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ABSTRACT

Current models of cosmology and galaxy formation are possibly at odds with ob-

servations of small-scale galaxies. Such is the case for the dwarf spheroidal (dSph)

galaxies of the Milky Way (MW), where tension exists in explaining their observed

abundance, mass, and internal structure. Here we present an analysis of the substruc-

ture surrounding MW-sized haloes in a Λ Cold Dark Matter (ΛCDM) simulation suite.

Combined with a semi-analytic model of galaxy formation and evolution, we identify

substructures that are expected to host dSph galaxies similar to the satellites of the

MW. We subsequently use these simulations to investigate the orbital properties of

dSph satellite galaxies to make contact with those orbiting the MW. After accre-

tion into the main halo, the higher mass “luminous” substructure remains on highly

radial orbits while the orbits of lower mass substructure, which are not expected

to host stars, tend to scatter off of the luminous substructure, and thus circularize

over time. The orbital ellipticity distribution of the luminous substructure shows

little dependence on the mass or formation history of the main halo, making this

distribution a robust prediction of ΛCDM. Through comparison with the ellipticity

distribution computed from the positions and velocities of the nine MW dSph galax-

ies that currently have proper motion estimates as a function of the assumed MW

mass, we present a novel means of estimating the virial mass of the Milky Way. The

best match is obtained assuming a mass of 1.1× 1012 M⊙ with 95 per cent confidence

limits of (0.6− 3.1)× 1012 M⊙. The uncertainty in this estimate is dominated by the

large uncertainties in the proper motions and small number of MW satellites used,

and will improve significantly with better proper motion measurements from Gaia.
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We also measure the shape of the gravitational potential of subhaloes likely to

host dSphs, down to radii comparable to the half-light radii of MW dSphs. Field

haloes are triaxial in general, while satellite haloes become more spherical over time

due to tidal interactions with the host. Thus through the determination of the shape

of a MW dSph’s gravitational potential via line of sight velocity measurements, one

could in principle deduce the impact of past tidal interactions with the MW, and thus

determine its dynamical history. Additionally, luminous subhaloes experience a radial

alignment of their major axes with the direction to the host halo over time, caused by

tidal torquing with the host’s gravitational potential during close pericentric passages.

This effect is seen at all radii, even down to the half-light radii of the satellites. Radial

alignment must be taken into account when calibrating weak-lensing surveys which

often assume isotropic orientations of satellite galaxies surrounding host galaxies and

clusters.
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Chapter 1

Introduction

Recognize that the very molecules that make up your body, the atoms that construct the

molecules, are traceable to the crucibles that were once the centers of high mass stars

that exploded their chemically rich guts into the galaxy, enriching pristine gas clouds

with the chemistry of life. So that we are all connected to each other biologically, to

the earth chemically and to the rest of the Universe atomically. That’s kinda cool!

That makes me smile and I actually feel quite large at the end of that. It’s not that

we are better than the Universe, we are part of the Universe. We are in the Universe

and the Universe is in us.

– Neil deGrasse Tyson

1.1 Dwarf Galaxies

The night sky is filled with wonders. Even from the city of Victoria, constellations

of stars, planets, and star clusters will appear to the casual observer on those rare

cloudless nights. However, as is almost always the case in astronomy, there is often

much more than meets the eye. As one moves away from the city lights, other objects

begin to appear: fainter stars, the beautiful arcing band of our Milky Way (MW)

galaxy, along with other strange, fuzzier objects. Baffled by the fuzzy objects for

centuries, astronomers referred to them simply as “nebulae”, and believed them to

reside within the MW. It wasn’t until the 1920’s that they began to consider the

notion that some of these nebulae are in fact “island universes”; galaxies, some just

like our own MW, that lie far beyond the reaches of our own Galactic disc.

Over the nearly 100 years since, our knowledge of galaxies has increased expo-
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nentially. New telescopes and technologies have allowed us to analyze the light from

galaxies to derive many of their properties, such as mass, luminosity, chemical make-

up, star-formation rate, the rate of gas accretion onto the central supermassive black

hole in the centre, and much more. Fortunately, the more we learn about them the

more we realize just how much these structures can teach us about the evolution

of the Universe from the beginning of time to the present day. Galaxies are excel-

lent laboratories for studying physics on grand scales and testing theories of the true

nature of the Universe.

Galaxies come in many different shapes and sizes. They can be generally divided

into two broad categories: spirals and ellipticals. Spiral galaxies are arguably the

most beautiful with their sweeping, gassy, blue spiral arms and disks. On the other

hand, ellipticals tend to be round spheroids of stars mostly devoid of gas. Although

perhaps less visually appealing than spirals, ellipticals represent the largest and small-

est galaxies in the known Universe, ranging in mass from 107 to 1014 M⊙. The highest

mass giant elliptical galaxies are among the largest objects in the Universe, and are

often found at the centres of galaxy clusters, while their lower mass “dwarf” elliptical

counterparts are usually found either in isolation or orbiting other, larger galaxies and

clusters. The faintest elliptical galaxies known to exist are called “dwarf spheroidal”

(hereafter dSph) galaxies and have so far mainly been observed near the MW.

The MW belongs to a larger group of around 60 galaxies collectively called the

Local Group. This group is dominated by two large spiral galaxies: the MW and

Andromeda (M31). Nearly all of the other members are the much smaller dSph

galaxies, many of which exist as satellites of either the MW or M31. Two satellites

of the MW are so bright that they can be seen by the naked eye (but only from

the Southern hemisphere): the Large and Small Megallanic Clouds (LMC and SMC,

respectively). However, many of these satellite galaxies are so faint that they have

only been discovered in the past few decades with the arrival of larger telescopes and

innovative surveys. Indeed, with the recent Pan-Andromeda Archaeological Survey

(PAndAS; McConnachie et al., 2009) and the Sloan Digital Sky Survey (SDSS; York

et al., 2000), over 30 satellites have been discovered around M31, as well as roughly 25

thought to be associated with the MW (for an overview of their individual properties,

see McConnachie, 2012). Most of these dSphs are devoid of gas, so information can

only be gleaned from observations of their stars.

The MW dSphs can be classified into two luminosity regimes: “Ultrafaint” and

“Classical”. These two kinds of dSphs are defined as having an absolute V -band
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magnitude, MV , dimmer than or brighter than −8, respectively. This division makes

reference to the Milky Way, where the “classical” satellite population is expected to be

complete within the boundaries of the Galactic halo with the exception perhaps of the

“zone of avoidance” created by dust absorption in the Galactic disc. “Ultra-faint”

satellites, on the other hand, have only recently been discovered in Sloan Digital

Sky Survey (SDSS) data. Their inventory is far from complete and their spatial

distribution highly biased to relatively small nearby volumes in the region surveyed

by SDSS (Koposov et al., 2008). As our technology improves, we will be able to

probe to fainter and fainter magnitudes to detect more stars within the dSphs we

have found, and to discover even more ultrafaints. For the majority of this thesis

we shall restrict much of the comparison of our models with data on classical dSph

systems.

Where do these galaxies come from? What do we know about their formation, and

their evolution that brought them here to the present day? To answer these questions,

we look toward cosmological models of structure formation in the Universe.

1.2 Cosmology

This is the way the Universe begins. Not with a whimper, but a bang. In 1929 Edwin

Hubble observed that galaxies that are further away have their light spectra shifted

toward longer, redder wavelengths (so-called “red-shifting”). The most popular in-

terpretation of this phenomenon is that these galaxies are receding from us with a

velocity proportional to their distance - a relation known as “Hubble’s Law”. It was

this discovery that led astronomers to believe that the Universe is not static, but

rather expanding all around us. This does not mean that we are in the centre of the

Universe, that is how it would look from any point in space! If all of these galaxies

are traced back in time, they can be found to originate from a common point in time

when the Universe was extremely hot and dense - the Big Bang.

There are many models that attempt to explain how the Universe as we know it

formed following the Big Bang. Most models assume the “cosmological principle”,

which states that, on large enough scales, the Universe is homogeneous (no location is

special) and isotropic (it looks the same in all directions). This assumption is strongly

supported by observations. The best-established theory is the Λ Cold Dark Matter

(ΛCDM) cosmological model. In this model the matter in the Universe is today

dominated by nonrelativistic (cold) matter that is dissipationless (does not radiate
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and is thus “dark”) and collisionless (interacts with itself and baryonic matter only

through gravitation and possibly the weak interaction). Although the exact nature of

this “dark matter” is unknown, its existence is needed to account for its gravitational

influence on astronomical objects on a large range of scales – from the random stellar

velocities in dwarf galaxies, to the rotation speeds of grand spiral galaxies, to the

internal dynamics of galaxy clusters. Many projects are currently underway to directly

and indirectly detect it, but so far no compelling evidence has been found. The rest

of the matter in the Universe is baryonic (stars, gas, dust, atoms, humans, popsicles,

etc), and accounts for only ∼ 15% of its total matter content.

If the Universe were dominated only by matter, then its self-gravity would be ex-

pected to slow its expansion over time. However, through observations of supernovae

in distant galaxies, it has been found that the Universe is not only expanding, but is

accelerating in its expansion. This means that there must be some mysterious “dark

energy” that makes up ∼ 70% of the energy budget of the Universe and continues to

drive the expansion faster and faster – this is the Λ term in ΛCDM.

ΛCDM has been extremely successful at describing our Universe today. It pre-

dicts very accurately all observations of the effects of the Big Bang, including the

statistical structure of the cosmic microwave background (CMB), the abundances

of light elements created via primordial nucleosynthesis, the accelerating expansion

of the Universe, and the large-scale distribution of galaxies (Planck Collaboration

et al., 2013; Steigman, 2007; Perlmutter et al., 1999; Eke, Cole & Frenk, 1996). Al-

ternative theories include warm and hot (ie. relativistic) dark matter, self-interacting

dark matter, and even modifications to current theories of gravity on galactic scales.

Some of these theories have been somewhat more successful than ΛCDM at describ-

ing structure on small scales, although this subject is still under considerable debate

(Coĺın, Valenzuela & Avila-Reese, 2008; Lovell et al., 2012; Macciò et al., 2013; Wang

& White, 2009). Indeed such theories are not as extensive and developed as ΛCDM,

and, in their current state, some make predictions that are inconsistent with obser-

vations (Viel et al., 2005). Because of the remarkable success and relative simplicity

of ΛCDM, it has been widely accepted as the “standard” cosmological model of the

Universe.
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1.3 Simulations

One of the most powerful features of ΛCDM is its ability to predict the evolution of

the matter distribution from the Big Bang to the present day. According to the model,

the Universe is mostly smooth in the beginning except for small density fluctuations.

Over time, regions of higher density collapse into spheroidal objects called haloes. The

large scale structure of the Universe is then formed hierarchically through subsequent

merging of these primordial haloes (Press & Schechter, 1974; Gott & Rees, 1975;

White & Rees, 1978; Blumenthal et al., 1984). Indeed, by the present day many of

these objects have disrupted and aggregated into larger objects, while others remain

as substructures orbiting a larger host. The largest objects are generally dominated

in mass by an extended dark matter halo, with the baryonic component sitting near

the centre.

In the past couple of decades, cosmologicalN -body simulations have demonstrated

how these structures form over time and have allowed us to compare this theory with

observations (Tormen, 1997; Moore et al., 1999; Klypin et al., 1999a,b; Diemand

et al., 2008; Springel et al., 2008; Stadel et al., 2009). Many of these simulations only

include dark matter, neglecting the influence of baryonic matter. The main reason

for this is that dark matter dominates baryonic matter 5:1 by mass and baryonic

processes are only important on small scales, so for the large scale structure of the

Universe, baryons play little role and tend to simply “follow” the dark matter through

gravitation.

One recent example is the Millennium XXL simulation, which follows the evolution

of 300 billion particles in a box of side length 4.1 Gpc over the entire 13.8 Gyr age

of the Universe. A projected density plot from Angulo et al. (2012) is shown in

Figure 1.1, which progressively zooms in on a halo of mass 1015 M⊙, the most massive

halo in the simulation. On the largest (Gpc) scales, this universe is homogeneous

with no obvious features. As we zoom in to smaller (100 Mpc) scales, we see that

matter forms long filamentary structures separated by large voids, often referred to

as the “cosmic web”. Matter flows along these filaments and forms large haloes at

the intersecting nodes. In the third zoom-in panel, we begin to see a plethora of

substructure accreting onto this halo. The internal structure of this halo is visible on

the smallest scales shown, composed of the remains of disrupted primordial haloes.

Only recently have such cosmological simulations been able to adequately resolve

substructures around Milky Way (MW)-sized dark matter haloes. They predict that
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Figure 1.1: Projected density view of an 8 Mpc-thick slice of the Millennium XXL
simulation at z = 0, progressively zooming into a halo of mass 1015 M⊙. Figure taken
from Angulo et al. (2012).
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. 20% of the mass of such haloes is in the form of substructure haloes (hereafter

subhaloes), which results in a very large number of satellites, most of which are ex-

tremely low mass (Springel et al., 2008). These subhaloes are particularly interesting

because some of them are thought to host dSph galaxies similar to those found in

our Local Group (Stoehr et al., 2002; Strigari et al., 2007; Boylan-Kolchin, Bullock

& Kaplinghat, 2012a; Vera-Ciro et al., 2013; Starkenburg et al., 2013). Indeed, the

dSphs in our Galactic “backyard” are thought to be the remnants of the hierarchical

assembly of the MW, and thus give us a fossil record of its formation and subsequent

evolution (Tolstoy, Hill & Tosi, 2009).

