
Reconfigurable Feedback Shift Register Cipher Design and Secure Link Layer

Protocol for Wireless Sensor Network

by

Guang Zeng

B.Sc., Beijing University of Posts and Telecommunications, 2011

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF APPLIED SCIENCE

in the Department of Electrical and Computer Engineering

c© Guang Zeng, 2014

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Reconfigurable Feedback Shift Register Cipher Design and Secure Link Layer

Protocol for Wireless Sensor Network

by

Guang Zeng

B.Sc., Beijing University of Posts and Telecommunications, 2011

Supervisory Committee

Dr. Xiaodai Dong, Co-Supervisor

(Department of Electrical and Computer Engineering)

Dr. Jens Bornemann, Co-Supervisor

(Department of Electrical and Computer Engineering)

iii

Supervisory Committee

Dr. Xiaodai Dong, Co-Supervisor

(Department of Electrical and Computer Engineering)

Dr. Jens Bornemann, Co-Supervisor

(Department of Electrical and Computer Engineering)

ABSTRACT

Secure wireless communications among sensor nodes is critical to the deployment

of wireless sensor networks. However, resource limited sensor nodes cannot afford

complex cryptographic algorithms. In this thesis, we propose a low complexity and

energy efficient reconfigurable feedback shift register (RFSR) stream cipher, link layer

encryption framework RSec and authentication protocol RAuth.

RFSR adds one new dimension, reconfigurable cipher structure, to the existing

stream ciphers. The proposed RFSR is implemented on a field programmable gate

array platform. Simulation results show that much lower power consumption, de-

lay and transmission overhead are achieved compared to the existing microprocessor

based cipher implementations. The RSec framework utilizes RFSR ciphers to guar-

antee message confidentiality. By comparing with other encryption frameworks in

terms of energy efficiency, RSec achieves the best benchmark. The RAuth protocol

is designed on top of RFSR and RSec. It provides excellent authentication speed and

security level by comparing with other authentication protocols.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

Glossary ix

Acknowledgements x

Dedication xi

1 Introduction 1

1.1 Motivation and Related Work . 3

1.1.1 Cryptography Algorithms for a WSN 3

1.1.2 WSN Key Management and Authentication 6

1.2 Contributions . 7

1.3 Thesis Outline . 8

2 Reconfigurable Feedback Shift Register Based Cipher 9

2.1 System Model . 10

2.1.1 Network Model . 11

2.1.2 Security Model . 11

2.2 The RFSR Cipher . 12

2.2.1 Grain Cipher . 12

2.2.2 RFSR Cipher . 16

v

2.2.3 Cipher Initialization . 18

2.2.4 Cipher Management . 19

2.2.5 IV Management . 20

2.2.6 Key and Structure Update Scheme 21

2.3 Security Analysis . 22

2.3.1 Cipher Security . 22

2.3.2 Attack Analysis . 23

2.4 Implementation, Simulation and Performance 23

2.4.1 Cipher Implementation . 24

2.4.2 Comparison with Microprocessor Platforms 24

2.4.3 Comparison with Grain 128 26

2.5 Conclusion . 26

3 RFSR Cipher Based Authentication Protocol and Link Layer En-

cryption 27

3.1 Network Topology . 28

3.2 Authentication Protocol RAuth . 32

3.2.1 Nodes’ Credentials . 33

3.2.2 New Node Joining an RAuth Network 34

3.2.3 RFSR Cipher Management . 40

3.3 RSec Link Layer Encryption . 44

3.3.1 Addressing . 44

3.3.2 Packet Format . 45

3.3.3 IV and Encryption . 47

3.3.4 Cipher Credentials and Encryption 49

3.3.5 Cipher Information Initialization 50

3.3.6 Packet Loss Handling . 51

3.3.7 Resynchronization . 53

3.4 Analysis and Evaluation . 55

3.4.1 RSec Link Layer Protocol Performance and Analysis 55

3.4.2 Network Initialization . 58

3.4.3 Conclusion . 64

4 Conclusions and Future Work 66

4.1 Conclusions . 66

vi

4.2 Future Work . 66

Appendix A Network Initialization Simulation Code 68

Bibliography 85

vii

List of Tables

Table 1.1 Average operation time of public key cryptography algorithm

ECC and RSA [1] . 4

Table 1.2 Public key cryptography: average energy costs of digital sig-

nature and key exchange computations [mJ] [2] 5

Table 2.1 Comparisons with Microprocessor Platforms 25

Table 2.2 Cipher Comparisons on FPGA 25

Table 3.1 Comparisons of Packet Formats 57

Table 3.2 Radio parameters used in simulation. 59

Table 3.3 Log-normal shadowing model parameters. 61

Table 3.4 Simulation results of RAuth and LEAP. 63

viii

List of Figures

Figure 2.1 Grain cipher version 1 structure 13

Figure 2.2 Grain-128 cipher structure 15

Figure 2.3 RFSR cipher structure . 17

Figure 2.4 Grain cipher version 1 key initialization 18

Figure 2.5 Grain-128 cipher key initialization 19

Figure 2.6 RFSR initialization . 20

Figure 3.1 WSN centralized topology 29

Figure 3.2 WSN distributed topology 30

Figure 3.3 RFSR topology . 31

Figure 3.4 RAuth active mode . 35

Figure 3.5 RAuth passive mode . 36

Figure 3.6 RAuth direct link mode . 38

Figure 3.7 RAuth indirect link mode 39

Figure 3.8 RAuth asymmetric link mode 40

Figure 3.9 RSec packet format A and B 45

Figure 3.10 Bit flipping during transmission 46

Figure 3.11 Resynchronization figure . 53

Figure 3.12 Resynchronization state machine 54

Figure 3.13 The packet formats of TinyOS, TinySec, MiniSec and RSec . 56

Figure 3.14 Simulation topology . 60

Figure 3.15 LEAP key establishment procedure 62

ix

GLOSSARY

ACK Acknowledgment

ASIC Application Specific Integrated Circuit

CRC Cyclic Redundancy Check

FPGA Field Programmable Gate Array

IV Initial Vector

LEAP Localized Encryption and Authentication Protocol

LFSR Linear Feedback Shift Register

MAC Message Authentication Code

MIC Message Integrity Code

NFSR Non-linear Feedback Shift Register

PER Packet Error Rate

RAuth RFSR Cipher based Authentication Protocol

RSec RFSR Cipher based Secure Sensor Network Communication Architecture

RFSR Reconfigurable Feedback Shift Register

RSSI Receive Signal Strength Indicator

SNR Signal to Noise Ratio

WSN Wireless Sensor Network

XOR Exclusive OR

x

ACKNOWLEDGEMENTS

I would like to thank:

Co-Supervisors Dr. Dong and Dr. Bornemann, for your mentoring, encour-

agement, and patience.

My Families, for your support and love.

My Colleagues and Friends, for your inspiration and help.

xi

DEDICATION

To my family and friends.

Chapter 1

Introduction

After years of research and development, wireless sensor networks (WSNs) are being

deployed for various industrial and consumer applications. The low cost makes them

possible to be deployed in a large scale in various markets performing both military

and civilian tasks. The tiny sensor nodes, with the abilities of data sensing, data

processing and communications, become a more suitable choice in situations where

traditional networks are technically hard or expensive to be utilized. However, sensor

nodes also suffer from resource constraints due to the limited size and the intention

of low cost in the design phase. Sensor nodes in a WSN are usually deployed in an

unknown environment which can be hostile. Besides, due to the nature of wireless

communications media, any adversary with proper radio modules can overhear the

communications in the air. Therefore, secure communication mechanisms should be

utilized to protect the confidentiality of the information exchanging on the media. A

WSN is special when compared to a traditional computer network. Certain constrains

in WSN make it inefficient and sometimes impossible to use the existing network se-

curity mechanisms directly. Hence, there is an urge of developing security approaches

specifically for a sensor network.

In order to develop the security protocols suitable for sensor networks, it is nec-

essary to know and understand the constraints first [3, 4].

Power limitation is one of the major constraints. A sensor node’s life period mostly

relies on the battery capacity it carries. In order to make a sensor node work as

long as possible, well performing yet power consuming processors are replaced

by regular processors with low energy requirements, and radio modules are usu-

ally configured with lower transmission power and higher receiving sensitivity

2

to reduce power consumption. Therefore, the designs of a sensor node and a

WSN system should always keep energy consumption in mind. As for the secu-

rity mechanism, the public-key based algorithms used in traditional networks

are much too power consuming for a sensor node, let alone the computational

overhead which will bring significant delay.

Wireless Communications is another problem to WSN security. A wireless signal

can be picked up by an adversary with the similar radio module used in a WSN.

Since the WSN cannot afford expensive encryption algorithms or more secure

authentication protocols used in traditional networks, a specially designed pro-

tocol stack is in great need to protect its confidentiality. Low power wireless

communication suffers from packet loss and bit errors, which should be consid-

ered carefully and handled efficiently in a protocol. Packet collisions are another

issue to take care of. A sensor node cannot utilize strong time synchronization

due to its large overhead. Therefore, the media access technique should be

carefully designed to decrease the possibility of packet conflicts.

Unattended Situations are common for a WSN when the nodes are left unattend-

edly to work automatically for long periods of time. When nodes are deployed

in a hostile environment, it is quite possible that physical attacks are launched

by adversaries.

Despite the constrains mentioned above, a WSN has several critical security re-

quirements.

Data Confidentiality is the most important issue in network security. A sensor

node should not leak local data to its neighboring nodes. The common approach

for keeping sensitive data secret is to encrypt data with a secret key that only

the intended receivers can process, hence achieving confidentiality.

Data Authentication is important for many applications in a WSN. Authenti-

cation is necessary for many administrative tasks. Since adversaries also have

access to the communication media, they can easily inject illegal messages to

the network. This requires all the receivers in a WSN to verify whether the

data used in any decision-making process originates from the correct source.

Informally, data authentication allows a receiver to verify that the data really

was sent by the claimed sender.

3

Data Integrity guarantees that the received message is the exact copy of the mes-

sage sent from the sending node. Due to the unreliable nature of the wireless

communication environment, traffic collision, bit error, etc., are likely to happen

and result in the received packet being useless. An adversary may add some

fragments or manipulate the data in a packet and send it to the original des-

tination. Data integrity check can detect malicious behaviors or data damage

due to harsh environments.

Data Freshness should be verified even if confidentiality and data integrity are

assured. Informally, data freshness implies that the data is recent, and it ensures

that no adversary replayed old messages.

1.1 Motivation and Related Work

In recent years, Internet of Things has become a popular topic in both the academic

community and the industry. Connecting everything to the Internet is changing from

just a slogan to something possible. Sensors and automatic controllers are invading

our homes and work spaces. More and more sensors and devices will be connected to

the networks, some of which may even perform critical tasks. Therefore, research on

the secure communications in a WSN has a growing importance.

The progress in the industry brings new concepts, advanced hardwares and new

application markets to WSNs. Some assumptions in previous research changed and

some important constraints were overcome for the benefits of hardware improvements.

Therefore, it makes perfect sense to design new protocol stacks to meet the up-to-date

requirements.

1.1.1 Cryptography Algorithms for a WSN

Cryptography algorithms can be basically classified into two categories, public key

cryptography and private key cryptography. The public key cryptography, known as

the asymmetric cryptography, requires two keys to perform a cryptography task, a

public key and a private key. The two keys are mathematically one-to-one related.

The distinguishing technique used in public-key cryptography is that one of the two

keys is used to encrypt a message while the other key is used to decrypt it. The

private key cryptography, known as the symmetric key cryptography, uses the same

private key to encrypt and decrypt a message.

4

Many researchers believe that it is undesirable to employ public key algorithms on

sensor nodes, such as the Diffie-Hellman key agreement protocol [5], RSA signatures

[6], and Elliptic Curve Cryptography (ECC) [7]. RSA and ECC are the two major

cryptography algorithms in the literature. ECC offers equal security for a far smaller

key size and therefore reduces processing and communication overheads. Table 1.1

summarizes the execution times of ECC and RSA implementations on an Atmel

ATmega128 processor (used by Mica2 mote) [1]. The execution time is measured on

average for a point multiplication in ECC and a modular exponential operation in

RSA. Two standardized elliptic curves, ECC secp160r1 and secp224r1, are defined

in [8]. As shown in Table 1.1, by using a relatively small integer e = 216 + 1 as the

public key, RSA public key operation is slightly faster than ECC point multiplication.

However, ECC point multiplication outperforms RSA private key operation by an

order of magnitude. The RSA private key operation, which is too slow, limits its use

in a sensor node. ECC has no such issues since both the public key operation and

private key operation use the same point multiplication operations.

Table 1.1: Average operation time of public key cryptography algorithm ECC and
RSA [1]

Algorithm Operation Time (s)
ECC secp160r1 0.81
ECC secp224r1 2.19

RSA-1024 public-key e = 216 + 1 0.43
RSA-1024 private key w. CRT1 10.99

RSA-2048 public-key e = 216 + 1 1.94s
RSA-2048 private-key w. CRT1 83.26

Wander et al. investigated the energy cost and time delay of authentication and

key exchange based on RSA and ECC algorithms on the platform with Atmel AT-

mega128 processor [2]. The WSN is assumed to be centralized, where each sensor

node has a certificate signed by the administrator node’s private key using a RSA or

ECC signature. Elliptic Curve Digital Signature Algorithm (ECDSA) is used to gen-

erate and verify the ECC-based signature. With a key exchange protocol similar to

SSL 3-way handshake [9], the two parties validate the certificates of each other before

a session key used in later communications is negotiated. This research shows that

the ECC-based key exchange protocol has a better performance than the RSA-based

key exchange protocol at the server side but the performances are almost the same

1Chinese Remainder Theory

5

for the client, the sensor node. The results are shown in Table 1.2.

Table 1.2: Public key cryptography: average energy costs of digital signature and
key exchange computations [mJ] [2]

Algorithm Signature Key Exchange
Sign Verify Client Server

RSA-1024 304 11.9 15.4 304
ECDSA-160 22.82 45.09 22.3 22.3
RSA-2048 2302.7 53.7 57.2 2302.7

ECDSA-224 61.54 121.98 60.4 60.4

The result shows that the public key cryptography algorithm seems not to be a

good choice for a WSN because it takes thousands or even millions of multiplication

instructions to perform a single security operation [10]. Besides, a microprocessor’s

public key algorithm efficiency is primarily determined by the number of clock cy-

cles required to perform a multiplication instruction [3]. Since it takes much time

to perform encryption and decryption operations in constrained devices, this exposes

a vulnerability to DoS attacks [11]. It is found that a simple multiplication func-

tion with a 128 bit result takes a microprocessor thousands of nano-joules [3]. By

comparison, cryptographic hash functions and symmetric key encryption algorithms

consume much less computational power than public key algorithms. For example, on

a platform with an MC68328 processor, a 1024-bit block takes 42 mJ using RSA while

it only takes a 128 bit AES cipher 0.104 mJ. As for the hardware implementations

of public key cryptography algorithms, the delay and energy overheads are still too

large for a WSN device [12,13].

Private key cryptography algorithms have shorter time delay and smaller energy

overhead, which make them a better choice for WSNs. Reference [14] evaluates five

popular encryption schemes, RC4 [15], RC5 [16], IDEA [15], SHA-1 [17], and MD5

[15, 18] on six different microprocessors ranging in word size from 8 bit Atmel AVR

to 16 bit Mitsubishi M16C to 32 bit StrongARM, Xscale. For each algorithm and

platform, the execution time and code memory size were measured. The results

confirm that the private key algorithm outperforms the public key algorithms for a

sensor node.

Two symmetric key algorithms RC5 and TEA [19] were evaluated in [20]. They

further evaluated six block ciphers, including RC5, RC6 [21], Rijndael [22], MISTY1

[23], KASUMI [24], and Camellia [25] on IAR Systems MSP430F149 in [26]. Code,

data memory and CPU cycles are the benchmark criteria. The evaluation results

6

showed that Rijndael is suitable for high-security and energy-efficiency requirements

while MISTY1 is good for storage and energy efficiency. The work in [26] provides a

good resource for deciding which symmetric algorithm should be adopted in sensor

networks.

1.1.2 WSN Key Management and Authentication

Key management is the deterministic factor to ensure WSN security, which helps

establish required keys shared between sensor nodes. Since public key cryptography

suffers from power and computational limits on WSN platforms, the most proposed

key management protocols are based on private key encryption. Based on the prob-

ability of key sharing between a pair of sensor nodes, the protocols can be divided

into probabilistic key schemes and deterministic key schemes. Based on the network

topology, the protocols can be divided into centralized key schemes and distributed

key schemes.

In the centralized key management schemes, the central node is the logic center

of the network. It controls the key generation and distribution for the WSN. In the

distributed, or decentralized key management schemes, two sensor nodes authorize

each other without the help of the central node. The nodes will establish pairwise

keys with their neighbors simultaneously. Deterministic and probabilistic schemes

fall into this category.

In [27], Eschenauer and Gligor introduced a key predistribution scheme for sensor

networks which relies on probabilistic key sharing among the nodes of a random graph.

Three phases are included in this scheme: key predistribution, shared-key discovery,

and path key establishment. In the key predistribution phase, each sensor node keeps

a key ring in the memory. In the key ring, k keys are randomly chosen from a key pool

of P keys. The base station saves a copy of the association information of the key

identifiers in the key ring and the sensor identifier. Each sensor is assumed to share

a pairwise key with the base station. In the shared key discovery phase, each sensor

looks for his neighbors that they have shared keys within the radio range. In the

path-key establishment phase, a path-key is assigned for the nodes that do not share

a key but are connected by multiple links at the end of the second phase. Inspired

by the work of [27], more random key predistribution schemes have been proposed

in [28–33].

On the other hand, the deterministic approaches require that each node is pre-

7

distributed with the credential information. In the authentication phase, nodes verify

their neighbors’ identities using the pre-loaded credentials. Zhu et al. proposed the

Localized Encryption and Authentication Protocol (LEAP) in [34], which supports

the establishment of four types of keys for each sensor node: a predistributed indi-

vidual key shared with the base station; a predistributed group key shared by all the

nodes in the network; pairwise keys shared with direct neighbor nodes; a cluster key

shared within a subnetwork. The pairwise keys shared with direct neighbors are used

for unicast messages while the cluster key is used for subnetwork broadcast.

In the predistribution phase, each sensor node is loaded with an initial key KI .

The node N calculates its master key by KN = fKI
(IDN), where f is a pseudoran-

dom function. In the next phase, neighbor discovery phase, N broadcasts a HELLO

message with IDN . If a neighbor node M receives the broadcast message, it’ll reply

with IDM ,MAC(KM , N |M). Node N calculates the pairwise key KNM = fKM
(N).

Node M calculates KNM in the same way. Then, the pairwise key is established.

Cluster key will be established right after the pairwise key establishment. If node N

requires a cluster key, it will generate a random key KN
C . The cluster key will be sent

to each of N ’s neighbors encrypted by the pairwise key. After a certain time since

node deployment, the timers inside sensor nodes will expire and the initial keys are

deleted. The author assumed that within the time period, the adversary was not able

to compromise a sensor node to get the initial key.

1.2 Contributions

The main contributions of this thesis are summarized as follows.

