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ABSTRACT

A parameterization is presented for turbulence dissipation due to baroclinic tide

impacting on abrupt shelf topography that is supercritical with respect to the tide.

The parameterization requires knowledge of the topography, stratification, and the

remote forcing velocity. Upon impact, the tide cascades to higher vertical modes.

Vertical internal modes that are arrested at the crest of the topography in the form of

lee waves are assumed to dissipate, while faster modes are assumed to propagate away.

The energy flux in each mode is predicted with topography that allows linear numer-

ical solutions. The parameterization is tested using high-resolution two-dimensional

numerical models of baroclinic tides impinging on an isolated shelf of various heights

approximated as a step-function. The recipe is seen to work well compared to numeri-

cal simulations of isolated shelves, although it consistently underestimates model flux

divergence. Despite low forcing velocities having a more accurate numerical linear so-

lution, the recipe does poorly because it does not accurately predict the modes that

become trapped and dissipate. Maximum dissipation occurs when flow is o↵-shelf and

lee waves form, indicating lee waves are the mechanism by which dissipation occurs.
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Chapter 1

Introduction

The creation of baroclinic tides from barotropic tides is believed to be a significant

source of mechanical energy that drives the large-scale circulation in the abyssal ocean

[Munk and Wunsch, 1998]. The process by which barotropic tides produce internal

tides and mixing is sometimes visualized as a cascade from tides to turbulence [Rud-

nick et al., 2003]. The cascade begins with barotropic tides impacting on topography,

such as the Hawaiian Ridge; upon impact, the barotropic tides create baroclinic tides.

Internal tides either radiate away from the topography or generate local turbulence.

The convergence of surface tidal energy at the Hawaiian Ridge suggests both a di-

vergence of internal tidal energy flux and local dissipation. Klymak et al. [2006] used

observations at the Hawaiian Ridge to determine that between 75% and 92% of lost

barotropic energy propagates away in the form of low-mode internal tides. The gen-

erated internal tides are low mode, high velocity, and low shear, and thus can radiate

large distances with minimal interference [Rudnick et al., 2003].

One possible fate of the radiating low-mode internal tide is dissipation on remote

topography. Kelly et al. [2013] indicate that mode-1 internal tides can travel uninhib-

ited for 1500 km to 4500 km through the abyssal ocean. Ultimately, the mode-1 tides

impact on topography. Although continental slopes are often ine↵ective generators of

internal tides due to barotropic flow being parallel to their prominent bathymetry, this

does not rule out their importance as locations of baroclinic tidal dissipation [Nash

et al., 2007]. In fact, linear calculations indicate two-thirds of mode-1 tides incident

on continental shelves are lost by scattering to higher modes or transmission on shelf

[Kelly et al., 2013]. Observations of the Oregon coast by Nash et al. [2007] reveal

intense turbulence and elevated dissipation within 500m of the bottom in regions of

rough, abrupt bathymetry, which they attribute largely to low-mode tides.
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Steepness is the characteristic of remote topography that dictates the behaviour of

radiating low-mode internal tides after impact on said topography. The steepness is

defined by the criticality of topography, and is governed by the angle of the slope with

respect to the horizontal dh/dx, the stratification of the water N(z), the frequency !,

and the Coriolis frequency f . The criticality of a slope is determined by comparing

dh/dx with the aspect ratio of the energy propagation of the internal waves:

� =

✓

!2 � f 2

N2 � !2

◆1/2

.

When � > dh/dx, the slope is considered sub-critical and an incoming internal tide

will reflect forewords o↵ the topography and will continue to propagate on-topography.

A critical slope occurs when � ⇡ dh/dx and produces turbulent overturns and non-

linear breaking events [Eriksen, 1982]. Super-critical topography (� < dh/dx) allows

energy to scatter on topography and continue to propagate over topography, dissipate,

as well as reflect back towards the incoming tide. The height of the topography, hs,

determines the size of the surface o↵ which reflection can occur, and by extension

controls the fraction of energy reflected. The reflected energy interacts with the

incoming tide to set up upward- and downward-travelling beams that radiate away

from topographic features. Additional parameters dictate the behaviour of a low-

mode tide impacting on a super-critical topography, such as the strength of the mode-

1 tide U0. Mode-1 of the low-mode tide carries most of the energy and influences the

fraction of energy that reflects, transmits, and dissipates.

The mechanism that is hypothesized to dominate dissipation at isolated, super-

critical topography is trapped lee waves, although observations are still needed for con-

firmation [Klymak et al., 2013]. Lee waves are generated near the crest of seamounts

and continental shelves during each tidal cycle and propagate away as the tide

changes. A recipe for parameterizing the dissipation at an isolated super-critical

seamount has already been developed and tested against numerical simulations for

isolated seamounts [Klymak et al., 2010b, 2013]. The recipe presented in Klymak

et al. [2013] explores a low mode internal tide impacting on a Gaussian bump mid-

ocean. The recipe predicts dissipation in lee waves by calculating energy flux from

linear generation at a knife edge and assuming all modes that move slower than the

appropriately averaged ridge-crest speed are arrested and eventually dissipate. Al-

though testing the recipe against numerical simulations showed the parameterization

to be reliable, only a small fraction of energy dissipated locally while the rest of the
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energy radiated away.

Since so much energy escapes supercritical topography, it raises the question where

the energy ultimately dissipates. In this thesis, the recipe presented by Klymak et al.

[2013] to parameterize mode-1 internal tides is generalized from a knife edge to a

step function to emulate idealized continental slope topography. Initially, the nu-

merical model employed will be described (chapter 2) as well as the phenomenology

(chapter 3) being explored. The parameterization recipe will then be outlined (chap-

ter 4) and tested against modelled results (chapter 5). Finally the results will be

summarized and discussed (chapter 6).
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Chapter 2

Numerical Model

The dissipation recipe of Klymak et al. [2013] was tested here against numerical sim-

ulations using the Massachusetts Institute of Technology general circulation model

(MITgcm) [Marshall et al., 1997], the same model used in numerous two-dimensional

wave problems [Klymak et al., 2010b, 2013]. The model used idealized step topogra-

phy described by

h(x) =

8

<

:

�H, x > 0

�H + hs, x < 0

where hs is the height of the shelf and H is the total water depth. The model

was run for varying hs, summarized in Table 2.1, while H was held constant at

H = 2000m. The stratification was set to N0 = 5.2⇥ 10�3 s�1 and the Coriolis

frequency was f = 5.2⇥ 10�5 s�1. The model was tidally forced by velocity nudging

at the deep-water boundary 500 km from the shelf. On the shelf boundary, a numerical

sponge was used to absorb energy that propagated on shelf, eliminating any secondary

reflection. The model was run using the hydrostatic approximation for numerical

e�ciency [Klymak et al., 2013, 2010b].