An important result of these dark matter-only simulations is the prediction that

dark matter haloes tend to have a universal shape of their spherically-averaged radial

density distributions (Navarro, Frenk & White, 1996, 1997). This “NFW” profile can

be approximated as power laws at small and large radii, with a smooth transition

between the two. For dark matter haloes this profile takes the form

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
(1.1)

where ρs and rs are the characteristic density and radius of the halo, respectively. ρs

is often expressed in terms of a concentration parameter c, defined as

ρs = ρcrit
200

3

c3

ln (1 + c)− c/(1 + c)
, (1.2)

where ρcrit is the critical density of the Universe for closure. The scale radius rs is

related to c via rs = r200/c, where r200 is the virial radius of the halo. We define the

virial radius as the radius within which the mean density of the halo is 200 times ρcrit.

Although some profiles have been shown to be more accurate (eg. the Einasto profile,

see Navarro et al., 2010), the NFW model has been widely used and is generally

an excellent approximation to the density profile of galactic dark matter haloes in

simulations.

Despite the many successes of ΛCDM, there remains some tension between theory

and observation, especially on small scales. For instance, in simulations the central

densities of dark matter haloes have been found to follow the NFW profile which is

strongly cusped in the centre (Navarro, Frenk & White, 1996, 1997; Navarro et al.,

2010; Fukushige & Makino, 1997; Moore et al., 1999; Diemand et al., 2008). On the

other hand, some evidence shows that the dark matter haloes surrounding dwarf and
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low surface brightness galaxies are likely to have flattened, “cored” central density

profiles (Moore, 1994; Burkert, 1995; Gilmore et al., 2007; Walker & Peñarrubia,

2011), a discrepancy known as the “cusp-core” problem. Whether or not this is an

issue for MW dSphs is currently under debate. Indeed, some recent studies argue that

MW dSph observations may actually be consistent with cuspy dark matter profiles

(Walker et al., 2009; Strigari, Frenk & White, 2010; Battaglia et al., 2011; Breddels

et al., 2013).

Another conflict between ΛCDM models and observations on small scales is the

“too big to fail” problem. Current theories of galaxy formation predict that dSph

galaxies should form in the highest mass dark matter subhaloes. Boylan-Kolchin,

Bullock & Kaplinghat (2011) found that, according to their simulations of MW-

sized haloes, the most massive dark matter subhaloes are much more massive and

dense than inferred from observations of MW dSphs. These massive subhaloes are

theoretically “too big to fail” to accrete baryonic matter and form dSphs, and thus

their presence in simulations presents a problem for the ΛCDMmodel. One possibility

is that the number of massive satellites is a stochastic process and is highly sensitive

to the mass of the host, a quantity currently only known within a factor of a few for

the MW. Indeed, some authors argue that the “too big to fail” problem disappears

for lower MW mass estimates (Wang et al., 2012; Vera-Ciro et al., 2013).

Also highly debated is the impact of baryonic processes on these small scales.

During episodes of star formation in dSphs, the energy from supernova explosions

may be strong enough to eject gas out from the centre of the halo. This outflow

can cause the gravitational potential near the centre to change such that the dark

matter cusp can be flattened out into a core, which may help to resolve the cusp-

core problem (Navarro, Eke & Frenk, 1996; Read & Gilmore, 2005; Governato et al.,

2010; Teyssier et al., 2013). In fact, it has been argued that the “too big to fail”

problem may be solved by the fact that particles in cored haloes are less bound and

thus may be more easily destroyed via tidal interactions with the host, especially in

the higher mass haloes where baryonic effects are stronger. However, the importance

of feedback on these scales is highly debated and it is still unclear whether the cusp

to core transformation via stellar feedback is possible in MW dSphs, especially given

their very low rates of star formation (Peñarrubia et al., 2012; Garrison-Kimmel et al.,

2013).

The fact that the properties of galaxies on these small scales is so highly debated

makes the study of dSphs very exciting. By attempting to match the predictions of
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theoretical models with their observable properties, we can learn a plethora of infor-

mation about galaxy formation and constrain cosmological models. It is particularly

exciting because simulations that are detailed enough to resolve such small scales have

only been possible within the past decade, meaning that we have only scratched the

surface in terms of making robust predictions of dSphs in these simulations. In this

thesis we use such simulations to make predictions for dSphs in the MW and compare

with observations in order to learn about the dynamical histories of the MW dSphs;

in doing so we constrain cosmological models in this small regime.

1.3.1 The Aquarius Project

The Millennium II simulation is a dark-matter only cosmological simulation of a cubic

region of the Universe 100h−1Mpc on a side using 10 billion dark matter particles.

The simulation we use in this thesis, entitled the Aquarius Project, is a resimulation of

six MW-sized dark matter haloes taken from Millennium II, run at higher resolution.

A zoom-in technique was used in which particles that end up inside or near the main

halo are resimulated at higher resolution (more particles each with lower mass), while

those outside are given lower mass resolution. These haloes, named Aq-A through

Aq-F, range in virial mass M200 from (0.8 − 1.8) × 1012 M⊙, which is the typical

range of the latest estimates of the MW’s virial mass. The haloes were simulated

at various resolution levels, denoted with a suffix from 1 to 5. The Aq-A halo has

been simulated at all five resolution levels; the highest resolution run (Aq-A-1) has

over 4 billion high-resolution particles, a particle mass of 2× 103 M⊙ and a softening

length of 20 pc. The other five haloes were simulated at intermediate (level 2 and 4)

resolution, with particle mass ∼ 104 and 2×105 M⊙ respectively. The main properties

of the Aquarius haloes used in this thesis are shown in Table 1.1. Here we show the

high-resolution particle mass, gravitational softening parameter, number of high and

low resolution particles, virial mass and radius, NFW concentration parameter, and

the redshift of halo formation. The halo formation time is defined as the epoch at

which the virial mass of the halo was half of its final value. All parameters shown

here are taken directly from Springel et al. (2008). A projected density plot of the

Aq-A-2 main halo is shown in Figure 1.2. At this resolution level, subhaloes can

be resolved down to 105 M⊙. Considering that MW dSphs typically have masses of

∼ 107 M⊙ within 300 pc (Strigari et al., 2008), the Level-2 resolution level is sufficient

to resolve and study dark matter haloes that are likely to host galaxies similar to the
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MW dSphs in detail.

Table 1.1: Basic parameters of the Aquarius simulations (Springel et al., 2008).

Name mp ǫ Nhr Nlr M200 r200 cNFW zform
(M⊙) (pc) (M⊙) (kpc)

Aq-A-1 1.712× 103 20.5 4 252 607 000 144 979 154 1.839× 1012 245.76 16.11 1.93
Aq-A-2 1.370× 104 65.8 531 570 000 75 296 170 1.842× 1012 245.88 16.19 1.93
Aq-A-3 4.911× 104 120.5 148 285 000 20 035 279 1.836× 1012 245.64 16.35 1.93
Aq-A-4 3.929× 105 342.5 18 535 972 634 793 1.838× 1012 245.70 16.21 1.93
Aq-A-5 3.143× 106 684.9 2 316 893 634 793 1.853× 1012 246.37 16.04 1.93

Aq-B-2 6.447× 103 65.8 658 815 010 80 487 598 8.194× 1011 187.70 9.72 1.39
Aq-C-2 1.399× 104 65.8 612 602 795 78 634 854 1.774× 1012 242.82 15.21 2.23
Aq-D-2 1.397× 104 65.8 391 881 102 79 615 274 1.774× 1012 242.85 9.37 1.51
Aq-E-2 9.593× 103 65.8 465 905 916 74 119 996 1.185× 1012 212.28 8.26 2.26
Aq-F-2 6.776× 103 65.8 414 336 000 712 839 1.135× 1012 209.21 9.79 0.55

Haloes are identified in the simulation using a standard friends-of-friends (FOF)

technique (Davis et al., 1985). Substructures within haloes are subsequently identi-

fied by locating overdensities within the average background density field using the

groupfinder SUBFIND (Springel et al., 2005). This algorithm recursively identifies

all self-bound substructures that contain at least 20 particles.

The Aquarius simulations assume a “standard” ΛCDM cosmogony, with the same

parameters as the Millennium Simulation (Springel et al., 2005): ΩM = 0.25, ΩΛ =

0.75, n = 1, h = 0.73, and σ8 = 0.9. Although the exact values used for these

parameters are now outdated considering the recently published results from the

Planck satellite (Planck Collaboration et al., 2013), we expect the difference to have

little effect on the detailed non-linear structure and substructure of dark matter haloes

which concern us here (see, e.g., Wang et al., 2008; Boylan-Kolchin et al., 2010; Guo

et al., 2013).

1.3.2 The semi-analytic model

In order to properly study dSphs in simulations, we must be able to follow the bary-

onic matter that makes up these galaxies through time. One approach is to explicitly

include “gas” particles in the simulation along with the dark matter and solve the

hydrodynamical equations that govern its evolution. Unfortunately, this approach

is much more computationally expensive than the purely N -body dark matter sim-

ulations. Thus, rather than simulating the baryons directly, often a semi-analytic
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Figure 1.2: Projected density plot centred on the main halo of Aq-A-2. All particles
within a box of side length 1 Mpc are shown. Figure taken from Springel et al. (2008).
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model is implemented after the dark matter simulation has been run. These models

use the dark matter distribution as a backbone for the overall distribution of matter

over time. Here one employs simple, observationally motivated equations to model

the underlying baryonic processes expected to occur in the Universe. In this way,

one can estimate the properties of galaxies expected to reside within the dark matter

haloes. This method is much more computationally efficient and thus allows a more

thorough exploration of the input parameters and assumptions than can be done in

full hydrodynamical simulations. The downside to this method is that one recovers

only global properties of the baryonic matter in each halo, in contrast with the full

structural information that can be obtained in hydrodynamical simulations. As well,

any impact that the baryons may have on the dark matter distribution is ignored.

However, the strength of such impact is highly debated, especially on the scales of

the dark matter-dominated dwarf galaxies (Peñarrubia et al., 2012; Garrison-Kimmel

et al., 2013).

In this thesis we consider a semi-analytic model of galaxy formation in order to

identify which dark matter subhaloes in Aquarius are most likely to contain dSphs like

those found in the Local Group. This model is grafted onto the evolving collection of

SUBFIND haloes and subhaloes linked as a function of time by a merger tree (Baugh,

2006; Benson, 2010). The particular implementation used in this thesis is described

by Starkenburg et al. (2013) and is an extension of earlier work (Kauffmann et al.,

1999; Springel et al., 2001; De Lucia, Kauffmann & White, 2004; Croton et al., 2006;

De Lucia & Blaizot, 2007; De Lucia & Helmi, 2008; Li et al., 2009; Li, De Lucia &

Helmi, 2010). Included in the model are analytic prescriptions for the reionization

of the early Universe, star formation in regions of high gas density, gas cooling, and

heating and ejection of hot gas due to supernova feedback. Interactions between

satellite galaxies and their host are also included in the form of tidal disruption and

stellar stripping, as well as ram-pressure stripping of hot gas from the satellite after

infall. This model has been very successful at matching the observed luminosity

function, luminosity-metallicity relation, and radial distribution of the MW dSph

galaxies, and results in a halo mass-stellar mass relation that is in agreement with

full hydrodynamical simulations.
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1.4 This Thesis

Armed with the Aquarius Project and our semi-analytic model, in this thesis we study

the properties of the haloes of dSph galaxies around MW-sized haloes as predicted

by ΛCDM. In doing so, we are able to make robust predictions of MW dSphs that

can be compared directly with observations.

In Chapter 2, we analyze the orbital properties of dSph satellites in the Aquarius

haloes. By comparing these orbits with those of subhaloes that did not form dSphs,

we obtain valuable insight into how these satellites evolve over time after accreting

into the main halo. We also present a novel technique for estimating the mass of the

MW by comparing the orbits of the brightest simulated galaxies with the positions

and velocities of the MW dSphs. As observations continue to improve, this technique

should prove quite valuable at providing a stricter value for the MW’s mass.

In Chapter 3, we measure the shapes and orientations of the Aquarius dSph satel-

lites. In doing so, we make robust predictions about the impact of the host tidal

field on its satellites, and describe how observations of the shapes and orientations of

satellite galaxies can inform us about their dynamical histories.

In Chapter 4 we provide a summary and conclusions, as well as an outline of

possible extensions of this work in the future.
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Chapter 2

The Orbital Ellipticity of Satellite

Galaxies and the Mass of the

Milky Way1

1Based on Barber C., Starkenburg E., Navarro J. F., McConnachie A. W., Fattahi A., 2014,
MNRAS, 437, 959
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Abstract

We use simulations of Milky Way-sized dark matter haloes from the

Aquarius Project to investigate the orbits of substructure haloes (sub-

haloes) likely, according to a semi-analytic galaxy formation model, to host

luminous satellites. These tend to populate the most massive subhaloes

and are on more radial orbits than the majority of subhaloes found within

the halo virial radius. One reason for this (mild) kinematic bias is that

many low-mass subhaloes have apocentres that exceed the virial radius

of the main host; they are thus excluded from subhalo samples identified

within the virial boundary, reducing the number of subhaloes on radial

orbits. Two other factors contributing to the difference in orbital shape

between dark and luminous subhaloes are their dynamical evolution after

infall, which affects more markedly low-mass (dark) subhaloes, and a weak

dependence of ellipticity on the redshift of first infall. The ellipticity distri-

bution of luminous satellites exhibits little halo-to-halo scatter and it may

therefore be compared fruitfully with that of Milky Way satellites. Since

the latter depends sensitively on the total mass of the Milky Way we can

use the predicted distribution of satellite ellipticities to place constraints

on this important parameter. Using the latest estimates of position and

velocity of dwarfs compiled from the literature, we find that the most likely

Milky Way mass lies in the range 6× 1011 M⊙ < M200 < 3.1× 1012 M⊙,

with a best-fit value of M200 = 1.1× 1012M⊙. This value is consistent

with Milky Way mass estimates based on dynamical tracers or the timing

argument.
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2.1 Introduction

Satellite galaxies have long been used as kinematic tracers of the gravitational poten-

tial of the Milky Way (MW) halo (e.g., Hartwick & Sargent, 1978; Lynden-Bell, Can-

non & Godwin, 1983; Zaritsky et al., 1989; Kulessa & Lynden-Bell, 1992; Kochanek,

1996; Wilkinson & Evans, 1999; Battaglia et al., 2005; Sales et al., 2007a; Boylan-

Kolchin et al., 2013). The usefulness of this technique, however, has been traditionally

limited by the relatively small number of satellites known, by uncertainties in their es-

timated distances, and by the availability of a single component of the orbital velocity,

along the line of sight. This state of affairs, however, is starting to change.

