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Abstract 
Supervisory Commitee 

Dr. Nigel Horspool, Department of Computer Science 

Co-Supervisor 

Dr. Micaela Serra, Department of Computer Science 

Co-Supervisor 

 

Emulation is the practice of simulating one computer system on another. There are many 

methods of implementing an emulator. They exist on a performance continuum from simple 

interpretation to dynamic binary translation extended with various optimizations. Optimizations 

are diverse, including just in time compilation, large translation units, shadow stack, register 

mapping and many more. The goal of this thesis is to develop a high performance, portable 

emulator for the ARM v4 architecture without requiring substantial code analysis. This thesis 

describes the implementation of a dynamic binary translator translating to an intermediate 

language targeting a virtual machine. Targeting a virtual machine ensures that the emulator is 

portable. Optimizations implemented include forming large translation units and branch 

straightening in hot regions. The particular combination of translating to intermediate form for a 

virtual machine, and creating large translation units from hot regions does not seem to appear in 

the literature. The performance of the described dynamic binary translator exceeds the 

performance of an interpreter on the same platform by an order of magnitude. Code analysis was 

only used to straighten branches in hot regions. While many popular dynamic binary translation 

optimizations are not readily applicable when using a virtual machine target, the performance 

achieved shows that using virtual machine as translation target is viable method of implementing 

dynamic binary translator. 
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1 Introduction 
This thesis investigates dynamic binary translation, which is a particular form of emulation. 

Emulation may be described simply as the practice of simulating one computer system on 

another. Emulation is useful for: 

• Preservation (the ability to execute programs from an obsolete system). 

• New system development – develop a system emulator as a precursor to developing the 

hardware. 

• Software development when no hardware is available. E.g. an emulator is built in to 

Apple Computer’s Xcode development environment. 

• Education, e.g. the UVic ARMSim#, an emulator for the ARM7TDMI processor. 

• Migration, providing the ability to run programs from a previous platform. E.g. Apple 

computer provided an emulator for Motorola when they migrated to PowerPC, and again 

when they migrated to Intel processors. 

• Performance tuning, e.g. an emulator may give access to count clock cycles for memory 

access and other operations, which can be difficult even when hardware is available. 

The goal of this thesis is to develop and describe a high performance, portable emulator for the 

ARM v4 architecture. An existing interpreter will be extended to create a dynamic binary 

translator (DBT) that implements some of the techniques discussed in the recent literature. The 

implemented DBT runs on three platforms1 and is more than ten times faster than the interpreter 

when compared using three benchmark programs. These results are achieved without requiring 

static code analysis. 

This thesis will first introduce the area of emulation, followed by a review of the technologies 

used to implement the dynamic binary translator and the current literature in the area. The 

implementation of the DBT and the incorporation of concepts from the literature will be 

described and the results achieved discussed. 

 

                                                
1 Microsoft Windows, Linux and Apple Macintosh OSX 
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2 Background 

2.1 Emulation 
A broad definition of emulation is “the process of implementing the interface and functionality 

of one system or subsystem on a system or subsystem having a different interface or 

functionality” [1]. The same authors give another definition, which is more useful for the 

purpose of this thesis “In terms of instruction sets, emulation allows a machine implementing 

one instruction set, the target instruction set, to reproduce the behaviour of software compiled to 

another instruction set, the source instruction set”. 

Emulation is an important enough area that large corporations have invested time and money to 

create emulators. This is often done to allow software migration to new hardware, for example 

Apple Computer provided the Rosetta emulator with OS X v10.4.4 to allow Intel based machines 

to run software compiled for the earlier PowerPC machines. 

There are several common techniques that are used to create emulators. These techniques exist 

on a continuum of complexity, performance and resource requirements. Interpretation is the 

simplest, slowest, least resource intensive technique while binary translation lies toward the other 

end of the continuum requiring more resources but delivering superior performance. Several 

other techniques including threaded interpretation and pre-coding lie between the two extremes. 

2.1.1 Interpretation 

Interpretation is a widely used technique for implementing high-level programming languages, 

for example Perl, Ruby and Python are currently popular interpreted languages. However in the 

context of emulation the goal is to interpret machine code rather than a high level language. The 

operation of a simple interpreter may be defined as “stepping through the source program 

instruction by instruction, reading and modifying the source state according to the instruction” 

[1]. 

A simple interpreter may be described as having 3 parts: 

1. Simulated memory area containing code, data and the stack. 

2. A context block that stores the simulated state of the source machine. 



3 

 

3. The interpreter codes. 

The interpreter operates by loading an instruction from the simulated memory area, decoding the 

instruction and updating the state and/or memory based on the decoded instruction. This 

approach is known as a decode-and-dispatch interpreter because there is a central loop that 

decodes the instruction and dispatches it to a routine that updates the memory and state of the 

simulated machine [1]. 

A simple interpreter may be enhanced in several ways. Common approaches include: 

• Indirect Threaded interpretation removes the central dispatch loop and replaces it with 

code to move directly to the next instruction at the end of each instruction interpretation 

routine. The goal of this is to reduce the number of branch instructions executed. The key 

component of this technique is the dispatch table, which maps instructions to routines that 

interpret them. When interpretation of the current instruction is complete the next 

instruction is decoded and the address of the routine to interpret it is obtained from the 

dispatch table. This is referred to as indirect threading because of the indirection of the 

dispatch table. 

