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ABSTRACT

Cloud computing is an emerging trend where clients are billed for services on a

pay-per-use basis. Service level agreements define the formal negotiations between

the clients and the service providers on common metrics such as processing power,

memory and bandwidth. In the case of service level agreement violations, the service

provider is penalised. From service provider’s point of view, providing cloud services

efficiently within the negotiated metrics is an important problem. Particularly, in

large-scale data center settings, manual administration for resource allocation is not

a feasible option. Service providers aim to maximize resource utilization in the data

center, as well as, avoiding service level agreement violations. On the other hand,

from the client’s point of view, the cloud must continuously ensure enough resources

to the changing workloads of hosted application environments and services. Therefore,

an autonomous cloud manager that is capable of dynamically allocating resources in

order to satisfy both the client and the service provider’s requirements emerges as a

necessity.

In this thesis, we focus on the autonomous resource allocation in cloud comput-

ing environments. A distributed resource consolidation manager for clouds, called

IMPROMPTU, was introduced in our previous studies. IMPROMPTU adopts a

threshold based reactive design where each unique physical machine is coupled with

an autonomous node agent that manages resource consolidation independently from

the rest of the autonomous node agents. In our previous studies, IMPROMPTU

demonstrated the viability of Multiple Criteria Decision Analysis (MCDA) to pro-

vide resource consolidation management that simultaneously achieves lower numbers
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of reconfiguration events and service level agreement violations under the manage-

ment of three well-known outranking-based methods called PROMETHEE II, ELEC-

TRE III and PAMSSEM II. The interesting question of whether more efficient single

synthesizing criterion and outranking based MCDA methods exist was left open for

research. This thesis addresses these limitations by analysing the capabilities of IM-

PROMPTU using a comprehensive set of single synthesizing criterion and outranking

based MCDA methods in the context of dynamic resource allocation. The perfor-

mances of PROMETHEE II, ELECTRE III, PAMSSEM II, REGIME, ORESTE,

QUALIFEX, AHP and SMART are investigated by in-depth analysis of simulation

results. Most importantly, the question of what denotes the properties of good MCDA

methods for this problem domain is answered.
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Chapter 1

Introduction

In 1961, John McCarthy declared publicly that computer time-sharing technology

may possibly result in a future where computational resources and applications could

be billed as utility, like water and electricity, in a public speech to celebrate MIT’s

centennial [37]. The idea was clearly ahead of its time due to the insufficient software,

hardware and network technologies but it surely provided a glimpse into the future.

Before skipping ahead to investigate the current status of cloud computing, in order

to put matters in perspective, it is beneficial to provide a definition and working

examples of distributed systems, as well as, the evolution of distributed computing

systems by investigating milestone achievements in hardware, software and network

technologies.

In a general sense, distributed computing systems refer to the multiple computa-

tional units that communicate over a network to achieve a common goal [32,66]. The

concept is especially useful and becomes more meaningful when the problem at hand

is large and computational complex. Naturally, a task is broken into manageable mu-

tually exclusive sub-tasks to be processed concurrently by a number of computational

entities in the system. The system appears as a single entity to the end user that

provides a level of abstraction. Although, a former description is not present [31,66],

the two defining properties of distributed systems are: 1) Each computational unit

in the distributed system has its own local memory [4,21,31,47,54], and 2) the units

are communicated and coordinated by the means of message parsing [4, 31,54].

The architecture of distributed system consists of a server and multiple clients.

The server typically employs a job dispatcher which keeps track of the progress of the

task. In addition, the server is responsible for generating work packages and commu-

nicating them to the clients. On the other hand, the clients carry out the required
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tasks and return the result to the server. Let us investigate a distributed system

by examining distributed.net’s RC5-72 project [20]. The challenge is to decrypt an

encrypted English message with a key of length 272. The servers starts from the key

at zero and waits for a client to connect. Once a client connects and communicates

the work package request to the server, it receives a work package that consists of the

pair : (key + range of current key). The client attempts to decrypt the message with

the given keys in the range and returns the result of completed work package to the

server. The server checks whether the decrypted message is English and reports the

key as the answer. In the case of failure, the key range is incremented and sent out

to clients until all the keys are exhausted.

The concept of executing mutually exclusive tasks by communicating via message

parsing in order to achieve a common goal dates back to 1960s where a large number

of operating systems were designed based on the idea of time-sharing [4]. During this

era, voice and data communication was established by allocated, end to end circuit

switched networks. ARPANET, the predecessor of internet, was the first system to

implement packet switching functionality in order to connect geographically separated

computer systems. The lack of sufficient network technologies and protocols led to

the development of current communication technologies such as Ethernet, TCP/IP

and FTP in 1970s [1]. In addition, the most successful application of ARPANET

was the introduction of e-mail in the early 1970s which can be considered the as

one of the first large scale distributed applications . In the following decade, the

connectivity of local area networks (LANs) and wide area networks (WANs) made

possible by the developments in high speed communication technologies. This lead

to global distributed systems such as FidoNet and Usenet.

The popularity of Internet rapidly increased in the 1990s by connecting millions

of users worldwide. Internet is the largest distributed system where despite the geo-

graphical differences millions of private, public, academic, business and government

networks are connected in a global scope. In his 1965 paper, Intel co-founder Gordon

E. Moore stated that the computer chip performance would double approximately ev-

ery 18 months [41]. Although, this forecast remained valid for a number of decades,

currently, the amount of computation that can be carried out by a single computa-

tional unit is not likely to enhance dramatically over the course of next few years [45].

This is mainly due to the physical limits being pushed in the semiconductor tech-

nology and the ability to cool the over heating chips to operational levels [38]. In

attempts to overcome this limitation, the CPU manufacturers turned into developing
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multi core technologies. However, the number of cores within a computational unit is

not linearly associated with the processing power of the CPU as similar bottlenecks

mentioned above remain in place. In all likelihood of these limits being lifted by new

paradigms and technologies, other bottlenecks such as the bus speed would still be

present [45]. Thanks to the communication technologies provided by the Internet, the

usage of distributed systems are essential in order to carry out computational tasks

faster.

An average computer user only uses a fraction of the available computational

power at hand when performing tasks such as web browsing and text editing. This,

in turn, leaves a vast proportion of computational power unused considering the ma-

chines being connected via the Internet. A few projects attempt to harvest this

computational power in order to execute immense jobs such as Folding@home and

SETI@home. Folding@home aims to find a cure for diseases such as Parkinson’s,

Alzheimer’s, Huntington’s and many cancers by trying to reveal the mystery sur-

rounding protein folding [28]. Whereas, SETI@home aims to process radio signals

gathered from outer space in order to search for extra terrestrial life [64]. The volun-

teer everyday computer users can install a client on their machine which asks for jobs

to be processed when the screen saver comes on. These two and many other similar

projects are solid examples where distributed computing is useful and can relate to

other scientific fields.

The usage of distributed system apply to a various problem domains with the con-

cept of cloud computing being the most popularly emerging trend. Cloud computing

applies the idea of utility computing where the computational power is billed on a

pay-per-use basis. This new paradigm uses an already existing concept of virtual-

ization by converting physical resources such as processors and storage into virtually

scalable and shareable resources by using the Internet [39]. In the next section, we

are going to provide a detailed description of cloud computing technologies, highlight

the underlying architecture, explore the resource allocation problem that forms the

basis of this thesis.

1.1 Motivation and Problem Description

Cloud computing provides an abstraction between the end users and the infrastruc-

ture by provisioning the underlying computational resources. This, in turn, makes it

possible to bill customers on a pay per use basis in a transparent way. The services
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provided by this technology can be summarized in three major categories: Infras-

tructure as a service (IaaS), platform as a service (PaaS), and software as a service

(SaaS) [39].

Infrastructure as a service (IaaS), provides the lowest level of abstraction and the

most customizable services by leasing the computing resources and storage. Typi-

cally, users run a hypervisor such as Xen or KVM in order to manage the virtual

machines. The hypervisor can increase or decrease the reserved resources to match

the requirements of the applications hosted by the virtual machine. It is important

to note that, the users are responsible for installing an operating system of choice and

their entire application software on the virtual machines. This, in turn, enables the

cloud environment to be fully customizable to fit the needs of the user. Generally,

IaaS is billed as a utility where the cost reflects the amount of resources used [39].

The second level of the cloud computing service stack is platform as a service

(PaaS). In this model, the cloud service providers offer a bundle of hardware, oper-

ating system, programming tools, database and web server. The users can run or

develop their solutions without the added cost and complexity of the lower level ar-

chitecture. As in IaaS, the hypervisors can manage the assigned resources to fit the

requirements of the active platform [39].

Software as a service (SaaS) lies at the top level of the cloud computing services.

In this model, the cloud service providers offer and manage the infrastructure to run

a specific application. This, in turn, saves the user from maintaining the software as

well as the hardware necessary to run the computationally heavy applications. In the

case of computationally intensive applications, load balancer are used to distribute

the work load between numerous virtual machines. Software as a service is usually

billed as a monthly, or a yearly flat rate service [39].

In contrast to the advantages provided by the cloud computing, many additional

problems and complexities are also introduced. At first glance, the most obvious

challenges can be seen as communication and coordination in the data center. All of

these being valid challenges, an equally interesting and complex problem lies in the

resource management for the hosted virtual machines. In an IaaS setting, the data

center is constantly faced with dynamic, open and accessible environments, in which,

the conditions change rapidly, unpredictably and in a continuous manner [40,43].

Although not being a new paradigm, virtiualization is an essential ingredient in

cloud computing [29]. Virtualization provides the ability to stop, start and migrate

virtual machines within the data center which, in turn, facilitates flexible resource
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consolidation management in clouds. The ability to migrate virtual machines with

little to no interruption to their on going services provides means to dynamically

configure the distribution of computational resources. As a direct result, in the case

where the user requires an increase to the resources assigned to their software envi-

ronments, the service provider can relocate the virtual machines in the data center

to satisfy the computational needs. In addition, the service provider can downgrade

users resource allocation by hosting the software environment on a lesser performance

hardware in the data center. Finally, the virtual machines can be migrated in order

to perform a scheduled maintenance with no interruption.

Service level agreements (SLAs) , in a cloud setting, define the formal negotia-

tions between the user and the service providers on common metrics such as available

memory, processing power and bandwidth. In the case of violation of SLAs, the

service providers are generally faced with a fine. In this manner, providing cloud

computing services within the negotiated metrics is crucial for the service providers.

In a setting where the resource requirements and conditions change rapidly, unpre-

dictably and continuously, dynamic resource allocation emerges as a critical necessity.

In the current state of cloud computing, resource allocation process is done statically

where a system administrator assigns resource to a software environment. Due to

the low-level and rigid definitions of the SLAs, generally static resource allocation

is deemed acceptable [72]. However, SLAs are likely to evolve towards higher-level

definitions that will abstract lower-level computational resources [72, 82]. In partic-

ular, response time is a valid example to some of the soft metrics that can be used in

high-level SLAs. Response time of a software application can change through out its

life time in the cloud, as the amount of computational resources needed to deliver a

predefined response time may not be available. In addition, static resource allocation

suffers from under-provisioning and over-provisioning. Under-provisioning results in

wasted computational resources, whereas, over-provisioning results in frequent SLA

violations.

Particularly, in large-scale data center settings like clouds, manual administration

for virtual machine provisioning is not a feasible option. The problem at hand requires

finding solutions to the following conflicting goals. The service provider aims to

maximize the resource utilization in the data center in order to make sure that the

available computational resources are used to the maximum possible capacity. From

the client’s point of view, an IaaS layer must continuously ensure enough resources

to the changing workloads so that SLA violations are minimized. Therefore, an
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autonomous IaaS level manager that is capable of dynamically allocating resources

in order to satisfy both the user and the service provider’s requirements emerges a

necessity.

1.2 Scope

In this thesis, we focus on the problem of dynamic resource allocation in cloud comput-

ing environments. In this context, we extend the proposed methodology for reactive

self-management based on multiple criteria decision analysis (MCDA) with eight ad-

ditional methods. It is important to note here that the framework for the dynamic

resource allocation manager was already implemented [80]. However, only a single

MCDA methods was investigated under this framework. This, in turn, left an inter-

esting research area where additional MCDA methods needed to be implemented on

this framework, in order to gain an in depth understanding of the problem.

In various studies, the generally adopted approach is to view the self-management

process as a continuous procedure that runs regardless rather than a function of per-

ceived changes [35, 67, 72]. In the proposed framework, the adaptive behaviour is

defined through the means of reacting to changes in conditions, which, in turn, es-

tablishes a system that is capable of being self-aware. Although, the idea of reactive

behaviour not being a new approach [26,76], the usage of MCDA during the reaction

process is an innovative idea. In particular, the former approaches need to search for

a near-optimal solution in a vast solution space. However, MCDA based reactions

do not suffer from this limitation. The next course of action during a reaction to a

change in the system is carried out through mathematically explicit multiple criteria

aggregation procedures (MCAP) from a pre-defined and finite set of alternative ac-

tions. To best of our knowledge, the variety of MCDA methods investigated in this

thesis have not been previously used in the domain of resource allocation in cloud

computing systems.

The thesis provides a simulation case study regarding distributed dynamic re-

source allocation in clouds using eight MCDA methods on the existing IMPROMPTU

model. IMPROMPTU is a reactive resource consolidation manager where the respon-

sibility of distributing resources are handled by autonomous node agents through the

calculations of virtual machine to physical machine mappings.

In summary, the contributions of this work can be listed as follows:
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• We extend IMPROMPTU with the following eight MCDA methods: SMART,

AHP, ELECTRE III, PROMETHEE II, PAMSSEM II, ORESTE, REGIME

and QUALIFLEX.

• We provide an in-depth analysis of simulation results regarding the performance

measures of newly introduced MCDA methods.

• We answer the question of what denotes the properties of good MCDA methods

for this problem domain.

We provide a comprehensive assessment of the introduced MCDA methods under

IMPROMPTU management by comparing each method under a identical scenarios

in a simulated data cloud data center.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 provides detailed information

on the related work done in the domain of dynamic resource allocation. In Chapter

3, we formally explain the Multi Criteria Decision Making Analysis methods imple-

mented in this thesis. Chapter 4 reviews the already existing resource consolidation

manager called IMPROMTU and the application of the MCDA methods used. In

Chapter 5, the simulation case study is revealed and the collected results are analysed.

Finally, Chapter 6 summarizes this thesis, and outlines future directions.
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Chapter 2

Related Work

The problem of dynamic resource allocation management in data centers have been

investigated mainly under two categories where the new configurations in the data

center are calculated in a centralized or a distributed manner that employ methods

that employ utility functions, queueing models, reinforcement learning, hybrid solu-

tions, decompositional learning, analytic and statistical performance models, genetic

algorithms and rules based approaches. In order to review the evolution of the pro-

posed solutions and research, we are going to divide and analyse the related work

under two sections.

2.1 Centralized Resource Allocation Management

A two-tier generalized design is first proposed approach in the context of non-virtualized

data centers through the usage of utility functions [72]. In this study, the outlined

data center consists of a number of logically separated Application Environments

(AEs). Each AE has a pool of resources that directs the workload to servers via a

router. In addition, AE’s are assigned a service level utility function which reflects the

business value of the service level agreements at the granularity of penalties and goal

terms under specific situations. The utility function consists of two vectors that rep-

resent service level and demand space in the form of service metrics such as response

time and throughput. Local application agents or local decision makers are assigned

to each AE in the lower layer of the two-tier structure adopted by this method. The

local agents are responsible for calculating the utilities of the associated AE and then

communicating these values to a global arbiter. In the second layer of the design, the
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global arbiter tries to find an optimal solution in order to optimize a system goal de-

fined by another utility function. The authors claim that the utility functions provide

a natural way to represent a value, however, expressing a complex systems resource

needs through utility functions is difficult. The need for a carefully designed interface

that extracts utility functions from human input is also mentioned. In our view, the

system suffers from scalability and performance issues. Although, the proposed sys-

tem is feasible for small-scale systems, the configuration times present a bottleneck

in large-scale settings as the global arbiter attempts to optimize a system wide utility

function.

A similar two-tier approach is further adopted with changes regarding the storage

of the collected data and the way the solution space is searched [7]. In [72], a table

driven approach is used to store the resource metrics. This approach has several

limitations that can be listed as follows: (1) the solution is not scalable with respect

to number of application environments, and (2) the solution does not scale well with

respect to the resource dimensions and resource types. Furthermore, building a table

from experimental data is time consuming and computationally expensive. In [7],

the table driven approach is replaced with predictive multi-class queuing network

models. In this setting, each application manager is assigned a work load manager

that is responsible for collecting and storing resource usage data into a database.

