant basis in the deformed configuration
Gαβ, Gαβ covariant and contravariant components of the referential metric tensor
{ER,Eφ,Eθ} referential spherical basis
{er, eψ, eθ} spatial spherical basis
{i, j,k} spatial cylindrical basis

F deformation gradient tensor
C right Cauchy-Green deformation tensor
λ, µ principal stretches
J areal dilation
G membrane shear modulus

I1, I2, I3 principal scalar invariants of a tensor
P first Piola-Kirchhoff stress tensor
T Cauchy stress tensor
I identity tensor
U right stretch tensor
Q orthogonal transformation tensor

Grad, grad referential and spatial gradient operator
Div, div referential and spatial divergence operator

e internal energy per referential area
Θ temperature
ψ Helmholtz free-energy per referential area
η entropy per referential area
q0 referential heat flux vector
b body force per unit deformed area
v velocity
ρ radius of the indenter
pf fluid pressure
pc contact pressure
u, h horizontal and vertical positions in the deformed configuration
d indenter displacement
Ep energy stored at the punctured membrane

φc1 , φc2 contacting angles with the indenter and support
λ0, λπ polar stretches
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Chapter 2

Problem Formulation

2.1 Deformation

In this thesis we consider the axisymmetric indentation and penetration of an isotropic

elastic spherical membrane which is supported by a flat support and contains a fluid.

The rigid indenter is a cylinder with radius ρ and has a hemispherical cap. Consider

a membrane which in its reference configuration is a stress-free sphere of radius R.

We denote this configuration by Γ where φ ∈ [0, π] and θ ∈ [0, 2π) are the convected

curvilinear coordinates that are used for parametrizing its surface. The position of a

material particle in this reference configuration can be expressed as

X = RER(φ, θ), (2.1)

where {ER(φ, θ),Eφ(φ, θ),Eθ(θ)} is the right-handed orthonormal spherical basis for

the reference configuration. The position in the axisymmetric deformed configuration

of the membrane, which is denoted by γ, is expressed as

x = r(φ)er(ψ, θ), (2.2)

where {er(ψ, θ), eψ(ψ, θ), eθ(θ)} is the right-handed orthonormal spherical basis for

the deformed configuration and r and ψ are functions of φ which are shown in Fig-

ure 2.1. The key ingredient in studying the deformation is the deformation gradient

which determines the deformation in the neighbourhood of a material particle. In
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φ R
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rτ

γ

ρ

Figure 2.1: Reference (left figure) and deformed (right figure) configurations of the
spherical membrane containing incompressible fluid.

general the deformation gradient can be computed in the following way

F = gα ⊗Gα, (2.3)

where gα and Gα are covariant basis in the deformed configuration and contravariant

basis in the reference configuration, respectively. It should be noted that repeated

index indicates summation convention and Greek indices take the values {1, 2}. To

prove this equation, first we note that we use the convected curvilinear coordinates

to parametrize the reference and deformed configuration and this set of curvilinear

coordinates is denoted by {θα}. The differential of deformed position can be expressed

as

dx = gαdθα, (2.4)

where gα = ∂x
∂θα

. Similarly, the differential of the reference position can be expressed

as

dX = Gαdθα, (2.5)

where Gα = ∂X
∂θα

. By taking dot product of both sides of (2.5) by Gβ and noting that

Gα ·Gβ = δβα we have

dθα = dX ·Gα. (2.6)



10

By substituting (2.6) into (2.4) and using tensor product rule, we have

dx = (gα ⊗Gα)dX. (2.7)

Therefore by definition, the deformation gradient has the form shown in (2.3).

In our problem, the set of convected curvilinear coordinates are {φ, θ} and in order

to compute the deformation gradient from (2.3), we need to compute the derivatives

of the spherical basis vectors with respect to this set of curvilinear coordinates. To

find these derivatives, we can write the er and eψ as

er(ψ, θ) = sinψi(θ) + cosψk, (2.8)

eψ(ψ, θ) = cosψi(θ)− sinψk, (2.9)

eθ(θ) = j(θ), (2.10)

where {er, eψ, eθ} is the spherical basis and {i, j,k} is the set of cylindrical basis in

the deformed configuration, as shown in figure (2.2). By using the well known result

ψ

k

er(ψ, θ)

i(θ)

ψ

eψ(ψ, θ)

Figure 2.2: Spherical and cylindrical basis at a given point where j = k × i and
eθ = er × eψ
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that di
dθ

= j, we take the derivative of (2.8) with respect to ψ and θ and we have

∂er
∂ψ

= cosψi− sinψk, (2.11)

∂er
∂θ

= sinψj = sinψeθ. (2.12)

By looking at Figure 2.2, it is clear that the right hand side of (2.11) is equal to eψ;

therefore, we have
∂er
∂ψ

= eψ. (2.13)

Now we can compute the covariant and contravariant basis to find the deformation

gradient. By taking the derivative of (2.2) with respect to φ and θ and by using

(2.12) and (2.13), we have

g1 = gφ =
∂x

∂φ
= r′er + rψ′eψ, (2.14)

g2 = gθ =
∂x

∂θ
= r sinψeθ, (2.15)

where ()′ = ∂()
∂φ

. Furthermore, by taking the derivative of (2.1) with respect to φ and

θ and by using the result of (2.12) and (2.13) for the reference configuration, we have

G1 = Gφ =
∂X

∂φ
= R

∂ER

∂φ
= REφ, (2.16)

G2 = Gθ =
∂X

∂θ
= R

∂ER

∂θ
= R sinφEθ. (2.17)

For using equation (2.3) we need to compute the contravariant basis in the reference

configuration; therefore, first we construct the covariant metric tensor. The covariant

components of the metric tensor in the reference configuration are computed in the

following way

Gαβ = Gα ·Gβ, (2.18)

where Gαβ are the covariant metric tensor in the reference configuration. By substi-

tuting (2.16) and (2.17) into (2.18) we have

G11 = G1 ·G1 = R2, (2.19)

G22 = G2 ·G2 = R2 sin2 φ, (2.20)

G12 = G21 = G1 ·G2 = 0. (2.21)
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Hence the covariant metric tensor for the reference configuration is

(Gij) =

(
R2 0

0 R2 sin2 φ

)
. (2.22)

For computing the contravariant metric tensor, since by definition we have Gα ·Gβ =

δβα; therefore

δαβ = Gα ·Gβ = (GαγGγ) ·Gβ = GαγGγβ, (2.23)

which shows that contravariant metric tensor is the inverse of the covariant metric

tensor. Therefore, by using (2.22) we have

(Gαβ) = (Gαβ)−1 =

(
R2 0

0 R2 sin2 φ

)−1

=

(
1
R2 0

0 1
R2 sin2 φ

)
. (2.24)

Since it is a well known result [21] that Gα = GαβGβ, by using (2.16), (2.17) and

(2.24) we can compute the contravariant basis vectors of the reference configuration

in the following way

G1 = Gφ = G11G1 +G12G2 =
1

R2
REφ =

Eφ

R
, (2.25)

G2 = Gθ = G21G1 +G22G2 =
1

R2 sin2 φ
R sinφEθ =

Eθ

R sinφ
. (2.26)

Finally, we can compute the deformation gradient by substituting (2.25), (2.26), (2.14)

and (2.15) into (2.3)

F = g1 ⊗G1 + g2 ⊗G2 =
1

R
(r′er + rψ′eψ)⊗ Eφ +

r sinψ

R sinφ
eθ ⊗ Eθ. (2.27)

In general, once a basis is chosen, the deformation gradient which is a 2nd order linear

transformation (2nd order tensor), can be written as

F = Fijei ⊗ Ej, (2.28)

where ei and Ej are the basis of the deformed and reference configuration, respectively.

By, comparing this to (2.27), it turns out that the basis of the deformed configuration

is {er, eθ, eψ} and the basis of reference configuration is {Eφ,Eθ}; therefore, the

dimension of the deformation gradient is 3 × 2. This is the result of the particular
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choice of basis. Furthermore, the right Cauchy-Green deformation gradient which is

a symmetric tensor, is defined by

C = FTF, (2.29)

where C is the right Cauchy-Green deformation gradient tensor and FT means trans-

pose of F. By using the eigenvectors of C as basis, we can write C as a diagonal

matrix in principal basis (spectral representation)

C = λ2L⊗ L + µ2M⊗M, (2.30)

where λ and µ are principal stretches and they are always non-negative. Moreover,

L and M are orthonormal principal strain axes on the reference configuration. By

definition, the deformation gradient maps vectors from tangent plane of the reference

configuration to the tangent plane of the deformed configuration; therefore, we can

write

FL = λl, (2.31)

FM = µm, (2.32)

where L and M by deformation gradient are mapped into unit vectors l and m,

respectively. We can prove that since L and M are orthonormal, l and m are also

orthonormal. To prove this statement, we have

l ·m =
FL

λ
· FM

µ
=

1

λµ
L · FTFM =

1

λµ
L ·CM =

µ

λ
L ·M = 0, (2.33)

where we have used (2.31), (2.32), (2.30) and property of dot product. This result

shows that F preserves the angle between orthogonal eigenvectors of C.

As stated in [6], now we can write the deformation gradient in the following way

F = FI = F(L⊗ L + M⊗M) = FL⊗ L + FM⊗M, (2.34)

where I is the referential identity tensor and we have used a property of tensor product.

