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Abstract

This thesis focuses on the theory, design, simulation and implementation of

several digital controllers for periodic signals on a laser scanning galvanome-

ter. A model for the galvanometer was obtained and verified using closed

loop identification techniques. Using this model, controllers were designed

and simulated using MATLAB and then implemented on a custom FPGA

control processor with a focus on tracking performance. The types of con-

trollers used were: an Iterative Learning Controller, an RST pole placement

controller, an Adaptive Feed-forward cancellation controller, a combined It-

erative Learning and Adaptive Feed-forward cancellation controller and a

simple PID controller.

The simulated results were better than the experimental results because of

system noise and modelling uncertainties but the relative performance be-

tween each of the controllers was similar for both the simulation and exper-

imental setup. The experimental results achieved were very good with one

controller reaching errors under 50µrad.
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Chapter 1

Introduction

The high precision Computer Numerical Control (CNC) machining indus-

try is a large sector consisting of many micrometer machining applications

such as semi-conductor manufacturing, PCB stencil cutting, and laser ab-

lation. The main requirements of these industries consist of high through-

put and tight machining tolerances. The demand for electronic devices has

been continuously increasing and their size has been continuously decreas-

ing. Manufacturers have had to adopt machining techniques that allow them

to achieve very strict tolerances and very high throughput rates to keep up

with demand. One way to achieve this is to use a two axis galvanometer laser

system because of their high accuracy and bandwidth [2]. The galvanometer

system can then be controlled with high precision motion control algorithms.

A galvanometer scanning system is comprised of two galvanometers with a

mirror attached to each one. They can be mounted on a stationary beam or

onto another moving actuator depending on the application. A laser beam

is then shone at the two mirrors and they work in unison to ablate, cut or

burn the material at a specific X,Y location on the cutting surface. Each
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galvanometer works as an independent control system and the coordination

is performed by the trajectory generator. Typically the trajectories used are

periodic since many identical parts or cuts must be made. It is the job of the

control algorithm to ensure the galvanometers track the trajectory as close

as possible.

1.1 Control System Basics

A control system is comprised of a control algorithm plus a system that must

be controlled, normally called the plant. In motion control, the plant can be

a wide range of actuators such as linear and rotary motors or galvanometers.

The control algorithm is responsible for making the plant perform what the

user intends, such as following a specified trajectory. One example of a

control system used everyday is a car and its driver. The driver (control

algorithm) adjusts the pressure on the accelerator or brake to maintain a

constant speed.

The control algorithm is responsible for rejecting any disturbances acting

on the system, reducing steady state error and providing a good transient

response. A good transient response allows the system to respond quickly to

any sharp changes in the reference signal and also keep the overshoot to a

minimum when this happens.

There are many different types of control systems used in practice today.

They range from learning controllers which can improve their performance

iteratively, to complex frequency domain based controllers to simple ones

which can be hand tuned without any analysis. This thesis covers just a few

of the many possible controllers.
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1.2 Contribution and Outline of the Thesis

The goal of this thesis is to analyze and compare the performance of several

different control algorithms when used with a galvanometer scanner. The

results of this thesis also demonstrate the importance of accurate models for

certain controllers and the difficulty of getting a model for galvanometers

which can be used for µrad error tolerances.

This work can help improve the performance of CNC machining systems

by demonstrating the strengths and weaknesses of the different control al-

gorithms researched. Machine manufacturers are then able to select the

appropriate control algorithm that suits their application.

Many different algorithms exist but this work will cover four main ones.

These are: Iterative Learning Control (ILC), Pole placement using an RST

structure, Adaptive Feed-Forward Cancellation (AFC) and finally the most

widely used control in industry the PID controller is covered.

Each of these motion control algorithms have different applications and work

in different situations. Iterative Learning control can be used when tracking

a periodic trajectory. RST control gives the designer lots of flexibility on the

desired performances of the system. AFC can be used to remove sinusoidal

errors from the system or to improve performance when tracking sinusoidal

trajectories and the PID control system can often achieve very good results

with minimal design work and modelling.

Chapter 2 introduces the ILC and AFC controllers which specialize in fol-

lowing periodic trajectories, the RST controller which is a polynomial pole

placement controller and finally the PID controller is described. The design

process and stability requirements of each controller are also outlined in this

chapter.



4

Chapter 3 begins with general modelling and also explains the modelling

performed on a galvanometer actuator. This chapter also introduces the

trajectories that will be used when simulating the system. Then the design

process and simulation results on the generated model will be described.

Chapter 4 covers the experimental setup, implementation and results of the

different algorithms when applied to a galvanometer scanner. The results are

then compared with the simulations and against each other.

Finally Chapter 5 outlines some conclusions and possibilities for future work.

Notes on Notation Used

In the following Chapters when referring to an IIR or FIR digital filter trans-

fer function in terms of the delay term z−1 such as L(z−1) or Q(z−1) the

(z−1), term has been dropped to improve the readability of the figures and

equations. In the case of an FIR filter the transfer functions simplify to

polynomials.

If a capital letter is used as a gain, it will explicitly mention it, and any

continuous time transfer functions will include the (s) term.
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Chapter 2

Overview of Algorithms for

Control Design

This chapter introduces the theory of the different motion control algorithms

used in this work. First an overview of the ILC algorithm is shown, then the

RST controller, followed by an overview of Adaptive Feed-forward cancella-

tion and finally PID control is introduced.

2.1 ILC Overview

Iterative Learning Control is a popular control technique used for tracking

periodic reference trajectories. It is a widely researched control technique

in robotics, semiconductor fabrication and HDD disks, where high accuracy

tracking of periodic trajectories is very important [3][4]. Iterative learning

control aims to give machines the same general thought process humans have

when throwing a ball. For example we are able to adjust our power and aim

after each throw of the ball based on where it landed on the previous throw,
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this process is repeated until we hit our mark.

The first mention of learning control was by Uchiyama in 1978 in Japanese

but the first iterative learning control paper published in English was Arimoto

et al’s paper entitled “Bettering of operations through learning” in 1984 [5].

It showed that the tracking performance of robot manipulators could be

improved by learning. The previous operation data could be used to improve

the performance of the current operation.

The control action is improved upon on each iteration of the periodic refer-

ence and each iteration is independent of the other ones. The system always

begins at the same initial state at each iteration. This shares a similar goal

with repetitive control which also deals with periodic reference signals. The

main difference is that in repetitive control each trial is directly linked to the

previous one.

2.1.1 Types of ILC Algorithms

Iterative learning control analysis can be classified into two general categories;

Standard and Lifted System ILC. Lifted system ILC was first introduced by

Phan in 1988 [6]. The performance of standard versus lifted system ILC was

compared by I. Rotariu et al in [7]. In lifted ILC the input and output of

a plant are considered finite vectors which span one period and the plant is

described as a matrix which relates the input and output in a finite time in-

terval [8]. In standard ILC the plant inputs and outputs are considered to be

of infinite time duration and are analyzed using transfer functions. In [7] they

implemented a standard ILC and a lifted ILC algorithm on a semiconductor

wafer machine and found that either method resulted in similar tracking er-

rors. However the standard ILC algorithm converged in less iterations and

was easier to implement since it used a transfer function description of the
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system; therefore the standard ILC algorithm was used in this work.

2.1.2 Standard ILC: D-Type and PID-Type

In Figure 2.1 the PID type ILC controller is shown. Here the linear time

invariant (LTI) system P (z−1) is commanded to follow a periodic trajectory,

which would reset to the original state after each period. The goal of all the

ILC algorithms is to iteratively produce the ideal control signal u to achieve

perfect tracking of the reference.

The derivative learning equation shown below in Equation 2.1 was introduced

in [5]. The next control term is based on the current trials control plus the

derivative of the current error multiplied by the learning gain L.

uk+1 = uk + L∇ek (2.1)

Arimoto also introduced the more general PID type ILC updating algorithm.

uk+1 = uk + Φek + L∇ek +Ψ
∑

ek, (2.2)

where ∇ and
∑

correspond to the backwards difference operator and a dis-

crete integration operation respectively.
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r

PID

Memory

P (z−1) y

ek

uk

−1

Figure 2.1: PID ILC Control Structure

2.1.3 General Standard ILC

There are many different forms and structures of standard ILC. Two com-

mon implementations are shown in Figures 2.2 and 2.3 below. The feedback

controller C is an existing controller such as a PID and the ILC is added

to the existing system to work in conjunction with the controller C. The

parameters L and Q can be implemented as simple gains which can be hand

tuned or as complex digital filters designed to minimize the tracking error.