• When a source instruction is interpreted multiple times, some of the work that is done to 

extract the meaning of the instruction is repeated. The precoding technique captures this 

repeated work and stores the instruction in an intermediate form that allows the 

instruction to be interpreted more easily. The operands and other information from the 

instruction are extracted into the fields of the precoding. The precoding is based on the 

instruction type so one precoding may be shared across multiple instructions. The 

interpreter routine to execute the decoded instruction retains the mechanism from Indirect 

Threaded interpretation that loads the next instruction, but now the dispatch table stores 

the pointer to the routine that executes the pre-coded instruction. It has been suggested 

that this technique is better suited to CISC architectures where the instruction decode is a 

more complex process due to variable instruction lengths and layouts [1]. 

• Direct Threaded Interpretation is based on precoding but discards the dispatch table. 

Instead of storing the address of the routine to execute the pre-coded instruction in the 

dispatch table the address of the routine is held in the structure that contains the pre-

coded instruction. 
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2.1.2 Binary Translation 

Binary translation is the process of converting the instructions of the source program into 

instructions for the target and update the simulated state of the source machine. Each instruction 

in the source program is mapped to a specific translation on the target that simulates the 

operation of the source instruction. Two things separate binary translation from precoding: 

1. The translated form is directly executable on the target and requires no interpreter 

routine. 

2. Each translation fragment maps to a specific source instruction, block or region. 

Binary translation is a hard problem in the absence of a high level representation of the source 

program because all knowledge of the program must be derived from the in memory 

representation of the source program. In a static context this presents several significant 

challenges [1]: 

• Code discovery 

• Code location 

• Self referencing code 

• Self modifying code 

2.1.2.1 Code Discovery 

Code discovery is the problem that it is hard to know in any given block of memory exactly 

which bytes represent code and which represent data. This is a more significant problem with 

CISC instruction sets, because of the inconsistent instruction lengths and layouts, but is relevant 

to RISC also. For example the bytes following a jump instruction may or may not be code, or be 

reachable if they are code. 

Some common object/executable file formats separate code and data e.g. the Portable Executable 

(PE) format on Windows. In the case of the PE format the operating system maps text areas as 

execute/read-only and data areas as no execute/read write. However there may be read-only data 

in the text area so code discovery remains an issue. 
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2.1.2.2 Code Location 

Code location is the issue of knowing where in the target memory code is located. The problem 

can be illustrated with an indirect jump such as the following ARM v4 instruction: 

MOV	  PC,	  R2	  
	  
At runtime this causes the processor to branch to the location held in register 2, at translation 

time the address is usually not known and sometimes cannot be known. We can assume that the 

contents of R2 is an address in the memory block that contains the code and data. The issue is 

that the address in R2 is a source address, which means that a mechanism to determine the 

translated address at runtime must be implemented. 

2.1.2.3 Self Referencing Code 

Self-referencing code is where the program reads data from its code area. This is a variation of 

the code location problem in that the address that is being read from must be translated to a target 

address. 

2.1.2.4 Self-Modifying Code 

Self-modifying code is code which writes into its code area at runtime, so potentially instructions 

may change after they have been translated. Again as with the code location problem, it’s also 

necessary to be able to find the correct location to write to. 

Data execution prevention (DEP) in modern operating systems normally prevents execution of 

any writeable memory areas, except for privileged applications such as just-in-time (JIT) 

compilers. The purpose of DEP is to improve the security of the operating system against attacks 

such as buffer overflow exploitation. 

2.1.3 Dynamic Binary Translation 

One way to overcome some of these issues is to perform translation on the source program when 

it is executing with actual data. This is dynamic translation, as code is discovered it is translated. 

A simple DBT has several parts [1]: 

• An emulation manager that controls the process at a high level. 

• An interpreter. 
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• A binary translator that converts one or more source instructions to one or more target 

instructions. 

• A source code block – an address range in memory that contains the code and data of the 

source program. 

• A target code cache. 

• A mechanism to map the source program counter to target program counter. 

The general procedure is to build some minimal translation unit, which is called by the emulation 

manager in place of interpreting individual instructions. This minimal translation unit may be 

described as a dynamic basic block [1], which is defined as a block of instructions that starts with 

the first instruction executed after a branch or a jump and ends with the next branch or jump 

instruction. This differs from a static basic block in that it may contain multiple entry points. It 

also means that a series of instructions may be present in multiple DBBs. 

Static Basic Blocks Dynamic Basic Blocks 

	   add	  
	   load	  
	   store	  

Block	  1	   	   add	  
	   load	  
	   store	  

Block	  1	  

loop:	   load	  
	   add	  
	   store	  
	   brcond	  
skip	  

Block	  2	   loop:	   load	  
	   add	  
	   store	  
	   brcond	  skip	  

	  

	   load	  
	   sub	  

Block	  3	   	   load	  
	   sub	  

Block	  2	  

skip:	  	  add	  
	   store	  
	   brcond	  
loop	  

Block	  4	   skip:	  	  add	  
	   store	  
	   brcond	  loop	  

	  

	   add	  
	   load	  
	   store	  
	   jump	  
indirect	  

Block	  5	   loop:	   load	  
	   add	  
	   store	  
	   brcond	  skip	  

Block	  3	  

	   	   	   skip:	  	  add	  
	   store	  
	   brcond	  loop	  

Block	  4	  

Figure 1 Static versus Dynamic Basic Block [1] 

The execution of the translator may be described as follows: 

1. From the program entry point instructions are interpreted until execution reaches the first 

branch or jump instruction. 
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2. The branch or jump instruction ends the dynamic basic block (DBB). 