In addition, a workload forecaster analyses the collected information in order make

predictions about the future workload intensity levels. These values are transferred to

a global controller algorithm to evaluate the general utility function. The algorithm

starts the redeployment process when a better configuration is found. In contrast

to the previous work done in this area, the local decision modules can compute the

utility values depending on either of the information available before passing them

to the global arbiter. Also, the new configurations calculated and implemented in

fixed time intervals or in a reactive manner. This method differs in the way that

the solution space is computed. Beam search algorithm is used by the global arbiter

when searching for new configurations in attempt to reduce the size of the solution

space.

In [51], a similar two-tier approach is used in the context of autonomic virtual-

ized environments. Each virtual machine has an associated utility function which

reflects the local resource usages. As in the previously adopted architectures, each

utility function of virtual machines is attempted to be maximized by a global utility

function for the virtualized environment. In this context, the authors explore two ap-
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proaches: (1) dynamic CPU priority allocation and (2) the allocation of CPU shares

to the various virtual machines. Priority allocation refers to each virtual machine’s

dispatching priority at the CPU. On the other hand, CPU share allocation refers to

clock cycle ratios or simply percentage of the total processing power allocated for each

virtual machine. Similar to the previous studies, the authors adopt a beam search

method in order to efficiently find an optimal configuration. Finally, in this research,

the only research dimension in consideration is the CPU. In our view, a single crite-

rion is not sufficient in the context of dynamic resource allocation, as other important

criteria such as memory and bandwidth is not considered.

Autonomic Virtual Resource Management for Service Hosting Platforms adopts

the generally used two-tier approach with the following two assumptions: (1) the

number of physical machines within the data center is fixed and that they belong to

the same cluster and (2) the system has the ability to perform live migration [70].

In the first level, an application specific local decision maker is coupled with an

application environment. The local decision maker computes a goal specific utility

function which gives a degree of satisfaction in terms of resource usage. In the top

layer, a global decision module combines the individual utility functions that would

satisfy the business level needs of the service level agreements. Each local decision

maker is treated as a black box by only knowing the utility function of the module

and performance metrics. The global decision module carries out the two following

tasks: (1) determining the virtual machine allocation vectors for each application

layer and (2) placing the selected virtual machines on to the physical machines in

order to minimize the number of machine usage. It is important to note that both

of these problems are expressed through constraint satisfaction problems which are

handled by a constraint solver. The simulation environment consists of a cluster of

four physical machines that can each host two application environments. Therefore,

the proposed solution is not validated in large scale settings.

The work outlined in [35], proposes a dynamic resource manager for homogeneous

clusters, called Entropy. Entropy aims to provide virtual machine to physical ma-

chine mappings that (1) gives enough resources to each virtual machine, and (2) the

configuration uses the minimal number of physical machines. The proposed solution

is different from the previous approaches where utility functions were used. The au-

thors attempt to overcome the scalability issues introduced with the former method

using constraint programming. Constraint programming defines a problem in terms

of a set of logical constraints that needed to be satisfied in order to solve the problem.
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Instead of implementing a custom constraint solver, Choco library is used, which can

solve constraint satisfaction problems where the goal is to minimize or maximize the

value of a single variable [18]. In this context, the problem at hand needs a slight

modification as it has multiple criteria. The task is carried out in two phases in order

fit Choco model. In the first phase, the minimum number of physical machines that

are necessary to host all virtual machines are found. In the second step, an equivalent

configuration that minimizes the reconfiguration time is computed. It is important

to note here that, the time needed to carry out these phases are extremely large

with regards to the problem domain. The authors mentioned that the system cancels

the search if the computation time is longer than one minute. In our view, this is

likely to result in stale virtual machine to physical machine mappings which is not

useful. Although, the proposed solution is elegant and is an improvement over the

previous research, the computational complexity limits the viability of the method.

A strong point of this research is the consideration of the overhead of virtual machine

migrations and placement conflicts.

Online resource allocation using decompositional reinforcement learning was first

suggested in the work of [69]. The proposed solution uses the two-tier architecture

used in the previous studies with the global arbiter trying to maximize the utility

functions of each application environment through reinforcement learning. The main

contribution of this idea is that the proposed model needs no previous knowledge

about the system or performance models. However, reinforcement learning needs

training data set. In this manner, the author employs two strategies of quick learning

and overnight training. It is important to note here that the real time learning is

considerably slower than the change in workloads, which, in turn, causes problems in

the real system. The author claims that the experimental results suggest validity of

the solution with the need of comparison using queue models and a possible hybrid

method.

The authors in [67], investigate two methodologies in order to reduce the immense

computational burden of the utility functions. The proposed architecture is the same

one in [72], where each application environment is coupled with a utility function

at the lower level. A global resource arbiter allocates resources to these application

environments at the higher level. When computing new configurations, the authors

investigate the following two methodologies: (1) a queuing-theoretic performance

model and (2) a model-free reinforcement learning. In the first approach, the system

is modelled using M/M/1 queues where a periodic garbage collection is used. In
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the second approach, the application manager uses an algorithm known as Sarsa(0)

to learn about the long range expected value functions of virtual machines. The

performance of the two proposed methods are virtually identical, and better than

static and random allocations according to the experiments. However, both of these

methods need training times. Furthermore, the authors express concerns regarding

scalability issues as the methods are tested in a small-scale environment.

The work outlined in [72] is continued with focusing on a hybrid reinforcement

learning approach in [68]. In their previous work, the authors inspected both rein-

forcement learning approach and queueing models. In theory, reinforcement learning

approach needs no explicit performance model or management policies but suffers

from training times. On the other hand, the queueing model doesn’t suffer from the

same problems but the workload model is only an estimation of the actual system.

In order to overcome these limitations, the proposed hybrid approach combines the

positive sides of the two methods where reinforcement learning is used to train offline

on the collected data and the queueing model controls the system. Furthermore, re-

inforcement learning is used to approximate non-linear functions instead of look-up

tables for forecasting changes in workload in the data center.

Research outlined in [3], focuses on the problem of resource allocation in virtual-

ized web server environments with respect to quality of service. The authors underline

the following two critical requirements, (1) Short term planning, defined as how to

minimize the service level agreement violations while maximizing resource utilization

and, (2) long term capacity planning, defined as how to plan the size of the data

center in order to maximize the net revenue from service level agreement contracts

while minimizing the cost of ownership. Accordingly, the authors proposed a two

phased solution. In both phases, the system is optimized using performance estima-

tions extracted from analytical queueing models. The ad hoc solver employed in the

optimizer computes configurations for up to 400 virtual machines under 15 seconds.

Although, the authors claim that the configuration time is very efficient and practical

for real online applications, we strongly believe that the workload in real time systems

change more rapidly.

Dynamic placement of virtual machines for managing service level agreement vio-

lations are addressed in [8]. The solution proposes an analytical formula that is used

to classify virtual machines which benefit the most from dynamic migrations. The

formula predicts gain based on read metrics using p-percentile of appropriate distri-

butions. In addition, forecasting predicts the probability distribution of a demand
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in the future intervals. The management algorithm combines series forecasting and

bin packing heuristic to choose virtual machines for migration. This study is further

extended by [46], where a similar analytical model of gain from dynamic reallocation

of virtual machines is examined.

A commercialized computing system called Unity was built using the same gener-

alized architecture [15,19]. Unity was designed at IBM’s J. Watson Research Center

with respect to the principal that the behaviour of a system results from the be-

haviours and relations among its components. The authors claim that for a com-

puting system to be self managing, it has to fulfil the following properties: (1) to

be self-configuring, (2) self-optimizing, (3) self-protecting and (4) self-healing. The

architecture of Unity is examined under these four principals. Unity is composed

of several structured autonomic elements similar to the two-tier approach mentioned

above where application environments are closely monitored by local decision mod-

ules and a global global arbiter computing new possible configurations. The proposed

system uses utility functions during the decision-making process. In addition, the ar-

chitecture uses goal-driven self-assembly to congure itself and the design patterns

that enable self-healing within the system. The system employs a policy repository

element that allows human administrators to input high-level policies for the guid-

ance of the system through a web interface which consists of servlets, portlets and

applets. The interface allows the direction of system wide goals, which, in turn, is

passed down to the underlying components by the manager.

In the paper called Application Performance Management in Virtualized Server

Environments, an algorithm is proposed to address dynamic resource allocation prob-

lem [44]. The system monitors key performance metrics such as CPU utilization and

the collected data triggers migration of virtual machines based on certain thresholds.

The decision making progress is carried out by the proposed algorithm as follows: (1)

A heap is constructed by selecting the virtual machines with the lowest utilization,

(2) The virtual machine with the lowest utilization is moved to the physical machine

with the minimum residual capacity. In case of failure, the heap is iterated using the

next minimum. It is important to not here that the authors do not make a distinc-

tion between the types of virtual machines and assume homogeneity within the data

center. In addition, the proposed solution is only tested within a small scale testing

environment where no forecasting techniques are used.

A virtual-appliance based autonomic provisioning framework for large outsourc-

ing data centers is presented in [74]. The system consists of heterogeneous physical
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machines that are capable of hosting a number of virtual machines. In this manner,

the proposed solution consolidates small server virtual machines on high capacity

physical machines. This, in turn, provides a sense of isolation for the resource de-

manding virtual machines. The proposed solution employs a constrained non-linear

optimization technique to dynamically allocate resource within the date center. In

addition, important factors such as virtualization overhead and reconfiguration delay

is also considered in order to establish realistic model.

Black-box and Gray-box Strategies for Virtual Machine Migration proposes a sys-

tem called Sandpiper in order to monitor and configure virtual machine to physical

machine mappings in data centers [75] using statistic models. In this context, two

main approaches are considered: (1) black-box approach where the proposed solu-

tion is independent of the operating system and the application environment, and

(2) gray-box approach where the statistics regarding the operation system and the

application environment is considered. In the cases where it is not possible to ‘peek

inside’ a virtual machine to collect resource usage statistics, the black-box approach

is used where CPU, network and memory is monitored for each virtual machines.

In addition, the collected usages are aggregated to calculate the resource usages of

physical machines. On the other hand, the gray-box approach employs a light-weight

monitoring daemon installed in each virtual machine that tracks statistics as well as

application logs. In this manner, service level agreements are detected in an explicit

manner, as opposed to the proxy metric in black-box approach. Finally, the profiling

engine produces profiles for each virtual machine based on the collected statistics

which is used for dynamic resource allocation in Sandpiper.

In addition to the usage of utility functions, constraint problems, queueing mod-

els and reinforcement learning, genetic algorithms are widely used in the context of

dynamic resource allocation in clouds [2,5,30,78,84,85]. One such solution is outlined

in [2] where genetic algorithms are grouped for solving server consolidation problem

with item incomparability, bin-item incomparability and capacity constraints. The

authors claim that the method performs particularly well when the conflict graph is

sparse and disjoint.

The study outlined in [30], provides a solution similar to the usage of genetic al-

gorithm proposed in [2]. The system architecture is based on applications that run

in Web 2.0 environment. The authors claim that these type of applications provide

good examples for the resource consolidation and high application availability due

to their long running nature and range of variability. The latter is caused by visitor
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loyalty which forms a constant load on the servers and random events that capture

the high interest of users. The variability in loads are expected in the case of pre-

dictable events such as sports games. On the other hand, media hype or disasters are

unpredictable. Genetic algorithm described in this work is carried out in an iterative

manner by mutations until the solution converges to a near optimal solution. There-

fore, starting with a large initial population is significantly increases the chances of

obtaining an improved configuration. In this manner, each perturbation corresponds

to a virtual machine migration. The process starts with determining the set of over-

loaded nodes. For every such node, a randomly selected virtual machine is migrated

to another physical machine which is under-loaded. If no such node is available, a new

node is created. Every mutated element replaces the existing ones if high application

availability and utilization is achieved. The performance of this method is compared

against a Round-Robin algorithm. Although the proposed system increases applica-

tion availability and establishes better resource utilization, the average time required

for convergence is 4 seconds within a small-scale environment. Therefore, it is safe to

conclude that the method is likely to suffer from feasibility and scalability issues.

Furthermore, the study outlined in [49], proposes a self-adaptive knowledge man-

agement and resource efficient service level agreement enactment for cloud computing

infrastructures. In order to achieve goals of minimizing service level agreement vi-

olations, the authors propose a escalation level approach which divides all possible

actions into five levels. The proposed method starts by dividing resource allocation

problem into smaller sub-problems using a hierarchical approach. These levels are

called escalation levels and refer to the idea that a problem should be handled with

the lowest possible level at all times to increase configuration speed. Every problem

is tried to be solved at the lowest level, in case that this is not possible, a next level

is exploited. The first escalation level tries to change a virtual machine configuration

using local resources such as assigning more processing power to the virtual machine

from the corresponding physical machine. Second level consists of migrating light

weight applications between virtual machines on the same physical machine. Virtual

machine migration is considered in level 3 which is formulated into a binary integer

problem known to be NP-complete. In level 4, physical machines are switched on

and off in order to avoid service level agreement violations. Level 5 is the last resort

where the problematic virtual machines are outsourced to other cloud providers.
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2.2 Distributed Resource Allocation Management

In contrast to using a global arbiter, some solutions adopt dynamic approaches in

which aim to compute new resource allocations in a distributed manner. In the work

outlined in [73], a cooperative distributed control frame work is suggested where each

physical machine can host virtualized application environments. The system assumes

one-time static placement of virtual machines onto physical machines where the goal

is to optimize the CPU share of each virtual machine in order to meet desired response

times. The main problem is decomposed into sub-problems where applications are

mapped to a physical machine via a dispatcher. The physical machines are coupled

with a look ahead controller which manages CPU shares of each virtual machine

under their control where statistical forecasting is used to predict workloads. In this

manner, the suggested distributed framework has the following two properties: (1)

look ahead controllers having a low computational complexity, and (2) the framework

being able to tolerate virtual machine failures.

In [25], a holistic approach for energy management in IaaS clouds is outlined. The

solution proposed in this paper is concerned with the wasted energy when hosting

cloud services due to the idle physical machines. In this manner, dynamic virtual

machine placement is used to conserve energy as well as detecting service level agree-

ment violations by using limit checking. The architecture uses a semi-distributed

approach where the physical machines are arranged in groups each of which has a

group leader. Each physical machine monitors the resource usage and the collected

information is transmitted to the associated group leader which aims to calculate new

virtual machine to physical machine mappings in order to minimize the number of

machine used in a group.

A similar study is conducted in [16] where dynamic resource allocation is carried

out by distributed decisions in cloud environments. In this architecture, each physical

machine is coupled with a capacity and utility agent which is responsible for maximiz-

ing the utility of an associated physical machine. The agent collects resource usage

information from underlying virtual machines via API calls and computes an index

based on the collected data that represents the degree of utility. Each computed index

is transmitted to a distributed capacity agent manager which is responsible for the

following tasks: (1) maintain a database with the indexes, (2) calculate new virtual

machine to physical machine mappings periodically for reallocation.

Dynamic Resource Allocation Using Virtual Machines for Cloud Environment pro-
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poses an architecture where each physical machine is coupled with a Xen hypervi-

sor [77]. In addition, each virtual machine can employ one or more applications of

type Web server, remote desktop, DNS, E-mail and Map-Reduce. The resource usage

of each virtual machine is monitored by Xen and the collected data is processed by an

Usher local node manager which employs a scheduler. The scheduler uses a predictor

to forecast virtual machine resource demands of CPU and memory. In this context,

a hot spot and a cold spot solver is integrated into the module in order to cope with

over and under utilization respectively. Furthermore, a concept of skewness is pro-

posed which helps to blend virtual machines together in order to achieve a overall

utilization among all resource dimensions on a physical machine.

A SLA-compliant Cloud Resource Allocation Framework for N-tier Applications

outlines a distributed three layer architecture called Innkeeper [50]. Innkeeper pro-

vides three brokers, one for each physical host, one for each cluster of hosts and one

for the cloud of clusters. Host Innkeeper either accepts or rejects virtual machine

chosen for placement by checking the local resource usage. The cluster innkeeper is

responsible for rejecting or accepting virtual machines at the cluster level with a given

service level agreement. The cloud innkeeper is the central system that decides on

the placement of virtual machines in a cluster. The placement problem is formulated

through a multi-objective knapsack problem and the authors suggest a range of op-

timization techniques as well as genetic algorithm. Although the design is inherently

scalable, the solution is only tested within a small-scale environment where only CPU

utilization is considered.