The D-Type and PID-Type updating algorithms mentioned in Section 2.1.2

can be easily implemented using the two general structures in Figures 2.2

and 2.3.

The simplest form of an ILC controller is one without a stabilizing controller

C. The update law of the control signal for this form of ILC is shown below:

uk+1 = Quk + Lek (2.3)

The goal is to find the two gains or polynomials L and Q such that the control

signal uk converges to a fixed point u∗, that is to say u∗
k+1 = u∗

k. In [9] it was
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shown that Equation 2.3 converges if

∥ Q− LP ∥∞< 1 (2.4)

Where the infinity norm for a discrete time transfer function is given by

∥ H(z) ∥∞= max
ω∈[0,ωs

2
]
{|H(ejω)|}, (2.5)

where ωs corresponds to the Nyquist frequency.

The proof of convergence is as follows, where r corresponds to the desired

input and yk to the output at that iteration [9]:

uk+1 = Quk + Lek = Quk + L(r − yk) = Quk + L(r − Puk) = f(uk) (2.6)

If f(uk) satisfies the following inequality,

∥ f(x1)−f(x2) ∥=∥ Q(x1−x2)−LP (x1−x2) ∥≤∥ Q−LP ∥∞∥ x1−x2 ∥ (2.7)

Then f(uk) is said to be Lipshitz. A Lipschitz function is one where there

exists a constant C independent of x and y which satisfies the inequality

below:

|f(x)− f(y)| ≤ C|x− y|

For a Lipshitz function the function converges to it’s fixed point u∗
k+1 = u∗

k

if the Lipschitz constant is less than 1. In the above equation the Lipschitz

constant is ∥ Q − LP ∥∞. Therefore the term will converge to the final

solution as long as it is less than 1.

To achieve no error, Q must be chosen to be a gain of 1. If this is the case,
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then 2.3 becomes:

uk+1 = uk + Lek (2.8)

Which converges to the fixed point

u∗ = u∗ + Le∗ (2.9)

This implies that e∗ = 0 [9]. This is not always possible since it sometimes

requires the plant P to be invertible[9].

r C

L Q

Memory

P (z−1) y
ek

uk
uk+1

−1

Figure 2.2: ILC Control Structure 1

The control equation corresponding to Figure 2.2 is shown in Equation 2.10

below.

uk+1 = Quk + Lek + Cek+1 (2.10)

For the system in Figure 2.2 with the additional controller C it was shown

in [10] that 2.10 converges as long as the parameters Q and L satisfy the

inequality 2.11.

∥ Q− LP

1 + PC
∥∞< 1 (2.11)
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Given the inequality 2.11 L = QP−1 results in the fastest convergence, where

Q is an IIR filter usually picked to have low pass characteristics. Since the

minimum error is achieved when Q is a gain of one, the higher the cut off

frequency of Q, the lower the error. Ideally Q would always be one which

allows the error to converge down to the noise floor of the system but in

practice this is often not possible.

r C

L

Q

Memory

P (z−1) y
ek uk+1uk

−1

Figure 2.3: ILC Control Structure 2

The control equation corresponding to Figure 2.3 is shown in Equation 2.12.

uk+1 = Q(uk + Lek) + Cek+1 (2.12)

The low pass filter Q is in place to decrease the sensitivity to high frequency

modelling errors. The Q filter corner frequency should be chosen large enough

to cover the bandwidth of the plant and controller combination but low

enough to avoid introducing errors caused by high frequency uncertainties.

To assure convergence of the ILC algorithm 2.12 the inequality in 2.13 must

be valid.
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∥ Q[
1− LP

1 + PC
] ∥∞< 1 (2.13)

Using the convergence criteria above, the choice for L that gives the fastest

convergence is L = P−1.

The previous two block diagrams show the use of memory blocks which are

used to store one full period of the control signal to be used in the next

iteration. The performance of conventional ILC (with memory blocks) and an

ILC structure where the memory blocks were removed was compared in [10].

With the memory removed, the reference trajectory was continually input

into the system like it is done with repetitive control. It was shown that there

was very little difference between the equivalent feedback implementation and

the conventional ILC. This also allows the L and Q filters to be used in the

control system in real time. The major constraint this imposes is that the

filter L must be causal. In many systems this is not possible since inverting

the plant results in a non causal transfer function.

Since the control system in the experiment described in Chapter 4 was imple-

mented on an FPGA, it was not possible to use a memory buffer in the ILC

implementation. The FPGA did not have enough memory to store one com-

plete period of the tracking trajectory and therefore, the memory blocks were

removed and the system was operated in a repetitive control manner. Figure

2.4 shows the resulting block diagram with the memory block removed.
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r C

L Q

P (z−1) y
ek

uk+1uk

−1

Figure 2.4: ILC control structure with memory block removed

2.2 RST Control

2.2.1 RST Overview

RST controllers are a polynomial pole placement controller consisting of three

polynomials: R, S and T. This two degree of freedom controller gives the de-

signer lots of flexibility and allows the user to design for separate tracking or

regulation requirements. RST controllers have been used in the power elec-

tronics, automotive and robotics industries as well as many other applications

[11][12][13][14].

The design of RST controllers is performed mainly in the frequency domain

using a digital LTI transfer function model of the system to be controlled.

The design is implemented by shaping the different frequency functions such

as the input sensitivity function or the output sensitivity function as well as

by specifying specific dominant pole locations for the desired system response.

This allows the user to design for certain robustness requirements using the

sensitivity functions and also achieve the desired system step response by

selecting the appropriate dominant poles. For the application in Chapter 4
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the desired system response was to achieve very accurate tracking of high

frequency trajectories; therefore a fast step response was desired to be able

to track as quickly as possible.

The RST control structure is shown in Figure 2.5.

r

R

1
ST Pm y

u

−1

Figure 2.5: RST Control Structure

The equation that corresponds with the RST structure is given by

Su = Tr −Ry

y = uPm(z
−1) = u

z−dB(z−1)

A(z−1)

(2.14)

Where r is the desired control trajectory for the actuator model Pm(z
−1), y

is the output of the model and d is the model delay. Using (2.14) the closed

loop system can then be described by

HCL(z
−1) =

z−dB(z−1)T (z−1)

A(z−1)S(z−1) + z−dB(z−1)R(z−1)
=

z−dB(z−1)T (z−1)

P (z−1)
(2.15)

Where P (z−1) corresponds to the equation of the desired closed loop poles.

It is shown in [1] how the polynomials R and S can be obtained using the
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Bezout identity when the polynomials A, B and P are given.

P (z−1) = A(z−1)S(z−1) + z−dB(z−1)R(z−1) (2.16)

In [1] the following are defined:

nA = degA(z−1)

nB = degB(z−1)

nP = degP (z−1) ≤ nA + nB + d− 1

nS = degS(z−1) = nB + d− 1

nR = degR(z−1) = nA − 1

Then the polynomials R and S can be expressed as

S(z−1) = 1 + s1z
−1 + · · ·+ snS

z−nS = 1 + z−1S∗(z−1) (2.17)

R(z−1) = r0 + r1z
−1 + · · ·+ rnR

z−nR (2.18)

The Diophantine equation (2.16) can be solved in matrix form x = M−1p

where x, p and M are given by

xT = [1, s1, . . . , snS
, r0, . . . , rnR

]

pT = [1, p1, . . . , pnP
, 0, . . . , 0]
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M =



1 0 · · · 0 0 · · · · · · 0

a1 1 · · · · b′1 0

a2 0 b′2 b′1

· 1 · b′2

· a1 · ·
anA

a2 b′nB
·

0 · 0 ·
0 · · · 0 anA

0 0 0 b′nB


b′i = 0 for i = 0, 1, . . . d and b′i = bi−d for i ≥ d+ 1 [1]

Solving the Diophantine equation gives the polynomials R and S to be used

in the controller. In some cases the polynomials R and S may have specific

desired components. For example if no steady state error is desired then

the S polynomial must contain a (1 − z−1) term. If rejection of a specific

disturbance is necessary then the S term must contain a pair of complex zeros

at the desired frequency using Equation 2.19. Therefore the S and R terms

may contain a fixed section which corresponds to different design needs. Re-

writing the Diophantine equation allows the addition of these fixed terms.

The terms HR and HS correspond to the known fixed parts of S and R.