First of all, a light-weight hardware-oriented cipher is proposed. Almost all the

current sensor nodes are using the embedded processor to do the cryptography work

while the processor is already largely occupied by other tasks, such as data sensing

and processing, interrupt handling, communication protocol processing, etc. The pro-

posed cipher takes over the burden of cryptography tasks so that the node processor

will not be overloaded with tasks. Besides, the proposed hardware-based cipher has a

dynamic structure which means that the cryptography algorithm is also changeable.

The new secrecy dimension makes the cipher much harder to attack. Implemented in

hardware, the new cipher has a much smaller delay and a much lower average power

consumption which improves the performance by a decent amount. This research

work was published in IEEE Wireless Communications Letters [35].

8

Secondly, a secure centralized authentication protocol is proposed and a link layer

encryption protocol is designed using the proposed cipher. The new authentication

protocol is more suitable for the situation, where sensor nodes are densely deployed,

while it maintains the ability to work similar to a distributed WSN.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 proposes a hardware-oriented light-weight cipher. Then the security

of the new cipher is analyzed. Finally, the cipher is implemented and the

performance is simulated.

Chapter 3 introduces a centralized authentication protocol and a link layer en-

cryption protocol. Then the performances of both protocols are analyzed and

compared with the existing ones.

Chapter 4 concludes the thesis and suggests possible future work.

9

Chapter 2

Reconfigurable Feedback Shift

Register Based Cipher

Sensor nodes are low-cost, computational- and energy-limited devices which cannot

afford resource consuming cryptography algorithms. The fact that anyone with proper

receiving tools has access to the signal in the air makes security a main issue of WSNs.

Modern WSNs are bi-directional, also enabling sensor nodes to control other logically

connected devices. The use of control functions requires higher security mechanisms

to prevent attacks. Proper security schemes befitting the requirements of WSN should

guarantee both sufficient level of security and low resource consumption.

Conventional public-key cryptography seems feasible but the computational over-

head is too large for resource-limited sensor nodes [36]. Private-key cryptography,

also known as symmetric cryptography, is suitable for environment constrained ap-

plications such as sensor nodes. Private-key encryption uses either stream ciphers or

block ciphers. Compared with block ciphers, stream ciphers are often simpler but

sufficiently secure. In a stream cipher, plaintext and keystream are bitwise com-

bined using exclusive-or (xor) operation to generate ciphertext. The keystream is a

pseudorandom bit stream generated serially using shift registers in a stream cipher.

Ciphertext is transmitted over the air between two communicating nodes. The de-

cryption process on a receiving node resembles the encryption process by bitwise xor

of the ciphertext with the keystream to restore the plaintext.

Software implementation of cryptography algorithms is usually carried out by the

embedded processor in a sensor node. However, the computational resource limited

embedded processor is also responsible for other operations such as sensor control,

10

communication protocol execution and sensor data processing. While simple security

algorithms may have a weakness for certain security attacks, complex security algo-

rithms will definitely take up much of a processor’s resources and negatively impact

other real-time tasks running. Hardware encryption implementation frees a processor

from heavy duty security function processing and becomes a natural choice for com-

mercial uses such as A5/1 cipher of GSM, E0 cipher of Bluetooth and etc. Hardware

oriented stream cipher design has relatively low power consumption, constant and

predictable delay and high throughput rate, which makes it a good choice for sensor

nodes.

A feedback shift register (FSR) based stream cipher uses feedback update func-

tions to generate new internal states from the current internal states. The feedback

update functions are fixed in stream ciphers. Traditional stream ciphers can increase

their resistance against attacks by increasing the key and initial vector (IV) sizes.

However, if the feedback update functions are designed to be dynamic, attacks will

become harder to accomplish because both the cipher structure (the feedback update

functions) and the secret key are unknown.

In this chapter, we propose a light-weight hardware-oriented cryptography algo-

rithm, i.e., the reconfigurable feedback shift register (RFSR) based stream cipher,

and implement it on a reconfigurable device to test its performance. In our design,

the feedback shift register based cipher is structure reconfigurable. This scheme guar-

antees high message confidentiality for WSNs. Comparing with the existing micro-

processor based platforms, the proposed scheme achieves over 130 times less average

energy consumption and over 25 times less delay.

The remainder of the chapter is organized as follows. Section 2.1 introduces the

system model under consideration. In Section 2.2 the RFSR based cipher is proposed.

The security of RSFR cipher is analyzed in Section 2.3. Implementation, simulation

and performance is detailed in Section 2.4, and Section 2.5 concludes this chapter.

2.1 System Model

The network model and the security model are analyzed in this section. The network

model describes the network topology, i.e., how the sensor nodes are organized, the

schemes of data encryption and transmission in different layers, and the secret key

deployment and management mechanisms. The security model indicates the potential

attacks a sensor node may encounter in this chapter.

11

2.1.1 Network Model

A wireless sensor network is composed of resource limited sensor nodes, power suf-

ficient sink nodes and a base station. A WSN contains one base station (BS) and

several sink nodes depending on the network topology. A sensor node communicates

with a BS in one hop or multiple hops through sink nodes. Three abstract layers

are considered on the device within the WSN: the physical layer, the link layer and

the application layer. The physical layer is a fundamental layer, consisting of the

basic networking hardware transmission technologies. The link layer is the protocol

layer that transfers data between sensor nodes in the WSN. The application layer is

responsible to handle system and node specific tasks. Due to the insecure nature of

WSN, encryption is performed in both the application layer and the data link layer.

The application layer encryption guarantees that only the destination and the original

sender have access to the data. The link layer encryption requires unique pairwise

ciphers established between neighboring nodes to protect message transmission in a

direct link. Each sensor node is equipped with both a microprocessor and a hard-

ware component. The hardware components can be reconfigurable devices such as

field-programmable gate arrays (FPGAs) or application-specific integrated circuits

(ASICs). The hardware component can be used for handling security related tasks.

In this chapter, we simulate FPGA implementations to demonstrate the performance

of the proposed cipher. In the simulation, the hardware component is used only for

encryption and decryption.

2.1.2 Security Model

We assume that sensor nodes have no tamper-resistant mechanism. Once sensor nodes

are captured and compromised by an adversary, all stored data such as cipher struc-

tures and keys will be exposed in a short time and can be utilized by reprogramming

the captured nodes. An adversary can also launch passive attacks which attempt

to break the cipher by eavesdropping on communications between legitimate nodes.

Denial of service (DoS) attacks can be mounted to disrupt regular communications

between nodes, or to drain up nodes’ energy. DoS attacks in the data link layer and

the application layer are considered in the chapter.

12

2.2 The RFSR Cipher

Symmetric cryptographic primitives for encryption are divided into block ciphers and

stream ciphers. Block ciphers operate on fixed-length groups of bit blocks. Substitu-

tions and permutations are two simple operations to effectively improve the security

in block ciphers. Stream ciphers work in different ways from block ciphers: they

maintain a secret state which changes with time during the encryption; they produce

bit streams rather than bit blocks in block ciphers. Therefore, the two characters

of stream ciphers are: a state-update function, which generates the new cipher state

based on the previous cipher state, and an output function, which produces the out-

put by filtering the cipher state. The output of a stream cipher is XORed with the

plaintext to get the ciphertext. The stream ciphers are similar to a one-time pad

(OTP) cipher. Without the long secret key in OTP, stream ciphers use a secret key

to generate pseudo-random bit streams, which is computationally indistinguishable

from a stream of random bits.

The proposed RSFR cipher is a stream cipher, which is partially based on the

design of the Grain cipher [37]. Therefore we will first briefly review the Grain cipher

and its application in WSN in Section 2.2.1. Afterwards, the detailed design of the

RFSR cipher is described in Section 2.2.2. The initialization process of the Grain and

RFSR ciphers is presented in Section 2.2.3. Cipher management, IV management

follows in Section 2.2.4 and 2.2.5. Finally, the key and structure update scheme is

introduced in Section 2.2.6.

2.2.1 Grain Cipher

Grain ciphers are a family of stream ciphers selected in the final portfolio of Profile

2 (for hardware applications) in the eSTREAM project [38]. It is known for its

hardware-oriented, elegant and simple design. The first version of the Grain cipher

is targeting on applications which require low hardware complexity, such as radio

frequency identifications(RFIDs) and WSN nodes.

The design is based on two shift registers, one with a linear feedback shift register

(LFSR) and one with a non-linear feedback shift register (NFSR). The state-update

functions, in this case the linear and non-linear feedback functions, are carefully

designed and hard coded. The LFSR guarantees a minimum period for the keystream

and it also provides balance in the output. The NFSR, together with a nonlinear

output function, introdues nonlinearity to the Grain cipher. The state-change input

13

to the NFSR is masked with the output of the LFSR states so that the state of the

NFSR is also balanced. Keys, IVs and padding bits are used as the initial values of

the cipher internal state. The original design of Grain uses 80-bit keys and 64-bit

IVs. The new version Grain 128 [39] has 128-bit keys and 96-bit IVs.

Figure 2.1: Grain cipher version 1 structure

In Grain cipher version 1, which is shown in Fig. 2.1 , the content of the

LFSR is denoted by si, si+1, ..., si+79 and the content of the NFSR is denoted by

bi, bi+1, ..., bi+79. The feedback polynomial of the LFSR, f(x) is a primitive polyno-

mial of degree 80. It is defined as

f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80.

The above function is expressed in finite field arithmetic as a polynomial mod 2, which

differs from the integer arithmetic. This means that the coefficients of the polynomial

mush be 1’s or 0’s.

To remove any possible ambiguity, the update function of the LFSR is defined as

si+80 = si+62 + si+51 + si+38 + si+23 + si+13 + si

The feedback polynomial of the NFSR, g(x), is defined as

g(x) = 1 + x18 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x66 + x71 + x80 + x17x20 +

x43x47 + x65x71 + x20x28x35 + x47x52x59 + x17x35x52x71 + x20x28x43x47 +

x17x20x59x65 + x17x20x28x35x43 + x47x52x59x65x71 + x28x35x43x47x52x59

14

In the same way, to remove any possible ambiguity, we also write the update function

of the NFSR as

bi+80 = si + bi+62 + bi+60 + bi+52 + bi+45 + bi+37 + bi+33 + bi+28 + bi+21 + bi+14 + bi+9 +

bi + bi+63bi+60 + bi+37bi+33 + bi+15bi+9 + bi+60bi+52bi+45 + bi+33bi+28bi+21 +

bi+63bi+45bi+28bi+9 + bi+60bi+52bi+37bi+33 + bi+63bi+60bi+21bi+15 +

bi+63bi+60bi+52bi+45bi+37 + bi+33bi+28bi+21bi+15bi+9 + bi+52bi+45bi+37bi+33bi+28bi+21

Note that the bit si, which is from the LFSR internal state, is masked with the input

in the NFSR update function.

The two shift registers together form the internal state of the Grain cipher. The

two update functions determine the next state based on the current state. From

the internal state, five bits are taken as input to a boolean function, h(x). This

output function is chosen to be balanced, correlation immune of the first order and

has algebraic degree 3. The nonlinearity is the highest possible for these functions,

namely 12. The input is taken both from the LFSR and from the NFSR. The function

is defined as

h(x) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4

where the variables x0, x1, x2, x3 and x4 correspond to the tap positions si+3, si+25,

si+46, si+64, bi+63 respectively. The output function is taken as

zi = bi+1 + bi+2 + bi+4 + bi+10 + bi+31 + bi+43 + bi+56 + h(si+3, si+25, si+46, si+64, bi+63)

Research in time-memory-data trade-off attacks suggests that it is possible to

mount an attack with complexity O(2K/2) where K is the size of the key. In this

scenario, the attacker has a collection of 2K/2 plaintexts encrypted under different

keys, and the aim of the attack is to find one of these keys. In this attack scenario,

80 bit key size is not enough since an attack would have complexity O(240). Several

researchers have expressed the opinion that 128 bit keys is a minimum in secure

applications.

To meet this new requirement, Grain-128 cipher, which is drawn in Fig. 2.2, was

proposed while preserving the advantages of Grain cipher version 1. It uses 128-bit

key and 96 bit IV. Similarly, the cipher consists of three main building blocks, namely

an LFSR, an NFSR and an output function. The content of the LFSR is denoted by

si, si+1, ..., si+127 and the content of the NFSR is denoted by bi, bi+1, ..., bi+127. The

feedback polynomial of the LFSR is a primitive polynomial of degree 128, which is

defined as

15

Figure 2.2: Grain-128 cipher structure

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128

The corresponding update function of the LFSR is

si+128 = si+96 + si+81 + si+70 + si+38 + si+7 + si

The non-linear feedback polynomial of the NFSR, g(x), is the sum of one linear

element and non-linear elements, which is defined as

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125 + x63x67 + x69x101 +

x80x88 + x110x111 + x115x117

Similarly, the bit si, which is masked with the input to the NFSR, is included

while omitted in the feedback polynomial. The corresponding update function of the

NFSR is defined by

bi+128 = si + bi+96 + bi+91 + bi+56 + bi+26 + bi + bi+84bi+68 + bi+65bi+61 + bi+48bi+40 +

bi+59bi+27 + bi+18bi+17 + bi+13bi+11 + bi+67bi+3

The 256 memory elements in the two shift registers represent the state of the

cipher. From this state, 9 variables are taken as input to a Boolean function, h(x).

Two inputs to h(x) are taken from the NFSR and seven are taken from the LFSR.

This function is of degree 3 and very simple. It is defined as

16

h(x) = x0 + x1 + x2x3 + x4x5 + x6x7 + x0x4x8

where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 correspond to the tap

positions bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79 and si+95, respectively. The

output function is defined as

zi = bi+2 + bi+15 + bi+36 + bi+45 + bi+64 + bi+73 + bi+89 +

h(bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79, si+95) + si+93

How the IVs are managed and used is not taken into consideration in the Grain

cipher design. Actually, the IVs are transmitted in clear text form without encryption

for the convenience of the receiver to synchronize and decrypt the received messages.

Previous research shows that radio transmission consumes much more power than

cryptographic algorithm computation on a variety of sensor nodes [2] [40]. Therefore,

to achieve low power consumption, we need to reduce the unnecessary overheads.

Since IV is transmitted in each packet, reducing the size of the IV will significantly

decrease transmission energy consumption. Besides, long bit length keys will lead to

large communication overheads on key establishment and update process. However,

smaller key and IV sizes will decrease the security level of the cipher.

With all the above concerns in mind, we try to redesign a cipher not only with

smaller key and IV sizes to reduce the transmission overheads, but also with the

competitive or even higher security level compared to the Grain cipher. We achieve

the goal with a sufferable increase of the hardware complexity. Since the structure,

i.e. the feedback update functions and the output function, of the Grain cipher is

fixed, we intend to make it reconfigurable in order to bring in randomness which adds

to the cipher structure another dimension of the cipher secrecy along with the secret

key.

2.2.2 RFSR Cipher

Similar to the Grain cipher, the proposed reconfigurable feedback shift register based

cipher, depicted in Fig. 2.3, consists of three main building blocks, namely the LFSR

with linear feedback update function f , the NFSR with non-linear feedback update

function g, and the output function h. In our design, we use a 32-bit LFSR and a

64-bit NFSR. Other choices of sizes can be carefully designed to fit specific security

requirements. The states of the LFSR are denoted as y1, y2, ..., y32. Similarly, the

17

states of the NFSR are denoted as z1, z2, ..., z64. The reconfigurable feedback update

function of the LFSR, f , is defined as

f : y0 = ya1 + ya2 + ya3 + ya4 + ya5 + y32

where a1, a2, a3, a4 and a5 are carefully chosen so that the update feedback function

f is a primitive polynomial of degree 32. Function f , being a primitive polynomial,

guarantees that the internal states of the LFSR can reach the maximum period 2n−1

as long as the initial state is not all zero bits, where n is the bit length of the internal

states of the LFSR. Since the primitive polynomial has been studied extensively, taps

a1, a2, a3, a4 and a5 of the LFSR feedback update function in our design are randomly

chosen from an existing structure pool, containing 5039 primitive polynomials of

degree 32 [41].

output bit

...

...

NFSR

Randomly Chosen

Randomly Chosen



g(·) f(·)

...

...

Randomly Chosen

LFSR

h(·)

Randomly Chosen

Figure 2.3: RFSR cipher structure

The feedback update function of the NFSR, g, is denoted by

g : z0 = y32 + z64 + zb1 + zb2 + zb3 + zb4 + zb5 · zb6 + zb7 · zb8 + zb9 · zb10 + zb11 · zb12 +

zb13 · zb14 · zb15 + zb16 · zb17 · zb18 · zb19

where zb1 to zb19 are randomly but not repeatedly chosen from the states of the NFSR,

z1 to z63. According to boolean algebra, repeating values in b1 to b19 will reduce

monomial numbers of the polynomial and then compromise the intended security

level. Therefore, no repeat values are accepted.

The output function h gets the input from the states of both LFSR and NFSR.

It is defined as

h : output = yc1 + zd1 + zd2 + zd3 + yc2 · yc3 + yc4 · zd4 + zd5 · zd6 + yc5 · zd7 · zd8

18

where yc1 to yc5 and zd1 to zd8 are randomly but not repeatedly chosen from y1 to y32

and z1 to z64, respectively.

For the RFSR cipher, the feedback functions f ,g and h are all reconfigurable

while these functions in Grain 128 are fixed. In the RFSR cipher, f is composed of

4 or 6 dynamic taps while the linear feedback update function in Grain 128 has 6

fixed taps; g is composed of 6 degree-one, 4 degree-two, 1 degree-three and 1 degree-

four monomials while that of Grain 128 is composed of 6 degree-one, 7 degree-two

monomials; h is composed of 4 degree-one, 3 degree-two and 1 degree-three monomials

while that of Grain 128 is composed of 8 degree-one, 4 degree-two and 1 degree-three

monomials.

2.2.3 Cipher Initialization

The cipher will firstly be initialized with the key and the IV before the keystream is

generated. Grain cipher version 1 uses 80-bit key and 64-bit IV. The bits of the key

is denoted as ki, 0 ≤ i ≤ 79 and the bits of the IV is denoted as IVi, 0 ≤ i ≤ 63.

The key is loaded in NFSR, where bi = ki, 0 ≤ i ≤ 79, and the IV is loaded in

LFSR, where si = IVi, 0 ≤ i ≤ 63. The remaining LFSR bits are loaded with 1s,

si = 1, 64 ≤ i ≤ 79. Since the padding 1s in LFSR, the cipher won’t be initialized

to the all zero state. The initialization process requires the clock clocked 160 times

without producing any keystream. Therefore, during the initialization, the output

bit is fed back and XORed on the feedback bits si+79 and bi+79 of the linear and

non-linear feedback functions, shown in Fig. 2.4.

Figure 2.4: Grain cipher version 1 key initialization

19

For the Grain-128 cipher, the process is generally the same. The key is loaded in

NFSR, where bi = ki, 0 ≤ i ≤ 127, and the IV is loaded in LFSR, where si = IVi, 0 ≤
i ≤ 95. The last 32 bits of the LFSR is filled with 1s, si = 1, 96 ≤ i ≤ 127. The cipher

is clocked 256 times before generating keystream to finish the initialization process,

shown in Fig. 2.5.

