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Abstract

Supervisory Committee
Dr. Thomas Tiedje, Department of Electrical and Computer Engineering
Supervisor

Dr. Reuven Gordon, Department of Electrical and Computer Engineering
Departmental Member

This thesis present photoluminescence spectroscopy and X-ray diffraction analyses of
four different cadmium zinc telluride samples with different quality and features and
similar zinc molar concentration of 10%.

Photoluminescence spectroscopy of the samples let us obtain several physical
parameters of the samples which are indicators of quality, composition, structure, and
impurity levels of the samples. The band gap energy of the samples obtained from the
photoluminescence spectra at low temperatures helped us to estimate zinc molar
concentration of the samples. Temperature dependence of band gap energy in these
samples has been analyzed and exciton-LO phonon interactions in the samples has been
analyzed. From temperature dependence of full width at half maximum of the
photoluminescence peak several parameters including concentration of impurity centers
and inhomogeneity of the samples are determined and compared in order to check the
quality of the samples. Thermal quenching of the photoluminescence peak has been
analyzed and the processes which are associated with each parameter are determined and
discussed.

X-ray diffraction analyses of the sample for the location and width of the peaks have
been analyzed and several characteristics of the samples including quality, lattice
constant and zinc molar concentration of the samples are determined and compared. The
parameters that are obtained from these analyses are compared with the ones from the
photoluminescence spectra and showed a good agreement between the results of these
two non-destructive characterization techniques.
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1 Introduction

The general topic of this thesis is about cadmium zinc telluride crystals and its

applications in radiation detectors and medical imaging systems. In this chapter, a general

introduction to cadmium zinc telluride is presented. Then, the organization of this thesis

is explained.

Cadmium Zinc Telluride: An Introduction

Cadmium zinc telluride (Cd1-xZnxTe) is a ternary II-VI compound that has been used in

many nuclear detector applications these days as it shows several favorable features such

as optical band gap, and ability to work at room temperature. Since 1970s, silicon and

germanium X-ray detectors doped with lithium are being used in X-ray medical imaging

systems that require liquid nitrogen cooling systems to operate. As CZT X-ray detectors

work at room temperature and do not require expensive cooling solutions, they provide a

cost-efficient alternative for the conventional semiconductor X-ray detectors.

Furthermore, it contains relatively heavy elements that give it a high stopping power for

medical X-rays. Added to all of these features are the convenient electrical properties

such as high resistivity and charge transport that make CZT-based detectors able to

operate at a high performance level. In addition to these applications, CZT is the substrate

of choice for growing high quality and homogenous crystals of mercury cadmium

telluride (Hg1-yCdyTe) which is used for infrared detection. Using CZT as the substrate

reduces the stress during the growth and improves the crystal quality significantly. To

match the lattice spacing of these two compounds in order to grow dislocation-free
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HgCdTe on top of CZT, different concentrations of zinc should be used for each

percentage of cadmium in mercury cadmium telluride crystal.

A lot of research interest is shown in CZT growth and device fabrication in order to

meet growing demand for CZT radiation detectors for medical and non-medical purposes.

CZT detectors especially draw a lot of attention for room-temperature x-ray and gamma

ray detectors. [1], [2]

We can categorize radiation into two separate groups, the ones that are charged, such as

beta particles consisting of electrons and positrons, and alpha particles and the ones that

are not charged, such as x-rays and gamma rays. Relaxation of an excited nucleus to low

energy states and destruction of electrons and positrons can emit a gamma ray photon. X-

rays can be produced when a fast moving electron interacts with its surroundings and

emits photons. The main difference between these radiations is the energy of the emitted

photon. For example, X-ray photons have energies in the range from 1 keV to 100 keV,

while gamma ray photons have energies greater than 100 keV. When CZT crystals are hit

by a gamma ray, an electric signal can be measured across the two faces of the crystal.

The strength of this signal depends on the quality of the CZT crystal. The reader should

note that detection of this radiation was only possible by using expensive systems which

operate at cryogenic temperatures, while CZT detectors operate at room temperature,

which reduces the cost of the system.

The efficiency of a CZT detector depends on two major factors: the general quality of

the bulk crystal and the surface quality. These factors affect several aspects of radiation

detection such as charge collection efficiency, radiation stopping power, and
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homogeneity of the whole detector. Growing large CZT single crystals with acceptable

quality to be used in detectors is a challenging task as CZT has relatively low thermal

conductivity compared to other semiconductors and it hinders controlling the solid liquid

interface which is mainly controlled by melting-point isotherm that is controlled by the

heat transfer during the growth[3]. Maintaining a planar solid liquid interface during the

growth is one of the main necessities to grow large high quality single crystal bulks[4].

High ionicity of the CZT structure facilitates the formation of defects inside the crystal

during the growth process, as higher ionicities result in lower formation energies for

dislocations and stacking faults[5]. A new method of crystal growth has been introduced

for CZT by Zanio[6] called asymmetrical Bridgman method. The main feature of this

method is maintaining a planar solid liquid interface during the growth process. Sen et

al.[7] used this method to grow CZT crystals with diameters as large as 5 cm and

resistivity as high as 1011 Ω-cm.