3. The DBB may be translated and stored in the translated block cache (TBC). The source 

program counter to target program counter map is updated to point to the translated 

block. Now the block can be executed without falling back to the emulation manager 

between translated instructions. 

4. Before an instruction following a branch or jump is interpreted the emulation manager 

checks the TBC for a translation for the address of the next block: 

a. If the address is a miss in the TBC the next block is interpreted until execution 

reaches a branch or jump instruction which ends the DBB. 

b. If the address is a hit in the TBC the translated block is executed. At the end of 

the translated block control passes back to the emulation manager. 

A primary goal of Dynamic Binary Translation is to significantly improve performance when 

compared to an interpreter as well as being easier to implement than a Static Translator. While a 

DBT may require additional memory to store the translated code cache and extra execution time 

to create the translated instructions it has performance potential well beyond the interpreter. DBT 

has been widely used to implement emulators [2] including: 

• Apple Computer, M68K to PowerPC 

• Transitive Corporation, QuickTransit Motorola Power PC to Intel x86 (also SPARC to 

x86, x86 to Power Architecture) 

• DEC, FX!32 x86 to DEC Alpha 

• HP ARIES, HP 9000 HP-UX to HP Integrity HP_UX 11i 

• Sun Microsystems Wabi x86 to SPARC 
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3 Previous Work 
Current work in dynamic binary translation is focused in several areas: 

• The reduction of the overhead associated with binary translation [3], [4]. 

• The ability to target many different kinds of applications without being limited to static 

program code [5]. 

• The ability to observe the simulated system state at any point during a simulation [6]. 

• The ability to easily change the target architecture from one instruction set architecture 

(ISA) to another [7]. 

However the main focus of research is on improving the performance of binary translation 

through reducing the associated overhead. This overhead has been characterized in several ways: 

• The overheard is made up of translation overhead and execution overhead. Most 

processor time is spent executing translated code so optimizing the translated code to 

reduce the execution overhead is important [4]. 

• A less generalized view of the overhead is that it is comprised of overhead from 

initialization, cold code translation, profiling, and hot trace building, all of which should 

be targeted to reduce their impact [3]. 

• Another view is that there is overhead in translating code and in executing translated code 

and a balance must be struck between the two. Up to some limit improving the quality of 

the translated code pays off with a reduction in overall execution time [8]. 

3.1 Reducing Translation Overhead 
While this is described as needing to be balanced with the execution overhead, there appears to 

be very little work being done to reduce it. One way to reduce the translation effort is to simply 

translate only the ‘hot’ blocks [9], [6]. 

3.2 Reducing Execution Overhead 
The approaches to improving the quality of translated code are many and varied, some address 

improving the efficiency of running the translated code, others address the issue of code 

expansion and attempt to reduce the number of target instructions that are generated for each 

source instruction. Proposed approaches for reducing execution overhead include: 
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• Increase translation unit size 

• Shadow stacks 

• Indirect branch target caching/software indirect jump prediction 

• Duplicate and rearrange code 

• Map source registers to target registers 

• Optimize condition code handling 

• Take advantage of powerful instructions in the target ISA that may replace several source 

instructions 

• Cache decoded instructions for reuse by the interpreter 

The first three of the above can be grouped together as mechanisms to reduce calls to the 

emulation manager. The emulation manager in a binary translator performs a similar role to the 

dispatcher in an interpretive simulator. When a translation unit’s execution is completed the 

emulation manager determines whether execution can continue from the translation cache or 

whether further source code must be translated. 

3.2.1 Translation Unit Size 

A common approach to reducing calls to the emulation manager is to execute larger units of 

code. Larger units of code may improve performance in two ways: 

1. Give fewer points at which to return to the emulation manager (minimize context 

switching). 

2. Provide the compiler of the translated code greater scope for optimization (improve code 

quality). 

While some DBT systems have used single instructions [5] as the translation unit, it is more 

common that the unit of translation is the basic block, [6], [9] or dynamic/extended basic block 

[10], [11]. 

Generating larger translation units is an active area of research. The general approach is to 

profile the execution of the program and monitor the number of times that each basic block is 

executed. Blocks that are executed more times than a configurable threshold value are marked as 

hot blocks. Various schemes have been proposed for making use of the hot block profile. 
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The Edinburgh High-speed Simulator (EHS) implements four execution modes to investigate the 

effects of translation unit size [12]. The system maintains a counter to track the total number of 

interpreted blocks and only performs translation after some number of blocks have been 

interpreted. They refer to the interval between two successive translations as an epoch. During an 

epoch the simulator builds an execution profile for each physical page. The baseline mode counts 

the number of times each block on the page is interpreted and translates the ‘hot’ blocks. This is 

referred to as basic block (BB) mode. There are three additional large translation unit (LTU) 

modes with translation units of increasing size. In LTU mode a control flow graph (CFG) is 

created for each physical page, the page may contain several separate CFGs, one or more 

combined CGs or a combination of separate and combined CFGs. The first increment of 

translation unit size use strongly connected components (SCC) as translation units. An SCC is a 

collection of basic blocks that have hot control flow graph (CFG) arcs between them, and any 

attached linear regions. Tarjan’s algorithm is used to extract the strongly connected components 

from the page. The next increment in translation unit size is the CFG where each CFG within the 

page forms a translation unit. The final translation unit is the page that contains one or more 

CGFs. The page LTU has the best simulation performance, but the performance difference 

between the large translation unit approaches is minimal. 

