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ABSTRACT

In this thesis, we study a linear fractional Fokker-Planck equation that models

non-local (‘fractional’) diffusion in the presence of a potential field. The non-locality

is due to the appearance of the ‘fractional Laplacian’ in the corresponding PDE, in

place of the classical Laplacian which distinguishes the case of regular (Gaussian)

diffusion. We introduce the fractional Laplacian via the Fourier transform, and show

equivalence of the Fourier definition with a singular integral formulation which ex-

plicitly characterizes the non-local effects.

Motivated by the observation that, in contrast to the classical Fokker-Planck equa-

tion (describing regular diffusion in the presence of a potential field), there is no

natural gradient flow formulation for its fractional counterpart, we prove existence

of weak solutions to this fractional Fokker-Planck equation by combining a splitting

technique together with a Wasserstein gradient flow formulation. An explicit itera-

tive construction is given, which we prove weakly converges to a weak solution of this

PDE.
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Chapter 1

Introduction

The diffusion, or heat equation, ∂tρ = ∆ρ, is a classical and intensively studied

PDE which has been very successful in describing a wide range of physical phe-

nomena [16]. In the study of continuous-time stochastic processes, it is closely con-

nected to the theory of Brownian motion (or Wiener processes); in particular, if

X = {Xt : 0 ≤ t <∞} is a Brownian motion that admits, at each time t, a proba-

bility density ρ(t), then in fact ρ solves the heat equation [20]. On a more intuitive

level, it is well known that a Brownian motion can be constructed from a suitable

limit of a discrete random walk with finite variance, and it is not hard to check that

the probability distribution of this random walk satisfies a discrete version of the

heat equation [20]. It is this random walk we imagine when we think of the physical

process of diffusion.

An alternative viewpoint of diffusion is that of an irreversible process from ther-

modynamics. Irreversible processes are, in particular, characterized by the fact that

their entropy (given by S = −
∫
ρ log ρ in the continuous case, where ρ is a probability

distribution over the continuous state space) always increases. In particular, as ther-

modynamic equilibrium of a system is achieved for a state of maximum entropy by

the Second Law of Thermodynamics, we imagine entropy as ‘driving’ the evolution,

i.e. diffusion is a result of a system ‘seeking’ to maximize its entropy at any given

instant in time.

In their seminal paper [19], Jordan, Kinderlehrer, and Otto, were (as a special

case) able to make a connection between the time evolution of a solution to ∂tρ = ∆ρ
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and its corresponding entropy −
∫
ρ log ρ. They proved that{

ρt = ∆ρ+ div (ρ∇Ψ(x)) in Rd × (0,∞)

ρ = ρ0 on Rd × {t = 0}
(1.1)

which models a diffusing particle moving in a potential field Ψ, is a gradient flow,

or steepest descent, of the free energy functional F (ρ) :=
∫
Rd ρ log ρ +

∫
Rd ρΨ with

respect to the metric W2, called the 2-Wasserstein metric, on the space of probability

measures (see Chapter 4)[19] . That is, at each instant in time, solutions of (1.1)

follow the direction of steepest descent of F (ρ) w.r.t. the 2-Wasserstein distance.

In particular, Ψ ≡ 0 gives a precise meaning to the idea that dynamics of the heat

equation occur because the system seeks to maximize its entropy at every instant in

time [19].

Let us return to the random walk interpretation of the heat equation. For review

purposes, we sketch out the connection. Consider a particle, starting at the origin,

that at each time step τ has an equal probability to jump to one of the lattice points

±hei of hZd, where ei = (0, . . . , 0, 1, 0 . . . , 0) is a unit vector in the ith direction, and

h > 0 is a given step size. The probability p0(x, t+ τ) that the particle is at x ∈ hZd

at time t+ τ ∈ τN, given that it started at the origin, satisfies the following relation

p0(x, t+ τ) =
1

2d

d∑
i=1

p0(x+ hei, t) + p0(x− hei, t),

or equivalently,

p0(x, t+ τ)− p0(x, t)

τ
=

h2

2dτ

d∑
i=1

p0(x+ hei, t)− 2p0(x, t) + p0(x− hei, t)
h2

.

We imagine h and τ to correspond to the mean distance and time between collisions.

In the above display, the right-hand side has the form of a discretization of the

Laplacian. Assuming h2 ∝ 2dτ , i.e. h scales according to the square root of τ , as h,

τ → 0, we obtain a continuous probability distribution ρ satisfying the heat equation{
∂tρ(x, t) = ∆ρ(x, t), x ∈ Rd, t > 0,

ρ(x, 0) = δ(x) x ∈ Rd,

where δ is the Dirac measure (i.e. with probability 1, the particle started at the
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origin). The solution for t > 0 is given by ρ(x, t) = Φ(x, t), where Φ(x, t) =
1

(4πt)d/2
e−|x|

2/4t is a Gaussian distribution for each fixed t > 0 [16]. (If instead, we

have an initial distribution ρ0 for the particle rather than a precise starting location,

then the convolution ρ(x, t) = Φ(t) ∗ ρ0(x) furnishes the probability distribution of

the particle at time t > 0.)

The second moment of a solution to the heat equation,
∫
Rd x

2ρ(x, t) dx, is char-

acterized by the fact that it increases in proportion to t (we omit the computation

here). Thus in an experiment measuring the mean square displacement of a particle

(which is equivalent to the second moment, if we choose the particle to be initially at

the origin), we expect a linear dependence with time if the process is well described

by the classical heat equation, see e.g. the famous work by Perrin [23]. However,

certain experiments involving diffusion (see e.g. [25], or [9] and references therein)

have shown that the mean-square displacement is not proportional to t, but instead

to tα, α 6= 1. This suggests that Gaussian diffusion, and in particular, on a discrete

level, the classical random walk, is no longer a good model for the observed physical

process. Instead, we introduce another random walk from [27], and formally investi-

gate its limit. We remark that such a random walk cannot have finite variance (since

this will lead to Brownian motion).

Therefore, suppose now that at any given point in the lattice, there is a non-zero

probability to jump to any of the other lattice points in hZd, that is, long-range

effects are present. Specifically [27], let K : Rd → [0,∞) be a function satisfying

K(−x) = K(x) with normalization
∑

i∈Zd K(i) = 1, specifying the distribution of

these jump sizes. Then with the same notation as above

p0(x, t+ τ)− p0(x, t) =
∑
i∈Zd

K(i) [p0(x+ ih, t)− p0(x, t)] ,

or
p0(x, t+ τ)− p0(x, t)

τ
=
∑
i∈Zd

K(i)

τ
[p0(x+ ih, t)− p0(x, t)] .

The classical case is recovered when K(i) = 1/2d for i ∈ Zd satisfying |i| = 1, and

K(i) = 0 otherwise. For convenience, we rewrite the above using the symmetry in K

as

p0(x, t+ τ)− p0(x, t)

τ
=

1

2

∑
i∈Zd

K(i)

τ
[p0(x+ ih, t) + p(x− ih, t)− 2p0(x, t)] .
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Without any motivation here, let us choose K to be a homogeneous ‘heavy-tailed’

distribution, depending on a parameter s ∈ (0, 1), Ks(x) := C
|x|d+2s , |x| > 0, Ks(0) = 0,

with an appropriate normalizing constant C.

Our first observation [27] is that for such a choice, the second moment,∑
i∈Zd\{0}

|i|2K(i) = C
∑

i∈Zd\{0}

|i|2−d−2s = +∞.

In particular, this random walk has an infinite variance for every s ∈ (0, 1).

Now we wish to formally investigate the limit τ, h → 0. To this end, suppose τ

scales according to h2s, τ ∝ h2s. Then (up to constants), Ks(i)
τ

= hdKs(ih), so

p0(x, t+ τ)− p0(x, t)

τ
=
hd

2

∑
i∈Zd

Ks(ih) [p0(x+ ih, t) + p(x− ih, t)− 2p0(x, t)] .

Formally, the right-hand side of the above display is a Riemann sum, while the left-

hand side is a discretization of a derivative in t. Therefore if τ, h → 0 with τ ∝ h2s,

we anticipate (up to constants) the equation
∂tρ(x, t) =

∫
Rd

ρ(x+ y, t) + ρ(x− y, t)− 2ρ(x, t)

|y|d+2s
dy, x ∈ Rd, t > 0

ρ(x, 0) = δ(x) x ∈ Rd.

This singular integral on the right-hand side is, up to a constant (which depends on

s), a non-local linear operator called the fractional Laplacian, and denoted by (−∆)s

(see Chapter 2 for more details). The corresponding PDE is known as the fractional

heat equation,

∂tρ = −(−∆)sρ. (1.2)

Although the variance of a solution ρ to (1.2) is infinite (see Chapter 2) which is non-

physical, one can still define a ‘pseudo-variance’,
[∫

Rd x
βρ(x, t) dx

]2/β
where β < 2s.

It can be shown that this pseudo-variance satisfies
[∫

Rd x
βρ(x, t) dx

]2/β ∝ t1/s. Thus,

the fractional heat equation can be considered as a model for situations where there

is non-Gaussian diffusion.

The continuous-time stochastic process corresponding to the limit of this random

walk is not a Brownian motion as in the classical random walk case, but instead

belongs to a more general class of stochastic processes called Lévy processes, to which
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Brownian motion belongs [4].

Formally speaking, a Lévy process X is a stochastic process which has stationary

and independent increments [4]; in particular, a Brownian motion is a Lévy process for

which the independent increments have a Gaussian distribution. If X is a symmetric

pure jump 2s-stable Lévy process that admits a density ρ(t) at each time t, then

∂tρ = −(−∆)sρ. This terminology comes from the celebrated Lévy-Itô decomposition

[4] which says, roughly speaking, that every Lévy process is the sum of a deterministic

drift, a Brownian motion, and a jump process (related to a compound Poisson process

- a Poisson process with random jump sizes). A pure jump process is a Lévy process

which contains no drift or Brownian motion. More precisely, a Lévy process can be

classified by its characteristic function, which determines the probability distribution

of the process. The Lévy-Khintchine formula [4] gives a canonical representation for

the characteristic function, which is given by a Lévy triple (b, A, ν), where b ∈ Rd is

related to a deterministic drift, A ∈ Rd×d is related to a Brownian motion, and ν is

a (Lévy) measure on Rd\{0} related to a jump process. A pure jump Lévy process

has Lévy triple (0, 0, ν). In particular, the pure jump process that corresponds to the

fractional Laplacian has (up to constants) dν(y) = |y|−d−2s dy. Since ν(−A) = ν(A)

it is a symmetric pure jump process. Finally, the terminology stable means that

there exist real-valued sequences {cn} and {dn} such that X1 + . . . + Xn is equal in

distribution to cnX + dn for each n, where Xi is an independent copy of the Lévy

process X. It can be shown (see references in [4]) that cn can take only the form

cn = σn1/2s, 0 < s ≤ 1, and thus 2s is said to be the index of stability.

The above discussion has been rather brief and formal, but it is not our aim to

fully develop the theory of Lévy processes here; for the interested reader we refer

to [4]. Rather, we wish simply to draw a connection between the fractional heat

equation, the ‘heavy-tailed’ random walk, and the corresponding Lévy process, in the

same way as that of the heat equation, standard random walk, and the corresponding

Brownian motion.

We consider the fractional heat equation as characterizing a non-Gaussian diffu-

sion, and refer to this as ‘fractional diffusion’. In particular, the solution to (1.2)

in Rd with initial distribution ρ0 is given by ρ(t) = Φs(t) ∗ ρ0, where now Φs is a

non-Gaussian kernel (see Chapter 3).

One may wonder if there is a similar gradient flow interpretation of the fractional

heat equation involving the entropy −
∫
Rd ρ log ρ as there was for the heat equation.

Indeed, Mathias Erbar [15] rigorously proved that the fractional heat equation is
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the gradient flow of the entropy, not with respect to the 2-Wasserstein distance, but

with respect to a new ‘modified Wasserstein’ distance built from the Lévy measure

and based on the Benamou-Brenier variant of the 2-Wasserstein distance [28]; see

[15] for details. However, there appears to be no such extension to the ‘fractional’

Fokker-Planck equation corresponding to (1.1),{
ρt = −(−∆)sρ+ div (ρ∇Ψ(x)) in Rd × (0,∞), s ∈ (0, 1)

ρ = ρ0 on Rd × {t = 0} .
(1.3)

It is unknown if it is even possible to regard (1.3) as a gradient flow of an energy func-

tional in some metric space. Indeed, there does not seem to be any obvious extension

of the work by Erbar to (1.3), since the distance there was seemingly designed with

precisely the entropy −
∫
ρ log ρ in mind.

Instead, we think of (1.3) as really consisting of the two separate processes of

fractional diffusion, and transport in the field of the potential Ψ. Moreover, we think

it is natural to consider transport dynamics as arising from the tendency of a particle

to minimize its potential energy in this field, that is, as a gradient flow of the potential

energy (with respect to the 2-Wasserstein distance; see Chapter 4).

It is therefore our interest to see if solutions to (1.3) can in fact be obtained by

separating, or splitting, (1.3) into these two processes, and solving each separately,

on a vanishingly small interval of time. That is, within some small time interval of

duration τ , we imagine that dynamics of (1.3) correspond to evolving a given initial

distribution according to the fractional heat equation ∂tρ = −(−∆)sρ, and then

running a gradient flow of the potential energy in the 2-Wasserstein distance. When

τ → 0, we hope to recover a solution of (1.3). More precisely, we recursively iterate

the following two connected subproblems for n = 0, 1, . . . , N − 1, given some finite

time horizon T <∞ and time-step τ = T/N :

1. (The fractional heat equation)

∂tu(x, t) = −(−∆)su(x, t), (x, t) ∈ Rd × (0,∞)

u(x, 0) = ρnτ (x)

Set ρ̃n+1
τ (x) := u(x, τ).

2. (Gradient Flow of the Potential Energy)
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Minimize

ρ 7→ 1

2τ
W2(ρ̃n+1

τ , ρ)2 +

∫
Rd
ρΨ dx (1.4)

Set ρn+1
τ (x) as the minimizer.

We will explain (1.4) in Chapter 4.

The idea of splitting is well-known from numerical analysis. It has been applied

to other ‘fractional PDE’s’ [2, 13], such as the so-called fractional conservation law,

∂tu(x, t)+div (f(u))+(−∆)su(x, t) = 0, as well as on other PDE’s, to obtain existence

of a solution; see e.g. [18] and references therein.

To see why splitting is a plausible approximation scheme, we run it on the simple

ODE {
u′(t) = (A+B)u(t)

u(t = 0) = u0 ∈ Rd

where A,B ∈ Rd×d are d× d matrices with real-valued entries. The solution at time

t > 0 is formally given by u(t) = et(A+B)u0. If now, given some time-step τ > 0, we

solve the ODE’s {
v′(t) = Av(t), with v(t = 0) = u0

w′(t) = Bw(t), with w(t = 0) = v(τ)

then w(τ) = eτBeτAu0 is an approximation of u(τ). This is easily seen by the Taylor

expansions

u(τ) = u0 + τ(A+B)u0 +
1

2
τ 2(A+B)2u0 + o(τ 2)

w(τ) = u0 + τ(A+B)u0 +
1

2
τ 2(A2 + 2BA+B2)u0 + o(τ 2),

so that

|u(τ)− w(τ)| ≤ τ 2|(AB −BA)u0|+ o(τ 2),

and so at some time t = nτ ,

|u(t)− w(t)| ≤ Cτ + o(τ).

Returning now to (1.3), we remark that previous research [5, 17, 26] specifically on

(1.3) has focused only on the long-time behaviour in the specific case Ψ(x) = |x|2/2,

where they prove exponential convergence of solutions to equilibrium. More precisely,
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they obtain ‘entropy’ inequalities [17] of type

Entγu∞

(
u(t)

u∞

)
≤ e−

t
C Entγu∞

(
u0

u∞

)
,

where u is assumed to solve (1.3) with Ψ = |x|2/2, u∞ is the equilibrium solution,

(the solution of (−∆)su = div (xu)), and Entγu∞ is defined for nonnegative functions

f by

Entγu∞(f) :=

∫
Rd
γ(f)u∞ dx− γ

(∫
Rd
fu∞ dx

)
,

where γ : R+ → R is a smooth convex function. Since we are interested in proving

existence of solutions via splitting, we do not find occasion to make use of these

results in the sequel, and encourage interested readers to consult the above references

for further details.

To the best of our knowledge, existence of solutions to (1.3) has not been proven

via a splitting in this fashion before. We suspect, however, that existence by some

other means may have already been established, but were unable to find any exact

references in the literature. Indeed, it can be checked that the Duhamel-type formula

ρ(x, t) = Φs(t) ∗ ρ0(x) +

∫ t

0

Φs(t− t′) ∗ div (ρ(t′)∇Ψ) (x) dt′

formally solves (1.3) (where Φs is the fractional heat kernel). Placing the spatial

derivative on Φs instead of ρ(t′)∇Ψ in the above (‘integration by parts’) gives the

notion of a mild solution, i.e. a ρ satisfying

ρ(x, t) = Φs(t) ∗ ρ0(x)−
∫ t

0

∇Φs(t− t′) ∗ [ρ(t′)∇Ψ] (x) dt′.