Over the last decade, surveys like the Sloan Digital Sky Survey (SDSS) have

mapped large areas of the sky, an effort that has led to the discovery of a number

of very faint satellite galaxies (the “ultra-faint” dwarf spheroidal companions of the

Milky Way) whose star formation history, chemical evolution, mass, distance, and

velocity have now been estimated through deep follow-up observations (e.g., Willman

et al., 2005; Zucker et al., 2006a,b; Belokurov et al., 2007; Walsh, Jerjen & Willman,

2007; Irwin et al., 2007; Kirby et al., 2008; Martin, de Jong & Rix, 2008; Adén

et al., 2009; Norris et al., 2010; Wolf et al., 2010; Simon et al., 2011; Brown et al.,

2012). Distance estimates have also improved, to the point that the distances to

most satellites are now known to better than ∼ 10% from measurements of resolved

stellar populations. Further, the superior angular resolution of the Hubble Space

Telescope has enabled proper motion estimates for nearby dwarfs from images with a

time baseline of just a few years (e.g., Piatek et al., 2002), and modern adaptive optics

systems promise to reach comparable angular resolution from the ground (e.g., Rigaut

et al., 2012). Finally, in the near future, a great leap forward is expected from the

Global Astrometry Interferometer for Astrophysics (Gaia) satellite (e.g., Lindegren

& Perryman, 1996). This mission is expected to measure the proper motions of the

MW dwarf spheroidal system to an precision of a few to tens of km s−1, depending

on the satellite’s properties (Wilkinson & Evans, 1999).

Accurate proper motions, radial velocities, positions, and distances can be turned

into satellite orbits after assuming a mass profile for the Galaxy. The shapes of these

orbits are expected to contain information about the circumstances of the accretion

of individual satellites, as well as about the evolution of the potential well of the

Galaxy over time. Decoding such information, however, is not straightforward, and

is best attempted by contrasting observations with realistic simulations that resolve
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in detail the dynamical evolution of the potential sites of dwarf galaxy formation.

Although there are in the literature a number of studies of the kinematics of

satellite systems and their relation to the haloes they inhabit (e.g., Tormen, 1997;

Tormen, Diaferio & Syer, 1998; Ghigna et al., 1998; van den Bosch et al., 1999;

Balogh, Navarro & Morris, 2000; Taffoni et al., 2003; Kravtsov, Gnedin & Klypin,

2004; Gill et al., 2004; Gill, Knebe & Gibson, 2005; Diemand, Kuhlen & Madau,

2007; Sales et al., 2007a; Ludlow et al., 2009), most have dealt primarily with the

orbits of substructure haloes (referred to hereafter as subhaloes) in general. Luminous

satellites inhabit a small fraction of subhaloes, and their orbits might therefore very

well be substantially biased relative to those of typical subhaloes. Making progress

demands not only simulations with numerical resolution high enough to resolve all

potential sites of luminous satellite formation but also a convincing way of pinpointing

the few subhaloes where those satellites actually form.

A number of simulations that satisfy the numerical resolution requirement have

been recently completed, notably the six Milky Way-sized haloes of the Aquarius

Project (Springel et al., 2008), as well as the Via Lactea II halo (Diemand et al.,

2008), and its higher-resolution version GHALO (Stadel et al., 2009). In this study

we combine the Aquarius Project haloes with the semi-analytical model of Starken-

burg et al. (2013) to identify satellites with luminosities down to the “ultra-faint”

regime. We study the orbital distribution of these satellites, and explore its depen-

dence on satellite properties such as stellar mass and accretion time. Our analysis

yields predictions that should prove useful in the near future, when Gaia delivers

accurate 6D phase space information for many Milky Way satellites. We describe

here a possible application, making use of published proper motions, positions and

radial velocities of the most luminous Milky Way satellites to constrain the mass of

the Milky Way halo.

The plan of this chapter is as follows. In Section 2.2 we describe the simulated

satellite sample we use, together with a brief discussion of the numerical simulations

and of the semi-analytic galaxy formation model adopted. We describe the analysis

techniques used to compute orbital properties for satellites and subhaloes and present

their orbital ellipticity distributions in Section 2.3. We investigate in the same section

the origin of their differences before, finally, in Section 2.4, comparing the orbits of

simulated dwarf galaxies to those of MW dwarfs in order to discuss the constraints

they imply on the total virial mass of the Milky Way. We summarize our main

conclusions in Section 2.5.
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2.2 Simulated Satellites

As discussed in Chapter 1, we use the Aquarius project, a cosmological dark matter-

only simulation of six MW-sized haloes, to study the substructure of MW-like galaxies.

Coupled with the semi-analytic model of Starkenburg et al. (2013), we are able to

identify those subhaloes that are most likely to contain a luminous component, had

baryons been included in the simulation.

The semi-analytic model assigns a stellar mass (or luminosity) to each subhalo at

the present time. We classify them as: (i) “classical” satellites (i.e., those brighter

than MV = −8); (ii) “ultra-faint” satellites (fainter than MV = −8); and (iii) “dark”

subhaloes (i.e., those with no stars). We shall hereafter use the term “luminous

subhaloes” to refer to classical and ultra-faint satellites combined.

2.3 Analysis and Results

2.3.1 Satellite masses and radial distribution

As discussed by Starkenburg et al. (2013), the simulated satellite luminosity function

of Aquarius haloes is consistent with that of the Milky Way. Luminous satellites

populate a minority of the subhalo population, preferentially the high-mass end. In-

deed, by number, most subhaloes have low mass and, according to the model, remain

completely “dark” throughout their lifetime.

Figure 2.1 shows the mass distribution of all subhaloes identified at z = 0 within

the virial radius, r200, of each of the six Aquarius haloes considered here. Masses

are quoted at the time of first infall into the main progenitor of each halo (tinf), and

correspond roughly to the maximum virial mass of each subhalo prior to accretion.

We also show in Figure 2.1 the subhalo masses of the luminous satellites and confirm

that, as expected, they tend to populate the most massive subhaloes.

Low-mass subhaloes clearly dominate the numbers down to 106 M⊙, where the

distribution peaks. The decline in numbers at lower masses results from limited

numerical resolution (see Springel et al., 2008, for a detailed discussion). We shall

therefore consider for analysis only subhaloes with virial mass exceeding 106 M⊙ at

first infall, or haloes with more than ∼ 100 particles. Combining all six simulations,

our full satellite sample consists of 50, 874 subhaloes, of which 452 host luminous

satellites: 296 ultra-faint and 156 classical dwarfs, respectively.
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Figure 2.1: Mass distribution of subhaloes found, at z = 0, within the virial radius,
r200, of the level-2 Aquarius A through F haloes. Their (virial) masses are computed
at the time of first infall into the main progenitor of the main halo. All subhaloes
are shown in blue, luminous satellites in red, and classical satellites in green. Ver-
tical dashed lines indicate the median of each group. Luminous satellites populate
preferentially the high-mass end of the subhalo mass function. The decline in num-
bers below ∼ 106 h−1 M⊙ results from limited numerical resolution. We consider only
subhaloes with masses exceeding ∼ 106 h−1 M⊙ in our subsequent analysis.
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Figure 2.2: Fraction of enclosed subhaloes as a function of radius for level-2 Aquarius
haloes A through F. All subhaloes are shown as a blue solid line; the subset of
luminous satellites as a red dashed line, and only the classical as a green dotted line.
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Figure 2.2 shows the radial distribution of the three populations of subhaloes in

our model. Luminous satellites are noticeably more centrally concentrated than the

majority of subhaloes (e.g., Gao et al., 2004; Starkenburg et al., 2013), a bias that

might affect the comparison between the orbital properties of luminous and dark

subhaloes. Another noticeable difference between the luminous and non-luminous

subhalo population is the distribution of their infall times, tinf . As shown in Figure 2.3,

the luminous subhaloes tend to fall in earlier.

2.3.2 Orbital ellipticity distributions

We compute the ellipticity, e, of the orbit of each subhalo from its current apocentric,

ra, and pericentric, rp, distances,

e ≡ ra − rp
ra + rp

, (2.1)

using the virial mass and concentration of the main halo. The calculation assumes

that the halo mass profile follows the NFW (NFW, Navarro, Frenk & White, 1996,

1997) formula, where the gravitational potential is written as

Φ(r) = −4πGρsr
2
s

ln (1 + r/rs)

r/rs
. (2.2)

Here r is the distance from the centre of the main halo, and rs and ρs are the NFW

scale radius and density, respectively. The scale radius, rs, is related to the halo

concentration by rs = r200/c, where c is the NFW concentration parameter. The

scale density, on the other hand, is related to the concentration parameter by

ρs
ρcrit

=
200

3

c3

ln(1 + c)− c/(1 + c)
. (2.3)

The ellipticity distributions of the three subhalo populations at z = 0 are shown

in Figure 2.4. The orbits of luminous satellites are clearly more radial than those of

the subhalo population as a whole, which is dominated by the numerous low-mass,

“dark” systems. Half of all subhaloes are on orbits with e < 0.59, but the median e is

significantly larger for luminous systems: 0.68 for all luminous and 0.65 for classical

satellites. As indicated by a Kolmogorov-Smirnov (KS) test, the distributions are very

significantly different indeed. (The probability that the e-distribution of each satellite
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Figure 2.3: Distribution of first-infall cosmic times (where zero corresponds to the
Big Bang) for satellites identified within the virial radius of the main halo at z = 0.
Medians are indicated by vertical dashed lines. The normalization of the frequency is
chosen such that the area under each histogram equals unity. Luminous (i.e., ultra-
faint and classical) satellites enter the most massive progenitor of the main halo earlier
than the average subhalo. N indicates the number of subhaloes in each grouping. KS
tests indicate the probability that the luminous or classical samples are drawn from
the same parent population as all subhaloes.
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grouping is drawn from the same parent distribution as all subhaloes is listed in the

middle and bottom panels.) This result is in qualitative agreement with pioneering

work from Tormen (1997) who found that within simulated cluster environments more

massive satellites move along more eccentric orbits than lower mass satellites.

Classical satellites are on slightly less radial orbits than ultra-faints (as is reflected

in the higher median e for all luminous subhaloes, compared to just the classical

satellite subset), but the difference between the two has lower significance; a KS test

yields a p-value of 0.65.

We note that our modelling neglects the effect of baryons and, in particular, of

the potential modifications that the presence of a massive stellar disc may have on

the subhalo mass function and their orbits. A recent study by D’Onghia et al. (2010),

for example, shows that disc shocking may be able to destroy preferentially low-mass

subhaloes on plunging orbits. This would presumably skew their ellipticity distribu-

tion to less radial orbits and would enhance the differences noted above between the

ellipticity distributions of “dark” and “luminous” satellites.

2.3.3 Radial selection biases and dynamical evolution

What is the origin of the systematic differences in the orbital shapes of luminous and

dark subhaloes?

A clue is provided by the distribution of infall times of all subhaloes. As seen

in the top panel of Figure 2.3, a notable feature is that there is a well-defined dip

in the number of satellites with tinf of the order of ∼ 11 Gyr, followed by a sharp

upturn a couple of Gyr later. We have verified that the dip is actually present in

all Aquarius haloes taken individually, and does not reflect a particular event in the

accretion history of individual haloes.

Rather, the dip may be traced to the fact that many subhaloes accreted at tinf ∼ 11

Gyr are found temporarily outside the virial boundary of the halo at z = 0. Indeed,

the radial period of an object released at rest from the virial radius is roughly ∼ 3

Gyr; most systems accreted at tinf ∼ 11 Gyr have apocentric radii that exceed r200,

and the majority of them are today therefore beyond the formal virial boundary of

the halo. As discussed in detail by Ludlow et al. (2009) (see also Balogh, Navarro

& Morris, 2000; Mamon et al., 2004; Gill, Knebe & Gibson, 2005; Diemand, Kuhlen

& Madau, 2007; Ludlow et al., 2009; Wang, Mo & Jing, 2009), subhaloes identified

within the virial radius represent a rather incomplete census of the substructure phys-
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ically related to a halo: many “associated2” subhaloes are found outside the formal

virial radius of a halo at any given time. The effect is mass-dependent: associated

subhaloes outside r200 tend to be preferentially low mass.

We show this explicitly in Figure 2.5, where we compare the apocentric radii of

all associated subhaloes with those of luminous ones. Selecting systems within r200

includes more than 80% of all luminous associated satellites, but leaves out nearly

half of the less massive, dark subhaloes. This introduces a substantial bias in the

apocentric radii of the latter, selecting preferentially systems with smaller apocentres.

The effect on the orbital ellipticity distribution is to favour systems with less radial

orbits.

This may be seen in Figure 2.6, where we compare the ellipticity distributions

of various samples of luminous and dark subhaloes. The top two panels show that

the dark and luminous subhalo ellipticity distributions become more similar when

considering all associated subhaloes rather than selecting only those within r200. The

radial selection bias, however, is not enough to explain the systematic difference

between the two populations, as shown by the low probability of a KS test (see

legends in each panel of Figure 2.6).

