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ABSTRACT

Context is important to today’s mobile and ubiquitous systems as operational

requirements are only valid under certain context conditions. Detecting context and

adapting automatically to that context is a key feature of many of these systems. How-

ever, when the operational context associated with a particular requirement changes

drastically in a way that designers could not have anticipated, many systems are un-

able to effectively adapt their operating parameters to continue meeting user needs.

Automatically detecting and implementing this system context evolution is highly

desirable because it allows for increased uncertainty to be built into the system at

design time in order to efficiently and effectively cope with these kinds of drastic

changes. This thesis is an empirical investigation and discussion towards integrating

data mining algorithms into self-adaptive systems to analyze and define new context

relevant to specific system requirements when current system context parameters are

no longer sufficient.
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Chapter 1

Introduction

1.1 Motivation of this Research

A common problem for mobile app developers is that the context of use of the appli-

cation cannot always be anticipated at design time, and therefore, an incomplete set

of user requirements is a result. It is challenging to cost-effectively maintain system

relevance through manually updating and evolving system requirements. Addition-

ally, even if all contexts of use can be anticipated at design time, user requirements

and their associated contexts of use are constantly evolving at runtime.

For example, while the designers of a mobile phone may make observations about

the tasks being completed in an urban setting, it may not be feasible to make the same

kinds of observations if the user(s) of the mobile system complete tasks in settings

that are unobservable by the designers (e.g., prohibitively dangerous or remote like on

the open ocean in a small craft or during a forest fire). Therefore, it may be extremely

difficult to ensure that the situations a context-aware application should and should

not be active/triggered in are properly defined at design time, particularly if their

needs for a context-aware system function or service are significantly different from

those anticipated in the urban context. In addition, if a forest-fire fighter expects

that her phone should behave in one way while fighting fires (e.g., send all incoming

calls to voicemail, keep map of current location and other fire fighters on screen), and

then automatically changes functionality when back in an urban setting (e.g., vibrate

phone whenever a new call is received, disable GPS location services for privacy).

This is only compounded by the fact that the user may wish for her system to behave

differently between different urban settings. For example, the system should enable
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the GPS location services when she’s in an unfamiliar urban setting that is near to

where she’s fighting fires, but disable the GPS location services when she’s back in

her hometown.

In order to cope with evolving user requirements, context-aware systems need to

automatically identify evolving contexts of use relevant to specific user requirements

at runtime and adapt accordingly in order to reduce operational and maintenance

costs. This turns them into context-aware self-adaptive systems.

Data mining refers to the process of applying machine learning algorithms to

large data sets in order to discern patterns within the data. By using data mining

algorithms applied to historical sensor data concerning the context of use collected

passively at run time, we can discern patterns for when a service should be delivered

to a user by a context-aware system. This means that system requirements can evolve

in order to continue effectively meeting user needs. Because these contexts may be

subtle and expensive to characterize manually, integrating data mining algorithms

into the system in order to derive contexts that trigger requirements from collected

data observations is a promising solution approach.

1.2 Research Objectives

This research aims at investigating the feasibility of integrating data mining into

context-aware systems in order to facilitate automatic requirements evolution at run-

time. These mechanisms will enable developers to shift much of the uncertainty about

operational context for specific requirements at design time to runtime, and will al-

low for a more automated approach to system evolution and maintenance with fewer

assumptions.

Specifically, this research focuses on using data mining algorithms to dynamically

detect patterns in historical contextual data, and correlate those patterns to specific

system requirements, thus producing a self-adaptive system evolution. Through this

research, the following objectives are pursued:

• Data mining algorithms are applied to historical sensor data to automatically

identify which context situations are relevant to a specific requirement.

• The results of applying the data mining algorithms to historical sensor data are

compared against the actual context situations in which specific requirements

are valid.
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1.3 Research Methodology

The methodology presented in this thesis is a pragmatic approach to contextualizing

requirements for an unobservable setting in order to ensure the developed system

functions properly and meets user needs. It is based on passively collected sensor

data from two field studies, and is supported by user log data from one of the studies

and multiple interviews with the users. An iterative process of literature reviews and

case studies combined with the approach to data mining presented by Kotsiantis [17]

as well as empirical analysis produced the results in this thesis.

Figure 1.1: Research Methodology.

The realism of the case studies is high because the results are based on passive,

unobtrusive data collection from two actual operating environments. An attempt to

maximize precision in this study has been made through the similarity of the case

studies (minimizing impacts to internal validity), maximizing the number of sensors

involved, and the isolation of the operational environment (minimizing external im-

pacts to the system). While the operational environment of the users in the case

studies is relatively unique and isolated, the results reveal that the most important

contextual attributes to the system involved are similar to those found in many mo-

bile devices (location, time, user identity, motion detection). Given this, the results

from this thesis may be generalized to those cases.

1.3.1 OAR Northwest

OAR Northwest is a Seattle, USA based non-profit organization who undertake long-

distance rowing voyages in order to perform research and deliver science, technology,

engineering, and math (STEM) curriculum to classrooms online and through school

visits. The data from the two case studies presented in this thesis was collected from

two open-ocean voyages, completed by OAR Northwest in the space of a year. These
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voyages both took place in a custom rowboat designed for long-distance, open-water

journeys, and were propelled entirely by the rowers themselves.

In September 2012, OAR Northwest was collaborated with in order to develop

a context-aware activity scheduling (calendar) system (ToTEM) for an open-ocean

voyage from Dakar, Senegal to Miami, Florida, USA. Because of the highly isolated

and dangerous nature of the system context of use, it was impossible for software de-

velopers to observe the rowers interacting with the system in order to perform typical

requirements engineering activities such as ethnography. In addition, it was not pos-

sible for developers to meet with a number of the rowers in person during design time,

and developers had to rely on interviews conducted through video telecommunication

means such as Skype. This created a number of requirements engineering challenges

detailed in Chapter 4, and prompted the exploration of how the passively collected

sensor data that OAR Northwest collected during their voyages may be investigated

for additional insight for the requirements engineering process.

The need for context awareness within the system developed was justified by the

rowers for two reasons. The first of these was because of the extreme and dangerous

conditions they often faced on the open ocean. The rowers expressed that, ideally, the

system should be aware of these conditions and adapt accordingly in a non-obtrusive

way. Additionally, the rowers often faced extreme fatigue and wished to use the

system for cognitive offloading such that the system would ‘think’ for them in a

number of circumstances so as to better support them in achieving their research and

voyage-completion goals. Context awareness was seen as a way to support cognitive

offloading in this manner.

While there is much previous work in literature on location-dependant, ubiquitous

mobile context-aware systems, there is a lack of literature on those that do not depend

on location or constant connectivity in order to offer context-aware services to users.

In addition, there is existing work on data mining user data offline (e.g., uploading

user data to servers for data mining), but there is little on concrete applications that

might necessitate online data mining of user data (i.e., those that data mine directly

on the mobile device).

This study investigates a non-location dependant context-aware mobile system, as

well as one that is non-ubiquitous, therefore, necessitating the implementation of data

mining directly on the mobile device itself. This has implications for context-aware

mobile applications where privacy may be a concern (i.e., ones where the user may

want to keep sensor data localized for data mining processing instead of uploading
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it, as in the case of health-oriented applications), as well as for systems that may not

have consistent connectivity (e.g., disaster zones, or extremely isolated environments).

In addition, it has implications for group context-aware mobile applications.

Two separate case studies were carried out, an exploratory case study, and a

confirmatory case study.

1.3.2 Exploratory Case Study

The purpose of the exploratory case study was to discern whether or not the potential

of data mining to automatically define context for contextual requirements for system

evolution was worth investigating further. An initial data mining approach1, was

developed for the study and applied to the exploratory case study data set for the

following purposes:

1. to investigate whether or not a requirement could be linked to contexts of use

by discerning patterns in which of the sensors and specific contextual situations

(represented by the readings of those sensors) were relevant by applying data

mining algorithms on the given data set

2. to see which, if any, of the data mining algorithms used performed to accuracy

levels greater than 80%

3. to discover which data mining algorithms produced the most accurate results.

Upon obtaining results for the exploratory case study2, the data mining approach was

refined and a confirmatory case study was undertaken in order to confirm the results.

1.3.3 Confirmatory Case Study

The refined data mining approach derived from the exploratory case study was applied

to the confirmatory case study with a much larger runtime sensor data set with more

contextual requirements investigated. Upon obtaining results that confirmed those

of the exploratory case study3, the potential for automatic contextual evolution for

requirements at runtime was explored and an adaptive systems literature review was

undertaken. This was done in order to explore where the context definition at runtime

1This initial methodology is based on Kotsiantis’ approach, illustrated in Figure 3.1.
2Shown in Section 5.1.6.
3These results are discussed in Section 5.2.5).
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for contextual requirements using data mining algorithms could fit into self-adaptive

systems for runtime requirements evolution.

1.3.4 Time-Series Analysis on Runtime Data

In order to further explore the feasibility of automatic requirements evolution using

data mining algorithms on contextual requirements, a time-series analysis on the

historical runtime sensor data from the confirmatory case study was completed for

the JRip data mining algorithm and the J48 data mining algorithm. This analysis

was used to explore the following:

1. how long it took for each of the data mining algorithms to accurately predict the

relevant context of use for each contextual requirement from the confirmatory

case study

2. how sensor configuration changes affect the data mining algorithms’ ability to

accurately define the context of use for each of the requirements from the con-

firmatory case study.4

1.4 Contributions

The research carried out in this thesis makes three unique contributions in its ap-

proach to requirements engineering using data mining algorithms applied to system

requirements contextualization for unobservable environments:

1. An exploration of the feasibility of integrating data mining algorithms into self

adaptive systems for context awareness and requirements evolution.

2. A novel application of data mining in order to identify context of use situations

for several requirements using passively collected historical sensor data in or-

der to implement them as context-aware services in the ToTEM context-aware

mobile application.

3. A time-series analysis and comparison of the performance of JRip (RIPPER)

and J48 (C4.5) data mining algorithms on identifying context of use situations

from runtime sensor data for several requirements.

4The results of this time-series analysis on runtime data can be found in Section 5.3.4.
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This research has significant implications for the state of the art of data mining

and self-adaptive systems, as well as requirements engineering:

1. Context of use situations for requirements (application services) for context-

aware applications can be derived from passively collected sensor data, thus

moving such requirements elicitation from design time to runtime,

2. Context of use situations for context-aware services can be derived for unob-

servable contexts of use from passively collected sensor data,

3. It is possible to derive some context of use situations from passively collected

sensor data within finite time ranges to high performance levels, and

4. the context of use classifiers produced by both the JRip and J48 algorithms

are robust enough in several cases to continue providing high levels of accuracy,

precision, and recall even with sensor configuration changes and abrupt changes

in normal user behaviour (such as user activity shift changes).

1.5 Thesis Outline

Chapter 1 contains a statement of the research area of interest as well as the in-

vestigative approach undertaken in this thesis followed by an overview of the

structure of the document itself.

Chapter 2 provides a background of the practical problem explored combined with

an overview of the current state of the art and the impact of the research.

Chapter 3 details the methodological approach undertaken in order to solve the

research problem.

Chapter 4 gives a methodological overview of the empirical analysis undertaken to

arrive at the final approach.

Chapter 5 includes the data characteristics of the exploratory and confirmatory case

studies and the results obtained from the empirical analysis. It also includes

details of the time-step analysis of the runtime data from the confirmatory case

study and the results obtained.
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Chapter 6 discusses the final approach and the results obtained with respect to the

original research problem, and demonstrates how the outcomes can be imple-

mented using existing adaptive system models.

Chapter 7 summarizes the problem addressed in this thesis and the approach taken

to solve it.
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Chapter 2

Literature Review

The definition of context as it relates to software engineering and computer science

has gone through several revisions. It has been defined as “any information that can

be used to characterize the situation of an entity. An entity is a person, place, or

object that is considered relevant to the interaction between a user and an application,

including the user and the application themselves,” with primary context types that

can be used to situate an entity being location, identity, time, and behaviour [7]. A

more recent definition further refines context into the following three categories:

1. computing context refers to the actual hardware (and its configuration) that

the user(s) have access to for interacting with the system such as input/output

devices, memory capacity, and wireless bandwidth,

2. user context, which pertains to the users of the system and the individual ap-

plication context associated with them such as their system profiles, calendars,

and preferences, and

3. physical context which is the non-computing, real-world setting that the system

is interacted with by the user(s) in. Examples include location, time, weather

conditions, noise, directional heading, and wave pitch. [3, 14]

There may be contextual information relevant to the system above and beyond

that which the system can detect; however, it is only that which the system can

process that can be used in practice [9]. While this may be relatively straightforward

for computing context, it may be more difficult to capture relevant user context,

and physical context. However, the recent surge in the availability and application of
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sensors has made gathering and reifying user context and physical context much more

accessible for system integration. Mobile devices now include location, environment,

and motion sensors, and bluetooth enables mobile systems to incorporate additional

sensors such as those for health monitoring. A system that is able to adapt itself to

a changing context is called a context-aware system. A system is considered context-

aware if it can process and apply context information to adapt its functionality to

the current context of use [9, 14].

The majority of prior work on context awareness using sensor data has focused on

location physical context and ubiquitous computing, for example map and direction

applications, and location-sensitive applications as in the case of [2, 16]. However, the

applicability of context-aware systems to unobservable settings, with no connectivity,

and where location data is not relevant to the context-aware services being provided

is underrepresented in literature.

2.1 Context-Aware Applications for Mobile Sys-

tems

Context-aware applications can reduce the amount of effort a user has to put into

interacting with an application, and can automatically deliver desired services [13].

For example, if an application can sense the current context, then it can efficiently

adapt automatically without the user having to take any action. Additionally, sensor

technology calibrated to a specific user’s profile can enable them to leverage that

context for a wide range of services [19]. There is currently great interest in context-

aware mobile applications in health-related fields where users are empowered to make

health-conscious decisions based upon the activity-related sensor input the context-

aware system receives and interprets for them [19, 23, 28, 25].

The UbiFit Garden project is an example of a health-oriented context-aware ap-

plication that displays continuous, ambient updates about the activity levels of a user

so that they know how much physical exercise they have completed during the day

[19]. There are currently many sophisticated health-monitoring bluetooth-enabled

wristband sensors designed to monitor activity in particular. This is useful for mon-

itoring sleep and fatigue levels [28], and exercise and activity levels [19, 25]. More

commercially-available sensors are currently in development with a wide range of sig-

nals in addition to motion sensors including pulse, temperature, and blood oxygen
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level. Sensors like these would be capable of capturing information for context-aware

services such as:

• workout tracking and sleep monitoring,

• facilitation of monitoring of circadian rhythms such as fertility cycles,

• childcare health applications, such as fever or asthma monitoring, heart moni-

toring, and

• historical data gathering to be shared with healthcare professionals for inter-

pretation and informed treatment recommendations.

However, risks come associated with the collection of personal context sensor data.

A major issue with ubiquitous systems is privacy, and while there are a number of

context-aware applications and studies that focus on leveraging location contextual

data [20, 16], there are inherent risks associated with the leaking of private contexual

information (e.g. location) [19, 8, 16, 18, 15]. Certainly these same risks apply to

the collection and transmission of health-related contextual information. Given these

concerns, it may be preferable to keep contextual information as localized as possible

and to process and delete it as soon as is feasible. The resource cost of connectivity

is another motivator for keeping all context-aware processes directly on the mobile

device instead of uploading contextual data for processing elsewhere [11].

While there have been a number of empirical studies using accelerometry sensor

data for recognizing activity, these have been largely focused on laboratory settings,

and over a period of time that usually spans under a day [25]. Longer-term studies

involving users completing activities outside the lab appear to be less prevalent. Ad-

ditonally, the studies do not appear to take into consideration sensor data from other

physical context, such as weather conditions, for example.

2.2 Data Mining and Context-Aware Mobile Sys-

tems

One of the ways that context awareness is supported is by integrating data mining

classifiers. Data mining is a form of machine learning that generally uses historical

data to form statistical predictions about future context [17, 30]. That is, data mining

classifiers are used to identify real-life situations such as “at home”, “running”, or
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“imminent danger” [11]. Data mining algorithms are often applied when human

analysis is not feasible (e.g., very large amounts of data), and also to discern subtle

and non-obvious patterns in data.