Figure 2.5: Grain-128 cipher key initialization

Stream ciphers need the initialization process before keystream generation due to

the randomization requirements. The RFSR cipher initialization process, shown in

Fig. 2.6, is executed whenever the cipher is loaded with a new key-IV pair. The

output bits are fed back to XOR with the bits calculated by feedback functions f

and g. For the cipher designed in this chapter, it is first clocked 96 times without

producing the keystream. 96 is the sum of the lengths of LFSR and NFSR. 96 clocks

make sure that all the bits of the cipher initial state have influence on the cipher state

after initialization.

2.2.4 Cipher Management

In a WSN, one sensor node may need to communicate with several nodes. The

encryption may also be utilized in different network layers. So one sensor node need to

be able to use multiple ciphers to satisfy the requirements. The RFSR ciphers share

the basic hardware structure and differ in the key, feedback and output functions.

20

...

...

NFSR

Randomly Chosen

Randomly Chosen



g(·) f(·)

...

...

Randomly Chosen

LFSR

h(·)

Randomly Chosen



Figure 2.6: RFSR initialization

Therefore, one RFSR cipher hardware implementation is sufficient for a sensor node.

The cipher information about key and functions can be saved in storage.

To manage multiple cipher information, we need to store all cipher information

and load the particular cipher information to hardware upon requirement. For each

cipher, the key, the IV and the taps of the feedback functions and output function

should be stored. The key and the IV are the internal states of the cipher which is 96

bits. For the 32-bit linear feedback function, 4 or 6 taps are used. Since y32 is used

in all polynomials, we only store the remaining 3 or 5 taps which are indexes ranging

from 1 to 31. To make the storage neat, we choose to store 5 taps each with 5 binary

bits for all linear feedback functions. Therefore, 25 bits are used for linear feedback

functions. For the 64-bit non-linear feedback function, 19 taps ranging from 1 to 63

are reconfigurable. Each tap needs 6 bits which is 114 bits in total for the non-linear

feedback taps storage. For the taps of the output function, 5 taps from the LFSR

states and 8 taps from the NFSR states are used which requires 73 bits in total.

As described above, for one cipher, we need 308 bits for storage in total. When one

cipher is needed, the system will load the stored cipher information into the hardware.

When the use of one cipher is finished, only the changed elements will be written back

to the storage. For example, after continuously generating keystream, the internal

states of the cipher are changed while the cipher structure remains unchanged. In

this case, only the internal states need to be written back to the storage.

2.2.5 IV Management

As one part of the cipher’s initial state, the IV is crucial to the modern stream cipher

because its randomness makes the cipher’s initial states different in each use which

21

finally results in a different keystream for each piece of message to be transmitted.

The IV is combined with the secret key together as the cipher’s initial states. IV

should never repeat with the same key. If so, the keystream will be identical which

will leak unnecessary information of the plaintext. Suppose plaintext pt1 and pt2 are

encrypted with the same key k and initial vector IV while the k and IV combination

will produce the keystream keystream. The encrypted message of pt1 and pt2 will

be ciphertext ct1 and ct2, respectively. We get

keystream = Cipher(k, IV)

ct1 = pt1⊕ keystream

ct2 = pt2⊕ keystream

As ciphertext ct1 and ct2 are transmitted in the air, they are also exposed to the

adversary. ct1 and ct2 can reveal part of the plaintext information by

ct1⊕ ct2 = pt1⊕ pt2

Therefore, the IV should never repeat with the same key.

The IV can be used in two methods: the whole IV method and the IV index

method. In the whole IV method, the IV is transmitted in clear text in each packet;

while in the IV index method, only the index of the IV is transmitted instead. Obvi-

ously, the index of the IV can be much smaller than the IV itself. Then the IV index

method requires less bits for transmission in each packet than the whole IV method.

Another advantage of the IV index method in our scheme is that the use of IV index

will not reveal any part of a keystream. The detailed usage of IV is discussed in the

next chapter.

2.2.6 Key and Structure Update Scheme

As a common security mechanism, the key update process is carried out to guarantee

that the key in use is safe and secure. The two parties in a communication link will

negotiate and perform the key update process depending on the specific protocol in

use.

In addition to the key update of traditional stream ciphers, the proposed RFSR

22

cipher can also update its structure. The structure update consists of three basic

elements: f update, g update, and h update. A system can carry out partial or total

structure updates which means that one or two, or all of the three basic elements

are updated. Any change of the cipher structure will completely change the output

keystream and result in a brand new cipher. Structure update can use the keystream

generated by the RFSR cipher as the source of taps generator for feedback functions.

Proper algorithms can be designed to update cipher structures by using the keystream.

Since the linear feedback function f is chosen from an existing structure pool,

the structure update of f cannot be generated by the keystream. But the non-linear

feedback update function g and the output function h can be generated based on the

keystream. The following is an example of a structure update generator algorithm.

Algorithm Random Taps Chosen Algorithm

while TapsArray NOT FULL do
NewTap← bits from Keystream
if NewTap NOT IN TapsArray then

NewTap added to TapsArray
end if

end while

If the algorithm is shared by all the sensor nodes in a WSN, when two nodes on

the same communication link decide to perform a structure update, they do not have

to transmit new structure information. Since they share the same random bit stream

source, which is the keystream, and the same structure update algorithm, they can

generate the same structures for update purpose.

2.3 Security Analysis

2.3.1 Cipher Security

Since the proposed RFSR cipher is designed based on the Grain cipher, the cryp-

tographic analysis on Grain can also be applied to RFSR ciphers. By now, no key

recovery attacks better than brute force attacks are known against Grain 128, indi-

cating the level of security of Grain. Several minor differences between RFSR and

Grain are analyzed below.

Compared with Grain 128, the simplified feedback and output functions and the

smaller 96 internal states of 32-bit LFSR and 64-bit NFSR, rather than 256 internal

23

states of 128-bit LFSR and NFSR in Grain 128, seem to make the RFSR cipher more

vulnerable to attacks. However, the changeable cipher structure makes the RFSR

cipher much more difficult to succumb to attacks. Assume an adversary may have

access to the entire 5039 LFSR structure pool by compromising a large number of

sensor nodes. The basic NFSR feedback boolean function and basic output boolean

function may also be available. But the random taps used in the NFSR feedback

function or in the output function are still unknown, which are 19 taps of NFSR states

in the NFSR feedback function, 8 taps of NFSR states and 5 taps of LFSR states in the

output function. The total possible structure will be 5039∗
(
63
19

)
∗
(
32
5

)
∗
(
64
8

)
≈ 1.33∗2114.

Therefore, it is hard to launch attacks on RFSR ciphers.

2.3.2 Attack Analysis

The large number of possible cipher structures makes eavesdropping hard to com-

promise system security. Note that different pairwise RFSR ciphers are established

and used in the data link layer between neighboring sensor nodes, and another RFSR

cipher is used in the application layer between the BS and the source sensor node.

Even when several nodes are captured by adversaries, only the ciphers owned by

these nodes are exposed but they cannot be utilized to break uncompromised nodes’

ciphers. DoS attacks and forgery from an outsider are defended with the use of a mes-

sage authentication code (MAC). A MAC is added to each message’s payload and

helps the receiver verify the authenticity and integrity of the received messages. A

message is considered valid only if the received MAC is correct. The remedies for the

DoS attacks coming from the captured nodes have been proposed in the literature,

such as switching to low duty cycle and conserving power, locating attack area and

re-routing traffic, and adopting prioritized transmission [42].

2.4 Implementation, Simulation and Performance

Altera Cyclone II EP2C8T144C6 FPGA was chosen as the target implementation

device. The simulation software platforms are Altera Quartus II V12.1 and Mentor

Graphics ModelSim SE 10.1a. We simulate the power consumption using the Altera

PowerPlay power analysis tool [43]. PowerPlay uses actual design placement and

routing and logic configuration which is claimed to be accurate (to within ±10%) for

the actual device power consumption [44]. Existing experiments [45] also show that

24

the result of PowerPlay power estimation on the Cyclone II series is reasonable.

The total FPGA power consumption comprises static power and dynamic power.

Static power is the power consumed by a device due to leakage currents when in

quiescent state. Dynamic power is the additional power consumed through device

operation caused by signals toggling and capacitive loads charging and discharging.

Therefore, with increasing operating clock frequency, the dynamic power increases

accordingly but the static power remains the same.

Firstly we execute gate-level timing simulation, which takes all the routing re-

sources and the exact logic array resource usage into account to obtain an accurate

power estimation. Then PowerPlay is run to measure the average power consumption

of each operation. We obtain the power consumption directly from the PowerPlay

tool report and calculate the energy-per-bit performance.

2.4.1 Cipher Implementation

The proposed implementation achieves several cipher functionalities with only one

structure implementation. Each cipher’s specific information, such as key, IV, feed-

back taps, and output function, are stored in random access memory (RAM). Since

one sensor node needs several RFSR ciphers for data link layer pairwise encryption

and application layer encryption, the proposed implementation builds upon a basic

cipher infrastructure, and the system automatically loads specific cipher information

from RAM when required.

Similar to the Grain’s structure, the throughput of the proposed RFSR cipher can

be easily multiplied by implementing feedback functions and output functions several

times. Average power consumptions are compared with different throughput rates at

1 and 8 bits per clock cycle, and different clock rates at 10 and 50 MHz. We find from

simulation that the average energy consumption of 8 bits per clock implementation

is almost 6 times less than 1 bit per clock. As expected, with different clock rates,

the static power is almost the same but the dynamic power is proportional to the

operating frequency.

2.4.2 Comparison with Microprocessor Platforms

Previous research [14] studied the performances of several ciphers and hash functions

on microprocessor platforms. We choose ATmega103 and StrongARM microprocessor

platforms which respectively represent low-end and high-end processors. Since a

25

microprocessor processes one instruction per clock, the fastest encryption scheme

for a particular platform is also the most energy efficient scheme. The most energy

efficient algorithms for ATmega103 and StrongARM platforms are RC4 and RC5,

respectively. Existing flaws [46] [47] make RC4 and RC5 susceptible to attacks, while

the brute force attack remains one of the most effective attack against Grain 128,

indicating the higher security of Grain 128. The plaintext to be encrypted is 512 bits

long, and initialization is executed before encryption. Per bit energy consumption is

calculated by averaging both initialization and encryption energy consumption over

the total 512 bits.

Table 2.1: Comparisons with Microprocessor Platforms
Platform Algorithm Clock(MHz) Delay(us) Energy(nJ/bit)
FPGA RFSR 50 2.08 0.32

ATmega103 RC4 4 3262 105.12
StrongARM RC5 206 53 41.41

The results and comparisons are shown in Table 2.1. The average energy con-

sumptions of ATmega103 and StrongARM are 329 and 130 times more than that

of the proposed RFSR scheme, respectively. Even though StrongARM is running 4

times faster, the delay is still 25 times larger than that of RFSR FPGA implementa-

tion while the delay of ATmega103 is 1568 times larger with 12.5 times slower clock

than those of the proposed.

Comparing with FPGA, ASIC implementation runs faster and is more energy

efficient but much more expensive to prototype. Existing research [48] compares

FPGA and ASIC designs in circuit speed and power consumption and shows that

ASIC designs are 87 and 14 times better than FPGA design, in static and dynamic

power consumption, respectively. The proposed scheme therefore uses even less power

with ASIC implementation. Even though the comparisons in Table 2.1 are based on

different platforms and different encryption algorithms, it is clear that the hardware-

oriented RFSR scheme is better suited for use in sensor nodes due to low energy

consumption and small delay.

Table 2.2: Cipher Comparisons on FPGA
Algorithm Logic Elements Delay (us) Energy (nJ/bit)

RFSR 5207 2.08 0.56
RC4 12917 6.40 11.18
RC5 6172 18.56 7.75

26

We also implement RC4, RC5 and the proposed RFSR cipher on the same FPGA

platform to make the comparisons fair. The tests are run on Altera Cyclone II

EP2C15AF256A7 at 50 MHz clock rate. According to the results shown in Table 2.2,

the hardware-oriented RFSR cipher entirely outperforms RC4 and RC5.

2.4.3 Comparison with Grain 128

The proposed design is compared with Grain 128 on the energy consumption of

keystream generation with 10 MHz clock and 8 bit/clock throughput rate. The re-

sults are comparable: 0.253 nJ/bit for Grain 128 and 0.544 nJ/bit for the RFSR

scheme. However, considering the transmission overheads caused by the IV size, the

energy consumption of the proposed RFSR scheme is 10.3% lower than Grain 128 for

a packet size of 512 bits. Besides, to break RFSR by brute force, it requires about

1.33 ∗ 234 times more complexity than for Grain 128.

2.5 Conclusion

In this chapter, we have proposed a low complexity reconfigurable feedback shift

register based stream cipher RFSR and shown that it is more secure than the widely

used Grain, RC4 and RC5 algorithms. Implemented on an FPGA platform, the

proposed scheme consumes over 130 times less average energy, and renders over 25

times less delay than existing microprocessor platforms.

27

Chapter 3

RFSR Cipher Based

Authentication Protocol and Link

Layer Encryption

In this chapter, an RFSR cipher based authentication protocol (RAuth) and an RFSR

cipher based secure sensor network communication architecture (RSec) are proposed.

A WSN is special compared to a traditional computer network. The many con-

straints inherent in WSN often make it inefficient and sometimes impossible to use the

existing network security mechanisms directly. Hence, there is an urge of developing

security approaches specifically for a sensor network.

WSNs were first designed to perform military tasks such as battlefield surveillance,

monitoring and sensing. Later, such networks were used widely in industrial and

consumer applications, such as industrial process monitoring and control, and so on.

In recent years, a new trend of smart home and smart office brings WSNs into our

living and working spaces by making functional home and office appliances smart

and accessible. In order to achieve this, a mechanism is in need to connect all the

appliances together so that they can send and receive messages securely. A WSN is

born for this purpose since it is not only reliable but also small and easy enough to

be integrated.

As analyzed in the previous chapter, the RFSR cipher has low power consumption

and high encryption speed which makes it a suitable cryptography algorithm in WSNs.

In this chapter, an RFSR cipher based link layer secure communication architecture

is proposed. Unlike the traditional ciphers, since RFSR uses a dynamic feedback

28

structure, the encryption algorithm is considered to be a secret as the key. This

unique property enables an RFSR cipher to get rid of the use of initial vectors (IVs)

to reduce communication overheads. Without IVs, RSec employs a new mechanism

to synchronize the sender and receiver with much lower communication overheads.

RSec helps two nodes to safely communicate with each other after they verify each

other’s identity. The RFSR based authentication protocol RAuth is used to help the

two nodes to establish trust in each other. Since different RFSR ciphers have different

cipher structures and secret keys, a trust center is needed to help two RFSR ciphers

to authenticate each other and assign a new cipher to both nodes as the pairwise

encryption credentials.

The remainder of the chapter is organized as follows. Section 3.1 introduces

the network topology considered in this chapter. Section 3.2 presents the RFSR

cipher based authentication protocol. The RSec link layer encryption architecture

is proposed in Section 3.3. The performance evaluation is discussed in Section 3.4.

Finally, Section 3.5 concludes this chapter.

3.1 Network Topology

Based on the topology, a wireless network can be centralized or distributed. Cen-

tralized networks, such as shown in Fig. 3.1, are common in our daily lives, such as

Wi-Fi and the cellular system. Usually, a Wi-Fi network has one or several access

points (APs) to which all the devices in a network connect. APs act as a central

transmitter and receiver of wireless radio signals. All the devices directly connect to

the APs and communicate only with the AP. Similar to Wi-Fi networks, the APs in

the cellular networks are base transceiver stations (BTSs). All the user equipment

(UEs) connects to the BTSs to get access to the network.

Distributed networks, as shown in Fig. 3.2 are widely proposed and discussed in

WSNs. Without a base station, nodes in the network share the routing information

with each other and establish connections using certain routing protocols. Distributed

networks are more suitable to be deployed in hostile environments. In such situations,

a centralized network can be easily destroyed by attacking the central node. After de-

ployment, sensor nodes start the authentication phase to establish secure connections

with their neighbor nodes by verifying if common secure credentials are shared.

Distributed networks are easy to use. After deployment, nodes will automatically

authenticate with each other and find the routes on their own. The side-effect of this

29

Figure 3.1: WSN centralized topology

high automation is that the overhead is large. One node first needs to authenticate

with its neighboring nodes to establish secure links. After that, the routing tables are

shared among the nodes which becomes a heavy task for energy constrained WSNs,

especially when the scale grows. On the other hand, the dynamic routing protocols

are robust against single node failure. When a node stops working, the traffic can be

routed in another circuit to the same destination automatically. Besides, the energy

consumption is relatively even. Since the routing protocol is highly flexible, a node

can choose to reserve energy by minimizing the routing tasks when the energy drops.

On the other hand, a centralized network has more instinctive authentication and

routing protocols. Routing is simple since the traffic either starts from or ends on the

base station. Each node only needs to show its credential to the base station, and then

the authentication is done. The centralized network, such as Wi-Fi, usually suffers

from throughput degradation when the number of clients increases [49]. Besides, the

centralized networks are prone to attacks when the target is the base station. The

30

Figure 3.2: WSN distributed topology

energy consumption in a centralized network is uneven. If the base station has the

same energy constraint as a regular sensor node, it will soon be exhausted.

Taking the application context into consideration, some of the assumptions will

be different from the ones discussed above. Considering deploying a WSN in home

or office environment, some of the sensor node can have constant power supply so

that the power constraint does not apply to these nodes anymore. The nodes with

only the internal battery can use these nodes as a relay to save energy in the case

that the base station can only be reached with high transit power. Home and office

environments have a lot of human activities which makes physical attacks targeting

the base station less effective.

A WSN with centralized topology seems to be a good choice to this application

context. But why not use the existing Wi-Fi to form a WSN? The reasons are

stated as follows. Firstly, when the total number of nodes grows, Wi-Fi suffers from

severe performance degradation which will affect its major functionality. Secondly,

sensor nodes have limited transmission power. It’s quite possible that a number

of sensor nodes cannot send packets directly to APs. Thirdly, Wi-Fi requires time

synchronization which is a power consuming task for sensor nodes. The Wi-Fi radio

31

module is more expensive in the power perspective, and the transmission range of 2.4

GHz Wi-Fi is comparably smaller than that of the 915 MHz ISM band with the same

TX power due to the larger path loss for a higher frequency. From the empirical tests

results [50], half of the operating frequency can provide a doubled range.

The proposed hierarchical centralized topology is illustrated in Fig. 3.3. The base

station (BS) is a powerful sensor node that has sufficient computational ability and

external energy supply. A sink node (sink) is a sensor node with less powerful ability

to reduce the cost but with external power supply. The sensor nodes are the ones

that have limited energy and perform simple tasks. Based on the topology scenario,

if there are sufficient sinks in the network, some of them can perform as a regular

sensor node. Not only the sinks, sensor nodes can also connect directly with BS.

Sink

Sensor Node

Base Station

Database

Sink
Sensor Node

Sink

Sensor Node

Sink Sensor Node

Figure 3.3: RFSR topology

Compared with the distributed network, the proposed topology avoids the neces-

sity of sharing routing tables among sensor nodes. Nodes only communicate with the

base station directly or indirectly with a simple route table. When the scale becomes

larger, the hierarchical structure provides extended benefits to network formation.