Provided the right-hand side of the above display makes sense, it may be possible

to prove the existence of a mild solution by running a fixed point argument in, e.g.,

the Banach space C((0, T );L1(Rd)) [13]. If we were to continue in this direction, it

seems that one should impose ∇Ψ ∈ L∞(Rd), since we anticipate ρ(t′) ∈ L1(Rd), in

order for the right-hand side to be well-defined. Such an assumption is not needed

however in the following. Moreover, we apply splitting to (1.3) with the aim to see if

a similar technique can be applied to other PDE’s which cannot be fully realized as

a Wasserstein gradient flow.

This thesis is organized as follows. The rest of this chapter is concerned with
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setting some notation, giving the assumptions which will be used in the sequel, and

a statement of the main result. In Chapter 2, we establish rigorous definitions and

examine properties of the fractional Laplacian. This is followed by the brief exposi-

tion of Chapter 3 which will establish properties of solutions to the fractional heat

equation. Chapter 4 discusses the gradient flow formulation of the transport equa-

tion. Finally, Chapter 5 is where the construction and convergence of the splitting is

established.

1.1 Notation

In this section we set the notation we shall use. Other notation which is used locally

is defined in each relevant section.

1. C is a constant that might vary from line to line.

2. We denote x for the spatial coordinate(s), and t for the ‘time’ coordinate.

3. We will usually suppress spatial dependence for functions, in particular when

integrating. This means that if f = f(x) : Rd → R and ϕ = ϕ(x, t) : Rd ×
(0,∞)→ R, then ∫

Rd
fϕ(t) dx :=

∫
Rd
f(x)ϕ(x, t) dx

We will always indicate dependence on t.

4. Lp spaces will be denoted as usual by

Lp(Rd) :=

{
f : Rd → R : ‖f‖p

Lp(Rd)
:=

∫
Rd
|f |p dx <∞

}
, 1 ≤ p <∞,

L∞(Rd) :=
{
f : Rd → R : ‖f‖L∞(Rd) := essupx∈Rd |f | <∞

}
.

5. If α = (α1, . . . , αd) is a d-tuple of non-negative integers, and |α| =
∑d

i=1 αi,

then for f : Rd → R,

Dαf(x) := ∂α1
x1
. . . ∂αdxd f(x).

6. If f : Rd → R, then

∥∥D2f
∥∥
L∞(Rd)

:= ‖g‖L∞(Rd) , where g := |D2f | =

∑
|α|=2

|Dαf |2
1/2

.
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7. Ck functions,

C0(Rd) : =
{
f : Rd → R, f is continuous

}
Ck(Rd) : =

{
f : Rd → R, f is k times continuously differentiable

}
8. Let 0 < α ≤ 1. The Hölder spaces

C0,α(Rd) :=

{
f : Rd → R : f ∈ C0(Rd), sup

x 6=y

|f(x)− f(y)|
|x− y|α

<∞
}

Ck,α(Rd) :=
{
f : Rd → R : f ∈ Ck(Rd), Dβf ∈ C0,α(Rd) for all β with |β| = k

}
9. P2

a(Rd) is the set of absolutely continuous (w.r.t. Lebesgue) probability mea-

sures on Rd that have finite second moments, which we will identify with their

densities,

P2
a(Rd) :=

{
ρ : Rd → R : ρ ≥ 0 a.e. ,

∫
Rd
ρ dx = 1,

∫
Rd
|x|2ρ dx <∞

}
.

We will not make a distinction between a measure and its density, but the usage

will be clear from the context.

10. BR and BR(x) denote the open ball of radius R centred at the origin and at

x, respectively; 1BR(x) := 1 if x ∈ BR, and 0 otherwise, denotes the indicator

function.

1.2 Assumptions on Initial Data and Potential

In the sequel, we impose the following assumptions on ρ0 and Ψ in (1.3).

(A1) ρ0 ∈ P2
a(Rd) ∩ Lp(Rd) for some 1 < p ≤ ∞,

∫
Rd ρ

0Ψ dx <∞.

(A2) Ψ ∈ C1,1 ∩ C2,1(Rd), Ψ ≥ 0.

Remark 1.2.1. We remark on the assumptions. We require Ψ ∈ C1,1 ∩ C2(Rd) so

that D2Ψ is bounded. This allows us to have an estimate for the potential energy

of a solution to the fractional heat equation, in terms of the potential energy of the

initial data- see (5.5). Together with the assumption ρ0 ∈ Lp(Rd) for p > 1, it allows

us to prove a uniform Lp bound on the time-dependent approximate solution to (1.3)
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obtained from the splitting - see (5.43), crucial for obtaining (weak) compactness in

Lp.

We additionally impose Ψ ∈ C2,1(Rd) so that ∇Ψ · ξ ∈ C1,1
c (Rd) for every ξ ∈

C∞c (Rd), and consequently we have (−∆)s [∇Ψ · ξ] ∈ L∞(Rd) by Proposition 2.2.5.

The nonnegativity of Ψ is a convenience so that
∫
Rd ρΨ dx ≥ 0 for all ρ ∈ P2

a(Rd).

A typical example of a potential satisfying these properties is the quadratic function

Ψ(x) = |x|2/2.

1.3 Statement of Main Result

Our main result is as follows (see Theorem 5.3.5).

Theorem 1.3.1. Let T < ∞ and τ = T/N for some N ∈ N, and assume ρ0 and

Ψ satisfy the above given assumptions. Then there exists a sequence of functions

ρτ : Rd × (0, T )→ R (which is constructed from the splitting scheme outlined above)

and a ρ ∈ L1 ∩ Lp(Rd × (0, T )) (where p > 1) such that

1. ρτ weakly converges to ρ in Lp(Rd × (0, T )) as τ → 0,

2.
∫
Rd ρ(x, t) dx =

∫
Rd ρ

0(x) dx for a.e. t ∈ (0, T ),

3. ρ(x, t) ≥ 0 for a.e. (x, t) ∈ Rd × (0, T ), and

4.
∫ T

0

∫
Rd ρ(t) [∂tϕ(t)− (−∆)sϕ(t)−∇Ψ · ∇ϕ(t)] dx dt+

∫
Rd ρ

0ϕ(0) dx = 0

for all ϕ ∈ C∞c (Rd × R) with time support in [−T, T ].
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Chapter 2

The Fractional Laplacian

In this chapter we establish some basic properties of the fractional Laplacian. Some

questions which motivated the following exposition include, For what functions does

the fractional Laplacian exist (in the classical pointwise sense)? How does the frac-

tional Laplacian act with regards to regularity and integrability? Can we integrate by

parts for the fractional Laplacian? We give answers to these questions, but do not

attempt to recover results in full generality.

We first begin by detailing equivalent definitions of (−∆)s on Rd, the first through

the Fourier transform, and the second as a singular integral.

2.1 The Fractional Laplacian through the Fourier

Transform

The simplest approach to defining the fractional Laplacian operator is through the

Fourier transform on the space of smooth, rapidly decaying (Schwartz) functions on

Rd, which we denote by S(Rd). Formally, we recall a function belongs S(Rd) if the

function, and all its derivatives, vanish as |x| → ∞ faster than any function with

polynomial growth.

We first recall the definition of the Fourier transform. Let f ∈ L1(Rd). The

Fourier transform of f , denoted by F [f ], is defined by

F [f ] (ξ) :=
1

(2π)d/2

∫
Rd
e−i〈x,ξ〉f(x) dx, (ξ ∈ Rd)
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with the inverse Fourier transform

F−1 (g) (x) :=
1

(2π)d/2

∫
Rd
ei〈x,ξ〉g(ξ) dξ, (x ∈ Rd),

where 〈x, y〉 :=
∑d

i=1 xiyi denotes the standard scalar product of x, y ∈ Rd. We

remark that occasionally we will use f̂ instead of F [f ] for clarity.

Proposition 2.1.1. (Useful properties of the Fourier transform) The following prop-

erties hold for f, g ∈ L1(Rd) (see [16]):

1. F−1 (F [f ]) (x) = f(x),

2. F [f ∗ g] = (2π)d/2F [f ]F [g],

3. F [Dαf ] = (iξ)αF [f ] for each multiindex α and Dαf ∈ L1(Rd),

Suppose f ∈ S(Rd). By the properties above, the Fourier transform of −∆f ,

where ∆ =
∑d

i=1
∂2

∂x2i
is the classical Laplacian, is given by

−∆f(x) = F−1
(
| · |2F [f ]

)
(x).

It is then a small step to formally change |ξ|2 to |ξ|2s for s ∈ (0, 1), which gives the

following definition for the fractional Laplacian, on S(Rd).

Definition 2.1.2. (The fractional Laplacian) For any f ∈ S(Rd), the fractional

Laplacian of f (of order s), denoted by (−∆)sf , is defined by

(−∆)sf(x) := F−1
(
| · |2sF [f ]

)
(x), s ∈ (0, 1).

Remark 2.1.3. Although in principle the above definition holds for s > 1, we will

see from the integral representation below that only when s ∈ (0, 1) are we assured

of a ‘maximum principle’ for the fractional heat equation (3.1). This is one of the

reasons why previous literature on the fractional Laplacian has only been concerned

with s in this range.

From the definition, we can see for s ↑ 1 and s ↓ 0, we recover −∆f and f as

expected.

Remark 2.1.4. The change |ξ|2 → |ξ|2s introduces a decrease in regularity of the

function ξ 7→ |ξ|2sF [f ] (ξ) at ξ = 0. By properties of the Fourier transform, this
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corresponds in the real variable x to a slow decay at infinity, and thus (−∆)sf is not

a Schwartz function since it is no longer rapidly decreasing.

2.2 The Fractional Laplacian as a Singular Integral

An equivalent way [12, 14] of defining the fractional Laplacian on the space of Schwartz

functions S(Rd) is given by the following proposition. This singular integral formula-

tion will allow us to extend the class of functions for which the fractional Laplacian

is well-defined.

Proposition 2.2.1. (The fractional Laplacian as a singular integral) For all f ∈
S(Rd),

(−∆)sf(x) = −Cd,s
[∫

Br

f(x+ y)− f(x)−∇f(x) · y
|y|d+2s

dy (2.1)

+

∫
Rd\Br

f(x+ y)− f(x)

|y|d+2s
dy

]

for every r > 0, where Cd,s =
s22sΓ( d+2s

2 )
πd/2Γ(1−s) and Γ(t) =

∫∞
0
xt−1e−x dx.

It is also equivalent to write

(−∆)sf(x) = Cd,s lim
ε→0

∫
Rd\Bε(x)

f(x)− f(y)

|x− y|d+2s
dy := Cd,sP.V.

∫
Rd

f(x)− f(y)

|x− y|d+2s
dy, (2.2)

or

(−∆)sf(x) = −1

2
Cd,s

∫
Rd

f(x+ y) + f(x− y)− 2f(x)

|y|d+2s
dy. (2.3)

Remark 2.2.2. Following from Remark (2.1.3), we will use representation (2.3) to

formally show that when s ∈ (0, 1) we are assured of a ‘maximum principle’ for the

fractional heat equation (3.1).

Assume u is a smooth solution of (3.1), and the fractional Laplacian of u can be

written in the form (2.3). If at some time t > 0, u has a global maximum at x0 ∈ Rd,

then it is easy to see that (−∆)su(x0, t) ≥ 0, and hence ∂tu(x0, t) = −(−∆)su(x0, t) ≤
0. Thus u(x0, t

′) ≤ u(x0, t) for all t′ > t.

If s > 1 (assume for simplicity s = 1+σ where 0 < σ < 1), then using the Fourier

definition we can see,

(−∆)su = (−∆)σ [−∆u] ,
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and it is not guaranteed that (−∆)σ [−∆u] (x0, t) ≥ 0 if u has a global maximum at

x0 at time t.

Proof. The following proof is taken from [14], see also [12]. We first consider the

case s ∈ (0, 1) with d ≥ 2, however the following argument also holds when d = 1 if

s > 1/2. Let f ∈ S(Rd). Then we can write

(−∆)sf(x) = −F−1
(
| · |2s−2F [∆f ]

)
(x). (2.4)

The function ξ 7→ |ξ|2s−2 is locally integrable for any s ∈ (0, 1), provided d ≥ 2, since∫
BR

|ξ|2s−2 dξ ≤ C

∫ R

0

rd+2s−3 dr = CRd+2s−2 <∞

for any R > 0. It therefore defines a tempered distribution Ts ∈ S ′(Rd) defined

through its action on elements ϕ ∈ S(Rd) by

〈Ts, ϕ〉 :=

∫
Rd
|x|2s−2ϕ(x) dx.

Therefore we can consider F−1 (| · |2s−2) in the sense of distributions, i.e.

〈
F−1 (Ts) , ϕ

〉
:=
〈
Ts,F−1 (ϕ)

〉
.

Let us now show that F−1 (| · |2s−2) = Cd,s| · |−d−(2s−2) for some constant Cd,s to be

determined. First we recall that a distribution T ∈ S ′(Rd) is homogeneous of degree

a if for all t > 0,

t−d 〈T, ϕ(·/t)〉 = ta 〈T, ϕ〉 ,

and radial if for all orthogonal transformations A on Rd

〈T, ϕ ◦ A〉 = 〈T, ϕ〉 .

It is easy to see that Ts is homogeneous of degree 2s− 2. Now we show F−1 (| · |2s−2)
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is homogeneous of degree −d− (2s− 2). By direct computation

t−d
〈
Ts,F−1 (ϕ(·/t))

〉
= t−d

∫
Rd
|x|2s−2(2π)−d/2

[∫
Rd
ei〈ξ,x〉ϕ(ξ/t) dξ

]
dx

=

∫
Rd
|x|2s−2(2π)−d/2

[∫
Rd
ei〈γ,tx〉ϕ(γ) dγ

]
dx

= t−d−(2s−2)

∫
Rd
|y|2s−2(2π)−d/2

[∫
Rd
ei〈γ,y〉ϕ(γ) dγ

]
dy

= t−d−(2s−2)
〈
Ts,F−1 (ϕ)

〉
where γ = ξ/t and y = tx shows that F−1 (| · |2s−2) is homogeneous of degree −d −
(2s − 2). It is easily checked that F−1 (| · |2s−2) is radial. Clearly T1(x) := |x|−d−2s

satisfies these two properties. If T2 is any other distribution satisfying the same

properties, then T2
T1

is radial and homogeneous of degree 0, i.e. T2
T1

is a constant. Thus

F−1
(
| · |2s−2

)
= Cd,s| · |−d−(2s−2) (2.5)

for some constant Cd,s, where again equality is in the sense of distributions, i.e.∫
Rd
|x|2s−2F−1 (ϕ) (x) dx = Cd,s

∫
Rd
|x|−d−(2s−2)ϕ(x) dx, ∀ϕ ∈ S(Rd).

In particular by selecting the test function e−|x|
2/2 which is invariant under the Fourier

transform, we can find the constant Cd,s.∫
Rd
|x|2s−2e−|x|

2/2 dx = Cd,s

∫
Rd
|x|−d−(2s−2)e−|x|

2/2 dx; setting r = |x|,∫ ∞
0

rd+2s−3e−r
2/2 dr = Cd,s

∫ ∞
0

r1−2se−r
2/2 dr; setting R = r2/2,

2d/2+s−2

∫ ∞
0

R
d+2s−4

2 e−R dR︸ ︷︷ ︸
Γ( d+2s

2
−1)

= Cd,s2
−s
∫ ∞

0

R−se−R dR︸ ︷︷ ︸
Γ(1−s)

.

Thus Cd,s = 22s · 2d/2−2 Γ( d+2s
2
−1)

Γ(1−s) . Referring back to (2.4) with (2.5) in hand, we can
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write

(−∆)sf(x) = −(2π)−d/2F−1
(
| · |2s−2

)
∗ [∆f ] (x)

= −
22sΓ

(
d+2s

2
− 1
)

4πd/2Γ (1− s)
| · |−d−(2s−2) ∗ [∆f ] (x).

which is well-defined since | · |−d−(2s−2) is locally integrable (for all s ∈ (0, 1)) and ∆f

is a Schwartz function. Therefore

(−∆)sf(x) = −
22sΓ

(
d+2s

2
− 1
)

4πd/2Γ (1− s)

∫
Rd
|z|−d−(2s−2)∆f(x+ z) dz.

The idea now is to integrate by parts, but we need to be careful about integrability

near 0. For example, formally integrating by parts twice in the above display gives∫
Rd |z|

−d−2sf(x+ z) dz, and it is not clear if this is well-defined.