The dissipation treatment used for the MITgcm simulations in this study follows

the scheme presented by Klymak and Legg [2010]. It applies enhanced vertical viscos-

ity and di↵usivity in regions of density overturns produced by breaking waves. The

di↵usivity is scaled by the size of the density overturns, thus energy loss " is consistent

with the Ozmidov scale L0: " = L2
0N

3. In this case, N is the density-sorted stratifica-

tion in the overturn. " is in turn used to determine turbulent viscosity and di↵usivitity

of K⌫ = 0.2"/N2 or K⌫ = 10�5 m2 s�1, whichever is larger. The dissipation in the

scheme must be driven by breaking waves and does not parameterize shear-driven
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turbulence, which works for our case but is not universally applicable. If the breaking

internal waves are small compared to the vertical grid size, the dissipation can remain

unresolved. Despite the limitations, comparison with other standard schemes reveal

consistent results making the Klymak and Legg [2010] scheme appropriate for the

parameter space employed here.

The horizontal and vertical resolutions of the model employed a telescoping coor-

dinate system to both save computational power and resolve the breaking waves. The

horizontal resolution, �x, is 50m over the shelf-break, and then telescopes to 3500m

over 125 steps to the left of the shelf-break. Right of the shelf break the resolution

increases to 200m for 950 steps and then telescopes back up to 3500m over the final

125 steps (Figure 2.1a). The same telescoping horizontal resolution is used for all

model runs. The vertical resolution, �z, is spread over 200 steps, and the location

of the telescoping changes depending on the shelf height. The finest resolution is 5m

over 100 steps and is centred around the shelf height. On either side of the 100 steps

of fine resolution, the resolution scales linearly to 25m (Figure 2.1b).
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Figure 2.1: (a) The horizontal resolution, �x plotted against x, and (b) depth plotted
against vertical resolution �z.
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H(m) hs (m) U0 (m s�1) �z (m) f (s�1)
2000 600 0.04, 0.8, 0.12, 0.18, 0.24 5 5.2⇥ 10�5

2000 1010 0.04, 0.8, 0.12, 0.18, 0.24 5 5.2⇥ 10�5

2000 1400 0.04, 0.8, 0.12, 0.18, 0.24 5 5.2⇥ 10�5

Table 2.1: Summary of model run parameters: H is the total water depth, hs is the
height of the shelf, U0 is the velocity of the incoming mode-1 tide, �z is the finest
vertical resolution, and f is the Coriolis frequency

The model was run for 10 - 20 tidal cycles with baroclinic mode-1 forcing. Three

di↵erent shelf heights were chosen and the parameters of di↵erent model runs are

summarized in Table 2.1.
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Chapter 3

Phenomenology

We explore a mode-1 internal tide impacting on a continental shelf idealized as a step

function. The problem is comprised of three components: an incoming component,

a reflected component, and a transmitted component. The mode-1 incoming com-

ponent propagates towards the shelf (Figure 3.1a). The incoming component hits

the continental shelf and scatters into higher modes that reflect and transmit (Fig-

ure 3.1b). The reflected component interacts with the incoming component to set

up a beam-like standing wave pattern that contains traveling beams radiating away

from the shelf, as expected in a super-critical scenario. The lower modes have fully

reflected and have set up the basic structure of the standing wave pattern; however,

the slower, higher modes have not travelled as far and have only reflected to part-way

across the basin (Figure 3.1c). The transmitted component propagates on shelf where

the energy contributes to coastal mixing processes. There is no secondary reflection.

3.1 Qualitative Comparison between Analytical and

Model Solutions

Modelled results as they approached steady state were compared with a linear analyti-

cal solution (Equation 4.1, Equation 4.2, and Equation 4.3), as described in chapter 4.

A modelled radiated wave field is faithful to the analytical solution at weak forcing,

but less faithful at stronger forcing (Figure 3.2). All comparisons are made for a

shelf of hs = 1400m for 3 di↵erent forcing velocities, all scaled by U0. When U0 is

weak (Figure 3.2a and b) the modelled results and the analytical solution compare

well. The higher modes set up a clear, defined beam pattern similar to the pattern
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Figure 3.1: (a) The horizontal velocity of a simulated mode-1 internal wave ap-
proaches a continental shelf of 600m at 0.1m s�1, (b) impacts the continental shelf,
starting to set up a standing wave pattern. (c) By the 20th tidal cycle the wave
pattern is established
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Figure 3.2: Plots of the horizontal velocity normalized by U0. The left column shows
the modelled results and the right column shows the linear analytical results for an
incoming wave forced at (a - b) U0 = 0.04m s�1, (c - d) U0 = 0.10m s�1 , and (e - f)
U0 = 0.24m s�1.

predicted by the analytical solution. The medium U0 model results also sets up a

clear beam pattern; however, the resulting beams are not as well defined as they were

for the weaker forcing. Finally, the highest U0 retains the large-scale features of the

analytical solution, but has defocused beams even close to topography.

3.2 Lee Wave Formation

Unlike the analytical solution, the model solution is subject to dissipation; lee waves

that form at the shelf break, become trapped, and ultimately dissipate. To e↵ec-

tively illustrate this mechanism, the o↵-shelf phase of the internal tide interacting

with the continental shelf is plotted for the largest forcing velocity, U0 = 0.24m s�1

(Figure 3.3). When the flow is dominantly on shelf (blue) the isopycnals are parallel

and there is minimal dissipation but there is still a thick mixed layer directly above

the shelf break and centred at 1350m (Figure 3.3a). As the flow changes to o↵ shelf
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(orange), a hydraulic jump-like feature begins to establish directly above the shelf

break (Figure 3.3b - c), as is evident in the isopycnals. A lee wave begins to form at

the shelf break (Figure 3.3b). The lee wave is fully formed and turbulent t/T = 0.3

tidal cycles after it began to form (Figure 3.3c) and then propagates left as the o↵

shelf flow turns and relaxes (Figure 3.3d).