By using (2.31) and (2.32) we have:

F = λl⊗ L + µm⊗M. (2.35)
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By comparing (2.35) to (2.27), we conclude that

λ =

√
(r′)2 + (rψ′)2

R
, (2.36)

l =
r′er + rψ′eψ

λR
, (2.37)

L = Eφ, (2.38)

µ =
r sinψ

R sinφ
, (2.39)

m = eθ, (2.40)

M = Eθ. (2.41)

To get a better understanding of the meaning of λ and µ, we can look at the geometry

of the problem. By looking at Figure 2.3, we can write

ds

dr

rdψ

dψ

ψr

Figure 2.3: arc length in azimuthal direction for deformed configuration

ds =
√

dr2 + (rdψ)2 =
√

(r′)2 + (rψ′)2dφ, (2.42)

where we have used the fact that r and ψ are functions of φ. On the other hand, it

is clear that the corresponding arclength in the meridian direction in the reference
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configuration is dS = Rdφ, therefore

ds

dS
=

√
(r′)2 + (rψ′)2

R
, (2.43)

which is the same as (2.36). Therefore, λ measures the ratio of the arclength in the

azimuthal direction. Furthermore, by looking at Figure 2.4 we can write the ratio of

arclength in circumferential direction as

ψ

dθ

r sin
ψ

r
r sinψdθ

θ

Figure 2.4: arc length in circumferential direction for deformed configuration

ds

dS
=
r sinψdθ

R sinφdθ
=
r sinψ

R sinφ
, (2.44)

which is similar to equation (2.39) so µ measures the ratio of the arclength in the

circumferential direction.

The areal dilation is computed as

J =
√

det C = λµ, (2.45)

where we have used (2.30). J represents the ratio of the area of an infinitesimal

element in the deformed configuration to the area of its corresponding image in the

reference configuration.

The outward normals to the tangent plane of the reference and deformed config-
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uration are defined by

N = L×M, (2.46)

n = l×m. (2.47)

For finding the governing ordinary differential equations for r and ψ, we find the

components of l in er and eψ directions. By looking at Figure 2.5 we have

ψ

ψ
π/2− ψ

τ

ψ
−
τ

er

l

eψ

Figure 2.5: tangent vector l and its horizontal angle τ

l = sin (ψ − τ)er + cos (ψ − τ)eψ, (2.48)

where τ is the horizontal angle of l. By equating this equation to (2.37) we get

r′ = λR sin (ψ − τ), (2.49)

rψ′ = λR cos (ψ − τ). (2.50)

2.2 Strain Energy Function

According to second law of thermodynamics, the change of entropy is always greater

than or equal to the rate of entropy input. The formulation for this section is given
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in [27]. The Clausius-Duhem form of the second law of thermodynamics is given as

P · Ḟ− ė+ Θη̇ − 1

Θ
q0.GradΘ ≥ 0, (2.51)

where P is the first Piola-Kirchhoff stress tensor, e is the internal energy density func-

tion per unit reference volume (area for membranes), Θ is the absolute temperature,

η is the entropy density function per unit reference volume (area for membranes),

q0 is the referential heat flux vector, Grad is the referential gradient and over dot

indicates material time derivative. Moreover, the heat conduction inequality which

is also known as Fourier inequality indicates that heat flows from warmer to colder

region of a body

− 1

Θ
q0 ·GradΘ ≥ 0. (2.52)

Considering inequalities (2.51) and (2.52), a stronger form of the second law of ther-

modynamics can be deduced which is known as Clausius-Planck inequality

ṡgen = P · Ḟ− ė+ Θη̇ ≥ 0, (2.53)

where ṡgen is the rate of local entropy production. Furthermore, the Helmholtz free-

energy function per unit reference volume (area for membranes) is defined as

Ψ = e−Θη. (2.54)

By using Legendre transformation, the Clausius-Planck inequality can be written as

ṡgen = P · Ḟ− Ψ̇− ηΘ̇ ≥ 0. (2.55)

In this work, we consider a purely mechanical system and thermal effects are ignored;

i.e., Θ and η are neglected. In this case, the Clausius-Planck inequality is reduced to

P · Ḟ− Ψ̇ ≥ 0. (2.56)

A hyperelastic material posses a Helmholtz free-energy function Ψ which is only

function of deformation gradient Ψ = Ψ(F) and in this case the Helmholtz free-

energy function is referred to as strain-energy function 1.

1which is generally defined per unit reference volume and in the case of membranes, it is defined
per unit reference area.
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We also consider a homogeneous material in which the distribution of internal

constituents are uniform and Ψ does not depend on the position of material points

explicitly.

For a perfectly elastic material, ṡgen = 0 and inequality (2.56) becomes an equation

which by using the fact that Ψ̇ = ∂Ψ
∂F
· Ḟ, will result in

(P− ∂Ψ

∂F
) · Ḟ = 0. (2.57)

Since the above equation must hold for all deformation rates Ḟ, we conclude the

following equation that relates the first Piola-Kirchhoff stress tensor to the strain

energy function

P =
∂Ψ

∂F
. (2.58)

If the reference configuration is stress free, it is also required that

Ψ = Ψ(I) = 0 (2.59)

Moreover, certain growth conditions must also be satisfied by the strain energy func-

tion. These growth conditions indicate that Ψ → +∞ if J = det(F) → +∞ or

J = det(F)→ 0+.

Objectivity indicates that the stored energy can not change under superposed

rigid body motion

Ψ(F) = Ψ(QF), (2.60)

which holds for all F for which det(F) > 0 and for all orthogonal tensors Q. By using

polar decomposition theorem, we get

Ψ(F) = Ψ(U) = Ψ(C), (2.61)

where U is the right stretch tensor and it is related to the right Cauchy-Green defor-

mation tensor

C = U2. (2.62)

Additionally, if the material is assumed to be isotropic, it means that the stored energy

will not change if the reference configuration is subject to all rigid body motions before
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the deformation. The result of isotropy is

Ψ(F) = Ψ(FQT), (2.63)

which holds for every orthogonal tensor Q. It is interesting to note that (2.60) must

hold for all materials and it is a physical requirement, while (2.63) only holds for

isotropic materials. Considering the relation (2.61), the isotropy requirement implies

that

Ψ(C) = Ψ(QFTFQT) = Ψ(QCQT). (2.64)

Considering (2.64), the representation theorem for isotropic functions implies that

Ψ must be a function of principal invariants of C for this equation to hold for all

orthogonal tensors. Reference [29] contains the proof of this theorem. Therefore, we

have

Ψ = Ψ (I1(C), I2(C), I3(C)) , (2.65)

where I1(C), I2(C) and I3(C) are principal invariants of C which are defined as

I1(C) = tr(C) = λ2
1 + λ2

2 + λ2
3, (2.66)

I2(C) =
1

2
[(trC)2 − tr(C2)] = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, (2.67)

I3(C) = det(C) = λ2
1λ

2
2λ

2
3, (2.68)

where λ2
i , i ∈ {1, 2, 3} are the eigenvalues of C. Since there is a one-to-one relationship

between the invariants and the eigenvalues, we can conclude that

Ψ = Ψ(λ1, λ2, λ3). (2.69)

It is common in the literature to denote the Helmholtz free-energy function per unit

reference volume (area for membranes) as w and call it strain energy function [28].

Therefore, for simplicity from now on we adopt this notation

w = w(λ1, λ2, λ3). (2.70)

Since we are using the direct theory of membranes, the material is a two-dimensional

surface and we have

w = w(λ, µ). (2.71)
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In this section, we try to find an strain energy function that is suitable for our problem.

We seek a strain energy function that when λ or µ approach infinity, the total energy

stored in the membrane stays finite. Since u = r sinψ from (2.39) the hoop stretch

can be written as

µ =
u

R sinφ
, (2.72)

as φ→ 0, u→ ρ; therefore, µ→∞ which shows that in the penetrated state of the

membrane, the hoop stretch becomes infinity at φ = 0.

The suitable strain energy function must satisfy some properties that are men-

tioned in [7] and we review them here.

According to [8], the Legendre-Hadamard inequality which implies rank-one con-

vexity of strain energy is equivalent to the non-negativity of the second variation δ2W

with respect to rank-one deformation gradient a⊗ b where W = W (F) is the strain

energy function of a hyperelastic membrane and a and b are two vectors. By taking

derivatives, for this condition we have

[WFF(a⊗ b)] · (a⊗ b) ≥ 0, (2.73)

where

WFF =
∂2W (F)

∂F2
. (2.74)

The necessary and sufficient conditions for Legendre-Hadamard inequality for isotropic

membranes are obtained in [8] and they are

wλ ≥ 0, wµ ≥ 0, wλλ ≥ 0, wµµ ≥ 0, a ≥ 0, (2.75)

also

(wλλwµµ)1/2 − wλµ ≥ b− a, (wλλwµµ)1/2 + wλµ ≥ −b− a, (2.76)

where

a =
λwλ − µwµ
λ2 − µ2

and b =
µwλ − λwµ
λ2 − µ2

. (2.77)

In this thesis, we use a particular Varga strain energy function. According to [3], the

general three-dimensional compressible Varga strain energy function is defined as

w(λ1, λ2, λ3) = 2G (λ1 + λ2 + λ3 + g(λ1λ2λ3)) , (2.78)

where g() is a general function, G is the shear modulus and λi for i ∈ {1, 2, 3} are
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the principal stretches. The strain energy function used in this work is similar to

(2.78) but it is for a purely two-dimensional surface. This strain energy function is

introduced in [7] and it has the following form

w(λ, µ) = 2G[I + F (J)], (2.79)

where I and J are suitable two-dimensional invariants of the right Cauchy-Green

deformation tensor defined as

J =
√

det C = λµ, I =
√

trC + 2J = λ+ µ, (2.80)

and F (J) is a function whose properties will be specified.