R
′
(z−1) and S

′
(z−1) must be found using the method shown above.

HS(z
−1) = 1 + αz−1 + z−2

where α = −2cos(2πf/fs)
(2.19)

P (z−1) = A(z−1)S(z−1) + z−dB(z−1)R(z−1)

where S(z−1) = HS(z
−1)S

′
(z−1)

and R(z−1) = HR(z
−1)R

′
(z−1)

(2.20)
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2.2.2 Control System Design Using an RST Structure

Design of an RST controller can be completed in three steps. First the desired

close loop performance such as the settling time, overshoot and rise time are

achieved by selecting the appropriate dominant poles. The second step is to

set the fixed parts of S and R to achieve zero steady state error or rejection

of a periodic disturbance. Then robustness can be improved using sensitivity

function shaping. The output sensitivity function can be expressed as:

Sy =
1

1 +HOL

=
A(z−1)S(z−1)

A(z−1)S(z−1) + z−dB(z−1)R(z−1)
(2.21)

The output sensitivity function describes how sensitive the control and plant

model parameters are to disturbances acting on the system. Sensitivity func-

tion shaping is based on limiting the modulus margin (∆M). The modulus

margin can be calculated as the inverse of the maximum of the output sen-

sitivity function. This value represents the shortest distance from -1 to the

curve of the open loop nyquist plot. A good choice for ∆M is for it to be

greater than 0.5 [1]. This requires the maximum of the sensitivity function

to be less than 2.0 or 6dB. In Figure 2.6 the modulus margin, inverse of gain

margin (∆G) and phase margin (∆Φ) are shown together in one nyquist plot.

Choosing an appropriate modulus margin usually assures good values for the

phase and gain margins. Typically the gain margin should be greater than

6dB and the phase margin should be between 30◦and 60◦.

The gain margin is given by the difference between 0dB and the magnitude

of the open loop bode plot when the phase crosses the -180◦line. The phase

margin can be calculated by finding the difference in phase between -180◦and

the phase when the magnitude crosses the 0dB line.
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Figure 2.6: Nyquist Plot Showing Modulus, Phase and Gain Margin [1]

When designing an RST controller the initial step is to pick the desired

dominant closed loop poles which will dictate the rise time, overshoot and

settling time of the system and then calculate the polynomials R and S. Once

they have been calculated the output sensitivity function can be plotted and

the maximum value can be calculated. If all design requirements such as

the modulus, gain, and phase margin are met then the design is complete.

If the maximum of the sensitivity function is too high then the value can

be decreased by introducing real auxiliary poles or by adding notch filters.

Which one gets added depends on three situations as described in [1]:

1. The maximum occurs in a high frequency band far away from the at-

tenuation band of Sy.

2. The maximum occurs in a frequency region close to the attenuation

band of Sy.
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3. The maximum occurs both at high and low frequencies.

For cases one and three, real auxiliary poles can be added at the high fre-

quencies, doing this will move the maximum towards lower frequencies which

is case 2. In case 2 a notch filter can be added by including the zeros of the fil-

ter into the fixed part of S(z−1) and including the poles into the closed loop

polynomial P (z−1). A discretization of the notch filter shown in equation

(2.22) can be used.

F (s) =
s2 + 2ζnumω0s+ ω2

0

s2 + 2ζdenω0s+ ω2
0

(2.22)

The auxiliary poles are typically added between .05 and 0.5 on the real axis[1].

The addition of the real poles lowers the value of sensitivity function around

the frequency of the pole and improves robustness. Since the auxiliary poles

are at a much higher frequency than the dominant poles they do not have

an affect on the response of the closed loop system.

Once the R and S polynomials have been computed, the T polynomial can

be chosen. Depending on the goal, the T polynomial can be selected in

two ways. If the desired tracking dynamics is equivalent to the regulation

dynamics then the T polynomial reduces to a simple gain to ensure correct

gain matching between the reference and the output [1].

T (z−1) =


P (1)
B(1)

if B(1) ̸= 0

1 if B(1) = 0
(2.23)

If separate tracking and regulation dynamics are desired then the T polyno-

mial is chosen as

T (z−1) = GP (z−1) (2.24)
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G =

 1
B(1)

if B(1) ̸= 0

1 if B(1) = 0
(2.25)

Using Equation 2.24 will result in the closed loop poles being cancelled which

leaves the following expression for the closed loop system.

HCL(z
−1) =

z−dB(z−1)

B(1)
(2.26)

The tracking dynamics would then come from the trajectory generator since

the closed loop system is not affecting the input.

2.3 Adaptive Feed Forward Cancellation

Adaptive Feed Forward Cancellation (AFC) is one of the techniques used in

repetitive control. Repetitive control is based on the internal model princi-

ple. The internal model principle is that to completely reject a disturbance,

the model of that disturbance must be included in the control loop [15] [16].

AFC filters are used in conjunction with a controller such as a PID or lead-lag

compensator to remove sinusoidal disturbances or to track sinusoidal trajec-

tories. AFC filters are commonly used in high precision diamond turning

applications because of the sinusoidal nature of the reference trajectories

[17][18] but they can be used anywhere sinusoidal disturbances must be re-

jected. A major advantage of AFC filters is that they can be “plugged” into

a controller without any changes to the existing controller structure.

The adaptive feed forward cancellation algorithm is based on generating a

control signal such that the disturbance 2.27 is completely rejected.

d(t) = a1cos(ω1t) + b1sin(ω1t) (2.27)
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Bodson in [16] showed that this can be accomplished by letting the control

signal u(t) equal to

u(t) = θ1cos(ω1t) + θ2sin(ω1t) (2.28)

Such that the disturbance is completely cancelled out when the adaptive

parameters reach the solution: θ∗ = [θ1, θ2]
∗ = [−a1,−b1]

One possible update law used by Messner and Bodson in [19] was to let the

parameters θ1 and θ2 be updated by the continuous update law:

θ̇1(t) = gycos(ω1t+ ϕ)

θ̇2(t) = gysin(ω1t+ ϕ)
(2.29)

Where g corresponds to the gain of the adaptive algorithm and y the output

of the system.

The AFC algorithm can be easily extended to remove multiple harmonics

by including more terms in the control equation. The algorithm above was

expressed as a continuous time LTI transfer function in [19]:

H(s) = gn
scos(ϕn) + ωnsin(ϕn)

s2 + ω2
n

, (2.30)

where s corresponds to the Laplace transform parameter s = ωj, the param-

eters gn, ωn, and ϕn correspond to the learning gain, frequency to reject and

the phase advance parameter. The transfer function in Equation 2.30 was

converted to the discrete domain using a zero order hold so that it could be

implemented on the real system.

Expressing the AFC algorithm using the transfer function in 2.30 simplifies

the stability analysis of the closed loop system when multiple AFC resonators

are used in a system. This can be done in the frequency domain by adding
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more AFC resonators in parallel. Lu in [20] examined having the error pass

through and then added the AFC filters in parallel to the inner control loop

as shown in Figure 2.7.

r C

AFC1

AFC2

b
b
b

AFCn

P (z−1) y
ek−1

Figure 2.7: AFC control system block diagram

One way of designing a control system using an AFC controller is the loop

shaping method explained by Byl et al. in [17] and Lu in [20]. When de-

signing a control system using AFC resonators, the gain and phase advance

parameters must be selected to achieve stability of the closed loop and the

necessary rejection of the harmonic disturbances. The ωn parameter of each

resonator must be selected to match the desired frequency to be rejected.

The resonator has two complex poles on the imaginary axis corresponding

to the frequency of ωn and one zero on the real axis. The phase advance

parameter ϕn affects where on the real axis this zero is placed; this in turn

affects the shape of the frequency plot of the resonator. It was shown in [17]

that the choice of ϕn does not have a significant affect on the magnitude of

the frequency response close to the resonant peak but it does have a larger

affect on the phase response of the resonator.

The phase response of the AFC resonator has a discontinuity of −π radians
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centred at ϕn at the resonator frequency. Figure 2.8 shows two separate AFC

filters with the same resonant frequency but different phase parameters. As

can be seen in the figure, the phase plot is centred on ϕn. It is also clear that

the phase parameter does not have any noticeable effect on the magnitude

response of the filter.
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Bode plot of two AFC filters

Figure 2.8: Bode plot of two AFC Resonators

It was shown in [20] that the phase advance ϕn can be set equal to the phase

of the closed loop system (shown below). This ensures that the phase margin

of the overall system is unaffected by the addition of the AFC filters.