IMPROMPTU aims to provide another solution to the problem of resource con-

solidation in computing networks [80,81,83]. The architecture defines two thresholds

for over and under utilization, which is likely to cause service level agreement vi-

olations, and tries to optimize the overall system by trying to keep resource usage

between these thresholds. The main contribution of this paper is two-fold. First,

the authors adopt a distributed approach where resource management is carried out

by autonomous node agents that are tightly coupled with each physical machine.

Second, node agents carry out configurations in parallel through Multiple Criteria

Decision Analysis (MCDA). Each node agent observes the resource usage on a phys-

ical machine by aggregating the resource usages of hosted virtual machines. In this

manner, the proposed system reacts to workload changes based on the lower and

higher thresholds. In the case of lower thresholds, also commonly referred to as cold

spots in literature, the node agents try to evacuate all of the hosted virtual machines
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to hibernate the physical machine. This behaviour allows for energy conservation

as well as better utilization in the data center. On the other hand, in the case of

over utilization, virtual machines with the highest amount of resource usage is chosen

for migration. Two types of decisions are made by the node agents: (1) choosing a

virtual machine for migration except for the case of evacuation, and (2) choosing a

target physical machine for migration. The decision making process is carried out

by one of the investigated MCDA methods such as PROMETHEE II, ELECTRE

III and PAMSSEM II. Furthermore, similar to the concept of skewness mentioned

in [77], IMPROMPTU uses a set of influence criteria in both types of decision mak-

ing process. During the VM selection process, it can be defined as the measure of

the effect of a virtual machine on threshold violations. This measure is captured over

time on hosting physical machines for all resource dimensions. In this context, the

evaluation process favours virtual machines with higher influence criteria. On the

other hand, the influence criteria of a physical machine is defined as the sum of all

influence criteria of the hosted virtual machines. In this case, the evaluation process

favours physical machines with lower influence criteria. The reason behind both of

these choices is to blend problematic virtual machines with the lower influence ones

in order to avoid future threshold violations and establish an even utilization through

out the data center. It is important to note that the proposed solution is highly

scalable and efficient. Finally, it leaves the question of whether more efficient MCDA

methods exist in the domain of dynamic resource allocation.

2.3 Conclusion and a Brief summary

In the current state of virtualized servers, two main approaches are generally adopted

during the computation of new possible virtual machine to physical machine map-

pings. The most common method is the usage of thresholds where a target service

level agreement is considered to be violated when certain resources are under or over

utilized. On the other hand, some researchers considered the problem of dynamic

resource allocation through the means of autonomous control. Therefore, various

methods such as reinforcement techniques and control feedback systems are widely

used. Besides the challenges that surface with this problem, deciding and setting the

parameters require utmost care in the case of threshold based approaches. On the

other hand, applying reinforcement learning techniques require a full fledged integra-

tion, good choice of policy exploration strategies and convergence speed-ups [22].
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The approaches using centralized global arbiters outlined in studies [7, 15, 19, 51,

70,72] can be efficient in small scale data servers however they suffer from scalability

and feasibility issues in realistic large-scale settings. Moreover, some solutions propose

constraint programming which also suffers from performance issues [35]. This in turn,

results in potentially stale solutions with respect to the speed at which the workloads

change in modern data centers [80,81]. A queueing model based approach is outlined

in [69] which is then used to combined with reinforcement learning to produce a hybrid

method [67,68].

The analytic and statistics based approach generally compute new configurations

faster [3,8,44,74]. However, the computed placement reconfigures the entire resources

in the data center making the implementation require a vast number of migrations,

which in turn, lead to critical feasibility issues [80, 83]. In addition, the centralized

approaches share the same nature of tightly packing virtual machines onto physical

machines resulting in a high number of service level agreement violations. Further-

more, the new configurations are computed on a time interval basis, which naturally

has a negative impact on responsiveness.

Genetic algorithms are also widely used in the context of dynamic resource alloca-

tion in clouds. Given a starting sample, each mutation represents a new configuration

for the data center. In the case where the new mutations is a more efficient configura-

tion, the old is replaced and the procedure is continued until the solution converges.

Therefore, the effectiveness of the method is associated with the initial sample size.

Due to the computationally complex nature of the algorithm, the solutions outlined

in [2, 5, 30,78,84,85] also suffer from performance and responsiveness issues.

Distributed solutions proposed in [16, 25, 50, 73, 77] are inherently resistant to

scalability and feasibility issues. However, the semi-distributed architecture outlined

in [25] requires local monitors to report to group leaders which in turn suffers in the

context of responsiveness. Although [73] is a fully distributed model, the usage is

limited to data centers that host Map-Reduce applications.

After the investigation of the existing approaches and related research on the

problem of dynamic resource allocation in data centers, it can be concluded that

that a valuable solution needs to have the following properties: (1) issues related to

scalability and feasibility needs to eliminated, (2) virtual machine to physical machine

configurations need to be computed fast in order to avoid stale solutions, and (3) these

configurations need to be computed in a reactive manner in order for the system to

be adaptive and self-optimizing.



20

Chapter 3

Multi Criteria Decision Analysis

Methods

In a perfect world, choosing between alternatives according to multiple criteria is a

trivial task as the decision maker is faced with a dominant alternative. In such cases,

a winner is deemed by a clear decision and no further evaluation or consideration

is necessary. However, a decision making process can be extremely complex and

challenging in real world situations. In personal life, a decision maker may be trying

to decide on purchasing a car or a house. In this context, many criteria come into play

such as, safety, comfort, style, initial costs, maintenance, insurance options and resell

value. In a professional setting, a company may be trying to decide on an employee

for promotion. In this manner the criteria could be education, salary, job experience,

charisma and social skills.

At first glance, making a decision may look simple easy as human beings are

excellent decision makers. Naturally, this ability is present to us ever since we were

born and it improves with experience. However, almost in all cases, the problem

has conflicting criteria. This, in turn, complicates the process. Let’s assume the

first example of purchasing a car which presents multiple conflicting criteria. The

most stylish vehicle is not necessarily the most economical purchase. In addition,

the insurance and maintenance costs are most likely to be higher. Furthermore, the

most economical purchase may not have the greatest resell value and safety. Such

problems quickly turn into a complex mathematical problem that does not a have a

trivial solution.

Let A denote the set of alternative actions and C be the set of criteria to be
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considered when evaluating the performances of the alternative actions. Mathemat-

ically, for a1, a2 ∈ A, alternative a1 dominates a2, if, c(a1) ≥ c(a2),∀c ∈ C, and

∃cl ∈ C such that cl(a1) > cl(a2). That is, an alternative action is ”at least as good

as” all the other alternative actions according to all criteria and there is at least

one criterion which the alternative performs strictly better than the other alterna-

tive action. In this manner, an alternative is Pareto Optimal, if no other alternative

outperforms the alternative at hand over any evaluation criteria. In addition to the

conflicting criteria, non-measurable or intangible criteria are often present. This calls

for the need of forming a comprehensive judgement measure in order to determine

the better-performing alternative by evaluating the alternative actions according to

the all criteria. Such problems are often referred to as an aggregation problem [58].

Aggregation problems form the basis of many MCDA methods which can be sum-

marized in two categories: 1) Methods that are based on mathematically explicit mul-

tiple aggregation procedures (MCAP), and 2) Methods that let the decision maker

interact with the implicit mathematical procedures.

MCAP based approaches are designed to provide a clear solution to the aggrega-

tion problem for any pair of alternatives according to a various inter-criteria param-

eters and a logic of aggregation [58]. The addition of the inter-criteria parameters

help to define a relation between the criteria taking into consideration factors such

as conflicts. These parameters are mainly referred to as veto thresholds, concordance

thresholds, weights, scaling constants, aspiration and rejection levels [9, 57]. The

inter-criteria parameters are assigned as mathematical values by a logic of aggrega-

tion. Logic of aggregation, usually gathered from the decision maker or a system

administrator, represents the relationship where an alternative actions performance

is deemed satisfactory or unsatisfactory. Hence, these parameters can only apply to

a specific decision making problem and is defined for single use [9,57]. MCAP meth-

ods can be categorized as follows: 1) Multi-attribute Utility Theory Methods and

2) Outranking Methods [71] which are also called Methods Based on Synthesizing

Criterion and Methods Based on Synthesizing Preference Relation System [58]. In

addition to these two major categories, some other approaches include methods based

on simulated annealing and evolutionary algorithms [17], rough sets [33,65], artificial

intelligence [55] and fuzzy subsets [52]. Generally, a set of feasible solutions are pro-

duced on the majority of these methods. Whereas, on MCAP based methods, either

a single better-performing alternative or a rank of alternative actions are produced

depending on the choice problematic.
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In the remaining of this chapter, we focus on the following MCAP based meth-

ods: (1) Single Synthesizing Criterion Methods and (2) Outranking Methods. These

two approaches are chosen due to the mathematically explicit nature of the problem

domain of this thesis. A set of MCDA methods used in this thesis are explained in

detail which also provides a brief survey of existing methods belong to associated

family of approaches mentioned above.

3.1 Single Synthesizing Criterion Methods

As the name suggests, single synthesizing criterion approach MCDA methods aim

to reduce the different criteria used in the decision making process into a one sin-

gle comprehensive index by making use of some rules, processes and mathematical

formulae. In addition, imperfect knowledge and inconsistency is tolerated to some

mathematical extent [58]. These methods are often considered the most traditional

approach and the alternative actions form a complete pre-order [23,58].

In the rest of this section, two well-known MCDA methods that are used in this

thesis, Simple Multi-Attribute Rating Technique (SMART) and Analytic Hierarchy

Process (AHP) is explained in detail.

3.1.1 Simple Multi-Attribute Rating Technique

Simple Multi-Attribute Rating Technique (SMART) is the simplest form of multi-

attribute utility theory models [24]. In order to rank the alternatives, different per-

formance measures of alternatives under various scales need to be converted into a

common internal scale. Mathematically, this process is done by using weighted linear

averages, which, in turn, provides a very close approximation to utility functions.

Let A be the set of alternatives, ui(a) be the performance of alternative a under

criterion i. Then, the aggregated performance value ua is given by the utility function,

ua =
n∑
i

wiai (3.1)

where wi is the weight of the criterion i.
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3.1.2 Analytic Hierarchy Process

Analytic Hierarchy Process (AHP) is a single-synthesizing MCDA method where the

decision maker derives priority scales from the relative judgements through pairwise

comparisons among all alternatives under the supervision of a hierarchical struc-

ture [61, 62]. The method has the ability to deal with both tangible and intangible

criteria, focusing mainly on the latter, by enabling the decision maker to use domain

expertise or collected statistics. The main strength of AHP lies in its capability of

making comparisons of intangibles in relative terms. It is due to this feature that

the experience and the knowledge of the decision maker is reflected on the final an-

swer. In this context, the decisions are made in a qualitative fashion, and expressed

numerically through the fundamental scale of AHP [62]. AHP is based on four main

axioms [62]: (1) reciprocal judgements, (2) homogeneous elements, (3) hierarchical or

feedback dependent structures, and (4) rank order expectations. In addition, a small

inconsistency in the judgement is also allowed.

The mathematical structure of AHP can be investigated by considering a case

where the decision maker needs to express judgements on a set of alternatives A =

a1, a2, ... ≥, an. The process starts by attaching a positive real number, vi, to each

alternative action, ai, where vi denotes the importance of alternative ai. At this

point, the following assumption is made. After when the decision maker assigns a

numerical value to each alternative, the relative importance of two alternatives ai and

aj can be expressed as ratio of vi/vj. In the cases where, vi/vj < 1, then aj is more

important than ai by a factor of vj/vi. When an alternative is compared to itself,

naturally, vi/vi = 1. Once an importance value is assigned to each alternative, then

the decision maker can construct an n × n matrix M = (mij), where mij = vi/vj,

that has the following properties [6, 61]:

1. mii = 1,mij > 0 and mji = m−1ij ∀i, j

2. mijmjk = mik∀i, j, k

3. The matrix M has rank 1, with each column vector proportional to the vector

C = (v1, v2, ..., vn)T and each row proportional to the vector C = (v−11 , v−12 , ..., v−1n ).

4. 0 is an eigenvalue of M with the multiplicity n− 1, and the trance of M is n;
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it follows from this that there is a remaining eigenvalue which is simple and equal to n.

5. C is a column eigenvector and R is a row eigenvector of M corresponding

to the eigenvalue n. Thus, in this special case, the relative importance measurements

of alternative ai appears in the form of an eigenvector corresponding to the largest

positive eigenvalue of a matrix with positive entries.

Commonly, due to the challenges faced by the decision maker when assessing the

value of the comparison of two alternatives i, j, the exact value of mij can not be

given. Instead, this value is only an estimation. In this context, the judgement

matrix M is perturbed, which, in turn, makes the eigenvectors and eigenvalues per-

turbed. In the case where this perturbation is small, then there is an eigenvalue close

to n whose column vector can be regarded as good approximation to the relative

importance judgements of the alternative actions. In this manner, the ranking prob-

lem can be defined as follows. There exists an ideal, yet unknown, ranking for the

n alternatives, expressed in the form of a vector. When the judgement matrix M is

constructed as defined above, naturally, the first property of being a reciprocal ma-

trix is satisfied. Also, the matrix is consistent when the entries mij satisfy the second

property. Then, the kth column is equal to ajk multiplied by the jth column, so the

rank of M is 1. Consequently, M satisfies the fourth property [6, 62]. In addition, if

(c1, c2, ..., cn)T is any column eigenvector and (r1, r2, ..., rn) any row eigenvector with

eigenvalue n, then it can be concluded that ri/rj = ci/cj = mij. In other words, the

weights of the alternatives can be extracted from the eigenvectors that is consistent

with the pairwise judgements [6, 62].

AHP assists the decision maker when assigning a value , mij, to a judgement.

Judgements express the property that to what extent an alternative is dominant or

better than the other when compared under a specific criterion. This measure comes

from the fundamental 1 - 9 scale of AHP which is derived from stimulus response

ratios [61–63]. The following value are assigned when:

1, two alternatives equally contribute to the goal

3, an alternative has moderate importance over the other

5, an alternative has strong importance over the other
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7, an alternative has demonstrated importance over the other

9, an alternative has extreme importance or domination over the other

The relative weights for the alternatives are determined as the entries of the eigen-

vector associated with the eigenvalue of the matrix.In addition to this approach, there

are other methods that can be used to determine the extract the weights from the

impact matrix. The logarithmic least squares method operates by calculating the

geometric mean of each row in the impact matrix, then taking the sum of geometric

means, and normalizing each geometric mean by the computed sum.

Structurally, AHP arranges the criteria in a tree structure with the goal being at

the root, followed by criteria, sub-criteria and alternatives. At each level, pairwise

comparisons are carried out to express judgements among criteria or alternatives with

respect to the fundamental scale of AHP. These judgements are placed in the impact

matrix, which is used to derive the relative performance values or weights through

calculating its eigenvector. In the final step, these values are aggregated with respect

to the weight of upper hierarchies in order to produce a final ranking.

AHP provides a mathematical way to investigate the consistency of the judge-

ments computed from the pairwise comparisons. In the cases of inconsistency, an

inconsistent impact matrix M is subject to Perron’s theorem [63], which states that

if M is a matrix with strictly positive entries, then M has a simple positive eigenvalue,

λmax which is not exceeded in absolute value by any of its complex eigenvalues; every

row eigenvector or column eigenvector corresponding to λmax is a constant multiple

of an eigenvector with strictly positive entries. Let M = (mij) be an n×n reciprocal

matrix, if λmax is the maximum absolute eigenvalue of M , λmax ≥ n, and M is con-

sistent if and only if λmax = n. This, in turn, means that the difference λmax− n can

be used to measure the consistency of the impact matrix M [62, 63]. The sum of all

the eigenvalues of M , also called the trace of M , is n, λmax − n is the negative sum

of the remaining eigenvalues of M . The average of these eigenvalues is −µ,

µ =
λ− n
n− 1

(3.2)
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where µ is the consistency index of M . For a sample of 500 randomly generated

reciprocal matrices, µ is satisfactory if it is less than 10%. The judgements are more

likely to be inconsistent, as this measure gets larger [62].

3.2 Outranking Methods

The outranking based MCDA methods follow a successive pairwise comparison of

alternative actions under all criteria. As opposed to the Single Synthesizing Criterion

methods which consider each alternative action in isolation to produce a complete

pre-order, outranking approaches produce a synthesizing preference relation system

based on the successive pairwise comparisons [58].

