
An Exploration of Indirect Conflicts

by

Jordan Ell
B.Sc., University of Victoria, 2013

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

c© Jordan Ell, 2014
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author.

ii

An Exploration of Indirect Conflicts

by

Jordan Ell
B.Sc., University of Victoria, 2013

Supervisory Committee

Dr. D. Damian, Supervisor
(Department of Computer Science)

Dr. M. Tory, Departmental Member
(Department of Computer Science)

iii

Supervisory Committee

Dr. D. Damian, Supervisor
(Department of Computer Science)

Dr. M. Tory, Departmental Member
(Department of Computer Science)

Abstract

Awareness techniques have been proposed and studied to aid developer understanding,
efficiency, and quality of software produced. Some of these techniques have focused on
either direct or indirect conflicts in order to prevent, detect, or resolve these conflicts as
they arise from a result of source code changes. While the techniques and tools for direct
conflicts have had large success, tools either proposed or studied for indirect conflicts have
had common issues of information overload, false positives, scalability, information distri-
bution and many others. To better understand these issues, this dissertation will focus on
exploring the world of indirect conflicts through 4 studies. The first two studies presented
will focus on motivational circumstances which occur during the software development
life cycle and cause indirect conflicts. Developers interactions are studied in order to create
a tool which can aid in the workflows around indirect conflicts. The second two studies
present a deeper investigation into why most indirect conflict tools fail to attrack devel-
oper interest through exploring the root causes of indirect conflicts and how tools should
be properly built to support developer workflows.

iv

Table of Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

Acknowledgements viii

Dedication ix

1 Introduction 1
1.1 Introduction . 1
1.2 Research Methodology . 3

2 Motivating Studies 6
2.1 Study 1: Failure Inducing Developer Pairs 6

2.1.1 Related Work . 7
2.1.2 Technical Approach . 8
2.1.3 Results . 10
2.1.4 Conclusions of Study . 10

2.2 Study 2: Awareness with Impact . 11
2.2.1 Related Work . 12
2.2.2 Impact . 13
2.2.3 Evaluation . 16
2.2.4 Threats to Validity . 18
2.2.5 Conclusions of Study . 18

v

3 Exploring Indirect Conflicts 20
3.1 Study 3: An Exploration of Indirect Conflicts 22

3.1.1 Related Work . 22
3.1.2 Methodology . 24
3.1.3 Results . 28
3.1.4 Evaluation . 35
3.1.5 Threats to Validity . 36
3.1.6 Conclusions of Study . 37

3.2 Study 4: Investigating Indirect Conflict Contextual Patterns 37
3.2.1 Related Work . 39
3.2.2 Methodology . 40
3.2.3 Results . 42
3.2.4 Conclusions of Study . 45

4 Discussion 46
4.1 Motivating Studies Discussion . 46
4.2 Indirect Conflict Exploration Discussion 48

4.2.1 Implication for Research . 54
4.2.2 Implication for Tools . 55

5 Conclusions 57
5.1 Study 1 . 57
5.2 Study 2 . 58
5.3 Study 3 . 59
5.4 Study 4 . 60
5.5 Final Conclusions . 61

Bibliography 63

vi

List of Tables

Table 2.1 Top 3 failure inducing developer pairs found. 10

Table 3.1 Demographic information of interview participants. 25
Table 3.2 Results of questionnaire as to how often indirect conflicts occur, in

terms of percentage of questionnaire participants. 30
Table 3.3 Questionnaire results about development environments in which in-

direct conflicts are likely to occur, in terms of percentage of question-
naire participants. 31

Table 3.4 Questionnaire results about source code changes that developers deem
notification worthy, in terms of percentage of questionnaire participants. 34

Table 3.5 Implementation oriented change types and their normalized average
change ratios at 60 days on each side of releases. 43

Table 3.6 Qualitative graph analysis results. 44
Table 3.7 Test oriented change types and their normalized average change ratios

at 60 days on each side of releases. 44

vii

List of Figures

Figure 2.1 A technical network for a code change. Carl has changed method
getX() which is being called by Bret’s method foo() as well as Daniel
and Anne’s method bar(). 8

Figure 2.2 Technical object directed graph with ownership 14
Figure 2.3 Impact’s RSS type information feed. 17

Figure 3.1 A screen shot of the APIE visualizer showing project Eclipse.Mylyn.Context
with change type PUBLIC ADDED METHODS being analyzed and
showing major releases as vertical yellow lines. 42

viii

Acknowledgements

I would like to thank:

David, Leslie, Aaron, and Shelley, for supporting me throughout my research.

Dr. Daniela Damian, for mentoring, support, encouragement, and patience.

Change is the law of life. And those who look only to the past or present are certain to

miss the future.

John F. Kennedy

ix

Dedication

To Brittany.

Chapter 1

Introduction

1.1 Introduction

As Software Configuration Management (SCM) has grown over the years, the maturity
and norm of parallel development has become the standard development process instead of
the exception. With this parallel development comes the need for larger awareness among
developers to have “an understanding of the activities of others which provides a context
for one’s own activities” [16]. This added awareness mitigates some downsides of parallel
development which include the cost of conflict prevention and resolution. However, empir-
ical evidence shows that these mitigated losses continue to appear quite frequently and can
prove to be a significant and time-consuming chore for developers [44].

Large software projects are created using highly modular and reusable code. This cre-
ates technical dependencies between methods or functions that can be used in a wide variety
of locations throughout the project. This causes changes to any given software object to
have a rippling effect across the rest of the project [1]. The larger these effects are, the
more likely they are to cause a software failure inside the system during the project’s life
span [63]. These observations of technical dependencies open the door to types of anal-
ysis on the developer networks they infer and preventing software failures by improving
coordination amongst dependent developers.

Technical dependencies in a project can be used to predict success or failure in builds or
code changes [46, 63]. However, most research in this area is based on identifying central
modules inside a large code base which are likely to cause software failures or detecting
frequently changed code that can be associated with previous failures [35]. This module-
based method also results in predictions at the file or binary level of software development

2

as opposed to a code change level and often lack the ability to provide recommendations
for improved coordination other than test focus.

With the power of technical dependencies in tracking unintended consequences from
source code changes, several tools have been created to attempt to solve task awareness
related issues with some success [4, 33, 48, 59]. However, these tools have been designed
to solve task awareness related issues at the direct conflict level.

Two types of conflicts have attracted the attention of researchers, direct and indirect

conflicts. Direct conflicts involve immediate workspace concerns such as developers edit-
ing the same artifact. Tools have been created and studied for direct conflicts [4,33,48,59]
with relatively good success and positive developer feedback. Indirect conflicts are caused
by source code changes that negatively impact another location in the software system
such as when libraries are upgraded or when a method is changed and invoking methods
are influenced negatively. Indirect conflict tools however, have not shared the same success
as direct conflict tools [6, 30, 47, 50, 53]. However, previous interviews and surveys con-
ducted with software developers have shown a pattern that developers of a software project
view indirect conflict awareness as a high priority issue in their development [3,14,26,49],
meaning that future research is required to address this developer concern.

Indirect conflicts arising in source code are inherently difficult to resolve as most of
the time, source code analysis must be performed in order to find relationships between
technical objects which are harmed by changes. While some awareness tools have been
created with these indirect conflicts primarily in mind [3, 53], most have only created an
exploratory environment which is used by developers to solve conflicts which may arise.
These tools were not designed to detect indirect conflicts that arise and alert developers to
their presence inside the software system. Sarma et al. [47] has started to work directly
on solving indirect conflicts, however, these products are not designed to handle internal
structures of technical objects.

While indirect conflict tools have shown potential from studies of developers, some of
the same problems continue to arise throughout most, if not all tools. The most preva-
lent issue is that of false positives and information overload, tools eventually being ig-
nored [47, 50]. A second primary issue is that of dependency identification and tracking.
Many different dependencies have been proposed and used in indirect conflict tools such
as method invocation [53], and class signatures [47] with varying success, but the iden-
tification of failure inducing changes, other than those which are already identifiable by
other means such as compilers, and unit tests, to these dependencies still remains an issue.
Dependency tracking issues are also compounded by the scale of many software develop-

3

ment projects leading to further information overload. Lastly, social factors such as Cataldo
et al’s. [10] notion of socio-technical congruence have been leveraged in indirect conflict
tools [3,6,36]. However, issues again of information overload, dependencies (in developer
organizational structure), and scalability come up.

Clearly, indirect conflicts and its subsequent research areas have a large breadth of lim-
itations, some of which will be explored in this dissertation. The research goal of this dis-
sertation is to explore the limitations which exist with supporting indirect conflicts through
awareness techniques as well as to explore possible solutions for industry practice in the
area of indirect conflicts. To accomplish this goal, I have researched the following sub top-
ics of indirect conflicts: technical dependencies, how developers are involved in said de-
pendencies, socio-technical congruence as a mitigation strategy to indirect conflicts, what
the root causes of indirect conflicts are, what compounding factors exist for indirect con-
flicts, what current industry mitigation strategies of indirect conflicts are being used, what
future steps should be taken by researchers to better industry regarding indirect conflicts,
and finally, how software evolution analysis can be used to better tools for indirect conflicts.
I have addressed these issues by conducting four studies.

1.2 Research Methodology

In order to address the research goal as laid out in the previous section, I have conducted 4
studies which will now be briefly outlined. Each study builds off the previous one and has
research questions informed from the findings of the previous study.

Study 1 focuses on the power of technical dependencies in software projects. The ques-
tion I investigated were : “Is it possible to identify pairs of developers whose technical

dependencies in code changes statistically relate to bugs?”. This study explains the ap-
proach used to locate these pairs of developers in developer networks.The process utilizes
code changes and the call hierarchies effected to find patterns of developer relationships
in successful and failed code changes. These developer pairs can be seen as indirect con-
flicts occurring as one developer’s code change has negatively affects another developer’s
work. As it will be seen, I found 27 statistically significant failure inducing developer pairs.
These developer relationships can be used to promote the idea of leveraging socio-technical
congruence, a measure of coordination compared to technical dependencies amongst stake-
holders, to provide coordination recommendations. This notion of socio-technical congru-
ence is my initial proposed solution to indirect conflicts. By identifying these failure induc-
ing pair of developers over indirect conflicts, I hoped that recommended communication

4

would be the correct fix. The results of Study 1 directly influence Study 2.
Study 2 attempts to take the failure inducing pairs of developers from Study 1 and

create an awareness tool while answering: “Can indirect conflicts be supported through

an awareness mechanism which leverages pairs of developers whose changing technical

dependencies statistically relate to bugs?”. In this study, I report on my research into sup-
porting indirect conflicts and present the design, implementation, and evaluation of the
tool Impact, a web based tool that aims at detecting indirect conflicts among developers
and notifying the appropriate members involved in these conflicts. By leveraging tech-
nical relationships inherent of software projects with method call graphs [38] as well as
detecting changes to these technical relationships through software configuration manage-
ment (SCM) systems, Impact is able to detect indirect conflicts as well as alert developers
involved in such conflicts in task awareness. While this study outlines Impact’s specific
implementation, its design is rather generic and can be implemented in similar indirect
conflict awareness tools. Impact represents a first step towards the design and implemen-
tation of awareness tools which address indirect conflicts in software development. After a
brief evaluation of Impact with two student software teams, it was found that Impact suffers
from information overload and a high false positive rate which turn out to be quite large
problems found in many other indirect conflict tools [6, 30, 47, 50, 53]. In order to fully
understand the causes of these indirect conflict tool issues, a third study was conducted.

In order to fully understand the root causes of information overload, false positives,
and scalability issues in regards to indirect conflicts, Study 3 was an empirical study to
determine what events occur to cause indirect conflicts, when they occur, and if conditions
exist to provoke more of these events. I also set out to understand what mitigation strate-
gies developers currently use as opposed to those created by researchers. Through this
exploration, I examined what can be accomplished moving forward with indirect conflicts
in both research and industry. This study asked the following 3 research questions: What

are the types, factors, and frequencies of indirect conflicts? What mitigation techniques are

used by developers in regards to indirect conflicts? What do developers want from future

indirect conflict tools?

I interviewed 19 developers from across 12 commercial and open source projects, fol-
lowed by a confirmatory survey of 78 developers, and 5 confirmatory interviews, in order
to answer the aforementioned questions. The study findings indicate that: indirect con-
flicts occur frequently and are likely caused by software contract changes and a lack of
understanding of those changes, developers tend to prefer to use detection and resolution
processes or tools over those of prevention, developers do not want awareness mechanisms

5

which provide non actionable results, and that there exists a gap in software evolution
analytical tools arising from the reliance on static analysis resulting in missed context of
indirect conflicts. As a result of the final finding (the gap in software evolution analytical
tools), I conducted a fourth and final study.

In order to begin to address the gap in software evolution analytical tools discovered
in study 3, I turn my analysis to the notions of software change trends, specifically those
trends around major releases. Change trends are trends which indicate a likelihood for
a change type to occur around a certain event. Change trends have been used to detect
stability in core architecture [56] as well as evolving dependencies [8]. With the power of
major release points in open source projects as a starting point for project stability and the
understanding that change trends can be leveraged to detect stability and the proneness of
indirect conflicts (as will be seen in Study 3), this study investigates the question: “What

trends exist in source code changes surrounding major releases of open source projects as

a notion towards a project stability measure?”. I perform a case study of 10 open source
projects in order to study their source code change trends surrounding major release points
throughout their history. I studied 26 change trends quantitatively and 4 change trends
qualitatively, and identified a core group of 9 change trends which occur prominently at
major release points of the projects studied.

The remainder of this dissertation is laid out as follows. Chapter two includes Study 1
and Study 2 as the motivational studies which ultimately led to the larger research studies
found in Study 3 and Study 4. Chapter 3 includes Study 3 and Study 4 which ultimately
press upon indirect conflicts in a more in depth fashion than has been previously seen in
research. Chapter 4 contains a lengthy discussion of what has been learned from all four
studies of this dissertation as well as implications for further research and tool development
in the field of indirect conflicts. Finally, Chapter 5 concludes this dissertation.

6

Chapter 2

Motivating Studies

While the research problems have been briefly outlined in Chapter 1, this chapter will focus
on the underlying studies which motivated the research of this dissertation.

In this chapter, two studies will be presented which motivated, and gave insights into,
the final research goals of this thesis. The first study entitled “Failure Inducing Developer
Pairs” (Section 2.1), focuses on the prediction of software failures through identifying indi-
rect conflicts of developers linked by their software modules. This study found that certain
pairs of developers when linked through indirect code changes are more prone to software
failures than others. The ideas of developer pairs linked in indirect conflicts will be use-
ful for the further development of indirect conflict tools as it shows that a human factor is
present and may be used to help resolve such issues.

The second study, “Awareness with Impact” ((Section 2.2)), takes the notion of de-
veloper pairs in indirect conflicts learned from Study 1, and adds in source code change
detection in order to create an awareness notification system for developers called Impact.
Impact was designed to alert a developer to any source code changes preformed by another
developer when the two are linked in a technical dependency through a developer pair. Im-

pact utilized a non-obtrusive RSS style feed for notifications. While Impact showed some
promise through its user evaluation, it ultimately suffered the fate of information overload
as was seen in other indirect conflict tools [47, 50, 53].

2.1 Study 1: Failure Inducing Developer Pairs

Technical dependencies in a project can be used to predict success or failure in builds or
code changes [46, 63]. However, most research in this area is based on identifying central

7

modules inside a large code base which are likely to cause software failures or detecting
frequently changed code that can be associated with previous failures [35]. These module-
based methods also result in predictions at the file or binary level of software development
as opposed to a code change level and often lack the ability to provide recommendations
for improved coordination other than test focus.