Figure 3.3: The lee wave formation that occurs as the tide turns from dominantly
on-shelf (a, blue), to o↵-shelf (b, orange), on a 600 m shelf forced by U0 = 0.24m s�1.
As the o↵ shelf flow increases (b - c) the size of the lee wave increases until it begins
to propagate o↵ shelf (d) as the tide relaxes. Upper row displays horizontal velocity
and lower row displays turbulent dissipation.

During the o↵-shelf phase of the internal tide (Figure 3.4), the flow is significantly

di↵erent. Initially the tide is turning and beginning to relax. There is a fully formed

turbulent lee wave with a large mixed layer centred around 1400m and significant

dissipation.(Figure 3.4a). As the flow strengthens in the on-shelf direction, the thick

low stratification layer becomes less vertical and takes on more of a horizontal shape

centred around 1350 m and the amplitude of the lee wave decreases (Figure 3.4b).

The large mixed layer and lee wave continue to relax and the dissipation decreases



11

to nearly negligible (Figure 3.4c) until the flow begins to reverse direction again

and return to an o↵-shelf flow (Figure 3.4d). As the flow begins to move o↵-shelf,

the dissipation is still very low and the isopycnals have achieved a nearly horizontal

state.

Figure 3.4: The lee wave formation that occurs as the tide turns from dominantly
o↵-shelf (a, blue), to on-shelf (b, orange), on a 600 m shelf forced by U0 = 0.24m s�1.
As the on shelf flow increases (b-c) the lee waves formed during the previous phase
of the tide relax and produce little-to-no dissipation. Upper row displays horizontal
velocity and lower row displays turbulent dissipation.

3.3 Dissipation Location

Knowing the location in both space and time of maximum dissipation helps demon-

strate the dominance of lee waves as the dissipation mechanism. The dissipation,

depth-integrated and averaged over 1 tidal cycle (Figure 3.5a) is at background lev-

els on the shelf. At the shelf-break, the dissipation spikes and then slowly decays

to background values o↵-shelf. Averaged over 1 tidal cycle, the dissipation forms a
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halo around the shelf-break with the majority occurring at shelf height and slightly

o↵-shelf (Figure 3.5b), supporting dissipation approaching background levels on- and

o↵-shelf. The dissipation was also very time-dependent. The horizontal velocity was

averaged 200m above a 600m shelf (200m was chosen because it is the approximate

half-wavelength of a lee wave formed under the given conditions; details to follow

in chapter 4) and the dissipation was calculated within 6 km on- and o↵-shelf (Fig-

ure 3.6). Maximum dissipation occurred in phase with maximum flow o↵-shelf at

the depth of the shelf break. Dissipation was e↵ectively zero when flow was on-shelf,

despite flow being nearly 3 times as strong. As previously illustrated, lee waves only

form when flow is o↵-shelf, thus the maximum dissipation occurring in-phase with

weaker flow o↵-shelf rather than stronger flow on-shelf indicates that the presence of

lee waves causes dissipation.

Figure 3.5: The average turbulent dissipation over 1 tidal cycle, shown (a) depth
integrated, and (b) over the shelf-break
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Figure 3.6: (a) The horizontal velocity for a U0 = 0.24m s�1 incoming tide averaged
at x = 0 for 200m above the 600m shelf for 2 tidal cycles; (b) turbulent dissipation
within 6 km on- and o↵-shelf for the same 2 tidal cycles.
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Figure 3.7: The lee wave formation that occurs as the tide turns from dominantly
o↵-shelf (blue), to on-shelf (orange), on to a 600 m shelf with (a) low forcing of
U0 = 0.4m s�1, (b) medium forcing of U0 = 0.12m s�1, and (c) high forcing of U0 =
0.24m s�1. The left column of panels show the horizontal velocity and the right
column of panels show the corresponding turbulent dissipation.
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3.4 Dependence on U0

The di↵erence in structure of the lee wave is examined for 3 di↵erent baroclinic

forcings U0: 0.04m s�1 (low), 0.12m s�1 (medium), and 0.24m s�1 (high) (Figure 3.7).

Using a low U0 forcing produces resulting lee waves that are barely discernible and

the isopycnals have minimal movement (Figure 3.7a). There are well defined beams

radiating away from the shelf and some minimal dissipation. The medium forcing

(Figure 3.7b) results in a lee wave that is larger, implying that more modes and

thus more energy are being trapped on shelf to form the lee wave. The deep water

still has relatively well-defined beams; however, the beams are thicker, indicating the

dominance of a larger vertical wavelength, which is consistent with the trapping of

higher modes by turbulence. Finally, the high forcing (Figure 3.7c) has a very large

lee wave and thick, poorly-defined radiating beams, therefore continuing to support

the concept that only the very low modes radiate o↵ shelf and the rest are trapped

and ultimately dissipate.