The remaining difference is due partly to the fact that the orbits of dark and

luminous subhaloes evolve differently after being accreted into the main halo. This is

shown in the third panel of Figure 2.6, where ellipticities measured at the time of first

infall are compared. Although still significantly different, ellipticities of associated

dark and luminous subhaloes are much closer at infall than at z = 0.

The top three panels of Figure 2.6 also indicate that it is mainly the ellipticities

of low-mass (dark) subhaloes that change appreciably after infall: their orbits tend

to become less radial with time, something that is not seen in the luminous satellites.

Possible scenarios for this “circularization” of low-mass subhaloes include the tidal

dissolution of the groups to which they belong at accretion, but also perturbations by

massive subhaloes they encounter on their orbits within the host halo (e.g., Tormen,

Diaferio & Syer, 1998; Taffoni et al., 2003). We have explicitly checked that this

conclusion is not the result of limited numerical resolution: we obtain similar results

even if we raise the minimum subhalo mass considered in our sample from 106M⊙ to

107M⊙, or even 108M⊙.

2We denote as “associated” all subhaloes that survive to z = 0 and were, at any time during their
evolution, within the (evolving) virial radius of the main halo. The number of associated subhaloes
nearly doubles the number within the virial radius: we identify 89, 079 associated subhaloes in all
six level-2 Aquarius haloes combined.
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Finally, when comparing the ellipticities at infall, the difference between dark and

luminous subhaloes vanishes when considering systems that were accreted in the same

infall time window (bottom panel of Figure 2.6). This is because satellites that fall

in early tend to be on slightly more radial orbits, as suggested by Wetzel (2011).

Selecting systems with similar infall times removes this dependence and brings the

ellipticity distribution of dark and luminous subhaloes into agreement.

We conclude that the orbital difference between dark and luminous subhaloes

shown in Figure 2.4 is due to the combined effects of mass-dependent dynamical

evolution after infall, a dependence of ellipticity with infall time, and by the selection

bias introduced by considering only systems within the virial radius.

Table 2.1: Data for Milky Way satellites taken from the literature. Proper motions
are given in equatorial coordinates; distances and velocities have been converted to a
Galactocentric frame.

µα µδ DMW Vr Vt

Galaxy MV (mas/century) (mas/century) (kpc) (km/s) (km/s) References

Ursa minor -8.8 -50.0 ± 17.0 22.0 ± 16.0 78 ± 3 -58.5 ± 6.4 157.8 ± 54.8 0,1,2
Carina -9.1 22.0 ± 9.0 15.0 ± 9.0 107 ± 6 -4.8 ± 3.9 94.9 ± 40.1 3,4,5
Sculptor -11.1 9.0 ± 13.0 2.0 ± 13.0 86 ± 6 78.0 ± 5.1 243.8 ± 52.9 6,7,5
Fornax -13.4 47.6 ± 4.6 -36.0 ± 4.1 149 ± 12 -38.8 ± 1.9 185.9 ± 45.3 8,4,5
Leo II -9.8 10.4 ± 11.3 -3.3 ± 11.5 236 ± 14 14.9 ± 4.3 312.4 ± 118.5 9,10,11
Leo I -12.0 -11.4 ± 3.0 -12.6 ± 2.9 258 ± 15 167.6 ± 1.6 106.6 ± 34.0 12,13,14
SMC -16.8 75.4 ± 6.1 -125.2 ± 5.8 61 ± 4 -9.8 ± 2.8 256.3 ± 32.7 15,16,17
LMC -18.1 195.6 ± 3.6 43.5 ± 3.6 50 ± 2 67.2 ± 4.0 342.5 ± 20.9 15,18,19
Sagittarius dSph -13.5 -275.0 ± 20.0 -165.0 ± 22.0 18 ± 2 140.9 ± 3.9 274.2 ± 32.7 20,21,22

References: 0=Piatek et al. (2005), 1=Carrera et al. (2002), 2=Walker et al. (2009b), 3=Piatek et al. (2003),
4=Pietrzyński et al. (2009), 5=Walker, Mateo & Olszewski (2009a), 6=Piatek et al. (2006), 7=Pietrzyński et al.
(2008), 8=Piatek et al. (2007), 9=Lépine et al. (2011), 10=Bellazzini, Gennari & Ferraro (2005), 11=Walker et al.
(2007), 12=Sohn et al. (2013), 13=Bellazzini et al. (2004), 14=Mateo, Olszewski & Walker (2008), 15=Piatek, Pryor
& Olszewski (2008), 16=Udalski et al. (1999), 17=Harris & Zaritsky (2006), 18=Clementini et al. (2003), 19=van
der Marel et al. (2002), 20=Pryor, Piatek & Olszewski (2010), 21=Monaco et al. (2004), 22=Ibata, Gilmore & Irwin
(1994)

2.4 Application to the Milky Way

One main conclusion of the previous analysis is that cosmological simulations make

well-defined predictions for the ellipticity distribution of satellite galaxies. These pre-

dictions can not be compared directly to observations because the only available data

are instantaneous positions and velocities for those satellites with distance, radial

velocity, and proper motion estimates. A literature search yields such data for nine

of the thirteen Milky Way satellites brighter than MV = −8. These positions and

velocities may be used to estimate orbital ellipticities after assuming a mass profile
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for the Galaxy. This allows us to place constraints on the total mass of the Galaxy by

requiring that the ellipticity distribution matches that of simulated luminous satel-

lites. We pursue this idea in Section 2.4.2, after presenting the observational data set

we use in Section 2.4.1.

2.4.1 Milky Way satellite ellipticities

We summarize in Table 2.1 the MilkyWay satellite literature data used in our analysis.

When several different estimates are available we have adopted values from the recent

compilation of McConnachie (2012). We have exclusively adopted proper motion

estimates from HST data.

In order to facilitate comparison between observation and simulation we have

transformed all values to a Cartesian Galactocentric coordinate system, with the x-

axis pointing in the direction from the Sun to the Galactic Centre, y-axis pointing in

the direction of the Sun’s orbit, and z-axis pointing towards the Galactic North Pole.

We assume a velocity of V0 = 239± 5 km s−1 for the clockwise circular velocity of the

local standard of rest (LSR; McMillan, 2011); R0 = 8.29 ± 0.16 kpc for the distance

from the Sun to the Galactic Centre, as well as (U, V,W ) = (11.10 ± 1.23, 12.24 ±
2.05, 7.25± 0.62) km s−1 for the Sun’s peculiar velocity with respect to the LSR from

Schönrich, Binney & Dehnen (2010).

We compute ellipticities for all nine satellites assuming that the mass profile of

the Galaxy may be approximated by an NFW halo with concentration given by the

mass-concentration relation of Neto et al. (2007). We have explicitly verified that the

results we quote are insensitive to the exact value of the concentration: for example,

varying c between 8 and 17 for a halo of virial mass M200 = 1.1× 1012 M⊙ leads to an

average change in the ellipticity of 0.05 over all nine satellites. This variation is much

smaller than the uncertainty implied by the relatively poor precision of the proper

motion estimates.

The coloured lines in Figure 2.7 show how the ellipticities estimated for each MW

satellite change as the assumed mass of the Milky Way is varied from M200 = 5×1011

to 5 × 1012 M⊙. As anticipated in Section 2.1, the ellipticity of a satellite depends

sensitively on the mass of the Galaxy. For example, if a satellite’s radial velocity is

much smaller than its tangential velocity, then it must be either close to apocentre or

pericentre. If near pericentre, increasing the Galaxy mass will decrease its apocentric

radius and make the orbital ellipticity decrease. If near apocentre, then the pericentre
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decreases as the mass increases, resulting in a more elliptical orbit instead3.

We note that a number of previous studies have suggested a possible connection

between episodes of star formation history in satellites and pericentric passages during

their orbits around the MW (e.g., Mayer et al., 2007; Pasetto et al., 2011; Nichols,

Lin & Bland-Hawthorn, 2012). The strong dependence of the timing of such episodes

on the assumed mass of the Milky Way provides an interesting constraint. It would

be particularly interesting, for example, to see if the same Milky Way mass leads

to synchronized pericentric passages and star formation episodes for a number of

satellites, an issue we plan to address in future work.

2.4.2 The Mass of the Milky Way

As Figure 2.7 makes clear, in general the lower the total mass the larger the inferred

orbital ellipticity of a satellite. For example, the median ellipticity of the nine MW

satellites increases from 0.4 to 0.98 as the mass is varied in the range described above.

The corresponding cumulative ellipticity distribution for several distinct choices of the

Milky Way mass is shown in the top panel of Figure 2.8 (coloured lines) and compared

with that of classical satellites in Aquarius (thin grey lines for individual haloes and

a thick black line for all haloes combined).

Note that the ellipticity distributions of individual Aquarius haloes are very similar

despite large differences in their accretion history and the fact that they span a sizable

mass range (Springel et al., 2008). Even Aq-F, which underwent a recent major merger

and is thus an unlikely host for the Milky Way, is indistinguishable from the rest. We

caution, however, that our analysis is based on only six haloes, which precludes a

proper statistical study of the halo-to-halo scatter. Future simulations should be able

to clarify this, as well as the possible dependence of satellite properties as a function

of halo mass and environment. Encouragingly, our conclusion agrees with the earlier

work by Gill et al. (2004), who analyse eight simulations chosen to sample a variety

of formation histories, ages and triaxialities and report a striking similarity in the

ellipticity distribution of their satellite systems. Furthermore, Wetzel (2011) find

that the ellipticity distribution of satellites at z = 0 is independent of host halo mass

in systems less massive than ∼ 4× 1012M⊙, a range that comfortably includes most

current estimates of the MW virial mass.

3These comments assume that the satellite remains bound as the Galaxy mass changes. Note
that Leo I, Leo II, and the Large Magellanic Cloud would be unbound if the Milky Way virial mass
was less than 6× 1011, 1.5× 1012, and 8× 1011M⊙, respectively.
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We conclude that comparing MW satellite ellipticities with the simulation pre-

dictions offers a viable alternative method for estimating the Milky Way mass. The

best match (as measured by the maximum value of the KS probability obtained when

comparing the nine MW satellite ellipticities to all six Aquarius haloes) is obtained

for M200 = 1.1× 1012M⊙. Values less than 6× 1011 M⊙ or larger than 3.1× 1012 M⊙

are disfavoured at better than 95% confidence according to the same test.

The bottom panel of Figure 2.8 shows the ellipticities for all satellites for the

favoured Milky Way mass including 1σ error bars. Lux, Read & Lake (2010) show

that measurements with Gaia’s expected accuracy will enable calculations of the last

apo- and pericentres of each orbit to an accuracy of ∼14% for a given MW potential,

whereas current observational data only allow recovery to ∼ 40% accuracy. The Gaia

data set will thus greatly enhance the accuracy of the Milky Way mass determination

using this method.

In Figure 2.7 the currently favoured mass range is shown by the black dashed line

and grey shaded area. We compare in the same figure our results with independent

estimates based on a variety of methods, from the timing argument (Li & White,

2008), to the kinematics of halo stars (Battaglia et al., 2005; Smith et al., 2007; Xue

et al., 2008; Deason et al., 2012), to virial estimates based on satellite kinematics

(Wilkinson & Evans, 1999; Battaglia et al., 2005; Sales et al., 2007a; Watkins, Evans

& An, 2010; Boylan-Kolchin et al., 2013). When other mass definitions were used,

the estimates given in these papers have been converted to M200 assuming NFW

profiles with concentrations computed from Neto et al. (2007). Some of these values

require extrapolating masses measured within smaller radii out to the virial radius.

In spite of this, it is striking that all literature values are in reasonable agreement

with our determination, lending support to the viability of our method.

2.4.3 The associated satellites of the Milky Way

As discussed in the previous section, a number of satellites associated with the main

halo are found today beyond the formal virial boundaries of the halo. Although this

applies mostly to low-mass subhaloes, a small fraction (∼ 20%) of luminous satellites

outside r200 at z = 0 have also been associated with the main halo. Can we use their

orbits to identify them? This is important because associated satellites are more likely

to have experienced tidal and ram-pressure stripping and to have evolved differently

from “field” dwarfs.
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computed assuming an NFW halo with concentration equal to 8.52.
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We explore this idea in Figure 2.9, where we compare the Galactocentric radial

velocities and distances of “classical” dwarfs in our model and in the vicinity of the

Milky Way. The figure includes only Local Group dwarfs that are closer to the

MW than they are to the Andromeda galaxy. All Aquarius main haloes have been

normalized to M200 = 1.1× 1012M⊙, our best match Milky Way mass as determined

in the previous section. Associated model dwarfs are plotted with red triangles and

blue crosses denote dwarfs that have never been associated with the main halo.

Interestingly, most subhaloes located between ∼ 300 kpc and ∼ 500 kpc that are

moving away from the main galaxy are “associated”, whereas those with negative

radial velocity tend to be unassociated dwarfs on first infall. Furthermore, beyond

∼ 600 kpc no classical dwarf has been associated with the main halo.

Some of these conclusions are in apparent conflict with the results obtained by

Teyssier, Johnston & Kuhlen (2012), who use associated subhaloes from the Via

Lactea II simulation and report a significant population of associated subhaloes out

to 1.5 Mpc from the host halo. One important reason for this apparent conflict is that

Teyssier, Johnston & Kuhlen (2012) do not discriminate between subhaloes likely to

host a dwarf as bright as a “classical” dSph. Indeed, some associated subhaloes in

Aquarius are also found beyond 1 Mpc, but these are exclusively low-mass haloes

unlikely, according to our semi-analytical model, to host dwarfs brighter than MV =

−8.