Other than the quality of the crystal which includes density of dislocations, stacking

faults, impurities, antisites and vacancies in the crystal, the band gap of the

semiconductor plays a major role in the operation of a detector. The bandgap of CZT

crystals can be adjusted by changing the zinc concentration in the alloy, from 1.5 eV for

CdTe to 2.3 eV for ZnTe[8], [9]. Higher band gaps help to reduce the leakage current

noise in the detectors and allow the detector to work at higher temperatures with lower

noise levels. However, too large of a band gap requires more energy to produce electron

hole pairs in the semiconductor and a higher probability of carriers being trapped, which

decreases the efficiency of the detector. Adjusting the trade-off between a low band gap
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energy for lower electron hole pair activation energy and lower trapping probability and a

higher band gap energy for lower noise levels and the ability to work at higher

temperatures gives an optimal range for the band gap between 1.5 eV to 2.2 eV which is

perfectly aligned with the band gap in CZT crystals.

Semiconductor radiation detectors in general are fabricated from semiconductors such

as germanium, silicon, cadmium telluride, mercuric iodide, and CZT.  Silicon detectors

only present acceptable resolution in detecting radiation with energies less than a few

tens of kilo electron volts, while the detector itself can work at room temperature[10]. On

the other hand, high purity germanium (HPGe) detectors exhibit an extremely high

resolution which is a result of its high number of charge carriers due to its low band gap

of less than 1 eV[11]. However, having low band gap energy causes a high level of

thermal noise at high temperatures and makes it necessary to operate the detector at

cryogenic temperatures. High atomic number semiconductor materials such as CdTe,

HgI, and CZT are recently being used in radiation detectors for operation at room

temperature with relatively high efficiency. Among these, lower production costs and the

adjustable band gap energy of CZT make this particular crystal stand out.

Organization of Thesis

This thesis focuses on the theory and application of cadmium zinc telluride crystals in

radiation detectors and medical imaging systems. A comprehensive non-destructive

method for determination of the quality of CdZnTe crystals is studied and results are

discussed.
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In chapter 2, a review of theories behind photoluminescence and X-ray diffraction, as

main focuses of this work, is provided.

In chapter 3, experimental methods used during this thesis work are explained.

In chapter 4, the results and performed analyses on these data are presented and results

of these analyses are discussed.

In chapter 5, a conclusion for this thesis and a summary of the work that has been done

is presented.
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2 Theory

In this chapter, a general description of the theory behind photoluminescence and X-

ray diffraction is reviewed. These two experimental techniques are the focus of this work.

Photoluminescence

Photoluminescence can provide useful information about a semiconductor material, its

structure, composition and quality. Several localized energy levels are typically present in

the band gap, both shallow and deep levels. Shallow levels have small energy differences

with the top of the valance band or bottom of the conduction band, while deep levels are

more widely separated in energy from the band edges. Radiative recombination of charge

carriers only happens when the carriers are transferred to the conduction or valance band.

No charge carrier can get radiatively recombined while it is trapped in a localized energy

level in the band gap. Transfer of the charge carrier to the conduction or valance band can

occur by different stimulation processes such as an electric field, light exposure, or

thermal excitation. When a pre-excited material shows a luminescence effect after being

heated, this is the release of the preciously stored energy from the electromagnetic

radiation, and it is called thermo-luminescence. The presence of vacant lattice sites,

impurities or any other kind of defect can provide trapping centers for the charge carriers,

which facilitate non-radiative recombination and reduces radiative recombination.

Photoluminescence occurs in solid materials when electron states of the solid are

excited by light and the excitation energy gets released through a recombination process
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and the emission of a photon. Stoke’s rule[12] is the first law that governs this process

and according to it the radiated photon always has an energy equal to or less than the

excitation energy. In other words, the radiated photon always has wavelengths equal or

longer than the excitation photon. The difference between these two levels is due to non-

radiative energy transfers in the solid. P. J. Dean[13] published a general introduction to

photoluminescence spectroscopy.

In general, the process of a photoluminescence spectroscopy starts with exposing the

surface of the probed material with a monochromic light beam with a photon energy

higher than the band gap. The absorbed photon creates an electron hole pair and they

move to states in the conduction band or within the gap. These excited carriers can

transfer to lower energy levels within the gap or the valence band and emit the stored

energy in the form of a photon. These radiated photons then get collected and studied for

the purpose of spectroscopy. These photons carry the energy signature of different levels

available in the material due to impurities, defects, and the material structure. Studying

these photons then provides a comprehensive overview of the point defects in the

material and the specific type of each present defect, impurity or structural feature.

Usually the photons that are emitted in the recombination process involve conduction

band to valence band transitions, are not present in the photoluminescence spectra, as

some of these photons get reabsorbed in the material. Only photons with energies lower

than the band gap are able to escape the crystal and be observed in the

photoluminescence spectra.



8

As Coulomb’s law indicates, any pair of objects carrying opposite electric charge will

attract to each other by a Coulomb force. In the case of a free electron in the conduction

band and a free hole in the valence band, the Coulomb interaction of these charge carriers

binds them weakly together. This entity composed of a weakly bond free electron-free

hole pair is called an exciton. Excitons can be regarded as a mobile energy packet and

when they are not trapped by any defect or impurity, its energy can be expressed by a

hydrogen model as:

= − 2 ∗ℎ
where Eg is the band gap energy, h is Plank’s constant, ε is the dielectric constant and mr

*

is the reduced effective mass of the pair described as:1∗ = 1∗ + 1∗
where me

* and mh
* is the electron and hole effective masses respectively.