To this end, let r > 0, x ∈ Rd be given and let θ ∈ C∞c (Rd) be an even function

with θ ≡ 1 on Br. Defining the function

φx(z) := f(x+ z)− f(x)−∇f(x) · zθ(z) (2.6)

(which can be seen is of order |z|2 near the origin and bounded at infinity, and thus

z 7→ |z|−d−2sφx(z) is integrable in a neighbourhood of the origin), we have

∆φx(z) = ∆f(x+ z) +∇f(x) ·∆ (zθ(z))

and (ignoring the constant)

(−∆)sf(x) = −
∫
Rd
|z|−d−(2s−2)∆f(x+ z) dz

= −
∫
Rd
|z|−d−(2s−2)∆φx(z) dz

−∇f(x) ·
∫
Rd
|z|−d−(2s−2)∆(zθ(z)) dz,

both integrals being well-defined (finite) because ∆φx(z) and ∆(zθ(z)) are both

Schwartz functions. Since z 7→ ∆(zθ(z)) is odd, the second integral vanishes, and

we are left with

(−∆)sf(x) = −
∫
Rd
|z|−d−(2s−2)∆φx(z) dz.
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Now we rigorously justify an integration by parts for the above integral. Let ε > 0

and define Cε := {z : ε ≤ |z| ≤ 1/ε} to be the annulus between ε and 1/ε. Then an

application of Green’s formula gives∫
Cε

|z|−d−(2s−2)∆φx(z) dz

=

∫
Cε

∆
(
|z|−d−(2s−2)

)
φx(z) dz (2.7)

+

∫
∂Cε

[
φx(z)∇

(
|z|−d−(2s−2)

)
· n(z)− |z|−d−(2s−2)∇φx(z) · n(z)

]
dσε(z)

where n(z) is the unit outer normal to z, ∂Cε = {|z| = ε}∪{|z| = 1/ε} is the boundary

of Cε, and σε is the surface measure on ∂Cε. Let us show that the integral over the

boundary vanishes as ε→ 0.

By a finite Taylor expansion, it is easy to see that in any neighbourhood of the

origin (small enough so that θ(z) ≡ 1 there),

|φx(z)| ≤ C|z|2, |∇φx(z)| ≤ C|z|, and |∇
(
|z|−d−(2s−2)

)
| ≤ C|z|−d+1−2s.

Thus ∣∣∣∣∫
{|z|=ε}

φx(z)∇
(
|z|−d−(2s−2)

)
· n(z)− |z|−d−(2s−2)∇φx(z) · n(z) dσε(z)

∣∣∣∣
≤ Cε−d+3−2s

∫
{|x|=ε}

dσε(z)

≤ Cε2−2s → 0.

Similarly, since ∇φx(z) = ∇f(x+ z) for large |z|,∣∣∣∣∫
{|z|=1/ε}

φx(z)∇
(
|z|−d−(2s−2)

)
· n(z)− |z|−d−(2s−2)∇φx(z) · n(z) dσε(z)

∣∣∣∣
≤ C

(
ε2s + ε2s−1 sup

{|z|=1/ε}
|∇f(x+ z)|

)
→ 0.

In the above argument, the justification that ε2s−1 sup{|z|=1/ε} |∇f(x + z)| → 0 for

s < 1/2 (2s− 1 < 0) is because f is a Schwartz function. In particular, defining the

Schwartz function g(z) := ∇f(x + z) for the fixed x, and letting R := ε−1, we see

limε↓0 ε
2s−1 sup{|z|=1/ε} |g(z)| = limR↑∞R

1−2s sup{|z|=R} |g(z)| = 0.
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Therefore, returning back to (2.7), we know then∫
Cε

|z|−d−(2s−2)∆φx(z) dz =

∫
Cε

∆
(
|z|−d−(2s−2)

)
φx(z) dz +O(εα)

= 2s(d+ 2s− 2)

∫
Cε

|z|−d−2sφx(z) dz +O(εα)

for some α > 0. Since |φx(z)| ≤ C|z|2 near the origin, then
∫
Cε
|z|−d−2sφx(z) dz is

integrable for all ε > 0. Therefore we can now let ε → 0 to obtain the equality we

were looking for,∫
Rd
|z|−d−(2s−2)∆φx(z) dz = 2s(d+ 2s− 2)

∫
Rd
|z|−d−2sφx(z) dz.

Putting back the constant, we see that

(−∆)sf(x) = −
s22s

(
d+2s

2
− 1
)

Γ
(
d+2s

2
− 1
)

πd/2Γ(1− s)

∫
Rd
|z|−d−2sφx(z) dz

= −
s22sΓ

(
d+2s

2

)
πd/2Γ(1− s)

∫
Rd
|z|−d−2sφx(z) dz, (2.8)

where we have used the property that (t− 1)Γ(t− 1) = Γ(t). All that remains is to

write
∫
Rd |z|

−d−2sφx(z) dz in a final form. By definition of φx and θ, we have∫
Rd
|z|−d−2sφx(z) dz =

∫
Br

f(x+ z)− f(x)−∇f(x) · z
|z|−d−2s

dz

+

∫
Rd\Br

f(x+ z)− f(x)−∇f(x) · zθ(z)

|z|−d−2s
dz.

Since both f(x+z)−f(x)
|z|d+2s and ∇f(x)·zθ(z)

|z|d+2s are integrable on Rd\Br, and z 7→ ∇f(x)·zθ(z)
|z|d+2s is

odd, ∫
Rd\Br

∇f(x) · zθ(z)

|z|d+2s
dz = 0.

Hence we obtain (2.1), where, by (2.8), Cd,s =
s22sΓ( d+2s

2 )
πd/2Γ(1−s) .

The case when s ∈ (0, 1/2] and d = 1 is obtained by an analytic extension argu-

ment [14] which we do not give here.
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To obtain the other equivalent expressions, we note that∫
Br

f(x+ z)− f(x)−∇f(x) · z
|z|d+2s

dz

is integrable for all s ∈ (0, 1), and thus in the limit r → 0 it vanishes, leaving

(−∆)sf(x) = −Cd,s lim
r→0

∫
Rd\Br

f(x+ z)− f(x)

|z|d+2s
dz

= Cd,s lim
r→0

∫
Rd\Br(x)

f(x)− f(y)

|x− y|d+2s
dy,

which by definition is (2.2). Finally, (2.3) follows by the change of variable z 7→ −z∫
Rd\Br

f(x+ z)− f(x)

|z|d+2s
dz =

∫
Rd\Br

f(x− z)− f(x)

|z|d+2s
dz

and ∫
Br

f(x+ z)− f(x)−∇f(x) · z
|z|d+2s

dz =

∫
Br

f(x− z)− f(x) +∇f(x) · z
|z|d+2s

dz,

from which∫
Rd\Br

f(x+ z)− f(x)

|z|d+2s
dz =

1

2

∫
Rd\Br

f(x+ z) + f(x− z)− 2f(x)

|z|d+2s
dz∫

Br

f(x+ z)− f(x)−∇f(x) · z
|z|d+2s

dz =
1

2

∫
Br

f(x+ z) + f(x− z)− 2f(x)

|z|d+2s
dz,

giving (2.3).

The integral representation allows us to extend the pointwise fractional Lapla-

cian definition to functions which do not have as nice smoothness and integrability

properties as Schwartz functions [24]. We will be content with showing the integral

representation makes sense for functions belonging to certain Hölder spaces. Indeed

we have the following from [24].

Proposition 2.2.3. [24] Let f ∈ C0,α(Rd) for some 2s < α ≤ 1. Then (−∆)sf ∈
C0,α−2s. If, in addition, f is bounded, then (−∆)sf ∈ L∞(Rd).

Remark 2.2.4. As s ↑ 1, we see that there exists no α satisfying 2s < α ≤ 1.

Indeed, this is the case for s ≥ 1/2, and therefore we cannot expect (−∆)s to be well-
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defined for C0,α functions for s in this range. We might anticipate this if we think

of −(−∆)1/2 ≈ ∇ and −(−∆)1 = ∆, since, in general, C0,α functions do not possess

any smoothness properties. Thus when s passes above 1/2 we ‘require’ at least one

derivative, and when s = 1 we need two (see Proposition 2.2.5 below) for (−∆)s to

be well-defined.

Proof. Fix x1, x2 ∈ Rd, and let R := |x1 − x2|. Then for i = 1, 2,∫
BR

|f(xi + z) + f(xi − z)− 2f(xi)|
|z|d+2s

dz ≤ C|x1 − x2|α−2s.

Outside BR, we have

|f(x1 + z) + f(x1 − z)− 2f(x1)− f(x2 + z)− f(x2 − z) + 2f(x2)|
|z|d+2s

≤ C
|x1 − x2|α

|z|d+2s
,

and ∫
Rd\BR

|x1 − x2|α

|z|d+2s
dz ≤ C|x1 − x2|αR−2s = C|x1 − x2|α−2s.

Thus it follows |(−∆)sf(x1)− (−∆)sf(x2)| ≤ C|x1 − x2|α−2s.

If, in addition, f is bounded, it is easy to see (−∆)sf ∈ L∞(Rd), since for any

R > 0, ∫
BR

|f(x+ z) + f(x− z)− 2f(x)|
|z|d+2s

dz ≤ CRα−2s∫
Rd\BR

|f(x+ z) + f(x− z)− 2f(x)|
|z|d+2s

dz ≤ CR−2s.

Similar ideas used in the above can be used to prove the following.

Proposition 2.2.5. [24] Let f ∈ C1,α(Rd) for some 0 < α ≤ 1.

1. If α > 2s, then (−∆)sf ∈ C1,α−2s(Rd).

2. If α < 2s, then (−∆)sf ∈ C0,α−2s+1(Rd).

Additionally, if 1 + α > 2s and f is bounded, then (−∆)sf ∈ L∞(Rd).

Proof. We only show (−∆)sf ∈ L∞(Rd) if f is also bounded and 1 + α > 2s, since

we will need this estimate later. We refer to [24] for proof of the other claims. For
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fixed R > 0, it is easy to estimate using representation (2.1)

|f(x+ z)− f(x)−∇f(x) · z| ≤ C|z| |∇f(x+ λz)−∇f(x)| ≤ C|z|1+α,

where |λ| < 1 from a first-order Taylor expansion with Lagrange remainder. Thus∫
BR

|f(x+ z)− f(x)−∇f(x) · z|
|z|d+2s

dz ≤ C

∫ R

0

rα−2s dr ≤ CR1+α−2s.

The other integral over Rd\BR is easily seen to be uniformly bounded in x because f

is bounded.

Finally it comes as no surprise that (−∆)sf still retains nice regularity and inte-

grability properties when f ∈ C∞c (Rd).

Lemma 2.2.6. Let f ∈ C∞c (Rd). Then (−∆)sf ∈ Lp∩C∞(Rd) for every 1 ≤ p ≤ ∞.

Proof. The boundedness of (−∆)sf follows as in the above, and smoothness is by

differentiation under the integral. We show (−∆)sf ∈ L1(Rd). Fix R,R′ > 0 such

that spt (f) ⊂ BR′ , and let gR,s(x) :=
∫
BR

|f(x+z)−f(x)−∇f(x)·z|
|z|d+2s dz. It is easy to see that

spt (gR,s) ⊂ BR+R′ and gR,s ∈ L∞(Rd). Then∫
Rd
|(−∆)sf(x)| dx ≤ ‖gR,s‖L∞(Rd) |BR+R′ |+

∫
Rd

∫
Rd\BR

|f(x+ z)− f(x)|
|z|d+2s

dz dx.

where |BR+R′ | denotes the Lebesgue measure of BR+R′ . To estimate the last integral,

we can write∫
Rd\BR

|z|−d−2s

∫
Rd
|f(x+ z)− f(x)| dx dz

≤
∫
Rd\BR

|z|−d−2s

∫
Rd

(|f(x+ z)|+ |f(x)|) dx dz

≤ 2 ‖f‖L1(Rd)

∫
Rd\BR

|z|−d−2s dz <∞.

Since (−∆)sf ∈ L1 ∩ L∞(Rd), it is therefore in every Lp space, 1 ≤ p ≤ ∞, by

interpolation.
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2.2.1 Equality of Fourier and Singular Integral Representa-

tion on Non-Schwartz Functions

Now we turn to the following question: Suppose that f is not a Schwartz function, but

F−1 (| · |2sF [f ]) (x) is well-defined, and also
∫
Rd

f(x+z)+f(x−z)−2f(x)
|z|d+2s dz is well defined.

Do they agree? That is, (−∆)sf should not depend on which representation we use,

if both exist. To begin, we have the following.

Lemma 2.2.7. Let f ∈ L1(Rd). Denote

As(f)(x) := −1

2
Cd,s

∫
Rd

f(x+ z) + f(x− z)− 2f(x)

|z|d+2s
dz, and

Bs(f)(x) := F−1
(
| · |2sF [f ]

)
(x).

If As(f) ∈ L∞(Rd), and | · |2sf̂ ∈ L1(Rd), then the respective equalities∫
Rd
As(f)η dx =

∫
Rd
fAs(η) dx and

∫
Rd
Bs(f)η dx =

∫
Rd
fBs(η) dx,

hold for every η ∈ C∞c (Rd).

Proof. Suppose As(f) is in L∞(Rd). Since∣∣∣∣∫
Rd

∫
Rd

f(x+ z) + f(x− z)− 2f(x)

|z|d+2s
η(x) dz dx

∣∣∣∣ =

∣∣∣∣∫
Rd
As(f)η dx

∣∣∣∣
≤ ‖As(f)‖L∞(Rd) ‖η‖L1(Rd) ,

then we can apply the Fubini-Tonelli theorem to interchange the integrals in x and

z,∫
Rd
η(x)

∫
Rd

f(x+ z) + f(x− z)− 2f(x)

|z|d+2s
dz dx

=

∫
Rd
|z|−d−2s

[∫
Rd
η(x)f(x+ z) dx+

∫
Rd
η(x)f(x− z) dx− 2

∫
Rd
f(x)η(x) dx

]
dz

=

∫
Rd
|z|−d−2s

[∫
Rd
η(x− z)f(x) dx+

∫
Rd
η(x+ z)f(x) dx− 2

∫
Rd
f(x)η(x) dx

]
dz

=

∫
Rd
|z|−d−2s

[∫
Rd
f(x) (η(x+ z) + η(x− z)− 2η(x)) dx

]
dz,

and we can interchange the last integral since f ∈ L1(Rd) and (−∆)sη ∈ L∞(Rd) to
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conclude the result.

The condition | · |2sf̂ ∈ L1(Rd) implies that Bs(f) ∈ L∞(Rd). We write∫
Rd
Bs(f)η dx = F [Bs(f)η] (ξ = 0)

= F [Bs(f)] ∗ F [η] (ξ = 0)

=
[
| · |2sf̂

]
∗ η̂(ξ = 0)

=

∫
γ∈Rd
|0− γ|2sf̂(0− γ)η̂(γ) dγ

and the conclusion follows by noting that we can change γ → −γ, and reverse the

steps to get ∫
Rd
fBs(η) dx.

Lemma 2.2.8. Let As, Bs be defined as in Lemma 2.2.7, and suppose f ∈ L1(Rd),

| · |2sf̂ ∈ L1(Rd), and As(f) ∈ L∞(Rd). Then As(f) = Bs(f) a.e. x ∈ Rd.

Proof. By the previous lemma, and equality of As and Bs on the space of Schwartz

functions,∫
Rd
As(f)η dx =

∫
Rd
fAs(η) dx =

∫
Rd
fBs(η) dx =

∫
Rd
Bs(f)η dx,

for all η ∈ C∞c (Rd). Hence As(f) = Bs(f) a.e., and we may use (−∆)sf without

ambiguity.

2.2.2 Integration by Parts

For convenience we extend Lemma 2.2.7.

Lemma 2.2.9. (Integration by Parts) Let f, g ∈ L1∩L∞(Rd), with (−∆)sf, (−∆)sg ∈
L∞(Rd). Then ∫

Rd
[(−∆)sf ] g dx =

∫
Rd
f [(−∆)sg] dx.

Proof. See Lemma 2.2.7. We impose f, g ∈ L∞(Rd) as well as in L1(Rd) so that the

integrals, e.g.
∫
Rd g(x)f(x+ z) dx, are finite.
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Chapter 3

The Fractional Heat Equation

In this section, we are interested in studying solutions to the fractional heat equation,{
∂tu = −(−∆)su in Rd × (0,∞), s ∈ (0, 1)

u = u0 on Rd × {t = 0} ,
(3.1)

where u0 is a probability density on Rd.

3.1 Properties of Solutions to the Fractional Heat

Equation

Recall that solutions to the classical heat equation on Rd are obtained by convolving

the initial data with the Gaussian heat kernel,

1

(4πt)d/2
e−|x|

2/4t.

Moreover, these solutions are smooth, except possibly at t = 0, and satisfy a maxi-

mum principle [16]. The solutions to (3.1) also turn out to have many of the same

properties.