32

Compared with the centralized network, the proposed topology has a larger coverage

with the help of the sink’s relaying functionality. The sensor nodes save much trans-

mission power to communicate with the sink nearby, rather than the base station far

away.

The proposed topology is similar to the cluster tree topology of Zigbee but a slight

difference exists. In Zigbee, the sink can use another sink to relay messages, while in

the proposed topology, a sink should directly connect to the base station. Besides the

cluster tree topology, Zigbee also supports a star and peer-to-peer (mesh) network

topology for different user contexts while the proposed authentication protocol and

link layer architecture only supports one topology to simplify design complexity.

3.2 Authentication Protocol RAuth

Authentication is essential to both wireless sensor networks and sensor nodes. For

a wireless sensor network, authentication guarantees that only the legal nodes are

permitted to join in the network, which means all the nodes within the network are

valid and can be trusted by other nodes. For a sensor node, authentication verifies

the identity of the existing network so that the node can trust the other nodes within

the network. Therefore, authentication is a bridge of trust which connects a sensor

node and a sensor network.

An authentication protocol is a mechanism that helps nodes to establish trust

with each other and helps nodes to form a sensor network. Nodes will exchange

certification material and form connections with each other. The certifications are

commonly preloaded into each node or entered during node deployment. It should

be unique so that two nodes will never have identical certifications. Also, it should

be sufficiently secure and extremely hard or technically impossible to crack. Besides,

it should be recognizable only to legal nodes while no useful information is revealed

to irrelevant nodes.

An RAuth protocol takes advantage of RFSR cipher’s dynamic property to carry

out node authentication. Each node has a unique ID different from any other node’s

within a network. A specific feedback structure and the initial key are applied to

each node in the manufacture phase. Therefore, each sensor node has its specific ID,

cipher feedback structure and initial key. The information is also saved remotely in

the database. Whenever authentication starts, nodes will be verified by checking the

ID and cipher information provided by the joining node with the information saved

33

in the database.

To be specific, a unique 64-bit node ID is pre-loaded into each sensor node during

the manufacture process. The RFSR cipher structure information and corresponding

initial key are also loaded as part of the security certification. These are considered as

the physical identification of a sensor node which cannot be modified afterwards. In

order to safely authenticate itself to other nodes, the secure identification information

is not supposed to be revealed. However, based on the secret RFSR cipher structure

and initial key, a node can produce a bit stream to help other nodes identify its

identity. In short, in an authentication process, a bit stream generated from the key

and structure is the certification material to verify if the node is what it claims to be.

Only BS has access to the database which stores the nodes’ credential information.

Sinks will help those nodes who have limited send power, or limited receive resolution,

by relaying packets between BS and nodes. A node can connect directly to the BS

or use a sink as a relay.

3.2.1 Nodes’ Credentials

In order to join the network, a node needs to prove that it is legal. The authentication

is in two directions. A node needs to convince the base station with its credentials,

and it also needs the base station to provide the credentials to verify a genuine base

station.

The credentials in use are the cipher initial feedback structure and the pre-loaded

secret key. When the authentication process starts, a node will generate a random

bit stream with the cipher structure and initial key. The random bit stream together

with the node’s ID, will be transmitted to the base station. The base station will

checkout the nodes initial feedback structure and key by searching the database.

Afterwards, the base station examines the node’s identity by comparing the random

bit stream received with the bit stream it generates after loading the corresponding

initial information. If the two bit streams are identical, the base station can confirm

that the node is who it claims to be. If not, the authentication process is terminated.

The next step is that the base station will provide authentication information to

the node. Similarly, the base station will continue to produce a random bit stream

with the same cipher structure and send it to the node. The node receives the bit

stream and checks if it is valid in the same way the base station generates it. If the

verification succeeds, the node will admit the identity of the base station.

34

Several variations may apply to the authentication process:

First, besides the base station and the sensor node, additional nodes may partic-

ipate in the process acting as relaying nodes to help the base station and the sensor

node establish a physical link circuit. The link can even be asymmetric [51], which

means the uplink, from the node with lower hierarchy to the node with higher hi-

erarchy, and the downlink, from the high hierarchy node to the low hierarchy node,

can be different. Regardless of the actual situation, the link is transparent to the

authentication process.

Second, more than one cipher structure and initial key pair for authentication

can be stored on a node. For certain situations where the environment is hostile or

the authentication robustness is essential, a backup credential pair is a good design.

Whenever the first cipher pair is considered used up, the second cipher pair will be

used as default.

Third, the procedure of generating the random bit stream for authentication can

vary according to the requirements. In order to resist replay attacks, the node needs to

have the ability to send different random bit streams for authentication based on the

received challenge bit stream. The challenge bit stream, usually called the nonce, is

a one time random bit stream for cryptographic communication. If the node is given

a nonce to use in the authentication bit stream generation process, the generated

random bit stream is specific for each given nonce. The adversary has the ability to

get the authentication bit stream and the corresponding nonce by eavesdropping on

the communications. However, even with this information, it still cannot fake the

authentication bit stream for another nonce. Also, there is no effective way to recover

the key and structure based on the eavesdropping information.

In the RAuth protocol, the nonce is a 32-bit string. The nonce is first XORed

with the first 32-bit of the initial key. Concatenated with the last 64-bit initial key,

the 96-bit string is then loaded as the initial internal state of the RFSR cipher. After

cipher initialization, the next 32-bit will be used as the authentication credential.

3.2.2 New Node Joining an RAuth Network

The detailed procedure of how RAuth protocol works when a new node joins an

existing WSN is described below.

The authentication can be either active or passive as per the configuration of the

base station. In an active authentication network shown in Fig. 3.4, the base station

35

Periodic Authentication Challenge Message

[NonceBS,Time]

Sensor Node BS / Sink

Figure 3.4: RAuth active mode

and the sinks will periodically broadcast an authentication challenge message. In

this message, a nonce is included, together with the radio module information such

as transmission power, minimum receivable power and so on. When a sensor node

receives this broadcast message, the path loss can be roughly calculated based on

the received signal strength indicator (RSSI) from the node’s radio module and the

sender transmission power in the received message. Therefore, it is not hard to

expect whether the sensor node has enough transmission power to directly deliver the

authentication message based on the roughly calculated path loss, the node’s transmit

power and the base station’s minimum receivable power. Nonce is the random bit

stream which can be pseudo-randomly generated by a shift register structure inside

the broadcasting node, or genuinely randomly generated by using time information,

or the channel status captured by radio, etc.

In a passive authentication network shown in Fig. 3.5, the authentication process

is initialized by node N broadcasting a new node authentication request. By receiving

the request, the base station and the sinks will unicast to node N the same message

which they broadcast in the active mode.

Since the active and passive mode have different gross overheads in different pe-

riods of time, the choice of an active or passive mode can vary in different phases of

a network formation. When the network is just initialized and nodes are beginning

to authenticate, it is more efficient to use an active mode because it is likely that

more nodes than one are listening to the traffic for the broadcast challenge messages,

and one broadcast challenge message from the base station or a sink can provide

36

Sensor Node BS / Sink

Broadcast Authentication Request Message

Authentication Challenge Message

[NonceBS,N]

[IDN]

Figure 3.5: RAuth passive mode

several nodes with the information of available parent nodes. When a large number

of nodes are already authenticated, the passive mode can be more efficient. From

the channel usage perspective, the deletion of broadcasting will give the time slot to

the transmission of regular packets which increases the gross network throughput and

therefore makes the network initialization faster. From the energy perspective, the

passive mode not only saves the transmission energy of the base station and the sinks,

it also saves the energy for all the sensor nodes within the coverage of the broadcast

signal, since receiving can be as energy consuming as transmitting.

When the new node N is deployed in the environment, in the active mode it

will start to listen to the traffic for the broadcast authentication messages. When N

receives the message, it can also obtain the receive signal strength indicator (RSSI)

which is supposed to be supported by the radio module of the sensor node. Assume

that the radio environment is symmetric, which means that receiving and transmitting

channels are identical, N is capable of calculating if the BS can receive the packet it

sends. If so, a direct link can be established. If not, N needs a relaying node for the

uplink. In the passive mode, N will broadcast a request and wait for the response.

The base station and the sinks who receive N ’s request will respond directly to N

with the challenge message nonce.

The connection status between the new node N and the base station BS can be

37

classified into three categories. The first situation is that a direct connection exists

between N and BS, which means that BS can receive the packets sent from N and

N can also receive the packets sent from BS. The second situation is that N and BS

need a third node to help relay packets in between. The last situation is that N can

receive packets from BS but BS cannot receive packets from N . This is a normal

case when different hardware is used on base stations and regular sensor nodes so

that the transmit power and minimum receivable power are different. Therefore, the

uplink requires a third node to send packets from N to BS while the downlink is

direct from BS to N .

Direct Link

When N has enough transmit power to communicate directly with the BS, the direct

link method is efficient and straightforward. The active mode and passive mode

only differ in the first step of the RAuth protocol. In either way, N will receive

a 32-bit random bit stream NonceBS,N from the BS. The detailed authentication

message flow is shown in Fig. 3.6. For the RFSR cipher with 32-bit LFSR and 64-bit

NFSR, NonceBS,N will XOR with LFSR’s initial key. The result is loaded in LFSR

as the new initial state. After 96 clocks running as cipher initialization, NonceBS

bits will influence all the internal 96 bits. Then, the next 64 clocks will produce a

64-bit authentication response RESPN,BS. The actual message from N to BS will

be [IDN , RESPN,BS].

In the same way, N should also give BS a challenge nonce so that only the genuine

BS can come up with the correct response. Due to the fact that BS and N share the

same cipher structure and initial key, NonceN,BS can use the 32-bit stream known to

both parties. Therefore, one choice is that N ’s RFSR cipher will continue to produce

32-bit stream as NonceN,BS. N will store this NonceN,BS in temporary memory to

wait for the response from the BS.

When the BS receives the response from N , it will look in the database with

IDN for the corresponding RFSR cipher structure. The BS produces a 64-bit stream

by following the same routine N uses to produce RESPN,BS and checks if the two

streams match. If not, the authentication is aborted. If so, the same as N , BS will

continue to produce 32 bits used as NonceN,BS. It will load N ’s initial key again,

XOR the 32-bit in LFSR and then repeat the previous procedure to produce response

RESPBS,N . The reply message is [RESPBS,N]. Once N receives and verifies this

38

Sensor Node N BS / Sink

Database

Query

[IDN]
Response

[KeyN , StructureN]
Authentication Response Message

[RESPBS,N]

Authentication Message

[IDN , NonceBS , RESPN,BS]

Figure 3.6: RAuth direct link mode

message, the authentication process is over.

Indirect Link

It is a common situation that the coverage of a base station is limited and needs other

nodes to act as tiny base stations to help increase coverage. A sink is a sensor node

that functions like a base station but is less powerful and can serve a limited number

of sensor nodes. In a situation that a base station and a sensor node cannot connect

directly, a sink in between relays messages so that they can connect indirectly.

In the case of an indirect link, passive and active modes only effect the first

step. In the active mode, N listens to the broadcast challenge messages and connects

to the best sink based on certain criteria. In the passive mode, N broadcasts its

authentication request and chooses one sink from the replying sinks on the same

criteria. Assume that sink S is chosen as the parent of N . The challenge that N

receives is NonceS,N . The shared RFSR cipher between S and BS is CBS,S. The

detailed authentication message flow is shown in Fig. 3.7.

N will reply with the response RESPN,S generated with its authentication RFSR

cipher, initial key andNonceS,N . Since S has no information aboutN ’s authentication

credentials, it cannot verify the identity of node N . The challenge NonceS,N and the

responseRESPN,S will be forwarded toBS in the form of [NonceS,N , IDN , RESPN,S].

BS will verify the credentials the same way as a direct link. The reply from

39

BS

Database

Query

[IDN]
Response

[KeyN , StructureN]

Sink S

Authentication Message

[IDN , NonceS,N , RESPN,BS]

Authentication Response Message

[RESPBS,N]

Sensor Node N

Relay Message

[IDN , NonceS,N , RESPN,BS]

Relay Message

EncBS,S[RESPBS,N]

Figure 3.7: RAuth indirect link mode

BS to S is EncBS,S([RESPBS,N]). S decrypts the message and sends the response

RESPBS,N to N . Once N receives and validates the message, the authentication

process has succeeded.

Asymmetric Link

Except for the cases of direct and indirect links, it is common that a sensor node

can receive messages from a base station since a base station usually has powerful

hardware and larger transmission power. On the other hand, the sensor nodes are

usually power constrained devices which have limited transmit power to reach the

base station. Normally, if there is no direct link, an indirect link is utilized by using a

third node as relay node for both directions. It obviously incurs unnecessary overhead

because BS is capable of sending a message directly to N but instead of that, a relay

node is used to receive and forward messages in the middle. The overhead exists

in both channel usage and power consumption. In order to optimize this situation,

an asymmetric link is used, which means that the uplink and the downlink are not

identical anymore.

How would a node know when to use an asymmetric link? In the active mode,

N can receive BS’s broadcast messages with BS ′ transmit power parameter. By

comparing with the RSSI and transmit power of N itself, it can know if direct link

or asymmetric link should be used. In the passive mode, N will also listen to the

channel first. If it senses messages sent from the BS, i.e., a node with ID 1, it can

confirm that it is in BS’s coverage area. N will then broadcast the authentication

40

request. From all the reply messages, if N receives a reply from BS, a direct link will

be used. If not, it becomes clear that an asymmetric link should be used.

BS

Database

Query

[IDN]
Response

[KeyN , StructureN]

Sink S

Authentication Message

[IDN , NonceBS/S,N , RESPN,BS]

Authentication Response Message

[RESPBS,N]

Sensor Node N

Relay Message

[IDN , NonceBS/S,N , RESPN,BS]

Message

EncBS,S[ResultBS,N]

Figure 3.8: RAuth asymmetric link mode

In either mode, an authentication challenge NonceBS/S,N is received from BS or

a sink S. If it is received from BS, then N also needs to pick a sink S as its parent

to help relay packets. The authentication procedure is similar as displayed in Fig.

3.8. The challenge response will be RESPN,BS/S which is sent to S. If in the active

mode, S will keep a copy of NonceBS in local memory. If the received nonce is valid,

S will encrypt and forward the message EncBS,S([NonceBS/S,N , IDN , RESPN,BS/S])

to BS.

BS will verify the response. If correct, BS will send a message directly to N

with RESPBS,N . In parallel, BS will send a message to S to notify the result of

authentication. Once N verifies the response from BS, the authentication process is

finished.

3.2.3 RFSR Cipher Management

To protect the communication confidentiality in the network, RFSR ciphers are used

to encrypt data before they are sent. It is required that the sender and the receiver

share the same cipher information, including the RFSR cipher feedback structure

and the cipher internal state. Using the same RFSR ciphers guarantees that the

sender and the receiver can produce the same keystream so that the message before

encryption at the sender side is identical to the message after decryption at the

41

receiver side.

In the hardware architecture, each sensor node is equipped with one RFSR cipher

hardware and stores all the cipher information it shares with its link neighbor. When

a new packet is received or a new packet is to be sent, the node will load the required

cipher information to the hardware for the purpose of decryption or encryption.

Cipher Information in Storage for a Link

The cipher information consists of two parts. One is the cipher feedback structure.

The other is the cipher internal state. Based on the topology hierarchy, the commu-

nication direction between two nodes are defined as the uplink and the downlink. For

both directions, the cipher feedback structure is the same while the internal states are

different. For each cipher on each node, two sets of cipher information are managed

separately for uplink and downlink. After each use of cipher, the cipher information

will be saved to handle packet loss situations, which will be explained further in the

next section.

Each cipher maintains a cipher with the base station, which is called the master

cipher. The master cipher is pre-loaded in the manufacture phase and is unique for

each sensor node. The cipher information management requires storage space to save

the cipher information. For example, the sensor node N connects to the base station

BS indirectly with the help of a relaying sink node S. For N , a master cipher with

BS and a link cipher with S are stored in N ’s memory. To send a message to BS, N

first encrypts the message with the master cipher. After that, N will save the current

master cipher status and load the link cipher from the memory. The link cipher is

required to encrypt the message to make sure that S can verify that the message is

from a legal node.

Once the authentication is finished, the new cipher information will be assigned

and used to encrypt messages later on. As mentioned above, a counter instead of

IV is transmitted in all the link layer packets. The counter is tightly related to the

RFSR cipher status.

The maximum length of the link layer packet in an RSec system is fixed. To

introduce flexibility, the maximum length can vary based on the type of sensor nodes

in the link and the signal strength. For communications between two sensor nodes

with sufficient transmit power and in the right range, the packet length can be larger.

42

Cipher Information Assignment

After the RAuth protocol helps two sensor nodes authenticate each other, a new

cipher will be assigned by the base station for later packet encryption use. The new

cipher information includes the cipher key and the cipher structure. Besides, a 32-

bit IV will be generated by one of the two nodes with higher hierarchy. The IV

will be sent unencrypted to the node with lower hierarchy. Then the two nodes will

have exactly the same cipher IV, key and structure. Based on this information, two

nodes will initialize the new cipher information by generating initial internal states

for uplink and downlink and save them locally. In order to know whether the other

node has finished the cipher information initialization process, handshake messages

are sent which are encrypted with the new cipher information. Depending on the

topology of the two nodes, the handshake message can be an acknoledgement (ACK)

packet, an ACK packet responding to another ACK packet, or a simple handshake

request packet. Successful verification on these messages will notify both nodes that

the other node has already used the new cipher and the message should be encrypted

with the cipher later on.

Since the system supports direct link, indirect link and asymmetric link, the new

cipher assigning process differs for each node connection topology.

For the direct link topology, the new cipher information is appended to the reply

message from BS to N . The reply message will become

[RESPBS,N , IV, EncBS,N(Key, Structure)].

When N receives the reply message and validates the content, it will load the new

cipher and send an encrypted ACK message with the new cipher.

For the indirect link topology, the new cipher information is also appended to the

reply message from BS. BS needs to give the cipher information to both the sink

S and the node N . The cipher information for node N will be encrypted using N ’s

RAuth cipher. The reply message from BS to S will be

EncBS,S([RESPBS,N , Key, Structure, EncBS,N([Key, Structure])]).

Once S receives this message, it will append IV and forward the message to N .

Finally, N will receive [RESPBS,N , IV, EncBS,N([Key, Structure])].

For the asymmetric link topology, the new cipher information is sent separately

to the sink S and the node N . N will receive the BS message

43

[RESPBS,N , EncBS,N([Key, Structure])]

while S will receive the BS message EncBS,S([IDN , Key, Structure]). S will use the

new cipher information to send a handshake message to N to make sure the new

cipher can be used, which is [IV, EncS,N(Handshake)]. N loads the IV and verifies

the handshake message. If it is legitimate, an encrypted ACK will be responded. The

cipher assignment process finishes.

Cipher Information Update

A key update is an effective way for stream ciphers to avoid reusing IV, which will

jeopardize the security of the communication system. For the systems, even though

the key-IV is not used the same way as in a common stream cipher system, a cipher

information update is also effective to prevent brute-force and other attacks. Except

for the secret key, which is used by a traditional stream cipher, the dynamic feedback

structure adds a new dimension to the secrecy of the cipher. The RFSR cipher has

the ability to update partial or total credentials. Considering to update the cipher

structure, since RFSR is composed of an LFSR and an NFSR, updating any one of

them will result in a totally new cipher. Therefore, the feedback function of LFSR

and NFSR can also be updated separately. To conclude, instead of a key update, the

cipher update can be total or partial; partial updates can choose to update one or any

combination of two from the LFSR feedback function, the RFSR feedback function

and the secret key.