With the power of technical dependencies in predicting software failures, the question
I investigated in this study was:

RQ Is it possible to identify pairs of developers whose technical dependencies in code

changes statistically relate to bugs?

This study explains the approach used to locate these pairs of developers in developer
networks. The process utilizes code changes and the call hierarchies effected to find pat-
terns of developer relationships in successful and failed code changes. As it will be seen,
I found 27 statistically significant failure inducing developer pairs. These developer rela-
tionships can also be used to promote the idea of leveraging socio-technical congruence,
a measure of coordination compared to technical dependencies amongst stakeholders, to
provide coordination recommendations.

2.1.1 Related Work

Research has shown multiple reasons for software failures in both technical dependencies
as well as human or social dependencies in software development. On the technical side,
studies have shown that technical dependencies in software are often powerful predictors or
errors in software as well as in builds [27, 46, 63]. These technical dependencies are often
accompanied by data mining algorithms in order to set apart failure inducing dependencies
from non failing dependencies.

On the other side with the human factor, researchers have examined predicting build
outcomes of software using communication patterns from developers. Wolf et al. [57] used
patterns of communication from between pre-existing builds in order to predict later build
outcomes. Naggappan et al. [43] showed that having a large communication organizational
difference between developers who worked on the same software module had a negative
influence on the quality of the software.

Studies have also combined both technical and social dependencies into a notion of
socio-technical congruence. Cataldo et al. [10] have shown that this notion of socio-
technical congruence can be leveraged to predict and improve task completion times in
a software projects.

8

These studies have mostly focused at a very high and abstract level of software de-
velopment (builds and task completion). Where they have fallen short is in fine grained
analysis of software changes. This study is used to take the pre existing knowledge of both
technical and social dependencies and apply it to a source code change level of granular-
ity. Instead of large scale failures like long completion times or build failures, this study
examines failures at the bug level induced by each code change.

2.1.2 Technical Approach

Extracting Technical Networks

The basis of this approach is to create a technical network of developers based on method
ownership and those methods’ call hierarchies effected by code changes. These networks
will provide dependency edges between contributors caused by code changes which may
be identified as possible failure inducing pairings (Figure 2.1). To achieve this goal, devel-
oper owners of methods, method call hierarchies (technical dependencies) and code change
effects on these hierarchies must be identified. This approach is described in detail by il-
lustrating its application to mining the data in a Git repository although it can be used with
any software repository.

Figure 2.1: A technical network for a code change. Carl has changed method getX() which
is being called by Bret’s method foo() as well as Daniel and Anne’s method bar().

To determine which developers own which methods at a given code change, the Git
repository is queried. Git stores developers of a file per line, which was used to extrapolate
a percentage of ownership given a method inside a file. If developer A has written 6/10
lines of method foo, then developer A owns 60% of said method.

A method call graph is then constructed to extract method call hierarchies in a project
at a given code change. Unlike other approaches such as Bodden’s et al. [5] of using

9

byte code and whole projects, call graphs are built directly from source code files inside
of a code change, which does not have the assumptions of being able to compile or have
access to all project files. It is important to not require project compilation at each code
change because it is an expensive operation as well as code change effects may cause the
project to be unable to compile. Using source files also allowed an update to the call
graph with changed files as opposed to completely rebuilding at every code change. This
creates a rolling call graph which is used to show method hierarchy at each code change
inside a project opposed to a static project view. As some method invocations may only be
determined at run time, all possible method invocations are considered for these types of
method calls while constructing the call graph.

The code change effect, if any, to the call hierarchy is now found. The Git software
repository is used to determine what changes were made to any given file inside a code
change. Specifically, methods modified by a code change are searched for. The call graph
is then used to determine which methods call those that have been changed, which gives
the code change technical dependencies.

These procedures result in a technical network based on contributor method ownership
inside a call hierarchy effected by a code change (Figure 2.1 left hand side). The network
is then simplified by only using edges between developers, since I am only interested in
discovering the failure inducing edges between developers and not the methods themselves
(Figure 2.1 right hand side). This is the final technical network.

Identifying Failure Inducing Developer Pairs

To identify failure inducing developer pairs (edges) inside technical networks, edges in
relation to discovered code change failures are now analysed. To determine whether a code
change was a success or failure (introduce a software failure), the approach of Sliwerski et
al. [51] is used. The following steps are then taken:

1. Identify all possible edges from the technical networks.

2. For each edge, count occurrences in technical networks of failed code changes.

3. For each edge, count occurrences in technical networks of successful code changes.

4. Determine if the edge is related to success or failure.

To determine an edge’s relation to success or failure, the value FI (failure index) which
represents the normalized chance of a code change failure in the presence of the edge, is
created.

10

FI =
edgefailed/totalfailed

edgefailed/totalfailed + edgesuccess/totalsuccess
(2.1)

Developer pairs with the highest FI value are said to be failure inducing structures
inside a project. These edges are stored in Table 2.1. A Fisher Exact Value test is also
preformed on edge appearance in successful and failed code changes, and non-appearance
in successful and failed code changes to only consider statistically significant edges (Table
2.1’s p-value).

2.1.3 Results

To illustrate the use of the approach, I conducted a case study of the Hibernate-ORM
project, an open source Java application hosted on GitHub1 with issue tracking performed
by Jira2.

This project was chosen because the tool created only handles Java code and it is writ-
ten in Java for all internal structures and control flow and uses Git for version control.
Hibernate-ORM also uses issue tracking software which is needed for determining code
change success or failure [51].

In Hibernate-ORM, 27 statistically significant failure inducing developer pairs (FI value
of 0.5 or higher) were found out of a total of 46 statistically significant pairs that existed
over the project’s lifetime. The pairings are ranked by their respective FI values (Table 2.1).

Pair Successful Failed FI P-Value
(Daniel, Anne) 0 14 1.0000 0.0001249

(Carl, Bret) 1 12 0.9190 0.003468
(Emily, Frank) 1 9 0.8948 0.02165

Table 2.1: Top 3 failure inducing developer pairs found.

2.1.4 Conclusions of Study

Technical dependencies are often used to predict software failures in large software sys-
tem [35, 46, 63]. This study has presented a method for detecting failure inducing pairs of
developers inside of technical networks based on code changes. These developer pairs can

1https://github.com/
2http://www.atlassian.com/software/jira/overview

11

be used in the prediction of future bugs as well as provide coordination recommendations
for developers within a project.

This study however, did not consider the technical dependencies themselves to be the
root cause of the software failures. This study focused purely on developer ownership
of software methods and the dependencies between developers as the possible root cause
of the failures. To study this root cause further, a study of indirect conflicts and their
relationship to developer code ownership will be conducted.

2.2 Study 2: Awareness with Impact

In response to Study 1, a second investigation was conducted. Study 1 revealed that pairs
of developers can be used around technical dependencies in order to predict bugs. The
natural follow up to these findings was to conduct a study of indirect conflicts surrounding
these developer pairs that are involved in source code changes. These indirect conflicts
were primarily studies through the notion of task awareness.

Tools have been created to attempt to solve task awareness related issues with some
success [4,33,48,59]. These tools have been designed to solve task awareness related issues
at the direct conflict level. Examples of direct conflict awareness include knowing when
two or more developers are editing same artifact, finding expert knowledge of a particular
file, and knowing which developers are working on which files. On the other hand, task
awareness related issues at the indirect conflict level have also been studied, with many
tools being produced [3,47,50,53]. Examples of indirect conflict awareness include having
one’s own code effected by another developer’s source code change or finding out who
might be indirectly effected by one’s own code change. Previous interviews and surveys
conducted with software developers have shown a pattern that developers of a software
project view indirect conflict awareness as a high priority issue in their development [3,14,
26, 49].

Indirect conflicts arising in source code are inherently difficult to resolve as most of
the time, source code analysis or program slicing [55] must be performed in order to find
relationships between technical objects which are harmed by changes. While some aware-
ness tools have been created with these indirect conflicts primarily in mind [3, 53], most
have only created an exploratory environment which is used by developers to solve con-
flicts which may arise [50]. These tools were not designed to detect indirect conflicts that
arise and alert developers to their presence inside the software system. Sarma et al. [47]
has started to work directly on solving indirect conflicts, however, these products are not

12

designed to handle internal structures of technical objects.
In this study, I report on research into supporting developer pairs in indirect conflicts

and present the design, and implementation of the tool Impact, a web based tool that aims
at detecting indirect conflicts among developers and notifying the appropriate members
involved in these conflicts. Through Impact and its evaluation I ask:

RQ Can indirect conflicts be supported through an awareness mechanism which lever-

ages pairs of developers whose changing technical dependencies statistically relate

to bugs?

By leveraging technical relationships inherent of software projects with method call
graphs [38] as well as detecting changes to these technical relationship through software
configuration management (SCM) systems, Impact is able to detect indirect conflicts as
well as alert developers involved in such conflicts in task awareness while limiting infor-
mation overload by using design by contract [40] solutions to method design. While this
study outlines Impact’s specific implementation, its design is rather generic and can be
implemented in similar indirect conflict awareness tools.

After a brief evaluation of Impact with two student software teams, it was found that
Impact suffers from information overload and a high false positive rate which turn out to
be quite large problems found in many other indirect conflict tools [6, 30, 47, 50, 53].

2.2.1 Related Work

Although there is an abundance of awareness tools developed in research today, only a
handful have made an attempt to examine indirect conflicts. Here, I will outline four of the
forefront projects in indirect conflicts and how these projects have influenced the decision
making process in the design and implementation of Impact.

I first start with both Codebook [3] and Ariadne [53]. These projects produce an ex-
ploratory environment for developers to handle indirect conflicts. Exploratory pertains to
the ability to solve self determined conflicts, meaning that once a developer discovers a con-
flict, they can use the tool as a type of lookup table to solve their issue. Codebook is a type
of social developer network that relates developers to source code, issue repositories and
other social media while Ariadne only examines their source code for developer to source
code association. Through Codebook, developers become owners of source code artifacts.
Both projects also use program dependency graphs [31] in order to relate technical artifacts
to each other. These projects make use of method call graphs in order to determine which

13

methods invoke others which forms the basis for linking source code artifacts creating a
directed graph. While these projects can be great tools for solving indirect conflicts which
may arise, by querying such directed graphs to view impacts of conflict creating code, they
lack the ability to detect potential conflicts on their own.

A serious attempt at both detecting and informing developers of indirect conflicts is the
tool Palantir [47]. Palantir monitors developer’s activities in files with regards to class sig-
natures. Once a developer changes the signature of a class, such as by modifying changes
in name, parameters, or return values of public methods, any workspace of other developers
which are using that class will be notified. Palantir utilizes a push-based event model [23]
which seems to be a favored collection system among awareness tools. Sarma et al. [47]
also developed a generic design for future indirect conflict awareness tools. However,
Palantir falls short in its collection and distribution mechanisms. First, Palantir only con-
siders “outside” appearance of technical objects, being their return types, parameters, etc.
Secondly, Palantir only delivers detected conflicts to developers who are presently view-
ing or editing the indirect object while other developers who have used the modified class
previously are not notified.

I will lastly examine the tool CASI [50] which uses a sphere of influence for each
developer to determine how source code changes are indirectly related to other components
of the software. CASI uses dependency slicing [2] instead of the call graphs in Ariadne [53]
which gives dependencies among all source code entities. This provides a verbose output of
dependencies when source code is changed. CASI also implements a visualization where
a developer can see what parts of a software projects he or she may be effecting with the
source code change. This allows the developers themselves to go and fix potential issues
elsewhere in the project before the code change is committed to the software repository.
While CASI covers great ground in its approach, it still leaves the issue of information
overload, although attempts were made to solve this by having severity levels of indirect
conflicts presented to the user.

2.2.2 Impact

This section will proceed by giving a detailed outline of Impact in both its design and
implementation. The design of Impact was created to be a generic construct which can be
applied to other indirect conflict awareness tools while the implementation is specific to the
technical goals of Impact.

14

Figure 2.2: Technical object directed graph with ownership

Design

Compared to tool design for direct conflicts, the major concern of indirect conflict tools is to
relate technical objects to one another with a “uses” relationship. To say that object 1 uses
object 2 is to infer a technical relationship between the two objects which can be used in
part to detect indirect conflict that arise from modifying object 2. This kind of relationship
is modeled based on directed graphs [31]. Each technical object is represented by node
while each “uses” relationship is represented by a directed edge. This representation is
used to indicate all indirect relationships within a software project.

While technical object relationships form the basis of indirect conflicts, communication
between developers is my ultimate goal of resolving such conflicts (as was seen in Study
1). This being the case, developer ownership must be placed on the identified technical
objects. With this ownership, I now infer relationships among developers based on their
technical objects “uses” relationship. Developer A, who owns object 1, which uses object 2
owned by developer B, may be notified by a change to object 2’s internal workings. Most, if

15

not all, ownership information of technical objects can be extracted from a project’s source
code repository (CVS, Git, SVN, etc.).

Finally, the indirect conflict tool must be able to detect changes to the technical objects
defined above and notify the appropriate owners to the conflict. Two approaches have been
proposed for change gathering techniques: real time and commit time [23]. I propose the
use of commit time information gathering as it avoids the issue of developers overwriting
previous work or deleting modifications which would produce information for changes
that no longer exist. However, the trade off is that indirect conflicts must be committed
before detected, which results in conflicts being integrated into the system before being
able to be dealt with as opposed to catching conflicts before they happen. At commit time,
the tool must parse changed source code in relation to technical artifacts in the created
directed graph detailed above. Where Impact’s design differs from that of Palantir’s is that
the object’s entire body (method definition and internal body) is parsed, similar to that of
CASI [50], at commit time, as opposed to real time, to detect changes anywhere in the
technical object. This is a first design step towards avoiding information overload. Once
technical objects are found to be changed, appropriate owners of objects which use the
changed object should be notified. In Figure 2.2, Carl changes method (technical object)
1, which effects methods 2 and 3 resulting in the alerting of developers Bret, Daniel, and
Anne. I have opted to alert the invoking developers rather than the developer making the
change to potential solutions as my conflicts are detected at commit time and this supports
the idea of a socio-technical congruence [36] from software structure to communication
patterns in awareness systems.

With this three step design: (i) creating directed graphs of technical objects, (ii) assign-
ing ownership to those technical objects, and (iii) detecting changes at commit time and
the dissemination of conflict information to appropriate owners, I believe a wide variety of
indirect conflict awareness tools can be created or extended.

Implementation

For Impact’s implementation, I decided to focus on methods as my selected technical ob-
jects to infer a directed graph from. The “uses” relationship described above for methods is
method invocation. Thus, in my constructed dependency graph, methods represent nodes
and method invocations represent the directed edges. In order to construct this directed
graph, abstract syntax trees (ASTs) are constructed from source files in the project.

Once the directed graph is constructed, I must now assign ownership to the technical

16

objects (methods) as per the design. To do this, I simply query the source code repository.
In this case I used Git as the source code repository, so the command git blame is used for
querying ownership information. (Most source code repositories have similar commands
and functionality.) This command returns the source code authors per line which can be
used to assign ownership to methods.

To detect changes to technical objects (methods), I simply use a commit’s diff which is
a representation of all changes made inside a commit. I can use the lines changed in the diff

to find methods that have been changed. This gives cause of potential indirect conflicts. I
now find all methods in the directed graphs which invoke these changed methods. These
are the final indirect conflicts.

Once the indirect conflicts have been found, I use the ownership information of tech-
nical objects to send notifications to those developers involved in the indirect conflict. All
owners of methods which invoke those that have been changed are alerted to the newly
changed method. Impact can been seen in Figure 2.3, the user interface of Impact. Here, in
an RSS type feed, the changing developer, time of change, changed method, invoking meth-
ods, and commit message are all displayed. The weight provided is the percent changed of
changed method multiplied by ownership of the invoking method. This allows developers
to filter through high and low changes affecting their own source code.