We give a formal discussion first. Suppose u = u(x, t) solves (3.1). Then taking

the Fourier transform of (3.1) gives{
∂tû(ξ, t) = −|ξ|2sû(ξ, t), ξ ∈ Rd

û(ξ, 0) = û0(ξ).
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This has solution

û(ξ, t) = e−t|ξ|
2s

û0(ξ),

which upon inverting back to real space, and using the convolution property of the

Fourier transform, yields

u(x, t) =
1

(2π)d/2
F−1

(
e−t|·|

2s
)
∗ u0(x).

Thus we can define the ‘fractional heat kernel’ Φs to be

Φs(x, t) :=
1

(2π)d/2
F−1

(
e−t|·|

2s
)

(x) =
1

(2π)d

∫
Rd
ei〈x,ξ〉e−t|ξ|

2s

dξ, t > 0. (3.2)

It is the solution to the fractional heat equation (3.1) when the initial distribution is

a point source. For general s, Φs is not known explicitly; when s = 1, the Gaussian

heat kernel is recovered. Thus, in some sense, the classical heat equation is just

one member of a family of equations parametrized by s, where each kernel Φs is the

generator of a contraction semigroup on L1 [16], in the language of semigroup theory.

Some basic properties that we anticipate of the fractional heat kernel include

the following. Since derivatives transform to powers of ξ under the Fourier trans-

form, and e−t|ξ|
2s

vanishes faster than any function with polynomial growth in ξ, we

expect Φs ∈ C∞(Rd × (0,∞)). Moreover, since s < 1 we also formally see that un-

like the classical Gaussian case, Φs(t) has an infinite second moment, since computing∫
Rd |x|

2Φs(x, t) dx is the same as computing the second derivative of the Fourier trans-

form ∂2

∂ξ2
e−t|ξ|

2s
at ξ = 0, which is singular, since lim|ξ|→0 |ξ|2s−2 = +∞. This means

that the fractional heat kernel Φs(t) decays much more slowly than its Gaussian

counterpart.

We now list some standard properties that Φs satisfies, which will be used in the

sequel. Some of the following are taken from [13].

Proposition 3.1.1. The fractional heat kernel Φs given by (3.2) satisfies the following

properties. For every t > 0,

1. ∂tΦs(x, t) = −(−∆)sΦs(x, t), for all x ∈ Rd.

2. (A Scaling Property) Φs(x, t) = t−d/2sΦs(t
−1/2sx, 1) ,

3. (Regularization) Φs ∈ C∞(Rd × (0,∞)),
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4. (Radial Symmetry) Φs(x, t) = Φs(|x|, t),

5. (A two-sided estimate)

C−1

(
t−d/2s ∧ t

|x|d+2s

)
≤ Φs(x, t) ≤ C

(
t−d/2s ∧ t

|x|d+2s

)
(3.3)

for all x ∈ Rd, where a ∧ b := min{a, b} for a, b ∈ R. In particular, Φs(t) is

nonnegative.

6. (Unit) ‖Φs(t)‖L1(Rd) = 1,

7. (Infinite Second Moment)
∫
Rd |x|

2Φs(x, t) dx = +∞ for every s ∈ (0, 1).

Remark 3.1.2. The inequality (3.3) for Φs translates to

C−1t−d/2s

C−1 t
|x|d+2s

}
≤ Φs(x, t) ≤

{
Ct−d/2s, |x| ≤ t1/2s

C t
|x|d+2s , |x| > t1/2s.

Proof. 1. This follows immediately from the definition of Φs.

2. By definition Φs(x, t) = (2π)−d/2F−1
(
e−t|·|

2s
)

(x) = (2π)−d
∫
Rd e

i〈x,ξ〉e−t|ξ|
2s

dξ.

By rescaling γ = t1/2sξ, we obtain the result.

3. For any multiindex α, it is easy to see that the function ξ 7→ |ξ||α|e−t|ξ|2s is inte-

grable over ξ ∈ Rd for t > 0. (Indeed, it is enough to show that rk+d−1e−tr
2s ≤ 1

for all large enough r, where r = |ξ| and |α| = k.) Therefore

1

(2π)d

∫
Rd
ei〈x,ξ〉(iξ)αe−t|ξ|

2s

dξ

exists, which by properties of the Fourier transform is exactly Dα
xΦs(x, t). More-

over, since e−t|ξ|
2s

is infinitely differentiable with respect to t, by differentiation

under the integral, all t-derivatives of Φs also exist.

4. If R : Rd → Rd is a rotation operator, so that |Rx| = |x|, then

Φs(Rx, t) =
1

(2π)d

∫
Rd
ei〈Rx,ξ〉e−t|ξ|

2s

dξ =
1

(2π)d

∫
Rd
ei〈x,R−1ξ〉e−t|ξ|2s dξ

and the result follows by a change of variable γ = R−1ξ.
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5. Let us first establish the (seemingly obvious) property that Φs(x, 1) is strictly

positive for all x ∈ Rd. Let y ∈ Rd satisfy |y| = 1/|x| for x 6= 0. Then since

Φs(x, 1) =
1

(2π)d

∫
Rd
ei〈x,ξ〉e−|ξ|

2s

dξ =
1

(2π)d

∫
Rd

cos (〈x, ξ〉) e−|ξ|2s dξ

≥ − 1

(2π)d

∫
Rd
e−|ξ|

2s

dξ,

it follows that

Φs(x, 1)Φs(y, 1) ≥
[

1

(2π)d

∫
Rd
e−|ξ|

2s

dξ

]2

> 0. (3.4)

This implies that Φs(x, 1) 6= 0 for all x ∈ Rd\ {0}. Moreover, since Φs(0, 1) =
1

(2π)d

∫
Rd e

−|ξ|2s dξ > 0, we must also have Φs(x, 1) > 0 for all x ∈ Rd\ {0},
for otherwise Φs(x, 1) < 0 implies, by continuity of Φs(·, 1), that there exists

z ∈ Rd, 0 < |z| < |x| satisfying Φs(z, 1) = 0, which is strictly forbidden.

By the scaling property we then conclude Φs(t) > 0 for all t > 0.

Now we establish the estimates. By the scaling property above,

Φs(x, t) =
t−d/2s

(2π)d

∫
Rd
ei〈t−1/2sx,ξ〉e−|ξ|2s dξ ≤ Ct−d/2s

∫
Rd
e−|ξ|

2s

dξ ≤ Ct−d/2s

for every t > 0 and x ∈ Rd. This gives one of the estimates. For the other

estimate, we extract from [7] the result

lim
|x|→∞

|x|d+2sΦs(x, 1) = C.

Therefore using the scaling property again, we have

Φs(x, t) ≤ C
t

|x|d+2s
, large |x|, t > 0.

Since Φs(·, t) is continuous, it is bounded in a ball centred at the origin, and

since C t
|x|d+2s →∞ as |x| → 0, we can choose C large enough so that the above

estimate holds for all x 6= 0 ∈ Rd,

Φs(x, t) ≤ C
t

|x|d+2s
, t > 0, x ∈ Rd\{0}.
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For the reverse inequality, we let y ∈ Rd satisfy |y| = 1/|x| for x 6= 0. Then the

above estimates give

C
t

|x|d+2s
≤ 1

Φs(y, 1/t)
,

Ct−d/2s ≤ 1

Φs(y, 1/t)

for t > 0. Now we use (3.4) to have C 1
Φs(y,1/t)

≤ Φs(x, t) and obtain the result.

6. Note that for every t > 0,∫
Rd

Φs(x, t) dx = (2π)d/2F [Φs(t)] (ξ = 0) = e−t|0|
2s

= 1.

7. By (3.3), for any t > 0 and R > t1/2s,∫
BR

|x|2Φs(t, x) dx ≥ Ct

∫ R

t1/2s
r1−2s dr ≥ Ct

(
R2−2s − t(1−s)/s

)
.

Thus
∫
BR
|x|2Φs(t, x) dx ↑ ∞ as R ↑ ∞.

Corollary 3.1.3. Define u by

u(x, t) := Φs(t) ∗ u0(x), t > 0, (3.5)

where u0 is a probability density on Rd. Then

1. u ∈ C∞(Rd × (0,∞)),

2. ∂tu(x, t) = −(−∆)su(x, t) for x ∈ Rd and t > 0,

3. ‖u(t)‖L1(Rd) = ‖u0‖L1(Rd).
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Chapter 4

The Transport Equation as a

Gradient Flow

In this chapter we want to pursue the view that the linear transport equation{
∂tv = div (v∇Ψ)

v(0) = v0 ∈ P2
a(Rd).

(4.1)

is a gradient flow of the potential energy
∫
Rd ρΨ with respect to the 2-Wasserstein

distance. In order to proceed with the splitting scheme in Chapter 5, such a develop-

ment is not strictly necessary. Indeed, it is straightforward to obtain the existence of

a weak solution to (4.1) by applying the method of characteristics [21]. However, we

like to think that viewing (4.1) as a gradient flow of the potential energy is a more

‘natural’ viewpoint of the dynamics, and this is what we develop here.

We use a time-discrete variational scheme to prove the gradient flow assertion.

The scheme will be a simplification of the one used in [19], which is introduced in

Section 4.3. We first give a brief motivation for gradient flows in metric spaces.

4.1 Gradient Flow in Metric Spaces

A large amount of theory has been developed about the notion of gradient flows in

metric spaces, especially in the now-classic book by Ambrosio, Gigli, and Savaré [3].

Here we attempt to explain somewhat formally one way to extend the usual notion

of a gradient flow in Rd to metric spaces. This approach is sometimes called the

Minimizing Movement Scheme [3].
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The classical notion of a gradient flow in Rd is defined by a function f ∈ C1(Rd),

and the equation {
ẋ(t) = −∇f(x(t)), t > 0,

x(0) = x0 ∈ Rd.
(4.2)

A C1 solution x : R→ Rd is the gradient flow of f if it satisfies (4.2) [11].

In a metric space, we may have no structure other than the metric itself. With

this in mind, let us fix a time step τ > 0 and apply an implicit Euler scheme to (4.2)

xnτ − xn−1
τ

τ
= −∇f(xnτ ) (4.3)

where xnτ approximates (4.2) at time tn := nτ . We note that xnτ solves (4.3) if and

only if xnτ is the minimizer of

x 7→ 1

2τ
|x− xn−1

τ |2 + f(x) (4.4)

under suitable assumptions on f (e.g. f convex). In this fashion, we obtain a discrete-

time sequence
{
xkτ
}
k=0,1,...

for the given τ . To investigate the limit τ ↓ 0, we construct

by interpolation a function xτ = xτ (t) defined for all time, and attempt to obtain

compactness of the sequence {xτ}τ↓0 in some suitable topology. The topology should

be strong enough to deduce that the limit function x = x(t) is a solution to (4.2).

In the above, for instance, if xτ is a linear interpolation of the xkτ ,

xτ (t) :=
tn − t
τ

xn−1
τ +

t− tn−1

τ
xnτ , t ∈ [tn−1, tn]

then we have the following taken from [11]. Suppose for simplicity f is convex and

∇f is Lipschitz. To obtain compactness of {xτ}τ↓0, we have the estimate

|x′τ (t)| =
|xnτ − xn−1

τ |
τ

= |∇f(xnτ )| ≤
∣∣∇f(xn−1

τ )
∣∣ , t ∈ [tn−1, tn].

(This follows because |[y + τ∇f(y)]− [z + τ∇f(z)]| ≥ |y − z| for y, z ∈ Rd (by con-

vexity of f), and xnτ − xn−1
τ = −τ∇f(xnτ ). Then

τ |∇f(xnτ )| = |xnτ − xn−1
τ | ≤

∣∣xnτ + τ∇f(xnτ )− (xn−1
τ + τ∇f(xn−1

τ ))
∣∣ ≤ τ |∇f(xn−1

τ )|.)
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Thus

|x′τ (t)| ≤
∣∣∇f(x0

τ )
∣∣ =

∣∣∇f(x0)
∣∣

is uniformly bounded above. Therefore {xτ}τ↓0 is compact w.r.t. the uniform norm

on any finite time interval [0, T ] by the Ascoli-Arzelà theorem [10], and converges

up to a subsequence to some x. To deduce that x solves (4.2) we introduce [11] the

piecewise constant interpolant

x̄τ (t) := xnτ , t ∈ (tn−1, tn],

and note that

|xτ (t)− x̄τ (t)| ≤
∣∣xnτ − xn−1

τ

∣∣ = τ
∣∣∇f(xn+1

τ )
∣∣ ≤ τ

∣∣∇f(x0)
∣∣

for t ∈ (tn−1, tn]. We also have that x′τ (t) = −∇f(x̄τ (t)) a.e. t, from which we have

the integrated form

xτ (t)− x0 = −
∫ t

0

∇f(x̄τ (s)) ds.

Then for t ∈ [0, T ],∣∣∣∣x(t)− x0 +

∫ t

0

∇f(x(s)) ds

∣∣∣∣ ≤ |x(t)− xτ (t)|+
∫ t

0

|∇f(x(s))−∇f(x̄τ (s))| ds

≤ |x(t)− xτ (t)|+
∫ t

0

|x(s)− x̄τ (s)| ds.

Since |x(s)− x̄τ (s)| ≤ |x(s)− xτ (s)|+ τ |∇f(x0)|, it follows that x solves (4.2).

Returning to the task of generalizing the notion of a gradient flow, since (4.4)

involves only the Euclidean distance, the scheme makes sense for a general metric

space (X, d),

Minimize x 7→ 1

2τ
d(x, xn−1

τ )2 + F(x) over all x ∈ X.

where F : X → R is a functional on X.

If X is a function space, existence of a minimizer can be established through

the Direct Method in the Calculus of Variations. One important step in this is to

establish compactness of a minimizing sequence in some topology. The topology

can be weaker than the topology induced by the metric d, but the functional x 7→
1
2τ
d(x, xn−1

τ )2 + F(x) should be lower semi-continuous w.r.t. this topology.
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As before, we obtain a discrete-time sequence
{
xkτ
}
k=0,1,...

⊂ X for each τ > 0

to interpolate with, giving xτ = xτ (t). If we can then obtain compactness of the

sequence {xτ}τ↓0 in a topology for which we can deduce that the limit x solves some

given PDE (in, eg. the weak sense), then we say that this PDE is a gradient flow, or

steepest descent, of the functional F , with respect to the metric d on the space X.

In the following sections we are going to establish that the transport equation is a

gradient flow of the potential energy in the 2-Wasserstein metric on the space P2
a(Rd)

in the sense described above. But first, we need some definitions and results. We first

establish the definition of a weak solution to (4.1).

Definition 4.1.1. Given T < ∞, a function v : Rd × (0, T ) → [0,∞) is a weak

solution of (4.1) if
∫
Rd v(t) dx =

∫
Rd v

0 dx for a.e. t ∈ (0, T ), and∫ T

0

∫
Rd
v(t)∂tϕ(t) dx dt+

∫
Rd
v0ϕ(0) dx =

∫ T

0

∫
Rd
v(t)∇Ψ · ∇ϕ(t) dx dt (4.5)

for all ϕ ∈ C∞c (Rd × R) with time support in [−T, T ].

4.2 Optimal Transportation & the 2-Wasserstein

Distance

An important definition in this section is the push-forward.

Definition 4.2.1. (Push forward) [28] Let µ, ν be two probability measures on Rd.

A map T : Rd → Rd is said to push µ forward to ν (or ν is the push-forward of µ by

the map T ) and we write T#µ = ν if for all ν-measurable B ⊂ Rd,

ν [B] = µ
[
T−1(B)

]
,

or, alternatively, for every ξ ∈ L1( dν),∫
Rd
ξ dν =

∫
Rd
ξ ◦ T dµ.

The interpretation of the above condition is that the amount of mass in B is

the same as the amount of mass that was transported to B under the transport

map T . If µ and ν are absolutely continuous w.r.t. Lebesgue, with densities f and
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g, respectively, and T ∈ C1(Rd;Rd) is injective, then using the change of variables

x = T (y), the equality ∫
Rd
ξ(T (y))f(y) dy =

∫
Rd
ξ (x) g(x) dx

is equivalent to

f(y) = g (T (y)) |det∇T (y)| .

Let P2(Rd) be the collection of probability measures on Rd with finite second mo-

ments; i.e. if µ ∈ P2(Rd), then µ[Rd] = 1 and
∫
Rd |x|

2 dµ < ∞. We can define a

metric on this space, the 2-Wasserstein metric. A proof of the following can be found

in [28].