A data mining classifier is derived by applying a data mining algorithm (such

as the RIPPER [34, 5] or C4.5 [26] algorithms) to a training set of representative

data. The resulting classifier is then applied to new data in order to classify it. In

the case of context awareness, data mining classifier inputs include context sensor

readings (singly or aggregated) as well as other contextual data, and outputs include

a classification (often represented as a binary value) that the context-aware system

interprets as a service to be delivered [2, 6, 8].

The classification depends on a target attribute (also called an indicator attribute)

included with the instances (e.g. rows in a table) of the training set that indicates

the classification of each of the instances. In this thesis, all the target attributes are

binary values, and the binary classification pertains to whether or not the context

aware application should or should not deliver a particular service. The data mining

algorithms use the target attribute and sensor data to derive a classifier by identifying

patterns from the correlations between the target attribute and the training data. The

method of deriving a data mining classifier (including testing and evaluation) will be

discussed in Chapter 3.

Much work has been undertaken to produce classifiers by data mining historical

context data for context-aware applications implemented on mobile systems [25]. This

includes deriving and performing empirical comparative analyses on classifiers from

different movement patterns from sensors (e.g. sleeping, walking, running) in order

to keep track of daily activities for health monitoring applications [19, 25, 1]. There

is also current work in mobile context awareness focusing on monitoring computing

context in mobile devices in order to make better use of mobile system resources while

data mining streaming context [11].

There is, however a need for further studies on real-life applications with com-

parative analysis performed between data mining algorithms in real-life settings [10].

Additionally challenges such as concept drift (or data expiry) [32] need to be explored

for mobile systems. Concept drift is when data in the data mining algorithm training

set is no longer relevant. In the case of context awareness, concept drift refers to

when context data in the training set the data mining classifier was produced from

the system no longer correctly correlates to when the service should and should not

be delivered. For example, say the situation the health-monitoring context-aware ap-
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plication classifier was trained to recognize was rowing, but the user no longer rows,

and bikes instead. The “behavioural envelope” [6] that the classfier was produced

to recognize has now changed, and the classifier may no longer be valid. Thus, the

context-aware application may no longer perform adequately.

2.3 Requirements Engineering for Mobile Context

Adaptive Systems

Software requirements are defined as “a condition or capability needed by a user to

solve a problem or achieve an objective [29].” Users want context-aware systems to

anticipate and respond to their needs as unobtrusively and correctly as possible. In

order to do this, a context-aware system must be able to detect changing situations,

and correctly meet requirements associated with the current situation. Unfortunately,

it is impossible for designers to anticipate all the contexts of use that a context-aware

system in a dynamic environment will be operating in. This is especially true of

ubiquitous and mobile systems where contexts of use may be constantly changing

[32, 19, 16].

As such, context classifiers for context-aware applications on mobile devices need

to evolve to continue to reflect the context situations they represent so that user

requirements can continue to be met [32, 19, 16, 4, 7, 9, 31, 6]. This means that

data mining algorithms should be applied to context training data when concept

drift occurs to the point that the context classifier is no longer able to fulfill the user

requirements. This raises the question as to how much training data is required before

the data mining algorithms can adequately derive context classifiers. It also raises

the question as to what context impacts the performance of the resulting classifier.

An empirical, time-series analysis is an appropriate approach to address these.
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Chapter 3

Research Approach

This chapter describes the research approach used in this study to address the problem

of how system contexts of use (context situations) can be better understood to support

the requirements engineering process. The approach uses passively collected historical

sensor data to define context situations based on a correlation to the triggering of

behavioural and functional requirements. The data mining approach applied in this

study is described by Kotsiantis, illustrated below in Figure 3.1.

Figure 3.1: Kotsiantis’ described approach to Data Mining [17].

With respect to the current work, the goal of interpretation and implementation

by requirements engineers, and eventual automatic implementation on mobile systems

is desired. The final outcome of this approach is a method to push defining when

requirements should be triggered from design time to runtime.

3.1 Identification of Required Data

The first step in defining the triggering context for functional and behavioural re-

quirements is to gather relevant runtime reified contextual data for analysis. This

includes passively and actively collected quantitative sensor data. Passively collected

data refers directly to information gathered directly from sensors, that do not require
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input from a user. Actively collected data refers to information gathered in conjunc-

tion with user input, such as when a rower records information in a log book. As

well, any qualitative insights from the users that may serve to verify the correlation of

the requirement to the context, can be useful. Passively collected reified contextual

data, or actively collected reified contextual data that can be directly interpreted by

the system is preferred because the eventual goal is fully automatic definition and

evolution of the triggering context for requirements.

It can be difficult to identify sufficient relevant reified context for a given require-

ment. Depending on the requirement, reified data (sensor or otherwise) from one or

more of the four context types defined by Dey, Abowd, and Salber [7] (time, location,

user, behaviour) can be essential to effectively defining the triggering contexts using

data mining algorithms. Additionally, rate of frequency of data readings from the

data sources, and the amount and completeness of historical reified contextual data

available can have huge impacts on deriving triggering contexts.

It may be possible for a human analyst to adequately identify the reified con-

text data sources for a given requirement to apply data mining to. However, two

of the goals of the approach taken in this study are towards full automation with

as lightweight an implementation as possible. In order to support these goals, a

brute-force method was employed, whereby all passively-collected, reified contextual

sensor data available after the data pre-processing step (Section 3.2) was included

in the data mining process for each of the requirements. This approach serves to

minimize human involvement in identifying the triggering contexts, and to allow the

data mining algorithms the opportunity to identify relevant triggering context that

a human may not have considered relevant. In addition, certain attribute-selection

algorithms may be employed to varying degrees, but again, in support of a lightweight

implementation, this approach was not considered.

Once all available reified contextual data was identified and collected, data pre-

processing took place in order to convert the data into a format that the data mining

algorithms could be effectively applied to.

3.2 Data Pre-Processing

In data mining practice, data pre-processing takes approximately 80% of the total

computational effort [35]. The relevant data pre-processing steps for this study are

outlined below:
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Data Integration

Data integration involves combining the disparate data sets into a format that data

mining algorithms can be applied to. In this study, this consisted of merging the

collected historical sensor data into a single matrix for each of the two case studies.

This was accomplished primarily through aligning records together into a single ma-

trix based on the Coordinated Universal Time (UTC) field available in each of the

data sets.

Offset due to merging data on erroneous fields can introduce noise into the data

set and lead to inaccurate results. As a refinement of the second case study, merged

data sources were checked for offset by graphing and comparing other redundant

attributes for correct alignment. This was particularly valuable where a power loss in

one of the data collection devices introduced erroneous timestamps into the UTC field.

Redundant time and latitude and longitude fields between disparate data sources

allowed for minimizing record offset through visual inspection. Comparing periods

of normative behaviour was also valuable for integrating biometric data from each of

the users into the merged data source. This approach is discussed more fully in detail

in Section 5.2.

The frequency of sensor readings was different between the disparate data sets.

In the exploratory case study, the data set with more frequent readings was merged

onto the UTC field of the data set (to the minute) with less frequent readings. This

resulted in the data mining algorithms being applied to a smaller data set than

originally available, but with few missing sensor readings. In the confirmatory case

study, the data set with the most frequent readings was used to merge the sparser

data sets onto. The UTC column of each of the data sets was used again as a key.

The difference in the the reading rates produced missing values in the merged data

set. While there were no duplicate entries in the data sets, the data was carefully

inspected beforehand for duplicate entries to ensure that this method of merging

would be successful.

Data Cleaning

Data cleaning attempts to remove and/or replace erroneous data from a data set for

data mining in an effort to reduce noise and improve the resulting classifier. This

primarily involved removing erroneous outliers, and replacing missing values with

persistent ones from the merge approach used in the confirmatory case study (Section
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5.2). Outliers were identified by deviations from normative sensor behaviour, and in

some cases, able to be correlated to sensor technical failure.

Missing data due to changes in the rate of frequency of sensor readings was es-

timated by persisting current readings through to the next one (within time con-

straints). That is, if data was missing from a column in the merged data set due

to a difference in frequency of readings in the disparate data sources, that missing

entry would be filled by a previous sensor reading. This was under the condition

that the time difference between the previous sensor reading and the sensor reading

in question fell within a specific time limit. This was to ensure that relevant reified

contextual data would not be excluded simply because of a difference in the volume

of available data from different data sources.

The reasoning behind this ‘persistent’ approach was an effort to emulate a realistic

implementation for data mining historical contextual sensor data on mobile devices

by minimizing processing overhead. While missing data can be averaged between

sequential sensor readings, the computational complexity of applying this approach

is greater than a persistent approach. A persistent approach requires holding a sensor

reading in memory and doing a simple compare for staleness until a new reading is

obtained. Conversely, an averaged approach requires several additional computations.

Normative behaviour and deviations from normative behaviour captured by sen-

sor readings was particularly valuable. Not only did it help to remove any offset

in merging the disparate data sources, but it also allowed additional noise to be re-

moved from the data set. In the exploratory case study (Section 5.1), normative user

behaviour for the system was indicated by the consistency of sensor readings. This

helped improve data mining classification results by removing some of the outlying

circumstances that the users did not use the system in. In the confirmatory case

study (Section 5.2), normative behaviour was used to help identify times when the

users were operating the system under standard conditions. Once this was identi-

fied, deviations in normative behaviour could be inferred in the sensor data through

visual inspection. System requirements could then be correlated to these deviations

in normative behaviour, and in some cases, contexts for new requirements could be

suggested to the users.
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Data Transformation

In the exploratory case study (Section 5.1), normalization was applied to all sensor

data in the merged matrix. The normalization applied to our data sets scaled the

ranges of values in each column to between 0 and 1. Normalization in these cases also

applies to nominal values (such as words) where they are assigned a numeric value

in between 0 and 1 instead. Normalization is useful in some data mining algorithms

to improve algorithm performance and classifier results. This is done by comparing

the euclidian distance between values instead of simply the values themselves so that

the resulting classifier is not disproportionately skewed to specific attributes (thus

reducing noise).

Data Reduction

Data reduction involves reducing the data set to exclude irrelevant data and data

that introduces noise into the system. It is a way to improve algorithm performance

and the accuracy of the resulting classifier.

The merged data set from each of the exploratory and confirmatory case studies

was reduced by removing columns full of sensor data that was empty, or identical

within the same data source (e.g. certain time attributes). In the exploratory case

study, additional columns of data considered not relevant to the context of interest

were dropped. This included redundant attributes such as latitude and longitude

data from sensors with less frequent sample rates than the ones left in the data set,

and certain on-board instrumentation status.

In the confirmatory case study, however, only the empty and identical columns

were removed. This was because a ‘brute-force’ method was used in our approach,

and all available reified contextual sensor data was included in the data sets the data

mining algorithms were applied to. Again, this ‘brute-force’ method was used in order

to emulate lightweight application implementation for mobile systems with as little

human involvement as possible in selecting the reified context of use data relevant to

specific requirements.

Even given the ‘brute force’ method, several more columns of data were excluded

from the historical sensor data from the confirmatory case study the mining algo-

rithms were applied to. This was because those columns excluded were comprised

primarily of unique values. Several columns of primarily unique values were uncov-

ered in the exploratory case study. The classifiers produced were found to have to be
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over-fitted to these unique values because of the noise introduced into the analysis by

the uniqueness of the location values. For example, certain time attributes (month,

day) were fairly unique in both our case studies with very little repetition occurring

through the duration of the case study. Additionally, the location values (latitude

and longitude) are relatively unique because the users did not tend to revisit their

exact locations for the durations of the studies. Conversely, if the users revisited the

same location(s) several times in the study, the value of the location data may have

been more useful (similar to the time and location values of the trips the BC Ferries

make every day at regularly scheduled times).

3.3 Training and Test Data Sets

Data Characteristics

As described in the above Pre-Processing sections, many aspects of the data set used

for training can have an impact on the accuracy of the classifier produced. These

include a number of factors related to consistency of data collection, and removing

as many errors in the data as possible. In addition, the amount of data available can

impact the quality of the classifier. If an algorithm is not applied to a ‘critical mass’

of data, the accuracy of the resulting classifier produced may be too low to be useful.

This ‘critical mass’ of data can vary from set to set, and it may be difficult to define

exactly how much sensor data is needed for the training set and the test set.

Instead, it is better to consider that the training data set must be representative

of the test set. For example, if user buying patterns over a year are of interest, and

the data mining algorithm is applied to only a training set of data from January,

February, and March, then the resulting classifier may not be accurate on test data

from December. Additionally, as buying patterns change over time, it may be more

useful to consider data from the last three years rather than including those up to

five years ago. Similarly, it may take more than one instance of a requirement being

active for the algorithm to produce a satisfactory classifier, and since our assumption

is that system context changes over time, older data may need to be dropped from the

training set so that the classifier produced reflects only the current context instead

of being muddied by that which is no longer relevant.

The training set should include representative examples of sensor data from the

context situation(s) that the requirement should be active in, and also the situations
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that the requirement is not active in so that the algorithm can effectively differentiate

between the two. Therefore, a binary classification is assumed for the requirement. If

the separation between these situations is clearly and consistently defined, less sensor

data may be required to produce a classifier of adequate accuracy, precision, and

recall. Accuracy refers to the total number of rows the classifier correctly classifies in

a data set divided by the total number of rows in the data set. Precision for the active

or inactive state is characterized by the number of instances correctly identified for the

state divided by the sum of the correctly and incorrectly classified instances for that

state. Recall refers to the number of rows a classifier correctly identifies as being in

the active or inactive state, divided by the number of rows that actually are in that

state. If the separation between these situations are not clearly defined and there

is a lot of contradictory overlap in the training set between the context situations

where the requirement should be active, and when it should not, then the accuracy,

precision, and recall of the resulting classifier may not be adequate for automation.

Target Attribute

Defining what separates when the requirement is active/triggered and inactive/not

triggered is the key to linking user requirements with reified context, illustrated in

Figure 3.2.

Figure 3.2: Flow of information linking user behaviour to sensor data for data mining
classifier training through the target attribute.

In the approach taken in this study, this mapping between user requirements and

reified context has been implemented for data mining through the target attribute.

Each requirement being automated has a target attribute associated with it. This

target attribute is represented for data mining as an additional column with a binary

label for each row in the table of sensor data indicating whether or not the requirement

it represents was active/triggered (1 or ‘y’) or inactive/not triggered (0 or ‘n’) for that

row.
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It is assumed that the ability of a system to continually capture new user feedback

about the target attribute for each requirement at runtime is necessary in order to

ensure that it continues to meet performance standards. This user feedback is what

allows the system to determine whether or not the context situation it had defined

for a requirement is still valid or if it needs to evolve. While it may be effective to

implement an interface where users can actively indicate when specific requirements

should be triggered (for example, simple ‘on/off’ switches for when a requirement

should be active/triggered or should be inactive/not triggered), this takes a lot of

cognitive overhead, and may not be considered worth the effort of automation by

users. Ideally, these switches between active and inactive requirement states would

be automatically captured by the system passively in some way, for example, when

changes occur in the system settings, or a combination of low-overhead user input

and passive collection would occur. However, this passive or active collection by the

system is not always possible, and the target attribute must be inferred in some other

way. In this study, the target attribute was inferred in one of the following three ways

for each requirement and validated with the users:

1. Through mathematical derivation based on some numerical threshold or func-

tion,

2. Through visual inspection of the sensor data in graphical form and correlating

log data with anomalous patterns in the sensor readings, and

3. Through a combination of (1) and (2).

It should be reiterated at this point that the eventual goal of the approach taken is for

the system to automatically predict when the requirement should be active through

context awareness, so the target attribute on its own is not sufficient, as it is merely a

record of when the requirement state (i.e., when the requirement is active/triggered

or inactive/not triggered) in relation to the corresponding sensor data.