ϕn = ̸
P (jωn)C(jωn)

1 + P (jωn)C(jωn)
(2.31)
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2.4 PID Control

Proportional-Integral-Derivative (PID) control is the most widely used con-

trol system in industry. This is because of several reasons: the PID controller

is fairly easy to tune and does not need a system model. As the name suggests

a PID controller consists of three sections: a proportional term, an integral

term and a derivative term. Two common configurations for a PID controller

are to have each term added in parallel or in series. The advantage of having

the system in parallel is that it is easier to adjust each term independently.

The control term u[k] for the parallel PID controller is given by:

u[k] = Kpe[k] +Ki

∑
e[k] +Kd∇e[k], (2.32)

where ∇ and
∑

correspond to the backwards difference operator and a dis-

crete integration operation respectively.

The following table from [21] shows the affect each parameter has on the

overall system. This table can be used to very quickly and effectively perform

online tuning of a system until the desired closed-loop requirements are met.

Closed-
Loop

Response
Rise Time Overshoot

Settling
Time

Steady-
State
Error

Stability

Increasing
Kp

Decrease Increase
Small

Increase
Decrease Degrade

Increasing
Ki

Small
Decrease

Increase Increase
Large

Decrease
Degrade

Increasing
Kd

Small
Decrease

Decrease Decrease
Minor
Change

Improve

Table 2.1: Affect of PID parameters on step response

The online tuning approach can also be combined with experimental bode

plot estimates so that the system gain and phase margins can be observed



25

while tuning the system. These techniques allow very effective tuning without

knowledge of a system model ahead of time. The figure below is a typical

block diagram of a parallel form PID controller where P (z−1) corresponds to

the LTI system to be controlled.

r

Kp

Ki

1−z−1

Kd(1− z−1)

P (z−1) y
u

−1

Figure 2.9: Parallel PID block diagram

2.5 Conclusions

This chapter introduced the different control algorithms used for the ex-

periments in Chapters 3 and 4. It was mentioned that the ILC and AFC

controllers are specialized controllers for periodic trajectories which are not

heavily dependent on an accurate system model. The RST and PID con-

trollers are capable of tracking any trajectory but the RST does require an

accurate model of the system to be controlled. The advantage of the PID is

that it can be hand tuned to the required performances of the system.
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Chapter 3

Modelling, Controller Design

and Simulation

The purpose of this chapter is to show the simulation performance of the

different algorithms on a galvanometer actuator and to establish a best case

scenario of performance which can be used to compare the experimental re-

sults performed in Chapter 4. This chapter will also introduce the modelling

performed for a galvanometer actuator as well as the controller design process

and simulation results of the ILC, RST, AFC, and PID controllers.

3.1 Modelling

Many high precision motion control algorithms are implemented using a

mathematical model of the system to be controlled. Such models can be

continuous, discrete, linear or nonlinear. The model of the galvanometer

used here will be an LTI discrete model and the parameters of this model

will be obtained using identification techniques. In system identification,
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a known excitation signal is inserted into the actuator and its response is

recorded. Then recursive identification algorithms can be used to find the

coefficients of the actuator to reproduce the measured response. A general

view of modelling can be seen in the figure below:

u

Real System

Model

Error

y

ŷ −1

Figure 3.1: General modelling block diagram

In system identification the relationship between the input and the output

can be described using the difference equation shown below [22].

y(t) + a1y(t− 1) + ...+ any(t− n) = b1u(t− 1) + ...+ bmu(t−m)

Which can be expressed in vector form as:

θ =
[
a1 ... an b1 ... bm

]T
ϕ(t) =

[
−y(t− 1) ... −y(t− n) u(t− 1) ... u(t−m)

]T
ŷ(t) = ϕT (t)θ

(3.1)

The simplest form of identifying the parameters θ using this equation is the

least squares method, which attempts to minimize the least squares error

of y(t) − ŷ(t) where y(t) corresponds to the measured data and ŷ(t) to the

predictor [22].
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Choice of Input Signal

The choice of input signal or otherwise known as the excitation signal is

very important in system identification. The input signal must have a large

enough bandwidth to excite the system at higher frequencies and it should

have enough length to get an accurate low frequency measurement [22]. An-

other important property is for the signal to have as much input power as

possible since a small covariance is desired and the covariance matrix is in-

versely proportional to the input power [22]. The covariance matrix describes

the statistical relationship between the parameters θ and the input spectrum.

For practical reasons the signal must also be bounded; therefore the crest

factor is used as a guide when choosing an input signal. The crest factor

(Cr) is given by the ratio of the peak value of waveform to its RMS value.

A small crest factor is desired which means there are few large peaks in

the signal. The minimum crest factor is a value of 1 which is common of

binary signals. Because of this fact, a common excitation signal is to use a

Pseudo-Random-Binary-Sequence (PRBS). A PRBS can be designed to have

any desired bandwidth, has a small crest factor and can be made arbitrarily

long.

Cr =
|u|peak
urms

(3.2)
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Figure 3.2: PRBS signal example

3.1.1 Closed Loop System Identification

The identification block diagram and method described at the start of this

chapter shows an open loop system with no controller. This is the best way

to perform identification since the output is directly dependent on the input

with no effects from a closed loop or controller present. This allows a model

of the plant itself to be created. In many cases open loop identification is not

possible because of non-linearities in the system such as drift in the position

or the system is unstable in open loop. However if the motor cannot be

operated in open loop then it was shown in [23] that it is better to identify

the system in closed loop using closed loop ID algorithms.

When the actuator cannot be operated in open loop, it is necessary to perform

the identification in closed loop using a controller. Closed loop identification

techniques involve using the controller parameters to modify the measured

data while the identification is performed. This results in a new measure-

ments vector ϕ(t) which includes the effect of the closed loop system. Figure



30

3.3 from [1] shows a general closed loop identification diagram using an RST

controller.

Figure 3.3: Closed Loop Identification Using RST Controller

An algorithm of doing closed loop identification called Extended Closed Loop

Output Error (XCLOE) is described in [1] where the closed loop RST con-

troller is taken into account. The XCLOE algorithm uses an ARMAX model

to represent the plant and disturbances acting on it. The system equations

when using the XCLOE algorithm are shown below [1]. Where d is the delay

of the system, e(t) is Gaussian white noise, A, B, and C are the denominator,

numerator, and noise filter polynomials of the system respectively.

y(t) = −A(z−1)y(t− 1) +B(z−1)u(t− d− 1) + C(z−1)e(t− 1) + e(t)

u(t) = −R(z−1)

S(z−1)
y(t) + ru(t)

(3.3)
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Similarly to Equation 3.1 the adjustable closed loop predictor is given by the

following more complex equations from [1].

ŷ(t) = −A(z−1) +B(z−1)û(t− d− 1) +H(z−1)
ϵCL(t− 1)

S(z−1)

= θ̂(t− 1)Tϕ(t− 1),

(3.4)

where

û(t) = −R(z−1)

S(z−1)
ŷ(t) + ru(t)

θ̂(t)T =
[
a1(t) ... anA

(t) b1(t) ... bnB
(t) h1(t) ... hnH

(t)
]

ϕ(t)T =
[
ϕ(t)T ϵCLf ... ϵCLf (t− nH + 1)

]
ϵCLf (t) =

ϵCL(t)

S(z−1)

ϵCL(t) = y(t+ 1)− θ̂(t+ 1)Tϕ(t)

and

H(z−1) = 1 + C(z−1)S(z−1)− P (z−1).

(3.5)

The parameters θ are then updated recursively using the following equations

from [1].

θ̂(t) = θ̂(t− 1) + F (t− 1)ϕ(t− 1)ϵ(t)

F (t)−1 = λ1(t− 1)F (t− 1)−1 + λ2ϕ(t− 1)ϕ(t− 1)T
(3.6)

The gain F is called the adaptation gain of the algorithm and influences

how fast the algorithm converges. The two other gains λ1 and λ2 are called

forgetting factors. Depending on the value of the forgetting factor different

weights can be assigned to the error data during the identification. Small
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values will make the identification more sensitive to the current samples.

Typically a forgetting factor between 0.98 and 1 is used [1].

3.1.2 Galvanometer Modelling

Laser scanning galvanometers consist of the galvanometer itself plus a mirror

connected to the shaft which is used for deflecting a laser beam onto the work

surface. A galvanometer works by using a permanent magnet attached to a

pivot with a small air gap and a coil surrounding the magnet. When a

current is applied to the coil, the magnet will move to try and orient itself.