Proposition 4.2.2. (2-Wasserstein metric) [28]. Let µ, ν ∈ P2(Rd). Then the

function W2 : P2(Rd)× P2(Rd)→ [0,∞)

W2(µ, ν) :=

[
inf
γ

{∫
Rd×Rd

|x− y|2 dγ(x, y) : γ ∈ Γ(µ, ν)

}]1/2

(4.6)

defines a metric on P2(Rd). Here Γ(µ, ν) is the set of all probability measures on

Rd × Rd with marginals µ and ν. This means that

γ ∈ Γ(µ, ν)⇐⇒

{
γ[A× Rd] = µ[A]

γ[Rd ×B] = ν[B]

for all measurable A,B ⊂ Rd. Equivalently, γ ∈ Γ(µ, ν) if and only if∫
Rd×Rd

[ϕ(x) + ψ(y)] dγ(x, y) =

∫
Rd
ϕ(x) dµ+

∫
Rd
ψ(y) dν

for all ϕ ∈ L1( dµ) and ψ ∈ L1( dν).

The 2-Wasserstein distance is closely connected to the theory of optimal trans-

portation. The square of the 2-Wasserstein distance is the Kantorovich optimal trans-

portation problem [28]

Minimize I[γ] :=

∫
Rd×Rd

c(x, y) dγ(x, y) for γ ∈ Γ(µ, ν).

when the cost function c(x, y) = |x − y|2; an admissible γ is often referred to as a
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transference plan. It is a relaxed form of Monge’s optimal transport problem [28]

Minimize I[T ] :=

∫
Rd
c(x, T (x)) dµ(x) over all T#µ = ν

where T is said to be an optimal transport map.

A great deal of theory, especially for the quadratic cost function, has been devel-

oped surrounding the question of when an optimal transference plan γ gives rise to

a transport map T , i.e. when a minimizer for Kantorovich is actually a minimizer

for Monge, γ = (Id× T )#µ. From [28] we extract the following celebrated Brenier’s

theorem providing an answer for the quadratic case.

Theorem 4.2.3. (Brenier’s Theorem) [28]. Let µ, ν ∈ P2(Rd). If µ is absolutely

continuous with respect to Lebesgue, then there is a unique optimal γ for W2(µ, ν)2,

which is given by

dγ(x, y) = dµ(x)δ [y = ∇ϕ(x)] ,

where ∇ϕ is the unique gradient of a convex function which pushes µ onto ν, and δ

is the Dirac measure.

In particular, if µ has density f , and ν ∈ P2(Rd), then there exists T = ∇ϕ
pushing µ to ν where ϕ is convex, and

W2(µ, ν)2 =

∫
Rd
|x−∇ϕ(x)|2f(x) dx.

4.3 Transport as Steepest Descent of the Potential

Energy

In [19], Jordan, Kinderlehrer, and Otto identified the Fokker-Planck equation ∂tρ =

∆ρ+div (ρ∇Ψ) as a gradient flow of the free energy F (ρ) =
∫
Rd ρ log ρ+ρΨ dx in the

2-Wasserstein distance. More precisely, they proved that the time discrete scheme

Given ρn−1
τ ∈ P2

a(Rd) with F (ρn−1
τ ) <∞, find the minimizer ρnτ of the functional

ρ 7→ 1

2τ
W2(ρn−1

τ , ρ)2 + F (ρ) (4.7)

over all ρ ∈ P2
a(Rd)
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converges for each t ∈ (0,∞) in the weak L1 topology on Rd (after the time interpo-

lation ρτ (t) = ρnτ , t ∈ [nτ, (n + 1)τ)), as the time step τ ↓ 0, to a solution ρ of the

Fokker-Planck equation.

We plan to run the same argument for the transport equation. The above varia-

tional problem should therefore be simplified to

Given ρn−1
τ ∈ P2

a(Rd) with
∫
Rd ρ

n−1
τ Ψ dx < ∞, find the minimizer ρnτ of the func-

tional

ρ 7→ Iρn−1
τ

[ρ] :=
1

2τ
W2(ρn−1

τ , ρ)2 +

∫
Rd
ρΨ dx (4.8)

over all ρ ∈ P2
a(Rd).

A first step is to establish the existence of a minimizer to (4.8). Although the above

functional is quite simple, we cannot deduce the existence of a minimizer to (4.8) in

the same way as [19] did for (4.7), because while ρ 7→ ρ log ρ + ρΨ is superlinear,

ρ 7→ ρΨ is not. In particular, [19] obtains (relative) compactness of a minimizing

sequence {ρν} in the weak L1 topology on Rd by proving that
∫
Rd F (ρν) dx ≤ C and∫

Rd |x|
2ρν dx ≤ C, where F (x) = x log x is a superlinear function. This is enough to

conclude tightness and uniform integrability of the sequence (see [8, 22]).

We do not have any ‘superlinear bound’ here. We only have a second moment

bound, which is enough to ensure tightness of the minimizing sequence, and apply

Prokhorov’s theorem to establish that there exists an optimal measure. From there, a

little more work will show that the measure admits a Lebesgue density. This general

technique has been applied in, e.g. [1], from which we adapt to our situation. For an

alternative method of establishing existence of a minimizer, we refer to [21]. We first

review the relevant concepts.

Definition 4.3.1. (Tightness) Let {µn} be a collection of probability measures on Rd.

Then {µn} is tight if, for all ε > 0, there exists a compact Kε ⊂ Rd such that

µn
(
Rd\Kε

)
< ε, for all n,

(equivalently, µn (Kε) > 1− ε). That is, ‘no mass escapes to infinity’.

Lemma 4.3.2. (Second Moment Bound Implies Tightness) Suppose {µn} is a collec-

tion of probability measures on Rd satisfying∫
Rd
|x|2dµn(x) ≤ C, for all n.
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Then {µn} is tight.

Proof. Let ε > 0, and set Kε :=
{
x ∈ Rd : |x|2 ≤ 1/ε

}
. Then∫

Rd\Kε
dµn(x) =

∫
{|x|2>1/ε}

dµn(x) ≤
∫
{|x|2>1/ε}

ε|x|2 dµn(x) ≤ Cε.

Definition 4.3.3. (Weak Convergence of Probability Measures) Let {µn} be a col-

lection of probability measures on Rd. Then {µn} weakly converges to a probability

measure µ on Rd if

lim
n→∞

∫
Rd
f dµn =

∫
Rd
f dµ

for all real-valued continuous bounded functions f on Rd.

Proposition 4.3.4. (Portmanteau) [6] {µn} weakly converges to a probability mea-

sure µ on Rd if and only if ∫
Rd
f dµ ≤ lim inf

∫
Rd
f dµn

for every real-valued lower semi-continuous function f on Rd bounded from below.

Theorem 4.3.5. (Prokhorov’s theorem) [6] Let {µn} be a collection of probability

measures on Rd. Then {µn} is tight if and only if there exists a subsequence of {µn}
which weakly converges in the space of probability measures on Rd.

With the above results in hand, we can now turn to the problem (4.8). We

establish the result when n = 1 in (4.8).

Proposition 4.3.6. The variational problem (4.8) admits a unique minimizer ρ1 ∈
P2
a(Rd) for τ sufficiently small. In addition, if T#ρ0 = ρ1 is the optimal map for

W2(ρ0, ρ1)2, then T satisfies the equation

T (x)− x
τ

= −∇Ψ(T (x)), x ∈ Rd, (4.9)

and its inverse T−1#ρ1 = ρ0 is explicitly given by

T−1(y) = y + τ∇Ψ(y). (4.10)
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In particular, ρ1 is explicitly given by

ρ1(x) = ρ0
(
T−1(x)

)
det∇

(
T−1

)
(x). (4.11)

Moreover,∣∣∣∣∫
Rd

ρ1 − ρ0

τ
ξ dx+

∫
Rd
ρ1∇Ψ · ∇ξ dx

∣∣∣∣ ≤ 1

2τ

∥∥D2ξ
∥∥
L∞(Rd)

W2(ρ0, ρ1)2, (4.12)

for every ξ ∈ C∞c (Rd).

Proof. We first show that (4.8) admits a minimizer. The argument is well-known (see

e.g. [19]) however we detail it here for convenience. Since 0 ≤ Iρ0 [ρ] for all admissible

ρ and Iρ0 [ρ
0] =

∫
Rd ρ

0Ψ dx < ∞ , then the infimum (4.8) is finite. Let {ρν} be a

minimizing sequence. Then

W2(ρ0, ρν)
2 ≤ 2τIρ0 [ρν ] ≤ 2τ

∫
Rd
ρ0Ψ dx

is uniformly bounded in ν. Since |x|2 ≤ 2|x− y|2 + 2|y|2 for all x, y ∈ Rd, we have∫
Rd
|x|2ρν dx ≤ 2W2(ρ0, ρν)

2 + 2

∫
Rd
|y|2ρ0 dy ≤ 4τ

∫
Rd
ρ0Ψ dx+ 2

∫
Rd
|y|2ρ0 dy.

Therefore {ρν dx} is tight, and hence there exists a probability measure µ1 on Rd such

that {ρν dx} converges weakly to µ1. By Proposition 4.3.4,
∫
Rd Ψ dµ1 ≤ lim infν

∫
Rd Ψρν dx.

Moreover, (see [19]), W2(ρ0, µ1)2 ≤ lim infνW2(ρ0, ρν)
2 (in particular, this implies

µ1 ∈ P2(Rd)). Therefore µ1 is a minimizer for (4.8).

For uniqueness, we have that µ 7→ W2(ρ0, µ)2 is strictly convex over the admissible

set µ ∈ P2(Rd) [19]. This is because if µ, β are admissible, and λ ∈ (0, 1), then

(applying Brenier’s theorem (Theorem 4.2.3) since ρ0 ∈ P2
a(Rd)) letting ∇ϕµ and

∇ϕβ be the optimal map for W2(ρ0, µ)2 and W2(ρ0, β)2, respectively, we have λ∇ϕµ+
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(1− λ)∇ϕβ is optimal for W2(ρ0, λµ+ (1− λ)β)2, so by definition

W2(ρ0, λµ+ (1− λ)β)2 =

∫
Rd
|x− λ∇ϕµ − (1− λ)∇ϕβ|2ρ0 dx

=

∫
Rd
|λ(x−∇ϕµ) + (1− λ)(x−∇ϕβ)|2ρ0 dx

≤ λ

∫
Rd
|x−∇ϕµ|2 ρ0 dx+ (1− λ)

∫
Rd
|x−∇ϕβ|2 ρ0 dx

= λW2(ρ0, µ)2 + (1− λ)W2(ρ0, β)2,

with equality if and only if λ = 0, 1, by strict convexity of x 7→ |x|2. Since additionally

µ 7→
∫
Rd Ψ dµ is linear, µ 7→ 1

2τ
W2(ρ0, µ)2+

∫
Rd Ψ dµ is strictly convex, and hence (4.8)

admits at most one minimizer.

Let us now derive the Euler-Lagrange equation for µ1. We follow the technique in

[19] while also drawing from [1]. Fix some smooth vector field ξ ∈ C∞c (Rd;Rd), and

for ε ∈ R let ε 7→ αε ∈ Rd be the flow solving{
∂εαε = ξ (αε)

α0 = Id.
(4.13)

We fix a variation µε := αε#µ1. Then

1

ε

[
1

2τ
W2(ρ0, µε)

2 +

∫
Rd

Ψ dµε −
1

2τ
W2(ρ0, µ1)2 −

∫
Rd

Ψ dµ1

]
≥ 0,

for all ε ∈ R. Hence

1

2τ
lim sup
ε→0

[
W2(ρ0, µε)

2 −W2(ρ0, µ1)2

ε

]
+ lim sup

ε→0

[∫
Rd Ψ dµε −

∫
Rd Ψ dµ1

ε

]
≥ lim sup

ε→0

1

ε

[
1

2τ
W2(ρ0, µε)

2 +

∫
Rd

Ψ dµε −
1

2τ
W2(ρ0, µ1)2 −

∫
Rd

Ψ dµ1

]
≥ 0,

and we will investigate each limit separately.

Since ∫
Rd Ψ dµε −

∫
Rd Ψ dµ1

ε
=

∫
Rd

Ψ(αε)−Ψ

ε
dµ1,

and Ψ ∈ C1(Rd), ξ ∈ C∞c (Rd), the estimate∣∣∣∣Ψ(αε)−Ψ

ε

∣∣∣∣ ≤ ‖∇Ψ · ξ‖L∞(Rd) ,
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holds by a first-order Taylor expansion. Since furthermore ‖∇Ψ · ξ‖L∞(Rd) is inte-

grable w.r.t. µ1 (since
∫
Rd dµ1 = 1), we can apply the dominated convergence theorem

[16] to conclude

lim sup
ε→0

∫
Rd Ψ dµε −

∫
Rd Ψ dµ1

ε
=

∫
Rd
∇Ψ · ξ dµ1.

From [19] we retrieve the estimate

lim sup
ε→0

W2(ρ0, µε)
2 −W2(ρ0, µ1)2

2ε
≤
∫
Rd×Rd

(y − x) · ξ(y) dγ1(x, y),

where γ1 is the optimal probability measure for W2(ρ0, µ1)2 on Rd × Rd. Therefore

we have

1

τ

∫
Rd×Rd

(y − x) · ξ(y) dγ1(x, y) +

∫
Rd
∇Ψ(y) · ξ(y) dµ1(y) ≥ 0,

and interchanging ξ → −ξ, we get equality∫
Rd×Rd

[
y − x
τ

+∇Ψ(y)

]
· ξ(y) dγ1(x, y) = 0.

In fact, we can say more about the optimal γ1. By Brenier’s Theorem, we have since

ρ0 ∈ P2
a(Rd),

dγ1(x, y) = ρ0(x) dx δ [y = ∇ϕ(x)] ,

for a unique ∇ϕ#ρ0 = µ1 where ϕ is convex. Therefore∫
Rd

[
∇ϕ(x)− x

τ
+∇Ψ (∇ϕ(x))

]
· ξ(∇ϕ(x))ρ0(x) dx = 0. (4.14)

Now, define ϕ∗ : Rd → R by ϕ∗(y) = |y|2
2

+ τΨ(y). Then for small enough τ > 0, ϕ∗

is superlinear and strictly convex, since D2ϕ∗ = I + τD2Ψ, and Ψ ∈ C1,1(Rd).

It therefore follows [10] that its Legendre transform, which we denote by ϕ∗∗, is

finite everywhere, C1, and is convex also, where

ϕ∗∗(x) := sup
y∈Rd
{x · y − ϕ∗(y)} .

Moreover, [28] ∇ϕ∗∗ = (∇ϕ∗)−1. Since ∇ϕ∗(x) = x + τ∇Ψ(x), it follows that ∇ϕ∗∗
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satisfies

y = ∇ϕ∗∗(y) + τ∇Ψ (∇ϕ∗∗(y)) , y ∈ Rd,

i.e., ∇ϕ∗∗ satisfies (4.14). By uniqueness, we must therefore have ∇ϕ = ∇ϕ∗∗,
Lebesgue almost everywhere. This proves (4.9) and (4.10) where T := ∇ϕ.

We still need to show µ1 is absolutely continuous w.r.t. Lebesgue. To this end, we

will use the facts that ∇ϕ#ρ0 = µ1, and ρ0 is absolutely continuous w.r.t. Lebesgue.

Let B ⊂ Rd be a subset with Lebesgue measure 0. Since µ1[B] = ρ0[∇ϕ∗(B)] it

suffices to show the Lebesgue measure of ∇ϕ∗(B) is zero.

L(∇ϕ∗(B)) =

∫
Rd
χ∇ϕ∗(B)(x) dx

=

∫
Rd
χB(∇ϕ(x)) dx

=

∫
B

∣∣detD2ϕ∗(x)
∣∣ dx

where χ is the indicator function. This implies that L(∇ϕ∗(B)) ≤ CL(B) = 0, and

hence µ1 is absolutely continuous w.r.t. Lebesgue; we denote its density by ρ1. Thus

we obtain (4.11) from the fact that T−1 ∈ C1(Rd;Rd) and T−1#ρ1 = ρ0.

Finally we show that ρ1 solves an approximate weak form of the transport equation

(4.12). The following can be found in [21], however, we provide the details here for

convenience. From (4.14), we choose ξ = ∇ζ for ζ ∈ C∞c (Rd), and use T#ρ0 = ρ1,

T−1#ρ1 = ρ0, to write∫
Rd
ρ1T

−1(x)− x
τ

· ∇ζ (x) dx−
∫
Rd
ρ1∇Ψ (x) · ∇ζ(x) dx = 0. (4.15)

With the Taylor expansion

ζ(T−1(x))− ζ(x) = ∇ζ(x) · (T−1(x)− x) +
1

2
(T−1(x)− x)tD2ζ(λx,τ )(T

−1(x)− x)

where t is the transpose, and λx,τ is an intermediate point between x and T (x), we

substitute into (4.15), and obtain∣∣∣∣∫
Rd

ρ1 − ρ0

τ
ζ dx+

∫
Rd
ρ1∇Ψ · ∇ζ dx

∣∣∣∣ ≤ 1

2τ

∥∥D2ζ
∥∥
L∞(Rd)

∫
Rd
|T−1(x)− x|2ρ1(x) dx

≤ 1

2τ

∥∥D2ζ
∥∥
L∞(Rd)

W2(ρ0, ρ1)2.
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To conclude the identification of (4.1) as a gradient flow of the potential energy

with respect to the 2-Wasserstein distance on P2
a(Rd), we still need to define a function

ρτ defined for all t ∈ (0, T ), obtain compactness of the sequence {ρτ}τ↓0 in some

topology to deduce the existence of a candidate solution ρ, and then show this ρ is

indeed a weak solution of the transport equation. We omit the details here as we

will be following similar steps in the sequel when combining both fractional heat and

transport together. We refer the reader to [21] for further discussion regarding these

steps for the transport equation.