2.2.3 Evaluation

To fully evaluate both the generic design of detecting and resolving indirect conflicts as
well as Impact, extensive testing and evaluation must be performed. However, I felt that
a simple evaluation is first needed to assess the foundation of Impact’s design and claims
about indirect conflicts at the method level.

I performed a user case study where I gave Impact to two small development teams
composed of three developers. Each team was free to use Impact at their leisure during
their development process, after which interviews were conducted with lead developers
from each development team. The interviews were conducted after each team had used
Impact for three weeks.

I asked lead developers to address two main concerns: do indirect conflicts pose a threat
at the method level (e.g. method 1 has a bug because it invokes method 2 which has had
its implementation changed recently), and did Impact help raise awareness and promote
quicker conflict resolution for indirect conflicts. The two interviews largely supported the
expectation of indirect conflicts posing a serious threat to developers, especially in medium

17

Figure 2.3: Impact’s RSS type information feed.

to large teams or projects as opposed to the small teams which they were a part of. It was
also pointed out that method use can be a particularly large area for indirect conflicts to
arise. However, it was noted that any technical object which is used as an interface to some
data construct or methodology, database access for instance, can be a large potential issue
for indirect conflicts. Interview responses to Impact were optimistically positive, as inter-
viewees stated that Impact had potential to raise awareness among their teams with what
other developers are doing as well as the influence it has on their own work. However,
Impact was shown to have a major problem of information overload. It was suggested that
while all method changes were being detected, not all are notification worthy. One devel-
oper suggested to only notify developers if the internal structure of a method changes due
to modification to input parameters or output parameters. In other words, the boundaries of
the technical objects (changing how a parameter is used inside the method, modifying the
return result inside the method) seem to be more of interest than other internal workings.
More complex inner workings of methods were also noted to be of interest to developers
such as cyclomatic complexity, or time and space requirements.

These two studies have shown that my design and approach to detecting and alerting
developers to indirect conflicts appear to be on the correct path. However, Impact has

18

clearly shown the Achilles heel of indirect conflict tools, which is information overload
because of an inability to detect “notification worthy” changes.

2.2.4 Threats to Validity

Because of the tool validation nature of this work, I chose participant interviews as my
research validation method, which has some implications regarding the limitations and
threats to validity of this study. While I did have some positive results regarding the po-
tential of Impact in this study, populations studied from outside of this study’s participants
may add new insights into the pool of findings. As a result of this, findings from this study
may not relate to everyone or generalize to outside of the group of participants involved in
this study.

I conducted this case study with undergraduate students at the University of Victoria.
This being said, participants may not have had enough real world experience to validate
this study at an industry level. The students were also consumed with their regular course
work which could have limited the time spent using Impact and the enthusiasm put forward
while conducting this study.

To counter this, my study was conducted purely on a volunteer basis to eliminate those
participants which may have been to busy to focus on the study or provide appropriate
feedback where needed.

2.2.5 Conclusions of Study

In this study, I have proposed a generic design for the development of awareness tools in
regards to handling indirect conflicts. I have presented a prototype awareness tool, Im-

pact, which was designed around the generic technical object approach. However, Impact

suffered from information overload, in that it had too many notifications sent to developers.
A potential solution to information overload comes from the ideas of Meyer [40] on

“design by contract”. In this methodology, changes to method preconditions and postcon-
ditions are considered to be the most harmful. This includes adding conditions that must be
met by both input and output parameters such as limitations to input and expected output.
To achieve this level of source code analysis, the ideas of Fluri et al. [24] can be used on
the previously generated ASTs for high granularity source code change extraction when
determining if preconditions or postconditions have changed.

Aside from better static analysis tools for examining source code changes, the results of
this study potentially imply a lack of understanding into the root causes of indirect conflicts.

19

A theme of information overload to developers continues to crop up in indirect conflicts, of
which the root cause should be examined in future studies.

20

Chapter 3

Exploring Indirect Conflicts

Through the two previous studies, I have shown that developers linked indirectly in source
code changes can be statistically related to software failures. In the attempts of mitigating
these loses through added awareness, I implemented an indirect conflict tool called Impact.
However, Impact ultimately suffered from information overload as seen in its evaluation
which was caused by false positives and scalability of the tool.

While other indirect conflict tools have shown potential from developer studies, some
of the same problems continue to arise throughout most, if not all tools. The most prevalent
issue is that of information overload and false positives. Through case studies, developers
have noted that current indirect conflict tools provide too many false positive results leading
to information overload and the tool eventually being ignored [47, 50]. A second primary
issue is that of dependency identification and tracking. Many different dependencies have
been proposed and used in indirect conflict tools such as method invocation [53], and class
signatures [47] with varying success, but the identification of failure inducing changes,
other than those which are already identifiable by other means such as compilers, and
unit tests, to these dependencies still remains an issue. Dependency tracking issues are
also compounded by the scale of many software development projects leading to further
information overload.

Social factors such as Cataldo et al’s. [10] notion of socio-technical congruence, have
also been leveraged in indirect conflict tools [3, 6, 36]. However, issues again of infor-
mation overload, false positives, dependencies (in developer organizational structure), and
scalability come up.

While these issues of information overload, false positives, dependencies, and scala-
bility continue to come up in most indirect conflict tools, only a handful of attempts have
been made at rectifying these issues or finding the root causes [30, 34]. In order to fully

21

understand the root causes of information overload, false positives, and scalability issues
in regards to indirect conflicts in this study, I examine and determine what events occur to
cause indirect conflicts, when they occur, and if conditions exist to provoke more of these
events. By determining the root causes of source code changes in indirect conflicts, we may
be able to create indirect conflict tools which have filtered monitoring in order to only detect
those changes with a high likelihood of causing indirect conflicts. I then determine what
mitigation strategies developers currently use as opposed to those created by researchers.
Since developers have identified indirect conflicts as a major concern for themselves, but
at the same time are not using the tools put forth by researchers, I wish to find what they
use to mitigate indirect conflicts. Through these findings, we can create tools which are
similar to those already in use by developers in the hopes of a higher adoption rate of tools
produced by researchers. Finally, I examine what can be accomplished moving forward
with indirect conflicts in both research and industry.

To explore and answer the research goals listed above, I performed a study (Section 3.1)
in which I interviewed 19 developers from across 12 commercial and open source projects,
followed by a confirmatory questionnaire of 78 developers, and 5 confirmatory interviews.

Based on some of the findings (to be seen in details in Section 3.1) I performed a
follow up study which did not relate directly to the themes of this dissertation but helped
strengthen the results found in Study 3. Some results of Study 3 showed that indirect
conflict tools should take into account a contextual setting of development progression
in software projects to better inform developers of potential indirect conflicts. In other
words, an indirect conflict tool should be able to tell what phase of development inside
the development life cycle a project is currently active in. In order to better explore and
support this finding, I performed a complimentary study of software evolutionary trends
(Section 3.2). In Study 4, I perform a case study of 10 open source projects in order to study
their source code change trends surrounding major release points throughout their history.
I studied 26 change trends quantitatively and 4 change trends qualitatively, and identified
a core group of 9 change trends which occur prominently at major release points of the
projects studied. These change trends can provide context as to when indirect conflicts are
more likely to occur based on the findings from Study 3 as I found that indirect conflicts
tend to be become less frequent near major release and more frequent after a release or at
the start of a new development cycle. The findings of this study can be applied over the
lifetime of a project to determine the probability of indirect conflicts occurring and thus
aiding developers in dealing with indirect conflicts in their projects.

22

3.1 Study 3: An Exploration of Indirect Conflicts

I want to understand why it is so hard to tackle indirect conflicts, specifically through tool
based solutions. To do so, I take a step back and intend to obtain a broader view of indirect
conflicts with a large field study of practitioners. I investigate the root causes of information
overload, false positives, and scalability issues in regards to indirect conflicts to better
understand why indirect conflict tools fail to achieve the success of other domain tools. I
determine: general events which cause indirect conflicts, when they occur, if compounding
conditions exist, mitigation strategies developers use, and what practitioners want from
new tools. My research questions for this particular study are as follows:

RQ1 What are the types, factors, and frequencies of indirect conflicts?

RQ2 What mitigation techniques are used by developers in regards to indirect conflicts?

RQ3 What do developers want from future indirect conflict tools?

I interviewed 19 developers from across 12 commercial and open source projects, fol-
lowed by a confirmatory questionnaire of 78 developers, and 5 confirmatory interviews,
in order to answer the aforementioned questions. My findings indicate that: indirect con-
flicts occur frequently and are likely caused by software contract changes and a lack of
understanding, developers tend to prefer to use detection and resolution processes or tools
over those of prevention, developers do not want awareness mechanisms which provide
non actionable results, and there exists a gap in software evolution analytical tools from the
reliance on static analysis resulting in missed context of indirect conflicts.

3.1.1 Related Work

Many indirect conflict tools have been created, tested, and published. Sarma et al. [47]
created Palantir, which can both detect potential indirect conflicts, at the class signature
level, and alert developers to these conflicts. Palantir represented one of the first serious
attempts at aiding developers towards indirect conflicts. Holmes et al. [30] take it one step
further with their tool YooHoo, by detecting fine grained source code changes, such as
method return type changes, and create a taxonomy for different types of changes and their
proneness to cause indirect conflicts. This tool and its taxonomy had a severely reduced
false positive rate, however, the true positives detected may already be detectable by current
tools such as compilers and unit testing. The tool Ariadne [53] creates an environment

23

where developers can see how source code changes will affect other areas of a project at the
method level, using method call graphs, showing where indirect conflicts may occur. This
type of exploratory design has been used often in the visualization of indirect conflict tools,
allowing developers a type of search area for their development needs. Another indirect
conflict tool, CASI [50], utilizes dependency slicing [2] instead of method call graphs
to provide an environment to see what areas of a project are being affected by a source
code change. Most of these tools have all shown to have the same common difficulties of
scalability, false positives, and information overload, which were explored in this study.
My own tool Impact! [18] also suffered these same fates.

Since Cataldo et al. [10] have shown that socio-technical congruence can be lever-
aged to improve task completion times, many indirect conflict tools support the idea of
a socio-technical congruence [36] in order to help developers solve their indirect conflict
issues through social means [3] [6]. Begel et al. [3] created Codebook, a type of social
developer network related directly to source code artifacts, which can be used to identify
developers and expert knowledge of the code base. Borici et al. [6] created ProxiScientia
which used technical dependencies between developers to create a network of coordination
needs. Socio-technical congruence however, is largely unproven in regards to its correla-
tion to software quality [37] and again the problems of scalability and information overload
become a factor.

For developer interest in regards to software modifications, Kim [34] found that de-
velopers wanted to know whose recent code changes semantically interfere with their own
code changes, and whether their code is impacted by a code change. Kim found that de-
velopers are concerned with interfaces of objects and when those interfaces change. Kim
also identified the same issues towards information overload through false positives with
developers noting “I get a big laundry list... I see the email and I delete it”. Kim’s field
study does however fall short in actually creating a resolution for indirect conflicts, or find-
ing new concerns of developers which are not already detected by compilation or other
static analysis tools. For impact awareness, DeSouza et. al. [15] found that developers use
their personal knowledge of the code base to determine the impact of their code changes on
fellow developers, teams, and projects. However, DeSouza does not study which types of
changes (types, frequencies, compounding factors) developers should concern themselves
with more in terms of using their personal knowledge to stop indirect conflicts. DeSouza
also does not study formal mitigation strategies, or resolutions of indirect conflicts directly.

This study is intended to fill the gap which has been left by aforementioned tools papers
as well as the field study paper. I will not only study why information overload, false

24

positives, and scalability are such difficult problems to tackle in indirect conflict tools, but
I will also study how developers currently deal with indirect conflicts in practice through
their mitigation strategies, their largest concerns, and their ideas for future suggestions in
regards to indirect conflicts.

3.1.2 Methodology

I performed a mixed method study in three parts. First, a round of semi-structured inter-
views were conducted which addressed my 3 main research questions. Second, a ques-
tionnaire was conducted which was used to confirm and test what was theorized from the
interviews on a larger sample size as well as obtain larger developer opinion of the subject.
Third, 5 confirmatory interviews were conducted by re-interviewing original interview par-
ticipants to once again confirm my insights. I used grounded theory techniques to analyze
the information provided from all three data gathering stages.

Interview Participants

My interview participants came from a large breadth of both open and closed source soft-
ware development companies and projects, using both agile and waterfall based method-
ology, and from a wide spectrum of organizations, as shown in Table 3.1. My participants
were invited based on their direct involvement in the actual writing of software for their
respective companies or projects. These participants’ software development experience
ranged from 3-25 years of experience with an average of 8 years of experience. In addition
to software development, some participants were also invited based on their experience
with project management. See Table 3.1 for more demographic details.

Interview Procedure

Participants were invited to be interviewed by email and were sent a single reminder email
one week after the initial invitation if no response was made. I directly emailed 22 partic-
ipants and conducted 19 interviews. Interviews were conducted in person when possible
and recorded for audio content only. When in person interviews were not possible, one of
Skype or Google Hangout was used with audio and video being recorded but only audio
being stored for future use.

Interview participants first answered a number of demographic questions. I then asked
them to describe various software development experiences regarding my three research

25

Company # of Partici-
pants

Software
Devel-
opment
Experience
(years)

Development
Process

Software
Access

Current
Language
Focuses

Amazon 2 5, 7 Agile Closed
source

C++

Exporq Oy 1 8 Agile Closed
source

Ruby,
JavaScript

Fireworks
Design

1 6 Agile Closed
source

JavaScript

Frost Tree
Games

1 4 Agile Closed
source

C#

GNOME 1 13 Agile Open
source

C

James
Evans and
Associates

5 3, 3, 3, 4,
13

Waterfall Closed
source

Oracle
Forms

Kano Apps 1 10 Agile Closed
source

JavaScript,
PHP

IBM 2 5, 18 Agile Open and
closed
source

Java,
JavaScript

Microsoft 2 6, 10 Agile Closed
source

C#

Mozilla 1 25 Agile Open
source

C++,
JavaScript

Ruboss 1 5 Agile Closed
source

JavaScript

Subnet So-
lutions

1 5 Agile Closed
source

C++

Table 3.1: Demographic information of interview participants.

questions. Specifically, ten semi-structured topics directly related to my research questions
guided my interview:

• What tools are used for dependency tracking?

• What processes are used for preventing indirect conflicts?

• What artifact dependency levels are analyzed and where can conflicts arise?

26

• How are software dependencies found?

• Give examples of indirect conflicts from real world experiences.

• How are indirect conflicts detected or found?

• How are indirect conflict issues solved or dealt with?

• Opinion of preemptive measures to prevent indirect conflicts.

• What types of changes are worth a preemptive action?

• Who is responsible for fixing or preventing indirect conflicts?

While each of the 10 topics had a number of starter questions, interviews largely be-
came discussions of developer experience and opinion as opposed to direct answers to any
specific question. However, not all participants had strong opinions or any experience on
every category mentioned. For these participants, answers to the specific categories were
not required or pressed upon. I attribute any non answer by a participant to either lack of
knowledge in their current project pertaining to the category or lack of experience in terms
of being a part of any one software project for extended periods of time.