Similarly, relying on specific sensors alone for context awareness is not sufficient

because possible sensor failure means that the requirement may go unfulfilled as long

as that sensor is offline. The ultimate goal of the system is being able to adapt to

changing contexts, including sensor configuration changes. Given this, it is important

for the system to be able to cope with sensor loss and continue to be context-aware,

so being able to draw context (when necessary) from a number of different sensors

instead of just one or two is preferred.
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3.4 Algorithm Selection

Algorithm selection for data mining is influenced by a number of factors. These

include whether the data the algorithm is being applied to are discrete, continuous, or

binary (or a combination of these), and the quality of the data itself, such as whether

there are missing and/or erroneous entries in the data. Depending on the computing

system resources available, other factors such as algorithm complexity, the accuracy

of the resulting classifier, and the speed of producing the classifier may be important.

Additionally, depending on how and for what purpose the classifier is going to be

used, the transparency of the resulting classifier (i.e., how easily understood the logic

behind it is), and the speed of classification on incoming sensor data may also be

vital.

Algorithms for Requirements Engineering

Human comprehensibility of the classifiers produced was considered to be important

to algorithm selection for three reasons. The first was that transparency of the logic

behind the classifiers produced should be obvious so that the context situations rel-

evant to specific requirements could be easily understood and verified with the users

by requirements engineers. This included being able to easily discern the context

attributes most prevalent to each context situation for each classifier.This was impor-

tant to the early stages of the approach while it was being explored for feasibility.

The second reason for using classifiers with relatively high transparency was con-

sidered later in the study during our exploration of the automatic implementation of

data mining algorithms for system context evolution. This concern focused on the

transparency of identified context presented through an interface to users for valida-

tion and verification purposes. It was assumed that classifiers that were already rela-

tively comprehensible would be easier for end-users to interpret and provide necessary

feedback to ensure the classifiers continued to perform within acceptable performance

levels.

The third concern, influenced directly by these first two, was that algorithms that

required manual parameter tuning in order to produce more accurate results were

considered to be more cognitively intensive for requirements engineers and end users

to use. As a result, whether or not a classifier required parameter tuning was also

taken into consideration.
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Algorithms for Mobile

While cloud computing has allowed for data from mobile devices to be transmitted

and centralized externally for data mining analysis, the resource allocation and pro-

cessing capabilities of mobile devices are a concern when data mining is implemented

directly on them. Given these considerations, lightweight data mining algorithms

with low complexity were explored before those with high complexity. Additionally,

data mining algorithms that could not cope with missing or erroneous data were ex-

cluded given that incoming sensor data from mobile devices can have both. Because

incoming data from sensors can come from a variety of disparate sources, the form

of that sensor data can also be quite disparate. Therefore, algorithms that could

handle a variety of different data types including nominal, continuous, and binary

were preferred over those that were negatively impacted by a particular data type.

Transparency was considered important to mobile users for the same reasons given

above.

Speed of classification was also very important because the system needs to be

context aware at runtime. If the system takes to long to discern the requirement state

it should be in based on the time it takes to apply the classifier to the incoming sensor

data, the context may have already changed, and the requirement state determined

by the classifier may no longer be relevant to the current context situation. This lag

may be unacceptable to the user. Therefore, the quicker the classifier can determine

whether or not the current context situation applies to a particular requirement state,

the better.

Data Profile

The actual ‘operational profile’ between different data sets may be very different, so

while one algorithm may perform very well on a data set, another may not, and vice

versa [17]. In the exploratory case study, several types of data mining algorithms (cho-

sen based on the considerations above) were applied to the data set with rule-learning

and decision-tree algorithms providing the most accurate results, and the logistic re-

gression and support-vector machine algorithms providing the least accurate results1.

This finding was consistent with Kotsiantis’ observation that the rule-learning and

decision tree algorithms shared a similar operational profile [17], and as such, the

rule-learning JRip algorithm, and the decision tree J48 algorithm were chosen for

1These details are explored in section 5.1.6.
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extensive evaluation in the confirmatory case study.

3.4.1 JRip (RIPPER)

The JRip (RIPPER) rule-learner algorithm was chosen in this study for a number

of reasons. When considering comprehensibility to requirements engineers and end

users, the rules-based algorithms were considered to be among the more easily under-

stood data mining algorithms [17]. Additionally, it has the ability to handle missing

data and a variety of data types including discrete, binary, and continuous (to a

certain degree). It only produces rules for the target class (i.e., the active/triggered

requirement state in the cases in this study), making it a more lightweight algorithm

than others. It is also very quick to classify, which is important for context awareness

on mobile systems as described above. Aside from its relatively fast classification

speed and the high transparency of its resulting classifiers, it is described as being a

relatively average algorithm in most other respects including tolerance to irrelevant

data, accuracy in general, and speed of learning [17]. This was considered a benefit

to generalizability with the reasoning being that if good results could be obtained

with a relatively average data mining algorithm, then more advanced algorithms may

produce even better results.

The JRip algorithm2 is the Weka implementation of the well-known repeated in-

cremental pruning to produce error reduction (RIPPER) algorithm [5].

Algorithm Output

Output for this algorithm takes the form of a list of classification rules that cover the

rows in the training set for each of the two classes. In this study, these classes take on

the value ‘1’ for the active/triggered requirement state, and ‘0’ for the inactive/not

triggered state. The rules can be interpreted as a series of if...then statements to

predict whether or not the current context situation (represented by incoming realtime

sensor data) requires the requirement to be active/triggered, or inactive/not triggered.

To do this, incoming sensor data is compared against the classifier rules, starting

from the first rule and working sequentially through to the bottom in order to find

a match in conditions. For example, consider Table 3.1, which examines the JRip

context classifier rules produced in the Weka data mining application for requirement

R2 at point 18 from the time-series runtime analysis described in Section 5.3.

2http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/JRip.html
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Table 3.1: Example of JRip Context Classifier Produced in this Study

JRip context classifier rules produced in the Weka data mining
application for requirement R2 at point 18 from the time-
series runtime analysis described in Section 5.3.

(Rower2SleepWake <= 0) and (Rower4SleepWake <= 0)
=>classifier?=1 (6262.0/0.0)

(Rower1SleepWake <= 0) and (Rower3SleepWake <= 0)
=>classifier?=1 (5651.0/0.0)

(Rower2SleepWake <= 0) and (Rower3SleepWake <= 0)
=>classifier?=1 (2172.0/0.0)

(Rower4SleepWake <= 0) and (Rower1SleepWake <= 0)
=>classifier?=1 (1777.0/0.0)

(Rower4InBed >= 1) and (Rower3SleepWake <= 0) and
(Rower4SleepWake <= 0) =>classifier?=1 (415.0/0.0)

(Rower1SleepWake <= 0) and (Rower2SleepWake <= 0)
=>classifier?=1 (202.0/0.0)

=>classifier?=0 (54524.0/0.0)

The first rule in Table 3.1 can be interpreted as ‘if Rower 2 is sleeping and Rower

4 is sleeping, then requirement R2 should be active/triggered ’. So, when the context

aware system receives realtime sensor data from the SleepWake sensor for Rower

2 and the SleepWake sensor for Rower 4, and both indicate that those rowers are

sleeping at the same time, then requirement R2 should be active/triggered. If no

match can be found in any of the rules for the active/triggered state (i.e., the first six

rules in Table 3.1), then the requirement is inactive/not triggered. The seventh rule

in Table 3.1 indicates this and can be interpreted as ‘else requirement R2 should be

inactive/not triggered ’.

The first number in brackets after each rule indicate the coverage for that rule

(i.e., the number of rows of data from the training set that the rule applies to). The

second number indicates how many rows in the training set were misclassified using
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that rule. For example, the first rule in Table 3.1 covers 6262 rows of the training

set, and the last rule covers 54524 rows of data. Neither of the rules misclassified any

rows of data.

3.4.2 J48 (C4.5)

The J48 algorithm is a Weka decision tree algorithm based on the well-known C4.5

algorithm [26]. Decision tree classifiers are considered among the more comprehen-

sible of the data mining classifiers along with rules-based classifiers. According to

Kotsiantis [17], where they lack comprehensibility seems to lay in the fact that they

model all classes, not just the target class. The fact that it covers all classes, not

just the target class, also increases complexity. Additionally, decision tree algorithms

also have the ability to handle missing data and a variety of data types including

discrete, binary, and continuous, and they tend to perform better than rule-classifiers

with these data characteristics [17]. Along with high speed of classification, these

characteristics are desirable for mobile implementation.

Figure 3.3: Visualization of J48 decision tree context classifier produced for R2 point
18 from the time-series runtime analysis from Section 5.3.

Algorithm Output

Output for this algorithm is conceptually similar to the JRip algorithm in that it

covers the rows in the training set for each of the two classes; however, the J48

classifier takes the form of a decision tree instead of a list of rules. The J48 decision
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Table 3.2: Example of J48 Context Classifier Produced in this Study

J48 context classifier rules produced in the Weka data
mining application for requirement R2 at point 18 from
the time-series runtime analysis described in Section 5.3.

Rower2SleepWake <= 0
| Rower4SleepWake <= 0: 1 (6262.0)
| Rower4SleepWake >0
| | Rower3SleepWake <= 0: 1 (2773.0)
| | Rower3SleepWake >0
| | | Rower1SleepWake <= 0: 1 (202.0)
| | | Rower1SleepWake >0: 0 (2685.0)
Rower2SleepWake >0
| Rower1SleepWake <= 0
| | Rower3SleepWake <= 0: 1 (5050.0)
| | Rower3SleepWake >0
| | | Rower4SleepWake<= 0: 1 (1777.0)
| | | Rower4SleepWake >0: 0 (2450.0)
| Rower1SleepWake >0
| | Rower4SleepWake <= 0
| | | Rower3SleepWake <= 0: 1 (415.0)
| | | Rower3SleepWake >0: 0 (3234.0)
| | Rower4SleepWake >0: 0 (46155.0)

tree classifier can, however, also be interpreted as a series of rules in the same way

that the JRip algorithm does. For example, the J48 decision tree has the same rule

as the one described in the JRip algorithm above with the same coverage. That is,

looking at either the decision tree diagram in Figure 3.3 (the top and leftmost nodes),

or the Weka output of the same decision tree in Table 3.2 (the first two lines), shows

the rule ‘if Rower 2 is sleeping and Rower 4 is sleeping, then requirement R2 should

be triggered/active’ with the same coverage and error as the corresponding JRip rule.

Unlike the JRip algorithm that efficiently focuses on producing context classifi-

cation rules for the smaller (active/triggered) state, the J48 decision tree algorithm

makes explicit all the cases where the requirement would be inactive/not triggered

as well. This increases computational overhead, making this algorithm less efficient

than the JRip algorithm. It does, however, show gains in accuracy, precision, and

recall over the JRip algorithm3, so the tradeoff may be worth it.

3These results are shown in Figures 5.11 to 5.13 from the time-series analysis in Section 5.3.
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3.5 Training and Parameter Tuning

Training the classifiers for each requirement was accomplished using Weka 3.6.9, a

data mining application [12]. Weka was created by the University of Waikato in New

Zealand, and contains a number of machine learning algorithms that can be applied to

data mining tasks. Because the focus of this study was full automation of integrated

data mining, there was no parameter tuning of individual algorithms.

Training for each classifier for each requirement occurred over the entire set of

available data in each of the exploratory case study and the confirmatory case study.

That is, the classifiers produced to define the context for the requirement from the

exploratory case study were obtained by applying data mining algorithms to the

entire set of data from that study. Similarly, the classifiers produced for the eight

requirements from the confirmatory case study were obtained by applying data mining

algorithms to the data set from that study alone.

3.6 Evaluation with Test Set

Ten-Fold Cross Validation

Every time a classifier was produced in this study, it was evaluated using ten-fold

cross validation [33]. This evaluation technique is used to determine the general

performance of the classifier by breaking the training set into ten parts (folds), training

on the union of nine of those folds using the desired data mining algorithm, and then

testing on the one remaining fold. This process is repeated, one for each fold, and

the performance results of all ten folds are averaged to obtain a reduced-variance

estimate of performance rates on the training set [17]. The performance metrics

produced in Weka that are averaged using ten cross-fold validation for each classifier

include accuracy, precision, recall, as well as a number of others not discussed in this

thesis.

These performance rates were used to determine the feasibility of the approach

in the exploratory case study, and were also used to determine which data mining

algorithms should be extensively evaluated in the confirmatory case study. However,

the performance results in the confirmatory case study were consistently high using

the ten-fold cross validation technique when evaluating each of the chosen data mining

algorithms. Because of this, further evaluation was conducted through the time-series

analysis detailed below in Section 3.8.
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3.7 Classifiers Linking Context to Requirements

The classifier(s) produced for each requirement to sufficient accuracy, precision, and

recall defined the context situations that the corresponding requirement is active/triggered

in and inactive/not triggered in. The classifiers generated can be interpreted by re-

quirements engineers to better understand the context that each requirement is ac-

tive/triggered in without observing that context directly. At this point, the research

goal of how unobservable system contexts can be better understood to support the

requirements engineering process through data mining has been achieved.

3.8 Time-Series Analysis of Algorithm Performance

on Runtime Data

While post-runtime, human-in-the-loop analysis and system evolution is valuable,

the ultimate purpose of this study is to work towards fully automating this context

awareness and system evolution process at runtime. In order to further explore the

feasibility of this, a time-series analysis of each algorithm’s performance in producing

context classifiers for each requirement at runtime was undertaken on the JRip and

J48 classification algorithms on the confirmatory case study data. This analysis

determined the runtime performance of the JRip and J48 algorithms at successive

points in time for the entire confirmatory case study data set for eight contextual

requirements4. Through this analysis, insight was gained into when evolution of the

system’s definitions of the context situations for each of the requirement states might

occur.

In order to complete the time-series analysis, several steps had to be taken. The

graphs for the time-series analysis5 were produced according to the following algo-

rithm applied to the entire set of runtime data from the Dakar to Miami voyage for

all requirements for the JRip and J48 algorithms:

for each requirement {
define desired analysis data points

determine data intervals in between desired analysis data points

4See Figures 5.10 to 5.13.
5These details are illustrated in Figures 5.11 to 5.13
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test set is entire runtime sensor data set

training set is empty

for each analysis data point {
append interval of sensor data from the test set to the training set

remove interval from the test set

save training set and test set for that data point

}
}
for each data mining algorithm under investigation {

for each requirement {
for each data point {

apply data mining algorithm to training set

(validate with 10-fold cross validation, if desired)

apply context classifier produced to test set

record resulting performance metrics of context classifier

}
graph desired performance metrics of context classifiers for requirement

}
}

Define Analysis Points

First, which points in the time series should be analyzed needed to be determined.

For comparison between the graphs of each of the eight requirements, and to take

into account the impact of sensor configuration changes, analysis was completed in

increments of approximately every three days in the data (i.e. every 4320 rows), with

three additional analysis points added when sensor configuration changes occurred6.

Running the data mining algorithms on the cumulative data gathered in increments

of approximately three days gave an indication of how the accuracy of the result-

ing classifier changed depending on how much contextual historical sensor data was

available.

6See Section 5.3.
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Divide the Data into Training and Test Sets for each Requirement

Once each point for analysis in the time series was defined, it was divided into a

training set of all sensor data available before that point, and a test set of all sensor

data available after that point in terms of each of the eight requirements. Care

was taken to accurately reflect sensor configuration changes at the points where they

occurred at runtime by removing or adding the data from those sensors in the training

set for those points accordingly. Additionally, due to a limitation in Weka, the same

sensor data was removed or added from the test set.

Incrementally Create Classifiers on Training Sets and Evaluate on Test

Sets

For each requirement, and for each of the data mining algorithms under investigation,

the chosen data mining algorithm was applied to the training set at each point. The

resulting classifiers produced by the algorithm for each point was evaluated on the

test set for that point, and the desired performance metrics were graphed. Ten-fold

cross validation was used for each classifier generated at each point for comparison;

however, evaluation on the test set for each point may have been sufficient.