With (2.79), wλ, wµ, wλλ, wµµ, wλµ and a are computed as

wλ = 2G(1 + F ′µ), (2.81)

wµ = 2G(1 + F ′λ), (2.82)

wλλ = 2G(F ′′µ2), (2.83)

wµµ = 2G(F ′′λ2), (2.84)

wλµ = 2G(F ′′λµ+ F ′), (2.85)

a =
2G

λ+ µ
, (2.86)

According to (2.86) since λ and µ are always non-negative, a always satisfies (2.75)5;

furthermore, comparing (2.83) and (2.84) to (2.75)3,4, we conclude that

F ′′(J) ≥ 0, (2.87)

where F ′′ = d2F
dJ2 . Moreover, inequalities in (2.76) simplifies to

2

λ+ µ
≥ 0, 2F ′′λµ ≥ 0. (2.88)

Obviously, both of these inequalities are satisfied since λ and µ are always non-

negative and also according to (2.87), F ′′ ≥ 0.

As discussed in [8] and [7], the local convexity inequality

A ·WFF[A] ≥ 0, (2.89)
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is stronger than (2.73) where A is any second order tensor which maps from tangent

plane of reference configuration to tangent plane of deformed configuration. This

condition is the requirement of the convexity and since convexity implies rank-one

convexity, this condition is stronger than (2.73). Necessary and sufficient conditions

for this inequality are mentioned in [7] and [8] and consist of inequalities (2.75) as

well as the following

wλλwµµ − w2
λµ ≥ 0, a ≥ |b|. (2.90)

It can be deduced [7] that the inequality a ≥ |b| is equivalent to a + b ≥ 0 and

a− b ≥ 0. By using (2.77), we find expressions for a− b and a+ b

a− b =
wλ + wµ
λ+ µ

≥ 0, (2.91)

a+ b =
wλ − wµ
λ− µ . ≥ 0 (2.92)

By using inequality (2.75)1,2 and noting the fact that stretches are always positive,

we conclude that (2.91) is always satisfied. Furthermore, by using equations (2.83),

(2.84) and (2.85) we can simplify (2.90)1 and (2.92) to the following requirements

−4G2F ′(F ′ + 2JF ′′) ≥ 0, (2.93)

F ′ ≤ 0. (2.94)

By using (2.94) into (2.93) we can simplify these requirements to this form

F ′ + 2JF ′′ ≥ 0, (2.95)

F ′ ≤ 0, (2.96)

For finding F (J), we need to consider the punctured state of the membrane where

part of the membrane is in contact with the cylindrical part of the indenter. Since the

contact with the indenter is assumed to be frictionless, it is proved in the Section 2.6

that the stress wλ vanishes in the part of the membrane which is in contact with the

cylindrical part of the indenter after penetration occurs; therefore, from (2.81)

wλ = 2G(1 + F ′µ) = 0 =⇒ F ′ = −µ−1. (2.97)

Therefore (2.96) is strictly satisfied. We can assume that F ′′(J) > 0 for all J > 0

and according to implicit function theorem, (2.97) gives a unique J for each µ in this
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region; therefore, we can write

J = Ĵ(µ), (2.98)

where Ĵ(µ) is that explicit function. By differentiating (2.97) with respect to µ and

using chain rule we have
∂F ′

∂µ
=
∂F ′

∂J

∂Ĵ

∂µ
= µ−2. (2.99)

From (2.87) and using the fact that µ is always positive, (2.99) yields

Ĵ ′ > 0, (2.100)

which means J is strictly increasing in the contacting part of the membrane with the

cylindrical part of the indenter at the penetrated state. Furthermore, we can assume

Ĵ(1) = 1. Moreover, as φ→ 0, µ→∞ and for satisfying (2.97) we can assume that

F has an stationary point at J = J0 such that J → J0 as µ → ∞ and therefore

F ′ → 0. From (2.100) and since we assumed Ĵ(1) = 1, we conclude that

J0 > 1. (2.101)

Since the dilation J is only function of µ in this region, we can compute λ in the

following way

λ = v(µ) =
Ĵ(µ)

µ
, (2.102)

where v(µ) is called the natural width under uniaxial stress which represents the

stretch in λ direction when only stress in the circumferential direction is non zero.

By substituting (2.97) into (2.82) and using (2.102), we have

f(µ) = w(v(µ), µ) = 2G

(
1− v(µ)

µ

)
= 2G

(
1− Ĵ(µ)

µ2

)
, (2.103)

where f is the stress in the circumferential direction (hoop stress) which is only

function of µ in this region. We can assume µ > 1 in this region and we conclude

that f(µ) > 0. By setting f(1) = 0, then for satisfying (2.75)4 the sufficient condition

is f ′(µ) > 0 for all µ > 0. By taking the derivative of (2.103) with respect to µ and

after simplifying, we have
Ĵ ′(µ)

Ĵ(µ)
<

2

µ
, µ > 0. (2.104)
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By integrating the above equation we get∫ µ

1

Ĵ ′(x)

Ĵ(x)
dx < lnµ2, µ > 1, (2.105)∫ 1

µ

Ĵ ′(x)

Ĵ(x)
dx < − lnµ2, 0 < µ < 1. (2.106)

Simplifying the above equation and setting Ĵ(1) = 1, yields

ln
(
Ĵ(µ)

)
< lnµ2, µ > 1, (2.107)

ln
(
Ĵ(µ)

)
> lnµ2, 0 < µ < 1. (2.108)

Since the logarithmic function is monotonically increasing, we conclude that

Ĵ(µ) < µ2, µ > 1, (2.109)

Ĵ(µ) > µ2, 0 < µ < 1. (2.110)

If we impose Ĵ(0) = 0, a sufficient condition to satisfy the above requirements is to

have Ĵ ′′(µ) < 0 for µ > 0.

As proposed in [7], a simple function that satisfies all the previous requirements

is

Ĵ(µ) =
J0µ

J0 − 1 + µ
. (2.111)

By taking derivative of the above equation and checking equation (2.104), we see that

this requirement is satisfied. By finding µ from (2.111) and substitute into (2.97) we

get

F ′(J) =
1

J0 − 1

(
1− J0

J

)
. (2.112)

By checking the above equation for J = 1, we get F ′(1) = −1 which from (2.81) and

(2.82) we see that the reference configuration is stress free as required. Also, we see

that (2.96) is satisfied as long as J < J0 which we use later in section Section 2.7 as

an additional failure criteria beside energy criteria to identify the point of failure in

the indentation process. By taking the derivative of (2.112), we find

F ′′(J) =
J0

J0 − 1

(
1

J2

)
. (2.113)
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The above equation satisfies (2.87) since J0 > 1 as discussed before. Furthermore, we

can compute the expression in (2.95) to get

F ′ + 2JF ′′ =
1

J0 − 1

(
1 +

J0

J

)
, (2.114)

which satisfies the requirement in (2.95). For finding F (J), we integrate (2.112) and

we obtain

F (J)− F (1) =

∫ x=J

x=1

1

J0 − 1

(
1− J0

x

)
dx. (2.115)

From (2.79), in order to have no energy in the reference configuration, we set F (1) =

−2 and finally by integrating the above equation we have the following form for F (J)

F (J) =
1

J0 − 1
(1 + J − 2J0 − J0 ln J). (2.116)

By obtaining F (J), we have the following expressions for the energy and stresses

which are obtained from (2.79) to (2.85)

w(λ, µ) = 2G

(
λ+ µ+

1

J0 − 1
(1 + λµ− 2J0 − J0 ln(λµ))

)
, (2.117)

wλ = 2G

(
1 +

1

J0 − 1
(µ− J0

λ
)

)
, (2.118)

wµ = 2G

(
1 +

1

J0 − 1
(λ− J0

µ
)

)
, (2.119)

wλλ =
2GJ0

(J0 − 1)λ2
, (2.120)

wµµ =
2GJ0

(J0 − 1)µ2
, (2.121)

wλµ =
2G

J0 − 1
. (2.122)

2.3 Equilibrium

2.3.1 Membrane

The spatial statement of the balance of linear momentum is given as

divT + ρb = ρ
Dv

Dt
, (2.123)
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where div is the spatial divergence operator, T is the Cauchy stress tensor, ρ is the

mass per unit deformed area, b is the body force per unit mass, v is the velocity and

D()/Dt indicates material time derivative. For finding the referential statement of

balance of linear momentum, we multiply the above equation by areal dilation J and

we have

JdivT + ρJb = ρJ
Dv

Dt
. (2.124)

Since we are interested in equilibrium configurations, Dv
Dt

= 0. Furthermore, by

introducing f = ρb we can rewrite the above equation

JdivT + Jf = 0, (2.125)

where f is the body force per unit deformed area. There is a well known result

in continuum mechanics that indicates that JdivT = DivP where P is the first

Piola-Kirchhoff stress tensor and Div is the divergence operator in the reference con-

figuration. By using this result we have

DivP + Jf = 0. (2.126)

For computing P, we use equation (2.58). For this purpose, we take the differential

of (2.35) and we have

dF = dλl⊗ L + λdl⊗ L + dµm⊗M + µdm⊗M. (2.127)

By operating both sides on L and using the fact that L and M are orthonormal, we

have

dFL = dλl + λdl. (2.128)

By taking the dot product of above equation with l we get

(dFL) · l = dλ+ λdl · l. (2.129)

However, since l · l = 1, we have dl · l = 0; therefore

dλ = (dFL) · l. (2.130)
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By using tensor algebra [26] we can write the above equation in the following form

dλ = (l⊗ L) · dF. (2.131)