3.5 Dependence on Shelf Height

The shelf height impacts the size of the produced lee waves and resulting dissipation,

with a low shelf producing more dissipation than a high shelf. The di↵erence in

velocity and lee wave formation for the three di↵erent shelf heights are all shown,

with the same colour axis and the same U0 (Figure 3.8). The lowest shelf height

(Figure 3.8a) results in the highest local velocity at the shelf break (0.19m s�1) that

produces the largest lee waves. As discussed earlier, a large lee wave corresponds to

a high dissipation, as is demonstrated by the dissipation plot. A large lee wave is

caused by lower modes carrying more energy being arrested, thus the dissipation from

a large lee wave includes more energy. As the shelf height increases (Figure 3.8b),

the local velocity at the shelf break (0.14m s�1) and size of the lee wave decreases as

does the dissipation. The higher shelf heights have a larger reflected surface for the

incoming energy, so the beams radiating away from the shelf are more defined and

focused, again indicating more energy escaping. It is readily apparent that the highest

shelf height (Figure 3.8c) has the weakest local velocity (0.06m s�1) that produces

smallest lee waves and lowest dissipation. The high shelf provides a large surface

against which the incoming energy can reflect with minimal dissipation, leading to

the slim, well defined beams.
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Figure 3.8: The lee wave formation that occurs as the tide turns from dominantly
o↵-shelf (blue), to on-shelf (orange), when a mode-1 wave of U0 = 0.12m s�1 impacts
the shelf. The local velocity 200m above each shelf height is very di↵erent: (a) a low
600m shelf has a local velocity of 0.19m s�1 (b) a medium 1010m shelf has a local
velocity of 0.14m s�1, and (c) a high 1400m shelf has a local velocity of 0.06m s�1.
The left column of panels show the horizontal velocity and the right column of panels
show the corresponding turbulent dissipation.
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3.6 Steady State

To enable comparison between the analytical solution and the model results in steady

state, the model results are examined to determine when they achieve steady state.

A mode-1 tide approaches the shelf carrying significant energy flux (Figure 3.9a).

Upon impact, the energy scatters into many modes that reflect back into the basin at

di↵erent velocities. The reflected low modes are faster and interfere with the incoming

mode-1 flux first; thus, when averaged over a tidal cycle the net flux is significantly

less than the original incoming flux (Figure 3.9b). As time progresses, lower modes

also propagate across the basin such that the next flux is e↵ectively constant and thus

in steady state. In addition to the flux setting up a steady state, the dissipation also

sets up a steady state. Immediately after impacting the shelf, the initial scattering

produces a tidal cycle of maximum dissipation (Figure 3.10). Within a few tidal

cycles, the solution begins to form and the dissipation is constant with time, and

remains constant from the 8th to the 14th tidal cycle. After the 14th tidal cycle the

dissipation decays further due to stratification being mixed and the solution achieving

a more steady energy balance and a more fully formed solution. In future calculations

when values over a single tidal cycle are required, the measurements will be from the

9th tidal cycle. The 9th tidal cycle is a good choice because the initial period of

high-dissipation has passed, but mixing has not caused the initial stratification to

decay extensively.



18

0

10

20

30
(a) 3th tidal cycle

0

10

20

30

N
e
t 
F

lu
x 

[k
W

]

(b) 7th tidal cycle

0 50 100 150 200 250 300 350 400 450
0

10

20

30

Distance from Shelf Break [km]

(c) 19th tidal cycle
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impacted by a U0 = 0.12m s�1 tide, smoothed over 2 tidal cycles.
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Chapter 4

Parameterization

Similar to Klymak et al. [2010b] and Klymak et al. [2013], the parameterization for

turbulence dissipation at an isolated supercritical topography assumes that reflected

and transmitted vertical modes with a horizontal speed faster than the baroclinic

velocity at the slope-crest escape, while other modes are arrested and dissipate locally.

To formulate the recipe, we follow a geometric approach, parallel to Klymak et al.

[2013, 2010b] and St. Laurent et al. [2003]. In the absence of a barotropic forcing, the

flow is decomposed into 3 baroclinic waves: an incident wave, ui, a reflected wave,

ur, and a transmitted wave, ut (Figure 4.1). The ocean is stretched via a WKB

(Wentzel-Kramers-Brillouin) co-ordinate transform to a constantly stratified ocean.

The coordinate transform is normalized such that H = Ĥ is the depth of the ocean

basin and the shelf depth is ĥs =
R 0

h
s

N(z)
N0

dz, where N(z) is the stratification, N0 is

the buoyancy frequency, and ĥs is the depth of the ocean above the shelf.

Each wave can then be described as a sum of n vertical modes. Vertical modes

isolate the vertical structure of internal waves and are formed from the equations of

motion by separation of variables. They must obey the eigenvalue problem in the

vertical
d2�(z)

dz2
+

N2

c2e
�(z) = 0

where �(z) is the vertical signal being decomposed into modes and ce are the eigen-

values. Boundary conditions are imposed at the sea surface and sea floor such that

d�/dz(z = 0) = d�/dz(z = �H) = 0 and the eigenvalue problem has orthogonal

solutions that allow the flow to be broken down into discrete vertical modes [Kundu,
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Figure 4.1: Schematic describing the essential elements of the parameterization, in-
cluding the incident wave (ui), reflected wave (ur), and transmitted wave (ut).
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1990]. The solution for �(z) must therefore have the vertical structure

�n(z) = cos
⇣⇡nz

H

⌘

where n is an integer that indicates the vertical mode and �n(z) is the vertical struc-

ture of the nth mode of �(z).

The velocities must obey the continuity equation, therefore

ut = ui + ur, z > �h

0 = ui + ur,�H < z < �h

wt = wi + wr,�H < z < 0

where wi, wr and wt are the vertical velocities of the incoming, reflected, and trans-

mitted wave, respectively.

By following Klymak et al. [2011] (similar to St. Laurent et al. [2003]), the coupled

set of equations is achieved and solved for ai(n), the amplitude of the incoming

component, ar(n), the amplitude of the reflected component, and at(n), the amplitude

of the transmitted component, using l, m, and n as mode indices

ai(m) + ar(m) = A(m,n)at(n)

at(n) = B(n, l)[ar(l)� ai(l)]

which are then solved for ar(m)

ar(m) = (A(m,n)B(n, l)� I(m, l))�1(A(m,n)B(n, l) + I(m, l))ai(l)

and at(n)

at(n) = B(n, l)(ar(l)� ai(l))

where A(m,n) and B(n, l)

A(m,n) =
2m�2(�1)n sin(m⇡�)

⇡[m2�2 � n2]

B(n, l) =
2n(�1)2 sin(l⇡�)

⇡[n2 � l2�2]
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and � = ĥs/Ĥ and I(m, l) is the identity matrix.