It is important to note that, the pairwise comparisons may not always be transi-

tive, which, in turn produces inconsistent preference relations. Furthermore, incom-

parability can also cause flaws in the design of such relations. In Single Synthesizing

Criterion methods, the aggregation procedure is sufficient to rank the alternative ac-

tions since no such in-transitivity and incomparability is present. On the other hand,

Outranking Methods call for another step called exploitation procedure in order to

overcome this challenge [58].

In the rest of this section, the following six well-known outranking methods,

ELECTRE III, PROMETHEE II, PAMSSEM II, ORESTE, REGIME and QUAL-

IFLEX, are explained in detail.

3.2.1 ELECTRE III

ELECTRE methods model preferences by using outranking relations ”at least as good

as”, denoted by S [27,57]. The following four situations occur when two alternatives

a and b are compared under the preference relation S : (1) aSb and bSa, or aPb,

meaning a is strictly preferred to b, (2) bSa and aSb, or bPa, meaning b is strictly

preferred to a, (3) aSb and bSa, or aIb, meaning a is indifferent to b, (4) Not aSb

and not bSa, or aRb, meaning a is incomparable to b. ELECTRE methods introduce

the incomparability preference relation, R, when the decision maker is not able to

compare two alternatives. Note that this is not present in the MAUT methods [27].

Two major concepts, concordance and non-discordance provides the basis for the

outranking relations [59, 60]. The former concept states that in order for aSb to be

valid, a sufficient majority of criteria should be in favour of this assertion. Whereas,



27

the latter states that, aSb is valid if none of the criteria in the minority oppose

too strongly to the assertion. Conclusively, the assertion aSb is valid only when

these two conditions are satisfied. Due to the Condorcet effect and incomparabilities,

an outranking relation may not be transitive. This requires the need for another

procedure, called exploitation, in order to extract results from such relations that fit

a given problematic - choice, ranking or sorting problematic [27].

The importance coefficients and the veto thresholds define the relative impor-

tance attached to each criteria [59, 60]. The importance coefficients are the intrinsic

weights of each criterion. In detail, for a given criterion, the weight wj, reflects is

voting power when it contributes to the majority which is in favour of an outranking.

Whereas, the veto threshold is the power assigned to a given criterion to be against

this assertion. That is, in order for ”a outranks b” to be valid, the difference be-

tween the evaluation of a and b is not greater than the veto threshold assigned to

this criterion [59, 60]. The thresholds can be variable or constant along a scale [58].

Other important concepts that underline ELECTRE methods are the preference and

indifference thresholds. These are referred to as discrimination thresholds that lead

to a pseudo-criterion model. When the difference between evaluations of two different

alternatives under a specific criterion is considered: (1) preference thresholds, pj, jus-

tifies the preference in favour of one of the two actions, (2) indifference thresholds, qj,

defines compatibility with indifference between two alternatives. In addition, these

thresholds can be interpreted as an hesitation between opting for a preference or an

indifference between two alternatives [58].

ELECTRE III belongs to the ranking problematic domain of ELECTRE meth-

ods. In ranking problematic, the process ranks all the candidates belonging to a set of

alternatives from the best to worst, possibly with ex aequo. ELECTRE III addresses

the consideration of inaccurate, imprecise, uncertain or ill-determined information.

The main contribution of ELECTRE III when compared to the rest of the ELEC-

TRE methods is the introduction of pseudo-criteria instead of true-criteria [27, 59].

In ELECTRE III, the outranking relation is defined as a fuzzy relation, that is con-

structed by a credibility index. The credibility index, ρ(aSb), characterizes the cred-

ibility of the assertion ”a outranks b” and is defined by both concordance index,

cj(aSb), and the discordance index, dj(aSb), for each criterion gj ∈ F [27].

The concordance index is defined as follows
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cj(a, b) =


1 if gj(a) + qj ≥ gj(b)

0 if gj(a) + pj ≤ gj(b)
pj+gj(a)−gj(b)

pj−qj otherwise

(3.3)

Let wj be the importance coefficient or weight for criterion j. The valued out-

ranking relation is defined as follows

C(a, b) =
1

w

r∑
j=1

wjcj(a, b) (3.4)

where w =
∑r

j=1wj

The discordance index can be represented as follows

dj(a, b) =


0 if gj(a) + pj ≥ gj(b)

1 if gj(a) + vj ≤ gj(b)
gj−gj(a)−pj(b)

vj−pj otherwise

(3.5)

The credibility index is defined based on these definitions of both indexes as

S(a, b) =

 C(a, b) if dj(a, b) ≤ C(a, b) ∀j
C(a, b)

∏
j∈J(a,b)

1−dj(a,b)
1−C(a,b)

otherwise (3.6)

where J(a, b) is the set of criteria such that dj(a, b) > C(a, b) ∀j.

The definition of credibility index is based on three concepts [27]: (1) In the case

where there is no discordant criterion, the credibility of the assertion is equal to the

comprehensive concordance index, (2) If a discordant criterion uses veto option, then

the assertion is deemed not credible, (3) When the comprehensive concordance index

is lower than the discordance index on the discordant criterion, the credibility index

becomes lower than the comprehensive concordance index, because of the opposition

effect on this criterion.
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Once the credibility index is computed for all alternatives, ELECTRE III proceeds

with the exploitation procedure. Two pre-orders Z1 and Z2 are derived from the

constructed fuzzy relations. The former is computed by a descending distillation,

whereas, the latter is computed by an ascending distillation. The partial pre-order Z

is defined as the intersection of the two pre-orders to come up with a final ranking of

alternatives.

3.2.2 PROMETHEE II

The PROMETHEE methods use outranking to rank alternatives in a multiple criteria

decision making problem. It needs the following rather clear and simple information,

in order to assist the decision maker: (1) information between criteria, and (2) infor-

mation within each criterion [10,13].

Information between criteria refers to the relative importance of each criterion’s

influence during the decision making process. The set, wj, j = 1, 2, ..., k, represents

the weights associated with each criteria. Furthermore, these weights are non-negative

and independent from the scales of evaluation criteria [11, 12]. Consequently, higher

weights result in a higher influence on the decision made. Also, these weights can be

normalized, so that
∑k

j=1wj = 1.

The PROMETHEE methods gather information within each criterion by pairwise

comparisons of alternatives under a specific criterion. The pairwise comparisons are

carried out for all alternatives, where, little deviations represent either weak or no pref-

erence at all. On the contrary, large deviations suggest the strength of preference pro-

portionally. The strength of preference can be represented by real numbers between 0

and 1, that are computed by the preference function Pj(a, b) = Fj[dj(a, b)],∀a, b ∈ A,

under a specific criterion where dj(a, b) = gj(a) − gj(b) and 0 ≤ Pj(a, b) ≤ 1

[11, 12, 14]. The function Pj(a, b) represents the preference of alternative a over b

for observed deviations between their evaluations under criterion gj(·). In the case

where the evaluation difference is negative, the preference equals 0. Mathematically,

Pj(a, b) > 0 ⇒ Pj(b, a) = 0. In addition, reversing the preference function results in

minimized criteria so that Pj(a, b) = Fj[−dj(a, b)].
The pair {gj(·), Pj(a, b)} is named the generalised criterion associated with the

criterion gj(·). PROMETHEE offers six main preference functions in order to define

identification for each criterion [13].

Type 1: Usual Criterion



30

P (d) =

{
0 if d ≤ 0

1 if d > 0

Type 2: U-Shape Criterion

P (d) =

{
0 if d ≤ q

1 if d > q

Type 3: V-Shape Criterion

P (d) =


0 if d ≤ 0
d
p

if 0 ≤ d ≤ p

1 if d > p

Type 4: Level Criterion

P (d) =


0 if d ≤ q
1
2

if q < d ≤ p

1 if d > p

Type 5: V-Shape with Indifference Criterion

P (d) =


0 if d ≤ q
d−q
p−q if q < d ≤ p

1 if d > p

Type 6: Gaussian Criterion

P (d) =

{
0 if d ≤ 0

1− e−
d2

2s2 if d > 0

where q is a threshold of indifference, p is a threshold of preference and s is an

intermediate value between s and p. The indifference threshold q represents the

largest evaluation difference that can be considered negligible. Whereas, the pref-

erence threshold, p is the smallest evaluation difference sufficient for full preference.

Other generalized criteria can also be used in addition to the six types of functions

defined above.
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After information between criteria, wj, and within each criterion {gj(·), Pj(a, b)}
are evaluated, PROMETHEE computes aggregated preference indices. For an al-

ternative pair a, b ∈ A, the aggregated preference indices are computed as follows:

π(a, b) =
∑k

j=1 Pj(a, b)wj and π(b, a) =
∑k

j=1 Pj(b, a)wj. The former measures to

what degree alternative a is preferred over alternative b over all criteria, and the

latter vice versa [11,12].

In a set of alternatives A, each alternative is compared to remaining n− 1 alter-

natives. The outranking flows are defined as follows [10–12].

Positive Outranking Flow:

φ+ = 1
n−1

∑
x∈A π(a, x)

Negative Outranking Flow:

φ− = 1
n−1

∑
x∈A π(x, a)

The positive outranking flow represents to what degree an alternative a outranking

all the others. Whereas, the negative outranking flow represents to what degree an

alternative a is outranked by the others. In other words, these are a measure of the

sum of powers and weaknesses [13].

In the last step, PROMETHEE II method produces a complete ranking on the

set of alternatives by combining the positive and the negative outranking flows into

a new measure called net outranking method defined as follows:

Net Outranking Flow:

φ(a) = φ+(a)− φ−(a)

3.2.3 PAMSSEM II

PAMSSEM II is a hybrid outranking method that combines the key features of ELEC-

TRE III, PROMETHEE II and NAIDE methods [34]. The outranking method is de-

signed to deal with heterogeneous and missing data. As in ELECTRE III, PAMSSEM

II is making use of pseudo-criteria such as discrimination thresholds and considers

two types of inter-criterion information: (1) a set of coefficients or weights that rep-

resent the relative importance between each criteria, and (2) veto thresholds between

criteria when needed.
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PAMSSEM II computes a concordance, local discordance and outranking indexes

for each pair of alternatives in the aggregation phase exactly the same way as in

ELECTRE III. Once the concordance matrix is constructed, an outranking degree is

computed for each pair of alternatives a, b ∈ A, represented by σ(a, b). Similar to

PROMETHEE II, this measure defines to what degree alternative a is preferred over

alternative b over all criteria globally.

The second and the last step in PAMSEEM II is the exploitation phase, which

is carried out exactly the same way as in PROMETHEE II. A total pre-order forced

by computing a net outranking flow for each alternative a as σ(a) = σ+(a)− σ−(a).

Finally, the alternatives are sorted in decreasing order according to this measure in

order to produce a final ranking.

3.2.4 ORESTE

ORESTE extends traditional MCDA approaches to include both the ranking of al-

ternatives by criteria as well as the ranking of the criteria themselves [56]. In this

context, the decision maker is not responsible for determining weights, but instead

assigns a preference structure on the set of criteria F . This in turn, is used to de-

fine a complete preorder S such that S = I ∪ P , where the preference relation S is

strongly complete and transitive, the indifference I is symmetric and the preference

P is asymmetric. The method is designed to form a global preference structure on the

set of alternatives A that reflects the following two relations: (1) preference relations

between all alternatives under each criterion and, (2) preference structure among the

criteria.

ORESTE method outputs a global preference structure such that the alternatives

are evaluated according to each criteria where the preference of criteria reflects on the

outcome. In order to come up with such preference structure, the method operates

in three phases. In the first phase a projection of the position-matrix is constructed

followed by a ranking of the projections in the second phase and lastly these global

ranks are aggregated.

Before starting the first phase, each criterion is given a rank related to its position

in complete preorder among criteria represented by rj where J is the set of criteria

and j ∈ J . Also, each alternative is given a rank with respect to each criterion as

rj(a) where a ∈ A. This procedure results in n preoders. Besson’s mean rank is used

to convert these preorders into numerical values. Note that, these preorders can be
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represented as a position table.

In the projection phase, an origin is introduced to calculate the distances of each

alternative from the position table. Several definitions of this measure is possible.

One common way is a linear oblique projection. This defines the distances of the

projections from the origin by

d(0, aj) = αrj(a) + (1− α)rj

where α stands for substitution rate (0 < α < 1). The substitution rate is used to

reflect the weight of the ranks of criteria and the ranks of alternatives. In cases where,

α is set to 0.5, the substitution rate defines equal importance for both criteria and

alternatives.

In the ranking phase, since the relative positions of the projections are more

important than the numerical value of the distances, the projections needs to be

ranked. The distance matrix is converted into a global rank matrix using Besson’s

mean rank.

In the aggregation phase, a global weak order is constructed by summation of the

global ranks for each alternative over the set of criteria;

R(a) =
∑
j

R(aj)

This order is not considered reliable as neither indifference nor incomparability are

taken into account. Preference intensities are introduced to overcome this limitation;

C ′(a, b) =
∑

j:aPjb
[R(bj) − R(aj)] and then normalized by division of upper bound

C ′upperbound = (a − 1)k2 where a is the number of alternatives and k is the number

of criteria. The net preference intensity between alternatives a and b is denoted by

C(a, b).

Three thresholds β, C∗ and γ are introduced to distinguish between indifference,

incomparability and preference. The threshold β is used to make the distinction

between indifference and preference where as C∗ is used for indifference and incom-

parability. γ indicates a difference between preference and incomparability and rep-

resents the risk that decision maker selects one candidate against another without

being aware of the conflicting situation between both candidates [56]. These thresh-

olds can be mathematically represented [56] as follows: β and C∗ are upper bounded

by; β ≤ 1/[(a− 1)k] and C∗ ≤ 1/[2(a− 1)] as γ is lower bounded by; γ > (k− 2p)/4p
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where p is the degree of perturbation. In order to make a clear distinction between

preference and incomparability, the values of β and C∗ need to be fixed to their upper

bounds.

In the decision making procedure, the preference intensities between two candi-

dates a and b are investigated. If the difference between C(a, b) and C(b, a) is smaller

than the threshold β, then indifference occurs when both of these intensities are

smaller than the threshold C∗, else there is incomparability. Preference or incompa-

rability occurs when the difference between two intensities is larger than or equal to

β. If the relation of the smallest normalized preference intensity to the difference in

normalized intensities is larger than or equal to γ then incomparability occurs, else

preference is assessed. This procedure results in a global preference structure, which

in turn, is used to rank all alternatives.

3.2.5 REGIME

REGIME can be viewed as ordinal generalization of pairwise comparison methods

where the main part of the decision making process relies on concordance analysis [36].

Let A be the set of alternatives and F be the set of criteria under consideration.

The concordance set of two alternatives a and b is defined as the set of criteria for

which a is as good as b. The concordance measure between candidates a and b is given

by, Cab =
∑

j∈C∗ab
πj where C∗ab is the concordance set and πj is the weight of criterion

gj ∈ F . The preference is based on the difference between Cab and Cba. The focus

is on the sign of this measure. Naturally, if the sign is positive a is preferred to b,

and if the sign is negative then it is assessed that b is preferred to a. Incomparability

occurs in the cases when Cab − Cba = 0

In the first step of the REGIME method, a regime matrix is constructed. This

matrix is populated by pairwise comparisons of the alternatives under all criteria. For

alternatives a and b, +1 is noted when a has a better rank than b. -1 is noted when b

has a better rank than a. The resulting matrix consists of the pairwise comparisons

of the alternatives for each criterion that belongs to F . Mathematically, comparing

a and b under criterion j can be represented as;

Cab,j =


+1 if raj < rbj

0 if raj = rbj

−1 if raj > rbj
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where raj is the rank of alternative a according to criterion gj. When two alternatives

are compared under all criteria, a vector called regime (Cab,j) is formed. These regimes

are used to determine rank order of alternatives. The concordance index can be

represented as;

Cab =
∑
j

πjcab,j

. It is important to note that, Regime method can deal with the situation where the

weights are not explicitly known but an ordinal information is given.

In the decision making phase, when deciding on a preference relation between a

and b the concordance indexes are compared. aPb is assessed when Ca,b−Cb,a > 0 and

bPa when Cb,a−Ca,b > 0. Also, incomparability ,aRb, is denoted when Ca,b−Cb, a = 0

3.2.6 QUALIFLEX

QUALIFLEX is an outranking decision making method based on the evaluation of

all possible permutations of rankings in an alternative set A. This method is a gen-

eralization of Jacquet-Lagreze’s permutation method and the aggregation procedure

is based on Kemeny and Snell’s rule [42].