Because of the attachment of the magnet, galvanometers cannot move one

full rotation, they usually only pivot between two angles. Figure 3.4 shows

two galvanometer scanners with mirrors attached.

Figure 3.4: Two galvanometers with mirrors attached

As derived in [24] and [25] the continuous time galvanometer transfer function
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between the output position and the input current is given by:

θ(s)

i(s)
=

Ti

Jr

s2 + a

(s2 + aJm/Jr)(s2 + a)− a2Jm/Jr

where

a = ω2
rJm/Jr

ωr =

√
K(Jr + JM)

JrJM

(3.7)

The parameters Jm, Jr, Ti, K correspond to the mirror inertia, rotor inertia,

motor torque constant and the stiffness of the rotor shaft. The parameters of

Equation 3.7 can often be acquired from the actuator data sheets but it was

not available for the galvanometer used in this work and therefore Equation

3.7 could not be used, but it serves as a starting point for what the transfer

function should resemble.

The Canon galvanometer had a small amount of position drift when operated

in open loop since the weight of the mirror would make the shaft rotate into

an equilibrium position. It was also not possible to inject a signal with

sufficient input power without the motor hitting its end stops; therefore the

system identification was performed in closed loop. This allowed a larger

amplitude signal to be used and removed all position drifts.

A loosely tuned PD controller was used in the closed loop controller. The

excitation signal used for the identification was a pseudo random binary

sequence (PRBS). The PRBS signal was inserted at the output of the PD

controller as shown in Figure 3.5. The reference was set to 0 to centre the

galvanometer during the identification.
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0 PD

PRBS

P (z−1) y
u

−1

Figure 3.5: Closed Loop Identification

In the XCLOE algorithm the closed loop controller is assumed to be an RST

type controller. Which means that the PD controller used in the real system

must be converted to the RST controller form. This can simply be done by

rearranging the block diagram in Figure 3.5 into the block diagram shown

below in Figure 3.6.

PRBS P (z−1)

Kp +Kd(1− z−1)

−y
u

Figure 3.6: Closed Loop Identification

The following equations can then be obtained from the rearranged system

model.

u = r − y(Kp +Kd(1− z−1)

The previous equations can then be compared against the typical RST con-

troller equation shown below:

Su = Tr −Ry
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Which results in the following values for R, S, and T.

R = Kp +Kd −Kdz
−1

T = 1

S = 1

A 4 KHz 0.3 rad amplitude PRBS signal was injected into the output of

the controller and the encoder position was measured. Two separate data

sets were collected, one was used for the identification and the other for the

validation. The XCLOE algorithm with the above RST polynomials was

used. Using Equation 3.7 as a guide, the model orders that gave the best

validation results were nA = 3, nB = 1, nC = 6 and d = 2. Figure 3.7 shows

the real and model output using the second validation data with a percent

fit of about 98% calculated using the R2 formula shown below.

R2 = 1− SSres

SStot

, (3.8)

where

SStot =
∑
i

(yi − ȳ)2,

SSres =
∑
i

(yi − fi)
2,

where yi corresponds to the measured data, fi corresponds to the modelled

data and ȳ to the mean of the measured data.



36

Figure 3.7: Model validation test

As shown in Figure 3.8 the model also passed the uncorrelation test between

the residuals and the predicted output. The uncorrelation test describes the

correlation between the observations ϕ(t) and the closed loop predictor error

[1]. If these are uncorrelated then it ensures unbiased parameter estimates

which are not dependent on the excitation signal used[1]. This test combined

with the good percent fit give confidence that the model is accurate enough

for control.
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Figure 3.8: Model uncorrelation test

The model coefficients are listed below along with the bode plot. It can be

seen from the bode plot that the model has an open loop frequency bandwidth

of 100 Hz.

Model Coefficients
z0 z−1 z−2 z−3

Numerator 0 0 0 0.0001326
Denominator 1 -1.586340634 0.184711901 0.402245189

Table 3.1: Digital Model Coefficients
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Figure 3.9: Bode plot of galvanometer model

To test the galvanometer model, a slow and simple RST controller with dom-

inant poles at 50 Hz was implemented. The slow poles were chosen to ensure

the controller did no saturate. The simulated closed loop frequency response

was then compared with the experimental frequency response. Figure 3.10

shows the two bode plots. The model and experimental bode plots are very

close but do seem to have a slightly different gain and cut off frequency.
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Figure 3.10: Experimental and theoretical closed loop bode plot

3.2 Controller Design and Simulations

Laser scanning galvanometers are used in a variety of different applications

and each one requires a different trajectory to be tracked which are com-

monly periodic. The one thing that is common between each application is

that the galvanometer must be fast and accurate while following a reference

signal; therefore the desired controller should have as low of a tracking er-

ror as possible and be as fast as possible while staying within the physical

limitations of the system.
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3.2.1 Iterative Learning Control

As was mentioned in Chapter 2 almost all ILC systems are implemented

using a memory block which holds one entire period of the control signal to

be used for the process. Each trial is then repeated from the start until the

error converges to the final value. Since this control system is implemented

on an FPGA there is not enough memory on board to hold one entire period

of the signal. It was shown in [10] that the memory block could be removed

and the reference signal could be continuously passed to the input of the

controller as if it were more like a repetitive controller. The modified control

structure with the memory removed is shown in Figure 3.11 below. The ILC

simulations also do not use a memory block.

r C

L Q

P (z−1) y
ek

uk+1uk

−1

Figure 3.11: ILC control structure with memory block removed

When designing an Iterative Learning Controller there are two major steps:

designing the L and Q filters. The L filter can be obtained fairly easily using

Equation 2.11. The choice of the Q filter will have a significant effect on the

tracking error of the entire system. Using the block diagram shown in Figure

2.2 the error term of the closed loop system can be calculated to be:
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E(z−1) =
Y (1−Q)

P (L+ C)
(3.9)

The best choice of Q for minimum error would be to let it be equal to one.

This is what was used by Arimoto in [5]. In many ILC systems a choice of

Q = 1 is not possible since it makes the overall system unstable or drives the

system into saturation; therefore it is common to let Q be a low pass filter.

The filter cut off frequency should be made as high as possible to minimize

the error while still satisfying Equation 2.11. The Q filter cut off can also be

interpreted as the controller being able to deal with frequencies in the input

and control signal up to the cut off frequency of Q.

The choice of learning filter will affect the speed of convergence of the al-

gorithm and it depends heavily on the plant model. As was mentioned in

Chapter 2, the choice of the L filter which achieves the fastest convergence

is to let L = QP−1. One issue with using the inverse of the plant model is

that any non minimum phase zeros become unstable poles and any system

with a higher order numerator than denominator (such as systems with time

delays) will result in a non-causal filter. The model used in this work falls

under the category of the latter. The following section will explain how a

causal inverse can be approximated.

Inverting A System with Time Delay for the Design of the Learning

Filter L

When performing system identification in the discrete domain, it is very

common for there to be a delay. This results in a numerator which has

no constant term; therefore when it is inverted it results in a non-causal

filter which cannot be implemented in a real-time system. This presents a

problem when designing an ILC controller where the optimal learning (L)
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filter choice involves inversion of the plant model. To achieve a causal L

filter, an approximation to the real inverse can be made. Given the system

P (z−1) and its inverse P−1(z−1):

P (z−1) =
b1z

−1 + b2z
−2 + b3z

−3

1 + a1z−1 + a2z−2 + a3z−3

P−1(z−1) =
1 + a1z

−1 + a2z
−2 + a3z

−3

b1z−1 + b2z−2 + b3z−3

(3.10)

It is clear that the inverse transfer function is non-causal. A method which

can be used to approximate a causal inverse is to add a constant term to the

numerator before inverting it as shown below.

P ∗(z−1) =
1 + b1z

−1 + b2z
−2 + b3z

−3

1 + a1z−1 + a2z−2 + a3z−3

P ∗−1(z−1) =
1 + a1z

−1 + a2z
−2 + a3z

−3

1 + b1z−1 + b2z−2 + b3z−3

(3.11)

Looking at the bode plot below, it can be seen that the approximated inverse

magnitude plot is identical to the real inverse except for a gain shift. The

phase plot also matches very closely up to the cut-off of the plant. This does

not create a problem since the stability condition 2.11 involves the infinity

norm of the system shown in Equation 2.11.
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Figure 3.12: Comparison between approximate and real inverse of P

The correct gain K can be calculated by equating the approximate inverse

and the exact inverse.