Inclusion of zinc in cadmium telluride crystals changes the band gap and free exciton

energy. Hence these energies depends on zinc molar concentration x in Cd1-xZnxTe. We

assumed that the free exciton energy varies almost linearly from 10 meV in CdTe to 13

meV in ZnTe and it is assumed to be 10.8 meV[14] for the materials in our study for

which x~9%. The dependence of band gap energy on zinc molar concentration is

discussed in detail in chapter 4.

Interaction of free excitons with defect centers or impurities changes the total energy of

the combination. Whenever the interaction reduces the energy, the exciton will be trapped

on the defect or impurity and it is regarded as a bound exciton. These bound excitons can
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participate in a radiative recombination process from which photons with energies lower

than free exciton related photons are emitted. These photons appear as a peak in the

photoluminescence spectra at an energy level lower than the peak for free excitons.

Both neutral and ionized donor and acceptor atoms can trap a free exciton. In general,

four types of bound excitons are usually detectable: excitons bound to ionized donors

(D+,X), excitons bound to neutral donors (D0,X), excitons bound to ionized acceptors (A-

,X), and excitons bound to neutral acceptors (A0,X)[15], [16].

All of these bound exciton types have been reported in photoluminescence spectra of

CZT except the ionized acceptor (A-,X). Several published articles[17], [18] investigated

the appearance of these bound exciton peaks in different materials and it is reported that

free excitons can bind to an ionized donor when the ratio of the mass of holes to the mass

of electrons is higher than 1.4 and to an ionized acceptor when the ratio of the mass of

electrons to the mass of holes is higher than 1.4[17], [18]. Therefore, it is not possible to

see both (D+,X) and (A-,X) peak in one material. As for CZT the mass of holes is about

three times the mass of electrons, therefore only (D+,X) peak can be detected.

Different energy levels present in CZT are shown in figure 2.1[19]. In addition to

levels shown in this figure, a free exciton level with an energy of 10.8 meV less than the

conduction band, a donor-bound exciton level with an energy of around 12-14 meV less

than the bandgap, and an acceptor-bound exciton level with energy of around 160-170

meV less than the bandgap is present in CZT.
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Figure 2.1 Position of energy levels in CZT

CZT crystals usually contain both donor and acceptor atoms and they are referred as n-

type or p-type according to which type of dopant is dominant. These donor and acceptors

can form an interacting pair with each other and the Coulomb energy between them will

change the binding energies of the isolated impurities. The energy of the photon resulting

from a recombination of an electron on a donor and hole on an acceptor is described as:

= − ( + ) +
where Eg is the band gap energy, EA and ED are acceptor and donor ionization energies

respectively, e is electron charge, ε is the dielectric constant and R is the distance

between donor and acceptor atoms. This emission results in a wide peak due to a range of

donor-acceptor separations in the photoluminescence spectra that is usually detectable in

CZT. A vacancy of cadmium in CZT and CdTe can be included in this band while

behaving as an acceptor. In CdTe a wide peak in range of 1.4 eV to 1.5 eV is visible due
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to DAP recombination. For CZT crystals with low zinc molar concentration, the same

feature is expected as well.

A diagram of several recombination processes that can be detected in CZT is shown in

figure 2.2[20].

Figure 2.2 Several recombination processes in CZT

A common outcome of a non-radiative recombination is emission of phonons, the

collective vibrational modes of the atoms in the crystal. These phonons can interact with

electrons, holes or excitons and affect the photoluminescence spectra. Phonons can
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appear in two modes acoustic or optical and for optical phonons we have longitudinal

optical mode (LO) or transverse optical mode (TO). In CZT, it is reported that the direct

electron phonon interaction is dominated by LO phonons and our calculation in chapter 4

restates these reports by measuring very low effective factors for other type of phonons.

The LO phonon energy in CdTe is around 21 meV and for the purpose of our study, a

value of 21.77 meV has been assumed for all samples from linear interpolation of CdTe

LO phonon energy and ZnTe LO phonon energy.

X-Ray Diffraction

The best tool to detect ordered arrays of atoms separated by the distance of a covalent

bond is X-ray diffraction. As the energy of electrons in the core orbitals of many types of

atoms is approximately equal to the energy of a quantum of an X-ray radiation, these

electrons will be the main source of scattering for this radiation. Atoms with a higher

density of electrons in their orbitals scatter the radiation more strongly than atoms with

less density of electrons. The interference of these scattered X-rays results in the

phenomenon called diffraction.

Huygen’s principle is one of the main bases of diffraction theory. According to this

principle, every point on a wavefront of a propagating wave, can be considered as a new

origin of the wave, propagating with the same speed as the main wave. Figure 2.3 shows

a point on a wavefront and the new wave origin that can be considered to be placed on

that point[21].
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Figure 2.3 Huygen’s principle. A new scattered wave origin is considered on the

wavefront with the same wavelength and propagation speed as the main wave

Now if we consider two objects, called A and B, placed in front of a wavefront, each of

these objects scatters the wave such that they act like new wave point sources for waves

with the same speed and wavelength. The final observed waveform behind these objects

depends on the spacing between these objects and the distance from A and B where we

are observing the result. In some points the wave from object A and the one from object

B interfere constructively, when they have same phase, and in some other points they

interfere destructively, when they have opposite phase. This kind of interference is called

diffraction. The resulting waveform carries information about the relative positions of A

and B. This is how X-ray diffraction is used to determine structural features of crystals.