Now that we have the amplitudes of the waves as a function of mode, we can

describe the three waves in our problem as

ûi = Re

(

X

n

ai(n) cos

✓

n⇡ẑ

Ĥ

◆

ei(knx�!t)

)

(4.1)

ûr = Re

(

X

n

ar(n) cos

✓

n⇡ẑ

Ĥ

◆

ei(knx+!t)

)

(4.2)

ût = Re

(

X

n

at(n) cos

✓

n⇡ẑ

ĥs

◆

ei(k
s

n

x�!t)

)

(4.3)

The coe�cients, ai(n), ar(n), and at(n) are complex to accommodate the di↵erent

phases of the waves with respect to each other when they arrive at the continental

shelf. kn = ↵n⇡/Ĥ and ks
n = ↵n⇡/ĥs are the horizontal wavelengths in the deep

basin and shelf, respectively. The three waves are then used to calculate the energy

flux as a function of mode number (Appendix section A.3), resulting in the equations

Fi(n) = Ĥ
g(!)

m(n)

a2i (n)

4
(4.4)

Fr(n) = Ĥ
g(!)

m(n)

a2r(n)

4
(4.5)

Ft(n) = ĥs
g(!)

m(n)

a2t (n)

4
(4.6)

where Fi(n), Fr(n), and Ft(n) are the incoming, reflected, and transmitted energy

as a function of n, m(n) = n⇡/Ĥ and

g(!) = ⇢
[(N2

0 � !2)(!2 � f 2)]1/2

!
.

We now want to know what modes have a horizontal velocity slower than the

velocity at the shelf crest and will be trapped, form lee waves, and dissipate. A

procedure parallel to Klymak et al. [2013] is employed. The linear solution for the

total velocity at the shelf break is calculated by summing the lower modes up to an
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arbitrary cuto↵ of M

uM(z, t) =
M
X

n=0

a(n)�n(z)e
i(k

n

x�!t)

where a(n) = at(n) for the on shelf solution and a(n) = ar(n) + at(n) for the o↵

shelf solution. The cumulative velocity uM(z, t) is then averaged over half a vertical

wavelength of the M th critical mode �M = H/M and the maximum over a tidal cycle

is chosen

UM = max
⇣

huM(z, t)i�H+h
s

+�
M

z=�H+h
s

⌘

tide
(4.7)

Klymak et al. [2013] shows the lee wave to be on the order of half a vertical

wavelength of the arrested mode, which is the motivation for the vertical averaging

scale. Since the critical mode is unknown, UM is calculated and compared with cM ,

the eigen speed of the M th mode

cM = ce(M) =
NH

M⇡
. (4.8)

The critical mode is then chosen to be the lowest mode where cM  UM . In the

hydrostatic nonrotating limit the eigen speed is equal to the phase and group speed

of lee waves because !lee >> f . The hydrostatic tidal-frequency phase speed relates

to the eigen speed by cp = cn!/(!2 � f 2)1/2 thus the eigen speed can be used to

choose the critical mode without changing the results [Klymak et al., 2010b].

It is important to note that this procedure must be performed twice: once for on

shelf velocities by calculating uM using a(n) = at(n) and providing a critical mode

Mt, once for o↵ shelf velocities by calculating uM using a(n) = ai(n)+ar(n) resulting

in a critical mode Mr. From the critical mode, which is the lowest arrested mode,

the dissipation, D, is easily calculated as

D =
1
X

n=M
t

Ft(n) +
1
X

n=M
r

Fr(n) (4.9)

where Fr(n) and Ft(n) is the energy predicted to be put into each mode of the reflected

and transmitted components, respectively.

To summarize, in this recipe

1. determine the linear response due to forcing represented by the modal ampli-

tudes ai(n), the coe�cients at(n), ar(n), and the energy fluxes Ft(n) and Fr(n);
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2. iterate through all modes M to determine a velocity scale at the top of the shelf,

in the deep and shallow water UM ;

3. the lowest mode with eigenspeed slower than the corresponding UM (i.e., cr 
UM , in the deep water) is chosen as the critical mode in the deep and shallow

water;

4. the dissipation is the sum of energy put into modes M and higher: D =
P1

n=M Fr(n) + Ft(n)



26

Chapter 5

Results

The energy budget for the shelf system is calculated 6 km on- and o↵-shelf. The

energy source for the system is the incoming mode-1 baroclinic tide (Fi) that is

forced remotely via velocity nudging. The incoming energy scatters into modes at

the shelf break. Energy reflects and transmits in the form of baroclinic (Fr and Ft,

respectively) and barotropic (Fr,BT and Ft,BT , respectively) energy. A small fraction of

the incoming energy does not escape as reflected or transmitted energy and dissipates

at the shelf-break. The amount of energy that does not escape is the flux divergence

(Fdiverg). The energy terms in the system can be summarized as

Fdiverg = (Fi + Fr + Fr,BT )� (Ft + Ft,BT ).

In the deep, o↵-shelf water the incoming and reflected energy flux interfere such

that the flux calculated directly from the mode is the net flux (Fd). The flux diver-

gence is calculated from the net flux in the deep and shallow water 6 km on- and

o↵-shelf:

Fdiverg = (Fd + Fd,BT )� (Ft + Ft,BT ).

When calculating the energy budget from the model, the net velocity of the baroclinic

tide on- and o↵-shelf was decomposed into mode components. Since all incoming

baroclinic energy is in mode 1, the mode-1 net velocity o↵-shelf was separated into an

incoming and outgoing component. When separating into the incoming and outgoing

component, a time series over 2 tidal cycles is fit by an ellipse. Depending on the

strength of the incoming velocity U0 and the shelf height, the ellipse fit to the time

series can be very good or poorer. A good fit occurs when all the values in the time
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series fit tightly to the ellipse, and a poor fit occurs when the ellipse requires a lot of

approximations and many time series values do not fall on the ellipse. The incoming,

reflected, and transmitted baroclinic flux was then calculated from the separated and

decomposed velocities (Table 5.1, Appendix A).