K
1 + a1z

−1 + a2z
−2 + a3z

−3

1 + b1z−1 + b2z−2 + b3z−3
≈ 1 + a1z

−1 + a2z
−2 + a3z

−3

b1z−1 + b2z−2 + b3z−3
(3.12)

Which results in the following value for K at steady state:

K =
1 + b1 + b2 + b3
b1 + b2 + b3

(3.13)

After adjusting for the correct gain the approximate inverse is very close to
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the real inverse with a percent error of much less than 1% when comparing

the two infinity norms.
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Figure 3.13: Approximate and real inverse of P after gain adjustment

After finding a way to approximate the plant inverse, a causal learning filter

can be achieved using L = QP−1
approx. The next step is to choose a low

pass filter for Q. Using Equation 2.11 a cut-off frequency of 300 Hz gives

a conservative infinity norm convergence value of 0.20. The convergence

value when using the real plant inverse was found to be the exact same as

with the approximate inverse. This was expected since the magnitude of

both matched very well. The following figure shows the bode plot of the

convergence criteria in Equation 2.11. The value of 0.20 occurs around the
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470 Hz frequency. The cut off frequency of Q must be chosen to balance the

amount of tracking error as well as the gain of the filter L. A higher cut off

frequency results in a higher gain for the learning filter.

Figure 3.14: Bode plot of stability criteria in eqn. 2.11

ILC Simulations

MATLAB Simulink was used to test the controller and plant model before

implementing them on the real system. The simulation was matched to the

experimental system as close as possible by including a saturation term at

the input of the plant model as well as a delay going to the Q filter. Three

sine waves with one degree amplitudes were used as position references for

testing. The RMS tracking error was then calculated and compared to the

performance when only using a PID controller.

The results of the simulations are displayed in Table 3.2 below. As can be seen
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the tracking error when using the ILC was considerably reduced compared

to only using a PID controller. The error was reduced by 93% when tracking

the 5 Hz signal. By looking at the error in Figure 3.16 it’s clear that the error

initially starts large and then converges to the final value. Using a higher cut

off for the Q filter reduced the tracking error further during the simulations,

but resulted in an unstable system when applied to the experimental setup.

This is most likely a result of modelling errors or non-linear behaviour of the

real system.

Frequency
PID RMS
Error µrad

PID
Peak-to-Peak
Error µrad

ILC RMS
Error µrad

ILC
Peak-to-Peak
Error µrad

5 Hz 614.72 1813.5 43.05 119.52

10 Hz 775.91 2271.7 105.85 299.26

20 Hz 807.08 2304.8 215.07 609.95

Table 3.2: Tracking error comparison between PID and PID+ILC
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Figure 3.15: Input and Output of ILC simulation
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Figure 3.16: Tracking Error of ILC Controller at 20Hz

3.2.2 RST Controller

Design of the RST controller is done in the frequency domain using pole

placement techniques. The closed loop poles of the controller are specified to

achieve the required modulus, gain and phase margins. The polynomial P in

Equation 2.16 corresponds to the desired closed loop denominator. Chapter

2 introduced the theory of designing an RST controller.

The first step is to choose dominant closed loop poles that will set the desired

cut off frequency of the controller while also staying within the stability

requirements of the system. Several dominant frequencies were tested with

the best performance achieved by placing the dominant complex conjugate

poles at 300Hz with a damping ratio of 0.8. This allows the system to have

a fairly wide bandwidth which is useful for tracking higher frequency signals.

This also gives a fairly damped response with little overshoot which helps

in tracking as well. The fixed part of the S polynomial (HS eqn. 2.20)

was chosen as an integrator to reduce the steady state error and the T term
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was selected as a simple gain to ensure the correct steady state value. The

resulting maximum of the sensitivity function of this controller was found

to be 30.1dB which is far larger than the recommended value of 6dB. The

modulus margin is the inverse of the maximum of the output sensitivity

function (Sy) and directly affects the phase and gain margins of the overall

system, this relationship can be easily seen in Figure 2.6. As expected the

corresponding gain and phase margins of 0.27dB and 1.86◦are well outside

the traditionally recommended values of ≈10dB and ≥30◦.
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Figure 3.17: Output Sensitivity function of two pole controller
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Figure 3.18: Gain and Phase margins of two pole controller

Since the maximum of the Sy function occurs at a high frequency it is possible

to add real poles at the frequency where the maximum value is located.

Adding two real poles at z=0.28 and 0.3 reduces the value of the maximum

of Sy down to 22.4dB and shifts the maximum to a lower frequency. Landau

in [1] recommends to choose real pole locations below 0.5. This ensures that

they have little affect on the system dynamics since they are much faster

poles than the dominant ones.

After the two auxiliary real poles have been added, the maximum of Sy has

shifted close to the attenuation frequency meaning that a notch filter can be

used to reduce the value further. Two notch filters: one at 2800Hz and one
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at 1703Hz were added to the system to increase the modulus margin further.

These filters can be added to the closed loop system by using Equation 2.22

and adding the poles of the filters to the desired closed loop polynomial P .

Using the Diophantine equation the polynomials R and S can be calculated

to give the desired closed loop polynomial P . The resulting system has a

maximum of Sy of 4.1dB, a gain margin of 9.44dB and a phase margin of

40.6◦. Figures 3.19 and 3.20 show the final sensitivity function and open loop

bode plot.
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Figure 3.19: Output Sensitivity function of final RST controller
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Figure 3.20: Gain and Phase margins of final RST controller

The final closed loop pole locations can be seen in Figure 3.21. The closed

loop frequency spectrum of the system is mostly determined by the dominant

pole locations chosen at the beginning. The extra poles are only used to

improve the stability of the system and have little effect on the frequency

response of the closed loop system. There are an extra two poles at the origin

since the characteristic polynomial must have 10 poles for the Diophantine

equation to be solved for this system [1].
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Figure 3.21: Closed loop poles of RST controller

A second RST controller was implemented which had 200 Hz dominant poles

instead of 300 Hz as in the previous system, but used a tracking polynomial

for T as shown in Section 2.3 Equation 2.24. For this controller the 300

Hz dominant poles from the first controller had to be reduced to 200 Hz

for the controller to be stable in the real system with the addition of the T

polynomial. Otherwise, the controller was designed in the same manner as

the 300 Hz dominant pole one.

RST Controller Simulations

The RST controller was simulated using MATLAB Simulink with the same

test signals as the ILC. Three sine waves of 1◦amplitude were used as a

reference: one at 5 Hz, 10 Hz, and 20 Hz. The performance of the RST

controller was then compared to the performance of the basic PID controller.

The performance of the RST was much better than the PID controller and

was comparable to the Iterative Learning Controller.

The addition of the T polynomial did not improve the results when compared

to the 300 Hz RST controller. This is most likely because the dominant poles
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in the controller with the T polynomial had to be reduced to 200 Hz to keep

the experimental system stable.

Frequency
PID RMS
Error µrad

RST RMS
Error µrad

RST T
poly RMS
Error µrad

5 Hz 614.72 23.35 38.65

10 Hz 775.91 47.86 76.06

20 Hz 807.08 90.69 142.47

Table 3.3: RMS tracking error comparison between PID and RST controller

Frequency
PID

Peak-to-Peak
Error µrad

RST
Peak-to-Peak
Error µrad

RST T poly
Peak-to-Peak
Error µrad

5 Hz 1813.5 63.41 109.37

10 Hz 2271.7 124.79 215.30

20 Hz 2304.8 233.51 403.30

Table 3.4: Peak-to-Peak tracking error comparison between PID and RST
controller
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Figure 3.22: Input and Output of RST simulation
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Figure 3.23: Tracking Error of RST Controller at 20Hz

3.2.3 Adaptive Feed Forward Cancellation

Design of AFC controllers is much simpler than the previous ILC and RST

controllers since there are only two parameters to adjust: the resonant fre-

quency ωn and the phase advance ϕn. The choice of ωn corresponds to the

desired frequency of the disturbance that must be rejected. This is normally

done by examining the FFT of the error signal and selecting the largest

peaks to be attenuated. Typically there will be one large error at an initial

frequency and then the next multiples of that frequency will be a slightly

smaller value. The phase advance parameter can be set to the phase of the

closed loop controller (without the AFC filters) at ω = ωn using Equation

2.31.