Questionnaire Participants

My questionnaire respondents were different from my interviewees. I invited my ques-
tionnaire participants from a similar breadth of open and closed source software develop-
ment companies and projects as the interviews participants with two main exceptions. The
software organizations that remained the same between interview and questionnaire were:
Mozilla, The GNOME Project, Microsoft Corporation, Subnet Solutions, and Amazon.
Participants who took part in the round of interviews were not invited to the questionnaire
but were asked to act as a point of contact for other developers in their team, project, or
organization who may be interested in completing the questionnaire. Further, two other
groups of developers were asked to participate as well, these being GitHub users as well as
Apache Software Foundation (Apache) developers. The GitHub users were selected based
on large amounts of development activity on GitHub and the Apache developers were se-
lected based on their software development contributions on specific projects known to be
used heavily utilized by other organizations and projects.

27

Questionnaire Procedure

Questionnaire participants were invited to participate in the questionnaire by email. No
reminder email was sent as the questionnaire responses were not connected with the in-
vitation email addresses and thus participants who did respond could not be identified. I
directly emailed 1300 participants and ended with 78 responses giving a response rate of
6%. I attribute the low response rate with: the questionnaires were conducted during the
months of July and August while many participants may be away from their regular posi-
tions. Also, my GitHub and Apache participants could not be verified as to whether or not
they actively support the email addresses used in the invitations. In addition, the question-
naire was considered by some to be long and required more development experience than
may have been typical of some of those invited to participate.

The questionnaire I designed 1 was based on the insights I obtained from the round of
interviews, and was intended to confirm some of these insights but also to broaden them
to a larger sample size of developers who may have similar or different opinions from
those already acquired from the interviews. The questionnaire went through two rounds of
piloting. Each pilot round consisted of five participants, who were previously interviewed,
completing the questionnaire with feedback given at the end. Not only did this allow me
to create a more polished questionnaire, but it also allowed the previously interviewed
developers to examine the insights I developed.

The question topics asked in the questionnaire were:

• What frequency do ICs occur at around different project milestones?

• How does team size affect IC frequency?

• What software change types do developers care about?

• What processes are used for preventing ICs?

• What tools are used for detecting ICs?

• What tools are used for debugging ICs?

Data Analysis

To analyze both the interview and questionnaire data, I used grounded theory techniques as
described by Corbin and Strauss [13]. Grounded theory is a qualitative research method-

1http://thesegalgroup.org/people/jordan-ell/iced survey/

28

ology that utilizes theoretical sampling and open coding to create a theory “grounded” in
the empirical data. For an exploratory study such as mine, grounded theory is well suited
because it involves starting from very broad and abstract type questions, and making refine-
ments along the way as the study progresses and hypotheses begin to take shape. Grounded
theory involves realigning the sampling criteria throughout the course of the study to en-
sure that participants are able to answer new questions that have been formulated in regards
to forming hypotheses. In my study being presented, data collected from both interviews
and questionnaires (when open ended questions were involved) was analyzed using open
and axial coding. Open coding involves assigning codes to what participants said at a low
sentence level or abstractly at a paragraph or full answer level. These codes were defined
as the study progressed and different hypotheses began to grow. I finally use axial coding it
order to link my defined codes through categories of grounded theory such as context and
consequences. In Section 3.1.4, I give a brief evaluation of my studying using 3 criteria
that are commonly used in evaluating grounded theory studies.

Validation

Following my data collection and analysis, I re-interviewed 5 of my initial interview partici-
pants in order to validate my findings. I confirmed my findings as to whether or not they res-
onate with industry participants’ opinions and experiences regarding indirect conflicts and
as to their industrial applicability. Due to limited time constraints of the interviewed par-
ticipants, I could only re-interview five participants. Those that were re-interviewed came
from the range of 5-10 years of software development experience. Re-interviewed partic-
ipants were given my 3 research questions along with results and main discussion points,
and asked open ended questions regarding their opinions and experiences to validate my
findings. I also evaluated my grounded theory approach as per Corbin and Strauss’ [13] list
of criteria to evaluate quality and credibility. This evaluation can be seen in Section 3.1.4

3.1.3 Results

I now present my results of both the interviews and questionnaires conducted in regards
to my 3 research questions outlined in this chapter and Chapter 1. I restate each research
question, followed by my quantitative and qualitative results from which I draw my discus-
sion to be seen in Chapter 4. In each subsection, quantitative data given refers to interviews
conducted unless explicitly said otherwise.

29

What are the types, factors, and frequencies of indirect conflicts?

The most common occurrence of indirect conflict is when a software object’s contract
changes. The frequency of indirect conflicts, while usually high, decreases as a sta-
ble point is reached in the development cycle. The frequency of indirect conflicts is
compounded by the number of developers working on a project.

12 developers believe that a large contributing factor to the cause of indirect conflicts
comes from the changing of a software object’s contract. Object contracts are, in a sense,
what a software object guarantees, meaning how the input, output, or how any aspect of the
object is guaranteed to work; made famous by Eiffel Software’s 2 “Design by Contract”TM.
In light of object contracts, 14 developers gave examples of indirect conflicts they had
experienced which stemmed from not understanding the far reaching ramifications of a
change being made to an object contract towards the rest of the project. Of those 14, 3
dealt with the changing of legacy code, with one developer saying “legacy code does not
change because developers are afraid of the long range issues that may arise from that
change”. Another developer, in regards to changing object contacts stated “there are no
changes in the input or changes in the output, but the behavior is different”. Developers
also noted that the conflicts that do occur tend to be quite unique from each other and do
not necessarily follow common patterns.

In regards to object contract changes, 9 developers currently working with large scale
database applications listed database schemas as a large source of indirect conflicts while 5
developers that work on either software library projects or are in test said that methods or
functions were the root of their indirect conflict issues. 7 developers mentioned that indirect
conflicts occur when a major update to an external project, library, or service occurs with
one developer noting “their build never breaks, but it breaks ours”. Some other notable
indirect conflict artifacts were user interfaces in web development and full components in
component base game architecture.

11 developers explained that indirect conflicts occur “all the time” in their development
life cycle with a minimum occurrence of once a week, with more serious issues tending
to occur once a month. To confirm this, 64% of questionnaire participants answered that
indirect conflicts occur bi-weekly or more frequent, with the 25% saying that weekly oc-
currences are most common (seen in Table 3.2). 5 questionnaire participants also stated
that the stage of the development cycle can greatly cause the frequency of indirect conflicts
to differ.

2http://www.eiffel.com/

30

Occurrences Daily Weekly Bi-
Weekly

Monthly Bi-
Monthly

Yearly Unknown

In general 18% 25% 21% 16% 3% 5% 11%
Early
stages of
a develop-
ment

32% 18% 4% 5% 0% 5% 36%

Before the
first release

13% 29% 6% 8% 1% 3% 40%

After the
first release

6% 18% 8% 18% 1% 5% 44%

Late stages
of develop-
ment

6% 5% 5% 18% 8% 12% 46%

Table 3.2: Results of questionnaire as to how often indirect conflicts occur, in terms of
percentage of questionnaire participants.

12 developers said that when a project is in the early stages of development, indirect
conflicts tend to occur far more frequently than once a stable point is reached. Developers
said “At a stable point we decided we are not going to change [this feature] anymore. We
will only add new code instead of changing it.” and “the beginning of a project changes a
lot, especially with agile”. Questionnaire participants also added “indirect conflicts after a
release depend on how well the project was built at first”, “[indirect conflicts] tend to slow
down a bit after a major release, unless the next release is a major rework.”, and “[indirect
conflicts have] spikes during large revamps or the implementation of cross-cutting new fea-
tures.” in order to confirm mu interview results. Questionnaire participants also answered
that indirect conflicts are more likely to occur before the first major release rather than after
at the daily and weekly occurrence intervals as seen in Table 3.2.

In terms of organizational structure, questionnaire participants answered that as a project
becomes larger and more developers are added, even to the point that multiple teams are
formed, indirect conflicts become more likely to occur. However, indirect conflicts still
occur at a lower number of developers as well with even 43% of developers saying they are
like to occur in single developer projects. This can be seen in Table 3.3.

What mitigation techniques are used by developers in regards to indirect conflicts?

Three preventative techniques are used to mitigate indirect conflicts: design by con-

31

Environment of
conflicts

Strongly Disagree Disagree Neutral Agree Strongly Agree

Developing alone
(conflicts in own
code)

18% 20% 19% 24% 19%

Developing in a
team between 2
- 5 developers
(inter-developers
conflicts)

3% 8% 22% 49% 18%

Developing in a
multi team en-
vironment (inter-
team conflicts)

1% 11% 14% 39% 35%

Table 3.3: Questionnaire results about development environments in which indirect con-
flicts are likely to occur, in terms of percentage of questionnaire participants.

tract, add and deprecate, and personal experience. For catching indirect conflicts,
developers use: testing (unit and integration) with proper use case coverage, sched-
uled build processes, and static analysis tools built into IDEs. For resolving indirect
conflicts, developers use: historical error and information logs, compiler and debug-
ger tools, as well as static analysis tools built into IDEs.

In terms of preventative processes used for indirect conflicts, 3 major components were
found. First, design by contract is heavily used by interviewed developers as a means to
avoid indirect conflicts or understand when they are likely to occur. The use of design by
contract here means that developers tend not to change an object’s contract when possible,
and that an object’s contract is used as a type of documentation towards awareness of the
software object. One developer stated that “design by contract was invented to solve this
problem and it does it quite well”, while another noted that software object contracts do
solve the problem in theory, but that doesn’t mean that problems don’t still occur in practice.
Second, 21% of developers mentioned that the add and deprecate model is used to prevent
indirect conflicts once the project, feature, or component has reached a stable or mature
point. Add and deprecate meaning instead of editing code, the developer simply clones
old code (if needed), and edits the clone while slowly phasing out the out the old code in
subsequent releases or ad needed. This allows other software to use the older versions of
software objects which remain unchanged, thus avoiding indirect conflicts. Lastly, pure

32

developer experience was mentioned with 7 developers mentioning that when planning
code changes, either a very experienced member of the project was involved in the planning
and has duties to foresee any indirect conflicts that may arise, or that developers must use
their personal knowledge to predict where indirect conflicts will occur while implementing.

Of the the 37 questionnaire participants who could give positive identification of pre-
ventative processes for indirect conflicts, 27% said that individual knowledge of the code
base and their impact of code change was used, 59% mentioned some form of design by
contract or the testing of a methods contract, and 14% said that add and deprecate was used
in their projects to avoid indirect conflicts. This is a confirmation of what was found in the
interviews.

In regards to catching indirect conflicts, 13 developers mentioned forms of testing (unit,
and integration) as the major component of catching indirect conflict issues, subscribing to
the idea of “run the regression and integration tests and just see if anything breaks”. The
words “use case coverage” were constantly being used by developers when expressing how
proper unit and integration tests should be written. Developers expressed that with proper
use case coverage, most if not all indirect conflicts should be caught. In corroboration,
31% of questionnaire participants said build processes (either nightly builds or building the
project themselves), and others mentioned code reviews while those dealing with a user
interface mentioned user complaints from run time testing. The questionnaire participants
confirmed these results with 49% mentioning forms of testing as the major tool used to
catch indirect conflicts, 33% said build processes, while 31% used work their IDE or IDE
plug-ins to catch indirect conflicts. Questionnaire participants also mentioned review pro-
cess and personal expertise as factors of catching indirect conflicts.

Once an indirect conflict has occurred and developers need to resolve it, 14 developers
said they checked historical logs to help narrow down where the problem could originate
from. Most developers had the mindset of “Look at the change log and see what could
possibly be breaking the feature.”. The log most commonly referred to was the source code
change log to see what code has been changed, followed by build failure or test failure logs
to examine errors messages and get time frames of when events occurred. Of the ques-
tionnaire participants, 23% said they used native IDE tools and 21% said they use features
of the language’s compiler and debugger in order to solve indirect conflicts. Interestingly,
only 13% of developers mentioned a form of communication with other developers in aid
to solving these conflicts and only 4% mentioned the reading of formal documentation.

Through the processes and tools of prevention, detection, and resolution of indirect
conflicts, it is important to note that most developers ascribe to the idea of “I work until

33

something breaks”, or taking a curative rather than preventative approach. This means
that while developers do have processes and tool for prevention, they would rather spend
their time at the detection and resolutions stages. One developer noted that preventative
processes are “too much of a burden” while a project manager said “[with preventative
process] you will spend all you time reviewing instead of implementing”.

What do developers want from future indirect conflict tools?

Being that developers believe “good enough” solutions exist for preventing and de-
tecting indirect conflicts developers would rather see improvement to debugging pro-
cesses. Developers are looking for automated debugging tools, and better source code
analysis tool for impact management and supporting cross team and cross sub-project
projects.

When asked about preventative tools, developers had major concerns that the amount
of false positives provided by the tool which may render the tool useless. Developers said
“this would be a real challenge with the number of dependencies”, “it depends on how
good the results are in regards to false positives”, and “I only want to know if it will break
me”, meaning that developers seem to care mostly about negative impacts of code changes
as opposed to all impacts in order to reduce false positives and to keep preventative mea-
sures focused on real resulting issues as opposed to preventing potential issues. Overall,
developers had little interest in preventative tools or processes.

In terms of catching indirect conflicts, developers suggested that proper software devel-
opment processes are already in place to catch potential issues such as testing, code review,
individual knowledge, or static language analysis tools. Further, developers said that hav-
ing strict change type monitoring for indirect conflicts does not work due to the inherent
complexities of indirect conflicts. This can be seen confirmed in that questionnaire partici-
pants had very few cases in which they always wanted to be alerted to a change type as seen
in Table 3.4. Only method signature changes caused 68% of questionnaire participants to
want to be always notified as they have a high chance to break the code. This is opposed
to other change types listed in Table 3.4 which have 27% or lower of developers always
wanting to be notified. This again showcases the complexity of indirect conflicts through
change types which may or may not negatively affect a project.

When asked about curative tools, developers could only suggest that resolution times
be decreased by different means. Interview and questionnaire participants suggested the
following improvements to curative tools:

34

Code change type Never Occasionally Most Times Always I Don’t Care
Method signature
change

5% 8% 12% 68% 7%

Pre-condition
change

5% 27% 37% 23% 7%

Main algorithm
change

11% 45% 19% 15% 11%

User interface
change

12% 32% 20% 27% 9%

Run time change 13% 29% 25% 20% 12%
Post-condition
change

7% 28% 32% 23% 11%

Table 3.4: Questionnaire results about source code changes that developers deem notifica-
tion worthy, in terms of percentage of questionnaire participants.

• Aid in debugging by finding which recent code changes are breaking a particular area
of code or a test.

• Automatically write new tests to compensate for changes.

• IDE plug-ins to show how current changes will affect other components of the current
project.

• Analysis of library releases to show how upgrading to a new release will affect your
project.

• Built in language features to either the source code architecture (i.e. Eiffel or Java
Modeling Language 3) or the compile time tools to display warning messages towards
potential issues.

• A code review time tool which allows deeper analysis of a new patch to the project
allowing the reviewer to see potential indirect conflicts before actually merging the
code in.

• A tool which is non-obtrusive and integrates into their preexisting development styles
without them having to take extra steps.

3http://www.eecs.ucf.edu/ leavens/JML//index.shtml

35

3.1.4 Evaluation

From the re-interviewed participants, I found extremely positive feedback regarding both
my results and major discussion points. Participants often had new stories and experiences
to share once they had heard the results of this study which confirmed the findings and
often were quite shocked to hear the results as they did not usually think about their actions
as such but then realized the results held true to their daily actions for better or worse.

As per grounded theory research, Corbin and Strauss list ten criteria to evaluate quality
and credibility [13]. I have chosen three of these criteria and explain how I fulfill them.