3.8.1 Performance of Algorithms over time

The changes in runtime performance of the algorithms on the data from the confirma-

tory case study could be seen over time. This allowed observations to be made about

how long it took for each of the data mining algorithms to predict the relevant context

for each requirement to acceptable levels for initiating system context awareness for

that requirement. It also allowed observations to be made about how some sensor

configuration changes affected the data mining algorithms’ ability to accurately define

relevant context situations for each of the requirement states, and how those changes

would impact the system’s ability to maintain context awareness for the requirements

that rely heavily on particular sensors to do so.

As predicted, the approach of automatically generating a new classifier at roughly

every three days of runtime sensor data was ultimately inefficient because the amount

of sensor data collected automatically every three days in itself did not prove to have

the most impact on the quality of the classifier produced at each point. Instead of

automatically applying the data mining algorithm to historical runtime sensor data
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at a set interval, analysis should be performed after new sensor data pertaining to

the active/triggered state of a requirement comes in (after a system ‘settling time’)

until the classifier performs within acceptable bounds. For example, each time the

active/triggered state for a requirement changes to inactive/not triggered until the

classifier is performing with acceptable accuracy, precision, and recall (or whichever

performance metrics are preferred). These times of change in system context of use

are candidates for when system context evolution should occur and are discussed

further in Section 5.3.4.
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Chapter 4

Evaluation Methodology

This chapter details the steps taken (shown in Fig. 4.1) to evaluate the research

approach described in Chapter 3.

Figure 4.1: Evaluation Methodology.

The evaluation of the approach began in September 2012 when the design and

implementation of a mobile application under development uncovered challenges

in the requirements elicitation process. Specifically, the challenges of eliciting

a complete set of system requirements, and the contexts that these requirements

are active in, for users operating in environments that are unobservable by system

developers.

A requirements engineering literature review was undertaken and aimed at

uncovering effective ways of discerning and documenting requirements in two situa-

tions:

1. where designers did not have direct access to the operational environment that

the users would be interacting with the system in, and

2. where a full set of system requirements was not able to be captured at design

time.
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The literature review revealed that complete sets of user requirements are ex-

tremely difficult to elicit, due to factors such as the users’ inability to fully express

(or even be aware) of them. Because it is so difficult to elicit a complete set of require-

ments at design time, even in observable contexts of use, systems must be evolved

iteratively not only to incorporate new system requirements, but also to adapt exist-

ing requirements to changing contexts of use. Unfortunately, this evolution process

is often extremely costly to undertake manually, therefore automation of this process

is desirable.

A context-aware mobile application for passively collected context of use sensor

data was designed for the OAR Northwest organization for context aware service

delivery during system runtime as they crossed the Atlantic Ocean. The team also

actively wrote daily log entries during their voyage, which was also at system runtime.

Because it was not possible for developers to observe the context of use directly, the

research problem of how to leverage passively collected sensor data and actively

collected log data for the requirements elicitation process was investigated.

A literature review focused on data mining explored the possibilities of apply-

ing data mining algorithms to the sensor data collected at runtime to automatically

identify the context relevant to specific requirements. Following this, the initial data

mining approach to automatically define the context relevant to specific requirements

was developed and an exploratory case study was undertaken to investigate the fea-

sibility of the approach.

A pragmatic approach to Kotsiantis’ process of supervised machine learning (as de-

scribed in Chapter 3), explored through statistical analysis of data mining algorithms

applied to sensor data was the primary means of investigation in an exploratory

case study and a confirmatory case study. This approach was chosen because

the ultimate goal of the investigation was to determine a way to derive context for

requirements automatically; as such system adaptation decisions based on data col-

lected at runtime alone were critical.

The approach was evaluated by comparing the context situations identified by

the data mining algorithms through the context classifiers against the actual con-

text situations in which each of the requirements under investigation should be ac-

tive/triggered and inactive/not triggered. The results of these statistical analysis were

further supported by data from exploratory interviews with the users pre-runtime,

field logs recorded by the users at runtime, and confirmatory interviews with the users

post-runtime.
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Chapter 5

OAR Northwest Case Studies

Results

To fulfil the research objectives, two case studies were undertaken based on historical

contextual data gathered by OAR Northwest over two separate rowing voyages. The

approach was applied to a single requirement in the first case study in order to explore

whether or not the approach warranted further investigation. Once the approach was

determined to be viable, it was refined and applied to a confirmatory case study

in order to evaluate the approach on five requirements with a total of eight sets of

results. The feasibility of the approach for runtime requirements evolution was further

investigated with a time-series analysis on the historical contextual data gathered at

runtime for each of the five requirements from the confirmatory case study. The

results of all three of these analyses are presented in this chapter.

5.1 Exploratory Case Study: Circumnavigation of

Vancouver Island

In this case study, a user requirement for the ToTEM mobile application was identified

and the context situations for the active/triggered and inactive/not triggered states of

the requirement were derived using a variety of data mining algorithms. The accuracy

levels of the resulting classifiers produced were compared, and the data profile of the

historical sensor data set was identified. The resulting classifiers were compared

to the actual context situations in which the requirement was active/triggered and

inactive/not triggered. The data mining approach was also refined.
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The requirement focused on for the exploratory case study was one influenced

by extreme conditions that prevented the rowers from continuing to row. In cases

such as these, the rowers cannot continue with normal activities requiring the context

adaptive system. Therefore, they wish for the system to disable alerts until they

can begin rowing again. This state where the rowers are unable to continue rowing

is described as being On Sea Anchor, and because of the extreme nature of the

conditions that usually surround this state, they wished for the deactivation/silencing

to be automated so that they were not distracted by the system during these times.

Table 5.1: Requirement Investigated in Exploratory Case Study

Requirement Target State Context Aware Action

R1 On Sea Anchor automatically disable system alerts

The data set examined was collected by onboard sensors that recorded environ-

mental and biometric data from a row OAR Northwest completed in 2012 over a

period of 22 days around Vancouver Island. This voyage was undertaken to test the

functionality of the rowboat and sensors, and included disembarkments at several

stops. Because the data collection and goals of the rowers were flexible and inconsis-

tent, the sensor data collected likewise had many inconsistencies.

5.1.1 Identification of Required Data

The contextual data for the exploratory case study was collected by OAR Northwest

during a row around Vancouver Island, BC from April 11 to May 8, 2012. The

data from the Vancouver Island row was recorded using a high-sensitivity (-160dBm)

GPS telemetric tracking system, and an athlete biometric data management software

system with sensors attached directly to one of the rowers. The accuracy of the

ReadiBand biometric sensor is purported to have an accuracy agreement rate with

polysomnography of 93% on the manufacturer’s website [27], but the sensitivity and

accuracy of the GPS sensor is unknown.

The telemetric data (regularly recorded roughly every 15 minutes) consisted of

15 attributes including a reading ID, coordinated universal time (UTC) and local

time, position based on various instruments, direction based on various instruments,

some conditions local to the boat, and technical status of the sensor and readings

themselves. The biometric data (regularly recorded once every minute) consisted of
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time data, empty positional data, vigorousness of movement data, sleep information,

and mental fatigue information.

5.1.2 Data Pre-Processing

Significant preprocessing was required to prepare the sensor data from the Vancouver

Island voyage for analytics. This preprocessing was done iteratively, as shown to be

sometimes necessary in Kotsiantis’ approach (Figure 3.1).

Data Integration

Coordinated universal time (UTC) was used as a key to integrate data sets. How-

ever, inconsistent formatting in the UTC of the biometric data made this integration

difficult. Data was examined for formatting inconsistencies and corrected. Rounding

of UTC time was done to the nearest minute as the seconds between the individual

sensors was not coordinated and prevented a simple merge. The resulting data set

consisted of 1845 rows of data (tuples).

Data Cleaning

Rows with data that fell outside of reasonable sensor ranges were removed, as were

those with all-zero sensor entries and other sensor measurement errors. The result

of this cleaning process reduced the total number of tuples from 1845 down to 1592

(i.e., 13.7% of “noisy” rows were eliminated).

Data Transformation

The sensor data in each column was normalized so that it fell within a range between

0 and 1. As previously mentioned, this transformation helps improve the performance

of some data mining algorithms that rely on euclidian distance to generate classifiers.

Additionally, the GPS Pacific Standard Time column was converted from a column

of unique values to three normalized columns of days, hours, and minutes.

Data Reduction

Exploring whether or not relevant context for specific requirements could be derived

from the available sensor data was the goal at this point in the study. As such, all data

from sensors that were not considered relevant to the context of requirement (R1) were
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removed. These included columns consisting entirely of zeros, and those pertaining

to the hardware functionality of the GPS sensor, the reading ID, and UTC. Columns

with redundant attributes were also eliminated, with those demonstrating the highest

precision being retained in order to maximize algorithm performance [17]. The full

data set also contained oceanographic context data (such as water salinity), which

was excluded (validated with rowers’ knowledge) based on their lack of relevance to

the context surrounding when the rowers were on sea anchor. The full list of sensor

data used for the exploratory case study is as follows:

• Day (from 1 to 22),

• Local Time Hour,

• Local Time Minute,

• Latitude,

• Longitude,

• Speed over Ground,

• Course Over Ground (compass direction),

• Altitude,

• CEP (unknown sensor attribute),

• Environmental Temperature,

• Actigraphy (vigorousness of movement),

• In Bed or Not,

• Asleep or Awake, and

• Mental Fatigue.

The inconsistency of sensor readings was used to infer abnormal rower behaviour

during the row. That is, inconsistent sensor reading frequency was used to determine

when the rowers were not actively simulating true trans-Atlantic rowing conditions.

The readings were expected to be similar every day as the rowers were simulating a

rigid and regulated environment. A “normal” measure of the number of rows of data

per day with consistent data collection was determined to be 91 +/- 4 readings for

that day. Given that little information for the Vancouver Island row outside of the

passively collected sensor data was available (i.e., no actively collected data such as
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daily logs), an evaluation was run on the days that fell outside of this normal number

of readings per day range and determined that the rowers were, in fact, on land those

days. One of the rowers from the Vancouver Island trip later confirmed this fact. The

rows of data from days that did not have 91 +/-4 sensor readings for that day were

removed for a better classification of the On Sea Anchor state. This again reduced

the data set from 1592 down to 1378 (i.e., an additional reduction of 13.4%).

5.1.3 Training and Test Data Sets

Data Characteristics

As indicated above, this voyage included disembarkments at several stops and goals

that were not firmly consistent with the goals of the voyage in the confirmatory

case study. The sensor data collected likewise had many inconsistencies as far as

detecting the normal behaviour of the rowers went. Nonetheless, the purpose of the

exploratory case study was to determine whether or not the context for a requirement

could be derived from passively collected sensor data using data mining algorithms.

It was reasoned that if such context could be derived from “noisy” data such as that

from the exploratory case study, then it would be possible to derive results from the

confirmatory case study. This was towards the first goal from Section 1.3.2.

Target Attribute

An analysis of when the rowers were On Sea Anchor from the exploratory case study

data revealed that the speed of the boat naturally converged to zero. Given this, a

correlation was assumed, and the Speed Over Ground sensor data was used to derive

the target attribute for R1.

This correlation is not, of course, entirely adequate because there may have been

conditions when the rowers were stopped that the system was not On Sea Anchor

and the system alerts needed to continue to be enabled. An example of a situation

like this is when the rowers need to scrape mussels from the hull of the row boat for

maintenance: the boat needs to be stopped in order for the rowers to complete this

task, however they may still want system alerts enabled.

Therefore, while Speed Over Ground was not considered a perfect target attribute

for R1 in that it was not able to define when the rowers were On Sea Anchor on its

own, it was considered an adequate starting point for system context awareness with
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automated context evolution being the ultimate goal for the system. That is, while

using Speed Over Ground as a target attribute for R1 is a good starting point for

context awareness, the exploratory case study was conducted with eventual context

evolution in mind in order to better separate when the rowers were stopped because

they were On Sea Anchor, and when they were stopped for other reasons.

After identifying Speed Over Ground as a good indicator of when the rowers were

On Sea Anchor, an appropriate threshold needed to be established to determine when

the rowers were stopped. As is consistent with Kotsiantis’ approach (Figure 3.1),

several iterations of refinement were used to narrow the target attribute threshold for

when the rowers were On Sea Anchor from all rows of data where Speed Over Ground

was below 0.05 down to all rows of data where Speed Over Ground was below 0.01.

The frequency distribution of the sensor readings for Speed Over Ground can be seen

in Figure 5.1. Speed Over Ground provides clear separation of when the rowers are

stopped and when they are actively rowing between 0.01 and 0.03. The classification

results with threshold 0.01 produced the rules with the highest accuracy rate across

all the data mining algorithms.

Figure 5.1: Threshold value separation at 0.01 for On Sea Anchor context using
target attribute Speed Over Ground for Exploratory Case Study requirement R1.

5.1.4 Algorithm Selection

Because the data set had an unknown profile at this point (see Section 3.4), a variety

of data mining algorithms considered potentially suitable for interpretation by re-

quirements engineers and implementation on mobile devices were applied to the data

set in order to determine which algorithms produced the best classification results.

These included the JRip [5], J48 [26], Random Forest [34], Logistic Regression [17],

and Support Vector Machine (SVM) [17] algorithms.
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5.1.5 Training, Parameter Tuning, and Evaluation with Test

Set

Applying the data mining algorithms to the exploratory case study data in order to

train and produce classifiers to recognize the context for the On Sea Anchor state

for requirement R1 took place in the Weka application as described in Section 3.5.

Algorithms were applied first to the set of data consisting of 1592 rows and then to

the set of 1378 rows with outlier days removed (as described in Section 5.1.2). As

discussed in Section 3.5, parameter tuning on the various algorithms did not occur

in an effort to adhere as closely as possible to lightweight, automated conditions that

would be present in full implementation on a mobile device. Additionally, in order

to test the algorithms for robustness, the column of Speed Over Ground sensor data

was not included in the sensor data that the algorithms were applied to. Ten-fold

cross validation (Section 3.6) was applied to all classifiers produced by all algorithms,

and the performance metrics from these evaluations were used to determine which of

the different algorithms applied were suitable for further analysis in the confirmatory

case study.

5.1.6 Summary of Results

Results for the best performing data mining algorithms applied to the historical con-

textual sensor data from the exploratory case study are shown in Figure 5.2. In an

effort to increase generalizability of the context classifiers produced for R1, the data

mining algorithms were repeatedly applied after the data set was incrementally re-

duced by columns of sensor data with a significant number of unique values. For

example, one-time only values such as combinations of latitude and longitude. More-

over, the entire non-error-prone data set was compared with and without outlier days.

JRip, J48, Logistic Regression, and SVM were applied to the data set that included

outlying days (1592 tuples). JRip, J48, Random Forest, and Logistic Regression were

applied to the data set that had outlying days removed (1378 tuples).

Logistic Regression and Support Vector Machine algorithms are not included in

the results table because the tree and rule algorithms are correctly classified at much

better rates. This is consistent with Kotsiantis’ assertion that decision tree and rules

algorithms share a similar data profile [17]. However, for comparison, the Logistic

Regression algorithm produced a rate of 70.9% correctly classified instanced with a

false positive rate of 7.9% on the attribute set that didn’t include Latitude, Longitude,
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Figure 5.2: Best performing data mining algorithms on Exploratory Case Study data
showing False Positive rate over Accuracy for each of the different combinations of
sensor data analyzed. Performance for the JRip and J48 algorithms are shown for
the data set that includes outlier days (1592 rows), and performance for the JRip,
J48, and Random Forest algorithms are shown for the data set that does not include
outlier days (1378 rows).

Day, Course Over Ground, or the unknown sensor CEP when applied to the data set

that didn’t include outlier days.

As can be seen in Figure 5.2, the tree and rule algorithms correctly classified

whether or not the rowers were stopped (within the threshold of .01) 95.6% to 83.5%

of the time with a standard deviation equal or less than 2% of each other depending

on the attribute grouping. Similarly, the false positive rates for the same algorithms

ranged from 5% to 9.9% with a standard deviation of 1%, across both data sets. The

Random Forest algorithm performed the best, on average, as far as correctly classified

instances goes, and the best false positive rate was divided between J48 and Random

Forest for the data that didn’t include the outlier days. It is unknown at this point

if Random Forest would perform equally well on the data that included the outlier

days.
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5.1.7 Insights into Data Mining Approach from the Exploratory

Case Study

As discussed in Section 1.3.2, there were three objectives in the empirical analysis un-

dertaken in this exploratory case study. The first of these was to investigate whether

or not a requirement could be linked to the context situation it is active/triggered

in by applying data mining algorithms to passively collected historical sensor data.