The method begins by constructing an impact matrix, F , where the columns con-

sist of the alternatives and the rows consist of the criteria. The impact matrix is

populated with the ranks of alternatives according to each criterion, and the outcome

of this evaluation is placed in the appropriate position. Naturally, each row in the ma-

trix is ordinal and take the form of preorders. Once the impact matrix is constructed,

another matrix is formed to compute the comprehensive concordance/discordance

indices for every possible permutation of the alternative set. In this matrix, the

columns consist of the permutations and the rows consist of the criteria. Concor-

dance/discordance index is calculated for each pair of alternatives in the permutation

for each criterion and then aggregated using the associated relative importance or

weights to come up with the index of the permutation. The permutation with the

biggest measure is deemed the winner. In the case of equal measures, one permutation

is randomly chosen from the set of winner permutations.

More particularly, given a set of alternatives A, QUALIFLEX defines concordance

and discordance indexes for each tuple of alternatives (a, b) ∈ A, at the level of

preorder. The ranking of the kth permutation under criterion j is then given by [48]:
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Ijk(a, b) =


1 if there is concordance

0 if there is ex aqeuo

−1 if there is discordance

Concordance is defined to be when a tuple (a, b) are equivalently ranked to within

two preorders of each other. Discordance is defined to occur when (a, b) are not in

concordance. Finally, ex aequo is defined to occur when (a, b) are exactly equivalent in

rank. The concordance/discordance index, Ijk, for the kth permutation and according

to criteria j and the is then given by:

Ijk =
∑

a,b∈A Ijk(a, b)

The comprehensive concordance/discordance index for the kth permutation can

then be given by:

Ik =
∑

j π(fj)Ijk(a, b)

where π(j) ∈ [0, 1] is the weighting assigned to criteria j. In general, |A|! possible

permutations exist, and the permutation with the biggest comprehensive concor-

dance/discordance measure is deemed the winner.
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Chapter 4

IMPROMPTU Model

IMPROMPTU is a threshold based reactive autonomous resource consolidation man-

ager that distributes the responsibility of computing new virtual machine to physical

machine mappings among autonomous node agents. Autonomous node agents are

tightly coupled with a unique physical machine in the data center. In this context,

virtual machines hosted on that physical machine can be stopped, started, suspended

or made subject to live migration by node agents. Which, in turn, gives them full

control over the computational resources at hand.

The main responsibilities of the node agents can be categorized under the follow-

ing three points: (1) watching the resource usages of each virtual machine hosted

on a particular physical machine, (2) detecting undesirable conditions as they occur

on these environments, and (3) eliminating under-utilization and over-utilization on

the physical machine by carrying out a set of virtual machine migrations within the

date center. In this manner, IMPROMPTU provides a completely reactive computa-

tional resource management system as new configurations are only computed when

prompted by the sudden change in resource usages of a given environment. Once

the undesirable conditions are captured, the node agents decide on the next course of

action based on the MCDA model in management. In this thesis, we are investigating

the behaviour of the IMPROMPTU model under the management of eight MCDA

methods.

The rest of the section is organized as follows. In Section 4.1, we outline the

reactive behaviour of the system by formally defining the physical machine states, the

triggers and the reactions caused by undesirable conditions. As well as, describing the

means of keeping the system self-aware. Section 4.2 describes the decision making

process carried out by the node agents. In Section 4.3, we provide insight to the
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Table 4.1: Table of notations
Notation Description
P Set of physical machines
pi A unique physical machine
V i Set of virtual machines
vij A unique virtual machine hosted on pi
GR Set of resource metrics
gn(·) Measured usage on resource dimension n
gn(vij) Measured resource usage of vij on n
gn(pi) Measured resource usage of pi on n
Ln Lower threshold on n
Hn Higher threshold on n
Ri A unique reaction of a node agent
wn Dynamic weight assigned to n
yn Violation parameter on n
GI Set of influence criteria n
u(pi) Performance index of a unique physical machine
u(vij) Performance index of a unique virtual machine
Si A unique state of a physical machine

applications of eight MCDA methods on the IMPROMPTU model during the decision

making process.

4.1 Reactive Resource Consolidation Management

IMPROMTU models the cloud computing environment using two main entities.

Firstly, virtual machines represent software environments of the end user that re-

quires computational resource to carry out its tasks. Secondly, physical machines

provide these computational resources by hosting various number of virtual ma-

chines. In this context, the granularity of resources in the cloud are set by the

physical machines, which are the most general and the abstract unit in the data cen-

ter. Therefore, the computational resources in the data center is the total number

of the physical machines available. Let the set of physical machines be denoted

by P = {pi ∈ P |i = 1, 2, ..., I} where pi represents a unique physical machine

available in the cloud. Similarly, let the set of virtual machines be denoted by

V i = {vij ∈ V i|j = 1, 2, ..., J} where each vj represents a unique virtual machine
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hosted on the physical machine pi. Therefore, the set of all virtual machines in the

cloud at a given point of time can be defined as V =
⋃I

i=1 Vi, given that,

V i 6= V i
′

andV i ∩ V i
′

= ∅,∀i, i′wherei 6= i
′

(4.1)

which denotes that each virtual machine can be hosted by only a specific physical

machine at a given time [80].

The first responsibility of the autonomous node agents is to observe the resource

usage of the associated physical machine. In order to perform this task, a set of

parameters need to assigned to each node agent. The available resource on a physical

machine can be viewed under different categories of resource dimensions such as

computation, storage, and network. Then, the set of resource metrics can be defined

as GR = {gn(·) ∈ GR|n = 1, 2, ..., N , where each gn(·) denotes the measured usage

on a specific resource dimension n. The amount of resources assigned to a particular

virtual machine vij on a resource dimension n can be denoted by gn(vij). In this

context, the node agents can calculate the total resource usage on a particular physical

machine pi by summing the computational resource assigned to each hosted virtual

machine represented by gn(pi) =
∑J

j=1 gn(vij), where 0 ≤ gn(vij) ≤ 1. Furthermore,

it is assumed that the hypervisors are assigned a static predetermined amount of

resources to carry out the decision making [80]. In this manner, the total amount of

resources used on a physical machine is separate from the hypervisor’s own resource

usage.

The second responsibility of the autonomous node agents is to detect the state of

the associated physical machines using the computed values of gn∀N . This task is

carried out by checking whether the total resource usage on a physical machine stays

within a set of predetermined desirable limits. These limits are referred to as lower

and higher resource thresholds represented by Ln and Hn respectively, where 0 <

Ln ≤ Hn ≤ 1. Lower resource usage thresholds are used in order to determine under-

utilization, whereas, higher resource usage thresholds are used to over-utilization. In

particular, Ln is associated with wasting the available resources and Hn is associated

with possible SLA violations.

The last task of the node agents is to eliminate under-utilization and over-utilization

on the physical machine that it is coupled with. This requires the node agents to be

self-aware by continuously updating their perception of the physical machines using

the lower and higher thresholds. In IMPROMPTU, a physical machine can be found
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in four distinct states represented as follows [80],

Si =


1 if ∃n, gn(pi) > Hn,

2 if (∃n, gn(pi) 6= 0) ∧ (∀n, gn(pi < Ln),

3 if ∀n, gn(pi) = 0,

4 if (otherwise).

(4.2)

In this context, the four distinct states can be categorized into desired and unde-

sired ones defined by Si = 4, Si = 4 and Si = 1, Si = 2 respectively. The desirable

state, Si = 3, happens when no virtual machines are hosted on a physical machine.

In other words, the physical machine is suspended and can be shut off in order to

save resources such as energy in the data center. The second desirable state, Si = 4,

is encountered when usages on each resource dimension is between the corresponding

lower and higher thresholds.

The undesirable state, Si = 1, represents that at least one of the resource usages

in the set of resource dimensions exceeds the higher thresholds. In particular, this

behaviour is associated with a possible SLA violation. On the other hand, the second

undesirable state, Si = 2, is encountered when the physical machine is under-utilized.

In order to eliminate undesirable conditions, the node agents determine the next

course of action based on a reaction to the captured state of the physical machine.

In IMPROMPTU, the node agents can react in the three following ways [80]

Ri =


Tune if Si = 1,

Evacuate if Si = 2,

No Reaction if Si = 3 ∧ Si = 4.
(4.3)

In particular, No Reaction refers the physical machine being in a desirable state,

whereas, Tune and Evacuate reactions call for distinctive procedures of their own

which are explained in detailed in the next section.

4.2 Multiple Criteria Decision Analysis Model

Autonomous node agents carry out the Tune procedure in order to bring the total

usage on each resource dimension in desirable levels, that is below the higher thresh-

old values. As over-utilization of a physical machine is associated with possible SLA

violations, Tune can be viewed as an attempt to eliminate SLA violations. During
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this procedure, the node agents need to move one or more hosted virtual machines

to another physical machine in the cloud. From a local point of view, each migration

must have a solid effect on the decrease in the total resource usage, whereas, the

physical machine chosen for migration needs to have enough computational resource

to host this virtual machine without having to exceed the higher thresholds values.

It is important note that the reaction is carried out in a iterative manner in order

to avoid searching combinations in a large solution space which can rise feasibility

issues and result in stale solutions. In each iteration of the Tune reaction two follow-

ing sequential decisions take place: (1) deciding on a candidate virtual machine for

migration, and (2) choosing a physical machine to host the migrated virtual machine

without encountering immediate problems [81].

In the case of under-utilization in the physical machine, the Evacuate procedure

takes place. In this procedure, the node agent attempts to migrate all virtual machines

hosted on that particular physical machine in order to bring the physical machine

to a desirable hibernation state. As the Tune procedure, Evacuate reaction is also

carried out in an iterative manner for the reasons stated above. In contrast to Tune

procedure, only one decision needs to be made since choosing a candidate virtual

machine is not necessary. In the event of undesirable conditions, these two reactions

decide on the next course of action in order to eliminate wasting resources and cause

SLA violations.

The process of selecting the most suitable virtual machine to migrate needs an

assessment of the problematic alternatives. Mathematically, let the set of alternatives

on a such physical machine pi be denoted by A1 = V i. In this set, the evaluation

favours the candidates with the higher resource usage on a given resource dimension

since the removal of such virtual machines are more likely to bring the system back to

a desirable state. The process of choosing a target physical machines to be the new

host for the migrated virtual machine needs a similar, yet more complex analysis.

Let A2 denote the set of all physical machines that can host the virtual machine to

be migrated with no immediate threshold violations. This set is generated by a node

agent in the following mathematical manner [80],

A2 = {pi′ ∈ A2|(gn(pi′ ) + gn(vij) < Hn,∀n) ∧ (Si′ = 4), ∀i′} (4.4)

which defines the set of physical machines that operate between the thresholds of

Ln and Hn on all resource dimensions, and also can host the chosen virtual machine
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without immediate higher threshold violations. In the case where A2 6= ∅, each

alternative in the set is evaluated by the node agent.

However, in the case where A2 = ∅, the alternative set needs be redefined in

order to account for further possible candidates. Mathematically, this is done in the

following way [80],

A2 = {pi′ ∈ A2|(gn(pi′ ) + gn(vij) < Hn,∀n) ∧ (Si′ = 2), ∀i′} (4.5)

It is important to note that in this second attempt, the set of candidate physical

machines are chosen from the undesirable state 2, in which, the physical machines

are under-utilized in at least one resource dimensions. This benefits the stability

of the system in two ways. Firstly, the migrated virtual machine is likely to bring

the under-utilized physical machine in a desirable state where the resource usage is

within the threshold limits. Which, in turn, improves utilization and avoids wasting

computational resources. Secondly, the virtual machine can be migrated without

having to use a physical machine in the hibernation phase. However, in the case

where the redefined set of A2 = ∅, then a physical machine needs to be chosen from

the set of available ones in the hibernation phase. In the worst possible case where

no idle physical machines are left in the system, the node agent is forced to skip the

decision making step, in which, a SLA violation is very likely to surface. The decision

making process of this type, favours the physical machines in the set A2 with the least

amount of resource usage, or in other words, the most amount of available resources

with the intention of avoiding the SLA violations once the migration is carried out.

IMPROMPTU is designed with the principal of being self-aware, where the rela-

tive importance weight for each resource dimension is assigned in a dynamic manner.

Let wn denote the relative weight of the criterion gn(·) ∈ GR. In addition the dynamic

weights are normalized so that
∑N

n=1wn = 1 [82]. It is important to note that, these

weights can also be set statically by the system administrators in order to reflect on

the purpose of the data center. In the case of dynamic weight allocation, the higher

threshold violations result in the increase of the weight of a given criterion. Modula-

tion of these weights are done by defining a separate violation parameter yn for each

resource dimension as [79],

yn =

{
gn(pi)−HN

1−HN
if gn(pi) > HN ,

0 otherwise.
(4.6)
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In addition, the violation parameters are normalized with respect to the higher

threshold violation on each resource dimension as follows,

wn =
yn∑N
n=1 yn

(4.7)

where
∑N

n=1 yn = 1. In the cases where the threshold violation occurs only on one

resource dimension, the relative weight of that particular criterion is assigned to 1

in order to neglect the importance of non-violating resource usages on the decision

making process.

In IMPROMPTU model, the node agents also use another set of parameters called

influence criteria in the decision making phase of choosing both virtual and physical

machines. Let GI = {gm(·) ∈ GI |m = 1, 2, ...,M} denote the set of influence criteria.

In the case of choosing virtual machines for migration, the influence criteria reflects

on the history of both higher and lower threshold violations on the physical machine.

Since the resource usage on every dimension varies, the influence measures for each

resource dimension needs to be captured separately. Therefore, the relation between

GR and GI is bijective. In this context, the influence measure of a given virtual

machine vij on the threshold violations on a specific resource dimension n can be

formally defined as [80,82],

gm(vij) =

∑T
t=0(e

t
n∆t)

T
(4.8)

where T is the total amount of time that a given virtual machine is hosted in the

cloud, and etn denotes the portion of impact that vij had on the change of resource

usage on the hosted physical machines. etn between the time t
′

and time t can be

formally defined as follows [80,82],

etn =


gtn(v

i
j)−gt

′
n (vij)

gtn(v
i
j)−Hn

if Si = 1 ∧ gtn(vij)− gt
′

n (vij) > 0

gt
′

n (vij)−gtn(vij)
Ln−gtn(vij)

if Si = 2 ∧ gtn(vij)− gt
′

n (vij) < 0

0 if otherwise

(4.9)

On the other hand, the influence measure of a physical machine is defined as the

total of the influence measures of the hosted virtual machines at a given time. Such

measure is represented as gm(pi) =
∑J

j=1 gm(vij). In addition, when choosing the

virtual machine to be migrated, the evaluation process favours the virtual machines
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with higher influence measures. On the contrary, during the selection of physical

machines, the evaluation process favours the ones with the lower measures. The

reason behind this process is to blend problematic virtual machines with more stable

ones in order to reduce further possible threshold violations [81].

4.3 Applying Multiple Criteria Decision Analysis

Methods

As outlined in the previous section, there are two main decision making processes

carried out in IMPROMPTU under undesirable conditions. Firstly, a virtual machine

is chosen for migration from an under-utilized or an over-utilized physical machine

at hand. Secondly, a target physical machine is chosen from the set of all available

physical machines in desirable states. These two types of decision making processes

are executed by the node agents sequentially. In both decision types, the node agents

encounter conflicting multiple criteria problems, which, in turn, makes the problem

a great application domain for Multiple criteria decision analysis methods.

In Chapter 3, MCDA methods are formally explained in detail. In this section,

we are going to revisit SMART, AHP, PROMETHEE II, ELECTRE III, PAMMSEM

II, ORESTE, REGIME and QUALIFLEX, in the context of decision making process

carried out by the node agents in the IMPROMPTU model. Furthermore, we are

going to provide details about the implementation of these methods.

4.3.1 Simple Multi-Attribute Rating Technique

Simple Multi-Attribute Rating Technique, SMART, is a computationally simple and

a light weight single synthesizing MCDA method. In this context, computing vir-

tual machine to physical machine mappings are extremely efficient, which in turn,

contributes to the system being reactive by producing never stale solutions.