If the frequencies of the disturbance are known ahead of time then all the
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AFC filters can be designed at once. Sometimes the addition of one AFC

filter may change the major frequencies in the error signal. In this case it is

useful to add one AFC filter at a time while checking the FFT of the error

after each pass and deciding which frequency the next resonant filter should

be placed at. Before any AFC filters can be designed, the closed loop bode

plot when only a PID controller is used must be computed. Using the closed

loop bode plot, the required phase advances of each AFC resonator can be

selected.
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Figure 3.24: Closed Loop Bode plot of plant and PID
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AFC Simulation

The desired signal to track is a 20 Hz 1◦amplitude sine wave. Using Simulink

the tracking error frequency spectrum using just a PID controller was simu-

lated. As was expected the largest error is at 20 Hz. Figure 3.25 shows the

open loop system with only one AFC filter enabled at 20 Hz. The phase ad-

vance parameter at this frequency was chosen as 0. This filter was designed

by converting the continuous filter in Equation 2.30 to its discrete form using

MATLAB.
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Using one AFC filter was enough to completely remove the tracking error at
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20 Hz. It took around 1.5 seconds for the error to be reduced to a steady

state RMS value of 1.5e-10 rad. The AFC controller also had comparable

performance for the 5 Hz and 10 Hz sine waves.
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Figure 3.26: Error signal when tracking a 20 Hz reference

The experimental results are not expected to perform as well as the simula-

tions because there are usually many more harmonics that must be removed

in the real system.

3.3 Conclusions

The AFC controller performed the best of all the other systems since a si-

nusoidal reference was used for tracking. Because it was a simulation with

no added noise or disturbances, the AFC was able reduce the tracking error

to essentially zero. The RST controller was also able to get the second best

results since there were no uncertainties in the mathematical model affecting

the results in the simulation. Since the PID controller was tuned on the real

system then implemented on the simulation it performed the worst of all the
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controllers. The ILC performed better than the PID but had an RMS error

which was double of the RST controller.
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Chapter 4

Experimental Results and

Comparisons

The following chapter will outline the experimental results obtained with the

different controllers and compare them to their simulations. The experimen-

tal setup as well as some implementation details will be outlined. Finally the

different controllers will be compared with each other and a combination of

the ILC and AFC controller will be tested as well.

4.1 Experimental Set-up

A Polaris Controller and Amplifier combination was used to control the two

axis laser scanning system. The laser scanning system consists of two Canon

Galvanometers mounted on an aluminum block. Figure 4.1 shows this ex-

perimental set-up. The Canon galvanometers have a range of ±0.35 rad for

a total range of 0.7 rad. The actuators have a built-in optical encoder with

a resolution of 0.77 µrad.
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Figure 4.1: Controller, amplifiers and galvanometer set-up

The Polaris Controller is responsible for calculating trajectories and sending

position, velocity and acceleration set points to the Polaris PWM amplifier.

The amplifier contains an FPGA which has a custom made SPU (Servo Pro-

cessing Unit) which is capable of double floating point addition, subtraction,

multiplication as well as other common CPU operations like branching and

comparing. The FPGA also supports up to eight 15th order real time dig-

ital IIR filter blocks which can be programmed with any coefficients. All

controllers are implemented using a custom assembly language on the SPU.

Simple controllers such as the PID are implemented using a difference equa-

tion in assembly code and the more complicated ones such as the AFC, ILC,

and RST controllers are implemented using the dedicated hardware filters.

The filters can be easily designed using MATLAB or Octave and copied onto

the SPU. Since the SPU supports double floating point precision, filter coef-

ficient quantization is not an issue.

The following experimental results are based on using only one of the gal-
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vanometers.

4.2 Baseline PID Controller Experimental Re-

sults

The first controller tested was the standard PID controller. This controller

was designed using Table 2.1 from Chapter 2 and was hand tuned by adjust-

ing the PID gains in real time until the desired performances were achieved.

The goal with the PID tuning was to achieve the fastest possible response

with little overshoot and quick settling time. These general requirements

would result in a fast controller which allowed good tracking results. The

proportional, integral and derivative gains were set as high as possible while

keeping the system stable.

One of the draw backs of the PID implemented in the hardware controller

was that the derivative term was not low pass filtered. A high derivative gain

was used to keep the system from oscillating but the high gain resulted in a

fairly noisy drive signal. The derivative gain was kept high since the tracking

was still better with it than without it.

The same tests performed in the simulations were repeated on the experi-

mental system. Three 1
◦
sine waves were used as reference signals: a 5 Hz,

10 Hz and 20 Hz frequency wave was used. The following table shows the

experimental results. The peak to peak value was calculated by subtracting

the absolute minimum value from the absolute maximum value; therefore it

corresponds to the worst error in the data.
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Frequency
PID Sim

RMS Error
µrad

PID Sim
Peak-to-Peak
Error µrad

PID RMS
Error µrad

PID
Peak-to-Peak
Error µrad

5 Hz 614.72 1813.5 464.25 2086.7

10 Hz 775.91 2271.7 576.13 2021.8

20 Hz 807.08 2304.8 798.80 2182.7

Table 4.1: Tracking error of PID controller

The experimental values are considerably better than the simulated results

with a percentage improvement of 24%, 25% and 1% for the 5 Hz, 10 Hz and

20 Hz signals respectively. The differences are most likely due to plant mod-

elling errors in the simulation. The PID tuning in the simulation was found

by tuning the real system and then applying that tuning to the simulation.

Since both the simulation and real system used the same PID gains, it shows

that there are some unmodelled dynamics in the simulation even though the

model had a 98% fit. Figure 4.2 shows the experimental tracking error when

using a PID controller.
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Figure 4.2: Error signal when tracking a 20 Hz reference with PID

The error signal does not appear to be a clean sinusoidal wave like the simu-
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lated error. This is most likely due to the noise added by the derivative term

and the nonlinearities of the galvanometer.

4.3 ILC Experimental Results

The Iterative Learning Controller designed and simulated in Chapter 3 was

implemented on the real galvanometer system. The ILC performed con-

siderably better than the experimental PID but not as good as the ILC

simulations. Table 4.2 below shows the experimental results.

Frequency
ILC Sim

RMS Error
µrad

ILC Sim
Peak-to-Peak
Error µrad

ILC RMS
Error µrad

ILC
Peak-to-Peak
Error µrad

5 Hz 43.05 119.52 139.58 1254.2

10 Hz 105.85 299.26 175.39 1522.1

20 Hz 215.07 609.95 367.87 2099.1

Table 4.2: Tracking error of ILC controller

The experimental results of the ILC controller were 224%, 66% and 71%

worse than the simulated values. This is most likely due to the increased

noise in the real system that did not get completely removed as well as

errors in the learning filter L. The Q filter bandwidth also has a major affect

on the error since the system cannot learn past the cut off frequency of 300

Hz. A Q filter with a 400 Hz cut off was tested in simulations and showed

to have considerably better results but it was not stable when applied to the

real system.

Looking at the error plots of the simulated and experimental tests it can be

seen that there are many more harmonics in the experimental system. The

simulation had a much cleaner error signal which was a pure 20 Hz oscillation

at steady state. Further differences between the two experiments may be due
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to the fact that the inverse is approximated using a plant model which could

have errors, this would compound any errors when designing the learning

filter. Since the ILC controller should be robust to modelling uncertainties

it still considerably improved the performance of the galvanometer system

when comparing it to using only a PID controller.
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Figure 4.3: Error signal when tracking a 20 Hz reference with ILC

4.4 RST Controller Experimental Results

The next controllers implemented were the two RST controllers simulated in

Chapter 3. The first one had dominant poles at 300 Hz with T set as a gain

like in Equation 2.23 and the second controller had dominant poles at 200

Hz and T was set as a polynomial as shown in Equation 2.24.

The previous tests in Sections 4.2 and 4.3 have shown that there are some

modelling uncertainties which have affected the performance of the previous

controllers. Of all the controllers used in this work, the RST is the most

dependent on an accurate model. Table 4.3 shows the results when using
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the first RST controller with 300 Hz dominant poles. Because of the model

uncertainties it performed the worst out of all controllers tested.