Translation Unit Performance Improvement over BB 
SCC 1.63 
CFG 1.64 
Page 1.67 
Table 1 EHS Performance improvement 

A similar approach is to create hot regions, which are arbitrary CFG sub-graphs constructed from 

hot basic blocks and the blocks neighboring them that are also hot [13] [8]. 

Another mechanism is to patch the end of a translated block with a jump to the start of the next 

BB [14], [15]. This may be the simplest approach since no profiling is involved. A similar 

approach is lazy block linking, where blocks are only linked together when a context switch 

occurs [16]. 
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A significant difference between these approaches is whether the large execution units are 

formed by joining together smaller translation units [13] or compiled directly to larger translation 

units [12]. 

Creating dynamic basic blocks often results in code duplication as more than one entry point 

may exist to the same piece of code. This code duplication has been measured and found to only 

increase the generated code size minimally [4], [13]. 

3.2.2 Shadow Stack 

When a function is called the return address is usually stored in a register or pushed onto the 

stack to enable the epilogue of the called function to jump to the saved location. In a DBT 

returning from a function call may entail returning to the emulation manager to determine the 

address of the next instruction to execute. The shadow stack is a mechanism to avoid the cost of 

mapping the source return address to the target return address when returning from a function 

call. The address of the translated block to return to is saved on the shadow stack, while the 

address of the source address to return to is stored in the source stack. On return from the 

function call, if the address from the shadow stack matches the translation of the address from 

the source stack, the target address from the shadow stack can be used to access the next 

translated block directly. If the addresses don’t match or there is no translated block for the 

address, then the call goes to the emulation manager [1], [16]. The shadow stack technique is 

only applicable to DBTs that maintain both a source program counter and a target program 

counter (TPC). Many of the DBTs that are JIT compiled do not maintain a TPC [6], [11]. This 

idea can be extended to preemptively translate the code at the return site if it has not already been 

translated [17]. 

3.2.3 Indirect Branch Target Caching/Software Indirect Jump Prediction 

Software indirect jump prediction exploits the observation that indirect branch targets seldom or 

never change. By profiling the execution of the code the common destinations for an indirect 

branch may be recorded and used to directly access the translated block. The simulation can fall 

back to the emulation manager if the target is an address that has no translation. This can be 

achieved by adding a series of if statements that check the return address to the end of the 

function body [1]. A similar but more expensive operation at run time is to use the indirect 
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branch target address to look up Target PC values which allows the translated branch target to be 

executed directly without returning to the emulation manager [17], [16]. 

3.2.4 Map Source Registers to Target Registers 

A simple way to manage the translation of source registers is to map them to memory. However 

this causes significant overhead as each read or write from a register requires a memory 

operation. One way to avoid this overhead is map source registers directly to target registers for 

each register use in a basic block [14], or within a region [8]. 

3.2.5 Optimize Condition Code Handling 

Simulating the condition code flags in memory incurs significant overhead in a similar manner to 

simulating registers in memory. It is possible to avoid this overhead if the effect of the 

instruction on the condition code flags in the source ISA matches the behavior in the target ISA 

[8]. 

3.2.6 Take Advantage of the Target ISA 

In some case the target ISA contains powerful instructions that may map to several source ISA 

instructions. For example in the ARM v4 ISA the MLA maybe used to simulate the sequence of 

MUL and ADD instructions in the Intel x86 ISA. Patterns of instructions in the source ISA 

suitable to be mapped to a single target instruction may be found by constructing directed flow 

graphs for each basic block and the searching for sub-graphs that match the pattern that can be 

replaced by a single instruction [18]. 

3.2.7 Cache Decoded Instructions 

In general there is little mention in the literature of the interpretation stage of DBT. However, 

one scheme for improving the efficiency of the interpretation stage is to cache the decoded 

instructions for future use, saving the cost of repeated decodes [6]. 

3.3 Alternatives to Dynamic Binary Translation 
As discussed previously performing binary translation in a static context has a significant 

number of challenges. Combining static and dynamic binary translation can overcome the 

difficulties of creating a static translation and create a translation with performance that exceeds 

a typical dynamic binary translator. 
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3.3.1 Hybrid Static/Dynamic Translation 

One approach to combining dynamic and static translation is to statically decode the program, 

adding instructions into a single translation unit until a branch to a location that cannot be 

statically determined is encountered. When the entire program has been translated and is 

executing, dynamic branches are profiled and if the destination of the branch is not in the current 

translated block a ‘miss’ is generated. If a sequence of instructions generates too many misses it 

is recompiled using the collected branch destination information [11]. 