Fit. “Do the findings fit/resonate with the professional for whom the research was in-
tended and the participants?” This criterion is used to verify the correctness of my findings
and to ensure they resonate and fit with participant opinion. It is also required that the
results are generalizable to all participants but not so much as to dilute meaning. To ensure
fit, during interviews after participants gave their own opinions on a topic, I presented them
with previous participant opinions and asked them to comment on and potentially agree
with what the majority has been on the topic. Often the developers own opinions already
matched those of the majority before them and did not necessarily have to directly verify it
themselves.

As added insurance, I conducted 5 post results interviews with developers to once again
confirm my results, and discussions. These procedures can be seen in Section 3.1.2.

To ensure the correctness of the results, I also linked all findings in Section 3.1.3 to
either a majority of agreeing responses on a topic or to a large amount of direct quotes
presented by participants.

Applicability or Usefulness. “Do the findings offer new insights? Can they be used to
develop policy or change practice?” Although my results may not be entirely novel or even
surprising, the combination of said results allowed me to discover a the disjoint between
theoretical awareness and practical awareness regarding indirect conflict tools as well as
provide more insight into the debate of prevention versus cure in software development
(as to be seen in Chapter 4). Given how many indirect conflict tools are left with the same
common issues, I believe that these findings will help researchers focus on what developers
want and need moving into the future more than has been possible in the past. These finding
set a course of action for where effort should be spent in research to better benefit industry.

10 of the 78 questionnaire participants sent direct responses to me asking for any results
of the research to be sent directly to them in order to improve their indirect conflict work
flows. 7 of the 19 participants interviewed expressed interest concerning any possible tools

36

or plans for tools inspired by this research as well. The combination of research relatability
and direct industry interest in my results help us fulfill this criterion.

Variation. “Has variation been built into the findings?” Variation shows that an event
is complex and that any findings made accurately demonstrate that complexity. Since in-
terviewed participants came from such a diverse set of organizations, software language
knowledge, and experience the variation naturally reflected the complexity. Often in inter-
views and questionnaires, participants expressed unique situations that did not fully meet
my generalized findings or on going theories. In these cases, I worked in the specific cases
which were presented as boundary cases and can be seen in Section 3.1.3 as some unique
findings or highly specialized cases. These cases add to the variation to show how the com-
plexity of the situation also resides in a significant number of unique boundary situations
as well as the complexity in the generalized theories and findings.

3.1.5 Threats to Validity

Because of the exploratory nature of this work, I chose Grounded Theory as my research
method, which has some implications regarding the limitations and threats to validity of
this study. Inter rater reliability was not used due to a time constraint which means that
the code from open and axial coding have not been confirmed by a separate source. While
I achieved high saturation regarding the topics focused on in this study, other populations
studied from outside of this studies participants may add new insights into the pool of
findings. As a result of this, findings from this study may only relate to developers or
managers from the projects I studied. The saturation indicated here regards the majority
results reached in this study. Since only 19 developers were interviewed, saturation was
reached when majority agreed upon trends emerged in the results, thus further interviews
did not have to be conducted. This is different from saturation of edge or unique cases often
found in other qualitative research where the goal is to find all cases of a phenomenon where
this study was only looking for majority cases.

I attempted to cover as great a breadth as possible of software developers in their prac-
tices, companies, project, languages, etc. However, it would be extremely difficult to con-
duct a completely thorough study of indirect conflicts in practice as there exist too many
demographic options for participants. This same applies for questionnaire participants.
This being said, questionnaire or interview results could become heavily biased towards a
developer’s good or bad experiences with any given project.

To counter this, my confirmatory interviews found high agreement for several of my

37

findings. Therefore, I believe that I have uncovered valuable insight regarding indirect
conflicts in practice.

3.1.6 Conclusions of Study

In this study, I have explored indirect conflicts by examining their root causes, their current
mitigation strategies, and how developers wish to handle indirect conflicts in the present in
future. To achieve these results, I interviewed 19 developers from across 12 commercial
and open source projects, followed by a confirmatory questionnaire of 78 developers, and
5 confirmatory interviews.

In addresses the three issues of scalability, false positives, and information overload,
my findings indicate: indirect conflicts occur frequently and are likely caused by software
contract changes; while design by contract, add and deprecate, and personal experience
help prevent indirect conflicts, developers tend to prefer to use detection and resolution
processes or tools over those of prevention, and developers want indirect conflict tools to
focus on automatic debugging and better source code analysis.

My result analysis has indicated that: developers do not want awareness mechanisms
which provide non actionable results; developers would rather focus on curing existing
problems rather than preventing potential issues; and there exists a gap in software evolu-
tion analytical tools between what is available and what practitioners need.

3.2 Study 4: Investigating Indirect Conflict Contextual Pat-
terns

Release points are a vital milestone of software projects. From major releases of a Waterfall
based project to iterations of an Agile development, releases form an interesting single point
of a project’s development history. Third party users (outside developers) of a system often
only see a product at a release point either major or minor, and expect the system to come
with a sense of reliability and stability at this point. Developers often expect to be able
to upgrade a library to a newer version without having to make major revisions to their
own projects to accommodate the upgrade (unless of course patch notes detailing major
changes are released). However, major and minor releases of a library or software resource
can cause software quality to degrade in a third party application as indirect conflicts may
occur. The knowledge as to when a project is ready for public usage as to its reliability,

38

quality, stability, and thus indirect conflict proneness can be a difficult decision to make for
most project owners or maintainers.

While measuring software quality has had a major focus in software engineering re-
search for many years [7] [25] [32], the study of software stability and its implications on
reliability and indirect conflict proneness remains a difficult subject to understand. The
decision of what makes a project stable and ready for a release often comes down to the
release manager or maintainer of a project and is often a reflection of the open source com-
munity which surrounds the project [12]. Code churn is an often looked to statistically for
stability but can be grossly misleading in terms of pre-release and post-release defects [22],
with some exceptions [42] as well as proneness to indirect conflicts both internally and ex-
ternally to third party applications. Creating an approach to determining software stability,
release preparedness, and the proneness of indirect conflicts is still a large open area of
interest in software engineering research.

In this study, I examine the notions of software change trends, specifically those trends
around major releases. Change trends are trends which indicate a likelihood for a change
type to occur around a certain event. Change trends have been used to detect stability in
core architecture [56] as well as evolving dependencies [8]. This study was conducted in
order to address the results of Study 3 which identified that indirect conflicts are likely to
occur more before a major release (i.e. stable point in the code). I look to find the context
in which trends occur in order to support indirect conflict tools in their context for when
indirect conflicts are more likely to occur. With the power of major release points in open
source projects as a starting point for project stability and the understanding that change
trends can be leveraged to detect stability and the proneness of indirect conflicts, this study
investigates the question:

RQ What trends exist in source code changes surrounding major releases of open source

projects as a notion towards a project stability measure?

In this study, I perform a case study of 10 open source projects in order to study their
source code change trends surrounding major release points throughout their history. I
studied 26 change trends quantitatively and 4 change trends qualitatively, and identified
a core group of 9 change trends which occur prominently at major release points of the
projects studied. These change trends can provide context as to when indirect conflicts are
more likely to occur based on the findings from Study 3 as I found that indirect conflicts
tend to be become less frequent near major release and more frequent after a release or
at the start of a new development cycle. The findings of this study can be applied over

39

the lifetime of a project to determine the proneness of indirect conflicts and thus aiding
developers in dealing with indirect conflicts in their projects.

3.2.1 Related Work

While very little has been published about release quality studies and stability (especially
in regards to indirect conflicts), there have been a few studies which attempt to address the
issues directly or indirectly. Wu et al. [58] performed a case study of SoftPM, a widely
adopted project management tool, to explore the relationships of pre-release and post-
release failures at major releases. Wu et al. found that the ratio of post-release failures
to pre-release failures is significantly low and can be used to show reliability and stability.
Hindle et al. [29] performed a case study on MySQL which observed a project’s behavior
around major and minor release by monitoring artifact check-ins and changes. They found
that there are temporary stoppages for source revisions around releases, indicating that a
temporary freeze is taking place for developers and that last minute fixes and manual testing
may be performed. Zaidman et al. [60], in comparison, studied the co-evolution of produc-
tion and test code with inspections and analysis at major and minor releases, showing how
test and production code can evolve at different rates and times. These results show that
production and test code should be handled as different cases for a stability measure around
major releases.

The study of open source projects revolving around release points has become more
accessible by the work of Tsay et al [54]. Tsay et al. created a resource of historical release
dates for open source software projects to be used for future studies by other researchers.

In terms of software stability, development techniques have been proposed to increase
software stability. Fayad [21] [20] suggests that “business objects” (BOs) do not change
in nature and that they are inherently stable. These objects only need to change to ac-
commodate external modules at the interface. Some studies such as Chow et al. [11] have
investigated the stability of changes to interfaces which are considered a good indication
of stability. Mockus et al. [41] used major and minor release points to compare industry
process quality to customer-perceived quality of the software project. Mockus et al. found
that defect density is lowest at major releases but at the same time software quality is at its
lowest all when compared to minor releases. The low software quality here relates to end-
user errors of installations and configurations. Wermelinger et al. [56] showed that stable
core architectures can be detected by using source code changes. Finally, Fayad et al. [19]
have investigated the Software Stability Model (SSM) for Software Product Lines to show

40

that the SSM’s impact on architecture and design of a software product can help improve
the life of the product line and make it more adaptable and applicable.

3.2.2 Methodology

In order to answer my research question, I decided to use the tool ChangeDistiller created
by Fluri et al. [24]. This tool allows me to detect fine grained source code changes in Java
projects. This tool works by building an abstract syntax tree of a file before and after a code
change, then it tries to determine the smallest possible edit distance between the trees. This
results in the source code change at a fine grained level performed in the commit.

I conducted a case study of 10 open source Java projects. These projects are: eclipse.jdt.core,
eclipse.jdt.ui, eclipse.jetty.project, eclipse.mylyn.commons, eclipse.mylyn.context, hibernate-
orm, hibernate-ogm, hibernate-search, eclipse.maven.core, and eclipse.maven.surefire. These
project were chosen because ChangeDistiller only works for Java source code and because
of their high use amongst other Java projects and to study specific ecosystems of projects
and their evolution trends.

For each of the projects, I obtained the software configuration management (SCM)
system which is used to store all source code changes of a project. When it was necessary,
I converted some forms of SCM system to Git in order to reduce implementation burdens
of using multiple SCMs. Once the SCM was obtained, I used ChangeDistiller and iterated
over every commit found in a project’s git master branch. I stored 34 of ChangeDistiller’s
built in source code change types for each commit. I noted how many of each change type
was performed in each commit and stored that information in a PostgreSQL database. In
order to filter and protect my results, I manually inspected the 10 Java projects studied in
order to identify code built for test purposes. I separated changes to this test code from all
other code to ensure my results only focused on real implementation while allowing us to
study changes to test based code separately.

Once the ChangeDistiller information was collected, I decided to examine software
change trends surrounding releases of the projects I had selected. Since releases have
preconceived notions of software stability and a lack of proneness to indirect conflicts, I
decided that by studying the change types surrounding these releases, I could get a better
understanding of what types of source code changes or trends constitute software stability
or maturity. In order to study the release points, I went to each of my 10 project’s web
pages and looked through their release histories for major, minor, alpha, beta, and release
candidate type releases. In total I identified 472 releases across my 10 studied projects.

41

Once the release dates were collected, I set about analyzing my data by creating average
change ratios surrounding the release dates of each project as a way to measure the trend of
a particular change type at a release type. This change ratio simply compares the number
of change events (of a given change type) before a release to after the release. Both of the
before and after event totals are divided by the number of commits on their respective side
of the release to account for activity. I implemented this algorithm through Equation 3.1.

Equation 3.1 works to create a change ratio by first creating a numerator by summing
across all releases of a given release type a sum of a particular change type in commits
(Tc) from the release date (r) to a given number of days after the release (d) divided by the
number of commits in this date range (|c|). Next the denominator is created by summing
across all release of a given release type a sum of that same particular change type in
commits (Tc) from a given number of days (d) before the release date (r) to the release date
divided by the number of commits in this date range (|c|). This numerator and denominator
form the final change ratio. This equation gives us a ratio of a particular change type
happening before and after a particular release. If the ratio is above 1 then that particular
change type occurs more frequently after the release and if it is below 1 then it occurs more
frequently before the release. For the purposes of my study, I set the number of days before
and after the release (d) to 60 as the projects studies had many months in between their
major releases. This quantitative data formed much of the basis for the results to come in
Section 3.2.3

ChangeRatio =

∑rn
r0

∑r+d
c=r Tc/|c|∑

r0

∑r−d
c=r Tc/|c|

(3.1)

Aside from generating quantitative data, I also created a web application for the visu-
alization of the data called API Evolution (APIE). This visualizer allowed me to inspect
a single project and a single change type metric at a time (see Figure 3.1) for qualita-
tive analysis of software evolution trends. I used this tool to manually inspect 4 specific
change type trends surround release dates. To do this, I aggregated change types across
50 commits, meaning that each point in the graph represented the date of a commit and
the sum of the particular change type’s occurrences over the last 50 commits. This was
used to smooth out the curves presented by the tool to allow easier manual inspection. This
method however does not take activity into account as seen in Equation 3.1, so it represents
the true activity and change types occurring. Manual inspections were labeled into 4 cate-
gories: upward trending, local maximum, downward trending, and local minimum. Since
the graphs were quite turbulent, best estimations were conducted by two judges at each

42

Figure 3.1: A screen shot of the APIE visualizer showing project Eclipse.Mylyn.Context
with change type PUBLIC ADDED METHODS being analyzed and showing major re-
leases as vertical yellow lines.

release point to fit the graph into the aforementioned 4 slope categories. The two judges
used 1.5 months before and after the release date as start and end points for the graph trend
line.

I performed 1888 manual inspections across 10 projects, 472 release dates and 4 change
types, and used this data to form the basis of my qualitative data. Quantitative data was used
to compliment the quantitative ratios found from the previous methodology.

3.2.3 Results

Due to time requirements, I focus my results on major releases of the 10 case study projects
and select few of the calculated change ratios. There were 109 major releases across the 10
studied projects. All of the major findings as per values computed from Equation 3.1 for
non test metrics can be seen in Table 3.5.

To study the most prevalent change trends, I set a ratio threshold of greater than 1.2, or
less than 0.83 (20% greater trend of after the release date or 20% greater trend of before
the release date) to indicate the greatest trends.

I found 9 major change trends which surround major releases in the open source projects

43

Object Added Changed Removed
Public Classes 1.14 0.86 1.16
Public Methods (Signature) 1.07 0.92 1.34
Public Methods (Bodies) - 1.06 -
Private Classes 0.81 1.18 1.44
Private Methods (Signatures) 1.00 1.10 1.22
Private Methods (Bodies) - 1.08 -
Files 1.12 0.96 1.14
Documentation - 0.99 -

Table 3.5: Implementation oriented change types and their normalized average change
ratios at 60 days on each side of releases.

studied. 4 change trends found that occur before major releases are: added private classes,
changed test method signatures, changed documentation, and removed test classes. 5
change trends found that occur after major release are: added test methods, changed test
classes, removed public methods, removed private classes, and removed private methods.

As it can be seen in Table 3.5, there are few change type trends around major releases
which pass my threshold. We can see that both public and private methods being removed
from a project is more likely to occur after a major release than before. Table 3.5 also
shows significance in the changes to private classes. We see that private classes are added
more (24%) before a major release and removed more after (44%) the release. All results
in Table 3.5 could be used as identified trends of major software releases, while I have just
highlighted the larger ratios which meet my threshold criteria.