The application of SMART on the IMPROMPTU model can be defined formally

as follows. In the first decision making process, the goal of the node agents is to

choose a virtual machine for migration. The evaluation process favours the virtual

machines with both higher resource usages and influence criteria. The performance

index of the alternative virtual machine vij is denoted by:
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u(vij) =

|GR|∑
n=1

gn(vij)wn +

|GI |∑
m=1

gm(vij)wm (4.10)

The node agents compute the function outlined above for each alternative in the

set of possible virtual machines and sort them in a descending order. The top ranking

virtual machine in the sorted list is picked for the migration.

A similar procedure is performed in the second decision type. The goal is to pick

the physical machine with the most amount of available resources and the lowest

influence criteria. The performance index of a given physical machine pi is denoted

as follows:

u(pi) =

|GR|∑
n=1

gn(pi)wn +

|GI |∑
m=1

gm(pi)wm (4.11)

When defining the performance measure for a physical machine, the sum of the re-

source usages and influence criteria of each hosted virtual machine on all dimensions

are added together. In contrast to the decision process for virtual machine selection,

the ranking is done in an ascending order. Therefore, the physical machine with the

most available resources and the least amount of influence measure is deemed the

winner.

It is important to note that, influence criteria and resource usages are weighted

equally. However, it is possible to steer the judgement towards either set of measure

by assigning weights and normalizing the end value so that u(pi) = 1.

4.3.2 Analytic Hierarchy Process

Analytic Hierarchy Process process is a single-synthesizing criteria method that de-

rives performance indexes of alternatives through pair-wise comparisons according to

a hierarchical organization. This organization can be described by a tree structure,

where the goal is placed at the root, and followed by criteria, sub-criteria and alter-

natives. At each level, pairwise comparisons are carried out to express judgements

among criteria or alternatives with respect to the fundamental scale of AHP. These

judgements are placed in the impact matrix, which is used to derive the relative

performance values or weights through calculating its eigenvector. In the final step,

these values are aggregated with respect to the weight of upper hierarchies in order

to produce a final ranking.
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Figure 4.1: Virtual machine selection hierarchy

Figure 4.2: Physical machine selection hierarchy

In the decision making type of selecting a virtual machine, the tree structure

consists of the goal of selecting a virtual machine for migration placed at the root,

followed by the two sets of measure, resource usage and influence criteria. Further-
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more, at the lower level, these criteria are followed by CPU, memory and bandwidth.

A similar structure is used for the physical machine selection. The only difference is

that instead of resource usage for the virtual machine, the process considers the avail-

able resources on a given physical machine. In both structures, the relative weights

are derived by the means of first comparing the numerical values through a linear

transformation in order to fit into the fundamental scale of 1 to 9. Performance

values at each level is computed through pairwise comparisons, and entered into an

impact matrix.

The relative weights for the alternatives are extracted from the impact matrix

using the logarithmic least squares method. The method operates by calculating the

geometric mean of each row in the impact matrix, then taking the sum of geometric

means, and normalizing each geometric mean by the computed sum. Once the relative

weights for each criteria, sub-criteria and alternatives are computed, a performance

index for the alternative is computed by multiplying the relative weights of the parents

in the hierarchical structure. In the final step, the performance indexes are sorted in

order to choose a virtual machine or a physical machine.

The hierarchical structure used by the node agents are shown if in Figures 4.1 and

4.2.

4.3.3 PROMETHEE II

PROMETHEE II is an outranking MCDA method that can rank alternatives based

on the evaluation differences when carrying out pairwise comparisons. For each eval-

uation preference, PROMETHEE II uses a generalized criterion for the pair a, b such

that {gk(·), Pk(a, b)} where the Pk(a, b) is the preference function associated with

gk(·). As outlined formally in Chapter 3, PROMETHEE II uses a set of six prede-

fined preference functions. In IMPROMPTU, three of these are selected to reflect

on the nature of the resource usage. The load dependent nature of resources such as

CPU and bandwidth are represented by a Gaussian function, whereas a V-Shaped

function is chosen for the memory. Furthermore, the influence criteria is modelled

through Usual preference function, in which, the strength of preference is represented

by a Boolean value.

In both decision types, the aggregate preference indices are given by [81],
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π(a, b) =
G∑

j=1

Pk(a, b)wk (4.12)

where G = GR ∪GI and wk is the dynamic weight associated with the criterion k.

Once the aggregation phase is completed, the exploitation process needs to carried

out by the node agents. In this step, a positive outranking and a negative outranking

flow is computed, where the positive outranking flow reflects on to what degree an

alternative outperforms the rest and the negative outranking flow reflects on the

degree of weakness against each alternative. These two measures are defined as follows

[81],

φ+ =
1

n− 1

∑
x∈A

π(a, x) (4.13)

φ− =
1

n− 1

∑
x∈A

π(x, a) (4.14)

In the final step, the node agents combine these two measures in order to rank

the alternatives denoted by the net outranking flow as:

φ(a) = φ+(a)− φ−(a) (4.15)

4.3.4 ELECTRE III

ELECTRE III is an outranking based method where the evaluation of alternatives are

based on pairwise comparisons by using concordance, discordance and veto measures.

In both decision types carried out by the node agents, the decision process starts by

calculating a concordance index for each alternative as follows [81],

cg(a, b) =


1 if gg(a) + qg ≥ gg(b)

0 if gg(a) + pg ≤ gg(b)
pg+gg(a)−gg(b)

pg−qg otherwise

(4.16)

where qg and pg are the thresholds of indifference and preference defined for criterion

g and g ∈ G where G = GR ∪GI .

Let kg be the importance coefficient or weight for criterion g, which is the dynamic

weights assigned by the IMPROMPTU model. The valued outranking relation is

defined as follows [81],
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C(a, b) =
1

k

r∑
g=1

kgcg(a, b) (4.17)

where k =
∑r

g=1 kg

In order to calculate the credibility index, a final measure of discordance index

needs to be calculated as follows [81],

dg(a, b) =


0 if gg(a) + pg ≥ gg(b)

1 if gg(a) + vg ≤ gg(b)
gg(b)−gg(a)−pg

vg−pg otherwise

(4.18)

In the last step of the aggregation phase, concordance and discordance indexes

are combined in order to come up with the credibility index as follows [81],

S(a, b) =

 C(a, b) if dg(a, b) ≤ C(a, b) ∀g
C(a, b)

∏
g∈J(a,b)

1−dg(a,b)
1−C(a,b)

otherwise (4.19)

where J(a, b) is the set of criteria such that dg(a, b) > C(a, b).

After the aggregation phase, the node agents proceed with the exploitation proce-

dure, in which, two pre-orders are derived from the credibility matrix as Z1 and Z2.

These two pre-orders reflect on the descending and ascending distillation procedures

respectively. Finally, the intersection of two pre-order are taken by the node agents,

in order to compute a final ranking of the alternatives. It is important note that

the distillation procedure is a computationally complex procedure which presents a

downside in terms of configuration times.

4.3.5 PAMMSEM II

PAMMSEM II is a hybrid outranking method that combines the aggregation phase

of ELECTRE III and the exploitation phase of PROMETHEE II. Both of these

procedures are explained in detail in the previous two subsections.

However, since PAMMSEM II combines the key and the most beneficial phases of

two well known MCDA methods, this brings very interesting features together. In this
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context, PAMMSEM II does not suffer from the computationally complex distillation

procedure introduced by ELECTRE III method as it uses a net outranking flow in

this step of the decision making procedure. In addition, PAMMSEM II involves

the detailed aggregation phase introduced by ELECTRE III. This, in turn, lifts the

negative effects of a computationally complex decision making procedure in terms of

configuration times.

4.3.6 ORESTE

ORESTE method assigns ranks to criteria as well as the alternatives themselves in

the first step of the decision making process. Each criterion g ∈ G where G = GR∪GI

and each alternative a ∈ A is under criterion g is given ranks denoted by rg and rg(a)

respectively. In the context of IMPROMPTU, rg is associated with the dynamic

weights and the influence criteria, whereas, rg(a) is associated with the resource usages

and the influence criteria under dimension n when g ∈ GR and g ∈ GI respectively.

The procedure of assigning ranks results in |G|+ 1 pre-orders.

A position table is formed by converting these pre-orders into numerical values

by using Besson’s mean rank. In the next step, these values are projected into a

distance matrix by using a linear oblique projection. The distance of a projection

from the origin is to the alternative is defined as d(0, ag) = αrg(a)+(1−α)rg where α

denoted the substitution rate (0 < α < 1). The substitution rate is used to weigh the

importance of the ranks of criteria and alternatives. The distance matrix is converted

into a global rank matrix using Besson’s mean rank in order to construct a global

weak order of the alternatives. The global rank of an alternative a ∈ A under the

criterion g ∈ G is denoted by R(a) =
∑

g R(ag).

In the aggregation phase, preference indices are introduced in order to consider

indifference and incomparability. After the aggregation phase, the node agents are

left with preference relations between all alternatives. In order to extract a total pre-

order from these preference relations, a distillation procedure is carried out. During

the distillation, a set consisting of non-dominated alternatives under all criteria is

constructed. Finally, an alternative is chosen at random from this set in order to pick

virtual and physical machines.
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4.3.7 REGIME

REGIME is an outranking method where the outcome of the pairwise comparisons

under a given criteria depend on the mathematical sign obtained as follows:

Cn(a, b) =


+1 if gn(a) < gn(b)

0 if gn(a) = gn(b)

−1 if gn(a) > gn(b)

(4.20)

where Cn(a, b) represents the concordance measure of alternative a compared to b

under the criterion n.

In both types of decision making processes, the node agents compute the compre-

hensive performance measure when comparing alternatives a, b as follows:

C(a, b) =

|GR|∑
n=1

Cn(a, b)wn +

|GI |∑
m=1

Cm(a, b)wm (4.21)

Consequently, the decision between two alternatives are done in following manner:

(1) aPb is assessed when C(a, b) − C(b, a) > 0, (2) bPa is assessed when C(b, a) −
C(a, b) > 0, and (3) aRb is assessed when C(a, b)− C(b, a) = 0.

After the aggregation phase, the node agents are left with preference relations

between all alternatives. In order to extract a total pre-order from these preference

relations, a distillation procedure is carried out. During the distillation, a set con-

sisting of non-dominated alternatives under all criteria is constructed. Finally, an

alternative is chosen at random from this set in order to pick virtual and physical

machines.

4.3.8 QUALIFLEX

In the both decision types carried out by the node agents, QUALIFLEX method

evaluates all possible permutations of rankings in the alternative set by default. The

procedure starts by constructing an impact matrix, in which, each vector represents

a permutation in the alternative set also referred to as pre-order. From each pre-

order, QUALIFLEX defines concordance and discordance indexes for each tuple of

alternatives. The ranking of the tuple a, b from the kth permutation under criterion

n is defined as follows:
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Ink(a, b) =


1 if gn(a) > gn(b)

0 if gn(a) = gn(b)

−1 if gn(a) < gn(b)

(4.22)

When all tuples in a given permutation of alternatives is ranked, these values are

combined in a comprehensive concordance/discordance index. The node agents use

the dynamic weights and the influence criteria at this step as follows:

Ik(a, b) =

|GR|∑
n=1

Inkwn +

|GI |∑
m=1

Imkwm (4.23)

In the exploitation step, comprehensive concordance/discordance indices for each

permutation is sorted. The virtual machine with the highest value is deemed the

winner, whereas the physical machine with the small values is chosen for the reasons

explained in previous sections. It is important to note that, QUALIFLEX brings a

heavy computational burden on the decision making process as in order to rank n

alternatives, n! permutations are needed to be ranked. In QUALIFLEX implemen-

tation used by IMPROMPTU model, the alternative list is limited to a size of 5 by

applying a lexicographical ordering of virtual machine resource usages on each dimen-

sion. On the other hand, the first 5 available physical machines in a steady state is

chosen in order to reduce and limit the solution space to 5! = 120 permutations.
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Chapter 5

Simulation Case Study:

IMPROMPTU Under The

Management Of MCDA Methods

In this section, we are going evaluate the performance of eight different resource

allocation managers within the context of IMPROMPTU that employ the MCDA

methods given in Chapter 3.

The ideal scenario for testing the performance of the resource allocation managers

is to use an actual physical system that enables virtualization. In this context, we

have investigated several existing cloud computing technologies. However, to the best

of our knowledge, the existing commercial clouds and public research data centers do

not provide enough flexibility to allow a custom resource allocation management. In

most of the cases, when a virtual machine is requested from a service provider, the

end user has no information about the physical whereabouts of the hardware let alone

allowing access to underlying physical layer. Resource allocation research requires ex-

plicit and unrestricted control over how the physical resources are distributed among

application environments. Therefore, the ideal scenario cannot be utilized. This, in

turn, leaves the option of using a closed local distributed setting where the researchers

have full control over the layout and the design of the data center. As mentioned in

Chapter 2, some research was done in a small scale physical settings which may ar-

guably be acceptable for assessing the performance of a single resource allocation

manager. However, in this thesis, we are equally interested in the scalability as well

as the performance of the solution. In addition, the difference of performance when
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multiple managers are cross compared could diminish in such small settings. There-

fore, a research of this nature requires a realistic large scale physical setting. There

are two main restrictions of using a such platform. First of all, the financial burden

introduced with hardware, power, cooling and co-location is extremely excessive and

not feasible. Secondly, working with an actual large scale data center introduces addi-

tional complexities that are beyond the scope of this research such as virtual machine

placement conflict, the cost of migrations and the mapping of physical resources to

virtual machine demands. As a result of all the limitations, a custom built simulation

platform was used during the course of this work, in order to lift such limitations, pro-

vide explicit control over the data center and prevent loss of information introduced

by a small scale setting [80–82].

The rest of this chapter is organized as follows. Section 5.1 explains the details

of the custom built simulation platform that is used to carry out the tests as well as

the performance metrics used in this study. In Section 5.2, the empirical results are

analysed and compared using graphs and tables. In addition, the reason behind the

observed performances associated with the mathematical workings of MCDA methods

is explained. Finally, Section 5.3 provides a summary.

5.1 Simulation Platform

In this section, we are going to explain the details of the custom built simulation

platform in terms of the architecture and the simulation settings as well as the per-

formance metrics. In this context, it is beneficial to divide this section into two

subsections.

5.1.1 Simulation Platform Architecture

The simulation platform is custom built for testing the performance of various re-

source allocation managers in the context of clouds using the Python programming

language [80,81]. The design of the platform consists of three main layers: (1) resource

layer, (2) simulation engine, (3) consolidation management. Figure 5.1 represents the

architecture of the simulation platform.

At the lowest level of the architecture, resource layer provides the abstraction of

the cloud in terms of virtual and physical machines. In this context, it is important

to note that the simulation platform is designed to accommodate scenarios for clouds
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Figure 5.1: Simulation Platform Architecture

at the IaaS level. This, in turn, provides the right amount of granularity needed to

compare dynamic resource allocation managers without having to worry about the

details of other various components.

In a general sense, the available resources under all dimensions in a cloud are

represented by a number of physical machines. Hence, a physical machine is the most

basic unit of resources. The main responsibility of the physical machines is to host

any number of virtual machines given that the total resource consumption is kept

between a set of predetermined limits. As described in Chapter 4, a service level

agreement violation is assumed to be encountered in the case of over utilization. On

the other hand, virtual machines represent a total application environment that de-

mands resources from the physical machines. The resource consumption is modelled
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based on statistical distributions such as Gaussian, Exponential, Pareto, etc [81].

In addition, resource consumption on each dimension is independent of each other

that change based on the assigned statistical models depending on the type of the

virtual machine. The simulation platform is capable of hosting two types of virtual

machines: (1) the ones that carry out batch processes, (2) the ones that carry out

online processes. The batch type is modelled to simulate a scientific calculator, or

a number cruncher that continuously demand certain amount of resources on each

dimension. The online type virtual machines follow two different resource consump-

tion schemes. During the on-line period, they behave much like the batch processes

demanding a continuous amount of resources under all dimensions. On the other

hand, during the off-line periods, they only require a small amount of resource to

keep them active, such as memory. It is important to note that the lengths of on-load

and off-load periods follow statistical distribution pairs of either {pareto,exponential}
or {exponential,pareto} in order to mimic a realistic cloud setting [80]. Figure 5.2

represents the abstract view of the simulated data center in terms of virtual and

physical machines.

The consolidation manager lies at the top level of the architecture. The main

responsibility of this unit is to compute virtual machine to physical machine mappings

based on the reactions of the node agents [80]. Chapter 4 explains the nature and

the cause of these reactions in detail. The main novelty of the consolidation manager

layer lies in its flexibility of computing virtual machine to physical machine mappings

based on the employed decision making method.