Bragg’s law is the second basic principle of diffraction spectroscopy. It relates the

diffraction to the relative distance between the scattering objects. For this purpose,

consider a one dimensional crystal with reflection planes placed a distance d apart. An

Main beam propagation
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incident X-ray beam hits these planes at an angle θ and is reflected with identical angle θ.

The reflected beam from each plane has a different phase that is related to the extra path

the beam traveled to reach that plane, in comparison to the beam reflected from higher or

lower planes. Constructive interference of these beams observed in a distance much

greater than d only happens whenever this extra path is equal to an integer number of

wavelengths, so that the reflected beams have a similar phase. The extra path between a

specific beam and the beam reflected from one plane higher is described as:12 = sin
Finally by assuming that the extra path is equal to an integer number of wavelengths:2 sin =
This equation relates the diffraction angle to the spacing between the objects and shows

that there is a reciprocal relation between these two. In other word, larger spacing

between the objects results in lower diffraction angles. In crystals, d can be interpreted as

the lattice constant and the distance between the atoms in the lattice constant. Therefore

changing θ will result in different peaks with different angles that characterize the

features of the crystal structure.
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3 Methods

In this chapter, a description of the equipment and systems that have been used in this

work is presented.

Photoluminescence Setup

For performing photoluminescence tests at very low temperatures, an optical cryostat

(CS202AI-DMX-1SS) from Advanced Research Systems Inc with optical windows was

used. This system is connected to a helium gas compressor from the same company and a

vacuum system consisting of a rough vacuum pump and a turbo pump provided a cold

sample holder in vacuum with temperatures nominally as low as 4 K.

A laser setup consisting of a red pumping laser diode (Laser Diode Module 7200) from

Spectra Physics connected to a radio frequency driver (Q-Switch Driver 7250) and a 532

nm green laser module (Model 7950-L104) was used as the excitation source for

photoluminescence spectroscopy.

The laser beam was directed to the samples surface through the optical windows on the

cryostat system by a prism. The radiated photoluminescence was collected through the

same window by a custom optical setup made by optical lenses and filters from Thorlabs.

The optical setup focused the excited point on the sample on a tip of a fiber optic cable

and filtered light with wavelength below 600 nm, so that the excitation light from the

laser does not affect the output signal. The fiber optic cable transferred the collected

radiation to a spectrograph from Acton Research (SpectraPro 3000) where it was detected
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with a liquid nitrogen cooled InGaAs array detector from Roper Scientific (Model 7410-

0003).

Figure 3.1 shows a descriptive diagram of the setup for photoluminescence

spectroscopy.
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Figure 3.1 Photoluminescence setup diagram

Green 532nm
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X-ray Diffraction Setup

X-ray diffraction analyses in this work were carried out with a Bruker D8 Discover

Diffactometer system, an advanced X-ray diffractometer for material science research

applications. This system includes a Turbo X-ray source anode for maximum intensity. It

is a copper X-ray source with X-ray wavelength of 1.54056 angstrom. The system also

includes two different detector configurations, a crystal analyzer and a variable slit

detector. The crystal analyzer gives a lower intensity with higher resolution of 15 arc

seconds, while the variable slit provides a much stronger signal with lower resolution of

50 arc seconds. The sample holder stage allows movements with minimum step size of

0.01 mm in directions of x, y, z, and 0.001 degrees in phi – rotation of the sample holder

around z axis – and chi – the rotation of the sample holder around x axis. The detector is

also mounted on a precise mobile arm that allows angular changes as small as 0.0001

degree. Figure 3.2 shows D8 Discover.
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Figure 3.2 Bruker D8 Discover X-ray diffractometer system

CdZnTe Samples

In this work, four different samples with nominal zinc molar concentration of 10%,

which is the most common concentration used in detector grade CZT systems, have been

provided by RedLen. There are a variety of qualities among these samples, so that defect

and impurities features can be detected by comparison. The sample numbers are 2964,

3495, 1527, and 1218. Samples were prepared in cubic shapes of 1 cm × 1 cm × 0.5 cm

and 1 cm × 1 cm × 0.3 cm. The surface was chemically and mechanically polished.
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4 Results and Discussion

Photoluminescence studies

Low temperature photoluminescence spectroscopy has been done on four different

samples of Cd1-xZnxTe (x=0.1) and the resulting spectra have been analysed in order to

characterize several features of the crystal including its impurities, dislocations, defects

density, and composition. A typical photoluminescence spectrum of a CdZnTe crystal at

low temperature is shown in figure 4.1.

Figure 4.1 Photoluminescence spectrum of CZT at 10K temperature. The kink at 1.4 eV

is caused by inaccuracy in the spectral calibration of the spectrometer
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The sharp peak in the spectrum is the donor-bound exciton (D0,X) emission at 10K.