We end with a word of caution, however. Our Aquarius main haloes do not

have a massive companion and the simulations therefore do not attempt to reproduce

the large scale distribution of matter of the Local Group, where two massive haloes

(those surrounding the MW and M31) are about to collide for the first time. The

main halo in the Via Lactea II simulation does have a massive neighbour, which

results in a much larger turnaround radius for this system when compared to any of

the Aquarius systems. The effect of a Local Group environment on the kinematics of

outlying dwarfs has not been properly studied yet, but there are indications that it

is likely to play an important role in the accretion history of satellite galaxies and in

the evolution of neighbouring dwarfs (see, e.g., Beńıtez-Llambay et al., 2013).

2.5 Summary and Conclusions

We have combined the semi-analytical modelling of Starkenburg et al. (2013) with

the high-resolution simulations of the Aquarius project to investigate the orbits of
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the satellites of Milky-Way sized haloes in a ΛCDM universe.

We find that the orbital ellipticity distribution of luminous satellites shows little

halo-to-halo scatter and is radially biased relative to that of all subhaloes “associated”

with the main halo. The bias is relatively mild, considering that luminous satellites

populate preferentially massive subhaloes and are more centrally concentrated than

the main subhalo population. The bias results from the combination of three main

effects: (i) selecting subhalo samples only within the virial radius; (ii) dynamical

evolution after infall; and (iii) a weak dependence of ellipticity with infall time.

The first arises because many low-mass subhaloes (which dominate by number

but are generally dark) have apocentric radii larger than the virial radius and are

thus found outside r200 at any given time. The second likely results from interactions

between substructures, which have a more pronounced effect on low-mass subhaloes.

Our results therefore urge caution when selecting only subhaloes within the virial

radius, since many associated subhaloes (especially low-mass ones) lie at any given

time outside the virial radius.

We have compared the ellipticity distribution predicted for luminous satellites

with that estimated for nine Milky Way satellites with available 6D phase-space data.

Since the latter depends sensitively on the total mass assumed for the Milky Way, this

comparison allows us to place interesting constraints on the Milky Way mass. We find

that the ellipticity distribution of MW satellites is consistent with the predicted one

(at 95% confidence) only if the MW virial mass is in the range 6× 1011-3.1× 1012 M⊙.

This determination is in agreement with current, independent constraints from other

observations, and is subject to improvement as the sample of satellites with proper

motion estimates increases and the accuracy of such measurements improves.

In the next chapter, we use the same simulations and SAM to probe deep into

the very centres of these luminous satellite galaxies in order to establish a link be-

tween their internal structure and their dynamical pasts that can be used to better

understand the dSph galaxies of our own MW.
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Chapter 3

The effect of tides on the shapes

and orientations of dwarf

spheroidal galaxy haloes
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Abstract

We use the high-resolution cosmologicalN -body simulation suite of the

Aquarius project, coupled with a semi-analytic model of galaxy formation

(Starkenburg et al., 2013), to study the shapes and orientations of the

gravitational potential of “classical” (MV < −8) dwarf spheroidal (dSph)

galaxies. The excellent resolution of Aquarius allows us to probe deep

into the gravitational potential of these haloes, down to radii comparable

to that of the luminous components of dSphs in the Local Group.

As in earlier work, we find that the haloes of classical dSphs are quite

triaxial in their centres and become more spherical with radius. Subhaloes,

however, tend to be more spherical than field haloes of comparable lumi-

nosity due to the influence of the tidal field of their host. We conclude

that heavily stripped dSph satellites should be subject to a more spherical

gravitational potential than isolated dSphs. We also find a strong prefer-

ence for satellites to have their major axes aligned with the radial direction

to the host halo. This alignment is established after the first close pericen-

tric passage and persists along the orbit, except at subsequent pericentres.

Alignment affects primarily subhaloes with a slow initial figure rotation.

Our study indicates that “tidal alignment” is a feature that must be taken

into account in the calibration of weak-lensing surveys.
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3.1 Introduction

Dwarf spheroidal galaxies are important testbeds of current models of galaxy for-

mation and cosmology. Their high mass-to-light ratios of 10 to 1000 (Mateo, 1998;

Gilmore et al., 2007; Walker, 2013) indicate that the gravitational potential felt by

the stars in these galaxies, and thus their internal dynamics, is dominated by dark,

rather than baryonic, matter. Therefore it is appropriate to compare the gravitational

potential of satellites in dark matter-only simulations directly with observations of

dSphs in our Local Group (modulo possible effects baryons may have on the dark

matter distribution in the centres of these galaxies; see the cusp-core debate in Chap-

ter 1). Large samples of line-of-sight (LOS) velocities for individual stars in dSphs

have been measured, and allow us to constrain models of the dark matter structure in

these galaxies (Kleyna et al., 2002; Walker et al., 2007; Mateo, Olszewski & Walker,

2008; Battaglia, Helmi & Breddels, 2013).

One issue with such models is that the interpretation of radial velocities is highly

dependent on model assumptions. Critical might be the often-used assumption of

spherical symmetry in the system. Not only do ΛCDM simulations predict dark mat-

ter haloes to be generally triaxial (Jing & Suto, 2002; Hayashi, Navarro & Springel,

2007; Vera-Ciro et al., 2011; Allgood et al., 2006; Kuhlen, Diemand & Madau, 2007;

Schneider, Frenk & Cole, 2012), but the luminosity profiles of dSphs have been ob-

servationally found to be non-spherical (Irwin & Hatzidimitriou, 1995; Martin, de

Jong & Rix, 2008). Recently, Hayashi & Chiba (2012) fit axisymmetric dark matter

profiles to the LOS velocity dispersions for six dSphs in the MW, finding that the

best fit profiles deviate significantly from spherical symmetry – an effect that can

significantly alter inferred properties of these galaxies. An understanding of the tri-

axiality of the gravitational potential in dSph dark matter haloes is thus crucial to

our understanding of these faint systems.

With the current suites of high-resolution simulations, it has recently become

possible to study theoretically the shapes of dSphs in this (MW-mass) regime. Recent

work includes that of Kuhlen, Diemand & Madau (2007) who studied the shapes of

all dark matter subhaloes of a MW-sized host galaxy. In this chapter we go a step

further and study the shapes of dark matter subhaloes that are most likely to contain

dSph galaxies. This specific focus is important since most of the substructure (which

is lower-mass and thus remains “dark”) may have very different properties than the

higher-mass haloes likely to harbour dSphs (Barber et al., 2014).
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Vera-Ciro (2013) also combined the Aquarius simulations with the semi-analytic

model of Starkenburg et al. (2013) to measure the shapes of dark matter subhaloes

that are likely to contain dSph galaxies. However, they focus on the outer (1 to 10 kpc)

regions of these subhaloes, beyond the typical half-light radius of ∼ 200 − 500 pc of

MW dSph satellites. Armed with the same simulation suite and semi-analytic model,

in this paper we study the shapes of these systems in further detail, particularly in

the very inner regions where the stars of dSphs are typically found. In doing so, we

relate the measured shapes and orientations of these galaxies to their evolutionary

history and environment.

Many studies measure triaxiality by fitting triaxial ellipsoids to the moment of

inertia tensor, which is closely related to the density of the system (eg. Kuhlen,

Diemand & Madau, 2007; Knebe et al., 2010; Vera-Ciro, 2013). The issue with this

approach is that the isodensity contours are often far from being triaxial ellipsoids due

to the prevalence of substructure surrounding dark matter haloes (Springel, White

& Hernquist, 2004; Hayashi, Navarro & Springel, 2007). The gravitational potential,

however, is much less sensitive to local density variations as it depends on the total

mass distribution of the halo, and is thus much better fit by ellipsoids. Additionally,

the dynamics of the stars in dSph galaxies are dominated not by the local density,

but by the gravitational potential of the dark matter halo. Thus, the shape of the

potential, rather than the density, should be more relevant to observations of stellar

kinematics in dSphs. Hayashi, Navarro & Springel (2007) measure the shape of the

gravitational potential in simulated dark matter haloes that have evolved in isolation.

As well as investigating the shapes of the gravitational potential in isolated dSphs,

in this chapter we go one step further and investigate the effect of an external tidal

field on the shapes of satellite galaxy haloes.

The excellent resolution of Aquarius, combined with our careful measurements

of shapes, allow us to study other observed properties of these satellite galaxies.

It has been found both observationally (Hawley & Peebles, 1975; Djorgovski, 1983;

Pereira & Kuhn, 2005; Agustsson & Brainerd, 2006; Faltenbacher et al., 2007) and in

simulations (Kuhlen, Diemand & Madau, 2007; Faltenbacher et al., 2008; Knebe et al.,

2008, 2010; Pereira, Bryan & Gill, 2008; Pereira & Bryan, 2010; Vera-Ciro, 2013) that

satellite haloes of larger systems (eg. galaxy groups and clusters) tend to have their

major axes oriented toward the centre of their host. Studying these alignments can

tell us about the impact of environment on the formation and evolution of galaxies,

and can also be important in the calibration of weak lensing surveys, which often
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assume that lensed galaxies are intrinsically oriented randomly in space (Smith et al.,

2001; McKay et al., 2001).

Some recent studies have found the radial alignment signal to be less significant

in observations of the stellar components of satellite galaxies in galaxy groups and

clusters than predicted in dark matter simulations (Bernstein & Norberg, 2002; Adami

et al., 2009; Hung & Ebeling, 2012; Schneider et al., 2013). This discrepancy can be

resolved only if the physical mechanism for alignment is properly understood. There

are in general two mechanisms proposed in the literature. One is a primordial origin,

where galaxies are tidally torqued by the surrounding large-scale tidal field during

their formation (Peebles, 1969). In that case one would expect the alignment to

be strongest in the outskirts of clusters, since galaxy interactions would erase these

initial orientations over time. More recently, an alternative mechanism was proposed

by Pereira & Kuhn (2005), who claim that tidal interactions between satellites and

their host systems may be responsible for a radial alignment that persists over many

orbits.

Some studies (eg. Pereira, Bryan & Gill, 2008; Pereira & Bryan, 2010; Knebe et al.,

2010) have suggested that tidal torquing by the main halo at pericentric passages

may cause this alignment, while others (eg. Kuhlen, Diemand & Madau, 2007) have

proposed that the alignment may be due to stretching along the direction of (highly

radial) orbits as a result of tidal stripping. Due to the lack of consensus on this topic,

we investigate here whether there is a tendency for luminous subhaloes of MW-sized

galaxies to align radially, and by tracking them back in time, pinpoint when they

become aligned in order to determine the physical mechanism responsible for it.

This chapter is organised as follows. In Section 3.2 we describe the N -body

simulations and semi-analytic models used to identify luminous satellites around MW-

sized haloes. Our potential-fitting method is described in Section 3.3 and we test for

numerical convergence in Section 3.4. In Section 3.5 we show results from our shape

measurements, while we discuss orientations of dSphs relative to the main halo in

Section 3.6. A discussion and conclusions are presented in Section 3.7 and Section 3.8,

respectively.

3.2 N-body Simulations

We use the Aquarius project, a suite of N -body cosmological simulations (Springel

et al., 2008), to investigate the shapes of dark matter haloes in a ΛCDM universe. In
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addition to the merger trees used in the previous chapter, we now also use the particle

data itself in order to measure the gravitational potential of these dark matter haloes.

The semi-analytic model of Starkenburg et al. (2013) is again adopted in order to

identify dark matter haloes that are likely to host dSph galaxies.

Unless otherwise specified we use the high-resolution level-2 version of the Aquar-

ius runs which have particle mass of order 104 M⊙. Only haloes with at least 700

particles are retained for analysis, which implies a minimum halo mass of 7×106 M⊙.

This limit was selected to ensure that rmax
1 of all haloes are greater than their con-

vergence radii (see Section 3.4).

The effects of baryons on the dark matter are not included in our simulations.

Abadi et al. (2010) found that the inclusion of baryons can significantly transform

the shape of dark haloes, generally making them more spherical, especially in their

inner regions. Their study, however, deals with MW-type galaxies, which have much

lower M/L ratios than typical dSphs. Knebe et al. (2010) report that, although

baryons can significantly alter the shape of MW-sized haloes, they do not affect the

shape or orientation of the satellite galaxies of such systems. Further, Kazantzidis,

Abadi & Navarro (2010) find that the formation of a baryonic disc has limited impact

on the triaxiality of the surrounding dark matter halo when the disc contributes less

than 50 per cent of its circular velocity, which is the case for most dSph and low

surface brightness galaxies. Therefore, we do not expect that the inclusion of baryons

would significantly affect our results.

3.3 Potential-fitting method

We describe in this section how we estimate the 3D shape of a halo’s isopotential

contours. The centre of the halo is first found by locating the minimum of the gravi-

tational potential. The potential is computed at any given point by direct summation

over all particles in the halo of their contribution to the potential at that point. We

measure the potential along 100 isotropic radial rays extending from the centre of the

halo at 20 logarithmically spaced distances along each ray. In the case of subhaloes,

these rays extend from 0.05 to 10h−1kpc; only particles identified by SUBFIND as

bound to a subhalo are used to compute its gravitational potential.

We then choose 50 logarithmically spaced potential values for which to measure

1rmax is the radius at which the circular velocity of a halo reaches its peak, Vmax.
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isopotential contours. For each value of the potential, we interpolate along each ray to

obtain 100 isotropically distributed points on the isopotential contour corresponding

to that value.