A flexible cipher update mechanism is provided, which fits a variety of environ-

ments. The cipher information update procedures are similar to the cipher informa-

tion assignment. Instead of sending authentication messages, both nodes will notify

the base station that a cipher information update is requested. The base station will

send the cipher update message to both nodes in the similar way described above for

all three topologies.

The RFSR cipher credential information consists of a secret key and three recon-

figurable functions, i.e. a linear feedback function, a non-linear feedback function and

an output function. Updating of one of these four pieces of information will produce

a complete new cipher credential. Therefore, the update decision is flexible, being

either a partial or a complete update. According to Section 2.2.4, one or several of

a 64-bit key, a 25-bit linear feedback function information, a 119-bit non-linear feed-

back function information and a 73-bit output function information can be used to

44

perform the cipher update task. The cipher information update process will bring

transmission overheads. Compared with other key management protocols, which will

periodically update the keys, partial cipher update of the RAuth protocol has the

similar or smaller communications overhead.

3.3 RSec Link Layer Encryption

The link layer provides addressing and channel access control mechanisms that make

it possible for all the sensor nodes within a network to communicate with each other.

Since sensor nodes in a WSN have limited energy and computational ability, the OSI

model or Internet Protocol Suite layered systems are much too heavy for it. The

WSN described here is considered to be composed of three layers: the physical layer,

the link layer and the application layer. The RAuth protocol is considered part of

the application layer. The physical layer consists of physical links and means of

transmitting raw bits, which is not discussed here. In this thesis, we focus on the

encryption perspective of the link layer.

3.3.1 Addressing

Each sensor node in a RSec system has a 64-bit node ID. Similar to the Media Access

Control (MAC) address of the Internet, each network interface has a unique serial

number. The node ID is not used directly in an RSec system because the transmission

overhead is unnecessary and avoidable. An RSec system uses an 8-bit address ADDR

as the identification in a network. The address of the base station BSADDR is hard

coded as 255 (0b1111 1111) in all RSec networks. The unauthenticated node address

is 128 (0b1000 0000) which is used when a new node is added to a network and the

authentication is not yet finished. It is possible that more than one sensor node are

not authenticated in an RSec network at the same time. If that is the case, the node

needs to set the first 64-bit of the packet payload as its node ID. If both the source

node and the destination node are not authenticated, the destination node ID is set

as the first 64-bit of the payload and the source node ID as the second 64-bit. To

support in-network broadcast, 127 (0b0111 1111) is reserved for this purpose.

To minimize the chance of packet collision when nodes access the medium, RSec

uses the carrier sense multiple access with collision avoidance (CSMA/CA) technique,

which is utilized in IEEE 802.15/Zigbee and IEEE 802.11/Wi-Fi. Before each packet

45

is transmitted, the sender will broadcast a request to send message (RTS). When the

receiver gets this RTS message, it will broadcast a clear to send message (CTS). This

mechanism will reduce the chances of packet collision, especially for the hidden node

situations.

3.3.2 Packet Format

The packet format of an RSec system is shown in Fig. 3.9. The packet header consists

of destination address, source address, message type, counter and packet length. The

message type informs the receiver of the appropriate way to handle the payload of

this packet. Only the header is not encrypted.

The RSec packet format A and B have the same header size and the message

integrity code (MIC) size but different payload sizes. In the packet header, format A

uses a 4-bit counter field and a 6-bit length field while format B uses a 3-bit counter

field and a 7-bit length field. Multiple packet formats make the RSec system suitable

in different applications.

1 Byte 1 Byte 6 bits 4 bits 6 bits 0 – 58 Bytes 2 Bytes

Dst Addr Src Addr Type LenCntr Payload CRC

1 Byte 1 Byte 6 bits 3 bits 7 bits 0 – 122 Bytes 2 Bytes

Dst Addr Src Addr Type LenCntr Payload CRC

(A)

(B)

Figure 3.9: RSec packet format A and B

To detect transmission errors, MIC is used to add redundancy. A cyclic redun-

dancy check (CRC) [52] algorithm is utilized as the message integration check al-

gorithm. CRC is an error-detecting code used to detect accidental changes to raw

data. Blocks of data entering the system get a short check value attached, based on

the remainder of a polynomial division of the content; on retrieval the calculation is

repeated, and corrective action can be taken against presumed data corruption if the

check values do not match.

A message authentication code (MAC) is used to verity whether the source node

of the packet is what it claims in the source address field. In an RSec system, the

MAC is the MIC encrypted by the keystream.

46

Packet payload and the MIC are encrypted. The receiving node will first generate

the keystream based on the information in the header and decrypt the message. Then,

the received MAC is calculated by concatenating the packet header with the payload

and applying the CRC algorithm to the concatenated string. By comparing the MIC

received from the packet with the calculated MIC, the receiver will tell if the message

is valid.

In conventional systems, only the payload of a packet is encrypted while the

payload and MAC of a packet are both encrypted in RSec systems. This only works

with stream ciphers. Since a stream cipher works by bit-wise XORing the original

bit stream with the keystream, any bit flip over transmission will finally impact the

decrypted message at the same place. A bit flip is the same as xoring the bit with

1. As shown in Fig. 3.10, assuming that 1011 is a 4-bit string part of the original

message to be encrypted, 1100 is a 4-bit string part of the keystream which is to

be XORed with the 4-bit string 1011 from the original message. The 4-bit string

in the same place of the encrypted message will be 0111. Unfortunately, during the

transmission, the third bit of the 4-bit string is flipped due to an interference and

the receiver gets 0101 instead of 0111. The receiver node will use exactly the same

keystream to decrypted the received message. The decrypted message then becomes

0101xor1100 = 1001. If the same message is transmitted without encryption, after

disruption at the same bit, the received 4-bit string will be 1001, which is exactly the

same as the receiving string when the message is encrypted. This means that even

with the encryption, the transmission error is still at the same place.

... 1 0 1 1 . . .

... 1 1 0 0 . . .

... 0 1 1 1 . . .

... 0 1 0 1 . . .

... 1 1 0 0 . . .

... 1 0 0 1 . . .

... 1 0 1 1 . . .

... 1 0 0 1 . . .

Message

Keystream

Encrypted Data

Keystream

Message

With Encryption Without Encryption

Sender

Channel

Receiver

Received Data

Error

Figure 3.10: Bit flipping during transmission

The IV is used in a stream cipher as part of the initial states. The sender node

47

concatenates each IV with the secret key and loads the new bit string into the cipher.

Since each IV is only used for one particular packet, it makes the transmission stateless

and any packet loss only affects the current packet but has no further influence, if

we only consider it in the link layer. This design is suitable for a complex layered

network, such as the Internet Protocol stack. Whenever a packet is lost in the link

layer, its upper layer, which is in charge of the data completeness check, will send a

retransmission request to notify the sender to retransmit the missing segment again.

The retransmission overhead is large while the protocol can be clear and simple, which

is an acceptable trade-off. In the aspect of a sensor network, the protocol is relatively

less complex, and therefore such overhead is not hard to avoid.

In RSec systems, IV is not transmitted in clear text as a traditional stream cipher

system. Instead, only a counter is sent. For RFSR systems, the source node sends a

4-bit counter rather than a 32-bit IV. It saves 87% of the IV transmission overhead.

Two pair of counters are kept for both communication directions. If the uplink and

downlink share the same cipher information, it is possible that one cipher state is

reused by the two nodes in a communication link due to a packet loss. In this

case, the keystreams are identical and, therefore, the contents of the messages are

significantly jeopardized. To avoid this situation, the uplink and downlink should be

logically separated. Even with the same cipher structure, the cipher initial internal

states are different, so are the counters. Besides, a pair of counters for the base station

are required to keep track of the master cipher status.

3.3.3 IV and Encryption

Traditional stream ciphers use IV as part of the cipher initial state. In this case, IVs

are transmitted in clear text in each message. The advantage of this mechanism is

that the receiver can verify the message in a simple way by loading the IV and the

key as the cipher initial state. For a WSN, energy consumption is always the first

consideration. To minimize transmission overhead, two new mechanisms without

sending any IV are proposed in this thesis.

In either mode, counters are used to deal with packet loss and to synchronize the

ciphers. For two nodes on a communication link, two counters are maintained for the

uplink and the downlink, respectively.

48

Counter Index Mode

In this mode, the cipher works the same way as the conventional stream cipher.

For each packet, a key-IV pair is loaded for encryption or decryption. Instead of

transmitting the whole IV, only the counter, which is the index of the IV in use, is

transmitted.

For each message, the cipher will first generate a keystream in the maximum

length of the packet. Thereafter, the cipher will continue to generate 32 more bits

than the IV for the next message. The cipher will save the current IV and counter in

case of packet loss. Besides, the new generated IV will also be saved so that it can

be used for the next time.

Similar to the sender, when the receiver gets a new packet, it will load the IV

generated last time, together with the key, to generate the keystream to decrypt the

received message. After that, a 32-bit keystream will be generated and saved for

further use.

In all, when the cipher performs an encryption or decreption task, it generates

not only the keystream used for the current packet, but also generates an IV for the

next task. Each generated counter has an index between 0 to 7, assume that a 3-bit

CNTR field is used. The sender and the receiver use the same algorithm to generate

keystream and the IV. Therefore, only the index is sufficient for both parties to know

which keystream should be used to perform an encryption or decryption task.

Continuous Mode

In continuous mode, IV is only used in the cipher initialization and the cipher resyn-

chronization phase, which will be discussed later.

For regular encryption and decryption purposes, the cipher will generate a keystream

in the maximum possible packet length. The 96-bit cipher internal states will be saved

in the node’s local memory. When the cipher is required the next time, the saved

internal state will be loaded to the cipher and will be performed the same operation.

Considering packet loss situations, the new received counter may not be continuous

with the last received one. In this case, the cipher needs to jump to the required

status to perform the decryption task. For the continuous mode, the cipher will load

the internal state and then continuously generate several maximum packet length

keystreams. As for the counter index mode, the cipher should load the key-IV pair

49

to the cipher, perform cipher initialization and then generate the keystream with the

new IV. If the jump step is larger than 1, the cipher should load the new key-IV pair

again and do the previously stated task for several times.

For the counter index mode, only a 32-bit IV should be temporarily saved; while

in the continuous mode, a 96-bit internal state is required to be saved. For most of the

cases, the 64-bit difference in memory consumption will not make a large difference.

Besides, from experimental results, loading the 96-bit internal state, i.e., the 96-bit

key-IV pair, is not negligible in neither energy nor delay perspective. Therefore, the

continuous mode is chosen as the default mode to use counters in RSec systems, while

the counter index mode is also supported.

3.3.4 Cipher Credentials and Encryption

As mentioned, each sensor node is pre-loaded with the cipher credential informa-

tion, consisting of a secret key and a cipher feedback structure. This piece of cipher

credential information is the master credential information and only used to per-

form authentication tasks with the base station. Apart from the master credential

information, the session credential information will be generated when a node is au-

thenticated, and used to encrypt or decrypt the communications thereafter. A session

credential information is used between two direct connected nodes.

In case of a direct link connection, the sensor node and the base station first use

the master cipher credential information to authentication each other and the new

session credential information is generated. For later communcations, the session

credential information is used to encrypt or decrypt the messages.

The indirect link connection is similar. The master cipher credential information

shared between the sensor node and the base station guarantees the authentication.

Then, two pieces of pairwise session credential information are generated, one is

shared between the sensor node and the base station, the other is shared between

the sensor node and the sink node which helps relay messages between the sensor

node and the base station. Assume that the sensor node wants to send a message

to the base station. The raw message will first be encrypted by its session credential

information with the base station. The encrypted message will then be encrypted by

its session credential information with the sink node. The double-encrypted message

is forwarded to the sink node. When the sink node receives this message, it will

decrypt it to verify whether it is from the valid sensor node. If so, the decrypted

50

message will be encrypted again with the sink node’s session credential information

with the base station. When the base station receives the message, it first decrypts

the message with the session credential information shared with the sink node and

then with the one shared with the sensor node.

3.3.5 Cipher Information Initialization

Regardless of the topology, considering two nodes N1 and N2 in a communication

link, the packet length is LEN , the key is CKey, the initial IV is CIV , the cipher

structure in use is CStrucN1,N2, the counters in use are CCntrN1,UL, CCntrN1,DL

and CCntrN2,UL, CCntrN2,DL, and the cipher states are CStateN1,UL, CStateN1,DL

and CStateN2,UL, CStateN2,DL.

For each cipher shared by two nodes, the uplink and downlink use the same cipher

structure but different cipher internal states. As mentioned, the key and IV as the

cipher initial state are shared by both nodes, which only provides for the uplink or

the downlink. In RSec systems, the key and IV pair will be used as the initial state

for either the uplink or the downlink, and a new cipher initial state for the other can

be produced as follows. The cipher will load the key and IV, finish the initialization

and use the next 96-bit as a mask to XOR with the 96-bit IV-Key pair. The result

will be used as the initial state of the cipher for the other link direction.

If it is a direct link, assume that N1 is a base station and N2 is a sink or sensor

node. N1 will first load CIV and CKey and CStruct, run the initialization, output

LEN bits keystream and use the first 96 bits as a mask. CStateN1,UL is set with the

result of the mask XORing with CIV |CKey. CStateN1,DL is set with the current ci-

pher internal state. In the final stage of authentication, Ckey, CIV and CStrucN1,N2

are encrypted with the master key and sent from N1 to N2. Besides, all counters of

N1 and N2 are initially set to 0.

After N2 receives and decrypts the message with the master cipher, it loads CIV ,

CKey and CStruct the same way N1 did and uses the same mechanism to generate

CStateN2,UL. N2 saves the current internal state as CStateN2,DL and loads the

CStateN2,UL as the new cipher internal state. After initialization, N2 generates

LEN bits keystream. The first 32-bit are used as the payload of the ACK message.

When N1 receives the ACK message, it loads CStateN1,UL, runs the initialization

and verifies the ACK message. If the message is correct, N1 will know that N2 has

already implemented the cipher CipherN1,N2.

51

To ensure N2 that the ACK is correctly received, N1 will send an ACK encrypted

with the downlink cipher in counter 2. If the message is received by N2, the process

is finished successfully.

For the cases of indirect links, the procedure is similar. Assume that N1 is a sink

node and N2 is a sensor node. The difference is that N1 will receive the new cipher

information from the BS rather than generate it by itself. This process is transparent

to N2.

If it is the asymmetric link, assume that N1 is a sink node and N2 is a sensor

node. The new cipher information is sent from BS to N1 and N2 separately. The

two nodes will set the downlink and uplink states and counters based on the received

messages. Then, a handshake is required. N1 will drive a handshake process by

sending a handshake request. This handshake message will be encrypted with the

new downlink cipher, and the counter is set to 1. N2 will load the downlink state and

cipher structure to the hardware and decrypt the message. After the verification, the

current cipher internal state will be saved as CStateN2,DL and an ACK will be sent

encrypted by the uplink cipher with counter 1. If the message is validated by N1, an

ACK will be sent to notify N2 that the new cipher can be used to encrypt/decrypt

communications later on.

3.3.6 Packet Loss Handling

Due to the uncertainty and asynchronous nature of sensor network radio communica-

tions, it is possible that a packet is lost due to collision or failure of checksum at the

receiver, etc. In this case, cipher information management should be robust enough

to handle this situation. In an RSec system, for each link on each node, two copies

are saved in the memory. One keeps track of the sending status of the cipher and

the other of the receiving status of the cipher. The sending and the receiving cipher

share the same cipher feedback structure but have different cipher internal states.

Packet loss is commonly a major cause of performance degradation of low power

wireless communication systems. Retransmission is required for most of the cases

to make sure all sessions of an application layer message is successfully received by

the end node. Therefore, efficiently handling packet loss and packet retransmission is

considered as an important topic in the design of RSec systems. To ensure no packet

loss on the link layer, an acknowledgment (ACK) mechanism can be utilized. If the

sender does not receive the ACK from the receiver, it will assume that the packet is

52

lost and retransmission will be required. On the other hand, if the data transmitted

is tolerable to packet loss, an ACK will not be required which can save energy.

When the sender’s link layer receives a transmission request from its application

layer, based on the destination node address, it will load the corresponding cipher

information from memory to the cipher hardware. The keystream is then generated

and XORed with the raw message to create the encrypted payload field for the link

layer packet. For the lossless mode, which guarentees no packet loss, a timer is used

to pop an alert when the ACK is not received in a certain time. Once the timer

expires and no ACK is received, the sending node will retransmit the packet. In the

new packet, the counter field is increased from the counter in the previous packet by

one. A new keystream is generated to encrypt the message.

In an RSec system, the 4-bit counter has 16 different values. The sender and

the receiver keep a local copy of the uplink and downlink counters, which is closely

associated with the cipher internal states. When the counter received in a new packet

is exactly the expected value, the cipher will load the cipher information into the

cipher hardware and generate LEN bits keystream to decrypt the received packet.

If the MIC is valid, the local counter increases by 1 and the cipher internal state is

saved. If ACK is required, the cipher for the other direction will be loaded and send

an encrypted ACK back. This is the behavior of successful packet transmission.

When the counter in a received packet is not the expected value, it is known to

the receiving node that one or several previous packets are lost. Assume the current

counter is 0 and the received counter is 4. It is possible that 3 packets in between are

lost. It is also possible that 19, 35, 51, ... packets are lost. Depending on the radio

environment and the RSec system parameters, a cipher synchronization range should

be set. For a regular network, the range from 0 to 16 seems to be reasonable.

To decrypt the received message, the cipher hardware is loaded with the cipher

structure and the internal state corresponding to counter value 0. Then, a 3 times

LEN -bit keystream is generated in order to move to the internal state corresponding

to counter value 4. After that, a LEN bits keystream is produced to be XORed

with the packet payload and MAC. MAC will be verified to see if the packet received

is valid. If so, the cipher counter and internal states will be synchronized again. If

not, there will be two possibilities: the received packet has a bit error during the

transmission; or the counter should be moved forward by 16, which means 16 (4-bit

counter) consecutive packets were lost prior to the new received packet.

To verify if it is the second case, the cipher will continue to generate a 15 LEN -bit

53

keystream and use the 16th LEN -bit keystream to decrypt the message. If successful,

the counter and internal states are synchronized again. If not, the message will be

dropped, and the counter and internal state will not be updated. At this time, a local

failure counter is set to 1, which means that one packet has failed on this cipher. If

the counter reaches a threshold, which is assumed to be 3 here, the node will regard

this cipher as out of synchronization and a resynchronization process is required.

3.3.7 Resynchronization

Link Sender

Resync Request

Resync Response

Link Receiver

X
Synchronization Lost

Resync Response ACK

Resync ACK

Figure 3.11: Resynchronization figure

In RSec communication systems, since two counters are managed for the uplink

and the downlink, a node is both a sender and a receiver. When a cipher is out of

synchronization, the resynchronization process is started, as shown in Fig. 3.11. This

node as the link receiver will send an encrypted Resync Request message to its pair

node, the link sender, to initialize the resynchronization process. The link sender

node will generate a new 32-bit IV for this link and send it in the Resync Response

message to the link receiver.