Frequency
RST Sim

RMS Error
µrad

RST Sim
Peak-to-Peak
Error µrad

RST RMS
Error µrad

RST
Peak-to-Peak
Error µrad

5 Hz 23.35 63.41 2399.4 7138.2

10 Hz 47.86 124.79 4792.2 13772.0

20 Hz 90.69 233.51 9536.6 27078.6

Table 4.3: Tracking error of RST controller

Since the RST controller is a pole placement controller, the location of those

poles depend heavily on dynamics of the real system. It appears that the

resulting closed loop polynomial is not close to the simulated system.

Looking at Figure 4.4 it can be seen that there is a significant amount of

phase delay in the signal which is partly why there is such a large tracking

error. Delaying the reference to counteract the delay is possible but the

galvanometer is normally used in coordinated motion with several other axes.

To correctly coordinate the delay necessary would be very difficult. The

RST controller can be modified to include two undamped complex zeros at

the resonant frequency as part of the fixed part HS (eqn. 2.19) to act the

same way as the AFC controller, but when this was added the resulting RST

controller was unstable.
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Figure 4.4: Input and output signal at 20 Hz with RST
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Figure 4.5: Error signal when tracking a 20 Hz reference with RST

The second RST controller with the T polynomial performed significantly

better than the 300 Hz RST controller since it removed the majority of the

phase delay as can be seen in Figure 4.6. It also had a smaller RMS error

than the baseline PID controller, but the higher peak-to-peak error because

of the overshoot at the top of each sine wave.
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Frequency
RST Sim

RMS Error
µrad

RST Sim
Peak-to-Peak
Error µrad

RST RMS
Error µrad

RST
Peak-to-Peak
Error µrad

5 Hz 38.65 109.37 179.13 2205.6

10 Hz 76.06 215.30 374.63 3128.0

20 Hz 142.47 403.30 571.05 5931.9

Table 4.4: Tracking error of RST with T polynomial controller
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Figure 4.6: Input and output signal at 20 Hz with RST T Poly

The error plot of the RST controller with T polynomial is shown below. The

galvanometer position crosses the reference signal and overshoots a the peak

of the sine wave which causes the sudden drop in the tracking error.
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Figure 4.7: Error signal when tracking a 20 Hz reference with RST T Poly

4.5 AFC Controller Experimental Results

The AFC controller used for the experiments was a little different than the

one used for the simulations in Chapter 3. In the simulations only one AFC

filter was necessary since there was no noise or harmonics in the system.

The experimental AFC used four AFC filters each with a gain of 300 and a

phase advance of 0. The phase of the closed loop system was small at the

frequencies of interest therefore ϕn could be set to zero using Equation 2.31.

The centre frequency was chosen by sending the reference signal without any

AFC filters present and observing the FFT plot of the error. The frequency

of the largest peak was chosen as the frequency of the first AFC filter. The

frequencies of the other filters were also chosen in the same way; the reference

was sent and the FFT of the error was measured after each AFC filter was

added.

The large gain was chosen so that each AFC filter worked in a broader fre-

quency band as explained in Section 2.3. Each input signal had a different
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set of AFC filters. The final frequencies for the AFC filters were set as 5 Hz,

15 Hz, 20 Hz and 25 Hz for the 5 Hz input signal; 10 Hz, 20 Hz, 30 Hz and

50 Hz for the 10 Hz signal; 20 Hz, 60 Hz, 100 Hz and 140 Hz for the 20 Hz

input signal. In all cases the filter frequencies chosen were multiples of the

input signal.

The following table compares the experimental and simulated values of the

AFC controllers. For the simulation only one AFC filter was necessary since

there was no noise or other harmonics in the error, but all four were used in

the experimental tests.

Frequency
AFC Sim

RMS Error
µrad

AFC Sim
Peak-to-Peak
Error µrad

AFC RMS
Error µrad

AFC
Peak-to-Peak
Error µrad

5 Hz 2.057e-11 1.638e-10 42.58 494.81

10 Hz 9.402e-12 2.935e-11 56.51 535.77

20 Hz 5.059e-12 1.504e-11 46.66 409.74

Table 4.5: Tracking error of AFC controller

Looking at Figure 4.8 there still seems to be large peaks at around 20 Hz

intervals which were attenuated but not completely removed.
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Figure 4.8: Error signal when tracking a 20 Hz reference with AFC
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The experimental AFC filter worked very well but was not nearly as accurate

as the simulation. This is due to the increased noise and harmonics in the

real system that were not present in the simulations. Theoretically one could

add more AFC filters to the real system until all noise and harmonics were

removed but this would not practically be possible because of the space

limitations for hardware filters in the FPGA.

4.6 AFC and ILC Combined Experimental

Results

After performing the ILC experiment there still was a very periodic error

signal present. This suggests combining the ILC controller with some AFC

filters to remove the resulting periodic error. Only three AFC filters with

much smaller gains than the pure AFC controller were used. The addition

of a fourth AFC filter made the system unstable; therefore it was not used.

The results using this combination are shown in Table 4.6 below.

Frequency
ILC+AFC
RMS Error

µrad

ILC+AFC
Peak-to-Peak
Error µrad

ILC RMS
Error µrad

ILC
Peak-to-Peak
Error µrad

5 Hz 115.89 1258.5 139.58 1254.2

10 Hz 160.22 1209.2 175.39 1522.1

20 Hz 186.22 1173.4 367.87 2099.1

Table 4.6: Tracking error of ILC+AFC controller

As expected, the addition of the AFC filters improved the tracking response

of the purely ILC controller. For the 5 Hz and 10 Hz signals there was not a

very large improvement but there was an improvement of 49% for the 20 Hz

signal.



71

The large 20 Hz peaks present in Figure 4.3 of the ILC controller were re-

duced by 54% with the addition of the AFC filter, which coincides with the

reduction of the RMS and Peak-to-Peak errors.
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Figure 4.9: Error signal when tracking a 20 Hz reference with ILC+AFC

The results of the combined ILC and AFC controller were considerably better

than using only an ILC controller, but it did not improve upon the perfor-

mance of only using the AFC filters by themselves.

4.7 Comparisons and Conclusions

With the exception of the PID, all of the experimental performances were

worse than their simulated performances. By looking at Table 4.7 it can be

seen that the controllers which were heavily dependent on a model of the

galvanometer performed worse than controllers which could be tuned online.

In the simulated system the AFC performed the best which was also the case

for the experimental controller.
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Frequency
PID RMS
Error µrad

AFC RMS
Error µrad

ILC RMS
Error µrad

ILC+AFC
RMS Error

µrad

RST T
Poly RMS
Error µrad

5 Hz 464.25 42.58 139.58 115.89 179.13

10 Hz 576.13 56.51 175.39 160.22 374.63

20 Hz 798.80 46.66 367.87 186.22 571.05

Table 4.7: Tracking error comparison of the different controllers

Although there were modelling errors the ILC was still able to perform bet-

ter than the PID and RST controllers. This shows the power of learning

controllers which can adapt to meet the requirements of the real system.

The addition of the AFC filters further improved the performance of the ILC

controller. The ILC controller seemed to make the error signal contain more

harmonics when compared to the PID only controller which made it harder

for the AFC filters to completely remove the rest of the error. The AFC

controller worked the best since the user was able to systematically remove

the maximum errors in the system; but there was still noise and harmonics

in the error which could not be completely removed since there were only

four AFC filters available.
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Chapter 5

Conclusion and Future Work

In this thesis several controllers were simulated and then implemented onto

an FPGA processor. Their performances were compared with each other

and with their expected simulated results. All controllers except the PID

performed better in the simulation due to system noise and modelling uncer-

tainties that were not represented in the model.

Almost all controllers were able to improve on the basic PID and the con-

trollers which were not fully dependent on an accurate galvanometer model

performed the best. The AFC controller had the best results since it was pos-

sible to systematically remove disturbances in the system, essentially tuning

it to the requirements of the trajectory. The ILC was the second best since

it was a learning controller and was not completely reliant on the system

model. The ILC controller was able to improve on the error with each it-

eration. The RST controller had one of the best simulated performances

but the worst experimental performance. Since the RST controller is a pole

placement controller, the accuracy of the model is very important for good

results.
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5.1 Future Work

There are some possibilities for future work to implement these algorithms on

a two axis galvanometer system and test the final combined path. The next

step would be to use all the algorithms on a four axis CNC laser machine,

then examine the overall performance of all the four axes working in unison.

Although the galvanometer model had a very good fit to the experimental

data it would be interesting to know if using a different modelling technique

could improve the performance of the RST controller. Or if reducing the noise

in the system further by using a band limited differentiator could improve

the results of the other controllers.
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