The broader peak for the deep-level band at around 1.47 eV is attributed to donor-

acceptor-pair recombination which is related to a level in which both donor and acceptor

units are available in close vicinity of each other. Indium A-center acceptor levels can

contribute to this peak as well. It has been reported that in CZT, a cadmium vacancy, the

most typical structural defect in CZT, can be occupied by an indium atom and forms an

InCd that behaves as a shallow donor state. Furthermore, various complexes such as a

positively ionized indium placed at a cadmium vacancy surrounded by a double

negatively ionized cadmium vacancy [InCd
+ VCd

2-] that behaves as an ionized acceptor,

and two positively ionized indiums placed at two cadmium vacancies surrounding a

double negatively ionized cadmium vacancy [2InCd
+VCd

2-] as a neutral entity can be

formed in presence of indium[22]. These complexes are created due to the self-

compensation process that occurs when high concentration of indium is present and

decreases the doping efficiency of the crystal[22]. Some of the samples’ show a weak

peak at around 1.61 eV at low temperature that can be attributed to acceptor-bound

exciton emission. The presence of this peak shows that the concentration of acceptor

units is relatively higher in these samples compared to the ones that did not show the

aforementioned peak. Different structures can be considered as an acceptor in CZT other

than typical acceptor atoms. Several defects and complexes involving cadmium vacancies

in the crystal structure show behaviour similar to acceptor atoms. Another type of

cadmium vacancy based complex that has been reported by Worschech et al.[23] is the

reason for the appearance of another photoluminescence peak at around 1.58 eV and it is
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called a C-line. This peak is attributed to an exciton bound to an isoelectronic defect

complex consisting of two indium atoms on cadmium vacancies and a cadmium vacancy

shown in figure 4.2[23].

Figure 4.2 An InCd-VCd-InCd defect complex created by self-compensation of indium in

CdZnTe and acts as a shallow acceptor
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We used the least squares method to fit for our experimental data to equations in the

literature. In this method, we minimize the squares of the deviations between the fitted

value and our experimental data. Furthermore, we reduce the degrees of freedom in our

fits by fixing the value of some of the parameters, whenever the physical explanation of

that parameter predicts a negligible change for it among our samples. For example, in the

fit of the full-width-at-half-maximum of the photoluminescence peak we expect

negligible changes in the exciton-LO phonon coupling constant due to the small

composition variations in our samples, the value for this parameter has been fixed.

As typical of other semiconductor alloys, the band gap and free-exciton energies in a

ternary compound such as CZT depend on the zinc molar concentration. This dependence

can be explained by the change in the lattice constant due to incorporation of zinc in the

CdTe crystal. The more zinc in the crystal, the smaller the lattice constant. The repulsive

interaction of core electrons will increase when the inter-atomic spacing decreases and

this increase in repulsive interaction increases the band gap. Several expressions in the

literature tried to estimate the relation between the band gap Eg and zinc molar

concentration x. A list of these expressions is presented below and their estimation for

each sample has been listed in table 4.1. The resulting zinc molar concentrations from X-

ray analysis that are presented in the next section is also listed in this table for

comparison purposes. In these measurements the band gap energy has been determined

from the photoluminescence spectrum of the samples at lowest temperature.
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1. Eg (12 K) = 1.598 + 0.614x + 0.166x2 (eV) [Olego 1985][8] (0<x<1)
2. Eg (9 K) = 1.604 + 0.42x + 0.33x2 (eV) [Chen 1991][24] (0<x<0.1)
3. Eg (4.2 K) = 1.606 + 0.322x + 0.463x2 (eV) [Reno 1992][25] (0<x<1)
4. Eg (4.2 K) = 1.6058 + 0.546x (eV) [Tobin 1995][26] (0.03<x<0.06)
5. Eg (2 K) = 1.606 + 0.522x + 0.26x2 (eV) [Magnea 1994][27] (0<x<1)
6. Eg (x) = 1.606 + 0.520x + 0.254x2 (eV) [Franc, 2000][14] (0<x<0.06)

Table 4.1 Zinc molar concentraition estiamtion

Sample Eg Olego Chen Reno Tobin Magnea Franc X-ray

1218 1.651 0.08439 0.10348 0.11929 0.08278 0.08279 0.08316 0.0883

1527 1.650 0.08283 0.10143 0.11697 0.08095 0.08102 0.08138 0.0843

2964 1.657 0.09371 0.11567 0.13296 0.09377 0.09335 0.09378 0.0939

3495 1.656 0.09216 0.11365 0.13071 0.09194 0.09160 0.09201 0.0891

A detailed photoluminescence study of four different CZT samples has been done for

samples for different temperatures varying from 8K to 300K. Figures 4.3 through 4.6

show the temperature dependence of the photoluminescence of these samples.
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Figure 4.3 Temperature dependence of photoluminescence spectrum for sample 1218
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Figure 4.4 Temperature dependence of photoluminescence spectrum for sample 1527



27

Figure 4.5 Temperature dependence of photoluminescence spectrum for sample 2964
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Figure 4.6 Temperature dependence of photoluminescence spectrum for sample 3495

There are several features that are distinguishable in the temperature dependence of the

samples’ photoluminescence. The acceptor-bound exciton emission peak which is present

in only two of the samples is thermally quenched quickly when the temperature raised.

All of the peaks show a thermal quenching effect that will be studied in detail further in

this study. Furthermore, red-shift or shift of the peak energy to lower energies is visible
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in the spectrum of all samples. This effect can be translated to a band gap shift with

temperature that will be studied in detail. The donor-bound exciton peak probably

evolves to a donor-to-valence band transition at higher temperatures. The full width at

half maximum (FWHM) of the donor-bound exciton peak is also important as it gets

broader at higher temperatures. This effect and its origin, which is mainly from defect

and structural inhomogeneity, will be studied in detail further in this study.

Three different expressions have been reported for the variation of the band gap energy

with temperature in semiconductors.

= − ( + )
where α and β are constants[28].

= − ++
where α, β and ν are constants. This equation is called modified Varshni’s equation[28].= − − 1
where α is a constant related to exciton-LO phonon coupling and θE is called Cody

temperature[29].