Similarly, we have

dµ = (m⊗M) · dF. (2.132)

Furthermore, the differential of strain energy function (2.71) is

dw = wλdλ+ wµdµ, (2.133)

where wλ = ∂w
∂λ

, wµ = ∂w
∂µ

and w(λ, µ) is the strain energy function which is discussed

in section Section 2.2. Finally, by substituting (2.131) and (2.132) into (2.133) we

can compute the first Piola-Kirchhoff stress tensor

P = wλl⊗ L + wµm⊗M. (2.134)

In order to compute the DivP, first we find a general relation to compute the refer-

ential GradA = ∂A
∂X

where A is a tensor. We have

dA =
∂A

∂θα
dθα, (2.135)

where {θα} are the curvilinear coordinates for the reference configuration. By substi-

tuting (2.6) into equation (2.135) we have

dA = (
∂A

∂θα
⊗Gα)dX, (2.136)

which means

GradA =
∂A

∂θα
⊗Gα. (2.137)

Now we can use (2.137) to compute the referential gradient of P. As stated before,

the curvilinear coordinates are {θ, φ}; therefore

GradP =
∂P

∂θ
⊗Gθ +

∂P

∂φ
⊗Gφ. (2.138)
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We use the following well known results in the spherical coordinate system in order

to compute the required derivatives

∂Eφ

∂θ
= cosφEθ, (2.139)

∂eθ
∂θ

= −i, (2.140)

∂Eφ

∂φ
= −Er, (2.141)

where i is shown in Figure 2.2. By taking the derivatives of (2.134) with respect to

θ and φ we have

∂P

∂θ
= wλ

∂l

∂θ
⊗ Eφ + wλl⊗

∂Eφ

∂θ
+ wµ

∂eθ
∂θ
⊗ Eθ + wµeθ ⊗

∂Eθ

∂θ
, (2.142)

where we have used the fact that since the problem is axisymmetric, ∂wλ
∂θ

= ∂wµ
∂θ

= 0.

Furthermore, by substituting (2.139) and (2.140) into the above equation we get

∂P

∂θ
= wλ

∂l

∂θ
⊗ Eφ + wλ cosφl⊗ Eθ − wµi⊗ Eθ − wµeθ ⊗ iR, (2.143)

where iR is the radial cylindrical basis in the reference configuration. Also, we com-

pute ∂P
∂φ

in the following way

∂P

∂φ
= w′µeθ ⊗ Eθ + w′λl⊗ L + wλl

′ ⊗ L + wλl⊗ L′, (2.144)

where ()′ = ∂()
∂φ

and by using equation (2.38) and (2.141) we obtain

∂P

∂φ
= w′µeθ ⊗ Eθ + w′λl⊗ Eφ + wλl

′ ⊗ Eφ − wλl⊗ Er. (2.145)

Now we can use (2.25), (2.26), (2.143), (2.145) and (2.138) to compute the referential

gradient of P

GradP =
1

R sinφ
(wλ

∂l

∂θ
⊗ Eφ ⊗ Eθ + wλ cosφl⊗ Eθ ⊗ Eθ − wµi⊗ Eθ ⊗ Eθ

− wµeθ ⊗ iR ⊗ Eθ) +
1

R
(w′µeθ ⊗ Eθ ⊗ Eφ + w′λl⊗ Eφ ⊗ Eφ + wλl

′ ⊗ Eφ ⊗ Eφ

− wλl⊗ Er ⊗ Eφ).

(2.146)
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As it can be seen, since P is a second order tensor, its gradient is a third order tensor.

By definition, DivP = tr(GradP) and the trace of a general third order tensor by

definition is computed as

tr(Aijkui ⊗ uj ⊗ uk) = Aijk(uj · uk)ui, (2.147)

where ui,uj and uk are orthonormal basis vectors. Since the basis vectors are or-

thonormal, we have the following relations

Eφ · Eθ = iR · Eθ = Er · Eφ = 0. (2.148)

By using (2.148), (2.147) and (2.146) we have

DivP =
1

R sinφ
(wλ cosφl− wµi) +

1

R
(w′λl + wλl

′). (2.149)

2.3.2 Fluid

Constitutive

Since the fluid can deform the membrane easily, we assume that the indenter can not

compress the fluid; therefore, the fluid behaves like an incompressible material. Also,

for simplicity we assume that the fluid is non-viscous and as it is mentioned in many

Continuum Mechanics reference books [22], the stress in an incompressible inviscid

fluid is given by

Tf = −pfI, (2.150)

where Tf is the Cauchy stress in the fluid and pf is the fluid pressure.

Equilibrium For The Fluid

The traction that fluid exerts on the membrane is equal to

ff = pfn, (2.151)

where ff is the fluid traction exerted on the membrane and n is the normal to the

membrane, as shown in Figure 2.6. By using the spatial balance of linear momentum
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Figure 2.6: tangential and normal vectors to the membrane for deformed configuration

for fluid and noting the fact that there is no body force, we have

divTf = 0. (2.152)

In order to use (2.152), we use the definition of trace for a 3rd order tensor. Suppose

a,b and c are 3 arbitrary vectors. By using the definition of trace for a 3rd order

tensor we get

tr(a⊗ b⊗ c) = (b · c)a = (a⊗ b)c, (2.153)

where we have used the property of tensor product. Now, by using equation (??)2

and (2.152)

tr(grad(−pfI)) = 0. (2.154)

By using tensor algebra [26] and (2.153) we have

tr (I⊗ grad(pf )) = I(grad(pf )) = grad(pf ) = 0, (2.155)

which means that the fluid pressure is constant at equilibrium in the deformed con-

figuration. Moreover, since the fluid is considered to be incompressible, the volume
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of the fluid is fixed which puts a constraint on the solutions to be obtained

V = V0, (2.156)

where V and V0 are the current and referential volume of the fluid, respectively.

2.4 Governing Ordinary Differential Equations

For obtaining the governing ordinary differential equations, we use the assumption

that the contact with the indenter and flat support is frictionless. Therefore, the

traction resulted from contact with rigid indenter and support is normal to the mem-

brane

fc = −pcn, (2.157)

where fc is the contact traction, pc is the contact pressure and n is the unit normal

to the membrane. The minus sign is due to the assumed direction for the normal to

the membrane which is shown in Figure 2.6. We also use the fact that the contact

pressure is zero in the part of the membrane that is not in contact with indenter or

support.

By substituting (2.149), (2.151) and (2.157) into (2.126) we obtain the following

equation

1

R sinφ
(wλ cosφl− wµi) +

1

R
(w′λl + wλl

′) + λµ(pf − pc)n = 0. (2.158)

For projecting (2.158) in the l and n directions, we need to calculate the vector

products such as l · i, n · i, etc. Since l and n are orthonormal vectors

l · l = n · n = 1, (2.159)

l · n = 0. (2.160)

Furthermore, from Figure (2.6) we have

l = cos τ i− sin τk, (2.161)

n = sin τ i + cos τk. (2.162)
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By taking the derivative of (2.161) with respect to φ

l′ =
∂l

∂φ
= −τ ′ sin τ i− τ ′ cos τk. (2.163)

Therefore, from (2.163), (2.161) and (2.162) we have

l′ · n = −τ ′, (2.164)

l′ · l = 0, (2.165)

l · i = cos τ, (2.166)

n · i = sin τ. (2.167)

Using these relations, by projecting (2.158) in the orthogonal directions l and n we

get

1

sinφ
(wλ cosφ− wµ cos τ) + w′λ = 0, (2.168)

−wµ sin τ

sinφ
− wλτ ′ + λµR(pf − pc) = 0. (2.169)

Since strain energy is a function of λ and µ, we know

w′λ = wλλλ
′ + wλµµ

′. (2.170)

Also, for computing the µ′, we take the derivative of (2.39) with respect to φ

µ′ =
1

R sin2 φ
(sinφ(r′ sinψ + rψ′ cosψ)− r sinψ cosφ) . (2.171)

Using equations (2.49), (2.50) and (2.39), we can simplify the above equation to the

following form

µ′ =
λ cos τ − µ cosφ

sinφ
. (2.172)

Substituting (2.172) into (2.170), we can simplify (2.168) and (2.169) into two ordi-

nary differential equations for λ and τ

λ′ =
(wµ − λwλµ) cos τ − (wλ − µwλµ) cosφ

wλλ sinφ
, (2.173)

τ ′ =
λµR(pf − pc)

wλ
− wµ sin τ

wλ sinφ
. (2.174)
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From Figure 2.1

u = r sinψ, (2.175)

h = r cosψ + hd, (2.176)

where hd is the indenter height measured from the ground. By taking the derivative

of these equations with respect to φ we obtain

u′ = r′ sinψ + rψ′ cosψ, (2.177)

h′ = r′ cosψ − rψ′ sinψ. (2.178)

By substituting (2.49) and (2.50) into (2.177) and (2.178) and after simplification we

have the following ordinary differential equations for u and h

u′ = λR cos τ, (2.179)

h′ = −λR sin τ. (2.180)

Equations (2.173), (2.174), (2.179) and (2.180) are 4 coupled ordinary differential

equations. The boundary conditions that are coming from the geometry of the mem-

brane and shape of the indenter are

τ(φ = 0) = 0, (2.181)

u(φ = 0) = 0, (2.182)

h(φ = 0) = hd, (2.183)

u(φ = π) = 0, (2.184)

h(φ = π) = 0, (2.185)

τ(φ = π) = π. (2.186)

Also, due to the incompressibility condition for fluid, the volume enclosed by the

membrane must be preserved.