Another interesting trend that can been seen in Table 3.5 is that of changes to public ob-
jects. We can see for public classes and methods that 5 out of 7 ratios indicate changes occur
to these objects after major release rather than before. I hypothesize that these changes to
the public API after a major release come from newly reported bugs from end users as well
as having old features being deprecated while adding new features to the project after the
stable build had been released.

My complementary qualitative results from manual graph inspections can be seen in
Table 3.6. These results show that adding, changing signatures and bodies of, and removing
public methods tend to all be at a local minimum of change type trends at major releases
when activity is not taken into account. These results confirm previous results of low code
churn as an indication of stability.

Lastly, I found that software changes related to testing can be an indicator of a major

44

Change
Type

Upward Trend Local Maximum Downward Trend Local Minimum

Added
Public
Methods

21.6% 17.2% 14.7% 33.6%

Changed
Public
Methods
(Signature)

6.0% 19.8% 19.0% 39.7%

Changed
Public
Methods
(Bodies)

9.2% 16.5% 26.6% 37.6%

Removed
Public
Methods

7.8% 16.4% 12.9% 41.4%

Table 3.6: Qualitative graph analysis results.

release points within the projects studied. The change ratios found can be seen in Table 3.7.
As it can be seen, the four ratios which meet my threshold and are indicators of stability
with regards to test based changes are: the changing of test classes, the removal of test
classes, the adding of methods, and the changing of method signatures, and test classes
being changed. Changes to documentation also meets my threshold and occurs more before
a major release.

Object Added Changed Removed
Classes 1.07 1.21 0.76
Methods (Signatures) 1.23 0.83 1.01
Methods (Bodies) - 0.90 -
Documentation - 0.72 -

Table 3.7: Test oriented change types and their normalized average change ratios at 60 days
on each side of releases.

While all change ratios may need to be considered for continued analysis or a taxonomy
of change trends, I have offered the strongest change trends in these results as a suggestion
for future focus.

45

3.2.4 Conclusions of Study

In this study, I have conducted a case study of 10 open source Java software projects in order
to study their change trends surrounding major releases as previous studies have shown that
indirect conflicts occur less at a major release and more so after a major release or at the
beginning of a development cycle. I have presented here 9 major change trends which
surround major releases in the open source projects studied. The 4 change trends found in
this study occurring before major releases are: added private classes, changed test method
signatures, changed documentation, and removed test classes. The 5 change trends found
in this study occurring after major release are: added test methods, changed test classes,
removed public methods, removed private classes, and removed private methods.

These 9 change trends can be used in future indirect conflict tools in order to identify a
context for indirect conflicts. For example. Any of the 9 change trends which occur more
so after a major release may be used as a sign of high indirect conflict proneness since
after a major release a new development cycle is likely to begin. As per change trends
which occur more so before a major release, indirect conflict tools may use this context in
order to identify a low proneness to indirect conflicts in their results. These two contextual
patterns can be used throughout the life of a software project in order to help better inform
indirect conflict tools as to the processes of developers and provide better feedback to said
developers of indirect conflicts.

Aside from contextual patterns for indirect conflicts, this study has also shown the be-
ginnings of a visualization for source code change trends which may be used as a visual
cue towards project stability and potential areas of instability where action may need to be
taken.

46

Chapter 4

Discussion

While each study presented in this dissertation is quite unique, this chapter will focus on
the underlying themes and results of all 4 studies. This chapter will address the usefulness
of the results presented towards the research community and what those results mean for
continued studies in future research as well as discuss how the results can be viewed for
larger over arching outcomes than those presented in results sections.

This chapter will proceed in 2 subsections. The first section will address the 2 motiva-
tional studies and the lessons learned from each as background information for the richer
following studies. The second section will address the 2 large studies found in Chapter 3 in
a combined manner. Having reported the trends in industry (what, when, how, mitigation,
and resolution) from Study 3, the Study 3 discussion will focus these results in relation
to the outstanding issues of tool based solutions regarding indirect conflicts which are in-
formation overload, false positives, and scalability. Since Study 4 was directly associated
with developer opinion found in Study 3, the two discussions will be intertwined to better
support each other.

4.1 Motivating Studies Discussion

The Human Factor of Indirect Conflicts An important component of indirect conflicts

are the developers themselves and how their notions of other’s work is perceived across a

project.

As we have seen in Study 1, developers that are tied to source code objects can become
a focal point of indirect conflicts through the life of a project. For instance we can see
from Table 2.1 that developers Daniel and Anne on Hibernate-ORM are always linked

47

indirect conflicts when dependencies between their source code objects change. This is an
important observation to make when moving forward with indirect conflicts.

What is really happening between these two developers is the real issue to consider.
Daniel could have an assumption about the way Anne’s code works which causes Anne’s
changes to have negative impacts on Daniel’s own work. For instance, Daniel may expect
a method of Anne’s to have a special return case, which may be correct, however when
Anne changes that special case or removes it, Daniel’s code can be negatively affected. In
this extreme result found in Study 1, further analysis showed that one central method in the
software project was being changed frequently and causing Daniel’s code to be negatively
affected in some way.

The question of how to prevent this type of negative impact is ultimately the goal of in-
direct conflicts. Study 1 has shown that pairs of developers can often be a large component
to that goal as well. (Impact from Study 2 was created to use these pairs of developers in
addressing the issue of indirect conflicts.)

Information Overload My tool Impact, as well as many other indirect conflict tools,

suffer from information overload in their delivery to developers which is a key issue in

preventing adoption and acceptance of indirect conflict tools.

As was previously stated, many indirect conflict tools end up suffering from informa-
tion overload to developers and other end users. Impact was initially created to take the
insights from Study 1 and attempt to create a new indirect conflict system based on devel-
oper interactions inside the code base which would potentially address information over-
load. However, we now know from the results of Study 2, that Impact once again suffered
defeat to information overload based on the case study evaluation. Ultimately, this sense
of information overload ends up causing adoption of indirect conflict tools to fail which in
turn causes some research components to have failed as well.

From previous works, as well as from Study 2, we know that information overload is a
large issue in indirect conflicts. It has been found that a large number of dependencies in
software caused by the nature large software projects is a root issue in information over-
load [47, 50]. These large sizes in dependencies are ultimately what cause information
overload as dependencies cannot be evaluated as to their relevance in a certain source code
change with ease. In other words, we cannot determine which of the numerous dependen-
cies will fail (outside of compilation and testing failures) when source code is changed.

A potential solution derived from the evaluation of Impact comes from the ideas of
Meyer [40] on “design by contract”. In this methodology, changes to method preconditions
and postconditions are considered to be the most harmful. This includes adding conditions

48

that must be met by both input and output parameters such as limitations to input and
expected output. To achieve this level of source code analysis, the ideas of Fluri et al. [24]
can be used on the previously generated ASTs for high granularity source code change
extraction when determining if preconditions or postconditions have changed. While this
solution does not wholly address the problems of information overload as previously stated
through failures in dependencies, it does reduce the number of source code changes to be
analyzed which in turn will reduce the amount of information on the whole which is put
forth by the indirect conflict system. This solution however does also run the risk of missing
more indirect conflicts as many conflicts can occur outside of changes to method contracts.
This solution represents my first ideas of fixing information overload in regards to indirect
conflicts and is again found in the later discussion of root causes of indirect conflicts found
in the next section.

4.2 Indirect Conflict Exploration Discussion

While the previous section discussed the main motivations for taking a step back on indirect
conflicts in order to understand better what can be done to improve developer work flow,
this section will discuss exactly those steps back. From Studies 3 and 4 we will notice 3
main trends that have been discovered for indirect conflicts in both industry and in research.
These 3 major trends are: unwanted awareness, prevention versus cure, and the gap in
software evolution analysis. This section will also include a brief discussion regarding the
implications, learned from studies 3 and 4, for both research and for industry through tools.

Unwanted Awareness Developers tend to only care about the awareness of other’s

activities, if it causes a negative influence on their own work. Developers only want to

hear about another developer’s actions if it forces them to take some action because of

it. This limited awareness is quite different from what literature suggests, which is larger

awareness about most, if not all actions, and it also suggests why developers see a high

amount of what they believe to be false positives, as the changes being reported are not

causing them to take action. These reported non-actionable responses lead to information

overload and false positives.

As we have seen, indirect conflicts are found to be quite a serious problem that occur
frequently, sporadically, and differ greatly from case to case. These conditions pose large
issues for the creation of generalizable theories or tools in regards to indirect conflicts.
These underlying complexities are the probable cause of disinterest of software developers
to proposed or implemented tools as discussed in Section 3.1.1. This inability to generalize

49

is what I believe to be the leading cause of information overload and false positives in the
awareness system, causing developers to eventually ignore information being presented to
them, rendering the system useless. These false positives are caused by a difference in what
developers consider to be false positives versus what awareness literature considers they
are. This disjoint, as will be seen, is caused by developers only considering events which
cause some action to be taken on their part, to be true positives, where as current awareness
understanding would state any event which is related to an individual’s work [28] [9], to
be true positives. “You need a good understanding of what the code change is or else you
will have a lot of false positives” said one developer, showing that not all changes around
an object should be reported for awareness.

Developers have been found to have a great understanding of what they need to know
about and more importantly what they don’t in their project awareness. To be able to fully
understand a developer’s awareness intuition, we can see from the results of this study
that developers only want awareness of an event if the event forces the developer to take
some action. In a sense, developers don’t care about what they don’t need to account
for. “We would want a high probability of the [reported] change being an issue”, meaning
that the developer only wants the awareness if the item will require action on their part
to resolve the issue. This sense of unwanted or limited awareness is crucial to understand
why generalized awareness techniques of difficult to generalize problems, such as indirect
conflicts through generalized changes to classes [47], or methods [50, 53], often encounter
difficulties of false positives and information overload. Developers simply do not want to
know about events which effect them, but require no action on their part.

This unwanted awareness, or limited awareness, seems counter intuitive to current
awareness understanding which would state that being aware of all events in ones sur-
rounding leads to higher productivity or other quality aspects. In theory this is correct, but
as it was found in practice, this is an incorrect assumption. In regards to this full awareness,
one developer said “There is no room for this in [our company], as tools are already in place
for analysis of change[s] and code review takes care of the rest”. Since software developers
have limits on their time, awareness of all events surrounding a developer’s work or project
is not possible. Developers prefer to spend their limited time dealing with the awareness of

events which cause them to take some action (changing code, communication, etc) rather

than simply being aware of events occurring around their work which pose no direct threat

to the consumption of their time.

Of course, whether or not this unwanted awareness is the correct path for developers to
take is an open question to consider. When developers encounter a problem which could

50

have been solved by having greater awareness of events which did not directly affect them
initially, we must consider the positive and negative influences of adding this, for now,
unwanted awareness. A positive influence of total, or near total awareness of events at the
developer level, would be the full understanding of a developer’s work and environment
which comes with higher quality or understanding of the product. A negative influence
would be that valuable developer time is spent understanding events which may not directly
apply to themselves as opposed to producing more output of their own work. This balance
between awareness and productivity is found to be a fine line in practice, however, when
given the choice, developers tend to, as previously stated, lean towards less awareness in
order to, in their eyes, be more productive.

Prevention versus Cure Developers would rather spend their time on curative mea-

sures (fixing problems after they arise) rather than preventative measures (preventing prob-

lems from happening). Developers see the task of fixing real problems to be less of a burden

than preventing potential problems because of available tools and their perceived notions

of time management. Focusing on cure is a direct response to the issue of scalability found

in indirect conflict tools. Trying to prevent all conflicts is too large a problem to handle,

while curing existing conflicts is manageable by a developer.

We have seen through the results, that developers posses both tools and practices for the
prevention, detection, and resolution of indirect conflicts. We have also seen that through
unwanted awareness, and the use of developer time, that developers tend to prefer working
on real issues that have already occurred as opposed to preventing issues of the future which
may never arise. This is neatly explained by the popular adage “I work until something
breaks” taken by most developers. This mindset is a clear example of developers taking a
curative approach to software development opposed to a preventative approach. Prevention
here refers to taking precautionary steps to stop issues, indirect conflicts, form occurring in
the first place while cure refers to fixing issues as they arise which includes not attempting,
or putting little attempt, into preventing them in the first place.

Two out of the three identified prevention methods taken by developers are simple
blanket risk mitigation strategies accomplished essentially by not changing code (design
by contract, and add and deprecate), while the third is simply developer experience and
knowledge. Clearly, developers are spending little to no time in prevention. Developers do
however spend a large amount of time in detection and cure through the writing of tests and
the debugging of issues. In fact, most improvements mentioned by developers in regard to
dealing with indirect conflicts occurred at either the detection or cure levels. Obviously, de-
velopers either prefer to spend their time in curative measures, or do not posses the proper

51

tools to take better action in the preventative stages. “You’re reaction time is much more
crucial” said one developer in that resolution tools are believed to be or larger importance
as once issues have occurred, it doesn’t matter what prevention was taken, the issue must
simply be resolves as quick as possible now.

The lack of prevention process and tools being used is believed to be due to 2 factors.
The first being the identification of dependencies. Even with an experienced system ar-
chitect, identifying dependencies and notifying those involved is a daunting task which is
ignored more than dealt with. The second being the knowledge of when a dependency
will fail, also requires vast knowledge of the product, more than anyone may have. This
is compounded by the unique and sporadic nature of indirect conflicts. These 2 factors are
what ultimately have led to the amount of false positives and information overload seen
in previous tools. The abundance of detection and curative process and tools on the other
hand shows once again developer’s willingness to debug real issues, that maybe even could
have been prevented, rather than prevent the issues in the first place. With this lack of pre-
vention and abundance of curative measures, the question ultimately presented in this area
is if curative measures are more productive than preventative measures.

Dromey [17] has raised the debate of prevention versus cure in software development
and how difficult a problem it is to measure. The pros and cons of prevention versus cure I
have identified, are similar to those of unwanted awareness, in that they result in a trade off
of where time is spent and how productive each side of the argument truly is. If prevention
can be shown to be more effective in that it reduces the number of indirect conflicts or
time spent debugging them compared to the time taken to prevent them, should we then
not be moving developers into a more preventative mindset; if curative can be shown to be
more effective in that it takes less time to fix real issues compare to preventing potential
ones, should we not be putting more time into automatic debugging, such as Zeller’s Delta
Debugging [61] or program slicing techniques [55], or automatic test case creation.

A last interesting observation about current curative measures being taken in industry,
is that developers view testing of software as curative, when one could easily make the
argument that it is preventative in that most tests are written to pass originally and are kept
in place to ensure future changes do not cause issues. This mindset may come from the
notion that writing tests is originally thought of as part of normal code writing, meaning that
developers see the extra task of test coverage as part of feature implementation. However,
if a test never fails, could it not be said that it is preventing changes from causing it to fail
rather than detecting when failures or indirect conflicts do occur? This may suggest that if,
given the write tools, developers may no longer view preventative measures as a “burden”

52

and may be more inclined to take a more balanced preventative approach rather than mostly
curative, as “prevention is the goal” was commonly said by developers.

This prevention versus cure discussion resides purely on the developer level and should
be noted that it may not apply to system designers, architects, or managerial stakeholders.
From the project managers interviewed it was shown that they heavily favored planning and
prevention (even though their prevention may be on more abstract levels than developers
actually need) while leaving the curative approaches to their developers. The prevention
versus cure debate may have different outcomes depending on what level of abstraction is
being viewed in research.

Gap in Software Evolution Analysis Due to a lack of productive software analysis

tools, caused by project infrastructures and analysis unfriendly languages, contextual in-

dications of indirect conflicts are often missed. This lack of analysis also causes some

software project configurations and software languages to be quite prone to indirect con-

flicts. This is yet another issue related to scalability of existing indirect conflict tools.