Indeed, after applying Kotsiantis’ approach, it was found that the context situations

for requirement active/triggered and inactive/not triggered states could be derived

using the JRip, J48, Random Forest, and to a less accurate extent, other data mining

algorithms as well. Second and third, the JRip, J48, and Random Forest algorithms

all performed the best with accuracy of greater than 80 percent.

Following the results obtained from studying the exploratory case study data set,

an extensive evaluation of the JRip algorithm and the J48 algorithm was undertaken

in the confirmatory case study. The Random Forest algorithm was not used for exten-

sive evaluation because it was considered to be less comprehensible than the JRip and

J48 algorithms and also higher complexity, thus not as well suited to interpretation

by requirements engineers and implementation on mobile devices.

Certain considerations into data mining for requirements were brought to the

forefront as the exploratory case study was completed. These consisted of insights into

the Data Reduction stage (Section 3.2). The Data Reduction stage was particularly

influenced by identifying when the rowers were adhering to their scheduled rowing

and sleeping regiment and consistently collecting sensor data and when they were

not. That is, identifying when the rowers were actively engaged in what was to be

considered normal behaviour during the confirmatory case study, and when they were

taking part in other activities that would not be undertaken during the confirmatory

case study. Removing sensor data from time periods of the exploratory case study

that would have no bearing on the confirmatory case study (e.g., times spanning

disembarkments) from the data set the classifier was trained on was an attempt to

strengthen the resulting classifiers by making them more representative of the data

in the confirmatory case study (see Section 3.3).

This attempt to generalize the classifiers was also reflected in the removal of

columns of context sensor data that was relatively unique to the exploratory case

study. For example, by removing the Latitude and Longitude columns, the context

sensor data that was applicable to the OAR Northwest rows in general, rather than
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those specific to Vancouver Island could be scrutinized more carefully.

Additionally, removing columns of relatively unique values, such as Day, strength-

ened the classifiers in that the actual patterns in the data that defined the On Sea

Anchor state could be more fully discerned rather than the algorithm simply iden-

tifying the most convenient sensor data that covered the On Sea Anchor state. For

example, if the On Sea Anchor state only occurred on day 13, then the system may

identify Day as the most important sensor to monitor for the On Sea Anchor state

rather than the true environmental factors that really impact the rowers into entering

the On Sea Anchor state.

5.2 Confirmatory Case Study: Transatlantic Voy-

age from Dakar to Miami

In the confirmatory case study, five user requirements for the ToTEM mobile appli-

cation were identified and the context situations for the active/triggered and inac-

tive/not triggered states of the requirements were derived using the JRip (RIPPER)

and J48 (C4.5) data mining algorithms. The accuracy, precision, and recall levels

of the resulting classifiers produced were compared. The resulting classifiers were

also compared to the actual context situations in which the requirement was ac-

tive/triggered and inactive/not triggered. The data mining approach was once again

refined.

There were five requirements focused on for the confirmatory case study (shown

in Table 5.2). The context situations for requirement R1 from the exploratory case

study (On Sea Anchor) was further refined into On Sea Anchor Resting and On Sea

Anchor Active. The context situations for requirement R1 became CR1 (On Sea

Anchor Resting) for the confirmatory case study, and a new requirement, CR4 was

associated with the On Sea Anchor Active context situations. The reasoning for this

being that while the rowers still could not continue with their regular rowing activities

when On Sea Anchor, they preferred to rest at night (thus the system should still

automatically disable system alerts when On Sea Anchor Resting), but they would

still like to be active during the day with other, non-rowing activities scheduled (thus

the system should automatically assign non-rowing activities when On Sea Anchor

Active).

CR2 and CR5 were a direct result of the rowers’ need for cognitive offloading when
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Table 5.2: Requirements Investigated in Confirmatory Case Study

Req’t Target State Context Aware Action

CR1 On Sea Anchor Resting automatically disable system alerts
CR2 Two Rowers are Sleeping automatically turn on wake-up

alarms only
CR3 Mentally Fatigued but Still Rowing automatically assign less cognitively

challenging activities
CR4 On Sea Anchor Active automatically assign non-rowing ac-

tivities
CR5 One Rower is Sleeping automatically set alerts to visible

only (no audio alerts)

they are mentally and physically fatigued. Because of the physically demanding

nature of the rowers’ activities and the dangerous environment when on the open

ocean, sleep and rest times are vital for their health and safety. When the rowers are

resting, they do not want their rest to be disturbed by unecessary alarms. Therefore,

CR2 was defined as when Two Rowers are Sleeping the system should automatically

turn on wake-up alarms only. Similarly, for CR5, when One Rower is Sleeping, the

system should automatically set alerts to visible only (no audio alerts) so as to not

disturb the sleeping rower while the rower that is awake is still able to receive alerts.

Requirement CR3 was also a means to support the rowers when they are extremely

physically and mentally fatigued but the group is still rowing (i.e., not On Sea An-

chor). During these times of extreme fatigue, it is difficult for the rowers to complete

cognitively challenging tasks (e.g., some research tasks); however, they can still com-

plete less cognitively challenging regular activities. Therefore, when an individual

rower is Mentally Fatigued but Still Rowing, then the system should automatically

assign non-rowing activities.

The goal of implementing context adaptation for all of these requirements into

the scheduling system was justified by the need for the system to support the rowers

with cognitive offloading during times of extreme fatigue and physical danger. All of

the requirements investigated in the confirmatory case study were validated by the

rowers as desirable for context awareness in the system.

The confirmatory case study data set covers a period of 64 days from a row that

OAR Northwest undertook in early 2013. Like the exploratory case study, the data

from this voyage was also collected by onboard sensors that recorded biometric and

environmental data. The rowers had a firm user goal to row the entire voyage in under
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100 days without any non-maintenance stops, and their rowing and sleeping schedule

was regimented and adhered to as much as safely possible. Sensor data collection was

as consistent as safety and equipment operation allowed, although there were some

sensor loss and gain due to technical difficulties. Compared to the exploratory case

study data set, the data collection and the goals of the OAR Northwest rowers were

observably more consistent in the confirmatory case study.

5.2.1 Identification of Required Data

The contextual data for the confirmatory case study was collected by OAR Northwest

during a 73-day trans-Atlantic row attempt from Dakar, Senegal to Miami, Florida,

USA. The sensor data used in this study is the available data from 64 days of the

row from January 22 to March 26, 2013. As stated in Section 5.1.1 the data for

the exploratory case study included telemetric readings from a GPS sensor and the

biometric sensor readings from one rower. The confirmatory case study included

passively collected sensor data from from the same GPS sensor, the same biometric

readings from all four rowers on board the boat, as well as environmental readings

and telemetric readings from an Airmar PB200 WeatherStation. Additionally, daily

log data from the voyage and interviews with the rowers were used to evaluate and

validate the results of the confirmatory case study.

An effort was made to focus on the passively (and consistently) collected sensor

data for the analysis. This was keeping in mind the goal of future full automation of

context awareness and context evolution with as little actively collected data used as

possible except for validation. The performance results from the classifiers produced

on this passively collected data were of such a high accuracy that it was decided to

focus on the runtime analysis rather than possible latent factors (e.g. from the less

consistent, actively collected salinity readings).

5.2.2 Data Pre-Processing

Data Integration

Data integration was difficult for a number of reasons. In particular, a technical failure

with the Airmar PB200 WeatherStation during the row made the date/time infor-

mation a challenge to correct. However, disparate data sets were once again merged

according to UTC time and checked to make sure offset was minimized through com-
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paring time series graphs of redundant attributes and verification with daily logs.

Once again, the different sensors had different reading rates. The biometric sensors

from each of the four rowers had a reading rate of one reading per minute. The

Airmar sensor had a reading rate of once every fifteen minutes; however, there were

no readings from the Airmar for a period of approximately two weeks in the middle of

the voyage. Finally, the GPS sensor had a reading rate that ranged from once every

fifteen minutes to once every three hours.

The question of how to integrate the data in light of these inconsistencies was

solved by merging the data to the minute on the biometric sensors, and filling in

the missing data from the other sensors with persistent readings up to one hour (a

heuristic value) after the reading was taken. That is, for the fifteen minute gaps in

between the Airmar sensor readings, the last reading was carried through the missing

values until the new reading was taken. For the three hour gaps in between the GPS

sensor readings, data from the last reading was only carried through for the first

hour after a reading was taken. The logic behind the one hour value was that the

environment (e.g. weather or wave hight) could change dramatically after that time.

The reason that the readings were persisted instead of averaged, for example, was to

keep the process as lightweight as possible in order to mimic conditions on a mobile

device.

Data Cleaning

In the exploratory case study, rows with data that fell outside of reasonable sensor

ranges were removed, as were those with all-zero sensor entries and other sensor

measurement errors. This was not the case in the confirmatory case study. Instead,

the erroneous values were identified as ‘missing’ to the data mining algorithms so

that the rest of the relevant contextual data from each row could be taken into

consideration instead of discarding it entirely.

Data Transformation

Once again, the sensor data in each column was normalized so that it fell within a

range between 0 and 1 in order to improve algorithm performance. This also served

to identify erroneous outliers in sensor data and made it easier to graph sensor data

against each other for comparison and analysis. Additionally, the UTC column was

also converted from a column of unique values to three normalized columns of days,
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hours, and minutes.

Data Reduction

Data was not reduced to the same degree in the confirmatory case study as in the

exploratory case study. Because full automation of this process was the goal, only

columns that contained no values, and columns that contained redundant date/time

information were initially removed with even instrument status (e.g. battery) being

left in. However, given the insights from the exploratory case study, columns with

primarily unique values and those without any bearing on generalization (month, day,

latitude and longitude) were also removed. The full list of sensor data from the six

different sensors used in the confirmatory case study is as follows:

• UTC Hour,

• UTC Minute,

• Rower 1 Actigraphy (vigorousness of movement),

• Rower 1 In Bed or Not,

• Rower 1 Asleep or Awake,

• Rower 1 Mental Fatigue,

• Rower 2 Actigraphy,

• Rower 2 In Bed or Not,

• Rower 2 Asleep or Awake,

• Rower 2 Mental Fatigue,

• Rower 3 Actigraphy,

• Rower 3 In Bed or Not,

• Rower 3 Asleep or Awake,

• Rower 3 Mental Fatigue,

• Rower 4 Actigraphy,

• Rower 4 In Bed or Not,

• Rower 4 Asleep or Awake,

• Rower 4 Mental Fatigue
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• Airmar True Wind Speed,

• Airmar Relative Wind Speed,

• Airmar Bow Wind Speed,

• Airmar True Wind Direction,

• Airmar Relative Wind Direction,

• Airmar Bow Wind Direction

• Airmar Ship Roll,

• Airmar Ship Pitch,

• Airmar GPS Speed Over Ground,

• Airmar GPS Course Over Ground,

• Airmar Atmospheric Temperature,

• Airmar Atmospheric Pressure,

• Airmar Ship Heading,

• Yellowbrick Speed over Ground,

• Yellowbrick GPS Speed over Ground,

• Yellowbrick Course over Ground,

• Yellowbrick GPS Course over Ground,

• Yellowbrick Altitude,

• Yellowbrick Battery Status,

• Yellowbrick CEP (unknown sensor attribute),

• Yellowbrick Environmental Temperature,

• Yellowbrick Distance Over Ground in Kilometers.

Unlike in the exploratory case study, durations of inconsistent behaviour were not

removed from the data set because the rowers were consistently working to achieve

their goal of crossing the Atlantic Ocean in under 100 days. Therefore, there were no

disembarkments that needed to be accounted for.
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5.2.3 Training and Test Data Sets

Data Characteristics

The goals and behaviour of the rowers was relatively consistent throughout the du-

ration of the voyage. This allowed for a number of representative examples of both

the context states that the requirements should be active in, and the context states

when they should not. The rowers stated in an interview that there was an initial

adjustment period to being on the boat of approximately three weeks at the beginning

of the row, however the data after this initial adjustment period is considered to be

representative of standard behavior. There was sensor loss and gain occurred during

the voyage, resulting in sensor configuration changes and missing data. There were

also rowing shift and partner changes that altered the patterns of normal behaviour

for the rowers in the data.

Target Attribute

As described in Section 3.3, the target attribute for each of the contextual require-

ments was derived for data mining in one of three ways. These are detailed in Table

5.3 for each of the five requirements from this case study. The target attribute for

each requirements was validated by rowers.

Table 5.3: Target Attribute Definition for Requirements from Confirmatory Case
Study

Req’t Target State Target Attribute Definition

CR1 On Sea Anchor Resting visual inspection of sensor data
and verification with log data

CR2 Two Rowers are Sleeping function based on Asleep or Awake
sensor data for all four rowers

CR3 Mentally Fatigued but Still Rowing visual inspection of sensor data
and verification with log data com-
bined with Mental Fatigue sensor
data threshold of 0.2 or less for
each rower

CR4 On Sea Anchor Active visual inspection of sensor data
and verification with log data

CR5 One Rower is Sleeping function based on Asleep or Awake
sensor data for all four rowers
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Figure 5.3: Time-series graph of Actigraphy sensor readings for all four rowers for all
64 days of sensor data in the confirmatory case study data set.

The target attributes for CR1 and CR4 were discerned by examining the graphed

sensor data. The starting point for both of these was the Speed Over Ground sensor

data because the target attribute for R1 was defined by a threshold from that sensor

in the exploratory case study. Unfortunately, no clear threshold between stopped and

moving could be discerned. Actigraphy for the rowers was examined next, but again,

no clear threshold between stopped and moving could be discerned in this sensor

data. Finally, the combined Actigraphy for all four rowers was graphed and periods

of low actigraphy were verified with the log data (see Figures 5.3 and 5.4, and Table

5.3) for when the rowers were On Sea Anchor Resting during the row. This same

method was used to discern the On Sea Anchor Active target attribute. The log data

verifying that the times shown in Figure 5.4 were correctly identified as being On Sea

Anchor is from the March 14 entry: “We just spent 3 nights on sea anchor and as of

this morning we are on the move at 1.5 to 2.0 kts.”

It is generally unclear from the graph and log data the exact minute that the rowers

go on and off Sea Anchor, therefore minutes were rounded to the nearest quarter hour.

There is also some ambiguity between when the rowers are resting, and when they are

active while On Sea Anchor. This resulted in some overlap in the target attributes

for CR1 and CR4 (e.g., Feb 9), and some gaps in coverage (e.g., Mar 12). Given

this, there may be some noise in the target attributes for CR1 and CR4 surrounding

these boundaries, and conflicts like this in a context aware system implementing these

requirements automatically would need to be resolved. It is possible that overlap/gap

situations like this would occur between other independently derived target attributes

as well.

The target attributes for CR2 and CR5 were both based on functions derived
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Table 5.4: Time Spans derived through visual inspection for On Sea Anchor Resting
(CR1), and On Sea Anchor Active (CR4) target attributes.

On Sea Anchor Resting (CR1) On Sea Anchor Active (CR4)

Jan 22 (22:00) - Jan 23 (11:00)
Jan 27 (17:00 - 22:00)
Jan 31 (12:00 - 14:00)

Feb 3 (12:00) - Feb 4 (07:00)
Feb 6 (19:00 - 22:00)

Feb 6 (20:00) - Feb 7 (08:00)
Feb 8 (21:00) - Feb 9 (08:00)

Feb 9 (08:00 - 21:45)
Feb 9 (21:00) - Feb 10 (08:00)
Feb 10 (21:00) - Feb 11 (08:00)

Feb 15 (18:00 - 21:00)
Feb 15 (21:00) - Feb 16 (11:00)

Feb 16 (10:00 - 17:00)
Feb 17 (21:00) - Feb 18 (09:00)

Feb 18 (09:00 - 12:00)
Mar 11(19:00 - 22:30)

Mar 11 (22:00) - Mar 12 (09:00)
Mar 12 (10:45 - 23:00)

Mar 12 (23:00) - Mar 13 (09:00)
Mar 13 (10:45 - 23:00)

Mar 13 (22:00) - Mar 14 (09:00)
Mar 14 (10:00 - 12:00)

from the Asleep or Awake sensor data for all four rowers. The Asleep or Awake

sensor reading in the data is represented as a binary value of either ‘0’ indicating the

rower is asleep or ‘1’ indicating the rower is awake.