It should be noted that µ is updated by values of u and φ with the following

equation which is based on (2.39)

µ =
u

R sinφ
. (2.187)
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We can use the above equation to simplify (2.173) in the following way. First we take

the derivative of (2.187) with respect to φ and by using (2.179) after simplification

we get

µ cosφ = λ cos τ − µ′ sinφ. (2.188)

By substituting the above equation into (2.173) and simplifying, we obtain

(wλλλ
′ + wλµµ

′) sinφ+ wλ cosφ = wµ cos τ, (2.189)

and finally the above equation simplifies to

(wλ sinφ)′ = wµ cos τ. (2.190)

The above equation can be analytically solved in the region where the membrane is

in contact with the cylindrical part of the indenter. This result is used in the section

Section 2.6.

2.5 Evaluation of Equilibrium After Penetration

In this section, we consider the equilibrium solutions after penetration. After the

penetration occurs, assume the membrane is partially in contact with the cylindrical

part of the indenter in the domain φ ∈ [0, φ̄] where φ̄ is the transition angle between

the contacting and non-contacting part. At φ = φ̄, we know τ = −π
2
; therefore,

smoothness of the solution due to pressure implies that there is a domain [φ̄, φ̄ + ε]

for some ε > 0 such that τ < 0 in that domain

τ < 0, φ̄ ≤ φ ≤ φ̄+ ε. (2.191)

Moreover, it can be shown that by multiplying (2.174) by wλ sinφ cos τ and using

(2.190) we obtain

(wλ sinφ sin τ)′ = λµR(pf − pc) sinφ cos τ, (2.192)

and by using (2.179) and (2.39) we get

R(wλ sinφ sin τ)′ = uu′(pf − pc). (2.193)
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The above equation can be integrated in the non-contacting region of the punctured

membrane where pc = 0

Rwλ sinφ sin τ =
1

2
pfu

2 + α, (2.194)

where α is a constant. Noting the fact that at the punctured membrane wλ = 0 at

u = ρ we obtain

Rwλ sinφ sin τ =
1

2
pf (u

2 − ρ2). (2.195)

This final equation basically show the equilibrium of a portion of the membrane which

is cut by a circumferential circular curve. Using this equation for the domain [φ̄, φ̄+ε]

which is in the non-contacting region of the punctured membrane and noticing u > ρ

in this region, we conclude

τ > 0, φ̄ ≤ φ ≤ φ̄+ ε. (2.196)

Equations (2.191) and (2.196) contradict each other and this shows that at the punc-

tured state, the tangent plane of the membrane can not be continuous at φ̄; however,

the fluid pressure must have made the membrane smooth. Based on this observation,

we conclude that the fluid pressure must drop to zero after penetration occurs and

the fluid escapes. This conclusion and the equilibrium equations (2.190) and (2.195)

imply that

wλ = wµ = 0, φ̄ ≤ φ ≤ π. (2.197)

Based on the above discussion, we conclude that after puncturing occurs, the mem-

brane will assume a configuration in which the energy is only stored in the domain

φ ∈ [0, φ̄] and the non-contacting portion will be slack with λ = µ = 1. Figure (2.7)

shows this configuration and the transition angle φ̄ can be computed as

φ̄ = arcsin(ρ̄), (2.198)

where

ρ̄ =
ρ

R
, (2.199)

is the non-dimensional indenter radius.
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λ = µ = 1

R

φ̄

ρ

Figure 2.7: The configuration that the membrane assumes after penetration occurs

2.6 Evaluation of Energy of the Penetrated State

In this part we evaluate the energy stored in the punctured membrane. At this

state, the fluid pressure is zero and energy vanish everywhere except the part of the

membrane which is in contact with the indenter. Since the energy of the membrane

is per referential area, we have

Ep =

∫
Γ

w(λ, µ)dA =

∫ 2π

θ=0

∫ φ̄

φ=0

w(λ, µ)R2 sinφdθdφ = 2πR2

∫ φ̄

φ=0

w(λ, µ) sinφdφ,

(2.200)

where Ep is the stored energy in the membrane at the penetrated state and φ̄ is

given in (2.198). In the contacting part with the indenter τ = −π
2
; therefore, by

substitution into (2.190) we obtain

wλ sinφ = c, φ ∈ [0, φ̄], (2.201)

where c is a constant. Furthermore, we know that wλ = 0 at φ = 0 since this point

is a free end; therefore, we must have c = 0 which means

wλ = 0, φ ∈ [0, φ̄]. (2.202)

The above result makes it possible to compute λ as a function of µ and therefore

we can express the strain energy as a function of µ in this region. By substituting
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(2.202) into (2.81)

F ′(J) = − 1

µ
, (2.203)

and we can substitute the above equation into (2.82) to get

wµ = 2G

(
1− λ

µ

)
= 2G

(
1− v(µ)

µ

)
, (2.204)

where v(µ) is the natural width under uniaxial stress introduced in (2.102). Further-

more, the areal dilation can be expressed in the following form

J = Ĵ(µ) = λµ = v(µ)µ. (2.205)

By substituting (2.205) into (2.204) we get

f(µ) =
∂ŵ(µ)

∂µ
= 2G

(
1− Ĵ(µ)

µ2

)
, (2.206)

where f(µ) is the uniaxial stress in the µ direction. Substituting (2.111) into (2.206)

and by partial fraction decomposition we get

∂ŵ(x)

∂x
= 2G

(
1− J0

J0 − 1

(
1

x
− 1

J0 − 1 + x

))
. (2.207)

After integrating the above equation for the domain 0 < φ ≤ φ̄ where x is changing

from µ = 1 to an intermediate value µ, we get

ŵ(µ)− ŵ(1) = 2G

(
x− J0

J0 − 1
(lnx− ln (J0 − 1 + x))

) ∣∣∣∣µ
1

. (2.208)

By imposing the condition ŵ(1) = 0 which means the energy is zero in the absence

of stretch, we finally find the strain energy function as a function of µ for the domain

0 < φ ≤ φ̄ at the penetrated state in the following form

ŵ(µ) = 2G

(
µ− 1− J0

J0 − 1
(lnµ− ln (J0 − 1 + µ) + ln J0)

)
, (2.209)
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By substituting the above equation into (2.200) we have

Ep = 2πR2

∫ φ̄

φ=0

ŵ(µ) sinφdφ. (2.210)

In this region, from (2.39) we have

µ =
ρ

R sinφ
=

ρ̄

sinφ
, (2.211)

where ρ̄ = ρ
R

is the non-dimensional size of the indenter. By using (2.211) we can

change the variable of integration from φ to µ. Also, from (2.211) we notice that as

φ→ 0, µ→∞ and after simplification, the integral of (2.210) can be written as

Ep = 2πR2ρ̄2

∫ ∞
1

ŵ(µ)dµ

µ2
√
µ2 − ρ̄2

. (2.212)

Puncturing is possible only if the punctured energy is finite. The necessary (but not

sufficient) condition for the above integral to exist is that the integrand must go to

zero as µ→∞. From (2.209), it is clear that as µ→∞, ŵ(µ)→ 2Gµ which indicates

that the integrand will approach to zero and this necessary condition is satisfied. By

combining (2.209) and (2.212), the energy can be written in the following form

Ep = Aρ̄2G

(
Q1 −

J0

J0 − 1
(Q2 ln J0 +Q3)

)
, (2.213)

where A = 4πR2 is the referential area and Q1, Q2 and Q3 are

Q1 =

∫ ∞
1

µ− 1

µ2
√
µ2 − ρ̄2

dµ, (2.214)

Q2 =

∫ ∞
1

1

µ2
√
µ2 − ρ̄2

dµ, (2.215)

Q3 =

∫ ∞
1

1

µ2
√
µ2 − ρ̄2

ln

(
µ

J0 − 1 + µ

)
dµ. (2.216)

For evaluating Q1, by using integration by parts we have

Q1 =

√
µ2 − ρ̄2

ρ̄2µ
(µ− 1)

∣∣∣∣µ̂→∞
1

−
∫ µ̂→∞

1

√
µ2 − ρ̄2

ρ̄2µ
dµ. (2.217)
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Also, by evaluating the second integral we get

Q1 =

√
µ2 − ρ̄2

ρ̄2µ
(µ− 1)

∣∣∣∣µ̂→∞
1

− 1

ρ̄2

(√
µ2 − ρ̄2 + ρ̄ arctan

(
ρ̄√

µ2 − ρ̄2

))∣∣∣∣µ̂→∞
1

.

(2.218)

By taking the limits, the above integral simplifies to the following form

Q1 =
1

ρ̄2

(√
1− ρ̄2 + ρ̄ arctan

(
ρ̄√

1− ρ̄2

))
. (2.219)

Moreover, after evaluating Q2 we obtain

Q2 =

√
µ2 − ρ̄2

ρ̄2µ

∣∣∣∣µ̂→∞
1

, (2.220)

and after taking the limits

Q2 =
1−

√
1− ρ̄2

ρ̄2
. (2.221)

For evaluating Q3, using integration by parts yields

Q3 = ln

(
µ

J0 − 1 + µ

)√
µ2 − ρ̄2

ρ̄2µ

∣∣∣∣µ̂→∞
1

−
∫ µ̂→∞

1

√
µ2 − ρ̄2

ρ̄2µ

J0 − 1

µ(J0 − 1 + µ)
dµ. (2.222)

Evaluating the second integral and taking the limits, yields the following result for

Q3

Q3 = ln (J0)
t

ρ̄2
+
s ln

(
(b−s)(b+1)
ρ̄2+b−st

)
+ b(1− t)− ρ̄ arctan

(
ρ̄
t

)
bρ̄2

, (2.223)

where

t =
√

1− ρ̄2, (2.224)

s =
√
b2 − ρ̄2, (2.225)

b = J0 − 1. (2.226)

In summary, the punctured energy Ep is computed as

Ep
AG

= Q1 −
J0

J0 − 1
(ln (J0)Q2 +Q3) , (2.227)



40

where

Q1 = t+ ρ̄ arctan
( ρ̄
t

)
, (2.228)

Q2 = 1− t, (2.229)

Q3 = ln (J0)t+
s ln

(
(b−s)(b+1)
ρ̄2+b−st

)
+ b(1− t)− ρ̄ arctan

(
ρ̄
t

)
b

, (2.230)

A = 4πR2. (2.231)

Therefore, puncturing for this strain energy in this work is possible and the pene-

tration energy is evaluated from equations (2.227), (2.228), (2.229) and (2.230). The

requirement for the non-negativity of the argument of the square root indicates that

ρ̄ ≤ min(J0 − 1, 1) (2.232)

which puts a restriction on the allowable size of the indenter for which the penetrated

energy is finite.