We fit an ellipsoid to these points after recentering so that the centre of the

ellipsoid is halfway between their extrema in each spatial dimension. The remainder of

our procedure closely follows that of Hayashi, Navarro & Springel (2007). We measure

the moment of inertia tensor of this distribution of points in order to determine their

principal axes and then rotate the points into the basis of this eigenspace. In order to

determine the major, intermediate and minor axis lengths (a, b, and c, respectively)

we define for each point a normalized radius ri such that

x2
i + y2i + z2i

r2i
=

x2
i

a2
+

y2i
b2

+
z2i
c2
. (3.1)

For any point that lies on the ellipsoid, this equation equals unity and we have

ri −
√

x2
i + y2i + z2i = 0. Thus we fit an ellipsoid to this set of points by minimizing

the quantity

S =
∑

i

(

ri −
√

x2
i + y2i + z2i

)2

(3.2)

with respect to a, b, and c. To do so we alternatingly find roots of the partial derivative

of S with respect to these quantities, iterating until S can no longer be minimized.

A demonstration of this procedure is shown in Figure 3.1 for two subhaloes in Aq-

A-4: subhalo 1 is very elliptical, while subhalo 2 is quite spherical. The top left panel

shows a projected density plot of the main halo, along with the positions of these two

subhaloes. The top right panel shows the potential measured along 100 radial rays as

a function of radius for these subhaloes, scaled by an arbitrary value for clarity. Here

it is already obvious that, at given distance from the centre, subhalo 1 has a wider

range of potential values and is thus more elliptical. In the bottom panels, for each

subhalo we compare our ellipsoidal fits with the gravitational potential along a 2D

plane. For clarity the subhaloes have been reoriented such that x and y lie along their

minor and major axes, respectively. A simple by-eye comparison shows that ellipsoids

tend to be excellent approximations to the isopotential contours in our dark matter

haloes (see also Springel, White & Hernquist, 2004; Hayashi, Navarro & Springel,

2007).

We have attempted to use alternate methods to measure isopotential contours.

One such method is that described by Springel, White & Hernquist (2004), where one
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Figure 3.1: Demonstration of our procedure used to fit isopotential contours to dark
matter haloes. Top left panel: Projected density plot of Aq-A-4. The red and blue
circles indicate the positions of our two example subhaloes. Top right panel: Grav-
itational potential as a function of radius along 100 radial rays extending from the
respective centres of each subhalo selected in the top left panel. Bottom panels: Ellip-
soidal fits (black ellipses) to isopotential contours for these subhaloes superimposed
on a 2D slice of their gravitational potentials, oriented such that the x and y axes
point in the direction of their minor and major axes, respectively. The depth of the
potential increases from blue to red.

measures the potential along three uniform grids in orthogonal planes that intersect at

the centre of the halo. We tested that our method is less computationally expensive

and gives more accurate results near the centre of the halo, where we focus our

analysis.
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3.4 Numerical Convergence

Because we wish to investigate the shape of the potential in the central parts of a

halo at the level of the galaxy, we must understand how the accuracy of our measured

shapes changes with radius. We can do this by measuring the axis ratios as a function

of radius of a halo at various levels of resolution. Ideally, we would like to perform this

test on the subhaloes of the Aquarius main haloes, but to do this we would have to

match subhaloes between simulations, a feat which can be done (Springel et al., 2005;

Vera-Ciro, 2013) but is non-trivial. For expediency, we take a different approach and

test the convergence of our algorithm on the Aq-A main halo at different resolution

levels, and apply our findings to all haloes in the simulation.

Specifically, we explore whether the definition of “convergence radius”, rconv, first

proposed by Power et al. (2003) holds for isopotential shapes. These authors show

that deviations from convergence in the mass profile occur where the local collisional

relaxation time, trelax(r), becomes shorter than the dynamical time at the virial radius,

tcirc(r200), which is of the order of the age of the Universe. The ratio between these

two timescales can be written as

κ(r) ≡ trelax(r)

tcirc(r200)
=

N

8 lnN

r/Vc

r200/V200

=

√
200

8

N(r)

lnN(r)

(

ρ(r)

ρcrit

)−1/2

, (3.3)

where N(r) is the number of particles within radius r, ρcrit is the critical density of

the Universe, and ρ(r) is the mean density within r. The value of κ is chosen so that

the circular velocity profile of a halo deviates by less than some desired percentage

between different resolutions. For example, κ = 7 (1) guarantees a maximum error

of 2.5 (10) per cent in the circular velocity profile at rconv (Navarro et al., 2010).

We measured the shapes of isopotential contours in the Aq-A main halo at resolu-

tions 1 (highest) through 5 (lowest). The ratios b/a and c/a are shown as a function

of radius r′ = (abc)1/3 in Figure 3.2. The thick lines show the axis ratios down to

rconv(κ = 0.1), and thin lines inside that radius. The convergence relative to the

highest resolution run is excellent down to very small radii, deviating by less than

5 per cent for radii larger than that corresponding to κ = 0.1. We therefore choose

rconv(κ = 0.1), hereafter denoted r
(0.1)
conv , as our fiducial convergence radius.

For reference, we also show in Figure 3.2 the axis ratios of isodensity contours

of the Aq-A-2 main halo measured by Vera-Ciro et al. (2011). Our isopotential

contours are much more spherical at all resolutions and radii. This is expected,
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Figure 3.2: Convergence of the measured axis ratios for the Aq-A main halo at five
different resolutions. The ratios between intermediate and major axes (b/a) and the
minor and major axes (c/a) are shown in the left and right panels, respectively, as
a function of radius r′ = (abc)1/3 from the centre of the halo. Residuals relative to
the highest resolution run are shown in the bottom panels. Lines are drawn thinner
below our computed convergence radius. Dashed lines indicate the respective axis
ratios for isodensity contours in Aq-A-2 from Vera-Ciro et al. (2011).

since isopotential contours are generally more spherical than the mass, and should

become more spherical with increasing radius due to the increasing importance of the

monopole term.

3.5 Shapes of dwarf galaxies

We now describe the shapes of isopotential contours of subhaloes in the Aquarius

simulations. Unless otherwise specified, all results combine the Aq-A through E

simulations. Aq-F is excluded due to a recent major merger which is not thought to

be representative of the formation of the MW.

3.5.1 Shape as a function of Vmax

As a first test of our method, we perform a similar analysis as Vera-Ciro (2013), who

compare the measured axis ratios against Vmax for all subhaloes and field haloes in

the Aquarius simulations. Indeed, we seek to go one step further and see how this



47

relation applies purely to subhaloes expected to host dSph galaxies.

To reduce computational cost, rather than analysing all haloes in the simulation,

we take sample haloes as a function of Vmax in the range 1 to 35 km s−1. The axis

ratios b/a and c/a were computed at rmax (as in Vera-Ciro, 2013) and are plotted as

a function of Vmax in the top panels of Figure 3.3. The left and right panels show

“field haloes” and “subhaloes”, defined as those outside 2r200 and those within r200,

respectively. For easy comparison, log-linear fits to the axis ratios of the field haloes

are reproduced in each panel. For field haloes, we see a general trend of decreasing

axis ratios with Vmax that is much stronger in c/a than b/a. Subhaloes, on the other

hand, tend to have similar b/a but larger c/a than field haloes at all Vmax. These

trends agree qualitatively with the results of Vera-Ciro (2013).

Because we are interested in haloes that host luminous galaxies, we repeat this

exercise only for those haloes that are likely to have MV < −8 as determined semi-

analytically (Starkenburg et al., 2013). Since dSph galaxies brighter than this limit

are typically referred to as “classical” dSphs, we will hereafter refer to dark matter

haloes likely to contain such dSphs as “classical haloes”. These results are shown in

the bottom row of Figure 3.3. Classical field haloes span only a small range in the

Vmax distribution. Since all field haloes with such high Vmax tend to be classical, it is

not surprising that the classical field haloes agree with the high Vmax end of all field

haloes.

Some classical subhaloes, however, have much smaller values of Vmax, due to tidal

stripping from the main halo’s gravitational potential. Again, the agreement between

the population of all subhaloes and classical subhaloes at high Vmax (> 30 km/s) is

not surprising since in this regime nearly all subhaloes are classical. However, at lower

Vmax (< 20− 30 km/s) the classical subhaloes are extremely spherical, even more-so

than the general population of dark subhaloes. If these lower-mass classical subhaloes

really are tidally stripped, this trend implies that tidal forces cause subhaloes to

become rounder, at least at rmax. In the next subsection we investigate if this trend

is present at all radii, and in particular down to radii as small as where stars are

expected to be.

3.5.2 Shape as a function of radius

In the previous section we saw that low mass classical subhaloes of MW-sized haloes

tend to be much more spherical than high-mass subhaloes, when measured at rmax.
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Figure 3.3: Axis ratios as a function of maximum circular velocity of various subsam-
ples of haloes. The left and right columns show haloes in the field (r > 2r200) and
subhaloes of the main halo (r < r200), respectively. The top and bottom rows show
haloes of any luminosity and classical haloes, respectively. b/a and c/a are shown in
yellow and green respectively. Solid lines indicate running medians while solid filled
areas indicate the 1σ scatter. Overlapping regions are coloured in yellow-green. Lin-
ear fits (in log space) to the axis ratios shown in the top left panel are reproduced in
each panel for reference.



49

Here we investigate if this trend is measurable in the inner (stellar) regions of these

subhaloes.

In Figure 3.4 we show the median axis ratios as a function of the radius at which

they are measured for all subhaloes with luminosities comparable to that of the Fornax

dSph galaxy (within ∆MV = 0.5). We sample radii from the convergence radius of

∼ 160 pc at this resolution out to nearly 14 kpc. Given that the half-light radius of

Fornax is 710 pc (McConnachie, 2012), we are able to measure the axis ratios of the

potential deep within the galaxy itself. Medians for those inside and outside r200 are

shown in red and blue, respectively. For both populations, haloes are very spherical

in their outskirts and become more triaxial toward the centre. However, at all radii,

those within r200 are more spherical on average than those outside r200.

Hayashi, Navarro & Springel (2007) measured the shapes of isopotential contours

of simulated dSphs that evolved in isolation. In Figure 3.4 we over-plot their results,

which agree extremely well with our haloes outside r200. The Hayashi, Navarro &

Springel (2007) results shown here have been scaled from their original plot using

rs = rmax,Fornax/2.16, where rmax,Fornax is the median rmax value from our Fornax-

like sample. This agreement shows that, in terms of their axis ratios, haloes that are

outside of r200 today tend to be indistinguishable from those that evolved in isolation.

3.5.3 Luminous subhalo shape convergence

We wish to investigate the shapes of not only Fornax-like classical dSphs, but of lower-

mass dSphs as well, such as Ursa Minor and Draco, down to their half-light radii. To

do so we must be cautious, since the half-light radii of such galaxies are comparable

to the convergence radii of our simulated haloes. In Figure 3.5 we compare the half-

light radii of nine MW dwarfs to rmax and r
(0.1)
conv of the (simulated) classical haloes

in Aquarius, as a function of MV . It is worth noting here that r
(0.1)
conv depends very

weakly on MV , and in fact is roughly constant here. This is expected since r
(0.1)
conv

depends most critically on the number of enclosed particles, which, within a small

radius (∼ 500h−1pc), varies only weakly with halo mass (Power et al., 2003; Kuzio

de Naray & McGaugh, 2014).

The half-light radii of all nine of our MW dSphs are greater than (or equal to,

in the cases of Leo II and Ursa Minor) our typical convergence radius of ∼ 160 pc.

Thus, we should be able to measure the shapes of classical dwarfs in the simulation

down to these half-light radii to within an accuracy of around 5%. Also note that
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Figure 3.4: Axis ratios as a function of radius for satellites expected to have the same
magnitude as Fornax, to within 0.5 magnitudes. Running medians for subhaloes
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rmax is always above r
(0.1)
conv , indicating that the results for low-mass classical satellites

in Figure 3.3 are not affected by resolution effects.

In the next section we will look at all of the classical haloes at once, and use 800

pc as a typical half-light radius. We have checked that using a smaller radius does

not affect our results substantially. This may be seen in Figure 3.4, where the axis

ratios do not change appreciably below this radius.
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3.5.4 Shape as a function of stripping

The results of the previous subsections suggest that haloes that are more stripped

are more spherical. To investigate this possible correlation we adopt as a proxy for

stripping the ratio between Vmax at z = 0 and the maximum value of Vmax that the

halo ever had (hereafter Vmax/Vmax,max). In the bottom panel of Figure 3.6 we show

histograms of classical haloes inside and outside r200 in red and blue respectively. The

former population is clearly much more stripped than the latter. Thus if stripping

is the cause of this sphericalization, this would explain the more spherical shapes of

subhaloes located within r200 of the main halo, as seen in Figure 3.4.

In the top two panels of Figure 3.6, we show the axis ratios measured at 800

pc as a function of stripping for those classical haloes inside and outside r200 in red

and blue, respectively. Black lines indicate running medians of the two populations

combined. We also show the corresponding remaining mass fraction on the top axis.

We find that subhaloes that have been significantly stripped (Vmax/Vmax,max < 0.7),

are on average much more spherical than those that have not (Vmax/Vmax,max > 0.9),

especially in c/a. Indeed, even the axis ratios of those subhaloes that are within

r200 but have not yet been stripped appear to match the triaxiality the field halo

population. As well, some field haloes that have been stripped (possibly by haloes

other than the main halo) tend to be much rounder than those that are non-stripped.

Thus, although a subhalo’s proximity to the main halo and degree of stripping are

correlated, it appears that stripping itself is the main cause of sphericalization of dark

matter haloes that are likely to contain dSph galaxies.

3.5.5 Predictions for real MW satellites

We now investigate the axis ratios measured at the half-light radii of subhaloes that

are of comparable luminosity to specific MW dSph galaxies (within 0.5 in MV ). As

the semi-analytic model does not predict half-light radii for the Aquarius haloes, we

measure the shapes at the half-light radii the MW dSph for which the subhaloes are

analogues.