The function to define the target attribute for each each row of data for CR2

added the readings for all four of the rowers’ Asleep or Awake sensor data with the

sum of all four variables less than or equal to 2 for all rows of data up and including

row 79228 (see Table 5.5 for equations). After row 79228, the function needed to be

re-defined to take into account the loss of the sensor from Rower 3 had on the logic

of the equation. Because the function could no longer determine when exactly two or

three rowers were awake from the remaining three biometric sensors from Rower 1,

Rower 2, and Rower 4 alone, the function had to be redefined from row 79229 on to

take this into account (see Table 5.6). A total of 3008 rows of data out of 90748 in
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Figure 5.4: Graph of combined actigraphy for all four rowers demonstrating examples
of (A) normal rowing behaviour in shifts by teams of two rowers at a time, (B) On
Sea Anchor Resting context, and (C) On Sea Anchor Active context.

the data set could not be assigned active/triggered or inactive/not triggered classes

for requirement CR2 by defining the target (indicator) attribute in this way because

of the sensor loss from Rower 3.

The function used to define the target attribute for CR5 added all the entries of

all four of the rowers’ Asleep or Awake sensor data with the sum of all four variables

equal to 3 up to row 79228 (see Table 5.5 for equations). Again, the sensor loss from

Rower 3 at row 79229 in the data table, had an impact on the logic of the function,

and the active/triggered situation for CR5 could no longer be determined after that

point. This was because it could not be determined when exactly three rowers were

awake from the remaining three biometric sensors from Rower 1, Rower 2, and Rower

4 alone. The target attribute for from row 79229 to row 90748 had to be recalculated

to reflect the uncertainty that the missing data introduced. This can be seen in Table

5.6. A total of 9854 rows of data out of 90748 in the data set could not be assigned

active/triggered or inactive/not triggered classes for requirement CR5 by defining the

target (indicator) attribute in this way. In addition, no active/triggered situations

could be identified for CR5 after the sensor loss using the function alone to define the
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class for each row in the target (indicator) attribute. The Active Context Precision

and Recall graphs for CR5 in Figures 5.10 and 5.12 reflect this as they cut off at the

point of biometric sensor loss from Rower 3.

The rows that had an unknown target (indicator) attribute class (instead of an

active/triggered or inactive/not triggered class) assigned to them were ignored by

the data mining algorithms when training the classifiers for CR2 and CR5, and were

ignored from the performance results when evaluating the classifiers for CR2 and CR5

on the test sets.

In addition to the unknown class for some of the rows, there was a second reason

that the functions used to define the target attribute classes for CR2 and CR5 were

not entirely sufficient. This was for a similar reason that the target attribute for

R1 in the exploratory case study was not entirely adequate. The granularity of the

target attributes was not quite fine enough. That is, even though we can judge when

the rowers are asleep or awake, we cannot indicate when the mobile device with our

system on it is inside or outside the cabin where the rowers are sleeping. Therefore,

the target attribute would need to be trained for instances when 2 rowers may be In

Bed, but the device may be outside of the cabin. (Just like in the exploratory case

study when the rowers may be stopped, but not On Sea Anchor.) This refinement

may depend on specific rower combinations and times. For example, Rower 1 and

Rower 2 may prefer to have the device inside of the cabin during the night sleep

time, but during the day sleep time for Rower 1 and Rower 2, Rower 3 and Rower 4

may prefer to keep it outside with them so that they can be alerted as to when they

need to complete research activities. This kind of situation is another motivation for

implementing system context evolution to support context awareness.

The target attributes for CR3 for each of the four rowers were individually derived

from a combination of the states that were not On Sea Anchor, and when each of the

rowers’ Mental Fatigue sensor readings were equal to or below 0.2. This was because it

was observed in the graphed data that Mental Fatigue levels improved when the rowers

were in either of the On Sea Anchor Resting or On Sea Anchor Active situations, and

the requirement was to assign less cognitively intensive tasks to the rowers when they

were fatigued, but still attempting to continue to row. Because the rowers expressed

a desire to continue rowing as regularly as possible, we chose a heuristic threshold

of less than 0.2 (20%) for Mental Fatigue levels. According to the manufacturers of

the biometric sensors, any Mental Fatigue readings below 60% have a blood alcohol

equivalent of greater than 0.11%, and risk of accidents or serious errors are very high
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[24]. Mental fatigue levels for each of the rowers in the confirmatory case study data

set can be seen in Figure 5.5.

Figure 5.5: Time-series graph of Mental Fatigue sensor readings for all four rowers
for all 64 days of sensor data in the confirmatory case study data set.

5.2.4 Algorithm Selection, Training, Parameter Tuning, and

Evaluation

Given that this was a confirmatory case study based on the results of the exploratory

case study, only the JRip and J48 algorithms were selected. Training occurred on the

entire confirmatory case study data set, and stratified ten-fold cross validation was

used to compare performance.

5.2.5 Summary of Results

Performance results using ten-fold cross validation were high, as can be seen in Tables

5.7 and 5.8. These results are from point twenty-two of the Time-Series Analysis on

Runtime Data from Section 5.3 and are representative of results from the entire data

set.

When the confirmatory case study data was examined under the same process

used for the exploratory case study data, it was confirmed that context for the eight

requirements could be derived using data mining algorithms over the entire 64 days

of data. It was also confirmed that both the JRip and J48 algorithms could define

context for the given requirements to an accuracy of between 95% to greater than

99% when evaluated with the ten-fold cross validation technique.
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5.2.6 Insights into Data Mining Approach from the Confir-

matory Case Study

How to effectively correlate requirement active/triggered and inactive/not triggered

states with context situations through the target attribute was one of the major

concerns of this study. A target attribute that is truly reflective of the times when

each requirement is active/inactive is critical to the data mining algorithms’ ability

to define context from sensor data for those requirements. Intuitively, it is also

vital for ensuring that the context derived by the data mining algorithm is truly

representative of the context that the requirement is active/inactive in so that system

context awareness is properly implemented.

In order to ensure that the data mining algorithms would produce accurate and

relevant context from the contextual sensor data provided and the derived target

attributes, the target attributes were verified and validated through multiple means,

when possible. These included looking for patterns in the sensor data that indicated

relevant context for a requirement (see Figure 5.4), and then verifying that those

patterns were representative of the context for the requirement under investigation

(verifying and validating with log data and interviews with the users).

Ideally, the target attribute would be passively captured by the system when

the requirement is active/triggered, and inactive/not triggered. Input may also be

captured from the users as to when the requirement should be active or inactive.

However, neither method on its own may be entirely precise, (thus, introducing noise

into the target attribute and producing less accurate results with the data mining al-

gorithms). Therefore, target attributes for requirements for context awareness should

be correlated to passively collected sensor data and active user input for verification

and validation when possible.

Because the performance results from the analysis of the JRip and J48 algorithms

confirmatory case study had such promising implications for context awareness, fur-

ther analysis was undertaken to investigate the potential for using data mining al-

gorithms for context evolution for each of the requirements. As outlined in Section

1.3.4, this analysis focused on when over the 64 day period the context situations

derived for each requirement using the data mining algorithms reached acceptable

accuracy, precision, and recall levels. Additionally, the robustness of the JRip and

J48 algorithms’ ability to continue to derive relevant context situations for each of

the requirements given significant sensor configuration changes was investigated.
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5.3 Time-Series Analysis on Runtime Data

As discussed in Sections 1.3.4 and 5.2.5, the purpose of the time-series analysis on

the runtime data from the OAR Northwest Dakar to Miami row was to investigate

the applicability of the JRip and J48 data mining algorithms to runtime context

evolution. Through this time-series analysis on the JRip and J48 algorithms, the

following were observed:

1. the runtime performance of the JRip and J48 algorithms in their ability to

predict the relevant context situations for each contextual requirement from the

Dakar to Miami voyage if the requirements had been implemented for context

awareness and context evolution at runtime, and

2. how sensor configuration changes would have affected the data mining algo-

rithms’ ability to accurately define relevant context situations for each of the

requirements at runtime, thus affecting the ability of the system to provide

context awareness for that requirement.

5.3.1 Application of Approach

Define Analysis Points

Analysis points for the time-series analysis were set for intervals of approximately

three days of runtime sensor data (4320 rows). This was a heuristic interval that

attempted to separate significant events in the contextual sensor data to a granularity

such that their impact on the performance of the context classifiers could be observed

in the resulting graphs. This was considered to be particularly important during

the early points on the graph where observation of the ’critical mass’ point of the

data needed to produce acceptable context classifiers for context awareness for each

requirement was desired. The times of the analysis points were the same for both the

JRip and J48 algorithms over all requirements in order to more easily compare final

results.

Three additional analysis points were added to the graph when sensor configura-

tion changes occurred in order to observe what impact these changes would have on

context awareness for the remainder of the data set. These points are indicated by

the filled black circles in Figures 5.6 to 5.13, and the interval of contextual sensor
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data immediately preceding these points are less than three days. This resulted in a

combined total of twenty-two points for the time-series analysis for each graph.

Divide the Data into Training and Test Sets for each Requirement

Training and test sets for each requirement were produced using Matlab scripts.

This resulted in a total of twenty-two training and test sets for each of the eight

requirements under investigation. Due to a limitation in Weka, sensor loss and gain

was accounted for by removing those columns from the resulting test and training

sets accordingly (also done in Matlab).

Incrementally Create Classifiers on Training Sets and Evaluate on Test

Sets

Context classifiers using each of the JRip and J48 algorithms were systematically

produced on each of the twenty-two training sets (one for each point) for each re-

quirement. The accuracy, precision, and recall for each of the context classifiers

produced at each point using stratified 10-fold cross validation was very high, as can

be seen in figures 5.6 to 5.9. Because the results were so high, the context classifiers

were further evaluated on the corresponding test sets for each point for each require-

ment. The performance results from these evaluations were recorded and graphed as

shown in Section 5.3.2

5.3.2 JRip and J48 Algorithm Performance Over Time

The matricies of graphs shown in Figures 5.10 to 5.13 show the time-series analysis

performance results for the JRip and J48 algorithms on the eight requirements from

the confirmatory case study. Columns represent the results for each requirement

investigated, while the rows indicate the performance metric graphed (i.e., overall

accuracy of the context classifier, precision for the active/triggered context for the

requirement, recall for the active/triggered context for the requirement, precision for

the inactive/not triggered context for the requirement, and recall for the inactive/not

triggered context for the requirement). The x-axis represents the date the test set

for each point includes contextual sensor data up to. The grey diamonds’ positions

on the y-axis represent how the classifier produced at that point on the training set

performed on the test set (i.e., all remaining data after that point). This value of
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Figure 5.6: JRip algorithm stratified 10-fold cross validation results for CR1, CR2,
CR4, CR5.

the y-axis in each graph is shown as a normalized percentage for ease of comparison

across graphs.

The filled black circles at the top of the graphs indicate a time when sensor con-

figuration changes occur. The interval between the first and second circles indicates

when the Airmar PB200 WeatherStation did not provide sensor data. The third circle

indicates when biometric data from Rower 3 was lost (up to the end of the voyage). It

should also be noted that the active/triggered state is not generally well-distributed

throughout the data, except possibly in the cases of CR2 and CR5. For the rest of

the requirements, data on the active/triggered state tends to be clustered together in

one or more groups throughout the data.
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Figure 5.7: JRip algorithm stratified 10-fold cross validation results for CR3-1, CR3-2,
CR3-3, CR3-4.

Accuracy

The accuracy of the context classifier in the top row is a calculation of the num-

ber of rows of data from the test set that the classifier correctly identified as being

active/triggered and inactive/not triggered divided by the total number of rows clas-

sified in the test set (including the ones that were not classified correctly). While this

is a good indicator of an algorithm’s general performance, it is not entirely sufficient

for our purposes because the majority of the rows of data in the data set are not in

the active/triggered state for the requirement (see Table 5.9 for details). Therefore,

the individual performance of each of the active/triggered and inactive/not triggered

states needs to be examined as well.



61

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1
A

c
c
u
ra

c
y

CR1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

A
c
ti
v
e
 C

o
n
te

x
t 
P

re
c
is

io
n

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

A
c
ti
v
e
 C

o
n
te

x
t 
R

e
c
a
ll

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

In
a
c
ti
v
e
 C

o
n
te

x
t 
P

re
c
is

io
n

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

In
a
c
ti
v
e
 C

o
n
te

x
t 
R

e
c
a
ll

Date

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

CR2

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

Date

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

CR4

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

Date

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

CR5

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

01/22 02/04 02/16 03/01 03/13 03/26

0

0.5

1

Date

Figure 5.8: J48 algorithm stratified 10-fold cross validation results for CR1, CR2,
CR4, CR5.

Precision

Precision is an indicator of how well the context classifier can discriminate between

the active/triggered and inactive/not triggered states, and is a measure of the number

of false positives (FP) that the classifier generates in a test set. It is also calculated at

each point in the graphs for how the context classifier produced at that point performs

on all the data in the test set for that point (i.e., all remaining sensor data after that

point). The more times the context classifier at a point indicates that the wrong

context is the right context in the corresponding test set, the lower the precision will

be. Conversely, the less the context classifier incorrectly identifies the wrong context

as being the right context in the corresponding test set, the higher the precision will
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Figure 5.9: J48 algorithm stratified 10-fold cross validation results for CR3-1, CR3-2,
CR3-3, CR3-4.

be.

Precision for the active/triggered state represents the number of rows of data in the

test set that the context classifier correctly identifies as being in the active/triggered

state divided by the number of rows of data from the test set that the classifier

correctly and incorrectly identifies as being in the active/triggered state. Precision

for the inactive/not triggered state is also calculated by the number of rows of data

in the test set that the classifier correctly identifies as inactive/not triggered divided

by the number of rows of data from the test set that the classifier correctly and

incorrectly identifies as being in the inactive/not triggered state. Precision for the

active/triggered state for the requirement in each column is shown in the second row
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Figure 5.10: JRip algorithm performance analysis on runtime data over time for CR1,
CR2, CR4, CR5.

of Figures 5.10 to 5.13, and in the fourth row for the inactive/not triggered state.

Precision graphs in the second and fourth rows terminate when the target state for

the requirement (i.e., active/triggered for the third row or inactive/not triggered for

the fifth row) no longer occur in the test set. This is because the precision calculation

in these cases produces a 0/n result.

Recall

Recall is an indicator of how well the context classifier can recognize the context

state it’s looking for, and is a measure of the number of false negatives (FN) that

the classifier generates in a test set. It is also calculated at each point in the graphs
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Figure 5.11: JRip algorithm performance analysis on runtime data over time for
CR3-1, CR3-2, CR3-3, CR3-4.

for how the context classifier produced at that point performs on all the data in the

test set for that point (i.e., all remaining sensor data after that point). The more

times the context classifier misses identifying relevant context as being such, the lower

the recall will be. Conversely, the more rows in the test set that the corresponding

context classifier correctly identifies as being relevant, the higher the recall at that

point will be.

Recall for the active/triggered state calculated at each point in the time-series

runtime analysis represents the number of rows of data in the test set that the classifier

correctly identifies as active/triggered divided by the number of rows of data in the

test set that actually are in the active/triggered state in the test set. Recall for
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Figure 5.12: J48 algorithm performance analysis on runtime data over time for CR1,
CR2, CR4, CR5.

the inactive/not triggered state is also calculated in the same way with the number

of rows of data in the test set that the classifier correctly identifies as inactive/not

triggered are divided by the number of actual rows of data in the test set that are

indicated as being in the inactive/not triggered state. Recall for the active/triggered

state for each requirement is shown in the third row of Figures 5.10 to 5.13, and in

the fifth row for the inactive/not triggered state.