Fitting the data acquired by photoluminescence spectroscopy of the samples with these

equations gives the constants related to each sample. As it has been shown by Chichibu et

al, 1997 that if optical phonon branches of a polar semiconductor is next to the acoustic

ones in energy, then fitting the temperature dependence of the band gap energy using the

Cody equation that assume Einstein phonons is better than using the Varshni fitting that
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assumes Debye phonons. Therefore, the fitting for all three equations is shown in figure

4.6 only for one sample for the sake of comparison and for the other samples only the

Cody fitting has been shown in figure 4.8 through 4.10.

Figure 4.7 Temperature dependence of band gap energy for sample 1218 fitted with all

three equations
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Figure 4.8 Temperature dependence of band gap energy for sample 1527 fitted with the

Cody equation
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Figure 4.9 Temperature dependence of band gap energy for sample 3495 fitted with the

Cody equation
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Figure 4.10 Temperature dependence of band gap energy for sample 2964 fitted with the

Cody equation

Measured parameters for all of the fittings have been shown in table 4.2. The same

Cody temperature has been implemented for all of the samples as the fitting results were

very close to each other. Also, the band gap energy at T = 0K has been estimated from

the photoluminescence spectrum at low temperatures.
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Table 4.2 Fitting parameters for temperature dependence of band gap energy

Varshni Varshni’s modification Cody
Sample 1218

E0 1.650 (eV) 1.650 (eV) 1.650 (eV)
α 0.0003518 (eV/K2) 0.000364 (eV/K2) 0.03019 (eV)
β 81.6 (K) 95.9 (K) -
ν - 0.168 (eV) -
θE - - 94 (K)

Sample 1527
E0 - - 1.650 (eV)
α - - 0.03448 (eV)
β - - -
ν - - -
θE - - 94 (K)

Sample 2964
E0 - - 1.657 (eV)
α - - 0.03488 (eV)
β - - -
ν - - -
θE - - 94 (K)

Sample 3495
E0 - - 1.656 (eV)
α - - 0.03430 (eV)
β - - -
ν - - -
θE - - 94 (K)

The exciton-LO phonon coupling constant that has been measured here using the Cody

equation is used in fitting the temperature dependence of the FWHM of the

photoluminescence peak, as the broadening factor of exciton-LO phonon interactions

uses the same form.

There are several factors that account for broadening of the photoluminescence peak at

higher temperatures. In general, this broadening has two parts that separate the

temperature dependent and temperature independent terms. The temperature independent
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term is mainly due to the inhomogeneity of the crystal. It is a constant and it only

depends on the structure of the crystal. However, the temperature dependent term consists

of three terms: one for the broadening effect of acoustic phonon-exciton interactions at

higher temperatures, one for the broadening effect of optical phonon-exciton interactions

at higher temperatures, and one for the broadening effect of defect and impurity centers

thermally activated at higher temperatures. Therefore, this expression has been reported

to predict the FWHM of a photoluminescence peak at different temperatures[30]:

where Гinh is the inhomogeneous broadening term, γLA is a coefficient of exciton-acoustic

phonon interaction, ΓLO is the exciton-LO phonon coupling constant, ħωLO is the LO

phonon energy, Γi is a proportionality factor which accounts for the concentration of

impurity centers, and Ei is the binding energy of impurity-bound excitons averaged over

all possible locations of the impurities. Using this equation to fit the experimental data we

gathered results in a set of fittings and parameters that are shown in figure 4.11 to 4.14

and table 4.3. ΓLO is supposed to be constant in all samples, as the composition variation

of the samples is small and exciton-LO phonon interactions changes among the samples

is expected to be small. The coupling constant measured from the Cody equation has

been used for ΓLO. Furthermore, Ei is also considered to be constant for all samples and

its value has been estimated from the average of the fitted data. ħωLO variation among all

four samples considered to be negligible and a linear interpolation of LO phonon energies

of CdTe and ZnTe has been used to estimate its value.
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Figure 4.11 Temperature dependence of photoluminescence (D0,X) peak full width at half

maximum for sample 2964
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Figure 4.12 Temperature dependence of photoluminescence (D0,X) peak full width at half

maximum for sample 1527
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Figure 4.13 Temperature dependence of photoluminescence (D0,X) peak full width at half

maximum for sample 1218
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Figure 4.14 Temperature dependence of photoluminescence (D0,X) peak full width at half

maximum for sample 3495

Table 4.3 Temperature dependence of photoluminescence (D0,X) peak FWHM fitting

parameters

Sample 1218 1527 2964 3495

Ei 8.1 meV 8.1 meV 8.1 meV 8.1 meV

Γi 12.4 meV 7.2 meV 12.7 meV 23.8 meV

ħωLO 21.77 meV 21.77 meV 21.77 meV 21.77 meV

ΓLO 31.6 meV 31.6 meV 31.6 meV 31.6 meV

Γinh 18.7 meV 14.3 meV 16.5 meV 26.3 meV
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As the fitting parameters show, sample 1527 has the lowest values for the broadening

factors due to impurity centers concentration and crystal inhomogeneity. Samples 1218

and 2964 show similar values for the factor of impurity centers concentration, but the

inhomogeneity broadening of sample 1218 is higher than sample 2964. Sample 3495 has

the highest values of these factors, therefore it is assumed that it has the highest impurity

concentration and inhomogeneity in its structure. This is in agreement with the fact that

sample 3495 shows the strongest photoluminescence peak for (A0,X) at low temperature,

while other samples show no peak at all or a smaller peak.