Indirect conflicts are more likely to occur, from developer opinion, before a mature
point is reached in the project’s evolution. “Once you get the API stable, people are better
at communicating changes in regards to dependency concerns.”(This mature point may
stem from a major release, end of an iteration, a new feature being released or any point
considered stable and reliable.) However, this context of a mature point, as well as any
other potential contextual attributes, are rarely identified or accounted for in regards to
indirect conflicts. Developers have said that different change types may occur at different
rates throughout a project’s life time and that this may drastically effect the outcomes of
indirect conflict tools or processes.

A deeper understanding of what context indirect conflicts occur in seems to be more of
a success factor to indirect conflict research than may have been previously thought. Static
analysis may be useful in regards to indirect conflict context in that we could identify trends
surrounding the mature points of previous projects in order to give a better understanding of
what it means for a project to be pre or post mature point, which could affect the outcome
of indirect conflict understanding. These change trends are exactly what Study 4 set out to
address.

Through Study 4, I showed that 9 critical change trends exist at a major release of a
variety of open source projects. This knowledge could help identify, as was previously
stated, when indirect conflicts are more likely to occur in a project or not. For example,
the trend of adding test methods was found to occur more after a major release than before.
This trend along with the knowledge that indirect conflicts occur more at the start of a new

53

development cycle can be used to predict times in development where indirect conflicts are
likely to occur automatically. An automated system may see that more test methods are
being added than before in the past 4 weeks or so and be able to alert developers to an
instability in the code which in turn means an elevated risk of indirect conflicts.

Similarly, the trend of adding private classes is seen to occur more so before a major
release than after. This knowledge again can be used in an automated system along with the
fact that indirect conflicts are less likely to occur towards the end of a development cycle.
The automated system will be able to identify a stability in the project through private
classes being added and alert developers that the code is stabilizing and that large changes
to the project should be avoided until the start of the next development cycle in order to
further reduce the risk of indirect conflicts.

This added level of context, through the notion of a mature point, would add to the
prevention versus cure debate as previously discussed as well. Prevention may be a better
choice once a project has reached a mature point as the code base becomes more stable
and source code changes become more dangerous to the quality of the project. Curative
measures may be a better choice before a mature point as code churn can be higher which
causes more bugs than can be prevented. These possibilities existing, it may be imperative
to discover more of project stability and the mature point in order to fully understand the
nature of indirect conflicts and their context.

While this added sense of understanding is important to indirect conflicts, contextual
attributes of a project’s current progress or measures of performance are often more syn-
onymous with project management rather than software developers themselves. An under-
standing of a project’s evolution, a mature point being reached as an example, may pose
as a more useful tool for project management rather than developers. This more abstract
tendency of indirect conflict occurrences may add even more power to project management
for evaluation of progress, code stability, and code reviews.

In regards to these contextual identifications in software projects, dependency identi-
fication and tracking is a key missing component of indirect conflict analysis due to the
weaknesses of static analysis. The gap in this identification comes from software and or-
ganizational structures of software teams. Between increased modularization (multiple sub
projects or repositories), cross language dependencies, and languages which do not lend
themselves to static analysis, static analysis tools have become quite limited in identifying
and tracking dependencies where they were once strong. As software has become more
sophisticated over time, static analysis tools have gone from extremely useful to only occa-
sionally useful. Since many projects involve several languages, sub projects, and database

54

schemas, static analysis has become cripplingly obsolete in the industry of today. In order
to move indirect conflicts and many other research areas forward, this gap of cross domain
static analysis must be filled.

As an example, relational database schemas are one of the highest sources of indirect
conflicts found in their projects, “it breaks stuff all over the place”, yet we know from
Maule et al. [39] that relational database schemas have been scarcely researched in terms
of indirect conflicts. This falls in with my previous understanding of cross language depen-
dency tracking in that database schemas are independent of languages which may be on the
receiving end of their output.

These increases of complexity in software products has left quite a gap in dependency
identification and tracking which has lead to some of the deficiencies of indirect conflict
research.

4.2.1 Implication for Research

Prevention versus Cure The largest implication for future research found in this disserta-

tion is the need for continued study of the open question “Which of prevention or cure is

more effective for software development and indirect conflicts?”. This simple question will

undoubtedly produce extremely complex answers.

With software developers focusing their current efforts on curative measures, for indi-
rect conflicts, suggests that while it may not be the most effective, it may be the easiest
road for developers to take. This may be the path of least resistance, but it may not be
optimal. Software engineering as a whole should strive to answer this question or provide
more insight into possibilities, as its answer may determine many future actions taken by
the research community.

Recommendations towards the study of prevention versus cure involve the examination
of formal processes and tools used by industry professionals with measurements of effi-
ciency and effectiveness, similar to the work of Tiwana [52] in coordination tools. With
these studies, we may find insight into the correct balance of prevention versus cure, thus
being able to increase developer productivity as well as identify more gaps in theory versus
practice which may lead to improved tools or the abandoning of existing ones as was shown
with UML [45].

Awareness Theory to Model Real World the need to further characterize the mis-

match between awareness approaches and tools as developed in the research community,

compared to awareness needs as perceived by industry. We should push our awareness

55

theories to model real development environments where interruptions, time management,

and full development life cycles are often large factors.

As was identified in the previous discussion, while current understanding suggests that
awareness of all events related to ones work produces a more coherent understanding of a
person’s environment, developers find this to be overly time consuming to the point where
they only want to be aware of events which require action on their part. This difference, of
what should be and what is, should be further understood to combat future potential failures
in tool development or theories attempted to be used in practice.

4.2.2 Implication for Tools

Give Developers What They Want Developers have their own notions of what they want,

and how “good” that something is for their productivity. We should pay attention to what

they want, in order to shape our models and better address their needs.

The direct implication this research has on tool creation is that of current adoption
among developers. As was stated, developers are more keen to invest their time at the
detection and cure / resolution stages of indirect conflicts. That being said, focus at these
two stages for tool development will lead to larger adoption among developers. It should be
noted here that detection must come with an almost zero rate of false positives as current
tools (unit and integration and user testing), while they may not have 100% recall, have
almost 100% precision.

Stronger Source Code Analysis With languages like JavaScript becoming popular,

having projects with multiple languages, and often having a database schema, we should

focus on better techniques for static analysis based on what industry standards are for

languages and project structures.

The more indirect implication of this research on tool creation is that of improving ex-
isting tools. While not all existing tools are used for indirect conflicts alone (automatic
debugging [62], unit tests, etc), most of these tools have a need for rapid expansion, ac-
cording to developers, for dealing with indirect conflicts. The ability to have unit tests
automatically written for a given software object’s contract, the ability to find a change in
an external project which has broken a developer’s own project, or any automation of the
existing detection and resolution stages of indirect conflicts are what developers currently
seek. But of course, most of these implications rely on the improvement of static analysis
tools.

These tool implications themselves imply the need of further development of static

56

analysis tools. Static analysis lays at the heart of most if not all stages of indirect conflict
research. We must be able to track and manage software dependencies across the new land-
scape of software development that is multiple projects, repositories, and cross language
support. These improvements will allow the further development of both current and future
indirect conflict tools.

57

Chapter 5

Conclusions

Awareness techniques have been proposed and studied to aid developer understanding, effi-
ciency, and quality of software produced. Some of these techniques have focused on either
direct or indirect conflicts in order to prevent, detect, or resolve these conflicts as they arise
from a result of source code changes.

While the techniques and tools for direct conflicts have had large success, tools either
proposed or studied for indirect conflicts have had common issues of information overload,
false positives, scalability, information distribution and many others. These issues have
ultimately led to poor developer interest in indirect conflict tools as well as a failed adoption
rate and partial failures of research.

To better understand these issues, this dissertation has focused on exploring the world of
indirect conflicts through 4 studies. The first two studies focused on motivational circum-
stances which occur during the software development life cycle and cause indirect conflicts.
Developer’s interactions were studied in order to create a tool which can aid in the work-
flows around indirect conflicts. The second two studies presented a deeper investigation as
to why most indirect conflict tools fail to attract developer interest through exploring the
root causes of indirect conflicts and how tools should be properly built to support developer
work flows.

5.1 Study 1

Technical dependencies are often used to predict software failures in large software sys-
tem [35, 46, 63]. However, human interactions as tied to software objects can also be used
to predict software failures. Study 1 presented a method for detecting failure inducing

58

pairs of developers inside of technical networks based on code changes. The method-
ology used was to assigned developers to the source code artifacts which they authored.
Next, dependencies were identified between source code artifacts, implying dependencies
between developers. Lastly, failure inducing dependencies between developers were iden-
tified through using methods to identify bugs in source code throughout the lifetime of a
project. These developer pairs were used in the prediction of future bugs and to provide
coordination recommendations for developers within a project. These bugs being predicted
directly correlate to indirect conflicts. Since the human dependencies being measured in
Study 1 are directly tied to software objects, we can say that the indirect conflicts being
studied here are between developers themselves, while the dependencies between the de-
velopers are found in the source code.

Study 1 however, did not consider the technical dependencies themselves to be the
root cause of the software failures. This study focused purely on developer ownership of
software methods and the dependencies between developers as the possible root cause of
the failures.

Through the analysis of Study 1 as seen in Chapter 4, an important component of in-
direct conflicts are the developers themselves and how their notions of other’s work is
perceived across a project. We can see from Study 1 results that a developer Daniel may
believe a source code artifact behaves in a particular way (from documentation or other
forms of communication for the artifact) so when that artifact changes its behavior, Daniel
can become negatively impacted. A human factor is present here as the person who makes
the artifact change, say Anne, may not have communicated the change to all other devel-
opers affected by the change. This is an important understanding that led directly into
the creation of Impact (Study 2) as a way to mitigate the negative affects across human
developers as a result of source code changes.

5.2 Study 2

As a direct response to the findings and analysis of Study 1, Study 2 set out to address the
human factors presented through an indirect conflict tool. In Study 2, I proposed a generic
design for the development of an awareness tool in regards to handling indirect conflicts
through human factors. I presented a prototype awareness tool, Impact, which was designed
around the generic technical object approach. Impact could track which developers were
responsible for which artifacts of code as well as their dependencies to other developer’s
code artifacts. When a dependency to another developer’s code was changed, the developer

59

was notified of the change in order to avoid any bugs that may arise from the change. The
delivery system used for Impact was that of an RSS type feed where developers could view
their notifications in a stream of messages through a web application. However, Impact

suffered from information overload, in that it had too many notifications sent to developers.
This failure from information overload was ultimately equivalent to the various other

indirect conflict tools from previous research (even those not addressing human developer
factors). This issue of information overload is the key issue in preventing adopting and
acceptance of indirect conflict tools from developers and ultimately leads to some research
component failures to understand what developers truly want from indirect conflict tools.As
a proposed solution to information overload, the ideas of Meyer [40] on “design by con-
tract” were presented. This methodology examines the post and pre conditions of software
objects in order to reduce the number of source code changes that are analyzed by Impact
in order to reduce information overload.

While the previous proposed solution was designed to fix information overload in Im-
pact and potentially other indirect conflict tools, it was decided that further investigation
into indirect conflicts was needed to truly attempt a solution. The results of Study 2, com-
bined with the knowledge of previous research having similar issues of information over-
load in indirect conflict tools, sparked an interest in studying indirect conflicts at a deeper
level (Study 3) which could be used to better understand causes and developer strategies in
solving indirect conflicts.

5.3 Study 3

Indirect conflicts are a significant issue with real world development, however, many pro-
posed techniques and tools to mitigate losses in this realm have been unsuccessful in at-
tracting major support from developers (as was seen in Study 2). In Study 3, I conducted
a qualitative study involving 19 interviewed developers from 12 organizations as well as
78 surveyed developers. I provided characterization of indirect conflicts, current developer
work flow surrounding indirect conflicts, and what direction any future tools should follow
in order to aid developers in their work flow with indirect conflicts.

For the root causes of indirect conflicts, I found that indirect conflicts occur due to
changing of a software object’s contract and the lack of understanding of the far reaching
implications (through dependencies) of that change. I also found that indirect conflicts are
more likely to occur at the beginning of a development cycle when the code is quite unstable
and that these scenarios can become compounded in difficulty when more developers are

60

present on a project.
As per current developer work-flows regarding indirect conflicts, I found that develop-

ers have 3 major mitigation strategies to avoid indirect conflicts: “Design by Contract”,
add and deprecate, and personal experience. For catching indirect conflicts, I found that
use case coverage through proper testing (both unit and integration) are currently thought
to be the best developers can achieve. And finally, for the future of indirect conflict tools,
developers made it clear that they would prefer an improvement to resolution methods for
indirect conflicts such as automatic or aided development techniques.

As per the analysis of Study 3, I have shown the disjoint of current awareness under-
standing versus the practical awareness needs found in industry. This disjoint, caused by the
difference of academic and practical understanding in awareness needs, ultimately lead to
tools with information overload and false positive issues. The debate of prevention versus
cure was presented along with the industrial tendency towards curative measures. While a
curative approach may be favored by developers, further research is needed to fully assess
the positive and negative influences of prevention versus cure for productivity and quality
concerns. Finally, I have shown the gap of analytical evolution tools needed for depen-
dency identification and indirect conflicts. This gap, unless addressed, may prevent future
industrial adoption of tools produced by researchers for lack of fit in industrial needs. This
gap directly resulted in the final study of this Dissertation to be completed (Study 4).

5.4 Study 4

As a result of the gap in software evolution analysis shown in Study 3, I conducted a
case study of 10 open source Java software projects in order to study their change trends
surrounding major releases as Study 3 had shown that indirect conflicts occur less at a
major release and more so after a major release or at the beginning of a development cycle.

Through Study 4, I presented 9 major change trends which surround major releases
in the open source projects studied. The 4 change trends found in this study occurring
before major releases are: added private classes, changed test method signatures, changed
documentation, and removed test classes. The 5 change trends found in this study occurring
after major release are: added test methods, changed test classes, removed public methods,
removed private classes, and removed private methods.

These 9 change trends can be used in indirect conflict tools in order to identify a context
for indirect conflicts. For example, the trend of adding test methods was found to occur
more after a major release than before. This trend along with the knowledge that indirect

61

conflicts occur more at the start of a new development cycle can be used to predict times
in development where indirect conflicts are likely to occur automatically. An automated
system may see that more test methods are being added than before in the past 4 weeks
or so and be able to alert developers to an instability in the code which in turn means an
elevated risk of indirect conflicts.

The results of Study 4 directly supplemented those from Study 3 in that it addressed the
gap of software evolution techniques needed for indirect conflicts. However, this study was
also quite limited and the issues of cross domain analysis techniques presented in Study 3
are still cause for future research.

5.5 Final Conclusions

This dissertation has covered a wide range of interests all within indirect conflicts. I have
shown how human factors can be an important part of indirect conflicts and how pairs of de-
velopers can be found to be statistically related to indirect conflicts bugs. I have shown how
these human factors can be integrated into indirect conflict tools by using dependencies in
authored source code artifacts. Ultimately however, these new human factors added into
indirect conflict tools resulted in similar failures of information overload as seen through
many previous research tools in indirect conflicts. After these conclusions, I presented a
study which found root causes of indirect conflicts to be contract changes and an unaware-
ness of those changes implications, that developers use “Design by Contract”, add and
deprecate, and personal experience to avoid indirect conflicts, and some suggestions for
future indirect conflict tool development while stating where gaps in source code analysis
should be improved to improve the indirect conflict tools. Based on that gap in software
evolution analysis in indirect conflicts, I presented a method for finding contextual patterns
which can relate to indirect conflicts in order to aid future tool development for indirect
conflicts.