3.3.2 Hybrid Instruction Set Compiled Simulation 

Another approach to combining static and dynamic translation is to perform a static analysis to 

create a decoder for each type of instruction that is discovered in the program [19]. The compiler 

optimizes the decoder for each instruction type when the translator is compiled. The compilation 

time for the translator for the program is minimized because only the instructions discovered in 

the program have translators compiled, not the whole of the ISA. At run time instructions are 

executed one at a time giving the flexibility of interpretive simulation. 

3.4 The ARM v4 Instruction Set Architecture and Binary Translation 
The ARM ISA has several features that provide additional challenges for binary translation [20]. 

3.4.1 PC Relative Addressing 

PC relative addressing is an instance of the code discovery problem. Large constants may be 

loaded from the text section by using the PC as the base address for the LDR (Load Register) 

instruction. The PC that is used must be the source PC. PC relative addressing may also be used 

to implement switch statements [20], [17]. 

3.4.2 Shifter Operand and Shifter Carry Out 

The ARM v4 ISA provides several addressing modes for instruction operands, as described in 

section 4.1.2.8. While some of these modes generate an operand from a straightforward 

immediate or register value, others may apply one of several shift operations to generate the 

operand value. Instructions using an addressing mode that is performing a shift to calculate the 

operand value require additional code in the translation to perform the shift. Using this type of 

addressing in an instruction also sets the C flag if there is a Carry Out from the shifter operand. 

So translated code also has to provide a mechanism to set the C flag [20]. 
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3.4.3 Condition Flags 

Many instructions in the ARM ISA may set the condition codes, the comparison instructions, 

CMN, CMP, TEQ and TST, as well as arithmetic, logical or move instructions. Exactly how the 

flags are set depends on the instruction. Flag setting introduces considerable translation overhead 

to any instruction that sets the flags. The translator requires additional functionality to handle the 

specific flag setting for the various instruction groups [20]. 

3.4.4 Conditional Execution 

Nearly all instructions in the ARM v4 ISA contain a conditional execution prefix as described in 

section 4.1.2.1. This prefix determines if the instruction will be executed based on the settings of 

the flags in the Current Program Status Register (CPSR), described in section 4.1.1.3. The action 

of checking the CPSR flags can introduce a considerable overhead to the translation of any 

particular instruction. The number of flags checked depends upon the particular condition code. 

Any instruction that has a condition code prefix other than “always” requires that the translator 

generate code that implements the condition code check. On some other architectures similar 

condition code mechanisms exist and there may be ways to use the target architectures condition 

code flags to emulate those of the source architecture, in place of generating a translation that 

checks the simulated CPSR [8].
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4 “An Approach to Dynamic Binary Translation” 
In this thesis we investigate the specific case of implementing a portable dynamic binary 

translator for the ARM v4 ISA. The translator is portable because it runs on both the Microsoft 

.NET Common Language Runtime (CLR) and the Mono open source implementation of the 

ECMA C# and CLR standards. Mono is supported on the Linux, OS X and Windows operating 

systems2. The translator implements the usual features of a DBT as well as some of the 

optimization techniques described in Chapter 3 Previous Work that are suited to CIL as a 

translation target, including: 

• Large translation units 

• Code layout changes 

• Code duplication 

• Conditional execution optimization 

• Branch condition inversion 

The ARMSim#3 emulator previously developed in the Department of Computer Science at the 

University of Victoria was implemented in C# on Microsoft’s .Net platform. The interpreter 

extracted from ARMSim# provided a readily available starting point to develop a DBT from. 

Choosing to use the ARMSim# interpreter made using the same development environment the 

default choice. In turn, choosing to develop the DBT using CIL as the target constrained the 

implementation in other ways. Many of the techniques outlined in Chapter 3 Previous Work are 

not suited to an intermediate language as a translation target or cannot be readily implemented on 

a stack machine. 

• Register mapping is not a useful technique in this context as there are no registers to map 

to. 

                                                
2 http://www.mono-project.com/Main_Page 
3 ARMSim# is an ARM7TDMI emulator that provides simulation of state including the 16 
general purpose registers and the CPSR, the L1 Cache, both code and data, main Memory, and 
the Stack. ARMSim# also includes an assembler and a linker, so that when a file is loaded it is 
automatically assembled and linked [40]. 
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• CIL does not contain powerful instructions that multiple ARM assembler instructions 

may be mapped to. 

The approach taken in this thesis combines several techniques from Chapter 3. Instructions are 

translated in isolation and combined to form DBBs. DBBs are coalesced to form large translation 

units that span hot regions in the control flow graph. 

The particular combination of translating to an intermediate language for a virtual machine and 

forming large translation units from hot traces does not seem to appear in the literature. 

4.1 The ARM v4 Architecture 
Implementing a translator for the ARM processor requires some understanding of the features of 

the device that a programmer may use. There are many versions of the ARM architecture. This 

thesis describes a translator for the ARM7TDMI processor, which implements the ARM v4 

architecture. The ARM is a RISC processor [21] and as such implements these typical features: 

• The instruction fields have fixed lengths and are uniform across different instructions. 