Thermal quenching of photoluminescence peak intensity has been studied extensively

in the literature. The temperature dependence of the peak intensity is usually depicted in a

plot that shows intensity versus inverse of temperature 1/T. The data for temperatures

lower than 60K-70K is usually fitted with this expression: [E. Cohen et al, 1983]

( ) = 1 + +
where E1 and E2 are the higher- and the lower-temperature activation energies,

respectively. As our data is in the temperature range 8K-300K, we added another term for

a new term to this equation and used it for fitting our data. The resulting equation that has

been used for fitting is shown below:

( ) = 1 + + +
The fits and data plots are shown in figure 4.15 to 4.18. The fitting parameters that

have been used for these fitting are shown in table 4.4.
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Figure 4.15 The temperature dependence of the photoluminescence (D0,X) peak intensity

for sample 2964
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Figure 4.16 The temperature dependence of the photoluminescence (D0,X) peak intensity

for sample 3495
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Figure 4.17 The temperature dependence of the photoluminescence (D0,X) peak intensity

for sample 1527



44

Figure 4.18 The temperature dependence of the photoluminescence (D0,X) peak intensity

for sample 1218

Table 4.4 Fitting parameters for the temperature dependence of the (D0,X) peak intensity

Sample 1218 1527 2964 3495

E1 (meV) 2.08 2.08 2.08 2.08

E2 (meV) 13.29 13.29 13.29 13.29

E3 (meV) 113.5 126.7 106.5 104.7

C1 0.25 0.81 1.15 0.5

C2 18.93 10.02 9.68 12.56

C3 15850 17910 21670 6068
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Values for E1 and E2 have been selected to be constant and the same for all samples, as

their fitted values were close to each other and in the error range of the value. Also as it is

considered that the processes associated with these energies are the same in all samples, it

is a reasonable assumption. The quality of fitted data shows that forcing these parameters

to be constant did not hinder the fitting process.

There are several dissociation processes that results in thermal quenching of the

photoluminescence peak. Considering these processes, we concluded that the activation

energy of 2.08 meV is due to the binding energy of exciton to donors. It is reported that

the binding energy of exciton and donors is in range of 2-3 meV and this result is in

agreement with the reported values. The free exciton energy in CdTe is reported to be

10.8 meV and activation energy of 13.29 meV is interpreted to be associated to a process

in which a donor-bound exciton is freed and then the free exciton dissociates. This

conclusion results to a free exciton energy of 13.29 - 2.08 = 11.21 meV that is acceptable

for free exciton energy in CdZnTe crystal. The third activation energy in the range of

104.5-126.7 meV is in the range of reported activation energies for A-centers in CdZnTe

and suggests that at higher temperatures, these impurity centers get thermally activated

and provide a non-radiative recombination center for excitons and reduce the radiation

intensity. At higher temperatures several kinds of recombination centers get thermally

active and the third activation energy is attributed to average of all of these recombination

centers and the variation of this energy among four samples can be explained by the fact

that this energy is probably including other activation energies for other recombination

centers that can be different for each sample.
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X-Ray diffraction studies

X-Ray diffraction studies have been done on all samples on different spots of the

samples. The samples show varying mis-cut among them as it seems that the crystal

orientation does not affect the detector performance significantly. A wide ω/2θ scan, a

wide 2θ/ω scan and a focused 2θ/ω scan on the (111) peak of all of the samples are

shown in figure 4.19 and 4.24. The parameter ω is the angle between the crystal surface

normal and the incident beam, while 2θ is the angle between the incident beam and the

reflected beam. The parameter ω can be equal to θ if there is no mis-cut present for the

sample and the crystal surface normal is parallel to the (111) vector. However, in

presence of any mis-cut, ω will be equal to θ subtracted by the mis-cut value. The

reciprocal mappings of samples 1527 and 3964 over the (111) peak are shown in figures

4.25 and 4.26.
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Figure 4.19 A wide ω/2θ XRD scan on sample 1218
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Figure 4.20 A wide 2θ/ω XRD scan on sample 1218
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Figure 4.21 A focused 2θ/ω XRD scan on (111) peak of sample 1218

Figure 4.22 A focused 2θ/ω XRD scan on (111) peak of sample 1527
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Figure 4.23 A focused 2θ/ω XRD scan on (111) peak of sample 2964

Figure 4.24 A focused 2θ/ω XRD scan on (111) peak of sample 3495
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Figure 4.25 Reciprocal space map of the (111) peak for sample 1527

Figure 4.26 Reciprocal space map of the (111) peak for sample 3495

The first peak is the (111) peak and it is studied mainly for our purposes. The

reciprocal mapping of the samples 1527 and 3495 shows the (111) peak is broader in 2θ

direction for the sample 3495 than the sample 1527 and also there is another peak present

in a different ω for the sample 3495 that is not seen in the sample 1527’s map. These

scans can be used for two different analyses to determine the quality and composition of

the sample. The full width at half maximum of the peak is a factor that shows the quality

of the sample, as defects and impurities will broaden the peak. The location of the peak

provides information about composition and lattice constant of the sample. Table 4.5

shows the location and FWHM of the peak for 2θ/ω scans for different samples, averaged

for all scans on different spots.
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Table 4.5 Average XRD 2θ/ω scan parameters for all samples