Through the analysis in Chapter 4, I have shown the disjoint of current awareness un-
derstanding versus the practical awareness needs found in industry. This disjoint, caused by
the difference of academic and practical understanding in awareness needs, ultimately led
to tools with information overload and false positive issues. This was quite evident from
my tool Impact as presented in Study 2. Even when the tool is based around the statistical
results of Study 1, the disjoint between what academics determine developers want versus
what they themselves want is quite obvious. The debate of prevention versus cure has been
presented along with the industrial tendency towards curative measures. However, while a

62

curative approach may be favored by developers, further research is needed to fully assess
the positive and negative influences of prevention versus cure for productivity and quality
concerns. Finally, I have shown the gap of analytical evolution tools needed for dependency
identification and indirect conflicts. This gap, unless addressed, may prevent future indus-
trial adoption of tools produced by researchers for lack of fit in industrial needs. While I
have shown a potential solution to address a fraction of the analysis gap through contextual
patterns of indirect conflicts, many other problems of the analysis gap remain problems for
future research.

63

Bibliography

[1] Mithun Acharya and Brian Robinson. Practical change impact analysis based on
static program slicing for industrial software systems. In Proceedings of the 33rd

International Conference on Software Engineering, ICSE ’11, pages 746–755, New
York, NY, USA, 2011. ACM.

[2] Sushil Bajracharya, Joel Ossher, and Cristina Lopes. Sourcerer: An internet-scale
software repository. In Proceedings of the 2009 ICSE Workshop on Search-Driven

Development-Users, Infrastructure, Tools and Evaluation, SUITE ’09, pages 1–4,
Washington, DC, USA, 2009. IEEE Computer Society.

[3] Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. Codebook: discover-
ing and exploiting relationships in software repositories. In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE ’10,
pages 125–134, New York, NY, USA, 2010. ACM.

[4] Jacob T. Biehl, Mary Czerwinski, Greg Smith, and George G. Robertson. Fastdash:
a visual dashboard for fostering awareness in software teams. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’07, pages 1313–
1322, New York, NY, USA, 2007. ACM.

[5] Eric Bodden. A high-level view of java applications. In Companion of the 18th

annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-

guages, and applications, OOPSLA ’03, pages 384–385, New York, NY, USA, 2003.
ACM.

[6] A. Borici, K. Blincoe, A. Schröter, G. Valetto, , and D. Damian. Proxiscientia: Toward
real-time visualization of task and developer dependencies in collaborating software
development teams. In In Proc, CHASE 2012.

64

[7] John B. Bowen. Are current approaches sufficient for measuring software quality? In
Proceedings of the software quality assurance workshop on Functional and perfor-

mance issues, pages 148–155, New York, NY, USA, 1978. ACM.

[8] John Businge, Alexander Serebrenik, and Mark van den Brand. An empirical study
of the evolution of eclipse third-party plug-ins. In Proceedings of the Joint ERCIM

Workshop on Software Evolution (EVOL) and International Workshop on Principles

of Software Evolution (IWPSE), IWPSE-EVOL ’10, pages 63–72, New York, NY,
USA, 2010. ACM.

[9] Marcelo Cataldo, James D. Herbsleb, and Kathleen M. Carley. Socio-technical con-
gruence: a framework for assessing the impact of technical and work dependencies
on software development productivity. In Proceedings of the Second ACM-IEEE in-

ternational symposium on Empirical software engineering and measurement, ESEM
’08, pages 2–11, New York, NY, USA, 2008. ACM.

[10] Marcelo Cataldo, Patrick A. Wagstrom, James D. Herbsleb, and Kathleen M. Carley.
Identification of coordination requirements: implications for the design of collabora-
tion and awareness tools. In Proceedings of the 2006 20th anniversary conference on

Computer supported cooperative work, CSCW ’06, pages 353–362, New York, NY,
USA, 2006. ACM.

[11] Jonathan Chow and Ewan Tempero. Stability of java interfaces: a preliminary inves-
tigation. In Proceedings of the 2nd International Workshop on Emerging Trends in

Software Metrics, WETSoM ’11, pages 38–44, New York, NY, USA, 2011. ACM.

[12] M.E. Conway. How do committees invent. Datamation, 14(4):28–31, 1968.

[13] J. Corbin and A. C. Strauss. Basics of Qualitative Research: Techniques and Pro-

cedures for Developing Grounded Theory. Sage Publications, 3rd edition edition,
2007.

[14] D. Damian, L. Izquierdo, J. Singer, and I. Kwan. Awareness in the wild: Why com-
munication breakdowns occur. In Global Software Engineering, 2007. ICGSE 2007.

Second IEEE International Conference on, pages 81 –90, aug. 2007.

[15] Cleidson R. B. de Souza and David F. Redmiles. An empirical study of software
developers’ management of dependencies and changes. In Proceedings of the 30th

65

international conference on Software engineering, ICSE ’08, pages 241–250, New
York, NY, USA, 2008. ACM.

[16] Paul Dourish and Victoria Bellotti. Awareness and coordination in shared workspaces.
In Proceedings of the 1992 ACM conference on Computer-supported cooperative

work, CSCW ’92, pages 107–114, New York, NY, USA, 1992. ACM.

[17] R.Geoff Dromey. Software quality-prevention versus cure? Software Quality Journal,
11(3):197–210, 2003.

[18] Jordan Ell and Daniela Damian. Supporting awareness of indirect conflicts with im-
pact. University of Victoria Computer Science, 2013.

[19] M. E. Fayad and Shivanshu K. Singh. Software stability model: software product
line engineering overhauled. In Proceedings of the 2010 Workshop on Knowledge-

Oriented Product Line Engineering, KOPLE ’10, pages 4:1–4:4, New York, NY,
USA, 2010. ACM.

[20] Mohamed Fayad. Accomplishing software stability. Commun. ACM, 45(1):111–115,
January 2002.

[21] Mohammed E. Fayad and Adam Altman. Thinking objectively: an introduction to
software stability. Commun. ACM, 44(9):95–, September 2001.

[22] Norman E. Fenton and Niclas Ohlsson. Quantitative analysis of faults and failures in
a complex software system. IEEE Trans. Softw. Eng., 26(8):797–814, August 2000.

[23] Geraldine Fitzpatrick, Simon Kaplan, Tim Mansfield, Arnold David, and Bill Segall.
Supporting public availability and accessibility with elvin: Experiences and reflec-
tions. Comput. Supported Coop. Work, 11(3):447–474, November 2002.

[24] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. Change distilling:
Tree differencing for fine-grained source code change extraction. IEEE Trans. Softw.

Eng., 33(11):725–743, November 2007.

[25] Robert B. Grady. Practical results from measuring software quality. Commun. ACM,
36(11):62–68, November 1993.

66

[26] Christine A. Halverson, Jason B. Ellis, Catalina Danis, and Wendy A. Kellogg. De-
signing task visualizations to support the coordination of work in software devel-
opment. In Proceedings of the 2006 20th anniversary conference on Computer sup-

ported cooperative work, CSCW ’06, pages 39–48, New York, NY, USA, 2006. ACM.

[27] A.E. Hassan and K. Zhang. Using decision trees to predict the certification result
of a build. In Automated Software Engineering, 2006. ASE ’06. 21st IEEE/ACM

International Conference on, pages 189–198, Sept 2006.

[28] James D. Herbsleb, Audris Mockus, and Jeffrey A. Roberts. Collaboration in software
engineering projects: A theory of coordination. In In Proceedings of the International

Conference on Information Systems (ICIS 2006, 2006.

[29] Abram Hindle, Michael W. Godfrey, and Richard C. Holt. Release pattern discovery
via partitioning: Methodology and case study. In Proceedings of the Fourth Interna-

tional Workshop on Mining Software Repositories, MSR ’07, pages 19–, Washington,
DC, USA, 2007. IEEE Computer Society.

[30] Reid Holmes and Robert J. Walker. Customized awareness: recommending relevant
external change events. In Proceedings of the 32nd ACM/IEEE International Confer-

ence on Software Engineering - Volume 1, ICSE ’10, pages 465–474, New York, NY,
USA, 2010. ACM.

[31] Susan Horwitz and Thomas Reps. The use of program dependence graphs in soft-
ware engineering. In Proceedings of the 14th international conference on Software

engineering, ICSE ’92, pages 392–411, New York, NY, USA, 1992. ACM.

[32] ISO/IEC. ISO/IEC 9126. Software engineering – Product quality. ISO/IEC, 2001.

[33] Himanshu Khurana, Jim Basney, Mehedi Bakht, Mike Freemon, Von Welch, and
Randy Butler. Palantir: a framework for collaborative incident response and investi-
gation. In Proceedings of the 8th Symposium on Identity and Trust on the Internet,
IDtrust ’09, pages 38–51, New York, NY, USA, 2009. ACM.

[34] Miryung Kim. An exploratory study of awareness interests about software modifica-
tions. In Proceedings of the 4th International Workshop on Cooperative and Human

Aspects of Software Engineering, CHASE ’11, pages 80–83, New York, NY, USA,
2011. ACM.

67

[35] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James Jr. Whitehead. Au-
tomatic identification of bug-introducing changes. In Proceedings of the 21st

IEEE/ACM International Conference on Automated Software Engineering, ASE ’06,
pages 81–90, Washington, DC, USA, 2006. IEEE Computer Society.

[36] Irwin Kwan and Daniela Damian. Extending socio-technical congruence with aware-
ness relationships. In Proceedings of the 4th international workshop on Social soft-

ware engineering, SSE ’11, pages 23–30, New York, NY, USA, 2011. ACM.

[37] Irwin Kwan, Adrian Schröter, and Daniela Damian. Does socio-technical congruence
have an effect on software build success? a study of coordination in a software project.
IEEE Trans. Softw. Eng., 37(3):307–324, May 2011.

[38] Arun Lakhotia. Constructing call multigraphs using dependence graphs. In Proceed-

ings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’93, pages 273–284, New York, NY, USA, 1993. ACM.

[39] Andy Maule, Wolfgang Emmerich, and David S. Rosenblum. Impact analysis of
database schema changes. In Proceedings of the 30th international conference on

Software engineering, ICSE ’08, pages 451–460, New York, NY, USA, 2008. ACM.

[40] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1st edition, 1988.

[41] Audris Mockus and David Weiss. Interval quality: relating customer-perceived qual-
ity to process quality. In Proceedings of the 30th international conference on Software

engineering, ICSE ’08, pages 723–732, New York, NY, USA, 2008. ACM.

[42] Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to
predict system defect density. In Proceedings of the 27th international conference on

Software engineering, ICSE ’05, pages 284–292, New York, NY, USA, 2005. ACM.

[43] Nachiappan Nagappan, Brendan Murphy, and Victor Basili. The influence of orga-
nizational structure on software quality: an empirical case study. In International

conference on Software engineering, pages 521–530, Leipzig, Germany, May 2008.
IEEE.

[44] Dewayne E. Perry, Harvey P. Siy, and Lawrence G. Votta. Parallel changes in large-
scale software development: an observational case study. ACM Trans. Softw. Eng.

Methodol., 10(3):308–337, July 2001.

68

[45] Marian Petre. Uml in practice. In Proceedings of the 2013 International Conference

on Software Engineering, ICSE ’13, pages 722–731, Piscataway, NJ, USA, 2013.
IEEE Press.

[46] Martin Pinzger, Nachiappan Nagappan, and Brendan Murphy. Can developer-module
networks predict failures? In Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of software engineering, SIGSOFT ’08/FSE-16, pages
2–12, New York, NY, USA, 2008. ACM.

[47] Anita Sarma, Gerald Bortis, and Andre van der Hoek. Towards supporting aware-
ness of indirect conflicts across software configuration management workspaces. In
Proceedings of the twenty-second IEEE/ACM international conference on Automated

software engineering, ASE ’07, pages 94–103, New York, NY, USA, 2007. ACM.

[48] Anita Sarma, Larry Maccherone, Patrick Wagstrom, and James Herbsleb. Tesseract:
Interactive visual exploration of socio-technical relationships in software develop-
ment. In Proceedings of the 31st International Conference on Software Engineering,
ICSE ’09, pages 23–33, Washington, DC, USA, 2009. IEEE Computer Society.

[49] Adrian Schröter, Jorge Aranda, Daniela Damian, and Irwin Kwan. To talk or not to
talk: factors that influence communication around changesets. In Proceedings of the

ACM 2012 conference on Computer Supported Cooperative Work, CSCW ’12, pages
1317–1326, New York, NY, USA, 2012. ACM.

[50] Francisco Servant, James A. Jones, and André van der Hoek. Casi: preventing indirect
conflicts through a live visualization. In Proceedings of the 2010 ICSE Workshop on

Cooperative and Human Aspects of Software Engineering, CHASE ’10, pages 39–46,
New York, NY, USA, 2010. ACM.

[51] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes in-
duce fixes? In Proceedings of the 2005 international workshop on Mining software

repositories, MSR ’05, pages 1–5, New York, NY, USA, 2005. ACM.

[52] Amrit Tiwana. Impact of classes of development coordination tools on software de-
velopment performance: A multinational empirical study. ACM Trans. Softw. Eng.

Methodol., 17(2):11:1–11:47, May 2008.

[53] Erik Trainer, Stephen Quirk, Cleidson de Souza, and David Redmiles. Bridging the
gap between technical and social dependencies with ariadne. In Proceedings of the

69

2005 OOPSLA workshop on Eclipse technology eXchange, eclipse ’05, pages 26–30,
New York, NY, USA, 2005. ACM.

[54] Jason Tsay, Hyrum K. Wright, and Dewayne E. Perry. Experiences mining open
source release histories. In Proceedings of the 2011 International Conference on

Software and Systems Process, ICSSP ’11, pages 208–212, New York, NY, USA,
2011. ACM.

[55] Mark Weiser. Programmers use slices when debugging. Commun. ACM, 25(7):446–
452, July 1982.

[56] Michel Wermelinger and Yijun Yu. Analyzing the evolution of eclipse plugins. In
Proceedings of the 2008 international working conference on Mining software repos-

itories, MSR ’08, pages 133–136, New York, NY, USA, 2008. ACM.

[57] T. Wolf, A. Schroter, D. Damian, and T. Nguyen. Predicting build failures using social
network analysis on developer communication. In Software Engineering, 2009. ICSE

2009. IEEE 31st International Conference on, pages 1–11, May 2009.

[58] Shujian Wu, Qing Wang, and Ye Yang. Quantitative analysis of faults and failures
with multiple releases of softpm. In Proceedings of the Second ACM-IEEE interna-

tional symposium on Empirical software engineering and measurement, ESEM ’08,
pages 198–205, New York, NY, USA, 2008. ACM.

[59] P. F. Xiang, A. T. T. Ying, P. Cheng, Y. B. Dang, K. Ehrlich, M. E. Helander, P. M.
Matchen, A. Empere, P. L. Tarr, C. Williams, and S. X. Yang. Ensemble: a recommen-
dation tool for promoting communication in software teams. In Proceedings of the

2008 international workshop on Recommendation systems for software engineering,
RSSE ’08, pages 2:1–2:1, New York, NY, USA, 2008. ACM.

[60] Andy Zaidman, Bart Rompaey, Arie Deursen, and Serge Demeyer. Studying the co-
evolution of production and test code in open source and industrial developer test
processes through repository mining. Empirical Softw. Engg., 16(3):325–364, June
2011.

[61] Andreas Zeller. Isolating cause-effect chains from computer programs. SIGSOFT

Softw. Eng. Notes, 27(6):1–10, November 2002.

[62] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

70

[63] Thomas Zimmermann and Nachiappan Nagappan. Predicting defects using network
analysis on dependency graphs. In Proceedings of the 30th international conference

on Software engineering, ICSE ’08, pages 531–540, New York, NY, USA, 2008.
ACM.