We can evaluate this energy in the limit case where ρ̄ → 0. After evaluation of

this limit we see that

lim
ρ̄→0

Ep = AG, (2.233)

which is independent of J0 and it corresponds to spontaneous cavitation. The fol-

lowing figure shows how the penetration energy changes for different values of ρ̄ and

J0. As it can be seen from Figure 2.8, the penetration energy increases as the size of

the indenter increases and this is due to the fact that bigger indenter requires more

deformation for the penetrated state which translates into more energy. Furthermore,

the penetration energy decreases as J0 increases which indicates that the material be-

comes less stiff with the increase in J0. The horizontal dashed line in this figure shows

the value obtained from equation (2.233) and there is a good agreement between the

numerical result and this analytical formula for ρ̄→ 0.
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Figure 2.8: penetration energy as a function of ρ̄ for different values of J0. The
horizontal dashed line shows the limit of energy when ρ̄→ 0

2.7 Failure Criteria

Two failure criteria are considered in this work:

• Global Failure Due to Energy : we use the idea that is adopted in fracture me-

chanics to assume that penetration occurs when the stored energy in the mem-

brane during the indentation exceeds the energy of the punctured membrane

since the punctured state has lower energy and is energetically favourable. We

only consider the quasistatic process and do not consider the dynamic process

associated with the penetration. Also, as stated in the section Section 2.5, the

fluid will escape after the penetration occurs and we do not seek any equilibrium

solutions after that point.

• Local Failure Due to Local Loss of Elastic Behaviour : As stated in the section

Section 2.2, when during indentation at some point the dilation becomes bigger

than J0, the material requirement (2.96) is not satisfied and the material is no

longer suitable for elasticity. Similarly, in [14] for the same material it is shown

that the solution for biaxial loads on a plane sheet is unstable if the square root

of the determinant of right Cauchy-Green deformation tensor (J) exceeds J0.

This observation provides an additional insight into the different character of
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this strain energy function when J > J0. Therefore the material stops behaving

properly and we claim that material fails due to local loss of elastic behaviour

when dilation exceeds J0 and this will give us an additional local failure criteria

beside global failure due to energy.
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Chapter 3

Numerical Algorithm

3.1 Approximation of Derivatives

From (2.173) and (2.174), at φ = 0 and φ = π the denominator goes to zero and the

derivatives for λ and τ can not be computed from these formulas directly. Instead, we

use Taylor expansion to approximate the values for λ and τ . By writing the Taylor

expansion of λ sinφ and τ sinφ and by neglecting higher order derivatives

λ sinφ|0+∆φ = λ sinφ|0 +
1

1!
(λ′ sinφ+ λ cosφ)|0∆φ+O(∆φ2), (3.1)

τ sinφ|0+∆φ = τ sinφ|0 +
1

1!
(τ ′ sinφ+ τ cosφ)|0∆φ+O(∆φ2), (3.2)

and from (2.173) and (2.174) since at φ = 0 we have λ = µ, τ = 0 and pf = pc (since

the membrane is flat at φ = 0), after simplification we obtain

λ′ sinφ|0 = 0, (3.3)

τ ′ sinφ|0 = 0. (3.4)

By substituting the above results into (3.1) and (3.2), we have

λ|∆φ sin ∆φ = λ|0∆φ+O(∆φ2), (3.5)

τ |∆φ sin ∆φ = τ |0∆φ+O(∆φ2). (3.6)



44

Since for small angles we have sin ∆φ ≈ ∆φ, therefore

λ|∆φ ≈ λ|0, (3.7)

τ |∆φ ≈ τ |0, (3.8)

which is the approximation that we use for λ and τ at ∆φ. The same approach is

used at φ = π to address the similar issue which leads to the result

λ|π−∆φ ≈ λ|π, (3.9)

τ |π−∆φ ≈ τ |π. (3.10)

3.2 Initial Inflation

Because we are interested in the deformation of an inflated membrane, we inflate the

membrane from initial radius R to radius r0 > R. In this inflation, there is no change

in φ or θ for the position of material points as shown in Figure 3.1; therefore, we must

have

τ = ψ = φ, (3.11)

where ψ and τ are depicted in Figure 2.1. Since τ = φ it means τ ′ = 1. Furthermore,

R

φ
r0

φ τ = φ

Figure 3.1: reference and inflated configurations
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at the initial inflation, λ = µ = r0
R

and also wλ = wµ. By substituting into (2.174)

and noticing that pc = 0 (since there is no contact force at this inflation stage), we

can compute the fluid pressure at this inflated configuration in the following form

pf0 =
4GR

r2
0

(
1 +

1

J0 − 1

(
r0

R
− J0R

r0

))
. (3.12)

3.3 Enclosed Volume

For computing the volume of the enclosed fluid, the following equation is evaluated

using the trapezoidal rule

V =

∫ hmax

0

πu2dh−
∫ hmax

hd

πu2dh, (3.13)

where hmax is the maximum height of the membrane and hd is the height of the

indenter, as shown in Figure 3.2.

hmax

dv = πu2dh

hd

u

h

Figure 3.2: disk elements for computation of the volume
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3.4 Numerical Method

In order to solve the system of equations for this problem, the multiple shooting

method is used which allows us to use the numerical methods of initial value problems.

For using multiple shooting method, we divide the domain of the problem φ ∈ [0, π]

into two regions: the upper region which is for φu ∈ [0, π
2
] and the lower region which

corresponds to φl ∈ [π
2
, π] and we solve the problem in these two regions and then

we match the solution at φ = π
2

since the solution must be continuous at this point.

For particular results that are presented in the Chapter 4, we divided each domain

into 5,000 divisions. We need to control and prescribe a variable to obtain different

equilibrium solutions. We have chosen to prescribe the height of the indenter (hd

as shown in Figure 3.2 and we know 0 ≤ hd ≤ 2r0) since this parameter is easier

to prescribe due to the fact that it is monotonically decreasing as the indentation

continues. In order to do the integration in these two regions, we need to guess the

following set of values

{φc1 , φc2 , λ0, λπ, pf} (3.14)

where φc1 denotes the transition angle between the contacting part with the indenter

and the non-contacting part of the membrane, φc2 denotes the transition angle be-

tween the contacting part with the flat support and the non-contacting part of the

membrane, λ0 is the value of λ at φ = 0, λπ is the value of λ at φ = π and pf is the

fluid pressure.

The ordinary differential equations of this problem and the associated boundary

conditions have the following form

∂y

∂φ
= f(φ, y), (3.15)

y(φ0) = y0, (3.16)

where y is any of the variables {λ, u, τ, h}. In order to solve the initial value problems

of the above form we use the 4th order Runge-Kutta method with the following
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formula

yn+1 = yn +
h

6
(K1 + 2K2 + 2K3 +K4) , (3.17)

K1 = f (φn, yn) , (3.18)

K2 = f

(
φn +

h

2
, yn +

h

2
K1

)
, (3.19)

K3 = f

(
φn +

h

2
, yn +

h

2
K2

)
, (3.20)

K4 = f (φn + h, yn + hK3) , (3.21)

where h = ∆φ is the step size, yn and yn+1 are the values of y at φn and φn+1,

respectively. After integrating both regions we match the results at φ = π
2
. Since the

values we guess are not the solution, we will have residuals in the following form

R1 = λu
(π

2
;λ0;φc1 ; pf

)
− λl

(π
2

;λπ;φc2 ; pf

)
, (3.22)

R2 = uu
(π

2
;λ0;φc1 ; pf

)
− ul

(π
2

;λπ;φc2 ; pf

)
, (3.23)

R3 = τu
(π

2
;λ0;φc1 ; pf

)
− τ l

(π
2

;λπ;φc2 ; pf

)
, (3.24)

R4 = hu
(π

2
;λ0;φc1 ; pf

)
− hl

(π
2

;λπ;φc2 ; pf

)
, (3.25)

R5 = V (λ0;λπ;φc1 ;φc2 ; pf )− V0, (3.26)

where ()u and ()l denotes the computed solution in the upper region and lower region,

respectively.