Sample 1218 1527 2964 3495

Average peak location (2θ) 23.8953 23.8893 23.9037 23.8964

Average zinc% 8.83 8.43 9.39 8.91

Average lattice constant 0.64499 0.64515 0.64476 0.64496

Average FWHM 61 60 62.5 76

As XRD parameters show, the lowest FWHM for the XRD peaks is seen for sample

1527. After that samples 1218 and 2964 and the highest FWHM is seen for sample 3495.

FWHM of XRD peak is a direct indicator of crystal quality and these results are in

agreement with what photoluminescence analyses show. Average zinc concentration of

the samples is calculated from the peak location of the peak and the assumption of a

linear relation between the peak location and zinc concentration. A linear interpolation

between reported XRD peak location for CdTe and ZnTe resulted in the measured zinc

concentration in table 4.5. The lattice constants for the samples are also estimated using

the location of the peak and Bragg’s equation.

For analysing the uniformity of the crystal, we repeated the XRD scans on the same

sample for several spots and compared the results. The (111) peak location variations for

different samples and the FWHM of each scan are shown in table 4.6. We also performed

several scans on the same spot in order to measure the accuracy in the peak location

detection, so we can predict an error for the zinc concentration estimation. It results in an

error of ±0.06 percent for our prediction of the zinc concentration.
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Table 4.6 XRD 2θ/ω scans peaks’ location and FWHM range for several scans for all the

samples

Sample 1218 1527 2964 3495

Maximum peak shift (degree) 0.0046 0.0104 0.0001 0.0019

FWHM range (arcsecond) 59-63 55-67 62-63 75-77

Photoluminescence and X-ray diffraction correlation

From the analyses that we have done on our data from the temperature dependence

photoluminescence to X-ray diffraction, the inhomogeneous broadening factor for the

photoluminescence peak, Γinh, the impurities centers broadening factor for the

photoluminescence, Γi, exciton-LO phonon coupling constant in the Cody equation and

the photoluminescence broadening equation, ΓLO or α, and the FWHM of X-ray

diffraction peak are in good agreement. Figure 4.27 and 4.28 show the correlation

between the FWHM of X-ray diffraction peak and Γinh and Γi.
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Figure 4.27 Correlation between the FWHM of XRD peak and Γinh, the inhomogeneous

broadening factor for the FWHM of the photoluminescence peak
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Figure 4.28 Correlation between the FWHM of XRD peak and Γi, the impurities centers

broadening factor for the FWHM of the photoluminescence peak

The correlation between these data shows that lower concentration of defects,

impurities and faults in the crystal structure will result in sharper peak shapes in both X-

ray diffraction and photoluminescence. Therefore, the FWHM of the peaks in X-ray

diffraction and photoluminescence can be used as an indicating factor of the crystal

quality.
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5 Conclusion

In this work, four different samples of CZT have been analysed by two different

techniques which are both non-destructive. The results have been analyzed from several

perspectives and different structural and quality parameters for each sample have been

determined. Results from photoluminescence analyses and X-ray diffraction analyses

were both in agreement with each other and shows that these techniques can be used

jointly in order to provide a comprehensive estimation of different features in grown CZT

crystals under different conditions.

From the photoluminescence spectra of the samples, the temperature dependence of the

band gap energy has been studied using suggested formulas from several sources. Also,

the zinc molar concentration of the samples has been estimated using the band gap energy

at low temperatures using several suggested formulas reported for CdZnTe crystals in the

literature. Full width at half maximum of the main peak in the photoluminescence spectra

is reported to be a direct factor of quality and physical features of the crystal. Several

aspects of the factors that affect FWHM of the peak have been studied and physical

parameters of this process have been estimated using suggested formulas for fitting the

data. Finally, thermal quenching of the photoluminescence peak has been analysed and

different processes that result in the observed pattern of peak intensity changes have been

determined.

From the X-ray diffraction of the samples, zinc molar concentrations of samples have

been estimated and the results were compared with estimations from the band gap energy
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in photoluminescence spectroscopy. Moreover, the average lattice constant of the

samples has been estimated using the location of peak in X-ray diffraction of each

sample. FWHM of X-ray diffraction peak has been analysed as well, as it is related to the

quality and uniformity of the sample directly. These results were compared with the

analyses of quality and homogeneity resulted from photoluminescence spectroscopy, and

a good agreement between these results has been observed.

A correlation was found between the X-ray diffraction linewidth and the low

temperature photoluminescence linewidth presumably associated with structural disorder

in the crystal. Increased XRD linewidth is associated with a broader PL linewidth for the

four different samples that were studied. Although the thermal quenching of the

photoluminescence peak intensity gave us a good insight of the different energy levels

present in the crystal, no obvious correlation between these data and the X-ray diffraction

analyses was found.

In this work, we evaluated the potential of the high resolution XRD and the

photoluminescence spectroscopy as methods for characterizing the crystal purity and

structural order. These methods have the advantage of being non-destructive. Although

we were not able to correlate the crystal properties with the growth conditions, we found

that the photoluminescence provided rather detailed information about atomic scale

defects and the high resolution x-ray diffraction was sensitive to small changes in

structural order which was correlated with the information on defects obtained from PL.

Because the photoluminescence and XRD are correlated, the XRD by itself is an
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indicator of the density of defects, whenever performing both of these techniques is not

possible.
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