The barotropic flux is a minor energy sink for the incoming mode-1 baroclinic

energy. The reflected and transmitted barotropic flux accounts for less than 1 % of

the incoming baroclinic energy (Figure 5.1). For each shelf-height, the percentage of

barotropic flux is consistent and dependent on the height of the shelf, rather than the

forcing. In the shallow water above a 600 m shelf, the barotropic energy flux sinks

less than 0.05 % of the incoming energy. The the barotropic flux in the shallow water

on-shelf for a medium 1010 m shelf sinks at most 0.08 %, and for a high 1400 m shelf

approximately 0.02 % (Figure 5.1). In the deep water o↵-shelf, the barotropic tide

also sinks a small percentage of the incoming baroclinic energy: 0.95 % for a 1400 m

shelf, 0.6% for a 1010 m shelf, and 0.25 % for a 600 m shelf.

0

0.02

0.04

0.06

0.08

0.1

B
a
ro

tr
o
p
ic

 %
 (

S
h
a
llo

w
)

0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

V [m/s]

B
a
ro

tr
o
p
ic

 %
 (

D
e
e
p
)

 

 

1400 m shelf
1010 m shelf
600 m shelf

Figure 5.1: (a) The percentage of net energy in the shallow water 6 km on-shelf
that is in the form of barotropic energy averaged over the 9th tidal cycle, and (b)
the percentage of net energy in the deep water 6 km o↵-shelf that is in the form of
barotropic energy averaged over 9th tidal cycle.

The baroclinic flux calculated from the linear solution agrees with the baroclinic

flux produced by the numerical model results. The flux for the incoming, reflected,
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and transmitted components can all be calculated using the linear solution to the

step function problem (Equation 4.4, Equation 4.5, and Equation 4.6). We compare

the modelled energy flux averaged over the 9th tidal cycle 6 km on- and o↵-shelf to

the linear solution for all three shelf-heights: 1400m, 1010m, and 600m (Figure 5.2,

Figure 5.3, and Figure 5.4, respectively). When the mode number is low, the flux

calculated from the linear solution is a very good estimate of the model flux, regardless

of shelf height or forcing velocity. As mode number increases, the linear solution

provides an increasingly poor estimate of flux for all U0. The linear solution is in

steady state and assumes no dissipation, whereas the model undergoes dissipation

and as mode number increases the flux falls away from the linear solution. The flux

drop o↵ is at higher modes, indicating that they are dissipated. As forcing increases,

lower modes drop o↵ and thus more modes are dissipated. The strongest forcings

fall away from the linear solution at the lowest modes and have a low cuto↵ mode.

The weakest forcings have the least dissipation and a very high mode cuto↵,and thus

follow the linear solution very well.

The iterative procedure to determine the cuto↵ mode from the parameterization

recipe will be illustrated step-by-step. The procedure is designed to predict the critical

mode where higher modes are arrested at the shelf-break and dissipate, while lower

modes escape and propagate away. An example profile is considered for a ridge height

of 600 m and U0 = 0.12m s�1 (Figure 5.5). All modes summed together (red lines,

which are the same in all panels) have an abrupt maximum as the top of the shelf

and then experience a zero crossing approximately 400 m above the shelf. If a critical

mode of M = 10 is chosen (Figure 5.5a), c10 = 0.33m s�1 (black dashed line) and

the profile of U10 (blue curve) is only composed of the first 10 modes. The mean

of the M = 10 line for a half wavelength above the ridge crest is less than c10:

U10 = 0.17m s�1. Thus, mode 10 is not critical and can propagate away from the

shelf in the reflected direction. When the same procedure is applied to M = 16 and

M = 20, both are too high, but M = 15 is critical. If the incoming mode-1 tide is

stronger in amplitude, there is a corresponding drop is in critical mode as amplitude

increases (Figure 5.6). The same procedure must be applied to the shallow water to

determine the critical mode for the transmitted wave.

The dissipation was calculated from the recipe for 3 di↵erent shelf heights and 5

di↵erent forcing velocities each (Table 2.1). The model dissipation was also calcu-

lated from the model for shelf height and forcing velocity using two di↵erent methods.

The first method was to calculate dissipation by determining the flux divergence, or
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Figure 5.2: Energy flux averaged over the 9th tidal cycle for a shelf of 1400m. Left
column shows the reflected flux 6 km o↵-shelf, and right column shows the transmitted
flux 6 km on-shelf. Top shows flux normalized by U2

0 and the bottom shows the
ratio between the modelled and parameterized flux. Note that the bottom plots are
smoothed over 3 modes; however the upper plots are not smoothed.

rather the di↵erence in net incoming and outgoing fluxes. The second method was to

determine dissipation was by integrating the dissipation values over the shelf-break

calculated by the model using the numerical dissipation scheme. The numerical dissi-

pation scheme is employed because it allows turbulent dissipation calculations without

requiring direct numerical simulations. Numerical simulations of dissipation are pro-

hibitively computationally expensive. The two methods for calculating dissipation

values from the model yielded di↵erent results; the values calculated from the flux

divergence were significantly lower (Table 5.1). The advection scheme employed by

the model is noisy, and some of the noise produces extra dissipation in the dissipa-

tion scheme calculations. A finer vertical model resolution allows significant noise

to develop due to inaccuracies in the advection scheme producing more overturns,

thus calculated dissipation values are too high [Klymak and Legg, 2010]. We have
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Figure 5.3: Energy flux averaged over the 9th tidal cycle for a shelf of 1010m. Left
column shows the reflected flux 6 km o↵-shelf, and right column shows the transmitted
flux 6 km on-shelf. Top shows flux normalized by U2

0 and the bottom shows the
ratio between the modelled and parameterized flux. Note that the bottom plots are
smoothed over 3 modes; however the upper plots are not smoothed.

more confidence in the dissipation values calculated from flux divergence because the

method employed is a more direct calculation of the energy loss over the shelf.