In the previous cipher information initialization phase, a secret key is saved by

the two nodes in their local memory. The key will be used to generate the new

cipher internal state. When the link receiver node gets the new IV from the Resync

Response message, it loads the IV and the secret key to the cipher as the internal

54

If receive Resync ACKIf receive Resync Request

Idle State

RSync State 1

RSync State 2

If receive Resync Request

Send Resync Response

Idle State

RSync State 1

RSync State 2

If lose Synchronization

Send Resync Request

RSync State 3

Send Resync Response ACK

If timer expires
or packet error

If receive Resync ACK

Link Sender Link Receiver

Figure 3.12: Resynchronization state machine

states, while the cipher structure remains the same. After cipher initialization, a

LEN length keystream is produced to generate a Resync Response ACK to reply. At

the same time, the local counter is reset to 0. The link receiver will receive the Resync

Response ACK message and uses the same algorithm to verify if the link receiver has

successfully updated the cipher internal state. If the verification is successful, the

link sender will save the internal state and reset its local counter to 0. After that, a

LEN -bit keystream is generated to encrypt a resync ACK which is sent to the link

receiver. The new counter, which is increased from 0 to 1, is transmitted in this ACK

message.

Since the resynchronization is likely caused by the interfering radio environment,

it is possible that the resynchronization packets are lost too. The resync request is

treated as a regular packet encrypted with the other link cipher, which is in synchro-

55

nization. This packet requires a reply so a timer is started as soon as the packet is

sent by the link receiver. If no reply is received when the timer expires, the request

will be retransmitted with an increased counter.

If the resync request is received by the link sender, a resync response is replied.

The link sender will not start a timer because if this packet is lost, the receiver will

resend a resync request. If the resync response is received by the link receiver, a

resync response ACK will be replied and a timer is started. If no packet is received

when the counter expires or the received resync ACK fails in the validation, this

resynchronization process is considered unsuccessful. Therefore, a new resync request

will be sent. The current memory will be reset. The state machines of both nodes

are shown in Fig. 3.12.

3.4 Analysis and Evaluation

The RAuth key management protocol and RSec link layer encryption architecture

are introduced in the previous sections. Evaluations are carried out to test the per-

formance of the proposed concepts. The link layer comparison focuses on the packet

format overhead and packet loss performance. We also implement a network sim-

ulator to compare the authentication performance of the RAuth protocol with the

LEAP protocol on the network initialization phase and new node joining phase.

3.4.1 RSec Link Layer Protocol Performance and Analysis

Previous research shows that the power consumption for a single bit transmission

is equivalent to an embedded processor running several thousand of instructions [2].

Simplified packet formats can save a large amount of energy and extend the life period

of a sensor node. TinyOS [53] is an embedded component-based operating system

platform targeting WSNs. Based on the TinyOS link layer design, several packet

formats were proposed in several link layer protocols, such as the TinySec-AE packet

format of TinySec [54] and the MiniSec-U packet format of MiniSec [55].

Packet Formats

The packet formats of the mentioned protocols are shown in Fig. 3.13. In the RSec

architecture, we do not implement the regular packet format defined in TinyOS to

56

reduce the overhead. Careful choices of the fields in the packet format are made by

taking the application requirements into consideration.

Type Ctr LEN
 (2)

Data
(0 -63)

MAC
(2)

Dest
(2)

Src
(2)

Data
(0 -29)

MAC
(4)

Dest
(2)

Src
(2)

AM
(1)

LEN
(1)

Data
(0 -29)

MAC
(4)

Ctr
(2)

Dest
(2)

Data
(0 -29)

CRC
(2)

AM
(1)

LEN
(1)

TinyOS

TinySec

MiniSec

RSec

AM
(1)

LEN
(1)

Dest
(1)

Src
(1)

Figure 3.13: The packet formats of TinyOS, TinySec, MiniSec and RSec

With the observation that the system performance drops significantly if a large

number of nodes is applied, an RSec system limits the number of supported nodes

in one network. In the RSec packet format, both the destination and the source

addresses are 1 byte while the other protocols use 2 bytes. A maximum number of

256 addresses is supported in the RSec system while the others support up to 65536

addresses. If a large number of nodes are required in one application context, it is

suggested to implement several RSec WSNs with different radio frequencies rather

than a huge network with only one frequency. Different WSNs communicate with

each other using the BSs as the gateway. Each BS forms a subnet of its own, and

a node can only be accessed through the BS from outside. This practice is safe and

efficient for the hierarchy network.

The type field of RSec has the same function as the active message (AM) field

of the other protocols, which are used to indicate the message type. In the network

simulation, only 14 types are used for the RAuth protocol and hence the 6-bit Type

field with 64 maximum types is adequate for the RSec architecture.

As for the counter field, TinySec uses 2 bytes in the header to transmit the counter.

In MiniSec, the 3 most significant bits (MSBs) of the LEN field are used to transmit

the 3 last bits (LB) of the actual counter. TinySec uses the counter as part of the IV,

57

and MiniSec uses the counter as the entire IV. In the RSec architecture, the counters

are used to keep track of the cipher internal states.

The LEN fields are 8 bits in TinySec, 5 bits in MiniSec and 6 bits in RSec. Since

the maximum length of the payload field in TinyOS is 29 bytes, the 5-bit LEN field

is enough. RSec supports longer packet lengths to 63 bytes. The long payload is

especially efficient in the cipher information assignment and update phase.

To minimize the transmit overhead, a 2-byte MAC is used in RSec while TinySec

and MiniSec use 4 bytes. The MAC in RSec is the encrypted MIC while MIC guaran-

tees the packet integrity, and the encrypted MAC guarantees the packet authenticity.

MAC is efficient to detect transmission errors and defend against data forgery. In

order to fake a 2-byte MAC, which has 65536 (216) possible values, the adversary has

to try 32768 (216−1) times on average which is technically impossible. A 4-byte MAC

will certainly provide stronger protection against the attacks. We consider a 2-byte

MAC sufficient for the application context.

Table 3.1: Comparisons of Packet Formats
Protocols RSec TinySec MiniSec

Header (Byte) 4 8 6
MAC (Byte) 2 4 4

Overhead (Byte) 6 12 10
Default Payload (Byte) 29 29 29

Max Payload (Byte) 63 29 29
Efficiency 82.9 % 70.7 % 74.3 %

Eff. Improvement 0 17.2 % 11.6 %

The comparisons on the packet format overhead are shown in Table 3.1. Since

the TinyOS packet format fits limited application contexts, it is not listed in the

comparison. Efficiency is the default payload size, 29 bytes, against the packet size,

which is the sum of the default payload size and the overhead size. The last line

shows the efficiency improvement of RSec against the other two protocols. From the

results, we can see that the RSec architecture has better performance in the given

application context.

Security Analysis

Security is one of the most important aspects to be considered in the link layer proto-

col. TinySec, MiniSec and RSec use different algorithms to guarantee the transmission

confidentiality, integrity and authenticity.

58

TinySec uses the Skipjack block cipher in cipher block chaining (CBC) mode

[56] as the cryptography algorithm to encrypt messages. CBC-MAC [57] is used to

calculate the MAC. MiniSec uses a block cipher in offset codebook mode (OCB) [58]

which encrypts the message and generates the corresponding MAC in one operation.

RSec uses an RFSR cipher for encryption and the CRC algorithm for integrity.

The security analysis of RFSR is presented in the previous chapter. Unlike CBC-MAC

and OCB algorithms, which directly generate the MAC, MAC in RSec is generated by

encrypting the CRC checksums with the keystream. To verify the received message,

the cipher information of the source is loaded corresponding to the message header.

A keystream is produced to decrypt the message payload and MAC. Thereafter, the

CRC algorithm is applied on the message header and the decrypted payload. If the

checksum and the decrypted MAC are identical, the message is considered correct. An

adversary cannot forge a message when he has no access to the keystream. Therefore,

the MAC in RSec is considered secure to provide both integrity and authenticity.

3.4.2 Network Initialization

In this subsection, we compare the RAuth protocol with the LEAP protocol [34] on

their authentication performance when a WSN initializes.

Simulation Environment and Settings

We focus on the situation where the WSN is used in a home area or a medium sized

office. In these environments, we are assuming only one base station is in use. Some

of the nodes have constant power supply which makes them a good choice to be the

sink nodes. Some of the nodes that do not have constant power supply will be the

regular sensor nodes.

Radio Platform Considering the radio platform with external power supply, the

base station and the sink nodes do not have energy constraints on the radio module.

They can choose to use maximum TX output power to increase coverage and improve

the packet transmission quality. Besides, a better receive sensitivity can be utilized

to improve the signal to noise ratio (SNR) to decrease the packet error rate (PER)

in transmission. For the sensor nodes, since the internal power is limited, in order to

extend the battery life, the radio module on a sensor node works in a relatively lower

power consuming status. The transmit power is lower and the receiving sensitivity is

59

higher to save energy. Since the PER will go up rapidly when the transmission power

drops, to ensure the communication link with high quality, a minimum receivable

power (minrcvp) is used as a threshold for a node to determine whether to establish

a link with the other node based on the received signal strength. For the cases when

the received signal strength is below the threshold, even though it is not good enough

to establish a link, the receiver can actually sense the signal and avoid transmitting

at the same time. To avoid packet collision, the sensing power (sensp) is utilized for

the radio module to decide if the channel is occupied in the current time slot.

As sensor networks draw more and more attention from academy and industry

areas, various hardware platforms are designed for testing and deployment, such as

the Mica series, Telos motes and so on [59]. The radio modules are mostly designed

for very low-power wireless communications. These radio modules usually work at

2.4 GHz or Sub-1 GHz ISM bands. Take TI CC1100 as an example. It works at 315/

433/ 915 MHz with data rates of 1.2 to 500 kbps. The output power range is from

-30 dBm to 10 dBm. CC1100 also supports low power listening functionality. To

simulate a sensor network properly, we use the following parameters shown in Table

3.2.

Table 3.2: Radio parameters used in simulation.
Node Types BS Sink Sensor Node

TX Power (dBm) 4 4 -20
Min. Receivable Power (dBm) -80 -80 -70
Min. Sensible Power (dBm) -100 -100 -80

Topology We place the simulation in a square open field of 24 by 24 meters as a 2

dimensional coordinate system, which is shown in Fig. 3.14. Both the x and y axses

are in the range of 1 to 25. In order to test the coverage and signal strength on the

edge, we set 81 nodes evenly in the field. Their x-axis and y-axis positions are from

1 to 25 with the separation distance of 3. In order to add some uncertainness, 19

nodes are sprayed in the field randomly. The base station is chosen at position (9,

12), which is near the center of the field. Four sink nodes are chosen not far from the

center of each quarter of the field, at position (7, 22), (7, 4), (19, 19) and (16, 7).

CSMA/CA is utilized to avoid packet collisions. A node will listen to the channel

and wait for a vacancy. Then the node will broadcast a channel occupation message

which specifies the receiver node. When the message is received by the destination

node, it will also broadcast a channel occupation message to notify its neighbors of

60

Figure 3.14: Simulation topology

an upcoming transmission. After all these, the sender will send the packet to the

destination. This technique efficiently avoids packet collisions.

To simplify the simulation and only focus on the differences brought by different

authentication protocols, several assumptions are made. Before the authentication

process starts, all the nodes are already deployed and ready to send or receive packets.

For the LEAP scenario, all the nodes will start their authentication broadcasting at

the same time. For the RSec scenario, the nodes are in the active mode so the au-

thentication only starts when the nodes receive an authentication broadcast challenge

message from the base station or the sinks. Besides, since the minimum receivable

power is used to ensure the communications’ quality, it is considered that no trans-

mission error will occur on a communication link. In the RSec scenario, one sensor

node may receive an authentication broadcast message from the base station and

several sinks, to ensure the connection quality, it will choose the one with lowest path

loss as its parent node.

61

As for the time dimension, we split time into small time slots. The time slot is

the minimum time unit which guarantees that a packet can be transmitted within.

The channel occupation messages and the ACKs are considered within the same time

slot of the packet transmission.

Channel Path Loss Model Sensor nodes usually have limited output power.

When the received signal strength is low, the probability of error will increase. There-

fore, to make the simulation more accurate, the signal strength should be taken into

consideration. One of the most common radio propagation models is the log-normal

shadowing path loss model [60]. This model can be used for large and small coverage

systems [61]. Empirical studies [62] have shown that the log-normal shadowing model

provides more accurate multi-path channel models than Nakagami and Rayleigh for

indoor environments. The model is given by:

PL(d) = PL(d0) + 10nlog10(d/d0) +Xσ (3.1)

where d is the distance between the transmitter and receiver, d0 a reference distance, n

the pass loss exponent, and Xσ a zero-mean Gaussian random variable with standard

deviation σ. To simplify the simulation, we do not consider the shadowing effects.

Besides, a previous study [63] measured the channel behavior in the 800 - 1000

MHz band in different environments. From the descriptions of the environment, we

choose the parameters in Table 3.3 which best match the application context.

Table 3.3: Log-normal shadowing model parameters.
n PL(d0) Xσ

2.0 36.6 0

LEAP Scenario

At time slot 0, all the nodes will start broadcasting their HELLO message. Since the

channel can only be accessed by one node at one time slot, the simulation system

will have to randomly allocate the channel to one node. Each node maintains a

task list in its memory of the outgoing packets. When the channel is allocated to it

by the simulation system, the first message in the task list will be popped out and

transmitted. It is possible that several packets are transmitted in the same time slot,

62

but only if all the senders and the receivers are physically separated by long distances

that one transmission will not be sensed by the other nodes.

Figure 3.15: LEAP key establishment procedure

Following the LEAP scenario, a three-way handshake is performed as shown in

Fig. 3.15. First, the new node u will broadcast its own id. When the neighbor node

v receives the broadcast message, it will reply to this broadcast message. Thereafter,

the node u will respond to this message to finish the authentication process and

establish a communication link.

In the simulation, when node u receives node v’s authentication message and also

v’s authentication broadcast message, node u will ignore v’s authentication broadcast

message and will only reply to the authentication message. All nodes in the LEAP

simulation scenario are considered regular sensor nodes.

RSec Scenario

Similar to the LEAP scenario, each node maintains a task list in its memory and tries

to occupy the channel to send packets. However, the RSec scenario introduces the

message priority mechanism which makes the message with higher priority sent in the

channel earlier to improve the system performance. The priority mechanism can be

achieved in real systems by setting different interframe spacing (IFS) based on the

priority, which is efficiently used in the 802.11 MAC layer protocol. The packet with

higher priority has shorter IFS. Until the channel is not occupied, the nodes have to

wait for a certain time before trying to occupy the channel. The channel will be taken

over by the node with the shortest IFS.

As mentioned, the active mode is used in the simulation for RSec systems. At time

slot 0, the base station will start the whole process by broadcasting the authentication

challenge message. When the sinks receive the challenge message from the base

station, they will first append the authentication response messages to their task

lists, and then append the sink broadcasting challenge messages to the task lists.

63

After that, the sensor nodes will start the authentication process when challenge

messages are received.

The tasks in the task list can be changed when they are not sent. When a sensor

node receives the first authentication challenge message, it will append a response

message to the task list. Some time slots later, when the sensor node receives another

authentication challenge message that has a different link budget, the sensor node

will choose the sink or the base station with a higher link budget than its parent

node. If needed, it will correct the authentication challenge response message in its

task list.

Simulation Results and Analysis

The simulation is carried out using the scenarios stated previously. The simulation

finishes when all the task lists are empty. The simulation result is shown in Table

3.4. The total time indicates the number of time slot is used when all the nodes finish

the authentication; the number of messages is the total number of authentication

messages that are sent/received in the whole authentication process.

Table 3.4: Simulation results of RAuth and LEAP.
Protocol Total Time Num of Msg.
RAuth 365 365
LEAP 461 962

Improvement 20.1% 62.1%

The total time and the number of messages of RAuth are both 365, which indicates

that only one message is sent in each time slot. Since CSMA/CA is employed by

the nodes, before each transmission, the sender will broadcast an RTS message and

the receiver will broadcast a CTS message. Because RAuth is a hierarchy centralized

network, at least one of the two nodes in each transmission will be the BS or the Sink,

which has large TX power so that most nodes can sense the on-going transmission. On

the other hand, LEAP implements with flat topology where nodes only authenticate

with their neighbors. It is possible that multiple pairs of nodes are transmitting at

the same time slot.

In the LEAP simulation scenario, each node will broadcast the HELLO message.

Therefore, 100 HELLO messages are sent in total. The total number of messages

transmitted except the HELLO messages is 862. LEAP utilizes a 3-way handshake

authentication approach in which the HELLO message is the first one. Therefore,

64

431 node pairs are established in total. On average, each node has 4.31 nodes as its

neighbors.

An important point should be addressed: after authentication, the nodes in the

RAuth scenario are equipped with the new pairwise cipher information so that the

communication can start right away. However, even though the nodes in the LEAP

scenario also establish the pairwise keys, they have no idea about the nodes outside

of their neighbor. An additional routing protocol will be started to help those nodes

establish local routing tables. The routing table update process will take longer than

the authentication which will extend the network initialization time.

Compared with the LEAP protocol, the RAuth protocol has better performance

in the network initialization phase. The total time used for authentication is 20.1%

shorter than the LEAP protocol, and the total number of message is 62.1% less than

LEAP protocol.

After time Tmin of deployment, according to the LEAP protocol, the initial key,

which help sensor nodes establish pairwise keys, will be deleted from the node. LEAP

assumes that no adversary can successfully derive the initial key from any node. This

assumption is weak because if the estimation of Tmin is inaccurate or a new efficient

attack is employed, the LEAP network will be jeopardized. With the initial key, the

adversary can establish a new pairwise key with any node in the network within or

out of the time Tmin. All the communications in the network can be eavesdropped

and decrypted.

Regarding the RAuth protocol, even though a node is compromised by the ad-

versary, only the cipher information related to this node is revealed. If a sensor node

is compromised, the adversary gets the cipher information about the node with its

parent, the node with the base station. If a sink is compromised, even though the ad-

versary has some cipher information, the traffic, which neither starts nor ends at the

this sink node, is still encrypted with another cipher unknown to this sink. Therefore,

RAuth is an efficient yet secure protocol.

3.4.3 Conclusion

In this chapter, we have proposed the RFSR cipher based secure authentication proto-

col RAuth and the secure link layer architecture RSec. Comparing with TinySec and

MiniSec protocols, RSec has 17.2 % and 11.6 % improvement respectively. The net-

work initialization with RAuth and LEAP protocols is simulated, where the RAuth

65

protocol outperforms the LEAP protocol. RAuth uses 20.1% less total time and

62.1% fewer total messages to finish a 100-node network authentication initialization.

In terms of total initialization time, RAuth outperforms LEAP. A security analysis

is made which proves that the RAuth protocol is more secure than LEAP.

66

Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this thesis, we have introduced a security solution including a cipher, an authen-

tication protocol and a link layer encryption framework.