In Figure 3.7 we show the b/a and c/a axis ratios as a function of stripping for

classical subhaloes that are similar in luminosity to nine MW classical dSph galaxies,

as indicated in each panel. Remarkably, this trend of sphericalization with stripping

is observable over a wide range in satellite magnitudes, from Draco with MV = −8.8

to the Sagittarius dSph with MV = −13.5. Therefore it is possible to predict whether
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a MW dSph satellite galaxy has been significantly stripped or not given knowledge of

the shape of its gravitational potential. For example, if c/a of Fornax is found to be

more spherical than 0.9, it is likely that more than 90 per cent of its maximum mass

has been stripped away. This result is a robust prediction of ΛCDM and will be a

useful tool in understanding the complex dynamical histories of MW dSph galaxies.
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3.6 Orientation of dwarf galaxies

We now investigate the orientation of satellite galaxies relative to the direction to

the centre of their host halo. In particular we investigate if this alignment is present

in the inner regions of classical subhaloes in our simulations and identify clues to a

possible physical cause of the alignment.

3.6.1 Methods

For this purpose we study only subhaloes of the main Aquarius haloes, as those in

the field should be randomly oriented with respect to the main halo (which indeed

we have confirmed). As well, we adopt a threshold of b/a < 0.95 for the ellipsoidal

fit whose orientation is being measured to ensure that the direction of the major axis

is measured accurately. The b/a distribution of the resulting subsample is shown as

the grey-filled area in Figure 3.8. Roughly half of the subhaloes have b/a below this

threshold, leaving us with 43 classical satellites with r < r200 and b/a < 0.95.

We have tested the accuracy of our axis direction measurements as a function of

our b/a threshold. To do so we create mock NFW haloes that have been artificially

flattened to make them triaxial, and orient them such that the major axis should point

in the (arbitrary) ẑ-direction. The orientation of the major axis was then measured

while varying b/a. We found that indeed the direction of the major axis begins to

deviate significantly from ẑ only for haloes that are more spherical than b/a = 0.95.

Specifically, above this limit the cosine of the angle between them begins to deviate

from unity by more than 0.1. Thus, given this cutoff, we expect that our direction

measurements are quite accurate. We have checked as well that the value of c/b does

not affect our measurement of the direction of a.

3.6.2 Radial alignment with the main halo

We have measured the angle θ between the major axis and the direction to the main

halo for all 43 classical subhaloes in our sample. For a population with random

orientations, the distribution of | cos(θ)| is expected to be uniform.

In Figure 3.9 we plot, from top to bottom, histograms of | cos(θ)| measured at 400,

800, and 1600 pc from the centre of each subhalo in our sample, respectively. The

alignment is heavily biased toward unity in each panel, indicating a net preference

for subhaloes to be aligned with the direction to the centre of the main halo. A
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Figure 3.8: Distribution of b/a axis ratios for all classical haloes (green dotted line)
and classical subhaloes (red solid line), measured at 800 pc. Classical satellites with
b/a < 0.95 are shown in grey; this sample is used for orientation measurements in
Section 3.6.

KS test indicates that the distribution is significantly different from uniform at the

99% confidence level. The fact that this bias is seen in all panels indicates that the

orientation of a halo is independent of measurement radius. Further, we have checked

that the major axis direction does not change within a halo as long as b/a remains

less than 0.95. This is important, for it implies that the stars in MW dSph satellites

must also be subject to a gravitational field that is aligned with the host halo. For

reference, we also plot the alignment of classical haloes beyond r200. We find no

significant alignment for these haloes, indicating that the alignment in the subhaloes

is the result of interactions with the main halo.

We have checked that the measured alignment is not due to numerical effects. One

possible source of bias is that in the calculation of the potential we are only using
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particles identified by SUBFIND. Therefore it is feasible that we may incur a bias

in the radial direction of subhalo particles due to the radial density gradient of the

main halo, which could cause a bias toward measured radial alignment. To test the

importance of this effect, we remeasured the potential of subhaloes that are aligned

with the main halo using instead of the SUBFIND selection only particles within 0.5,

1, and 2 rmax from the centre of the subhalo. In each case the measured orientations

of the subhaloes were not affected.

3.6.3 Alignment examples

In order to understand the origin of the alignment seen in Figure 3.9, we tracked these

43 subhaloes back in time, at each time step measuring the alignment of the major

axis with the (instantaneous) centre of the main halo. In this way we can pinpoint

when and where a subhalo becomes aligned.

An example of a subhalo aligned with the main halo at z = 0 is shown in Fig-

ure 3.10. The left panel shows | cos(θ)|, distance from the main halo, axis ratios

measured at 800 pc, and degree of stripping of this subhalo as a function of time

since the Big Bang. Important points in the satellite’s orbit are shown as vertical

lines. Apocentric and pericentric passages are defined as An and Pn respectively,

where n = 1, 2, 3 correspond to the first, second, third passages respectively. In the

right panel we plot the orbit of the satellite projected onto its orbital plane at z = 0.

Pericentric and apocentric passages are marked with coloured dots. This subhalo

initially falls into the main halo with a low figure rotation, and after its second peri-

centric passage becomes radially aligned at all subsequent times except at its third

pericentric passage. The loss of alignment at pericentric passages is common in our

sample (see Figure 3.12), and has been seen before by Kuhlen, Diemand & Madau

(2007), Pereira, Bryan & Gill (2008), and Knebe et al. (2010), who all claim that the

pericentric passage occurs so quickly that the subhalo does not have time to adjust

its orientation to point toward the main halo.

It is interesting that it took two pericentric passages for this satellite to become

aligned. Perhaps at P1 it did not come close enough to be affected tidally. Indeed,

Vmax did not decrease appreciably until just after P2 so the tidal effects at P1 may

not have been strong enough to tidally torque (or stretch) the subhalo. Also note how

the axis ratios b/a and c/a tend to increase after pericentric passages, confirming that

tidal effects are indeed a likely cause of the circularisation of the internal structure of
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Figure 3.10: Example of a subhalo that becomes aligned with the main halo after
infall. The left panels show alignment, orbital radius, axis ratios measured at 800 pc,
and degree of stripping since infall as a function of time, from top to bottom respec-
tively. Vertical lines indicate important points in the satellite’s orbit; pericentres and
apocentres are dashed and dotted, respectively. The right panel shows the orbit of
this subhalo from 4 Gyr until z = 0, rotated to the orbital plane at z = 0. Black dots
and lines indicate the direction of the subhalo’s major axis projected onto the plane
of the orbit. Each coloured dot corresponds to the time indicated by the vertical line
of the same colour in the left panels. Arrows indicate the subhalo’s velocity direction.
The red circle indicates r200 of the main halo at z = 0.

these subhaloes.

Not all subhaloes experience alignment with the main halo, in spite of being tidally

stripped. One such example is shown in Figure 3.11. After infall, this subhalo tumbles

rapidly, possibly due to an interaction with another satellite, so quickly that it does

not align despite a high degree of stripping and close pericentric passages. These

results seem to corroborate the tidal torquing theory of Pereira, Bryan & Gill (2008):

if a subhalo is initially tumbling very quickly, a much larger torque is required to

slow it down enough to put in into a “tidally locked” orbit. This result is however

in apparent contrast with Pereira & Bryan (2010) who find that satellites that are

artificially given an initial figure rotation upon accretion are torqued into alignment

within an orbital time. Because we have instead investigated this problem in a full

cosmological simulation, we have revealed that many satellites have a high enough

initial rotational speed that they are gyroscopically resistant to tidal torquing from
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Figure 3.11: As in Figure 3.10 but now showing a subhalo that does not align due to
a high initial figure rotation.

the main halo, and thus do not align even after several orbital times.

3.6.4 Alignment as a function of orbital phase

We find that many subhaloes tend to align after either their first or second pericentric

passages. Therefore we now investigate the alignment as a function of orbital phase

of all 43 satellites in our subsample. Histograms of the alignment at various orbital

phases are shown in Figure 3.12. Note that the sample in each panel decreases with

orbital time since some satellites have only recently been accreted and have not yet

completed multiple orbits. At P1 and A1, most subhaloes have not yet aligned.

However, after the 2nd pericentre, many subhaloes tend to align and remain aligned

at subsequent apocentric passages. Alignment tends to be stronger at apocentre than

pericentre, where alignment tend to be more randomized. Very few of these subhaloes

have had more than 3 apocentric passages since infall, so we refrain from statistically

investigating later orbital phases.

Note that this alignment almost always tends to follow extreme stripping events.

In each panel of Figure 3.12 we show the mean degree of stripping since infall, defined

as the ratio between Vmax and that at infall, Vmax,infall. Most satellites experience their

highest degree of stripping after the second pericentric passage, as the first is often

not close enough to the centre of the main halo to experience significant mass loss,
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Figure 3.12: Alignment distributions of the major axis measured at 800 pc for those
subhaloes shown in Figure 3.9, at various orbital phases. Medians are indicated by
vertical dashed lines. Orbital phase is written in the top left portion of each panel as
defined in Figure 3.10. The number of subhaloes and mean degree of stripping since
infall are also indicated in the top left of each panel.

and the first passage tends to puff up the subhalo to make it easier to strip during the

second pericentre passage (Nichols, Revaz & Jablonka, 2014). This correlation with

stripping and radial alignment is very useful, since if one observes a satellite galaxy

that is radially aligned with its host, there is a good chance that it has been around

for at least two pericentric passages and has been tidally stripped by the main halo.
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3.6.5 Alignment as a function of stripping

To investigate this correlation between radial alignment and stripping explicitly, in

Figure 3.13 we show the alignment distribution of these 43 satellites in our subsample

as a function of Vmax/Vmax,infall. For each panel we choose the same level of stripping

as the mean ratio in the corresponding panel in Figure 3.12 to facilitate easier com-

parison between the two figures. At infall, before significant stripping can occur, the

alignment distribution is already slightly skewed toward radial alignment. As sub-

haloes become stripped, their alignments become increasingly more randomized down

to Vmax/Vmax,infall = 0.9. As stripping continues, the satellites begin to radially align

strongly, especially below Vmax/Vmax,infall = 0.83.

Our finding that subhaloes are already aligned at infall has been seen in previous

studies, and is thought to be caused by primordial alignment of haloes relative to the

filaments in which they form due to torquing by the surrounding large-scale structure

(Pereira, Bryan & Gill, 2008; Aragón-Calvo et al., 2007). As the subhaloes begin to

be tidally stripped by the main halo, this primordial alignment is initially erased.

However, over time the tidal field of the main halo causes the satellites to realign,

and remain aligned throughout their orbits.

Even though we see a strong correlation between alignment and degree of strip-

ping, it is likely that these highly stripped subhaloes have also been strongly torqued

by the tidal field of the main halo. This degeneracy between stripping and tidal

torquing makes it non-trivial to determine which process, if either, is the direct cause

of this radial alignment. However, we find that subhaloes do not align until they

have been significantly stripped (Vmax/Vmax,infall < 0.83); at this point they have lost

over 70 per cent of their mass since infall. This, coupled with the fact that only slow

rotators experience radial alignment despite significant stripping, leads us to believe

that tidal torquing is the more likely direct cause of this alignment, while stripping

is simply a side effect of the extreme tidal field required to torque the satellites.

Nevertheless, this correlation between alignment and stripping will be extremely

useful for models of galaxy formation. For instance, if satellite galaxies of a given

system are observationally found to be significantly aligned toward the centre of their

host, it is likely that these satellite galaxies have undergone significant tidal stripping

and thus must have formed within much larger haloes than the ones they currently

occupy.
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Figure 3.13: Alignment distributions of the major axis measured at 800 pc for those
subhaloes shown in Figure 3.9, for various levels of stripping since infall as indicated in
each panel. Medians are indicated by vertical dashed lines. The number of subhaloes
is also indicated in the top left of each panel.

3.7 Discussion

We have shown that tidal effects cause satellite galaxies of MW-sized haloes to become

more spherical and to radially align with the host over time.

This finding is quite interesting since most tidally stripped satellites of the MW

have long, extended tails of stars extending across the sky. One famous example is
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the Sagittarius stream that wraps around the MW several times. Therefore, naively,

one would expect stripping to stretch and elongate subhaloes tangentially to our

line of sight, rather than make them rounder and oriented radially. This apparent

contradiction is explained by the fact that subhaloes are stripped from the outside

in. These unbound streams of particles originate from the outskirts of the subhalo

where the tidal forces are strongest, while the inner regions remain bound. Thus

while the outer parts of a satellite become stripped and form long tidal tails along

the progenitor’s orbit, the surviving inner regions actually become more spherical and

align radially with the host, until they too are stripped away.

With this information it should be possible to infer the dynamical history of a

dSph galaxy orbiting a larger system by measuring its triaxiality and orientation

relative to the host. If the kinematics of stars in a satellite are consistent with living

in a triaxial dark matter halo, it is likely that the halo has not been significantly

stripped.

Jeans modelling is often used to infer the underlying dark matter distribution

based on the positions and line-of-sight velocities of stars in dSphs. However such

models often make simplifying assumptions about the underlying system, such as the

fact that the system is spherically symmetric. We find that the velocity dispersion

along the major axes of our classical haloes with c/a < 0.8 is on average 10 per cent

larger than along the minor axis. If dSphs tend to have their major axes oriented along

the line of sight, as we have found here, spherically symmetric Jeans modeling may

overestimate their masses. Indeed, through axisymmetric mass modelling, Hayashi &

Chiba (2012) find the masses of some MW dSphs to be factors of a few smaller than

when assuming spherical symmetry.