The dissipation predicted by the recipe (Dparam) agrees very well with the dissi-

pation calculated directly from the two-dimensional numerical model results (Dmodel,

Figure 5.7, small squares). The underestimation of dissipation by the recipe indicates

that the recipe does not chose critical modes low enough and more modes are being

dissipated in the model than are being dissipated by the recipe. Figure 5.2, Figure 5.3

and Figure 5.4 all show that at strong forcing velocities (pink, cyan, and blue) the

recipe’s chosen cuto↵ mode (the horizontal dotted line) occurs at a higher mode than

the mode at which the visible flux roll-o↵ occurs. At low dissipations the recipe be-

gins to significantly under predict the flux divergence. The flux divergence approaches

minimal background dissipation values, whereas the recipe and direct model dissipa-



32

10
0

10
2

10
4

10
6

F
lu

x 
/U

0
 2

Reflected

 

 
0.24 m/s
0.18 m/s
0.12 m/s
0.06 m/s
0.04 m/s
Linear Theory

0 5 10 15 20
0

0.5

1

1.5

Mode #

F
lu

x m
/F

lu
x p

Transmitted

0 2 4 6 8 10
Mode #
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tion results do not encounter such a physically limiting factor. The recipe, and to

a lesser extent the direct model dissipation results, continue to predict smaller and

smaller dissipation values. Note that the dissipation in both the parameterization

and the model scales with U3
0 (Figure 5.8), allowing comparison of model runs with

a range of forcings on the almost-collapsed curve.

Motivation for exploring the parameterization came from a desire to understand

contributions to deep ocean mixing. A very small percentage of incoming flux is dissi-

pated at the shelf-break (Figure 5.9); even at the strongest U0, when U0 = 0.28m s�1,

less than 3% of the incoming energy is dissipated. Both a 600m shelf and a 1010m

shelf have dissipation that scales linearly from less than 0.5% at the lowest forcing of

U0 = 0.04m/s to 2� 3% at the strongest forcing of U0 = 0.28m s�1 (Figure 5.9).
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Chapter 6

Discussion of Results

In this thesis, a simple parameterization for dissipation of mode-1 baroclinic tides

impacting on an abrupt shelf was presented and compared with numerical model

results. Thus far we have illustrated that turbulent dissipation at supercritical shelf

topography generated by mode 1 baroclinic tides is localized at the shelf crest. The

dissipation at abrupt shelf topography is located at the shelf-break (Figure 3.5) and

occurs when the flow is o↵-shelf (Figure 3.6). The flow o↵-shelf also creates lee waves,

implying that trapped lee waves are a mechanism by which dissipation occurs. The

dissipation caused by the trapped lee waves can be reliably predicted a priori using

linear generation from a step function and assuming all modes with a speed slower

than the appropriately averaged baroclinic speed at the shelf crest dissipate locally.

The critical mode was determined by iterating through all the modes (Figure 5.5).

Each mode was presumed critical and all subcritical modes were averaged over the

half wavelength above the shelf crest of the presumed critical mode.

The parameterization recipe tested fairly well against numerical results using ide-

alized topography. Regardless of the shelf height, the parameterization had good

predictive ability, although consistently under-estimated flux divergence (Figure 5.7).

As forcing U0 decreased and dissipation approached background levels, the parameter-

ization significantly under-predicted flux dissipation. The flux divergence encounters

limitations due to the discretization and numerical techniques applied to the model,

but the parameterization is not subject to the same limitations. In addition, the in-

tegration of model dissipation can result in over-applying regions of high dissipation.

At high forcing U0, the parameterization is a much closer estimate of the flux diver-

gence. The parameterization chooses cr and ct such that the cuto↵ modes are higher

than the cuto↵ modes that occur in the data (Figure 5.2, Figure 5.3, and Figure 5.4),
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indicating that the parameterization assumes that fewer modes dissipate than the

model demonstrates.

The parameterization shows that a minimal contribution is made to deep ocean

mixing by mode-1 waves impacting a continental shelf. We have presented the per-

centage of incoming energy that dissipates on shelf (Figure 5.9). It is evident that

a very small percentage of energy is dissipated at the shelf-break, particularly for a

high shelf. The percentage of energy dissipated increases with U0; however, even for

strong forcings the percentage is still very low.

There are a number of errors in the model that contribute to the discrepancy be-

tween model and parameterized results. The employed dissipation scheme is known

to be limited at small-scale turbulence, leading to inaccurate dissipation and flux di-

vergence. Although the model was run for 10 tidal cycles until dissipation approached

steady-state, additional tidal cycles may have ensured that the energetics region of

interest was closer to steady-state. The model had a numerical sponge on shelf to

absorb all transmitted energy and eliminate any secondary reflection; however, a min-

imal secondary reflection may have occurred. The sharp, abrupt topography applied

to the model also causes unrealistic overturns and dissipation in the model. Error

creeps up in the analysis when separating the incoming and reflected tides. The ex-

actness of the fit was dependent on the smoothness of the ellipse, therefore when the

system was energetic the ellipse was not completely smooth and the separation was

imperfect. The parameterization is also subject to errors. The parameterization does

not include barotropic forcing, and although it has been shown to be a small compo-

nent the barotropic forcing is not negligible, especially when calculating net fluxes.

Our analysis has shown that the parameterization predicts mode cuto↵s higher than

the model demonstrates which will lead to the parameterization under-predicting

dissipation, again causing discrepancy between the model and parameterization.

Despite errors the parameterization is good, but there is room for improvement

and refinement through further development and testing with model results.

1. The algorithm used to determine the mode cuto↵s cr and ct has proven insu�-

cient and needs to be refined;

2. All runs were forced in mode-1; however, using forcing in mode-2 and combina-

tions of mode-1 and mode-2 forcing may be more realistic to certain real-world

scenarios;

3. The parameterization assumes there is only 1 reflection at the shelf break
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whereas it would be valuable to extend the parameterization to include a sec-

ondary reflection point;

4. Including a parameter that accounts for the roughness of the topography would

allow the parameterization to be more universally applicable.

5. Klymak et al. [2010b] apply a similar parameterization to a barotropic-forced

system, thus combining his techniques with the techniques presented would

produce a parameterization applicable to systems forced both barotropically

and baroclinically.

6. Ultimately, applying the parameterization to in-situ measurements, such as

those acquired by Nash et al. [2007] on the Oregon coast would confirm the

e↵ectiveness in real-world scenarios.

The findings presented here do not manage to answer the question of what happens

to low-mode tidal energy that radiates away from supercritical ridges. The supercrit-

ical scattering process has not proven to be an e�cient mechanism for dissipation. It

is possible, as considered in Klymak et al. [2013], that mode-1 waves move through

ocean basins with minimal meaningful interaction with topography. Klymak et al.