Instruction decoding is simplified because the same mechanism can be used to decode 

different instructions, wherever instructions share the same layout. For example all data 

processing instructions share the same addressing mode options in the shifter operand. 

• Addressing modes are simple with the address for the load or store instructions being 

determined from a combination of values in registers and immediate values in the 

instruction. 

• A large uniform register file, which means there are a large number of registers and they 

are all a uniform 32 bits. 

• A load/store architecture, which means that instructions do not manipulate memory 

directly, rather instructions manipulate registers. Memory is loaded into registers, 

manipulated by instructions and stored from registers back to memory. 
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4.1.1 Programmer’s Model 

4.1.1.1 Modes 

There are seven processor modes in the ARM architecture, for the purpose of this thesis we are 

only interested in User mode, which is normal program execution mode. The other six modes are 

generally only used by the operating system. 

4.1.1.2 Registers 

Although the ARM processor has 31 general-purpose registers, only 16 are visible to the 

programmer in user mode. The remaining non-visible registers are used for speeding up 

exception processing [21]. Exceptions are outside the scope of this thesis so I will not mention 

them further. The use of the registers is defined by the ARM calling convention [22] as follows: 

• Registers 0 to 11 or 12 are available for the use of the programmer 

• Register 12 is the intra procedure call scratch register (IP) 

• Register 13 is by convention used as the stack pointer (SP) 

• Register 14 is the Link Register (LR) used to hold the return address of the Branch and 

Link instruction, which is used when making a function call 

• Register 15 is the program counter (PC) 

The programmer may change the PC directly; this is sometimes described as the program counter 

being exposed [17]. Changing the PC directly is the equivalent of a branch instruction. However 

the PC should only be read or written according to the specified rules. [21][A2-7] ARM v4 and 

earlier have a three-stage instruction pipeline so the PC contains the address of the next 

instruction to fetch, two instructions after the instruction being executed. 4This is important for 

calculating branch destinations when translating instructions [21][A1-5]. 

Each column in Figure 2 represents a single clock cycle, so in each cycle the processor: 

• Fetches an instruction. 

• Decodes the instruction fetched in the last clock cycle. 

• Executes the instruction fetched two cycles ago. 

                                                
4 More recent versions of the architecture have deeper pipelines, but the 2 instruction offset is 
maintained for reasons of compatibility 
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Figure 2 Three stage instruction pipeline (ARM 7 TDMI) 

4.1.1.3 Current Program Status Register 

The current program status register (CPSR) shown in Figure 3 is a special purpose register 

outside of the general-purpose registers 0 through 15. The bits of interest in the CPSR are the 

highest 5 and the lowest 8 (bits 8 through 26 are defined as Do Not Modify). 

 

Figure 3 Format of the CPSR 

Bits 31 to 28 are the condition code flags, N, Z, C and V. These flags are modified by 

comparison instructions, as well as arithmetic, logical and move instructions. Many of the 

arithmetic, logical and move instructions may be flag setting or flag-preserving depending on 

whether the instructions S bit is set. If the S bit is set: 

• The N flag is set to 1 if the result of the instruction is negative when viewed as 2’s 

complement signed integer. Otherwise the N flag is 0. 

• The Z flag is set to 1 if the result is zero; otherwise it is set to 0. 

• The C flag is set in one of four ways depending on the instruction. The C flag is the carry 

flag, so if the operation would have produced a carry then the flag is set. 

• The V flag is the overflow flag and is generally set if an operation causes a signed 

overflow, but it may be set for other reasons. 

Bit 27 is the Q flag and is used in some variants of the ARM architecture that support Enhanced 

DSP Extensions. 
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The bottom 8 bits of the CPSR are known as control bits. The I bit and the F bit enable and 

disable interrupts, the T bit is set when in thumb mode which is an alternative operation mode 

supported by the ARM processor that uses 16 bit instructions. The M bits indicate the processor 

mode. The control bits are not modifiable in User mode code so they will not be discussed 

further. 

4.1.1.4 Memory 

In the ARM architecture v4 memory is a single address space of 2^32 8 bit bytes, with unsigned 

integer addresses from 0 to 2^32 – 1. This address space may also be viewed as 2^20 32 bit 

words aligned on 4 byte boundaries. 

4.1.1.5 Data Types 

The ARM processor itself supports 3 data sizes: 

1. Word, which is normally aligned to 4 byte boundaries. The 4 bytes making up the word 

with the address A, are at A, A+1, A+2, A+3. 

2. Half-Word, which is normally aligned to 2 byte boundaries. 

3. Byte. 

The data types are extended to include double word values when the floating point coprocessor is 

present and quad word values when the DSP unit is present. 

4.1.1.6 Memory Alignment 

The ARM processor operates most efficiently when data access is aligned, the address for a word 

is word-aligned and the address for a halfword is halfword-aligned. The assembler provides a 

directive for the programmer to align data. Alignment is not compulsory but there is a 

performance penalty for unaligned access. 