Recall graphs in the third and fifth rows terminate when the target state for the

requirement (i.e., active/triggered for the third row or inactive/not triggered for the

fifth row) no longer occur in the test set. This is because the recall calculation in

these cases produces an 0/0 result.
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Figure 5.13: J48 algorithm performance analysis on runtime data over time for CR3-1,
CR3-2, CR3-3, CR3-4.

Results for Requirement CR1

As discussed in Section 5.2.3, the target attribute for CR1 was visually defined and

verified with daily log data gathered during the row. The active/triggered state

occurred in clusters as shown in Table 5.4, and more instances of the On Sea Anchor

Resting state were added to the training set as the time-series analysis progressed

through the runtime data set. There were no unknown classes in the training and

test data sets for this requirement.

As can be seen in Figures 5.10 and 5.12, accuracy for both the JRip and J48

algorithms on CR1 was generally high with the J48 algorithm performing better

overall. A significant dip in accuracy occurred at point 5 followed by a sharp rise at
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point 6 occurred in the data for the JRip algorithm that did not occur in the J48

algorithm. This dip/rise occurs in the midst of a cluster of On Sea Anchor Resting

data being added to the training sets (refer to Table 5.4). While the active/triggered

precision and recall around these points generally show improvement, the recall for

the inactive/not triggered state dips significantly. This would seem to indicate that

inactive/not triggered state data between points 4 and 5 (added to the training set

for point 5) for CR1 holds very little value to classifying context in the test sets after

that point. Indeed, while the JRip algorithm suffers this dip, J48 algorithm seems

to account for this lack of relevance, and no dip in accuracy is noted. However, both

algorithms also experienced a slight dip in accuracy at point 18, which is in the midst

of another cluster of new On Sea Anchor Resting state data. A dip in precision at

point 10 for the active/triggered state coincides with the addition of more On Sea

Anchor Resting active/triggered state data. As expected, significant new data for

the On Sea Anchor Resting state has an impact on the context classifiers derived for

CR1.

Another, similar dip in accuracy, precision for the active/triggered state, and recall

for the inactive/not triggered state occurs in the JRip graph at point 13, at the same

time as a sensor configuration change (see Table 5.10). A similar, though generally less

pronounced dip at the same point can be seen in the J48 graph. Interestingly, another

slight dip occurs previously at point 7 for both algorithms where the Airmar sensor

data is lost, however, it is small in comparison. Surprisingly, the dip at point 13 does

not coincide with a loss in the Airmar sensor data, but as soon as the Airmar data is

regained. This would seem to indicate that when the Airmar data from the beginning

of the data set up to point 7 is re-included in the training set, it introduces noise into

the training set (remember that the Airmar sensor data was not available between

points 7 and 13). This is, however, quickly compensated for, as an improvement in

accuracy can be seen in points 14 for the JRip algorithm, and point 15 for the J48.

The loss in the sensor data for Rower 3 at point 20 does not seem to have any impact

on the accuracy of CR1.

As expected, sensor changes may have an observable impact on the performance

of the context classifiers derived for CR1, depending on the relevance of the particular

context the sensors represent for the requirement. Surprisingly, the individual biomet-

ric sensor loss of Rower 3 did not have a significant impact on the performance of the

algorithms, even though that same data was crucial to defining the target attribute

for CR1. In addition, the re-introduction of the older (greater than approximately
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two weeks) Airmar sensor data to the training set introduced a significant decline

in accuracy, precision, and recall performance, however this performance was nearly

regained after a few more days of Airmar data was added to the training set.

Observable rowing shift/partner changes in the data (see Table 5.10) did not

appear to directly impact the algorithm performance. This seems intuitive because

the data from the four rowers was considered as a group when the target attribute was

defined for CR1. Nonetheless, because these partner changes both occur immediately

after the introduction of significant contextual data for the On Sea Anchor Resting

state, their impact may be obscured by other factors.

Figure 5.14: Time-series graph of combined Actigraphy sensor readings showing one
of the two observable rower partner changes (see Table 5.10). In (A), the red and
blue rowers are rowing partners, and the magenta and black rowers are partners. In
(B), the rowers have switched to red and black as partners, and magenta and blue as
partners. This rowing shift change occurred on February 12.

Results for Requirement CR2

As discussed in Section 5.2.3, the target attribute for CR2 was defined by functions

based on the Asleep or Awake sensors from all 4 rowers up to row . The active/inactive

state occurred fairly regularly throughout the entire set of data. There were 3008

rows of data where the active/triggered and inactive/not triggered class could not be

defined for the target attribute by the functions (refer to Section 5.2.3 for details).

As can be seen in Figures 5.10 and 5.12, overall accuracy peaked at point 6 for

both the JRip and J48 algorithms. This time period coincided approximately with the

end of the three-week time period the rowers took to get used to being on ocean and

rowing in a rigid schedule of alternating shifts. Because the patterns in group sleeping

behaviour were inconsistent during this time of adjustment, the target attribute for
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this time was also subject to noise. Additionally, not all cases of when two rowers

were sleeping were available in the data set until point 6, as indicated in the dip in

accuracy before that point. The dips in recall before point 6 in both the JRip and

J48 algorithms may also be subject to this noise due to inconsistent behaviour.

The sudden performance gain from point 4 to 6 coincides with a period of On Sea

Anchor context situations where it is likely that the rowers would have been sleeping

in irregular shifts. This would make it easier for the JRip and J48 algorithms to

capture all the possible combinations of the Two Rowers are Sleeping context situa-

tion for CR2 before the rowing partner changes (see Table 5.10) made the irregular

combinations normal behaviour.

The recall at point 7 for the active/triggered state for the JRip algorithm was neg-

atively impacted by the Airmar sensor loss at that point, but recovered performance

by point 8. This would again indicate that a ‘settling time’ should occur before re-

classification after the loss in sensor data. The J48 algorithm did not suffer the same

drop in performance at point 7. The reintroduction of the Airmar sensor at point 13

did not have any impact on the performance of the context classifiers produced by

either algorithm at that point. The loss of the biometric sensor data from Rower 3

did, however, have a negative impact on the performance of the classifier produced

by the JRip algorithm at point 20. This negative performance continued and did not

improve over time. This would indicate that the context classifier for CR2 should not

be re-created by the JRip algorithm after point 19. The classifiers produced by the

J48 algorithm did not suffer the same drop in performance after the biometric data

from Rower 3 was lost.

Overall performance between the JRip and J48 algorithms were in favour with

the J48 algorithm in every case for CR2.

Results for Requirement CR3 (1-4)

The target attributes for CR3 for all four rowers was defined through a combina-

tion of visual inspection (the complement of the information from CR1 and CR4),

and a threshold value based on the Mental Fatigue sensor from each rower. The ac-

tive/inactive state occurred in tightly grouped clusters at the beginning of the data

set for CR3-1 to CR3-4, and also later in the voyage for CR3-1 and CR3-2. Although

the biometric sensor for one of the rowers failed near the end of the row, it was known

from interviewing the rowers that the Mental Fatigue for that rower never crossed
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the threshold again, so there were no rows of data where the state was unknown for

this requirement (unlike CR2 and CR5).

Performance in accuracy and the precision and recall for the inactive/not triggered

state is consistently high for CR3-1 to R3-4 for both the J48 and JRip algorithms.

The precision and recall for the active/triggered state, however, varies quite drastically

between the two algorithms on the four requirements. While the precision using JRip

is generally lower than the J48 algorithm, particularly for R3-2, the recall is generally

higher, particularly in the case of R3-1. This indicates that while the JRip algorithm

generally produces a greater number of false positives than the J48 algorithm over

the four requirements, it produces a lower number of false negatives.

Significant dips in recall performance for R3-2 and R3-4 occur when the rowers

cross the fatigue threshold and are in what is considered to be one of the two On Sea

Anchor states. This is similar to the confusion the algorithms had in the case of CR4

in discerning the differences between the active/triggered and inactive/not triggered

states. The addition of new active/triggered state data coincides with drops in the

recall performance in several cases, but like CR1 and CR4, this is generally fairly

quickly corrected by the algorithms in the following training sets.

Interestingly, the sensor changes did not seem to have an observable impact on

the performance of the JRip and J48 algorithms on R3-1 to R3-4. It is unknown what

impact rowing shift changes had on the performance for the same reasons as CR1.

Results for Requirement CR4

The target attribute for CR4 was visually defined in a similar manner to CR1. The

active/triggered state occurred in clustered groupings shown in Table 5.3, and more

instances of the On Sea Anchor Active state were added to the training set as the

time-series analysis progressed through the runtime data set. There were no unknown

classes in the training and test data sets for this requirement.

Accuracy of the JRip and J48 algorithms was fairly similar, however, the precision

and recall of the active/triggered state for the JRip algorithm performed slightly

better than the J48. The precision and recall of the inactive/not triggered state was

also fairly similar.

Results were similar to CR1 in that new On Sea Anchor Active active/triggered

state data added to the training set had an immediate impact on performance. In

CR4, this was shown as a dip in performance at point 6 and point 18 for the in-
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active/not triggered state, but an overall improvement in the active/triggered state.

While these points indicate an improvement in recall for the active/triggered state,

there is a decline in recall for the inactive/not triggered state. This indicates while

more of the active/triggered state context is being correctly identified (fewer false neg-

atives), less of the inactive/not triggered state is (more false negatives). Therefore,

there is some overlap in the relevant context of the active/triggered and inactive/not

triggered states such that the algorithms have a difficult time distinguishing between

the two. This was also shown in the relatively high precision for the inactive/not

triggered state, and the low precision for the active/triggered state. The algorithms

simply had a difficult time distinguishing the active/triggered state from the inac-

tive/not triggered state.

Interestingly, the sensor changes did not seem to have an observable impact on

the performance of the JRip and J48 algorithms on CR4. It is unknown what impact

rowing shift changes had on the performance for the same reasons as CR1.

Results for Requirement CR5

The target attribute for CR5 was also defined by a function based on the Asleep

or Awake sensors from all 4 rowers. The active/inactive state also occurred fairly

regularly throughout the entire set of data. There were 9854 rows of data where the

active/triggered and inactive/not triggered class could not be defined for the target

attribute by the functions (refer to Section 5.2.3 for details).

The results for CR5 were subject to a similar adjustment period as CR2 before

the rowers’ behaviour became more consistent. Likewise, the performance of accu-

racy, precision, and recall for CR5 was subject to similar impacts because the target

attribute for CR5 was based on the same sensors as CR2. The noise introduced into

the system by inconsistent rower behaviour is particularly pronounced in the recall

graph for the active/triggered state for the JRip algorithm: the recall reaches 1 by

the second point, but it quickly falls away and does not fully recover until point 10.

The corresponding precision of the active/triggered context situation for the JRip

algorithm, also does not reach similarly high levels until point 10. The J48 algorithm

reaches consistently high levels of accuracy, precision, and recall much sooner at point

7.

The Airmar sensor loss or gain does not appear to have an impact on the per-

formance of CR5 on the context classifiers produced by either the JRip or the J48



72

algorithms. The loss of the biometric data from Rower 3, however, definitely has an

impact on the recall of the inactive/not triggered situation for CR5 for the classifiers

produced by the JRip algorithm at that point (point 20). However, the performance

drop has been recovered by point 22. It is unknown what impact the loss of biometric

sensors from Rower 3 would have on the active/triggered state because, as discussed

in Section 5.2.3, the instances of the active/triggered context situation for CR5 could

not be derived by the function after that point.

The context classifiers produced by the J48 algorithm consistently outperform the

JRip algorithms for CR5.

5.3.3 Summary of Empirical Insights

We can see from Figures 5.10 to 5.13 how the JRip and J48 algorithms would have

predicted the active/triggered and inactive/not triggered context states for each re-

quirement during the OAR Northwest Dakar to Miami voyage had the algorithms

been applied to produce new context classifiers every three days plus times of signif-

icant sensor configuration changes. The performance of the JRip and J48 algorithms

was fairly similar, with slight improvements or losses depending on the individual

requirement. The J48 algorithm did, however, perform better overall.

The results for both the JRip and J48 algorithms show that the overall accuracy

for all five requirements was consistently high with the precision and recall for the

inactive/not triggered state also high. The results for the active/triggered state varied

greatly. Generally low precision for CR1 and CR4 (visually defined target attributes)

could be observed with steadily improving recall for CR1, but generally low recall

for CR4. The precision for CR2 (target attribute defined by function) was almost

immediately high, with the recall taking more time to settle at high rates. The

precision and recall for CR5 (target attribute also defined by function) generally

showed a steady improvement with high performance being achieved for both. CR3-1

to CR3-4 (visually and threshold-defined target attribute) all generally showed quick

rise time to high performance for both precision and recall with the exception of the

precision for CR3-3.

Sensor configuration changes had an impact on the performance of CR1, CR2,

and CR5, however, they did not appear to have as much impact as expected on

performance. The re-introduction of old sensor data at point 13 for CR1 in the JRip

results from Figure 5.10 had a negative impact, as did the loss of biometric sensor
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data in the case of CR2 and CR5. However, the classifiers produced immediately prior

to these losses appeared adequate for future instances. This may indicate that the

context classifiers produced by the J48 and JRip algorithms before a sensor loss are

robust enough in our case to cope with significant sensor configuration changes after

a sensor loss. The same appeared to be true for rowing partner changes, although

this may be misleading because of how closely the rowing partner changes coincided

with other significant context impacts to classifier performance. However, it should

be noted that the lack of observable impacts by both changes in sensor configuration

and rowing partner changes may simply be due to the fact that there are not enough

data points in the graphs, and finer granularity is required to observe them.

While sensor configuration changes had less of a negative impact than expected,

the addition of new active/triggered context state data for several requirements had

more. Several significant drops in performance coincided with the addition of new ac-

tive/triggered context situation data for several requirements (CR1, CR3-2, CR3-4,

CR4), although performance was generally regained after the next context classi-

fier was generated. Additionally, several gains occurred immediately after new ac-

tive/triggered context situation data occurred (CR2, CR6). This would seem to

indicate that new classifiers should be generated after the active/triggered state oc-

curs, however, a settling time before doing so may be appropriate in order to account

for noisy data.

5.3.4 Insights into Data Mining Approach from the Time-

Series Analysis on Runtime Data

Declines in the performance of the algorithms shown in Figures 5.10 to 5.13 indi-

cate significant changes in the context that defines the active/triggered and/or inac-

tive/not triggered states for a given requirement. The descending slope before the

local minimums indicates that the previous context data for the requirement is be-

coming less relevant to the future context. The slope of the ascent after a minimum

indicates how quickly the algorithm is able to define new, relevant context for the

future data. The greater the slope, the more quickly the algorithm can define new,

relevant context rules for the requirement, and thus provide context awareness for

that requirement more effectively.

Surprisingly, sensor configuration changes did not have as much impact on the

performance of the context classifiers as expected. However, the introduction of new
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active/triggered state data for a given requirement had a much greater impact than

anticipated. While it was expected that new data such as this would cause an im-

mediate increase in performance, often the opposite often happened. However, these

dips in performance were often immediately followed by a sharp rise in performance

again. This might indicate that a ’settling time’ after receiving new active/triggered

state data may be desirable before generating a new context classifier. Additionally,

a sliding window for the reintroduction of old sensor data after a sensor comes back

online may be desirable so as to reduce noise, as in the case of the reintroduction of

Airmar data for CR1.

Although the target attributes for CR1 and CR4 were visually defined in very

similar ways, the performance of the precision and recall was significantly lower for

CR4. Although this could be due, at least in part, to the fact that CR1 had ap-

proximately twice the active/triggered state data that CR4 did (see Table 5.9), it is

more likely due to the fact that the algorithms simply could not adequately discern

differences between the active/triggered and the inactive/not triggered states, as was

described in the previous section.

5.4 Limitations

This thesis is an empirical investigation into integrating data mining algorithms into

self-adaptive systems for context awareness and context evolution. As such, the re-

search approach as covered in Chapter 3 was arrived at iteratively through the eval-

uation methodology described in Chapter 4. As insights were gained through the

evaluation process, the approach was refined.