In Chapter 2, we have proposed a low complexity reconfigurable feedback shift

register based stream cipher RFSR and shown that it is more secure than the widely

used Grain, RC4 and RC5 cryptography algorithms. Implemented on an FPGA

platform, the proposed scheme consumes over 130 times less average energy, and

renders over 25 times less delay than existing microprocessor platforms.

In Chapter 3, we have proposed the RFSR cipher based secure authentication pro-

tocol RAuth and the secure link layer architecture RSec. Comparing with TinySec

and MiniSec protocols, RSec has 17.2 % and 11.6 % improvement, respectively. The

network initialization with the RAuth and the LEAP protocols is simulated, where

the RAuth protocol outperforms the LEAP protocol. RAuth uses 20.1% less total

time and 62.1% less total messages to finish a 100-node network authentication ini-

tialization. In the perspective of total initialization time, RAuth outperforms LEAP.

A security analysis is made which proves that the RAuth protocol is more secure than

LEAP.

4.2 Future Work

The proposals are analyzed based on the simulation results. For the future work, the

system can be prototyped and tested in the real environment. The cipher can be

67

implemented and downloaded to FPGA and the actual power consumption should

be measured. Several prototype sensor nodes can be implemented with the RAuth

protocol and the RSec framework.

68

Appendix A

Network Initialization Simulation

Code

As discussed in Section 3.4.2, the network initialization phase is simulation with

Python implementation. The whole project consists of four source files which are

listed below.

main.py

1 import sys, math

2 from lib import Msg,Node,RfsrNode,LeapNode

3 from globals import ctime,lgr,lgr1,node,node1,random,prior

4

5 def topology_load(TopoFileHandler,rfsr = True):

6 TopoFile = open("topology_file",’r’)

7 for line in TopoFile.readlines():

8 if(rfsr):

9 NewNode = RfsrNode(line.split()[1:],int(line.split()[0]))

10 node.append(NewNode)

11 lgr.debug(NewNode.__dict__)

12 else:

13 NewNode = LeapNode(line.split()[1:],int(line.split()[0]))

14 node1.append(NewNode)

15 lgr1.debug(NewNode.__dict__)

16 TopoFile.close()

17

18 def RfsrResult():

19 global node

20 for n in node:

69

21 if n.type == ’Base’:

22 lgr.debug(’’)

23 lgr.debug(’id %d, num: %d’ % (n.id,len(n.permitlist)))

24 for i in n.permitlist:

25 lgr.debug(’%-3d %-3.1f’ % (i,n.sig[i]))

26 elif n.type == ’Sink’:

27 lgr.debug(’’)

28 lgr.debug(’id %d, num: %d’ % (n.id,len(n.permitlist)))

29 for i in n.permitlist:

30 lgr.debug(’%-3d %-3.1f’ % (i,n.sig[i]))

31 elif n.type == ’Node’:

32 if (n.nexthop == []):

33 lgr.debug(’’)

34 lgr.debug(’id %d’ % n.id)

35

36 def LeapResult():

37 global node1

38 for n in node1:

39 for nnid in n.authlist:

40 if n.id not in node1[nnid-1].authlist:

41 lgr.debug(’’)

42 lgr.debug(’%2d in %2d authlist, but not way around’ % (

nnid, n.id))

43 for n in node1:

44 n.printauthlist()

45

46 def powercalc(src,dst, is_rcv=True):

47 dist=((src.x-dst.x)**2+(src.y-dst.y)**2)**0.5

48 pl = 36.6 + 10*2.0*math.log10(dist)

49 if is_rcv:

50 return (src.sendp-dst.minrcvp-pl)

51 else:

52 return (src.sendp-dst.minrcvp-pl, src.sendp-dst.sensp-pl)

53

54 def AdjNodeFind(node):

55 # AdjList [(NodeID, dist), (NodeID, dist), ...]

56 def add(n1, n2):

57 rx_t, rx_s = powercalc(n1,n2,False)

58 #print("node %d %d %.1f %.1f" % (n1.id,n2.id,rx_t,rx_s))

59 if (rx_t >= 0):

60 n1.tlist.append(n2.id)

61 elif (rx_s >= 0):

70

62 n1.slist.append(n2.id)

63 for n in node:

64 for nn in node:

65 if (nn is not n):

66 add(n,nn)

67

68 def RfsrMain():

69 global ctime

70 global node

71 TaskList = []

72 # avalist uses node.id

73 avalist = list(range(1,len(node)+1))

74 for n in node:

75 if(not n.tlempty()):

76 TaskList.append(n.id)

77 lgr.debug(’id %d’ % n.id)

78 n.printtasklist()

79 if (TaskList == []):

80 lgr.debug(’TaskList is empty, exit’)

81 return False

82 lgr.debug(’’)

83 lgr.debug(’#############’)

84 lgr.debug(’#time is %-3d#’ % ctime[0])

85 lgr.debug(’#############’)

86 while (TaskList):

87 lgr.debug(’’)

88 lgr.debug(’TaskList is: %s’ % str(TaskList))

89 for i in prior:

90 tmplist = []

91 found = False

92 for t in TaskList:

93 for tt in node[t-1].tasklist:

94 if tt.fn==i:

95 tmplist.append((t,node[t-1].tasklist.index(tt)))

96 found = True

97 if(found):

98 break

99 lgr.debug(’tmplist with prior %d is %s’ % (i,str(tmplist)))

100 node_id,taskid = tmplist[random.randint(0,len(tmplist)-1)]

101 lgr.debug(’random node.id: %d’ % node_id)

102 thenode = node[node_id-1]

103 msg = thenode.getmsg(taskid)

71

104 msg_ok = True

105 for node_id1 in thenode.tlist+thenode.slist:

106 if(node_id1 not in avalist):

107 msg_ok = False

108 break

109 if(not msg_ok):

110 TaskList.remove(node_id)

111 lgr.debug(’node.id %d has conflict receiving node’ % node_id

)

112 continue

113 else:

114 thenode.popmsg(taskid)

115 TaskList.remove(node_id)

116 lgr.debug(’node.id is %d, msg is %s’ % (node_id,msg.printmsg()))

117 if (msg.dst==999):

118 for adjnode_index in thenode.tlist:

119 # node index is 0-based

120 # node id is 1-based

121 node[adjnode_index-1].rcv(msg,powercalc(thenode,node[

adjnode_index-1]))

122 else:

123 node[msg.dst-1].rcv(msg,powercalc(thenode,node[msg.dst-1]))

124 rcvnodeid = msg.dst

125 for n in node[rcvnodeid-1].tlist+node[rcvnodeid-1].slist:

126 if n in TaskList:

127 TaskList.remove(n)

128 if n in avalist:

129 avalist.remove(n)

130 for n in thenode.tlist+thenode.slist:

131 if n in TaskList:

132 TaskList.remove(n)

133 if n in avalist:

134 avalist.remove(n)

135 return True

136

137 def LeapMain():

138 global ctime

139 TaskList = []

140 # avalist uses node.id

141 avalist = list(range(1,len(node1)+1))

142 for n in node1:

143 if(not n.tlempty()):

72

144 TaskList.append(n.id)

145 if (TaskList == []):

146 lgr1.debug(’TaskList is empty, exit’)

147 return False

148 lgr1.debug(’’)

149 lgr1.debug(’#############’)

150 lgr1.debug(’#time is %-3d#’ % ctime[1])

151 lgr1.debug(’#############’)

152 while (TaskList):

153 lgr1.debug(’’)

154 lgr1.debug(’TaskList is: %s’ % str(TaskList))

155 node_id = TaskList[random.randint(0,len(TaskList)-1)]

156 lgr1.debug(’random node.id: %d’ % node_id)

157 thenode = node1[node_id-1]

158 msg = thenode.getmsg()

159 msg_ok = True

160 if (msg.dst == 999):

161 for node_id1 in thenode.tlist+thenode.slist:

162 if(node_id1 not in avalist):

163 msg_ok = False

164 break

165 elif (msg.dst not in avalist):

166 msg_ok = False

167 if(not msg_ok):

168 TaskList.remove(node_id)

169 lgr1.debug(’node.id %d has conflict receiving node’ %

node_id)

170 continue

171 else:

172 thenode.popmsg()

173 lgr1.debug(’node.id is %d, msg is %s’ % (node_id,msg.printmsg())

)

174 if (msg.dst==999):

175 for adjnode_index in thenode.tlist:

176 # node index is 0-based

177 # node id is 1-based

178 if msg.src != adjnode_index:

179 node1[adjnode_index-1].rcv(msg,powercalc(thenode,

node1[adjnode_index-1]))

180 else:

181 node1[msg.dst-1].rcv(msg,powercalc(thenode,node1[msg.dst-1])

)

73

182 for n in thenode.tlist+thenode.slist:

183 if n in TaskList:

184 TaskList.remove(n)

185 if n in avalist:

186 avalist.remove(n)

187 if thenode.id in avalist:

188 avalist.remove(thenode.id)

189 if thenode.id in TaskList:

190 TaskList.remove(thenode.id)

191 return True

192

193 def rfsr_run():

194 # RFSR gogogo

195 # load topology file

196 lgr.debug(’##########################’)

197 lgr.debug(’###Node loading started###’)

198 lgr.debug(’##########################’)

199 topology_load("topology")

200 if (not node):

201 lgr.debug("topology load failure")

202 sys.exit()

203

204 lgr.debug(’##############’)

205 lgr.debug(’###Find Adj###’)

206 lgr.debug(’##############’)

207 AdjNodeFind(node)

208 for n in node:

209 n.printnodeall()

210

211 lgr.debug(’################’)

212 lgr.debug(’###Start Auth###’)

213 lgr.debug(’################’)

214 for n in node:

215 n.authInit()

216

217 while(RfsrMain() and ctime[0] < 10000):

218 ctime[0] += 1

219

220 RfsrResult()

221

222 def leap_run():

223 # LeapNode Main function

74

224 lgr1.debug(’##########################’)

225 lgr1.debug(’###Node loading started###’)

226 lgr1.debug(’##########################’)

227 topology_load("topology",False)

228 if (not node1):

229 lgr1.debug("topology load failure")

230 sys.exit()

231

232 lgr1.debug(’##############’)

233 lgr1.debug(’###Find Adj###’)

234 lgr1.debug(’##############’)

235 AdjNodeFind(node1)

236 for n in node1:

237 n.printnodeall()

238

239 lgr1.debug(’################’)

240 lgr1.debug(’###Start Auth###’)

241 lgr1.debug(’################’)

242 for n in node1:

243 n.authInit()

244 while(LeapMain() and ctime[1]<1000):

245 ctime[1] += 1

246 for n in node1:

247 if(not n.tlempty()):

248 n.printnode()

249

250 LeapResult()

251

252 leap_run()

253 rfsr_run()

254 print("#################")

255 rfsr_send = 0

256 leap_send = 0

257 leap_neighbour = 0

258 rfsr_leftnode = []

259 leap_link = 0

260 for n in node:

261 rfsr_send += n.sendcnt

262 if (n.type == "Node"):

263 if(n.nexthop == 999):

264 rfsr_leftnode.append(n.id)

265 for n in node1:

75

266 leap_send += n.sendcnt

267 leap_link += len(n.authlist)

268 print("rfsr_send %d" % rfsr_send)

269 print("leap_send %d" % leap_send)

270 if (len(rfsr_leftnode)):

271 print("rfsr not auth node")

272 print(rfsr_leftnode)

273 print("leap total links: %d" % leap_link)

274 print("rfsr_time %d" % ctime[0])

275 print("leap_time %d" % ctime[1])

276

277 print("DONE")

lib.py

1 from globals import ctime,env_power,lgr,lgr1

2

3 class Msg(object):

4 """MAC Layer message"""

5 def __init__(self, dst, src, fn, time, msg=None):

6 self.dst = dst

7 self.src = src

8 self.fn = fn

9 self.time = time

10 self.msg = msg

11 def printmsg(self):

12 return(str(self.__dict__))

13

14 class Node(object):

15 """Sensor Node Class"""

16 def __init__(self, args, nid):

17 self.x = int(args[0])

18 self.y = int(args[1])

19 if (args[2]==’0’):

20 self.type = ’Node’

21 elif (args[2]==’1’):

22 self.type = ’Base’

23 else:

24 self.type = ’Sink’

25 # self.type = args[2]

26 #1-based id

27 self.id = nid+1

76

28 # transmission list, node.id in this list can rcv my msg

29 self.tlist = []

30 # sensing list, node.id in this list can only sense my msg

31 self.slist = []

32 self.tasklist = []

33 self.sig = {}

34 self.sendcnt = 0

35 def tlempty(self):

36 if (self.tasklist == []):

37 return True

38 else:

39 return False

40 def getmsg(self,taskid=0):

41 return(self.tasklist[taskid])

42 def popmsg(self,taskid=0):

43 self.tasklist.pop(taskid)

44 self.sendcnt += 1

45

46 class RfsrNode(Node):

47 """Node running RFSR auth protocol"""

48 def __init__(self, args, nid):

49 Node.__init__(self, args, nid)

50 # send power, min receive power and min sense power

51 self.sendp = env_power["sendp"][self.type]

52 self.minrcvp = env_power["minrcvp"][self.type]

53 self.sensp = env_power["sensp"][self.type]

54 if (self.type == ’Base’):

55 self.route = {}

56 self.permitlist = []

57 elif (self.type == ’Sink’):

58 self.bs = 999

59 self.permitlist = []

60 else:

61 self.bs = 999

62 self.nexthop = 999

63 def authInit(self,asked=False):

64 global ctime

65 if (self.type == ’Base’):

66 self.tasklist.append(Msg(999,self.id,0,ctime[0]))

67 else:

68 if(self.type == ’Sink’):

69 self.tasklist.append(Msg(999,self.id,5,ctime[0]))

77

70 else:

71 fn = 20

72 def sinkfwd2base(self, dst, msg):

73 global ctime

74 need_newmsg = True

75 for task in self.tasklist:

76 if (task.fn==7):

77 task.msg.append(msg)

78 need_newmsg = False

79 if (need_newmsg):

80 self.tasklist.append(Msg(dst,self.id,7,ctime[0],[msg]))

81 def nodereplysink(self,sinkid):

82 global ctime

83 need_newmsg = True

84 for task in self.tasklist:

85 if (task.fn==6 or task.fn==3):

86 if (self.sig[task.dst]<=self.sig[sinkid]):

87 task.dst = sinkid

88 if (task.fn ==3):

89 task.fn = 6

90 task.msg = [self.id,self.bs]

91 task.time = ctime[0]

92 need_newmsg = False

93 if (need_newmsg):

94 self.tasklist.append(Msg(sinkid,self.id,6,ctime[0],[self.id,

self.bs]))

95 def rcv(self, msg, sig):

96 global ctime

97 # Base

98 if(sig<0):

99 return

100 if(self.type == "Base"):

101 if(msg.dst==self.id):

102 self.sig[msg.src] = sig

103 if(msg.fn==1):

104 # verify sink identity

105 if(msg.msg==msg.src):

106 # TODO: append new cipher info

107 self.tasklist.append(Msg(msg.src,self.id,2,ctime

[0],msg.src+self.id))

108 self.route[msg.src] = msg.src

109 self.permitlist.append(msg.src)

78

110 elif(msg.fn==3):

111 # verify node identity

112 if(msg.msg==msg.src):

113 # TODO: append new cipher info

114 self.tasklist.append(Msg(msg.src,self.id,4,ctime

[0],msg.src+self.id))

115 self.route[msg.src] = msg.src

116 self.permitlist.append(msg.src)

117 elif(msg.fn==7):

118 for amsg in msg.msg:

119 if amsg[1]==999:

120 # TODO: verify node certification

121 self.tasklist.append(Msg(msg.src,self.id,8,

ctime[0],amsg[0]))

122 self.route[amsg[0]]=msg.src

123 elif amsg[1]==self.id:

124 self.tasklist.append(Msg(amsg[0],self.id,10,

ctime[0],[’yes’,msg.src]))

125 self.route[amsg[0]]=amsg[0]

126 self.tasklist.append(Msg(msg.src,self.id,11,

ctime[0],[’yes’,amsg[0]]))

127

128 # Sink

129 if(self.type == "Sink"):

130 self.sig[msg.src] = sig

131 if(msg.dst==999):

132 if(msg.fn==0):

133 self.bs = msg.src

134 self.tasklist.append(Msg(msg.src,self.id,1,ctime[0],

self.id))

135 elif(msg.dst==self.id):

136 if(msg.fn==2):

137 # verify server identity

138 if(msg.msg==self.id+msg.src):

139 self.permitlist.append(msg.src)

140 if(msg.fn==6):

141 self.sinkfwd2base(self.bs, msg.msg)

142 if(msg.fn==8):

143 # TODO: renew cipher

144 self.tasklist.append(Msg(msg.msg,self.id,9,ctime[0],

’yes’))

145 self.permitlist.append(msg.msg)

79

146 if(msg.fn==11):

147 self.permitlist.append(msg.msg[1])

148 self.tasklist.append(Msg(msg.msg[1],self.id,12,ctime

[0],’handshake’))

149

150 # Node

151 if(self.type == "Node"):

152 self.sig[msg.src] = sig

153 if(msg.dst==999):

154 if(msg.fn==0):

155 self.bs = msg.src

156 self.tasklist.append(Msg(msg.src,self.id,3,ctime[0],

self.id))

157 if(msg.fn==5):

158 #if(self.bs!=self.nexthop or (self.bs==999 and self.

nexthop==999)):

159 self.nodereplysink(msg.src)

160 elif(msg.dst==self.id):

161 if(msg.fn==4):

162 # verify server identity

163 if(msg.msg==self.id+msg.src):

164 self.nexthop = msg.src

165 if(msg.fn==9):

166 if(msg.msg==’yes’):

167 self.nexthop=msg.src

168 if(msg.fn==10):

169 if(msg.msg[0]==’yes’):

170 self.nexthop=msg.msg[1]

171 def printnodeall(self):

172 lgr.debug(’’)

173 self.printnodebasic()

174 def printnodebasic(self):

175 # print x, y, tlist, slist

176 lgr.debug(’id:%2d, x:%2d y:%2d’ % (self.id,self.x,self.y))

177 lgr.debug(’tlist: %s’ % str(self.tlist))

178 lgr.debug(’slist:%s’ % str(self.slist))

179 def printtasklist(self):

180 for msg in self.tasklist:

181 lgr.debug(msg.printmsg())

182 def printpower(self):

183 lgr.debug(’powerlist:%s’ % str(self.sig))

184

80

185 class LeapNode(Node):

186 """Node running LEAP auth protocol"""

187 def __init__(self, args, nid):

188 Node.__init__(self, args, nid)

189 self.authlist = []

190 self.sendp = env_power["sendp"]["Node"]

191 self.minrcvp = env_power["minrcvp"]["Node"]

192 self.sensp = env_power["sensp"]["Node"]

193 def printauthlist(self):

194 lgr1.debug(’’)

195 lgr1.debug(’id %d’ % self.id)

196 lgr1.debug(’authlist:%s’ % str(self.authlist))

197 def printtasklist(self):

198 for msg in self.tasklist:

199 lgr1.debug(msg.printmsg())

200 def printnodebasic(self):

201 # print x, y, tlist, slist

202 lgr1.debug(’id:%2d, x:%2d y:%2d’ % (self.id,self.x,self.y))

203 lgr1.debug(’tlist: %s’ % str(self.tlist))

204 lgr1.debug(’slist: %d’ % len(self.slist))

205 def printnode(self):

206 lgr1.debug(’’)

207 lgr1.debug(’id %d’ % self.id)

208 self.printtasklist()

209 def printnodeall(self):

210 lgr1.debug(’’)

211 self.printnodebasic()

212 def authInit(self):

213 global ctime

214 self.tasklist.append(Msg(999,self.id,0,ctime[1]))

215 def authRemoveduplicate(self, nodeid):

216 for msg in self.tasklist:

217 if(msg.dst == nodeid):

218 self.tasklist.remove(msg)

219 def rcv(self, rcvmsg, sig):

220 global ctime

221 if (sig<0):

222 return

223 if(rcvmsg.dst==999 and rcvmsg.fn==0):

224 # rcv broadcast auth request

225 if (rcvmsg.src not in self.authlist):

226 self.tasklist.append(Msg(rcvmsg.src,self.id,1,ctime[1],’

81

ok’))

227 elif(rcvmsg.dst==self.id and rcvmsg.fn==1):

228 # auth success

229 self.authlist.append(rcvmsg.src)

230 self.authRemoveduplicate(rcvmsg.src)

231 lgr1.debug(’node.id %2d add %2d to authlist’ % (self.id,

rcvmsg.src))

232 self.tasklist.append(Msg(rcvmsg.src,self.id,2,ctime[1],’ok’)

)

233 elif(rcvmsg.dst==self.id and rcvmsg.fn==2):

234 self.authlist.append(rcvmsg.src)

235 self.authRemoveduplicate(rcvmsg.src)

236 lgr1.debug(’node.id %2d add %2d to authlist’ % (self.id,

rcvmsg.src))

237 else:

238 lgr1.debug("!!! node.id %2d received wrong msg %s" % (self.

id,rcvmsg.printmsg()))

globals.py

1 import logging

2 import random

3

4 lgr = logging.getLogger(’nsim-rfsr’)

5 lgr.setLevel(logging.DEBUG)

6 # add a file handler

7 fh = logging.FileHandler(’dbg-rfsr.log’, mode=’w’)

8 fh.setLevel(logging.DEBUG)

9 # create a formatter and set the formatter for the handler.