The iterative Newton-Raphson method is used to compute the change in guess

values in each step in the following form

∂R1

∂λ0

∂R1

∂λπ
∂R1

∂φc1

∂R1

∂φc2

∂R1

∂pf
∂R2

∂λ0

∂R2

∂λπ
∂R2

∂φc1

∂R2

∂φc2

∂R2

∂pf
∂R3

∂λ0

∂R3

∂λπ
∂R3

∂φc1

∂R3

∂φc2

∂R3

∂pf
∂R4

∂λ0

∂R4

∂λπ
∂R4

∂φc1

∂R4

∂φc2

∂R4

∂pf
∂R5

∂λ0

∂R5

∂λπ
∂R5

∂φc1

∂R5

∂φc2

∂R5

∂pf




dλ0

dλπ

dφc1

dφc2

dpf

 = −


R1

R2

R3

R4

R5

 , (3.27)

where Ri are the current residuals and finite difference is used to approximate the

derivatives of the residuals. The required change in the guess values are computed

from the above equation and the guess values are updated. This process is repeated

until convergence is achieved. It should be noted that the above numerical scheme
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will work only if our guess values are close to the solution values. Therefore, we start

every indentation with the inflated sphere for which we know the following exact

solution

φc1 = 0, (3.28)

φc2 = π, (3.29)

λ0 = λπ =
r0

R
, (3.30)

pf = pf0 , (3.31)

where pf0 is given in (3.12).
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Chapter 4

Results

This chapter presents the results obtained by solving equations (2.173), (2.174),

(2.179) and (2.180) subject to boundary conditions (2.181) to (2.186) by the nu-

merical procedure outlined in Chapter 3.

4.0.1 Non-Dimensional Variables

We use the following dimensionless variables to present the results

r̄0 =
r0

R
, (4.1)

φ̄c1 =
φc1
π
, (4.2)

φ̄c2 =
φc2
π
, (4.3)

λ̄0 =
λ0

r̄0

, (4.4)

λ̄π =
λπ
r̄0

, (4.5)

p̄f =
pf
pf0

, (4.6)

F̄ =
F

Gr0

. (4.7)
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4.0.2 Sample Indentation Results

The following sample results are obtained for the following values

r̄0 = 1.5, (4.8)

J0 = {10, 15}, (4.9)

ρ̄ = {0.1, 0.2, 0.5}. (4.10)

In order to make this document more readable, in this part we present the most

interesting results which are for J0 = 15 and extra results for J0 = 10 are presented

in the Chapter A in the appendix. The figures in the Appendix A follow a similar

trend to the case explained in here. The indentation is continued until the material

fails either due to local loss of elastic behaviour or global failure due to penetration

as described in Section 2.7. For the particular numbers that are chosen for this part,

failure due to local loss of elastic behaviour always happened first and no global failure

due to energy was observed. Moreover, we stopped indentation when we observed

wrinkling as well since treatment of wrinkling was not the purpose of this work.

The horizontal axis in all of the following indentation graphs is the non-dimensional

indenter displacement 0 ≤ d
2r0
≤ 1 where d is the indenter displacement as shown in

Figure 4.1.

d

Figure 4.1: indenter displacement
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Material in Contact

Figures 4.2 and 4.4, show how φ̄c1 and φ̄c2 which are the non-dimensional contacting

angles with the indenter and support, respectively are varying during the indentation

process. Also, in order to get a better understanding of how much of the material is

in contact with the indenter, we can compute the percentage of the referential area

in contact with the indenter

Aφc1
A0

× 100 =
2πR2

∫ φc1
0

sinφdφ

4πR2
× 100 =

(
1− cosφc1

2

)
× 100. (4.11)

We can compute the same percentage for the material in contact with the flat support

Aφc2
A0

× 100 =
2πR2

∫ π
φc2

sinφdφ

4πR2
× 100 =

(
1 + cosφc2

2

)
× 100. (4.12)

Figures 4.3 and 4.5 show how these ratios are varying during the indentation. These

figures show that the material in contact with the indenter is increasing but this

increase is not monotonic and we can see a decline before reaching to failure. This

behaviour is not surprising since for example, if we indent a flat piece of material,

initially small portion of the material will be in contact with the indenter. As we

indent it further, this contacting portion increases; however, we expect that at large

indenter displacement only small portion of the material which is extremely stretched

will be in contact with the indenter. This shows that the contacting portion of the

membrane is not monotonically increasing. Figures 4.4 and 4.5 show a similar trend

for the material in contact with the flat support and they show a decline toward the

end of the graph which is more noticeable for the case J0 = 15.
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Figure 4.2: φ̄c1 as a function of non-dimensional displacement for J0 = 15
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Figure 4.3:
Aφc1
A0
× 100 as a function of non-dimensional displacement for J0 = 15
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Figure 4.4: φ̄c2 as a function of non-dimensional displacement for J0 = 15
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Figure 4.5:
Aφc2
A0
× 100 as a function of non-dimensional displacement for J0 = 15

Meridional Stretches

We can plot how λ̄0 and λ̄π (non-dimensional meridional stretches at the poles) are

changing during the indentation. Figures 4.6 and 4.7 show these figures. As it can be
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seen from figure 4.6, there is an initial decrease in λ̄0 which becomes more noticeable

as the indenter gets larger. The reason for this decrease is initial flattening of a

sphere by the indenter and after the membrane comes more into contact with the

indenter and takes the shape of the indenter, the stretch starts to increase. The same

reason applies for the decrease of λ̄π as shown in Figure 4.7 which continues for larger

values of displacement. Furthermore, figure 4.6 shows that as indentation proceeds,

the change in λ̄0 becomes larger for the same indentation displacement such that

close to the point where local loss of elastic behaviour happens (max(J) > J0), this

graph becomes almost vertical which produces difficulties for finding the numerical

solution and the indentation displacement must be reduced constantly to obtain the

next solution.
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Figure 4.6: λ̄0 as a function of non-dimensional displacement for J0 = 15
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Figure 4.7: λ̄π as a function of non-dimensional displacement for J0 = 15

Fluid Pressure

Figure 4.8 shows how the fluid pressure is varying during indentation as a function

of indenter displacement. According to this graph, the fluid pressure is increasing as

indentation proceeds; however, it starts to decline close to the failure point (max(J)

is close to J0) which is more noticeable for ρ̄ = 0.5. This graph shows that for some

fluid pressures, there are more than one equilibrium solution and fluid pressure is not

a very suitable variable to prescribe for obtaining different equilibrium solutions for

the numerical procedure explained in Section 3.4.
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Figure 4.8: p̄f as a function of non-dimensional displacement for J0 = 15

Indentation Force

Figure 4.9 shows how indentation force is changing during the indentation for ρ̄ = 0.5

for different values of J0. The indentation force can be obtained by multiplying fluid

pressure (which is equal to the flat support contact pressure) by the deformed area

of the contacting region with the support

F̄ =
1

Gr0

pfπu
2
φc2
, (4.13)

where uφc2 is the value of u at φc2 . As it can be seen from this graph, as J0 gets

larger the indentation force becomes smaller for the same indenter displacement which

indicates that this material becomes less stiff as J0 gets larger. This is the same

conclusion we obtained at the end of Section 2.6 by considering penetrated energy.

Furthermore, the indentation force is not monotonically increasing and there can be

a decrease close to the failure point which is more visible for J0 = 15. The reason

for this decrease is that both fluid pressure and uφc2 are dropping close to the failure

point as shown in graphs 4.8 and 4.10 (for J0 = 15, ρ̄ = 0.5).
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Figure 4.9: F̄ as a function of non-dimensional displacement for ρ̄ = 0.5
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Figure 4.10:
uφc2
ρ

as a function of non-dimensional displacement for J0 = 15

Energy Ratio

The ratio of the stored energy of the membrane to the energy at the punctured state

is shown in Figure 4.11. In [7], it is established that the energy of the membrane is
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a strictly increasing function of the indenter displacement (for a flat circular mem-

brane) which is in qualitative agreement with the monotonically increasing behaviour

of the result shown in Figure 4.11. Moreover, the energy ratio in this particular ex-

ample remained less than unity while the failure due to local loss of elastic behaviour

happened therefore no global failure due to energy was observed.
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Figure 4.11: Energy ratio ( E
Ep

) as a function of non-dimensional displacement for

J0 = 15

Dilation Ratio

Figure 4.12 shows how the ratio of the maximum dilation to J0 is changing with the

indenter displacement. The point that has the maximum dilation always observed

to be directly under the tip of the indenter (φ = 0). Close to the point at which

local failure occurs, this graph shows the same behaviour as Figure 4.6 for λ̄0 and the

change in this ratio becomes very large. Due to this behaviour close to the failure

point, obtaining the next solution becomes more difficult and as it can be seen it was

not possible to get significantly closer to the failure point for the case J0 = 15 and

ρ̄ = 0.5.
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Figure 4.12: Dilation ratio (max(J)
J0

) as a function of non-dimensional displacement for

J0 = 15

4.0.3 Constant Pressure Case

We can consider the indentation of a particular membrane that allows the incom-

pressible fluid to pass through the membrane such that the fluid pressure remains

constant

pf = pf0 , (4.14)

where pf0 is given in (3.12). We present the results in this case for the following

sample values

r̄0 = 1.5, (4.15)

J0 = {5, 10}, (4.16)

ρ̄ = 0.1. (4.17)

We stopped the indentation whenever the membrane reached to failure. Also, in some

cases we observed wrinkling before the failure and we stopped the indentation; for

example, for J0 = 5 and ρ̄ = 0.5 wrinkling occurred at the indenter displacement of

85% with energy ratio of 9.01% and dilation ratio of 37.97% which is clearly before

any mode of failure.
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For the constant pressure case, there is no requirement for the membrane to pre-

serve its volume; therefore, volume of the membrane will decrease as shown in Fig-

ure 4.13. This figure shows how the ratio of the current volume of the membrane to

the initial volume is changing during the indentation.

The energy ratio of the membrane during the indentation is shown in Figure 4.14.