Internal Validity

Effort was taken to maximize the internal validity of each of the case studies and

the time-series analysis from Chapter 5. This was completed in the exploratory case

study by pre-processing the data, and then systematically applying the data min-

ing algorithms to two subsets of that data while systematically reducing the number

of columns of data in those subsets. Internal validity was further improved in the

confirmatory case study by again pre-processing the data, and then reducing the in-

dependent variable to the indicator attributes for each requirement. It should be

noted that CR2 and CR5 had slightly smaller data sets due to the number of rows of
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data where it was unknown whether they were in the active/triggered state or inac-

tive/not triggered state (see Table 5.9). The target attributes were again examined

in the time-series analysis where the number of rows of data in the training and test

sets were incrementally changed.

In an effort to produce more representative results, the target attributes for the

confirmatory case study and the time-series analysis were derived in three different

ways, with at least two target attributes resulting from each of the three ways (see

Section 5.2.3).

Significant effort was made to validate and verify the target attributes for each

of the requirements (described in Sections 5.1.3, and 5.2.3) through examining the

sensor data, examining the daily logs, and in interviews with the rowers. However, it

was not possible to determine the target attributes’ actual correlation to the context

each of the requirements was active/triggered and inactive/not triggered in. Regard-

less, the ultimate goal of this thesis is the investigation of how context-aware systems

can adapt to changes in when requirements are typically active/triggered and inac-

tive/not triggered. That is, one of the assumptions is that the target attribute for

a given requirement will be subject to change over time, regardless of how it was

initially defined. Even so, an attempt was made to minimize the impact of erroneous

target attributes on the analyses by completing them on multiple requirements in the

exploratory case study in Section 5.2 and in the time-series analysis in Section 5.3.

External Validity

The settings of our case studies were almost experimental as the rowers operated

under normal conditions in very isolated and physically extreme conditions with a

small number of external impacts. Given this, there may be some question as to how

the results may change in a more subtle environment with less clear differentiation

between active/triggered and inactive/not triggered states for each requirement (see

Results for Requirement CR4 in Section 5.3.2). Nonetheless, the runtime data used in

the studies in this thesis are from real situations that took place in different locations

and times, with different users, and different levels of adherence to user goals.

Additionally, while the users were operating in a restricted environment with

similar activities being completed consistently over time, the results may also be

applicable to other contexts with consistent patterns of activity. These might include

other contexts that rely on shift work (such as hospital wards, or factories), teams of
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athletes, or even military personnel. Alternatively, given the results in the exploratory

case study in Section 5.1, the results may also be applicable to individuals acting with

consistent patterns of activity.

Ecological Validity

The investigation and analysis described in this thesis was was carried out on two

laptops using Weka 3.6.9, as implementation of the requirements from this thesis

for context-awareness on a mobile device was out of the scope of this thesis. This

means that scalability issues with memory and performance may come into play

when performing the analysis from this thesis on a mobile device instead of a laptop.

However, as described in Section 3.3, an effort was made to select well-known data

mining algorithms appropriate for mobile implementation, and the J48 algorithm has

recently been implemented on mobile using Weka. Additionally, high performance

results were obtained in several of the requirements after only a few days of sensor

data in the training sets (see Figures 5.10 to 5.13). Also, the noise that sensor

data older than two weeks appeared to introduce into CR1 (see Section Results for

Requirement CR1 ) may indicate that a sliding window of contextual sensor data may

be enough, and even more desirable in some cases rather than a larger set of data.

Additionally, it is assumed that all disparate sensor sources can be preprocessed,

and integrated centrally so that data mining algorithms can be applied. This was

because of the isolated and unobservable setting that occurred in the case study

where wireless cloud connectivity was prohibitively costly, thus necessitating mobile

implementation of the data mining component of the context-aware system. While

capturing all the relevant sensor data may not be possible in all cases, many mobile

devices contain an array of on-board sensors, and there are also a number of bluetooth-

enabled sensors (e.g., heart rate monitors, sleep tracking, movement sensors) that can

currently be coupled with mobile devices.
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Table 5.5: Functions (based on actual sensor values) used to derive target attribute
classes for CR2 and CR5 from row 1 to row 79228 (before sensor loss from Rower 3 )
in data set. Note that the value for Rower i Asleep or Awake is either 1 (Awake) or
0 (Asleep).

Target Attribute Class Function Target Attribute Class Derived From

CR2 active/triggered
(i.e., class = 1)

(Rower 1 Asleep or Awake Sensor Value) +
(Rower 2 Asleep or Awake Sensor Value) +
(Rower 3 Asleep or Awake Sensor Value) +
(Rower 4 Asleep or Awake Sensor Value)<= 2

CR2 inactive/not triggered
(i.e., class = 0)

(Rower 1 Asleep or Awake Sensor Value) +
(Rower 2 Asleep or Awake Sensor Value) +
(Rower 3 Asleep or Awake Sensor Value) +
(Rower 4 Asleep or Awake Sensor Value)> 2

CR5 active/triggered
(i.e., class = 1)

(Rower 1 Asleep or Awake Sensor Value) +
(Rower 2 Asleep or Awake Sensor Value) +
(Rower 3 Asleep or Awake Sensor Value) +
(Rower 4 Asleep or Awake Sensor Value)= 3

CR5 inactive/not triggered
(i.e., class = 0)

(Rower 1 Asleep or Awake Sensor Value) +
(Rower 2 Asleep or Awake Sensor Value) +
(Rower 3 Asleep or Awake Sensor Value) +
(Rower 4 Asleep or Awake Sensor Value)6= 3
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Table 5.6: Functions (based on actual sensor values) used to derive target attribute
classes for CR2 and CR5 from row 79229 to row 90748 (after sensor loss from Rower
3 ) in data set. Note that the value for Rower i Asleep or Awake is either 1 (Awake)
or 0 (Asleep).

Target Attribute Class Function Target Attribute Class Derived From

CR2 active/triggered
(i.e., class = 1)

(Rower 1 Asleep or Awake Sensor Value) +
(Rower 2 Asleep or Awake Sensor Value) +
(Rower 4 Asleep or Awake Sensor Value)<= 1

CR2 inactive/not triggered
(i.e., class = 0)

(Rower 1 Asleep or Awake Sensor Value) +
(Rower 2 Asleep or Awake Sensor Value) +
(Rower 4 Asleep or Awake Sensor Value) = 3

CR2 unknown
(i.e., class = ?)

(Rower 1 Asleep or Awake Sensor Value) +
(Rower 2 Asleep or Awake Sensor Value) +
(Rower 4 Asleep or Awake Sensor Value) = 2

CR5 inactive/not triggered
(i.e., class = 0)

(Rower 1 Asleep or Awake Sensor Value) +
(Rower 2 Asleep or Awake Sensor Value) +
(Rower 4 Asleep or Awake Sensor Value)<= 1

CR5 unknown
(i.e., class = ?)

(Rower 1 Asleep or Awake Sensor Value) +
(Rower 2 Asleep or Awake Sensor Value) +
(Rower 4 Asleep or Awake Sensor Value)>= 2
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Table 5.7: JRip Algorithm Stratified 10-Fold Cross Validation Results for all Require-
ments in Confirmatory Case Study

Req’t Accuracy % FP Rate Precision Recall

CR1 99.91 0 0.995 0.995
CR2 99.05 0.007 0.978 0.983
CR3-1 99.99 0 0.999 1
CR3-2 99.89 0.001 0.998 0.996
CR3-3 99.91 0 0.989 0.985
CR3-4 99.87 0.001 0.997 0.997
CR4 99.94 0 0.994 0.992
CR5 95.8 0.012 0.938 0.823

Table 5.8: J48 Algorithm Stratified 10-Fold Cross Validation Results for all Require-
ments in Confirmatory Case Study

Req’t Accuracy % FP Rate Precision Recall

CR1 99.87 0.001 0.995 0.992
CR2 99.29 0.006 0.981 0.989
CR3-1 99.98 0 0.999 1
CR3-2 99.91 0.001 0.996 0.999
CR3-3 99.93 0 0.992 0.987
CR3-4 99.89 0.001 0.996 0.999
CR4 99.95 0 0.997 0.992
CR5 98.01 .01 0.955 0.934

Table 5.9: Number of active/triggered state, inactive/not triggered state, and un-
known state rows in each of the requirements examined for a total of 90748* rows in
the time-series analysis (and confirmatory case study) data set.

Req’t Active/Triggered State Inactive/Not Triggered State Unknown State

CR1 8190 82559 0
CR2 21270 66471 3008
CR3-1 8531 82218 0
CR3-2 16066 74683 0
CR3-3 3190 87559 0
CR3-4 19908 70841 0
CR4 4005 86744 0
CR5 14561 66334 9854

*note that a small boundary error in the script used to divide the test and training sets resulted in
an overlap between the sets of one row



80

Table 5.10: Context Changes Visually Observable in Confirmatory Case Study Run-
time Data

Rowing Partner Changes Sensor Configuration Changes

Feb 12 Feb 11
Mar 14 Feb 26

Mar 19
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Chapter 6

Conclusion

This section discusses how the evaluation methodology described in Chapter 4, car-

ried out as described in Chapter 5 fulfilled the purpose of investigating how passively

collected sensor data, and actively collected log data could be leveraged for the re-

quirements elicitation process. Also discussed are some of the ways that this study

fits into current work in context awareness, context evolution, and mobile systems.

6.1 Addressing Research Objectives

As presented in the results of the exploratory (Section 5.1) and confirmatory (Section

5.2) case studies, the data mining approach presented in Chapter 3 was shown to

be useful for better understanding unobservable system operating environments to

support the requirements elicitation process.

Context for the active/triggered and inactive/not triggered states for one require-

ment was defined using data mining algorithms applied to the contextual sensor data

sets in the exploratory case study, and five requirements in the confirmatory case

study (requirement CR3 had four results produced, one for each of the users, for a

total of eight results). Various algorithms appropriate to requirements engineering

and mobile device implementation were applied in the exploratory case study (see

Section 3.4 and Section 5.1.4), with the JRip and J48 algorithms being applied for

extensive evaluation in the confirmatory case study (see Section 5.2.4).

In conclusion, there were several implications for using data mining for Require-

ments Engineering, for Context-Awareness for Mobile Applications, and for Group-

Context-Aware Mobile Applications. These are described in the following sections.
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6.2 Data Mining and Requirements Engineering

There were several influences on the results. Data pre-processing proved to have a

significant impact, particularly data reduction (see Section 3.2 and 5.1.7). Addition-

ally, the characteristics of the data set including how consistent the data collection

was, how much data was available, how representative the training sets were of the

test sets, and how consistent the user goals were over the period the sensor data

was collected all impacted the results (Sections 3.3, 5.1.3, 5.2.3), with more generally

producing more accurate results.

The separation between the active/triggered state and the inactive/not triggered

state for each requirement, not only in the target attribute, but also in the contextual

sensor data appears to have an impact on the results (see Results for Requirement

CR1 in Section 5.3.2 ). Additionally, the target attribute was not captured by the

system at runtime and was, instead defined, verified, and validated in one of three

different ways, depending on the requirement (see Sections 3.3, 5.1.3, and 5.2.3). The

possible discrepancy between the target attributes derived in this study and target

attributes that would have been captured at runtime is unknown. Therefore, the

impact that this discrepancy would have on the results is also unknown.

The results of the time-series runtime analysis in Section 5.3 were used to address

how much contextual sensor data needed to be collected in order to define the ac-

tive/triggered and inactive/not triggered situations for each of the requirements. The

time-series runtime analysis also addressed how context sensor configuration changes

and other significant contextual changes impacted the performance of the context

classifiers.

The reduction of physical contextual sensor data from the training sets (i.e., the

Airmar sensor environmental data and the biometric data from Rower 3 ) didn’t

affect the results of the classifiers as much as expected. However, the addition of

active/triggered state data was shown to have a loss of performance impact on the

classifiers in several cases, which was unexpected. Concept drift may have been

notably present in one case (CR1) upon the reintroduction of the Airmar sensor data

into the training set after a period of approximately two weeks.

Distribution of the active/triggered state throughout the data, as well as how the

target attribute was defined may have an impact on the performance of the classifiers.

However, because the sample size of the analysis is limited to within eight results (five

requirements, one with four sub-results), it cannot be said for certain.
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6.3 Data Mining and Context-Awareness for Mo-

bile Applications

As discussed in Section 2.2, data mining has shown to be useful for identifying situ-

ations for service delivery in context-aware applications. In this study, data mining

was used on historic sensor data passively collected at runtime in order to define

the active/triggered and inactive/not triggered situations for several requirements in

a context-aware application. This was done to support the requirements elicitation

process.

The (isolated) and dangerous nature of the system context of use made it im-

possible to perform recommended requirements elicitation techniques (e.g., [13]) in

order to determine the contexts that the user groups might be situated in. Instead,

passively collected runtime sensor data, daily log activities, and interviews with the

rowers were relied upon for requirements elicitation. Data mining proved to be a

useful means of identifying subtle context of use situations for context-aware service

delivery for several requirements.

In addition, location was not considered as relevant to our context-aware applica-

tion for the requirements we investigated because the locations were unique through-

out the duration of the application’s use in the contexts investigated (long distance,

open-water rows). Nor does study take into account contextual information provided

through wireless means (ubiquity) because the users were in an extremely isolated

environment with wireless connectivity being prohibitively expensive (i.e., the At-

lantic Ocean). As discussed in Section 2.2, there are many existing studies and

context-aware applications centred on leveraging location context for mobile ubiqui-

tous systems. This study gives an example of a context-aware application that is

not only primarily dependent non-location sensor data alone, but also gives a real

example of an application where the context-aware mobile system cannot leverage

wireless connections.

As discussed in Section 2.2, several studies feature actigraphy (motion sensors)

as a useful physical and user context for context-aware applications. This study cen-

tred around biometric sensor data (physical and user context) from each of the four

rowers in the confirmatory case study, as well as physical contextual data from two

environmental sensors. While the environmental sensor data did appear in many of

the classifiers produced, far more important in the ranking was the sensor data ob-

tained directly from the users. This is interesting because although the weather may
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be one of the causes of the context-aware service being delivered, the physical effect

it had on the rowers appeared to be far more relevant to the algorithm’s definition of

the classifier. This was demonstrated in the case of CR1 where high wind and waves

influenced when the rowers were On Sea Anchor, but the most important rule in one

of the the classifiers (i.e., those with the most coverage), had to do with when three of

the rowers were described as being In Bed by their biometric sensors. This confirms

the importance of biometric sensors for individual users, and may be an indicator

that they are more important than environmental sensors to deriving situations for

context-aware applications, even when the environment is the cause of the current

context situation. It is known that processing data on resource-constrained devices

such as mobile phones is challenging [11]. By prioritizing the sensors that are mon-

itored (e.g., choosing to monitor the biometric sensors and potentially dropping the

environmental ones entirely), resources on mobile devices can be better optimized.

6.4 Group-Context-Aware Mobile Applications

In addition, the context situations investigated were complex and unique, often de-

pending on the data from more than one user at a time (see Section 5.2). Many

previous studies rely on defining context situations for application service delivery

based on movement activities from a single user, rather than a group of users. While

this study does, indeed take into account biometric information from a single user

in several cases (i.e., the On Sea Anchor requirement from Section 5.1, and require-

ments CR3-1 to CR3-4 from Section 5.2), there are also four requirements for which

situations for the entire group is considered (i.e., CR1, CR2, CR4, and CR5 in Section

5.2).

Group context-aware mobile applications are an emerging area of interest with

implications for emergency first responders, teams, and military field personnel in

order to help them complete missions [21, 22]. Two of the requirements in this study

were directly based on hostile environmental conditions (CR1 and CR5), and one was

based on the users’ physical and mental condition in that hostile environmental con-

dition (CR3-1 to CR3-4). The study presented in this thesis could have implications

for this domain, particularly since the context of use in this study is on the “tactical

edge” (in a resource-limited and hostile environment), as are many of the applications

in this emerging field.
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