4.4 The Characteristic Equation

We conclude discussion on the transport equation with the following. Consider
∂T

∂t
(x, t) = −∇Ψ (T (x, t)) ,

T (x, 0) = x.
(4.16)

The existence of a unique C1 map T to (4.16) is assured through a fixed-point argu-

ment, because Ψ ∈ C1,1 ∩ C2,1(Rd) [16]. We then have the following from [21].

Proposition 4.4.1. Let T (t, ·) be the unique C1 map solving (4.16). Then v(t) :=

T (t, ·)#v0 is a weak solution of (4.1).

Proof. To avoid the notational difficulty here of denoting the time as T and the map

T solving (4.16), we let T̃ < ∞ denote the time. Let ϕ ∈ C∞c (Rd × R) with time

support in [−T̃ , T̃ ]. Then

∫
Rd

∫ T̃

0

ϕ(x, t)v(x, t) =

∫
Rd

∫ T̃

0

ϕ (T (x, t), t) v0(x) dx
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so that∫
Rd

∫ T̃

0

∂tϕ(x, t)v(x, t) dt dx =

∫
Rd

∫ T̃

0

(∂tϕ) (T (x, t), t) v0(x) dt dx

=

∫
Rd

∫ T̃

0

d

dt
[ϕ(T (x, t), t)] v0(x) dt dx

+

∫
Rd

∫ T̃

0

∇ϕ (T (x, t), t) · ∇Ψ (T (x, t)) v0(x) dt dx

=

∫
Rd

∫ T̃

0

∇ϕ(x) · ∇Ψ(x)v(x, t) dt dx

−
∫
Rd
ϕ(x, 0)v0(x) dx.

Mass preservation follows by definition of the push-forward.

Applying an implicit Euler scheme to (4.16) yields a Tτ satisfying Tτ (x)−x
τ

=

−∇Ψ(Tτ (x)), which is exactly the equation satisfied by the optimal transport map

earlier. Thus, in this case, the gradient flow interpretation is equivalent to an implicit

Euler scheme for the characteristic equation [21].
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Chapter 5

Operator Splitting on the

Fractional Fokker-Planck Equation

5.1 Construction

We return now to the central question of operator splitting. Recall that in the splitting

scheme for obtaining a discrete time approximation to (1.3) up to some finite time

horizon T < ∞, we fix a time step τ > 0 so that Nτ = T for some N ∈ N, set

ρ0
τ = ρ0, and then recursively iterate the following two connected subproblems for

n = 0, 1, . . . , N − 1:

1. (The fractional heat equation) Solve

∂tu(x, t) = −(−∆)su(x, t), (x, t) ∈ Rd × (0,∞)

u(x, 0) = ρnτ (x)

and set ρ̃n+1
τ (x) := u(x, τ).

2. (The transport equation as a gradient flow)

Minimize

ρ 7→ Iρ̃n+1
τ

[ρ] :=
1

2τ
W2(ρ̃n+1

τ , ρ)2 +

∫
Rd
ρΨ dx (5.1)

over all ρ ∈ P2
a(Rd), and set ρn+1

τ (x) as the minimizer.

We already have a good understanding of the properties of the solution to each

of these problems. However, as noted in Proposition 3.1.1, we have to deal with

initial data ρ̃n+1
τ in the variational problem (5.1) which may not possess a finite
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second moment. In particular, this implies that the potential energy of the initial

data may be infinite (e.g. if Ψ(x) = |x|2/2), which violates the starting estimate

Iρ̃n+1
τ

[ρ̃n+1
τ ] =

∫
Rd ρ̃

n+1
τ Ψ dx <∞ to show existence of a minimizer.

Therefore, a possible workaround to place the problem back in the framework of

Chapter 4 is to find some approximation of the initial data ρ̃n+1
τ . Ideally, we want

the error in the approximation to be uniform with respect to n in, e.g. the L1 norm

(see below in (5.31)). To achieve this, we propose the following.

Introduce an additional parameter R > 0, and starting with n = 0, replace

ρ̃1
τ = Φτ

s ∗ ρ0 in (5.1) with the normalized ‘approximation’

ρ̄1
τ,R :=

(Φτ
s1BR) ∗ ρ0

‖Φτ
s1BR‖L1(Rd)

, (5.2)

where Φτ
s(x) := Φs(x, τ). We continue this procedure for every n. Note that the

original initial data ρ̃1
τ in (5.1) satisfies ρ̃1

τ = limR→∞ ρ̄
1
τ,R.

It is clear that now ρ̄1
τ,R ∈ P2

a(Rd) whenever ρ0 ∈ P2
a(Rd), and we also see below

that
∫
Rd ρ̄

1
τ,RΨ <∞ whenever

∫
Rd ρ

0Ψ <∞. Then with the modified initial condition

(5.2) we can replace (5.1) with its approximated version

Minimize

ρ 7→ Iρ̄n+1
τ,R

[ρ] :=
1

2τ
W2(ρ̄n+1

τ,R , ρ)2 +

∫
Rd
ρΨ dx (5.3)

over all ρ ∈ P2
a(Rd), and set ρn+1

τ,R (x) as the minimizer.

We then know (5.3) admits a unique minimizer ρ1
τ,R which has the explicit expres-

sion

ρ1
τ,R(x) = ρ̄1

τ,R ◦ T−1(x) det(∇T−1(x)), where T−1(x) = x+ τ∇Ψ(x). (5.4)

We make this precise in the following.

Lemma 5.1.1. Let ρ0 ∈ P2
a(Rd) and Ψ ∈ C1,1∩C2(Rd) with

∫
Rd ρ

0Ψ dx <∞. Define

ρ̄1
τ,R by (5.2). Then

1. ρ̄1
τ,R ∈ P2

a(Rd);

2. ∫
Rd
ρ̄1
τ,RΨ dx ≤

∫
Rd
ρ0
τ,RΨ dx+

‖D2Ψ‖L∞(Rd)

2

∫
BR
|x|2Φτ

s(x) dx∫
BR

Φτ
s dx

<∞; (5.5)
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3. there exists a unique minimizer ρ1
τ,R of (5.3) which is explicitly given by (5.4).

Proof. 1. It is immediate that ρ̄1
τ,R ≥ 0 and

∫
Rd ρ̄

1
τ,R = 1. The last property to

check is
∫
Rd |x|

2ρ̄1
τ,R(x) dx ≤ 2

∫
Rd |x|

2ρ0(x) dx+ 2

∫
BR
|y|2Φτs (y) dy∫

BR
Φτs (y) dy

<∞.

2. By definition,∫
Rd
ρ̄1
τ,RΨ dx =

∫
Rd Ψ(x)

∫
BR
ρ0
τ,R(x− y)Φτ

s(y) dy dx∫
BR

Φτ
s(y) dy

. (5.6)

Focusing on the numerator, we have by a change of variable z = x− y,∫
Rd

Ψ(x)

∫
BR

ρ0
τ,R(x− y)Φτ

s(y) dy dx =

∫
BR

Φτ
s(y)

∫
Rd

Ψ(y + z)ρ0
τ,R(z) dz dy.

Now a finite Taylor expansion for Ψ gives

Ψ(y + z) = Ψ(z) + y · ∇Ψ(z) +
1

2
ytD2Ψ(ξy,z)y, (5.7)

where ξy,z is some intermediate point on the line joining y and z. Since the

Hessian of Ψ is bounded we can then estimate∫
BR

Φτ
s(y)

∫
Rd

Ψ(y + z)ρ0
τ,R(z) dz dy (5.8)

≤
∫
BR

Φτ
s(y) dy

∫
Rd

Ψ(z)ρ0
τ,R(z) dz (5.9)

+

∣∣∣∣∫
BR

Φτ
s(y)

∫
Rd
y · ∇Ψ(z)ρ0

τ,R(z) dz dy

∣∣∣∣ (5.10)

+
‖D2Ψ‖L∞(Rd)

2

∫
BR

|y|2Φτ
s(y)

∫
Rd
ρ0
τ,R(z) dz︸ ︷︷ ︸

1

dy (5.11)

and use the fact that ∫
BR

yΦτ
s(y) dy = 0

to conclude (5.10) vanishes. Thus by (5.6), (5.9), and (5.11), we obtain the

desired conclusion.

3. We have just established that ρ̄1
τ,R is admissible, and

∫
Rd ρ̄

1
τ,RΨ dx < ∞. Then

we can appeal to Proposition 4.3.6 to conclude the desired result.
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Remark 5.1.2. The additional parameter R will later be set to a function of τ .

The last few paragraphs have now motivated the ‘splitting’ scheme we will use, of

which is now extremely simple since everything is known explicitly.

The Splitting Scheme

1. Set

ρ0
τ,R := ρ0.

For n = 0, . . . , N − 1,

2. Define

ρ̄n+1
τ,R :=

(Φτ
s1BR) ∗ ρnτ,R

‖Φτ
s1BR‖L1(Rd)

. (5.12)

3. Set

ρn+1
τ,R = ρ̄n+1

τ,R ◦ T
−1 det(∇T−1), where T−1(x) = x+ τ∇Ψ(x). (5.13)

5.2 Time-Dependent Approximation

Through the scheme outlined above, we obtain a discrete-time sequence {ρkτ,R}0≤k≤N .

The goal now is to choose some suitable time-interpolation of the sequence {ρkτ,R},
and prove that this time-interpolation converges (to be defined in a suitable sense)

to a weak solution of the original PDE (1.3). We first define our notion of a weak

solution.

Definition 5.2.1. (Weak Solution) Let T < ∞. We say that ρ = ρ(x, t) : Rd ×
[0, T )→ [0,∞) is a weak solution to (1.3) if,

1. For every ϕ ∈ C∞c (Rd × R) with time support in [−T, T ],∫ T

0

∫
Rd
ρ(x, t) [∂tϕ(x, t)− (−∆)sϕ(x, t)−∇Ψ(x) · ∇ϕ(x, t)] dx dt

+

∫
Rd
ρ0(x)ϕ(x, 0) dx = 0,

2. ρ(x, t) ≥ 0 for a.e. (x, t) ∈ Rd × (0, T ),
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3.
∫
Rd ρ(x, t) dx =

∫
Rd ρ

0 dx = 1 for a.e. t ∈ (0, T ).

The non-negativity condition should be expected since ρ0 is a probability density,

while the mass-preserving condition is natural, since formally, if ρ is a solution, then

d

dt

∫
Rd
ρ(t) dx = −

∫
Rd

(−∆)sρ(t) dx+

∫
Rd

div (ρ∇Ψ(x)) dx = 0

because
∫
Rd div (ρ∇Ψ(x)) dx = 0, while∫
Rd

(−∆)sρ(t) dx = F [(−∆)sρ(t)] (ξ = 0) =
(
| · |2sρ̂(·, t)

)
(ξ = 0) = 0.

Time Interpolation

To obtain a function defined for all t ∈ [0, T ), we set

ρτ,R(t) := Φs(t− tn) ∗ ρnτ,R, t ∈ [tn, tn+1). (5.14)

The reason for our choice of interpolation (5.14) is because on each interval [tn, tn+1),

ρτ,R is a solution of the fractional heat equation with initial condition ρnτ,R.

The following lemma tells us how ‘close’ the interpolation ρτ,R is to being a weak

solution of (1.3). Let us first briefly remind the reader of some notation: ρ̄n+1
τ,R is given

by (5.12), ρn+1
τ,R is given by (5.13), and ρ̃n+1

τ,R := limt↑tn+1 ρτ,R(t).

Lemma 5.2.2. (The Approximate Equation Satisfied by the Time Interpolation) Let

ϕ ∈ C∞c (Rd × R) with time support in [−T, T ]. Then∫ T

0

∫
Rd
ρτ,R(t) [∂tϕ(t)− (−∆)sϕ(t)−∇Ψ · ∇ϕ(t)] dx dt+

∫
Rd
ρ0ϕ(0) dx

= R(τ, R)
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where R satisfies

R(τ, R) :=
N−1∑
n=0

∫
Rd

(
ρ̃n+1
τ,R − ρ̄

n+1
τ,R

)
ϕ(tn+1) dx (5.15)

+
N−1∑
n=0

[∫
Rd

(
ρ̄n+1
τ,R − ρ

n+1
τ,R

)
ϕ(tn+1) dx

−τ
∫
Rd
ρn+1
τ,R ∇Ψ · ∇ϕ(tn+1) dx

]
(5.16)

−
N−1∑
n=1

[∫ tn+1

tn

∫
Rd

[
ρτ,R(t)∇Ψ · ∇ϕ(t)− ρnτ,R∇Ψ · ∇ϕ(tn)

]
dx dt

]
(5.17)

−
∫ τ

0

∫
Rd

Φs(t) ∗ ρ0∇Ψ · ∇ϕ(t) dx dt. (5.18)

Remark 5.2.3. The errors above are characterized as follows:

1. The error (5.15) is from the approximation of the initial data ρ̃nτ by ρ̄nτ,R, as

discussed above, so that we can run the variational method (5.3).

2. The error (5.16) comes from approximating solutions of the transport equation

with minimizers of the variational problem (5.3) (or equivalently, is due to the

fact that the variational problem (5.3) is essentially an implicit Euler scheme

on the characteristic equation of the transport equation).

3. Finally, the last two terms (5.17) and (5.18) in R(τ, R) are from the error in

the splitting itself, because we want to replace

N−1∑
n=0

τ

∫
Rd
ρn+1
τ,R ∇Ψ · ∇ϕ(tn+1) dx

with ∫ T

0

∫
Rd
ρτ,R(t)∇Ψ · ∇ϕ(t) dx dt.

Proof. This essentially follows by an integration by parts, and addition and subtrac-



50

tion of terms. Integrating by parts we obtain∫ tn+1

tn

∫
Rd
ρτ,R(t)∂tϕ(t) dx dt =

∫ tn+1

tn

∫
Rd
ρτ,R(t)(−∆)sϕ(t) dx dt

+

∫
Rd
ρ̃n+1
τ,R ϕ(tn+1)− ρnτ,Rϕ(tn) dx. (5.19)

Now write (5.19) as∫
Rd
ρ̃n+1
τ,R ϕ(tn+1)− ρnτ,Rϕ(tn) dx =

∫
Rd
ρn+1
τ,R ϕ(tn+1)− ρnτ,Rϕ(tn) dx (5.20)

+

∫
Rd

(
ρ̃n+1
τ,R − ρ

n+1
τ,R

)
ϕ(tn+1) dx, (5.21)

and then (5.21) can be written as∫
Rd

(
ρ̃n+1
τ,R − ρ

n+1
τ,R

)
ϕ(tn+1) dx =

∫
Rd

(
ρ̃n+1
τ,R − ρ̄

n+1
τ,R

)
ϕ(tn+1) dx (5.22)

+

∫
Rd

(
ρ̄n+1
τ,R − ρ

n+1
τ,R

)
ϕ(tn+1) dx. (5.23)

Finally, (5.23) is∫
Rd

(
ρ̄n+1
τ,R − ρ

n+1
τ,R

)
ϕ(tn+1) dx

=

∫
Rd

(
ρ̄n+1
τ,R − ρ

n+1
τ,R

)
ϕ(tn+1) dx− τ

∫
Rd
ρn+1
τ,R ∇Ψ · ∇ϕ(tn+1) dx (5.24)

+ τ

∫
Rd
ρn+1
τ,R ∇Ψ · ∇ϕ(tn+1) dx. (5.25)

Summing (5.20), we obtain

−
∫
Rd
ρ0ϕ(0) dx. (5.26)

Summing (5.22), we obtain

N−1∑
n=0

∫
Rd

(
ρ̃n+1
τ,R − ρ̄

n+1
τ,R

)
ϕ(tn+1) dx. (5.27)
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Summing (5.24), we obtain

N−1∑
n=0

∫
Rd

(
ρ̄n+1
τ,R − ρ

n+1
τ,R

)
ϕ(tn+1) dx− τ

∫
Rd
ρn+1
τ,R ∇Ψ · ∇ϕ(tn+1) dx. (5.28)

Finally, we can sum (5.25) and write

N−1∑
n=0

τ

∫
Rd
ρn+1
τ,R ∇Ψ · ∇ϕ(tn+1) dx

=
N−2∑
n=0

τ

∫
Rd
ρn+1
τ,R ∇Ψ · ∇ϕ(tn+1) dx (since ∇ϕ(T ) = 0),

=
N−1∑
n=1

∫ tn+1

tn

∫
Rd
ρnτ,R∇Ψ · ∇ϕ(tn) dx dt. (5.29)

Then (5.29) can be written as

N−1∑
n=1

∫ tn+1

tn

∫
Rd
ρnτ,R∇Ψ · ∇ϕ(tn) dx dt

=

∫ T

0

∫
Rd
ρτ,R(t)∇Ψ · ∇ϕ(t) dx dt

−
N−1∑
n=1

[∫ tn+1

tn

∫
Rd

[
ρτ,R(t)∇Ψ · ∇ϕ(t)− ρnτ,R∇Ψ · ∇ϕ(tn)

]]
dx dt

−
∫ τ

0

∫
Rd

Φs(t) ∗ ρ0∇Ψ · ∇ϕ(t) dx dt,

which completes the proof.