The middle layer consists of the simulation engine which is responsible for coordi-

nating the simulation runs [80]. First of all, a user populated scenario script is loaded

in the initialization procedure. This file describes various components of the data

center such as the statistical distributions used when simulating virtual machine re-

source demands, the number of virtual machines, the type of consolidation manager,

the number of simulation steps, the simulation seed and the resource limits on each

physical machine. Based on the loaded parameters, the simulation engine runs the

defined scenario in a step wise manner. Each step consists of the following two turns:

(1) signalling the resource layer with the necessary resource changes depending on the

statistical models, (2) starting the process of consolidation management by providing

a current image of the cloud to the employed manager. In this context, a new virtual

machine to physical machine mapping is produced at the end of each step. When

run under identical scenarios with different consolidation managers, the step wise
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Figure 5.2: Abstract view of the data center in terms of virtual and physical machines

approach enables the analysis of performance at any given point across simulations.

5.1.2 Simulation Settings and Performance Metrics

The simulation platform, described in previous subsection, is given control under the

provision of each resource consolidation manager in fully isolated yet identical runs.

For each manager the simulation is run for 2000 steps with a data center consisting of

1000 virtual machines with changing resource requirements and a virtually unlimited

number of physical machines. In this context, the amount of computational resources

in the data center is virtually unlimited. More specifically, each manager can start and

utilize new physical machines as needed throughout a simulation run. This feature

is beneficial in order to observe each managers resource utilization, performance and

the number of employed physical machines. Furthermore, the amount of virtual
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machines in the data center stay constant throughout each run in order to prevent

the sudden substantial changes caused by mass virtual machine arrivals or departures.

Each manager is tested by conducting 10 Monte Carlo runs with different random

generation seeds for each run. The seeds are set to identical across the same runs

of different managers in order to gather the data under exact same conditions. In

addition, this allows for a complete comparison at any given step across managers in

the data center.

The available resource dimensions in the data center is defined as CPU, memory

and bandwidth. As described in Chapter 4, a service level agreement is assumed to

occur upon the violation of the higher threshold on each one of these three resource

dimensions. In this manner, it is important to set the thresholds based on the nature

of the resource dimension. For both CPU and bandwidth, the resource thresholds are

set as 60% in order to reflect on the knee utilizations and service channel counts [53]

due to their load dependent nature. On the other hand, the resource threshold for

memory is set as 90% since memory doesn’t suffer from the limitations encountered

with CPU and bandwidth. The remaining 10% is present in order to prevent starva-

tion. Each simulation run starts from a point where the resources in the data center

are distributed among the virtual machines using the First Fit method in order to

ensure that the starting conditions are identical across the same Monte Carlo runs of

different managers.

Each manager is analysed with respect to four generally accepted performance

metrics of physical machine usage, service level agreement violations, virtual ma-

chine migrations and configuration time. Physical machine usage measures the extent

of efficiency of resource consolidation managers with respect to resource utilization.

Therefore, less physical machine usage is deemed better given that the service level

agreements are avoided as much as possible. The service level agreement violation

performance metric indicates the number of such violations throughout each simula-

tion run. In this context, less service level agreement violations are better as well as

suggesting that the manager is capable of delivering the resources to application en-

vironments without interruption. It is important to note that the definition of service

level agreement violations used in this work is rather strict in comparison to an actual

cloud setting. In the simulation platform, it is assumed that the service level agree-

ments of all the hosted virtual machines are violated when the usage on a resource

dimension exceeds 80% of what is available. In this context, the service level agree-

ment violations metric is a count of actual violations and the situations that may
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result in a such violation. The amount of virtual machine migrations encountered

after each simulation step after computing new virtual machine to physical machine

migration mappings is another important performance metric considered in this work.

Although, the overhead of such migrations are not considered in the scope of this the-

sis, this performance metric indicates the efficiency of the manager as avoiding the

unnecessary extra burden introduced on the data center resources. In this manner,

less number of migrations are deemed better and more efficient. Finally, configuration

times represent the amount of time taken when computing the new virtual machine

to physical machine mappings in the data center. Naturally, quicker configuration

times are deemed to be better as it increases responsiveness. In addition, this metric

is associated with the scalability of the manager. Slow configuration times may result

in stale solutions, which, in turn, result in unnecessary migrations and service level

agreement violations.

5.2 Simulation Results

It is important to make a distinction between the actual MCDA methods and the IM-

PROMPTU managers that employ these methods since these managers implement the

MCDA methods within the design of the IMPROMPTU model, as we as, according to

the nature of the problem. Therefore, in association with the MCDA methods used by

their node agents, these eight managers will henceforth be referred to as AHPM (AHP

Manager), SMAM (SMART Manager), PROM (PROMETHEE II Manager), ELEM

(ELECTRE III Manager), PAMM (PAMSSEM II Manager), ORSM (ORESTE Man-

ager), RGMM (REGIME Manager) and QFXM (QUALIFLEX Manager). In addi-

tion, DDRM (Distributed Dynamic Random Manager) is used to provide a worst

case benchmark for the MCDA managers in use. Furthermore, DDRM performance

measures are excluded in the comparison and only referred when a manager performs

worse than the benchmark set by DDRM. Table 5.1 summarizes the performance

metrics achieved by all managers.

Figure 5.3 represents the average number of physical machines used under all re-

source consolidation managers. In literature, the amount of physical machine usage

is directly associated with the efficiency of the manager since it can be considered as

more cost efficient in regards to hardware, cooling, power consumption, co-location,

etc. The results show that QFXM uses the least number of physical machines with the

average count and the standard deviation pair of (109.026, 3.012) respectively. QFXM
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Figure 5.3: The Average Physical Machine Count Under Different Managers

is followed by ELEM with (157.029, 17.172). It is important to note here that QFXM

uses about 50 less physical machines in order to host 1000 virtual machines when com-

pared to the second most efficient manager ELEM. The reason behind this is that the

filtering technique used in QFXM significantly reduces the granularity of the decisions

made since only the candidates with the most resource consumption or availability is

considered. This, in turn, results in tight packing of virtual machines. However, the

efficiency in using less physical machines in likely to introduce performance issues in

respect to service level agreement violations, and virtual machine migrations. ELEM

is followed by ORSM, PROM, RGMM, AHPM and SMAM respectively. The amount

of physical machines used by these managers increase about by 10 units in each case.

The manager with the most loose packing behaviour is PAMM with (211.015, 8.514).

In the context of standard deviations, it is beneficial to analyse the managers in three

groups as (1) low, (2) intermediate and (3) high deviation. Both QFXM and ORSM

belong to the first group of low deviation with standard deviation measure of 3. The
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Table 5.1: Managers’ Performances over 10 Simulated Runs.

Manager
PM Usage SLA Violation VM Migration Config. Time

Mean SD Mean SD Mean SD Mean SD
QFXM 109.02 3.01 504.72 24.76 94.17 4.59 0.079 0.002
DDRM 119.83 1.54 330.61 19.34 94.45 2.37 0.006 -
ELEM 157.02 17.17 132.25 17.17 25.88 1.91 0.024 0.003
ORSM 169.05 3.24 71.65 18.57 25.53 3.55 1.288 0.170
PROM 181.91 5.13 62.57 18.38 19.92 2.55 0.631 0.067
RGMM 191.97 6.17 53.09 18.45 19.52 2.63 0.816 0.083
AHPM 199.80 6.80 48.26 17.80 19.27 2.59 0.288 0.030
SMAM 206.33 7.70 44.65 18.06 18.71 2.47 0.003 -
PAMM 211.01 8.51 43.51 17.87 18.61 2.42 0.643 0.077

reason behind this can be considered as the granularity of the decisions made by these

managers. That is, the ability of differentiating between small differences in resource

usages or availability is significantly lower than the rest of the managers. This, in

turn, results in more consistent behaviour with respect to the amount of physical ma-

chines in use. PROM, RGMM, AHPM, SMAM and PAMM all belong to the group

of intermediate deviation with a standard deviation measure between 5 and 8. In

the last group, ELEM has the highest standard deviation value of 17. The reason

behind this is that the ELECTRE III method employed by this manager considers

preference, indifference and veto thresholds which introduces fine granularity when

making decisions. In addition, the distillation process carried out at the end of the

method in order to yield a total pre-order may result in inconsistencies.

Figure 5.4 represents the average number of service level agreement violations

encountered throughout the simulation run under all managers. Physical machine

number under use is a performance metric that is solely associated with the ser-

vice provider. However, in the client-centric view of the cloud, end user metrics

also become important. Most obviously, the top performance metric associated with

the end user is service level agreement violations. Naturally, the manager that can

limit these violations can be considered as more efficient since the service provider

can deliver the computational resource that were agreed upon. In this context, this

metric becomes important for both the service provider and the client. The results

show that PAMM encounters the least amount of violations with count and stan-

dard deviation pair of (43.517, 17.870). PAMM is closely followed by SMAM and

AHPM with (44.652, 18.064) and (48.266, 17.802) respectively. More specifically, it is
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Figure 5.4: The Average SLA Violation Count Under Different Managers

important to note that SMAM uses about 5 less physical machines when compared

to PAMM and is able to encounter only a single additional service level agreement

violation. In the context of service level agreement violations, it is beneficial analyse

the managers under three groups of (1) low, (2) intermediate and (3) high number of

encountered violations. The first three managers analysed above belongs to the first

group. The intermediate group consists of RGMM, PROM and ORSM with values

of (53.097, 18.453), (62.574, 18.385) and (71.653, 18.575) respectively. The last group

consists of ELEM and QFXM with the values of (132.25, 17.172) and (504.726, 24.763)

respectively. The reason behind the high number of service level agreement violations

is the tight packing of virtual machines in the context of resource allocation. Care-

fully readers will notice that these two managers use the least number of physical

machines visible in Figure 5.3. Furthermore, the results also show that the amount of

physical machines used by the managers have a direct effect on the amount of service

level agreement violations. The order of managers with respect to both performance
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Figure 5.5: The Average Migration Count Under Different Managers

metrics is the complete opposite of each other. Furthermore, QFXM causes signifi-

cantly more violations than DDRM which denotes the exceptionally bad performance

achieved by QFXM. Naturally, if a manager performs worse than the random method

under the measure of service level agreement violations, it is safe to conclude that

QFXM is not an efficient manager.

Figure 5.5 represents the average number of virtual machine migrations through-

out the the simulation run under all managers. Similarly to the relation between

service level agreement violations and physical machines under use, the order of man-

agers with respect to virtual machine migrations is the complete opposite of physical

machines under use. However, the grouping of the managers differ. In the group

of low migrations, the manager with the least amount of migrations is PAMM, fol-

lowed by SMAM, AHPM, RGMM and PROM with the values of (18.614, 2.425),

(18.712, 2.470), (19.271, 2.597), (19.525, 2.634) and (19.926, 2.558) respectively. The

second group of intermediate values consist of ORSM and ELEM with the values of
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Figure 5.6: The Average Configuration Times in Seconds Under Different Managers

(24.532, 3.551) and (25.884, 1.911) respectively. The results show that the manager

with the most number number of virtual machine migrations is QFXM with the values

of (94.175, 4.599). In this context, the order of managers with respect to virtual ma-

chine migrations and physical machine usage is the complete opposite of each other.

Finally, the standard deviation value is consistent among all eight managers.

Figure 5.6 represents the average time taken to compute new virtual machine

to physical machine mappings throughout the simulation run under all managers.

Specifically, this performance metric is associated with the scalability of the resource

consolidation manager. SMAM has the fastest configuration times with 0.004 seconds

on average. This value shows that the decision making process carried out by SMAM

is almost instant due to the simple utility function used in the decision making process.

In this context, SMAM can be considered highly scalable with respect to the ability of

dynamically allocating resources quickly in very large data center settings. SMAM is

followed by ELEM with the average of 0.025 seconds. QFXM averages 0.079 seconds
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as a result of the filtration process of alternatives. QFXM employs QUALIFLEX

method which considers all n! possible permutations of given n alternatives. The

filtration process limits the number of alternatives to 5. Therefore, the solution

space is limited to 5! = 120 permutations which can be computed in a reasonable

amount of time. Next in the order is AHPM with the average time of 0.288 seconds.

The most time consuming computation in the decision making process employed by

AHPM is the construction of the hierarchical structure and producing a ranking of

the alternatives at each level of this hierarchy for each step taken throughout the

simulation run. In this context, AHPM deals with more pairwise comparisons than

QFXM. PROM and PAMM achieve very similar configuration times with 0.631 and

0.643 seconds on average. The main reason behind this is that both decision making

methods use the same exploitation procedure. It is important to note here that the

main source of lengthy configuration times occur because of the various exploitation

procedures conducted by the outranking based managers. In this context, PROM

employs the light weight exploitation procedure of PROMETHEE II where positive

and negative outranking flows are combined to yield a net outranking flow. RGMM

achieves the second longest average configuration times with 0.817 seconds. RGMM

employs a simple pairwise comparison process in the aggregation procedure. However,

REGIME method leaves the node agents with a set of relations between alternatives.

In other words, the node agents has to go through a separate process in order to come

up with a total pre-order. Firstly, the node agents considers each alternative under

the condition of being non-dominated by the rest of the alternatives and forms an

associated set. Secondly, the node agents picks a random alternative from the set of

non-dominated alternatives. It is important to note that this exploitation procedure

is computationally complex and requires more time when compared to ones employed

by PROM and PAMM. The manager with the longest average configuration time

is ORSM with 1.289 seconds. ORSM employs the same exploitation procedure as

RGMM which contributes to making the computation longer. On the other hand,

the aggregation procedure of ORSM is more complex than RGMM due to the various

steps taken in ORESTE method such as evaluating pre-orders of both alternatives

and criteria, ranking them using a projection matrix and finally converting these

projections into a global rank matrix.

Figure 5.7 represents the average CPU utilization achieved in the data center under

all managers. The ascending order of managers with respect to CPU utilization in

the data center can be given as: PAMM, AHPM, SMAM, RGMM, PROM, ELEM,
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Figure 5.7: The Average CPU Utilization Under Different Managers

and ORSM. It is important to remind here that the higher threshold for the CPU

usage was set at 60%. The first seven managers utilize the CPU between 45.374%

and 46.804%. The difference in the values is arguably negligible. QFXM stand out

from this group with 51.591% CPU utilization. Figure 5.8 represents the average

memory utilization achieved in the data center under all managers. The ascending

order of managers with respect to memory utilization in the data center is the same

as the order given above. In this resource dimension, the higher threshold was set at

90%. Therefore, the expected utilization on this resource dimension is higher than

CPU. The first seven managers utilize the memory between 56.923% and 58.119%

respectively. As in the case of CPU utilization, QFXM separates from this group by

achieving 62.283% utilization. Finally, Figure 5.9 represents the average bandwidth

utilization achieved in the data center under all managers. The ascending order

managers with respect to this resource dimension is the same as the first two resource

dimensions. Furthermore, the higher threshold was set at 60%. The first seven
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Figure 5.8: The Average Memory Utilization Under Different Managers

managers utilize bandwidth between 45.260% and 46.725%. QFXM achieves 50.735%

utilization on this resource dimension. The main reason behind QFXM achieving the

most amount of resource utilization under all dimensions is the tight virtual machine

packing done by the manager. QFXM uses the least number of physical machines

with the average of 109.026, whereas PAMM uses the most amount with 211.015.

Naturally, these results comply with the CPU, memory and bandwidth utilizations

achieved by the managers.

Until this point in the analysis of the results, we have provided the values of per-

formance metrics achieved by each manager and the rankings with respect to the as-

sociated measures. In addition, we have suggested reasons for these measures briefly.

In order to fully reveal the reasons behind differences and similarities in performance

metrics of the eight managers, it is necessary to investigate the mathematics and the

underlying algorithms deeply. In this context, let us investigate the managers in the

following four groups : (1) PROM, ELEM and PAMM, (2) ORSM and RGMM, (3)



68

Figure 5.9: The Average Bandwidth Utilization Under Different Managers

AHPM and SMAM and finally (4) QFXM.