[2013] note that remote mode-1 internal tides can interfere with generation of new

mode-1 tides from the barotropic tide. Such an interference generates a complicated

picture of the ocean with mode-1 energy with a nontrivial pathway to turbulence. We

have shown that a significant pathway could be dissipation in shallower water; how-

ever, the turbulence would not drive deep-ocean mixing. Other potential pathways

include small-scale rough topography and near-critical slopes, but regardless of the

pathway, low mode internal tides need to be treated on a basin-scale, rather than a

local and isolated problem.
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Appendix A

Numerical Techniques

A.1 Mode Decomposition

To perform the complete velocity decomposition it is necessary to start with a time

series (for convenience, say 1 tidal period) at a single x-location throughout the depth

of the water column. It is important to note that the v velocity data gleaned from

the MITgcm model is the net velocity (ie: in the deep basin the di↵erence between

the velocity of the incoming and reflected waves). Further processing is necessary

to separate the net velocity into incoming and reflected components, which will be

described later.

The net velocity data can be described as

u(z, t) = un(n, t)Un(z)

where

Un(z) =

0

B

B

B

B

@

cos( z1⇡
H
) cos(2z1⇡

H
) ... cos(nz1⇡

H
)

cos( z2⇡
H
) cos(2z2⇡

H
) ... cos(nz2⇡

H
)

...
...

. . .
...

cos(H⇡
H
) cos(2H⇡

H
) ... cos(nH⇡

H
)

1

C

C

C

C

A

which can then be rearranged to solve for un(n, t). The result is a time series for each

mode n. We can further describe each mode as

un(n, z, t) = an cos(!t) cos
⇣n⇡z

H

⌘

A harmonic fit is then applied to each mode number over the time series. The
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harmonic fit incorporates amplitude and phase shift information. Using the ampli-

tude and phase information, a new, complex time series can be constructed to more

completely describe the same velocity information:

vn(n, t) = ↵ne
i(!t+�

n

)

where ↵n is the complex amplitude of the nth mode.

To check to see if the decomposition has worked, the modes can be used as the

amplitudes for a summation of cosine curves that reconstruct the raw data from which

the decomposition was performed (Figure A.1)
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Figure A.1: The net velocity 6 km o↵-shelf for a 600 m shelf and an incoming velocity
of U0 = 0.06m s�1, and the reconstruction of the velocity profile by summing modes
1 to 5, 1 to 10, and all modes

A.2 Separation of Incoming and Reflected veloci-

ties

Thus far, the velocities used are all net velocities. Using the v net velocity and w net

velocity, the net velocities can be separated into incoming and outgoing velocities. It
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is significant to note that w velocity can be broken into modes in a manner parallel

to the v velocity, except that the modes take the form of a sine rather than a cosine.

We can assume complex solutions for w and v in the form

vn(x, z, t) = v̂n(z)ei(kxx�!t) = v̂n cos
�

n⇡z
H

�

ei(kxx�!t)

wn(x, z, t) = ŵn(z)ei(kxx�!t) = ŵn sin
�

n⇡z
H

�

ei(kxx�!t)

Therefore, by applying the continuity equation

du
dx

+ dw
dz

= 0

ikxûn cos(
n⇡z
H

)⇠⇠⇠⇠⇠
ei(kxx�!t) + dŵ

n

(z)
dz ⇠⇠⇠⇠⇠

ei(kxx�!t) = 0
d
dz

�

ŵn sin(
n⇡z
H

)
�

= �ikxûn cos(
n⇡z
H

)

ŵn
n⇡
H⇠⇠⇠⇠⇠cos(n⇡z

H
) = �ikxûn⇠⇠⇠⇠⇠cos(n⇡z

H
)

ûn = i n⇡
k
x

H
ŵ

By substituting kx = (!2�f2)1/2

c
e

and ce = HN/n⇡

ûn = i
N

(!2 � f 2)1/2
ŵn

For each mode, û can be plotted against N
(!2�f2)1/2

ŵn (or, rather ŵn,s) to achieve

an ellipse (Figure A.2). The ellipse that is formed is defined as

Wn = ûn + iŵn,s

and can be fit to

Wn,fit = ar(n)e
i!t + ai(n)e

�i!t

Fitting the ellipse is equivalent to fitting two circles of di↵erent amplitudes, ar(n) and

ai(n), that progress in opposite directions with time. ar(n) is the amplitude of the

reflected wave, and ai(n) is the amplitude of the incoming wave.
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Figure A.2: The ellipse formed 6 km o↵-shelf for a 600 m shelf and a forcing velocity
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A.3 Calculating Flux

Before calculating the dissipation, it’s necessary to calculate the flux of the reflected

and transmitted wave as a function of mode number, n.

F (n) =
R 0

�H
< u(n)p(n) > dz

=
R 0

�H
< û(n)p̂(n) >

⇣

N
N0

⌘

dz

=
R 0

�Ĥ
< û(n)p̂(n) >

⇣

N
N0

⌘

�

N0
N

�

dẑ

=
R 0

�Ĥ
< û(n) g(!)

m(n) û(n) > dẑ

= g(!)
m(n)

R 0

�Ĥ
< û2(n) > dẑ

where the flux is converted to WKB values by using the conversion factors u =

(N/N0)1/2û, p = (N/N0)1/2p̂, dz = (N0/N)dẑ, and p̂(n) = g(!)/m(n). In this case

g(!) = ⇢
[(N2

0 � !2)(!2 � f 2)]1/2

!

m(n) =
n⇡

Ĥ

Therefore, by using the reflected and transmitted velocities defined above, the flux

is calculated as a function of mode for the reflected and transmitted waves:
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Ĥ

⌘

a2r(n)dẑ
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Similarly,

Ft(n) = ĥ
g(!)

2m(n)

a2t (n)

4

The flux of the incoming and reflected components show that more energy is

in mode-1 of the incoming component than in mode-1 of the reflected component
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(Figure A.3).
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Figure A.3: The incoming and reflected flux 6 km o↵-shelf for a 600m shelf and a
forcing velocity of 0.06m s�1
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