A major caveat is that, observationally, we do not have 3D spatial information of a

galaxy. Everything is seen in projection onto the sky. Therefore it is quite difficult to

make quantitative comparisons between our findings and observations. For instance,

from our vantage point in the Galaxy it is nearly impossible to measure the Galacto-

centric radial extent of dSph satellites of the MW. Thus the radial alignment effect we

measure here is difficult to confirm observationally in this regime. However this effect

has been observed in the isophotal contours of satellites of galaxy clusters and groups

on larger scales. Models of such systems must take into account a general radial

alignment with the main halo. This could be especially important in weak-lensing

surveys which rely on the assumption that satellites are oriented randomly with re-

spect to their host (Smith et al., 2001; McKay et al., 2001). For example, Schneider
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et al. (2013) estimate that intrinsic alignments between galaxy group members may

contribute a systematic uncertainty of up to 20 per cent in the mean differential pro-

jected surface mass density of galaxy groups inferred from weak lensing observations.

A thorough understanding of these radial alignments is thus crucial for the calibration

of weak lensing measurements.

3.8 Conclusions

We have used the Aquarius simulation suite to investigate the shape and orientation

of isopotential contours in dark matter haloes likely to contain classical (MV < −8)

dwarf spheroidal (dSph) galaxies similar to those found in the Local Group (referred

to as “classical haloes”). Such contours are very well fit by triaxial ellipsoids. Con-

vergence tests indicate that the axis ratios are accurate to better than 5% down to

a convergence radius of rconv(κ = 0.1) ≈ 160 pc at the level-2 resolution level of

Aquarius. This excellent resolution allows us to probe the dark matter potential in

these systems down to the typical half-light radii of dSph galaxies.

The shape of the potential is quite triaxial in the centre of classical haloes and

becomes more spherical with radius. We find that classical subhaloes of the main MW-

sized halo tend to be much more spherical than field haloes of comparable luminosity.

This effect is seen at all radii, even at the typical half-light radii of MW dSph galaxies.

Strong correlation is seen between sphericity and mass lost since infall, indicating

that interactions with the tidal field of the host halo are the likely cause of the

circularisation of the gravitational potential in subhaloes. This effect is measurable

down to the half-light radii of typical MW dSph galaxies, and therefore should be

observable in real systems. With the recently launched Gaia telescope, precise LOS

motion and proper motions of stars in MW dSphs will allow better constraints on

the shape of their gravitational potentials, thus allowing direct comparison with this

work.

The orientation of classical satellites of MW-sized haloes was also measured. We

find significant alignment between the major axes of the satellites and the direction to

the host halo (median | cos(θ)| = 0.75), an effect that is independent of the radius at

which the potential is measured. Subhaloes were tracked back in time to investigate

the cause of such an alignment. Infalling subhaloes have a net preference for radial

alignment possibly due to primordial torquing of the large scale structure. Interac-

tions with the main halo erase this initial alignment, but subsequent close pericentric
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passages strip and possibly torque subhaloes, realigning many of them toward the

centre of the main halo. This alignment tends to occur after first or second pericen-

tric passage and persists for the rest of the orbit, except at subsequent pericentric

passages. These findings corroborate the tidal torquing theory of Pereira, Bryan &

Gill (2008), where a satellite can be torqued into a locked orbit by the tidal field of

the host. However, we find that only satellites with a low initial figure rotation can

be efficiently torqued into permanent alignment.

Our vantage point in the Galaxy currently precludes the measurement of the

Galactocentric radial extent of the MW dSphs, and thus a direct comparison of our

orientation results to our own Galaxy is difficult. Studies like this will, however,

be able to inform the calibration of weak lensing surveys that usually assume that

satellite galaxies are oriented randomly relative to their host.
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Chapter 4

Conclusions

We have studied dwarf satellite galaxies of Milky Way-sized dark matter haloes as

predicted by the ΛCDM cosmological model coupled with a semi-analytic model of

galaxy formation. We have studied two of their major properties:

1. The ellipticity of their orbits

2. The shape and orientation of the gravitational potential in the inner regions,

where the luminous component of the galaxies is expected to exist

The major results can be summarized as follows:

• The orbital ellipticity distribution of luminous subhaloes exhibits little scatter

between Aquarius main haloes, despite a large range in virial mass (M200 =

(0.8− 1.8)× 1012 M⊙) and formation history. This finding makes the ellipticity

distribution a robust prediction of the properties of satellite galaxies in ΛCDM.

• Luminous subhaloes are on much more elliptical orbits than their “dark” coun-

terparts. This trend is primarily due to the fact that luminous subhaloes tend

to be more massive than dark subhaloes, and thus experience different dynam-

ical evolution after accretion onto the main halo. Specifically, this result is due

to:

1. Interactions between low and high mass subhaloes after accretion. The

high mass subhaloes are affected very little by such interactions, while the

low mass subhaloes either scatter to large radii (beyond the virial radius

and are lost), or are scattered onto more circular orbits and remain within

the virial radius.
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2. An anticorrelation in orbital ellipticity at accretion with infall time, cou-

pled with the fact that luminous satellites tend to accrete earlier than dark

subhaloes on average.

• The computed orbital ellipticities of MW satellites are very sensitive to the

assumed MW mass. The best match between the ellipticity distribution of the

MW dSphs and Aquarius classical subhaloes is obtained for a MW mass of

1.1 × 1012 M⊙. Our results suggest, to 95% confidence, a MW mass between

0.6−3.1×1012 M⊙, in agreement with current estimates based on other methods

(e.g. the timing argument and kinematics of blue horizontal branch stars in

main halo).

• The excellent resolution of Level-2 Aquarius allows us, for the first time, to

reliably measure the shape of the gravitational potential in luminous subhaloes

down to 160h−1 pc, well within the typical half light radius of most MW dSph

galaxies.

• The shape of the gravitational potential in field haloes tends to be triaxial in

general, with maximal triaxiality in the innermost regions.

• Subhaloes of MW-sized haloes are more spherical than field haloes. This spheri-

calization is caused by tidal interactions with the main halo; sphericity increases

with increased tidal mass loss.

• The major axes of luminous satellites are significantly aligned with the direction

to the centre of the main halo. This bias is caused by interactions of the

subhaloes with the host tidal field at close pericentric passages.

• Radial alignment will not occur if the infalling satellite is initially tumbling on

a timescale much shorter than its typical orbital period. This new finding will

help to better constrain tidal torquing theories of satellite galaxies.

These results were obtained through the analysis of the Aquarius Project, a cos-

mological Λ cold dark matter simulation suite of six Milky Way-sized haloes (Springel

et al., 2008). By combining Aquarius with a semi-analytic model of galaxy forma-

tion and evolution (Starkenburg et al., 2013), we were able to identify the substruc-

ture of these MW-sized haloes likely to contain a stellar mass similar to the dwarf
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spheroidal galaxies of the Local Group. The state-of-the-art time and spatial resolu-

tion of Aquarius allowed us to track these subhaloes through time, and to probe their

internal structure down to very small radii, where the stellar content is expected to

be found.

In this study, we have made robust predictions for the properties of dwarf spheroidal

galaxies of the Milky Way. Through comparison with observations, one may thus

place interesting constraints on the Local Group, such as the dynamical histories of

the MW dSphs and the total mass of the MW itself. It is robust predictions like these

that will help us test models of galaxy formation and cosmology on small scales in

order to help finally put to rest some of the heated debates in this regime.

4.1 Outlook

The mass of the MW estimated in this thesis has a very large uncertainty. The error

here is dominated by the fact that 1) we only have reliable proper motions for nine

MW dSphs, and 2) the proper motions that we do have are quite uncertain. Fortu-

nately, the recently launched ESA mission Gaia will measure proper motions of stars

within many more dSphs and to much higher accuracy than is currently possible.

Additionally, modern adaptive optics systems promise to provide ground-based tele-

scopes with angular resolutions comparable to HST, with expected astrometric errors

below the milliarcsecond level (Rigaut et al., 2012). With these improvements, this

method of measuring the MW mass via a comparison between the ellipticity distribu-

tions of luminous satellites in simulations with that inferred for the MW dSphs will

become much more precise, making this novel, independent approach of measuring

the MW mass an excellent contender with other more established methods in the

next few years.

One of the major caveats in this thesis is that the Aquarius haloes are isolated,

with no other large objects within several Mpc. Indeed, the MW has a massive nearby

companion: The Andromeda Galaxy (M31), roughly 785 kpc distant (McConnachie

et al., 2005). Because some dSphs considered in this thesis range in distances from the

MW of up to several hundred kpc (eg. Leo I is 258 kpc from the MW; McConnachie,

2012), it is possible that the total gravitational potential of the Local Group should

be taken into account in our simulations in order to make accurate predictions of

the MW dSphs. For example, it would be very interesting to see if the satellite

ellipticity distribution is significantly different for a MW-sized halo in a Local Group
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environment, rather than in isolation as was done here. We note that we do not

expect this assumption to be a dominant source of error in our MW estimate, given

the extremely large uncertainties in the dSph proper motions.
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Pietrzyński G., Górski M., Gieren W., Ivanov V. D., Bresolin F., Kudritzki R.-P.,

2009, AJ, 138, 459

Planck Collaboration et al., 2013, ArXiv e-prints

Power C., Navarro J. F., Jenkins A., Frenk C. S., White S. D. M., Springel V., Stadel

J., Quinn T., 2003, MNRAS, 338, 14

Press W. H., Schechter P., 1974, ApJ, 187, 425

Pryor C., Piatek S., Olszewski E. W., 2010, AJ, 139, 839

Read J. I., Gilmore G., 2005, MNRAS, 356, 107

Rigaut F. et al., 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE)

Conference Series, Vol. 8447, Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series

Sales L. V., Navarro J. F., Abadi M. G., Steinmetz M., 2007a, MNRAS, 379, 1464

Schneider M. D. et al., 2013, MNRAS, 433, 2727

Schneider M. D., Frenk C. S., Cole S., 2012, J. Cosmology Astropart. Phys., 5, 30

Schönrich R., Binney J., Dehnen W., 2010, MNRAS, 403, 1829



78

Simon J. D. et al., 2011, ApJ, 733, 46

Smith D. R., Bernstein G. M., Fischer P., Jarvis M., 2001, ApJ, 551, 643

Smith M. C. et al., 2007, MNRAS, 379, 755

Sohn S. T., Besla G., van der Marel R. P., Boylan-Kolchin M., Majewski S. R.,

Bullock J. S., 2013, ApJ, 768, 139

Springel V. et al., 2008, MNRAS, 391, 1685

Springel V., White S. D. M., Hernquist L., 2004, in IAU Symposium, Vol. 220, Dark

Matter in Galaxies, Ryder S., Pisano D., Walker M., Freeman K., eds., p. 421

Springel V. et al., 2005, Nature, 435, 629

Springel V., White S. D. M., Tormen G., Kauffmann G., 2001, MNRAS, 328, 726

Stadel J., Potter D., Moore B., Diemand J., Madau P., Zemp M., Kuhlen M., Quilis

V., 2009, MNRAS, 398, L21

Starkenburg E. et al., 2013, MNRAS, 429, 725

Steigman G., 2007, Annual Review of Nuclear and Particle Science, 57, 463

Stoehr F., White S. D. M., Tormen G., Springel V., 2002, MNRAS, 335, L84

Strigari L. E., Bullock J. S., Kaplinghat M., Diemand J., Kuhlen M., Madau P., 2007,

ApJ, 669, 676

Strigari L. E., Bullock J. S., Kaplinghat M., Simon J. D., Geha M., Willman B.,

Walker M. G., 2008, Nature, 454, 1096

Strigari L. E., Frenk C. S., White S. D. M., 2010, MNRAS, 408, 2364

Taffoni G., Mayer L., Colpi M., Governato F., 2003, MNRAS, 341, 434

Teyssier M., Johnston K. V., Kuhlen M., 2012, MNRAS, 426, 1808

Teyssier R., Pontzen A., Dubois Y., Read J. I., 2013, MNRAS, 429, 3068

Tolstoy E., Hill V., Tosi M., 2009, ARA&A, 47, 371

Tormen G., 1997, MNRAS, 290, 411



79

Tormen G., Diaferio A., Syer D., 1998, MNRAS, 299, 728

Udalski A., Szymanski M., Kubiak M., Pietrzynski G., Soszynski I., Wozniak P.,

Zebrun K., 1999, Acta Astron., 49, 201

van den Bosch F. C., Lewis G. F., Lake G., Stadel J., 1999, ApJ, 515, 50

van der Marel R. P., Alves D. R., Hardy E., Suntzeff N. B., 2002, AJ, 124, 2639

Vera-Ciro C. A., 2013, PhD thesis, University of Groningen

Vera-Ciro C. A., Helmi A., Starkenburg E., Breddels M. A., 2013, MNRAS, 428, 1696

Vera-Ciro C. A., Sales L. V., Helmi A., Frenk C. S., Navarro J. F., Springel V.,

Vogelsberger M., White S. D. M., 2011, MNRAS, 416, 1377

Viel M., Lesgourgues J., Haehnelt M. G., Matarrese S., Riotto A., 2005, Phys. Rev. D,

71, 063534

Walker M., 2013, Dark Matter in the Galactic Dwarf Spheroidal Satellites, Oswalt

T. D., Gilmore G., eds., Springer Science+Business Media Dordrecht, p. 1039

Walker M. G., Mateo M., Olszewski E. W., 2009a, AJ, 137, 3100

Walker M. G., Mateo M., Olszewski E. W., Gnedin O. Y., Wang X., Sen B.,

Woodroofe M., 2007, ApJ, 667, L53

Walker M. G., Mateo M., Olszewski E. W., Peñarrubia J., Wyn Evans N., Gilmore
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