PROM, ELEM and PAMM employ three outranking methods of PROMETHEE

II, ELECTRE III and PAMSSEM II respectively. Among these three managers,

PAMM is of significant importance due to its implementation of PAMSSEM II method

which is a hybrid of PROMETHEE II and ELECTRE III outranking methods. In

each of these methods, the decision making process has two stages, aggregation and

exploitation. PAMSSEM II inherits the aggregation procedure carried out by ELEC-

TRE II method where the concordance matrix is constructed using various thresholds

such as preference, indifference and veto. In the exploitation phase, PAMSSEM II

method uses the exploitation procedure carried out by PROMETHEE II method

where a net outranking flow for each alternative is computed in order to provide the

final ranking in the form of a complete pre-order. Therefore, the main difference

in the performance metrics achieved by PAMM and ELEM lie in their implementa-

tion of the exploitation procedure. ELECTRE III method computes two pre-orders
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Figure 5.10: AHPM Virtual Machine Profiles

called ascending distillation and descending distillation. The ascending distillation

is formed by aggregating the entries in the concordance matrix in order to find the

least preferred alternative. When such an alternative is found, it is removed from

the concordance matrix. The process is repeated until no alternatives remain in the

concordance matrix. The order of this removal process results in the ascending dis-

tillation. On the other hand, the exact opposite procedure is implemented in the

case of descending distillation where the most preferred alternative is removed from

the concordance matrix in each step. Finally, the two distillations are intersected

in order form pre-order that is consistent with both distillations. It is important to

note that the result may possibly be a partial pre-order with incomparabilities and

inconsistencies between alternatives. In order to further asses the differences between

the two methods, it is necessary to look in the virtual machine migrations carried

out by these managers. PAMM and ELEM migrated 96 same virtual machines out

of 100. The difference in the consistency of virtual machine migrations increase when
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Figure 5.11: SMAM Virtual Machine Profiles

the top 500 most migrated virtual machines are considered as only 459 of these are

the same.

The main reason behind the performance differences in PAMM and PROM lie in

the different aggregation procedures employed by PAMSSEM II and PROMETHEE

II outranking methods respectively. Although the calculation of aggregate indices

in PROMETHEE II and the construction of the concordance matrix in PAMSEMM

II (fundamentally ELECTRE III) display major similarities, the usage of thresholds

when suggesting assertions between alternatives causes the source of differences. In

both PAMSEMM II and ELECTRE III an assertion is deemed invalid if they are

below certain thresholds. In addition, the veto threshold can invalidate assertions if

they fall under a given value for a given criteria. This can be explained in detail as

follows. Let us consider an alternative that outranks another alternative on every

single criteria by a great extent except for a single criterion. In the cases where, the

performance of the alternative falls under the veto threshold, the assertion is deemed
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Figure 5.12: DDRM Virtual Machine Profiles

invalid regardless of the other criteria that suggest in the favour of this assertion.

Therefore, PAMM and ELEM can encounter inconsistent assertions due to the veto

threshold which is absent in PROM. In this regard, it is important to stress the

importance of setting these thresholds correctly. PAMM and PROM migrated the

same 97 out of 100 and 455 out of 500 virtual machines respectively which denotes a

significant percent of commonality in the decisions made.

The performance differences between PROM and ELEM can be explained follow-

ing a similar logic. These two managers employ different procedures in both aggre-

gation and exploitation phases. Despite the differences in the underlying algorithms,

97 out of 100 and 462 out of 500 most migrated virtual machines are common. Based

on the comparisons between PROM, ELEM and PAMM, it can be concluded that

the main difference in performance lie in the usage and the absence of veto thresh-

olds. In this context, PROMETHEE II method produces stronger assertions between

alternatives when the performance differences of alternatives are considerably small.
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Figure 5.13: PROM Virtual Machine Profiles

This, in turn, results the different physical machine selections which further impact

the performance metrics achieved by these three managers.

In the second group of outranking methods, RGMM and ORST differ in their

aggregation procedures employed by REGIME and ORESTE methods respectively.

REGIME method focuses on the sign of the difference in the performance values of

alternatives during the pairwise comparisons. This, in turn, reduces the sensitivity

of the assertion when the performance differences are large. Let us consider a three

alternative setting where the first and the second outrank the third alternative by 10

and 50 units respectively. Although the second alternative should be deemed the clear

winner in this case, REGIME method is indifferent between the two alternatives. The

assertion is strictly based on the sign of the evaluation difference where preference

is assigned when the sign is positive, preference in the opposite direction is assigned

when the sign is negative and finally indifference when the evaluation difference is

zero. In ORESTE method, the aggregation procedure starts by ranking each criteria
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Figure 5.14: ELEM Virtual Machine Profiles

as well as the alternatives. These aggregations form pre-orders which are then used

to construct a projection matrix. Furthermore, the projection matrix is aggregated

in order to convert these projections into a global ranking matrix. Clearly, the aggre-

gation procedures performed by these two methods are extremely different. However,

both of these methods do not suggest a total pre-order of the alternatives as they

leave the decision maker with preference relations among alternatives. In this regard,

RGMM and ORST implement a similar exploitation procedure to PAMM where a

set of non-dominated alternatives is formed. The winner is chosen at random from

this set of alternatives. Despite the differences in the aggregation procedures, 95 out

of 100 and 414 out of 500 most migrated virtual machines are common.

AHPM and SMAM employ single synthesizing criteria methods of AHP and

SMART respectively. Therefore, it is necessary to investigate the difference of these

two managers together. SMART method implemented by SMAM uses an approach

much like a weighted sum utility function. The performance evaluations of each
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Figure 5.15: PAMM Virtual Machine Profiles

alternative is converted into a single value where no pairwise comparisons are nec-

essary. The linear utility function uses in SMAM ensures the smaller differences

between alternatives produce small distinctions regardless of the distance between

the most preferred and the least preferred alternatives. On the other hand, AHP

method implemented by AHPM forms a hierarchical structure with respect to design

of IMPROMTU. The alternatives are evaluated at each level in a pairwise manner by

modulating the strength of preference between the values 1/9 and 9 before generating

aggregate evaluations. In comparison to SMAM, this results in clear differences in

alternatives at hand. Despite the completely different methods of reducing various

performance measures into a single performance measure, 97 out of 100 and 461 out

of 500 most migrated virtual machines are common. In this context, the process of

choosing physical machines with respect to the offered available resources also slightly

differ.

QFXM is excluded from grouping with other multiple criteria decision analysis
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Figure 5.16: ORSM Virtual Machine Profiles

methods due to its computationally intensive characteristics that limit the decision

making process. QFXM employs QUALIFLEX method which can be seen as the

aggregation of permutation evaluations. In the considerably large simulation setting

used in this study, evaluating all possible permutations of alternatives at each step is

infeasible. In particular, QUALIFLEX method treats each one of n! permutations as

a pre-order. The ranking in these pre-orders are compared in a pairwise manner in

order to asses the performance of a given permutation. QFXM uses a filtration mech-

anism in order to reduce the number of alternatives analysed by the QUALIFLEX

method. Firstly, the alternatives are sorted lexicographically. From the sorted set of

alternatives, the top 5 alternatives with the highest performance measures are picked

to be analysed by QUALIFLEX. The filtration process introduces cases of incon-

sistency as the lexicographical sorting alternatives with conflicting criteria is not the

most sound option. This claim is supported when the most migrated virtual machines

among all managers are considered. In the case where the virtual machine migrations
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Figure 5.17: RGMM Virtual Machine Profiles

of seven managers excluding QFXM is considered 90 out of 100 and 382 out of 500

most migrated virtual machines are common. However, in the case where QFXM

is included in the group these values decrease drastically to 37 out of 100 and 274

our of 500. Another interesting finding regarding these numbers is that the QFXM

especially performs poorly when choosing the top 100 virtual machines.

5.3 Summary

IMPROMPTU model was first suggested and analysed under the CDFF, DDR, IMP-1

and IMP-2 managers which employ Centralized First Fit, Distributed Dynamic Ran-

dom, PROMETHEE II and PROMETHEE II with influence criteria respectively in

the former studies [80]. IMPROMPTU showed that the distributed reactive approach

could be a valid alternative to the existing centralized architectures as it proposed

a scalable system, as well as, triggering less service level agreement violations by
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Figure 5.18: QFXM Virtual Machine Profiles

smoothly distributing the overall resource utilizations within the data center. The

previous work left the need for investigating a comprehensive set of multiple criteria

decision analysis methods within the context of dynamic resource allocation. This

analysis, in turn, answers whether better performing MCDA methods exist and high-

lights the properties of good MCDA methods in the domain of dynamic resource

allocation.

The data collected and analysed from the simulation runs can be further assessed,

however using an MCDA method to decide on the ranking of a set of MCDA methods

is ironic. Furthermore, such assessments can yield contradictory results. Therefore,

this process is not a viable option. However, evaluation of these methods is possible

with out mathematical procedures when the performance measures are prioritized.

In this context, we can refer to the two most valuable performance measures as

configuration time and the amount of migrations.

The main reason behind adopting a distributed architecture for the resource al-



78

location management is to achieve a responsive system. In an environment where

the workloads of application environments are changing rapidly and continuously, a

virtual machine to physical machine mapping is only valid and of use, if it can be

computed faster than the change in workloads. In the majority of the previous work,

authors provide elegant but computationally complex methods to calculate optimal

mappings. From a practical point of view, these configurations are stale and hold no

importance. Therefore, configuration time can be regarded as having the power of a

veto threshold. In addition, the amount of migrations carried out by a manager is also

equally important due to the practical limitations. Constantly migrating virtual ma-

chines within the data center imposes additional computational burden that results

in critical performance issues. On the other hand, physical machine usage and the

amount of service level agreement violations are not bound by practical limitations.

A service provider may prefer to employ extra physical machines and possibly nego-

tiate less strict penalties in the case of violations. In this regard, these two measures

solely depend on the preferences of the service providers. Therefore, assuming that

the amount of service level agreement violations and the amount of migrations are of

equal importance, the ranking of most preferred to least preferred managers can be

given as follows: (1) SMAM, (2) AHPM, (3) ELEM. In this sense, it is important to

note that configuration times over 0.4 seconds are assumed to yield stale solutions.

The analysis performance measures leave open questions for further research. The

standard deviation values appear to be related to the mathematical methods employed

by the managers, which are outlined in the previous subsection. However, further re-

search is necessary to pin point the source of these differences. Finally, the virtual

machine profiles represented in Figures 5.10−5.18 suggest that the majority of the mi-

grations and service level agreements violations are caused by the problematic virtual

machines. Particularly, this finding suggests the possible improvements of managers

if the problematic and the non-problematic virtual machines can be blended in a more

efficient way. Furthermore, isolating such virtual machines can be considered as the

last resort for the sake of other virtual machines hosted in the data center.
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Chapter 6

Conclusion and Future Work

In this thesis, we have extended the existing IMPROMPTU model with six outrank-

ing based and two single synthesizing criterion based MCDA approaches. Firstly, we

have provided a detailed introduction to the distributed systems. In this context, a

chronological order of milestone achievements are listed with various associated ex-

amples. The idea of billing clients for computational services is an idea that dates

back to 1960s. However, due to the insufficient operating system, semi-conductor

and communication technologies, this business centric view of distributed could not

be realized for decades. Although, virtualization not being a new paradigm, it lies

at the core of cloud computing. The ability to host, suspend and migrate virtual

machines within data centers enables the resource allocation process to be dynamic

and autonomous. An efficient dynamic resource consolidation manager can minimize

service level agreement violations and virtual machine migrations, as well as, maxi-

mizing resource utilization without any human interaction. In addition, calculating

virtual machine to physical machine mappings in an environment where the condi-

tions are continuously changing calls for quick configuration times that are beyond

human capabilities. In this context, dynamic resource consolidation emerges as a

necessity in the current state of cloud computing.

This work provides a detailed literature survey on the existing studies on the prob-

lem domain. The problem of dynamic resource allocation management in data centers

have been investigated mainly under two categories where the new configurations in

the data center are calculated in a centralized or a distributed manner. The cen-

tralized methods employ a global arbiter which attempts to maximize a given utility

function. These solutions can be efficient in small-scale data center settings, however,

they suffer from scalability and feasibility issues in realistic large-scale settings. In ad-
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dition, new optimal configurations generally take minutes to compute, which results

in stale solutions. On the other hand, distributed approaches attempt to distribute

the task of resource allocation among the responsible units. These methods are inher-

ently resilient to scalability and feasibility issues. However, some of these approaches

lack the responsiveness needed for the dynamic resource allocation or their usage is

limited to Map-Reduce applications.

We have also outlined the MCAP based MCDA methods under two categories,

single synthesizing criterion and outranking based methods. Single synthesizing crite-

rion methods aim to reduce the different criteria used in the decision making process

into a single comprehensive index by employing some rules, procedures and math-

ematical formulae. In this context, we have provided formal definitions of Simple

Multi-Attribute Rating Technique (SMART) and Analytic Hierarchy Process (AHP).

On the other hand, outranking based MCDA methods follow a successive pairwise

comparison of alternative actions in isolation to produce a complete pre-order. This

thesis overviews the following six outranking based MCDA methods, PROMETHEE

II, ELECTRE III, PAMSSEM II, ORESTE, REGIME and QUALIFLEX. Moreover,

we have provided details and explanations regarding each method.

This thesis provides an overview of IMPROMPTU which is a threshold based re-

active resource consolidation for clouds. IMPROMPTU distributes the responsibility

of resource allocation management among autonomous node agents that are tightly

coupled with a unique physical machine in the data center. The node agents moni-

tor the resource usage on each physical machine and migrate virtual machines to be

hosted elsewhere in the data center when the conditions impose. This in turn, results

in a reactive behaviour where each node agent attempts to keep the associated phys-

ical machine within desired states. The reaction process calls for the following two

decisions, choosing a virtual machine for migration and choosing a physical machine

in order to be the new host for this virtual machine. In this context, the next course

of action is based on the MCDA method employed by the node agents. The details

about the implementation of these methods are also given in detail.

Furthermore, we have analysed the performance of eight MCDA based managers

in-detail using the results gathered from simulation runs. These managers are inves-

tigated in terms of physical machine usage, amount of migrations, amount of service

level agreement violations and configuration times. In this context, this thesis is

particularly significant as a comprehensive set of managers provide valuable infor-

mation denoting the properties of good MCDA methods for this problem domain.
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From the author’s point of view, the most important criteria regarding the qualities

of a manager are virtual machine migrations and configuration times due to practical

limitations. In this context, an efficient manager needs to compute new virtual ma-

chine to physical machine mappings as these configurations are only valid when they

are computed faster than changing workloads. On the other hand, migrating virtual

machines imposes additional computational burden on the data center. Furthermore,

the results show that the majority of the migrations and service level agreement viola-

tions are caused by specific problematic virtual machines. In the context of industry

application, SMART is the most feasible candidate amongst the analysed managers in

this thesis. The results show that the dynamic resource allocation manager employ-

ing SMART (SMAM) tends to find a well balanced spot between resource usage and

VM migrations. In addition, the configuration times are efficient enough to adjust to

rapidly changing workloads. Finally, compared to the rest of the managers, SMART

is the least challenging to implement. This, in turn, makes SMAM basic yet elegant.

The work outlined in this thesis can be extended by improvements to the current

state of the system by: (1) conducting a comprehensive sensitivity analysis in order to

further calibrate the managers in use. The managers that employ Single synthesizing

were ranked as the top managers according to our study. This leaves the question

of whether calibrating and fine tuning outranking methods would have an effect on

this ranking. (2) introducing additional resource dimensions and modelling their be-

haviour. This would be beneficial to asses the performance of managers under more

criteria. In addition, it would answer the question of whether adding more criteria

increases the efficiency of the manager. (3) implementing a blending procedure for

problematic virtual machines with the non-problematic ones in a more efficient way

by possibly using a better method for load forecasting and reinforcement learning.

(4) isolating or penalising the problematic virtual machines as a majority of the SLA

violations are caused by the same VMs. Under the ideal isolation setting, the man-

agers may possibly need less migrations, which, in turn, would have an impact on

efficiency of resource management. (5) considering the cost of migrations and place-

ment conflicts. The simulation platform needs a layer to model the computational

burden of VM migrations. Also the question of whether placement conflicts may oc-

cur and how this would impact the migration is left unanswered. (6) adding a proper

network layer simulation to better understand the implications of VM migrations and

communication between nodes. In the current simulation platform, a global entity is

assumed to know the state of every physical and virtual machine in the data center.
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In a real life application, this may not be possible as availability metrics are needed

to be streamed between nodes. (7) implementing an improved simulation platform to

support these enhancements, and finally (8) testing the proposed model on an actual

physical cloud setting. Realistically, running a real implementation on cloud with

limited number of physical machines would not be the most beneficial test scenario.

From a statistical point of view, having a large number of nodes would result in more

consistent data. However, running tests on a data center with 1000 physical machines

is very unlikely to be feasible. From author’s point of view, improving the simulation

platform is more important than running tests on a physical test bed with limited

resources.
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