10 frmt = logging.Formatter(’%(message)s’)

11 fh.setFormatter(frmt)

12 # add the Handler to the logger

13 lgr.addHandler(fh)

14

15 lgr1 = logging.getLogger(’nsim-leap’)

16 lgr1.setLevel(logging.DEBUG)

17 # add a file handler

18 fh1 = logging.FileHandler(’dbg-leap.log’, mode=’w’)

19 fh1.setLevel(logging.DEBUG)

20 # create a formatter and set the formatter for the handler.

21 frmt1 = logging.Formatter(’%(message)s’)

22 fh1.setFormatter(frmt1)

82

23 # add the Handler to the logger

24 lgr1.addHandler(fh1)

25

26 # Global Variables

27 node = []

28 node1 = []

29 ctime = [0,0]

30 env_power = {

31 "sendp" : { ’Base’: 4,

32 ’Sink’: 4,

33 ’Node’: -20},

34 "minrcvp" : {’Base’: -80,

35 ’Sink’: -80,

36 ’Node’: -70},

37 "sensp" : { ’Base’: -100,

38 ’Sink’: -100,

39 ’Node’: -80}

40 }

41 prior = [0,2,1,8,10,11,4,5,3,9,12,6,7]

42

43 # random

44 random.seed(9)

topology file

1 0 1 1 0

2 1 1 4 0

3 2 1 7 0

4 3 1 10 0

5 4 1 13 0

6 5 1 16 0

7 6 1 19 0

8 7 1 22 0

9 8 1 25 0

10 9 4 1 0

11 10 4 4 0

12 11 4 7 0

13 12 4 10 0

14 13 4 13 0

15 14 4 16 0

16 15 4 19 0

17 16 4 22 0

83

18 17 4 25 0

19 18 7 1 0

20 19 7 4 2

21 20 7 7 0

22 21 7 10 0

23 22 7 13 0

24 23 7 16 0

25 24 7 19 0

26 25 7 22 2

27 26 7 25 0

28 27 10 1 0

29 28 10 4 0

30 29 10 7 0

31 30 10 10 0

32 31 10 13 0

33 32 10 16 0

34 33 10 19 0

35 34 10 22 0

36 35 10 25 0

37 36 13 1 0

38 37 13 4 0

39 38 13 7 0

40 39 13 10 0

41 40 13 13 0

42 41 13 16 0

43 42 13 19 0

44 43 13 22 0

45 44 13 25 0

46 45 16 1 0

47 46 16 4 0

48 47 16 7 2

49 48 16 10 0

50 49 16 13 0

51 50 16 16 0

52 51 16 19 0

53 52 16 22 0

54 53 16 25 0

55 54 19 1 0

56 55 19 4 0

57 56 19 7 0

58 57 19 10 0

59 58 19 13 0

84

60 59 19 16 0

61 60 19 19 2

62 61 19 22 0

63 62 19 25 0

64 63 22 1 0

65 64 22 4 0

66 65 22 7 0

67 66 22 10 0

68 67 22 13 0

69 68 22 16 0

70 69 22 19 0

71 70 22 22 0

72 71 22 25 0

73 72 25 1 0

74 73 25 4 0

75 74 25 7 0

76 75 25 10 0

77 76 25 13 0

78 77 25 16 0

79 78 25 19 0

80 79 25 22 0

81 80 25 25 0

82 81 5 23 0

83 82 17 23 0

84 83 3 21 0

85 84 12 20 0

86 85 20 21 0

87 86 9 15 0

88 87 21 15 0

89 88 3 12 0

90 89 9 12 1

91 90 20 12 0

92 91 11 8 0

93 92 18 9 0

94 93 20 6 0

95 94 12 5 0

96 95 5 5 0

97 96 2 2 0

98 97 9 3 0

99 98 14 2 0

100 99 21 3 0

85

Bibliography

[1] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing ellip-

tic curve cryptography and rsa on 8-bit cpus,” in Cryptographic Hardware and

Embedded Systems-CHES 2004, pp. 119–132, Springer, 2004.

[2] A. Wander, N. Gura, H. Eberle, V. Gupta, and S. Shantz, “Energy analysis of

public-key cryptography for wireless sensor networks,” in IEEE Intl. Conf. on

Pervasive Computing and Communications, pp. 324–328, Mar. 2005.

[3] D. W. Carman, P. S. Kruus, and B. J. Matt, “Constraints and approaches for dis-

tributed sensor network security (final),” DARPA Project report,(Cryptographic

Technologies Group, Trusted Information System, NAI Labs), vol. 1, p. 1, 2000.

[4] J. P. Walters, Z. Liang, W. Shi, and V. Chaudhary, “Wireless sensor network

security: A survey,” Security in Distributed, Grid, Mobile, and Pervasive Com-

puting, vol. 1, p. 367, 2007.

[5] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transac-

tions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[6] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital sig-

natures and public-key cryptosystems,” Communications of the ACM, vol. 21,

no. 2, pp. 120–126, 1978.

[7] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology

- CRYPTO85 Proceedings, pp. 417–426, Springer, 1986.

[8] “Recommended elliptic curve domain parameters.” www.secg.org/

collateral/sec2.pdf, 2000.

[9] P. C. Kocher, “The ssl protocol version 3.0,” tech. rep., Internet Draft, Netscape

Communications Corporation, 03/04/96, 1996.

www.secg.org/collateral/sec2.pdf
www.secg.org/collateral/sec2.pdf

86

[10] Y. Wang, G. Attebury, and B. Ramamurthy, “A survey of security issues in wire-

less sensor networks,” Communications Surveys Tutorials, IEEE, vol. 8, pp. 2–23,

Second 2006.

[11] M. Brown, D. Cheung, D. Hankerson, J. L. Hernandez, M. Kirkup, and

A. Menezes, “Pgp in constrained wireless devices,” in Proceedings of the 9th

USENIX Security Symposium, vol. 9, p. 19, 2000.

[12] M. H. Ahmed, S. W. Alam, N. Qureshi, and I. Baig, “Security for wsn based

on elliptic curve cryptography,” in 2011 International Conference on Computer

Networks and Information Technology (ICCNIT), pp. 75–79, IEEE, 2011.

[13] J. Zutter, M. Thalmaier, M. Klein, and K.-O. Laux, “Acceleration of rsa cryp-

tographic operations using fpga technology,” in 20th International Workshop on

Database and Expert Systems Application, 2009. DEXA’09, pp. 20–25, IEEE,

2009.

[14] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, and M. Si-

chitiu, “Analyzing and modeling encryption overhead for sensor network nodes,”

in Proc. of the 2nd ACM Intl. Conf. on Wireless Sensor Networks and Applica-

tions, pp. 151–159, 2003.

[15] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied

Cryptography. CRC press, 1996.

[16] R. L. Rivest, “The rc5 encryption algorithm,” in Fast Software Encryption,

pp. 86–96, Springer, 1995.

[17] D. Eastlake and P. Jones, US secure hash algorithm 1 (SHA1). RFC Editor,

2001.

[18] R. Rivest, The MD5 message-digest algorithm. RFC Editor, 1992.

[19] D. J. Wheeler and R. M. Needham, “Tea, a tiny encryption algorithm,” in Fast

Software Encryption, pp. 363–366, Springer, 1995.

[20] Y. W. Law, S. Etalle, and P. H. Hartel, Assessing Security in Energy-Efficient

Sensor Networks. Springer, 2003.

87

[21] R. L. Rivest, M. Robshaw, R. Sidney, and Y. L. Yin, “The rc6tm block cipher,”

in First Advanced Encryption Standard (AES) Conference, 1998.

[22] J. Daemen and V. Rijmen, AES proposal: Rijndael. Citeseer, 1999.

[23] M. Matsui, “New block encryption algorithm misty,” in Fast Software Encryp-

tion, pp. 54–68, Springer, 1997.

[24] ETSI/SAGE, “Specification of the 3gpp confidentiality and integrity algorithms

document 2: Kasumi specification,,” 3GPP, 1999.

[25] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and

T. Tokita, “Camellia: A 128-bit block cipher suitable for multiple platforms-

design and analysis,” in Selected Areas in Cryptography, pp. 39–56, Springer,

2001.

[26] Y. W. Law, J. Doumen, and P. Hartel, “Benchmarking block ciphers for wireless

sensor networks,” in 2004 IEEE International Conference on Mobile Ad-hoc and

Sensor Systems, pp. 447–456, IEEE, 2004.

[27] L. Eschenauer and V. D. Gligor, “A key-management scheme for distributed

sensor networks,” in Proceedings of the 9th ACM Conference on Computer and

Communications Security, pp. 41–47, ACM, 2002.

[28] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for

sensor networks,” in Proceedings of the 2003 IEEE Symposium on Security and

Privacy, pp. 197–213, IEEE Computer Society, 2003.

[29] D. Liu, P. Ning, and R. Li, “Establishing pairwise keys in distributed sensor

networks,” ACM Transactions on Information and System Security (TISSEC),

vol. 8, no. 1, pp. 41–77, 2005.

[30] R. Di Pietro, L. V. Mancini, and A. Mei, “Random key-assignment for secure

wireless sensor networks,” in Proceedings of the 1st ACM workshop on Security

of ad hoc and sensor networks, pp. 62–71, ACM, 2003.

[31] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, and A. Khalili, “A pairwise

key predistribution scheme for wireless sensor networks,” ACM Transactions on

Information and System Security (TISSEC), vol. 8, no. 2, pp. 228–258, 2005.

88

[32] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K. Varshney, “A key management

scheme for wireless sensor networks using deployment knowledge,” in INFOCOM

2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Com-

munications Societies, vol. 1, IEEE, 2004.

[33] D. Hwang, B.-C. Lai, and I. Verbauwhede, “Energy-memory-security tradeoffs

in distributed sensor networks,” in Ad-Hoc, Mobile, and Wireless Networks,

vol. 3158 of Lecture Notes in Computer Science, pp. 70–81, Springer Berlin Hei-

delberg, 2004.

[34] S. Zhu, S. Setia, and S. Jajodia, “Leap+: Efficient security mechanisms for

large-scale distributed sensor networks,” ACM Transactions on Sensor Networks

(TOSN), vol. 2, no. 4, pp. 500–528, 2006.

[35] G. Zeng, X. Dong, and J. Bornemann, “Reconfigurable feedback shift register

based stream cipher for wireless sensor networks,” IEEE Wireless Communica-

tions Letters, vol. 2, pp. 559–562, Aug. 2013.

[36] D. Malan, M. Welsh, and M. Smith, “A public-key infrastructure for key distri-

bution in tinyos based on elliptic curve cryptography,” in IEEE Communications

Society Conf. on Sensor and Ad Hoc Communications and Networks, pp. 71–80,

Oct. 2004.

[37] M. Hell, T. Johansson, and W. Meier, “Grain: a stream cipher for constrained en-

vironments,” in International Journal of Wireless and Mobile Computing, pp. 86–

93, Jan. 2007.

[38] “eSTREAM: the ECRYPT Stream Cipher Project.” http://www.ecrypt.

eu.org/stream/.

[39] M. Hell, T. Johansson, A. Maximov, and W. Meier, “A stream cipher proposal:

Grain-128,” in 2006 IEEE International Symposium on Information Theory,

pp. 1614–1618, IEEE, 2006.

[40] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System

architecture directions for networked sensors,” in SIGARCH Comput. Archit.

News, pp. 93–104, Nov. 2000.

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/

89

[41] New Wave Instruments, “Tables of M-Sequence Feedback Taps.”

http://www.newwaveinstruments.com/resources/articles/

m_sequence_linear_feedback_shift_register_lfsr.htm.

[42] A. Wood and J. Stankovic, “Denial of service in sensor networks,” in Computer,

pp. 54–62, Oct. 2002.

[43] Altera Corporation, Quartus II Handbook Version 12.1. Nov. 2012.

[44] Altera Corporation, FPGA Power Management and Modeling Techniques. Dec.

2010.

[45] D. Meintanis and I. Papaefstathiou, “Power consumption estimations vs mea-

surements for fpga-based security cores,” in Intl. Conf. on Reconfigurable Com-

puting and FPGAs, pp. 433–437, Dec. 2008.

[46] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the key scheduling algo-

rithm of rc4,” in Selected Areas in Cryptography, pp. 1–24, 2001.

[47] A. Biryukov and E. Kushilevitz, “Improved cryptanalysis of rc5,” in Advances

in Cryptology-EUROCRYPT’98, pp. 85–99, 1998.

[48] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,” in IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems, pp. 203–

215, Feb. 2007.

[49] A. Gupta, J. Min, and I. Rhee, “Wifox: Scaling wifi performance for large

audience environments,” in Proceedings of the 8th International Conference on

Emerging Networking Experiments and Technologies, pp. 217–228, ACM, 2012.

[50] D. Grini, “RF Basics, RF for Non-RF Engineers.” http://www.ti.com/

lit/ml/slap127/slap127.pdf, 2006.

[51] J. Zhao and R. Govindan, “Understanding packet delivery performance in dense

wireless sensor networks,” in Proceedings of the 1st International Conference on

Embedded Networked Sensor Systems, pp. 1–13, ACM, 2003.

[52] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,” Proceedings

of the IRE, vol. 49, no. 1, pp. 228–235, 1961.

http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
http://www.ti.com/lit/ml/slap127/slap127.pdf
http://www.ti.com/lit/ml/slap127/slap127.pdf

90

[53] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System archi-

tecture directions for networked sensors,” in ACM SIGOPS Operating Systems

Review, vol. 34, pp. 93–104, ACM, 2000.

[54] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer security architecture

for wireless sensor networks,” in Proceedings of the 2nd International Conference

on Embedded Networked Sensor Systems, pp. 162–175, ACM, 2004.

[55] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “Minisec: a secure sensor network

communication architecture,” in Proceedings of the 6th International Conference

on Information Processing in Sensor Networks, pp. 479–488, ACM, 2007.

[56] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security treatment

of symmetric encryption,” pp. 394–403, IEEE Computer Society, 1997.

[57] M. Bellare, J. Kilian, and P. Rogaway, “The security of the cipher block chaining

message authentication code,” Journal of Computer and System Sciences, vol. 61,

no. 3, pp. 362–399, 2000.

[58] P. Rogaway, M. Bellare, and J. Black, “Ocb: A block-cipher mode of operation

for efficient authenticated encryption,” ACM Transactions on Information and

System Security (TISSEC), vol. 6, no. 3, pp. 365–403, 2003.

[59] TinyOS Wiki, “Wireless Sensor Network Platform Hardware.” http:

//tinyos.stanford.edu/tinyos-wiki/index.php/Platform_

Hardware.

[60] T. Rappaport, Wireless Communications: Principles and Practice, vol. 2. Pren-

tice Hall PTR New Jersey, 1996.

[61] S. Y. Seidel and T. S. Rappaport, “914 mhz path loss prediction models for

indoor wireless communications in multifloored buildings,” IEEE Transactions

on Antennas and Propagation, vol. 40, no. 2, pp. 207–217, 1992.

[62] H. Nikookar and H. Hashemi, “Statistical modeling of signal amplitude fading

of indoor radio propagation channels,” in 2nd International Conference on Uni-

versal Personal Communications, 1993. Personal Communications: Gateway to

the 21st Century. Conference Record, vol. 1, pp. 84–88, IEEE, 1993.

http://tinyos.stanford.edu/tinyos-wiki/index.php/Platform_Hardware
http://tinyos.stanford.edu/tinyos-wiki/index.php/Platform_Hardware
http://tinyos.stanford.edu/tinyos-wiki/index.php/Platform_Hardware

91

[63] K. Sohrabi, B. Manriquez, and G. J. Pottie, “Near ground wideband channel

measurement in 800-1000 mhz,” in 1999 IEEE 49th Vehicular Technology Con-

ference, vol. 1, pp. 571–574, IEEE, 1999.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgements
	Dedication
	Introduction
	Motivation and Related Work
	Cryptography Algorithms for a WSN
	WSN Key Management and Authentication

	Contributions
	Thesis Outline

	Reconfigurable Feedback Shift Register Based Cipher
	System Model
	Network Model
	Security Model

	The RFSR Cipher
	Grain Cipher
	RFSR Cipher
	Cipher Initialization
	Cipher Management
	IV Management
	Key and Structure Update Scheme

	Security Analysis
	Cipher Security
	Attack Analysis

	Implementation, Simulation and Performance
	Cipher Implementation
	Comparison with Microprocessor Platforms
	Comparison with Grain 128

	Conclusion

	RFSR Cipher Based Authentication Protocol and Link Layer Encryption
	Network Topology
	Authentication Protocol RAuth
	Nodes' Credentials
	New Node Joining an RAuth Network
	RFSR Cipher Management

	RSec Link Layer Encryption
	Addressing
	Packet Format
	IV and Encryption
	Cipher Credentials and Encryption
	Cipher Information Initialization
	Packet Loss Handling
	Resynchronization

	Analysis and Evaluation
	 RSec Link Layer Protocol Performance and Analysis
	Network Initialization
	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix Network Initialization Simulation Code
	Bibliography