4.1.2 Instructions 

Version 4 of the ARM architecture supports two different instructions sets. By default 

instructions are 32 bits. However there is a second instruction set, called the Thumb instruction 

set which is a re-encoded 16 bit subset of the 32 bit instruction set. The Thumb instruction set is 

not in the scope of this thesis. 
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The Architecture Reference Manual [21] [A1-5] states “The ARM instruction set can be divided 

into six broad classes of instruction”: 

• Branch instructions 

• Data-processing instructions 

• Status register transfer instructions 

• Load and Store instructions 

• Coprocessor instructions 

• Exception-generating instructions” 

4.1.2.1 Conditional Execution 

Before considering the classes of instructions it is important to note that most instructions may 

be executed conditionally. The top 4 bits of nearly all instructions is the condition code. This 

code determines which flag or combination of flags from the CPSR must be checked in order for 

the instruction to be executed. 

Loop:	  
CMP	  r1,	  #0	  
SUBGT	  r1,	  r1,	  #1	  
BNE	  loop	  
Figure 4 Conditional execution 

The small loop shown in Figure 4 demonstrates conditional execution. The compare (CMP) 

instruction sets the flags in the CPSR based on the results of the comparison as follows: 

• N flag is set to the MSB of the result of r1 – 0 

• Z flag is set if r1 – 0 = 0  

• C flag is set if r1 – 0 >= 0 

• V flag is set if r1 – 0 generates a 32 bit signed overflow5 

The SUBGT instruction is conditionally executed on checking the flags in the CPSR. For GT the 

flags are checked as follows: 

• Z flag is clear 

                                                
5 Subtraction causes an overflow if the operands have different signs, and the first operand and 
the result have different signs.(Seal, 2000) 
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• N flag equals V flag 

Before the BNE instruction is executed the flags in the CPSR are checked as follows: 

• Z flag is clear 

The default condition code prefix is always (mnemonic AL) which instructs the processor to 

execute the instruction regardless of the setting of the flags. The remaining 14 conditions cover: 

• Tests for equality and non-equality. 

• Tests for <, <=, > and >+ inequalities in both signed and unsigned arithmetic. 

• Each flag to be tested individually. 

[21][A1-5] 

One purpose of conditional execution is to reduce the number of branch instructions. Reducing 

branches is beneficial because they cause the instruction pipeline to be flushed. A conditional 

instruction that is not executed is equivalent to a no operation (NOP) instruction [21]. 

4.1.2.2 Branch Instructions 

The ARM processor has several different branch instructions as well as allowing direct setting of 

the program counter which has the same effect as a branch (There are very specific rules as to 

how the program counter may be changed). 

1. B is the plain branch instruction. 

2. BL is the branch and link instruction, effectively a subroutine call. Setting the L bit 

causes the instruction to save the return address in the link register (register 14). At the 

end of the subroutine the link register can be copied into the program counter to return 

from the subroutine. 

3. BX is the branch and exchange instruction, this instruction branches to a destination that 

is held in a register. This instruction allows the option of changing into Thumb mode. 

The other significant difference between 1 – 3 and 4 above is that 1 – 3 branch to an immediate 

value that is encoded in the instruction, whereas 4 is indirect and branches to a destination held 

in a register. 
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4.1.2.3 Data Processing Instructions 

There are 16 data processing instructions, which perform operations including addition, 

subtraction, logical and, logical or etc. All the data processing instructions, except for move and 

move negative, take two source operands. The first source operand is always a register. The 

second source operand is called the shifter operand and is calculated using one of eleven modes. 

All the data processing instructions may update the condition code flags in the CPSR depending 

on whether the S bit is set. Exactly how the flags are set is specific to the instruction. 

4.1.2.4 Status Register Access Instructions 

These two instructions allow the value of the CPSR to be loaded into a register or updated from a 

value in a register. 

4.1.2.5 Load and Store Instructions 

Load instructions retrieve a value from memory into a register, store instructions save a value 

from a register to memory. The instructions come in two forms: 

1. Operates on 32-bit word or 8-bit unsigned byte values 

2. Loads or stores 16-bit unsigned halfwords and loads 8-bit byte or 16-bit halfwords with 

sign extension.  

Similarly to the data processing instructions the load and store instructions have several 

addressing modes available to determine the memory address to read from or write to. 

4.1.2.6 Coprocessor Instructions 

The ARM processor has a set of instructions specifically for communication with coprocessors. 

These instructions fall outside the scope of this thesis. 

4.1.2.7 Exception-Generating Instructions 

The binary translation application described in this thesis makes minimal use of the software 

interrupt instruction (SWI) to terminate a program. The SWI instruction is normally used to 

allow user mode to transfer control to privileged Operating System code. Breakpoint (BKPT) is 

the other exception generating instruction; this instruction is not available in the translator 

described in this thesis. 
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4.1.2.8  Addressing Modes 

In the ARM v4 architecture there are five addressing modes associated with five different classes 

of instructions. 

• Mode 1 - Data processing operands 

• Mode 2 - Load and store word or unsigned byte 

• Mode 3 – Miscellaneous Loads and stores 

• Mode 4 – Load and store multiple 

• Mode 5 – Load and store coprocessor 

4.1.2.9 Setting of CPSR Flags Depends on Specific Instruction: 

The MOV instruction sets the flags in the following manner: 

• N Flag = MSB of destination register 

• Z Flag = if destination register == 0 then 1 else 0 

• C Flag = shifter carry out 

• V Flag unaffected 

Whereas the SUB instruction does the following 

• N Flag = MSB of destination register 

• Z Flag = if destination register == 0 then 1 else 0 

• C Flag = NOT Borrow From6(operand a – operand b) 

• V Flag = Overflow From7(operand a – operand b) 

However, how instructions set the flags fall into several groups so that it is possible to maintain a 

small collection of methods to generate the flag checking translations. 