Lemma 5.2.4. The remainder R(τ, R) satisfies

|R(τ, R)| ≤ C

(
τ +R−2s +

N−1∑
n=0

W2(ρ̄n+1
τ,R , ρ

n+1
τ,R )2

)

where C is independent of τ and R.

Proof. We first estimate (5.15). Write∣∣∣∣∫
Rd

(
ρ̃n+1
τ,R − ρ̄

n+1
τ,R

)
ϕ(tn+1) dx

∣∣∣∣ ≤ sup
t∈[0,T ]

‖ϕ(t)‖L∞(Rd)

∥∥ρ̃n+1
τ,R − ρ̄

n+1
τ,R

∥∥
L1(Rd)

.
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Then recalling ρ̄n+1
τ,R = ρnτ,R ∗ (Φτ

s1BR) / ‖Φτ
s1BR‖L1(Rd), we estimate∫

Rd

∣∣ρ̃n+1
τ,R − ρ̄

n+1
τ,R

∣∣ dx

=

∫
Rd

∣∣∣∣∣ρnτ,R ∗ (Φτ
s1Rd\BR

)
+ ρnτ,R ∗ (Φτ

s1BR)

(
1− 1∫

BR
Φτ
s(z) dz

)∣∣∣∣∣ dx

≤
∫
Rd

[
ρnτ,R ∗

(
Φτ
s1Rd\BR

)
+ ρnτ,R ∗ (Φτ

s1BR)

(
1∫

BR
Φτ
s(z) dz

− 1

)]
dx

=

∫
Rd

[(
Φτ
s1Rd\BR

)
(y) + (Φτ

s1BR) (y)

(
1∫

BR
Φτ
s(z) dz

− 1

)][∫
Rd
ρnτ,R(x− y) dx

]
︸ ︷︷ ︸

1

dy

=

∫
Rd

[
Φτ
s(y)1Rd\BR(y) + Φτ

s(y)1BR(y)

(
1∫

BR
Φτ
s(z) dz

− 1

)]
dy

= 2

∫
Rd\BR

Φτ
s(y) dy

≤ Cτ

∫
Rd\BR

1

|y|d+2s
dy, provided R ≥ τ 1/2s (by (3.3))

≤ Cτ

sR2s
. (5.30)

Thus ∣∣∣∣∣
N−1∑
n=0

∫
Rd

(
ρ̃n+1
τ,R − ρ̄

n+1
τ,R

)
ϕ(tn+1) dx

∣∣∣∣∣ ≤ CT sup
t∈[0,T ]

‖ϕ(t)‖L∞(Rd) R
−2s. (5.31)

Next we estimate (5.16) using the estimate from (4.12)∣∣∣∣∫
Rd

(
ρ̄n+1
τ,R − ρ

n+1
τ,R

)
ϕ(tn+1) dx− τ

∫
Rd
ρn+1
τ,R ∇Ψ · ∇ϕ(tn+1) dx

∣∣∣∣
≤ sup

t∈[0,T ]

∥∥D2ϕ(t)
∥∥
L∞(Rd)

1

2
W2(ρ̄n+1

τ,R , ρ
n+1
τ,R )2,

so that ∣∣∣∣∣
N−1∑
n=0

[∫
Rd

(
ρ̄n+1
τ,R − ρ

n+1
τ,R

)
ϕ(tn+1) dx− τ

∫
Rd
ρn+1
τ,R ∇Ψ · ∇ϕ(tn+1) dx

]∣∣∣∣∣
≤ sup

t∈[0,T ]

∥∥D2ϕ(t)
∥∥
L∞(Rd)

1

2

N−1∑
n=0

W2(ρ̄n+1
τ,R , ρ

n+1
τ,R )2. (5.32)
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Finally, we estimate (5.17) and (5.18). We can dispense with (5.18) by noting that∣∣∣∣∫ τ

0

∫
Rd

Φs(t) ∗ ρ0∇Ψ · ∇ϕ(t) dx dt

∣∣∣∣ ≤ ∫ τ

0

‖∇Ψ · ∇ϕ(t)‖L∞(Rd)

∥∥Φs(t) ∗ ρ0
∥∥
L1(Rd)

dt

≤ τ sup
t∈[0,T ]

‖∇Ψ · ∇ϕ(t)‖L∞(Rd) . (5.33)

We can write (5.17) as∫ tn+1

tn

∫
Rd
ρτ,R(t)∇Ψ · ∇ϕ(t)− ρnτ,R∇Ψ · ∇ϕ(tn) dx dt

=

∫ tn+1

tn

∫
Rd

(
ρτ,R(t)− ρnτ,R

)
∇Ψ · ∇ϕ(t) dx dt (5.34)

+

∫ tn+1

tn

∫
Rd
ρnτ,R∇Ψ · ∇ [ϕ(t)− ϕ(tn)] dx dt. (5.35)

For (5.34), we have ρτ,R(t)− ρnτ,R =
∫ t
tn
∂uρτ,R(u) du = −

∫ t
tn

(−∆)sρτ,R(u) du, so that

∫ tn+1

tn

∫
Rd

(
ρτ,R(t)− ρnτ,R

)
∇Ψ · ∇ϕ(t) dx dt

=

∫ tn+1

tn

∫
Rd

∫ t

tn

−(−∆)sρτ,R(u)∇Ψ · ∇ϕ(t) du dx dt

=

∫ tn+1

tn

∫ t

tn

∫
Rd
−ρτ,R(u)(−∆)s [∇Ψ · ∇ϕ(t)] dx du dt.

Since by assumption Ψ ∈ C2,1(Rd), then ∇Ψ · ∇ϕ(t) ∈ C1,1
c (Rd), and we have from

Proposition 2.2.5 that its fractional Laplacian is bounded in Rd. Therefore∣∣∣∣∣
N−1∑
n=0

∫ tn+1

tn

∫
Rd

(
ρ̃n+1
τ,R − ρτ,R(t)

)
∇Ψ · ∇ϕ(t) dx dt

∣∣∣∣∣
≤ sup

t∈[0,T ]

‖(−∆)s∇Ψ · ∇ϕ(t)‖L∞(Rd)

N−1∑
n=0

∫ tn+1

tn

∫ t

tn

∫
Rd
ρτ,R(u) dx︸ ︷︷ ︸

1

du dt

≤ sup
t∈[0,T ]

‖(−∆)s∇Ψ · ∇ϕ(t)‖L∞(Rd)

N−1∑
n=0

∫ tn+1

tn

(t− tn) dt

≤ sup
t∈[0,T ]

‖(−∆)s∇Ψ · ∇ϕ(t)‖L∞(Rd)

1

2
Tτ. (5.36)

For (5.35), we have from a Taylor expansion ϕ(t) − ϕ(tn) = ∂tϕ(tλ)(t − tn) for tλ ∈
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(tn, tn+1),∣∣∣∣∣
N−1∑
n=0

∫ tn+1

tn

∫
Rd
ρnτ,R∇Ψ · ∇ [ϕ(t)− ϕ(tn)] dx dt

∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
n=0

∫ tn+1

tn

∫
Rd
ρnτ,R(t− tn)∇Ψ · ∇∂tϕ(tλ) dx dt

∣∣∣∣∣
≤ sup

t∈[0,T ]

‖∇Ψ · ∇∂tϕ(t)‖L∞(Rd)

∥∥ρnτ,R∥∥L1(Rd)

N−1∑
n=0

∫ tn+1

tn

(t− tn) dt

≤ sup
t∈[0,T ]

‖∇Ψ · ∇∂tϕ(t)‖L∞(Rd)

1

2
Tτ. (5.37)

Combining (5.31), (5.32), (5.33), (5.36) and (5.37), we obtain the desired estimate for

R.

It remains to obtain an estimate on
∑N−1

n=0 W2(ρ̄n+1
τ,R , ρ

n+1
τ,R )2 in terms of the pa-

rameters τ and R. The usual way to obtain such an estimate is to observe from the

variational problem, that since ρ̄nτ,R is admissible and ρnτ,R is a minimizer,

1

2τ
W2(ρ̄nτ,R, ρ

n
τ,R)2 ≤

∫
Rd
ρ̄nτ,RΨ dx−

∫
Rd
ρnτ,RΨ dx. (5.38)

Disregarding the splitting scheme for the moment, if we were simply iterating the

variational method, then ρ̄nτ,R = ρn−1
τ,R , and thus (5.38) would become

1

2τ
W2(ρn−1

τ,R , ρ
n
τ,R)2 ≤

∫
Rd
ρn−1
τ,R Ψ dx−

∫
Rd
ρnτ,RΨ dx,

of which the right-hand side is a telescoping sum. Therefore

1

2τ

N∑
n=1

W2(ρn−1
τ,R , ρ

n
τ,R)2 ≤

∫
Rd
ρ0Ψ dx−

∫
Rd
ρNτ,RΨ dx ≤

∫
Rd
ρ0Ψ dx,

and we have the desired estimate. However, in our case a difficulty arises because

of the splitting. We want to estimate the potential energy of ρ̄nτ,R in terms of the

potential energy of ρn−1
τ,R , even though ρ̄nτ,R doesn’t ‘see’ the potential Ψ. A sufficient

way to overcome this difficulty is to impose the requirement that D2Ψ ∈ L∞(Rd), or

Ψ ∈ C1,1(Rd). We then obtain the following.
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Lemma 5.2.5. When Ψ ∈ C1,1 ∩ C2(Rd), we have the estimate

N∑
n=1

W2(ρ̄nτ,R, ρ
n
τ,R)2

≤ C

[
τ

∫
Rd
ρ0Ψ dx+ T

∥∥D2Ψ
∥∥
L∞(Rd)

(
τ 1/s + τR2−2s

)]
. (5.39)

Proof. We have (since ρnτ,R is a minimizer)

1

2τ
W2(ρ̄nτ,R, ρ

n
τ,R)2 ≤

∫
Rd
ρ̄nτ,RΨ dx−

∫
Rd
ρnτ,RΨ dx. (5.40)

Appealing to estimate (5.5), we can obtain the inequality

∫
Rd
ρ̄nτ,RΨ dx ≤

∫
Rd
ρn−1
τ,R Ψ dx+

‖D2Ψ‖L∞(Rd)

2

∫
BR
|x|2Φτ

s(x) dx∫
BR

Φτ
s(x) dx

. (5.41)

Substituting (5.41) into (5.40), summing over n, and recalling N = T
τ

and Ψ ≥ 0, we

obtain

N∑
n=1

W2(ρ̄nτ,R, ρ
n
τ,R)2 ≤ 2τ

∫
Rd
ρ0Ψ dx+ T

∥∥D2Ψ
∥∥
L∞(Rd)

∫
BR
|x|2Φτ

s(x) dx∫
BR

Φτ
s(x) dx

. (5.42)

Finally all that remains is to estimate

∫
BR
|x|2Φτs (x) dx∫

BR
Φτs (x) dx

. Here we make use of an estimate

on the fractional heat kernel Φτ
s , which we recall from (3.3) is

Φτ
s(x) ≤ C

 τ−d/2s |x| ≤ τ 1/2s

τ 1
|x|d+2s |x| > τ 1/2s,

with Φτ
s bounded below by the same estimate, but with C replaced by C−1 (in the

following, we do not differentiate C from C−1). Then

∫
BR

Φτ
s(x) dx ≥ C

[
τ−d/2s

∫ τ1/2s

0

rd−1 dr + τ

∫ R

τ1/2s

rd−1

rd+2s
dr

]
≥ C(1 + τR−2s) ≥ C > 0,
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while ∫
BR

|x|2Φτ
s(x) dx ≤ C

[
τ−d/2s

∫ τ1/2s

0

r2rd+1 dr + τ

∫ R

τ1/2s

r2

rd+2s
rd−1 dr

]
≤ C

[
τ 1/s + τR2−2s

]
.

Substituting these estimates into (5.42), we obtain (5.39).

Thus it follows by Lemmas 5.2.4 and 5.2.5 that

|R(τ, R)| ≤ C
(
τ +R−2s + τ 1/s + τR2−2s

)
.

We then are able to obtain the following.

Corollary 5.2.6. Set R = τ−1/2. Then {ρτ,R} is a sequence in τ , which we denote

by {ρτ}, ∣∣R(τ, τ−1/2)
∣∣ ≤ C

(
τ + τ s + τ 1/s

)
,

and therefore

lim
τ→0

∫ T

0

∫
Rd
ρτ (t) [∂tϕ(t)− (−∆)sϕ(t)−∇Ψ · ∇ϕ(t)] dx dt+

∫
Rd
ρ0ϕ(0) dx = 0.

Remark 5.2.7. Setting R = τ−α where 0 < α < 1/(2−2s) is also sufficient to ensure

the remainder vanishes as τ → 0.

5.3 Convergence to a Weak Solution

We now seek to obtain compactness of the sequence {ρτ}τ↓0 w.r.t. some suitable

topology. Since ‖ρτ (t)‖L1(Rd) = 1 for all t, one may immediately wonder if it is

possible to obtain weak L1 compactness. However, this turns out to be difficult,

as it is well known [8, 22] that additional properties such as tightness and uniform

integrability are needed, and it is not at all clear in this case how one might proceed.

Fortunately, compactness w.r.t. the weak topology on Lp (1 < p < ∞, or weak-∗ if

p =∞) is much easier to obtain. We recall the following sufficient condition.

Proposition 5.3.1. [10] Let 1 < p ≤ ∞ and suppose {fj}j∈N is a sequence of real

valued functions, fj : Rd → R . If ‖fj‖Lp(Rd) ≤ C uniformly in j, then {fj}j∈N is

relatively weakly compact in Lp(Rd).
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Thus by imposing a sufficient assumption on the potential Ψ, we are led to the

following.

Lemma 5.3.2. Let τ > 0 be small enough so that det(I + τD2Ψ(x)) ≤ 1 + ατ ,

for some fixed α > ‖D2Ψ‖L∞(Rd). If ρ0 ∈ Lp(Rd) for 1 < p < ∞, then for every

t ∈ (0, T ),

‖ρτ (t)‖pLp(Rd)
≤ e(p−1)αT

∥∥ρ0
∥∥p
Lp(Rd)

(5.43)

and for p =∞,

‖ρτ (t)‖L∞(Rd) ≤ eαT
∥∥ρ0
∥∥
L∞(Rd)

. (5.44)

Proof. The fact that det(I + τD2Ψ(x)) ≤ 1 + ατ for τ small enough assures us that

‖ρnτ ‖
p
Lp(Rd)

≤ (1 + τα)p−1 ‖ρ̄nτ ‖
p
Lp(Rd)

and since,

‖ρ̄nτ ‖
p
Lp(Rd)

=

∥∥∥∥∥ Φs1BR ∗ ρn−1
τ

‖Φs1BR‖L1(Rd)

∥∥∥∥∥
p

Lp(Rd)

≤
∥∥ρn−1

τ

∥∥p
Lp(Rd)

,

we have

‖ρnτ ‖
p
Lp(Rd)

≤ (1 + τα)n(p−1)
∥∥ρ0
∥∥p
Lp(Rd)

.

Then for 1 < p <∞ and t ∈ (tn, tn+1),

‖ρτ (t)‖pLp(Rd)
= ‖Φs(t− tn) ∗ ρnτ ‖

p
Lp(Rd)

≤ ‖ρnτ ‖
p
Lp(Rd)

≤ (1 + τα)n(p−1)
∥∥ρ0
∥∥p
Lp(Rd)

≤ (1 + τα)
T
τ

(p−1)
∥∥ρ0
∥∥p
Lp(Rd)

,

and (5.43) follows by noting limτ↓0(1 + ατ)
T
τ

(p−1) = eα(p−1)T ; (5.44) is obtained in a

similar manner.