This graph shows that when the pressure is kept constant, the energy is reducing

and the global mode of failure will not occur during the indentation. Therefore, the

only possibility to get global failure is to inflate the membrane to a critical value at

which the intact energy of the membrane reaches to the penetrated energy and the

membrane fails immediately.

On the other hand, the dilation ratio which is presented in Figure 4.15 shows

that this ratio is increasing when the pressure is kept constant. This figure indicates

that the membrane is failed locally when this ratio exceeds unity and the point with

maximum dilation is again observed to be at φ = 0; i.e., directly under the indenter.
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Figure 4.13: Volume ratio ( V
V0

) as a function of non-dimensional displacement for

ρ̄ = 0.1 for constant pressure case
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Figure 4.14: Energy ratio ( E
Ep

) as a function of non-dimensional displacement for

ρ̄ = 0.1 for constant pressure case
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) as a function of non-dimensional displacement for

ρ̄ = 0.1 for constant pressure case
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4.0.4 Critical Inflation For Cavitation

We can consider the critical inflation for cavitation (ρ̄ → 0) at which failure occurs

immediately with zero indenter displacement as a function of J0. Figure 4.16 shows

this figure and indicates the corresponding mode of failure as well. The region under

this graph indicates the inflation values for each J0 that failure does not occur im-

mediately. As it can be seen from this graph for approximately J0 ≤ 2.05, the failure

occurs due to local loss of elastic behaviour and the corresponding portion of the

curve (blue curve) is determined by r0
R

=
√
J0. For greater values of J0, global failure

mode due to energy determines the critical inflation which is obtained numerically.

This graph indicates that for small values of J0, as inflation increases, the value of

max(J) = ( r0
R

)2 reaches to J0 before the membrane reaches to the inflation at which

the inflated energy equals to the penetration energy. However, for larger values of

J0, at the inflation for which immediate failure due to energy happens, the value of

max(J) = ( r0
R

)2 is smaller than J0 therefore the critical inflation is dominated by the

global mode of failure due to energy.
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Figure 4.16: Critical inflation for cavitation (ρ̄ → 0) for different values of J0 where

failure occurs immediately
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4.0.5 Failure Displacement versus Inflation

The most interesting results of this project which reveal the critical effect of the non-

dimensional radius of the indenter are shown in Figures 4.17, 4.18, 4.19 and 4.20.

These figures show that for given values of J0, ρ̄ and r0, what is the non-dimensional

indenter displacement at which failure occurs and also they indicate the corresponding

mode of failure. Therefore, the horizontal axis shows the non-dimensional inflation

and the vertical axis shows the corresponding non-dimensional indenter displacement

to reach to failure. These figures are prepared for the following values

J0 = {2, 5, 10, 15}, (4.18)

ρ̄ = {0.01, 0.1, 0.2, 0.5, 1}. (4.19)

Each curve stops in the left end (lower inflation values) whenever the indenter reaches

to the flat support ( d
2r0

= 1) or wrinkling is observed which is the reason why some

of the curves do not reach to the value d
2r0

= 1.

These figures show that for fixed inflation as the non-dimensional indenter size gets

larger, the failure occurs at larger indenter displacements. Moreover, the curves are

dominated by the local failure criteria when the indenter is small and as ρ̄ increases,

the role of the energy failure criteria becomes more evident such that at ρ̄ = 1,

almost the entire graph is dominated by the global mode of failure due to energy. An

exception for this observation is for the case J0 = 2 at which global failure criteria

plays no role and local mode of failure determines the entire graph.
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Figure 4.17: Failure displacement as a function of inflation for J0 = 5
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Figure 4.18: Failure displacement as a function of inflation for J0 = 10
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Figure 4.19: Failure displacement as a function of inflation for J0 = 15
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Figure 4.20: Failure displacement as a function of inflation for J0 = 2
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Chapter 5

Conclusions and Recommendations

In this thesis, we tried to model the indentation, penetration and cavitation of a

spherical elastic membrane containing incompressible fluid using elastic approach.

This work can provide more insight in the phenomenon of cavitation for a spheri-

cal membrane and its methods and findings can be extended to model realistic and

practical problems such as cell microinjection.

We considered the possibility of cavitation in section 2.5. If the membrane could

sustain pure cavitation, after penetration occurs we would continue to get more equi-

librium solutions until we reach to the cavitated state in which a central traction free

hole is formed around the indenter and only its edges are in contact with the inden-

ter. However, the analysis showed in section 2.5 that when the penetration occurs,

the membrane cannot keep the fluid inside and there is only one equilibrium solution

after penetration and cavitation is the limit as ρ̄→ 0.

A strain energy that can support penetration is presented in Section 2.2. In sec-

tion 2.6, we used this strain energy function to compute the energy of the membrane

at the penetrated state and to establish a critical value for the energy of the mem-

brane beyond which the punctured membrane is energetically preferred. The analysis

showed that this particular strain energy function gives a finite value for the energy

of the penetrated state in this work as shown in equations 2.227, 2.228, 2.229 and

2.230; thus, it is able to model the penetration of the spherical membrane studied

in this work. The analysis showed that this penetrated energy is a function of shear

modulus of the membrane, the constant J0 as well as the non-dimensional size of the

indenter where the shear modulus is only scaling factor. It is interesting to note that

the relative size of the indenter to the referential radius of the membrane plays an

important role instead of the size of the indenter itself for analysis of the penetrated
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state. Moreover, we found a requirement for the allowable non-dimensional size of the

indenter for which the membrane can sustain penetration which is given in equation

2.232.

The computed penetrated energy is shown in figure 2.8 and the graph shows

that the penetrated energy increases with the non-dimensional size of the indenter

and decreases with J0. This result is not surprising since for larger indenter, more

deformation is required at the penetrated state which translates into more energy.

Additionally, as J0 increases, the material becomes less stiff thus it has less energy at

the penetrated state. The fact that increase in J0 makes the material less stiff is also

verified by figure 4.9 which shows the indentation force. Furthermore, we showed that

at the limit when the non-dimensional size of the indenter goes to zero, the penetrated

energy approaches to a value given in equation 2.233 which is independent of J0. This

value represents the spontaneous cavitation. Moreover, this limit value represents

the finite energy stored at a referential configuration of the membrane similar to the

one shown in figure 2.1 but contains an infinitesimal cavity (micro-void) at the top

pole. Based on this observation, for future work one can use this value to consider

indentation and penetration of a spherical membrane containing a micro void1 and to

interpret the phenomenon of penetration for this spherical membrane as the growth

of a pre-existing hole which is also suggested in [5] and [6].

As stated in section 2.7, we established a global failure criteria based on the

finite energy of the penetrated state of the membrane. This mode of failure states

that during the indentation, once the stored energy of the intact membrane exceeds

the penetrated energy, the punctured state is energetically preferred and penetration

occurs. Furthermore, we identified an additional local mode of failure that occurs

when the local dilation at any point exceeds J0 and the requirements of elastic material

given in 2.90 are violated. These requirements stem from the convexity conditions

and once they are violated, the material is no longer suitable for elasticity. Moreover,

in numerical solutions for the cases we considered, it was observed that the point

at which the local failure criteria occurs is the point directly under the tip of the

indenter.

The influence of the non-dimensional size of the indenter for the dominance of

each mode of failure manifests itself in figures 4.17, 4.18 and 4.19. According to these

figures, for fixed inflation as the indenter gets larger, more indenter displacement is

1The fundamental difference will be the fact that the referential energy of the membrane is given
by equation 2.233 rather than being zero.
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required to reach to failure. Moreover, we observe that for small non-dimensional

indenter size the dominant mode of failure is the local failure criteria and as the

indenter gets larger, the effect of the global mode of failure becomes more pronounced.

An exception for this observation happens when J0 is relatively small2 which is shown

in figure 4.20 and the entire graph is dominated by the local failure criteria. We also

considered a case for which the membrane is permeable such that the fluid pressure

stays constant. Figures 4.14 and 4.15 show that in this case, the local failure criteria

determined the failure point for the few examples that we considered and no failure

due to energy was observed.

As another recommendation for future work, one can try to derive a different

strain energy function that satisfies all the requirements mentioned in section 2.2 and

observe how the change of strain energy function impacts the findings and conclusions

of this work. We observed that finding a new strain energy function is challenging

and it was not possible to formulate a different strain energy function in the limited

time of this work. We speculate that if one finds a new strain energy function that

can sustain penetration in the context of this work, the final form of that function

will probably be more complicated and involves more terms than the one given in

equation 2.117.

2Close to J0 = 2.
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Appendix A

Additional Results

In this chapter, extra indentation figures are presented.
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Figure A.1: φ̄c1 as a function of non-dimensional displacement for J0 = 10
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Figure A.2:
Aφc1
A0
× 100 as a function of non-dimensional displacement for J0 = 10
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Figure A.3: φ̄c2 as a function of non-dimensional displacement for J0 = 10
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Figure A.4:
Aφc2
A0
× 100 as a function of non-dimensional displacement for J0 = 10
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Figure A.5: λ̄0 as a function of non-dimensional displacement for J0 = 10



72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

d
2r0

λ̄
π

J0 = 10

 

 

ρ̄ = 0.1
ρ̄ = 0.2
ρ̄ = 0.5

Figure A.6: λ̄π as a function of non-dimensional displacement for J0 = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

d
2r0

p̄ f

J0 = 10

 

 

ρ̄ = 0.1
ρ̄ = 0.2
ρ̄ = 0.5

Figure A.7: p̄f as a function of non-dimensional displacement for J0 = 10
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Figure A.8: F̄ as a function of non-dimensional displacement for J0 = 10
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