Lemma 5.3.3. If ρ0 ∈ Lp(Rd), 1 < p ≤ ∞, then there exists a non-relabelled subse-

quence {ρτ}τ↓0 and a ρ ∈ L1 ∩ Lp(Rd × (0, T )) such that ρτ ⇀ ρ in Lp(Rd × (0, T ))

(or ⇀∗ if p =∞), and∫ T

0

∫
Rd
ρ(t) [∂tϕ(t)− (−∆)sϕ(t)−∇Ψ · ∇ϕ(t)] dx dt+

∫
Rd
ρ0ϕ(0) dx = 0.

Moreover, if ρ0 ≥ 0, then ρ(x, t) ≥ 0 for a.e. (x, t) ∈ Rd × (0, T ).
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Proof. By Proposition 5.3.1 and Lemma 5.3.2, we deduce the existence of a ρ ∈
Lp(Rd× (0, T )) such that ρτ ⇀ ρ in Lp(Rd× (0, T )). Then by appealing to Corollary

5.2.6 and the fact that ∂tϕ(t)− (−∆)sϕ(t)−∇Ψ · ∇ϕ(t) ∈ Lp′(Rd× (0, T )) for every

ϕ ∈ C∞c (Rd × R) with time support in [−T, T ] (where 1/p+ 1/p′ = 1), we have∫ T

0

∫
Rd
ρ(t) [∂tϕ(t)− (−∆)sϕ(t)−∇Ψ · ∇ϕ(t)] dx dt+

∫
Rd
ρ0ϕ(0) dx = 0.

If ρ0 ≥ 0, then it follows by definition of ρτ that ρτ (x, t) ≥ 0 for every (x, t) ∈ Rd ×
(0, T ). Therefore, combined with the weak convergence of ρτ to ρ in Lp(Rd× (0, T )),

we deduce
∫ T

0

∫
Rd ρ(x, t)λ(x, t) dx dt ≥ 0 for all step-functions λ : Rd×(0, T )→ R with

compact support. Thus ρ(x, t) < 0 is strictly forbidden on any subset of Rd × (0, T )

with positive measure, and hence ρ(x, t) ≥ 0 for a.e. (x, t) ∈ Rd × (0, T ).

Finally, we have ρ ∈ L1(Rd × (0, T )), since, for each R > 0, 1BR is in Lp
′
(Rd ×

(0, T )), and∫ T

0

∫
BR

ρ(x, t) dx dt =

∫ T

0

∫
BR

ρτ (x, t) dx dt+

∫ T

0

∫
BR

[ρ(x, t)− ρτ (x, t)] dx dt

≤ T +

∫ T

0

∫
BR

[ρ(x, t)− ρτ (x, t)] dx dt.

Thus by the weak convergence of ρτ to ρ,∫ T

0

∫
BR

ρ(x, t) dx dt ≤ T.

Using the fact that ρ(x, t) ≥ 0 a.e. (x, t), we may apply the monotone convergence

theorem to obtain in the limit R→∞,∫ T

0

∫
Rd
ρ(x, t) dx dt ≤ T.

According to Lemma 5.3.3, we are very close to proving that the candidate ρ is

indeed a weak solution to (1.3) according to our definition. We still need to show

however, that ρ(t) is a probability density for a.e. t.

Lemma 5.3.4. Let T < ∞, Ψ ∈ C1,1(Rd), and suppose there exists ρ ∈ L1(Rd ×
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(0, T )) satisfying∫ T

0

∫
Rd
ρ(t) [∂tϕ(t)− (−∆)sϕ(t)−∇Ψ · ∇ϕ(t)] dx dt+

∫
Rd
ρ0ϕ(0) dx = 0 (5.45)

for all ϕ ∈ C∞c (Rd×R) with time support in [−T, T ]. Then
∫
Rd ρ(t) dx =

∫
Rd ρ

0 dx = 1

for a.e. t ∈ (0, T ).

Proof. Let η : [0,∞) → [0,∞) be a smooth function satisfying η(r) = 1 for r ≤ 1

and η(r) = 0 for r > 2; for instance,

η(r) =


1 0 ≤ r ≤ 1

e
1− 1

1−(r−1)2 1 < r ≤ 2

0 r > 2

(5.46)

and let ηR ∈ C∞c (Rd) be defined by ηR(x) = η
(
|x|
R

)
for R > 0. Then for all θ ∈

C∞c (−T, T ), we have from (5.45) (with ϕ(x, t) = ηR(x)θ(t))∫ T

0

θ′(t)

∫
Rd
ρ(x, t)ηR(x) dx dt+ θ(0)

∫
Rd
ρ0(x)ηR(x) dx

=

∫ T

0

θ(t)

∫
Rd
ρ(x, t) [(−∆)sηR(x) +∇Ψ(x) · ∇ηR(x)] dx dt. (5.47)

Noting that limR→∞ ηR(x) = 1 pointwise on Rd, assume for the moment that

lim
R→∞

(−∆)sηR(x) = 0 and lim
R→∞

∇Ψ(x) · ∇ηR(x) = 0, pointwise on Rd,

and that by the dominated convergence theorem we may pass these limits inside the

integrals in the above display. (We will rigorously justify these assertions later.) Then

we obtain in the limit R→∞∫ T

0

θ′(t)

∫
Rd
ρ(x, t) dx dt+ θ(0)

∫
Rd
ρ0(x) dx = 0, (5.48)

for every θ ∈ C∞c (−T, T ). In particular, for every γ ∈ C∞c (0, T ) we have∫ T

0

γ′(t)

∫
Rd
ρ(x, t) dx dt = 0,
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from which we can deduce [10] that∫
Rd
ρ(x, t) dx = C, a.e. t ∈ (0, T ). (5.49)

The constant is fixed by appealing to (5.48), since substitution of (5.49) in (5.48)

implies

C

∫ T

0

θ′(t) dt+ θ(0)

∫
Rd
ρ0(x) dx = 0,

from which we deduce

C =

∫
Rd
ρ0(x) dx.

Now we rigorously prove the asserted limits above and application of the dominated

convergence theorem. First, it is immediate that

lim
R→∞

∇Ψ(x) · ∇ηR(x) = 0,

pointwise for x ∈ Rd, for, we simply wait until |x| < R for R large enough, and then

∇ηR(x) = 0. To apply the dominated convergence theorem in (5.47), we need a L∞

bound for ∇Ψ ·∇ηR. Since ∇ηR(x) = x
|x|Rη

′
(
|x|
R

)
for R < |x| < 2R (and 0 elsewhere),

and |η′(r)| ≤ C for all r ∈ (1, 2), then

|∇ηR(x)| ≤ C

R
.

Now using the fact that Ψ ∈ C1,1(Rd) and recalling ∇Ψ(x) · ∇ηR(x) is non-zero only

when R < |x| < 2R, we have

|∇Ψ(x) · ∇ηR(x)| ≤ C(1 + |x|) |∇ηR(x)|

≤ C
1 + 2R

R
(5.50)

and thus ‖∇Ψ · ∇ηR‖L∞(Rd) ≤ C for all R.

Now we show limR→∞(−∆)sηR(x) = 0 pointwise by an application of the dom-

inated convergence theorem to pass the limit inside the integral representation of

(−∆)sηR(x). Indeed, since in some neighbourhood Br of the origin,

|ηR(x+ z) + ηR(x− z)− 2ηR(x)|
|z|d+2s

≤
∥∥D2ηR

∥∥
L∞(Rd)

|z|2−d−2s, z ∈ Br, (5.51)
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and outside Br,

|ηR(x+ z) + ηR(x− z)− 2ηR(x)|
|z|d+2s

≤ 4

|z|d+2s
, z ∈ Rd\Br, (5.52)

it suffices by the dominated convergence theorem to bound ‖D2ηR‖L∞(Rd) uniformly in

R. In particular, it suffices to have the second-order partial derivatives |∂2
ijηR(x)| ≤ C.

By direct computation, when R < |x| < 2R,

∂2
ijηR(x) =

xixj
|x|2R2

η′′
(
|x|
R

)
− xixj
|x|3R

η′
(
|x|
R

)
,

so that ∣∣∂2
ijηR(x)

∣∣ ≤ C

R2
≤ C. (5.53)

Hence limR→∞(−∆)sηR(x) = 0.

Finally we remark that passage of the limits through the integrals in (5.47) follows

by the uniform (w.r.t. R) L∞ bounds on ∇Ψ ·∇ηR (from (5.50)) and (−∆)sηR (from

(5.51), (5.52), and (5.53)), together with the fact that ρ ∈ L1(Rd × (0, T )).

5.3.1 Proof of the Main Result

Combining the results obtained in the previous sections, we can now prove that the

constructed splitting scheme weakly converges in Lp to a weak solution of (1.3).

Theorem 5.3.5. Let s ∈ (0, 1), ρ0 ∈ L1 ∩ Lp(Rd) for some 1 < p ≤ ∞, and

Ψ ∈ C1,1 ∩ C2,1(Rd), with Ψ ≥ 0 and
∫
Rd ρ

0Ψ dx < ∞. Define the sequence {ρτ}τ↓0
according to (5.14) with R = τ−1/2. Then there exists a non-relabeled subsequence

{ρτ}τ↓0 and a ρ ∈ L1 ∩ Lp(Rd × (0, T )), such that

ρτ ⇀ ρ, weakly in Lp(Rd × (0, T )),

where ρ is a weak solution of (1.3).

Proof. By Lemma 5.3.3, there is a ρ ∈ L1 ∩ Lp(Rd × (0, T )) and a non-relabeled

subsequence {ρτ}τ↓0 such that ρτ (t) ⇀ ρ(t) weakly in Lp(Rd) for a.e. t ∈ (0, T ), with∫ T

0

∫
Rd
ρ(t) [∂tϕ(t)− (−∆)sϕ(t)−∇Ψ · ∇ϕ(t)] dx dt+

∫
Rd
ρ0ϕ(0) dx = 0 (5.54)
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for all ϕ ∈ C∞c (Rd × R) with time support in [−T, T ]. Moreover, by Lemma 5.3.4,

we deduce that ρ(t) is a probability density for a.e. t. Thus ρ is a weak solution to

(1.3), in the sense of Definition 5.2.1.
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Chapter 6

Conclusion

6.1 Concluding Remarks

We have shown that by splitting (1.3) into two parts (fractional heat and transport),

one of which (the transport equation) can be solved by running a gradient flow of

an energy functional (the potential energy) w.r.t. the 2-Wasserstein distance, it is

possible to recover a solution to the original PDE (1.3). More precisely, we have

shown how to construct a function from solutions of the fractional heat equation and

minimizers of the transport variational problem, that weakly converges to a weak

solution of (1.3).

We remark on some of the difficulties. Without imposing the strong assumption

that D2Ψ is bounded (i.e. Ψ ∈ C1,1(Rd)), it is not clear how one may obtain com-

pactness of the sequence {ρτ}τ↓0. Although the fractional heat equation preserves

the Lp norm, the same is not true in general for the transport equation. When we

compute the Lp norm of ρτ (t), we find ourselves needing to estimate∫
Rd

[
ρ̄nτ (x+ τ∇Ψ(x)) det(I + τD2Ψ(x))

]p
dx

in terms of
∫
Rd [ρ̄nτ (x)]p dx, and it is not clear if any such estimate is available without

the required assumption on Ψ. This problem persists even if we take s = 1 - the

Gaussian case- and thus we suspect that one may be able to relax the assumption

with a finer analysis.

Since we are free to choose our time interpolation, one may also wonder if there

is another way to construct ρτ which might be easier to work with. In other works
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(see [18]) the interpolation was constructed by dividing each interval (tn, tn+1) in half,

and defining on each subinterval the time interpolation to be (e.g. in our case) the

solution of the fractional heat equation on (tn, tn+1/2), and then the solution of the

transport equation on (tn+1/2, tn+1). By showing that the sequence {ρτ}τ↓0 has a

uniform spatial, and uniform temporal, modulus of continuity, e.g.∫
Rd

[ρτ (x+ h, t)− ρτ (x, t)]p dx ≤ ν(h),

ν not depending on τ , they were able to obtain compactness in the strong topology of

Lploc(Rd × (0, T )) (see [18]). Some initial experimentation with this approach proved

unsuccessful.

6.2 Open Questions

6.2.1 Regularity and Uniqueness

Regularity

An immediate question that comes to mind is whether the weak solution is actually a

regular solution. In [19], they sketch a bootstrap argument that shows a weak solution

of the classical Fokker-Planck equation (1.1) is in fact a smooth solution. One may

hope that the proof can be extended when we replace the Laplacian by the fractional

Laplacian. The answer, however, is negative, and this is due to the non-local nature

of the fractional Laplacian. More precisely, to imitate their proof, one would need

to compute (−∆)s[ηξ] where η, ξ ∈ C∞c (Rd). The lack of a ‘product rule’ is what

impedes further progress, and we therefore leave the question of regularity open. Our

conjecture is that the regularity of the fractional Fokker-Planck equation (1.3) is the

same as the classical one (1.1).

Uniqueness

Provided that a weak solution is in fact a classical smooth solution, it is possible to

prove uniqueness by imitating the proof given in [19]. Let us sketch it here.

Suppose ρ1 and ρ2 are solutions of (1.3), smooth enough so that the following

computations make sense, and let ρ := ρ1 − ρ2. Let δ > 0, and φδ(z) := (z2 +

δ2)1/2, z ∈ R a smooth convex approximation to the absolute value function. Then by
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a straightforward computation, (where for clarity we suppress the (x, t) dependence

of ρ) we have

d

dt
φδ(ρ) + (−∆)s [φδ(ρ)]− div (φδ(ρ)∇Ψ)

= (−∆)s [φδ(ρ)]− φ′δ(ρ)(−∆)sρ+ [ρφ′δ(ρ)− φδ(ρ)] ∆Ψ.

Now, we introduce the following lemma from [14].

Lemma 6.2.1. Let ϕ ∈ C2(R) be a convex function. Then for all s ∈ (0, 1),

(−∆)s [ϕ(f)] ≤ ϕ′(f)(−∆)sf.

Proof. The proof is taken from [14]. Since ϕ is convex, then ϕ(b)−ϕ(a) ≥ ϕ′(a)(b−a)

for all a, b ∈ R. Therefore it follows that

ϕ(f(x+ z))− ϕ(f(x)) ≥ ϕ′(f(x))(f(x+ z)− f(x))

ϕ(f(x+ z))− ϕ(f(x))−∇[ϕ(f)](x) · z ≥ ϕ′(f(x)) [f(x+ z)− f(x)−∇f(x) · z]

for every x, z ∈ Rd. By appealing to the integral representation (2.1) of (−∆)s we

conclude the result.

Then identifying φδ with ϕ and ρ with f in the lemma above, we have

d

dt
φδ(ρ) + (−∆)s [φδ(ρ)]− div (φδ(ρ)∇Ψ) ≤ [ρφ′δ(ρ)− φδ(ρ)] ∆Ψ.

Multiply by a nonnegative η ∈ C∞c (Rd), integrate over Rd, and integrate by parts, to

get

d

dt

∫
Rd
φδ(ρ(t))η +

∫
Rd
φδ(ρ(t))(−∆)s [η] +

∫
Rd
φδ(ρ(t))∇Ψ · ∇η

≤
∫
Rd

[ρφ′δ(ρ(t))− φδ(ρ(t))] ∆Ψη.
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Now integrate over (0, t) for some t ∈ (0,∞) to obtain∫
Rd
φδ(ρ(t))η dx−

∫
Rd
φδ(ρ(0))η dx

+

∫ t

0

∫
Rd
φδ(ρ(t))(−∆)sη dx dt+

∫ t

0

∫
Rd
φδ(ρ(t))∇Ψ · ∇η dx dt

≤
∫ t

0

∫
Rd

[ρφ′δ(ρ(t))− φδ(ρ(t))] η∆Ψ dx dt.

In the above, we remark that we have assumed

lim
t→0

∫
Rd
φδ(ρ(t))η dx =

∫
Rd
φδ(ρ(0))η dx

for every δ > 0 and every η ∈ C∞c (Rd).

Letting δ tend to 0 gives∫
Rd
|ρ(t)|η −

∫
Rd
|ρ(0)|η +

∫ t

0

∫
Rd
|ρ(t)|(−∆)sη +

∫ t

0

∫
Rd
|ρ(t)|∇Ψ · ∇η ≤ 0

since ρφ′δ(ρ(t))−φδ(ρ(t))→ 0 as δ → 0. Now replace (as we did in Lemma 5.3.4, and

as in [19]) η with

ηR(x) = η1

( x
R

)
, where η1(x) = 1 for |x| ≤ 1, η1(x) = 0 for |x| ≥ 2.

Letting R→∞ as in Lemma 5.3.4 (assuming Ψ ∈ C1,1(Rd)), we find∫
Rd
|ρ(t)| ≤

∫
Rd
|ρ(0)|,

which implies uniqueness.

6.2.2 Extension of the Method

Finally we conclude by suggesting that a direction for future work is to see if this

method of combining splitting with gradient flow can be extended to other PDE’s for

which the gradient flow part is not as simple as that which we have studied here.
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