                                                
6 “Returns 1 if the subtraction specified as its parameter caused a borrow (the true result is less 
than 0, where the operands are treated as unsigned integers), and returns 0 in all other cases. This 
delivers further information about a subtraction which occurred earlier in the pseudo-code. The 
subtraction is not repeated.” (Seal, 2000) 
7 “Returns 1 if the addition or subtraction specified as its parameter caused a 32-bit signed 
overflow. Addition generates an overflow if both operands have the same sign (bit[31]), and the 
sign of the result is different to the sign of both operands. Subtraction causes an overflow if the 
operands have different signs, and the first operand and the result have different signs.”(Seal, 
2000) 
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This is a very brief outline of the ARM processor. For further information, refer to the ARM 

Architecture Reference Manual [21]. 

As discussed at the start of this chapter the previously implemented ARMSim# interpreter runs 

on Microsoft’s .NET platform. This made the most obvious choice of target instruction set one of 

the dynamic code generation technologies supported on the .NET platform. The ability to easily 

generate and execute code dynamically also makes the .NET framework attractive as a 

translation target. The .NET framework provides several mechanisms for generating dynamic 

code: 

1. CodeDOM 

2. Reflection.Emit 

3. ExpressionTrees 

4.1.3 CodeDOM 

The CodeDOM is a library of types that provide representations for many types of source code 

items. A multi-step process allows using this library to create assemblies that can be stored in 

memory (or on disk) and executed dynamically. 

While CodeDOM has been used as a translation target for binary translation it’s a poor choice if 

simulation performance is an important goal. CodeDOM requires the use of a high level 

language such as C# as the translation target and each source instruction may generate as many 

as 1500 native target instructions [11]. 

4.1.4 Reflection.Emit 

Another possibility for generating code dynamically is the System.Reflection.Emit library. A 

major benefit of using IL as the translation target is that it allows access to all of the features of 

the CLR. Using IL it is possible to generate methods, classes and assemblies. Assemblies may be 

saved to disk, as well as executed dynamically. 

However using CIL directly makes the job of the programmer considerably more difficult for 

two reasons. The first is that it is hard to ensure the correctness of the CIL, “… unfortunately 

Reflection.Emit makes it very easy to generate invalid IL …” and “But the correctness and 

validity of IL is a far more subtle matter” [23]. 
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Because the emitted CIL is not available until runtime, the only way to investigate the validity of 

the generated code is to capture the emitted output using WinDBG or a similar console debugger. 

The second challenge with emitting CIL directly is that while the ARM processor is a register 

machine, the CLR is a stack machine. This means that the process of translating ARM 

instructions to CIL is a two part process where the instruction must be translated to the 

equivalent CIL instruction or instructions, but also the register manipulation performed by the 

instruction must be translated to the equivalent stack machine sequence. This introduces a large 

amount of code overhead to each translated instruction that the programmer is responsible for8. 

ARM Asm CIL 

sub	  r1,	  r2,	  r3	   Ldarg_0	  	   	   	   //	  push	  reference	  to	  class	  instance	  
Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
Ldc_I4,	  (int)rd	  	   	   //	  push	  index	  of	  rd	  
Ldarg_0	   	   	   //	  push	  reference	  to	  class	  instance	  
Ldfld,	  _registerInfo	   //	  push	  ref	  to	  the	  registers	  array	  
Ldc_I4,	  (int)rn	   	   //	  push	  index	  of	  rn	  
Ldelem_U4	   	   	   //	  push	  the	  value	  from	  rn	  
Ldarg_0	  	   	   	   //	  push	  reference	  to	  class	  instance	  
Ldfld,	  _registerInfo	  	   //	  array	  info	  
Ldc_I4,	  (int)	  rm	  	   	   //	  push	  index	  of	  rm	  
Ldelem_U4	  	   	   	   //	  push	  the	  value	  from	  rm	  
Sub	   	   	   	   //	  perform	  subtraction	  
Stelem,	  typeof(uint)	  	   //	  store	  element	  in	  rd	  

Figure 5 Stack manipulation overhead 

Figure 5 shows the translation of a simple subtraction instruction to CIL. Translating to the stack 

machine requires inserting instructions to configure the stack from the simulation context block, 

performing the desired operation and storing the result from the stack back to the context block. 

The stack machine nature of this code can be seen in that the initial items pushed onto the stack 

are the register array and the index of the register in which to store the result, and the last 

instruction stores the result. 

An obvious limitation of translating one instruction at a time is that the stack is reconfigured for 

each instruction, generating overhead when the results from one instruction and that state of the 

stack may be useful to the next instruction – hence the idea of translating blocks of instructions 

                                                
8 See Appendix C for an example of code expansion due to simulating register access and CPSR 
flag setting and checking. 
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rather than isolated instructions. In practice this may require two passes to generate the IL, 

removing redundant store and load instructions on a second pass. 

The emitted CIL is used to can be used in various ways. Used in the most minimal way it can 

generate a dynamic method, which is stored in memory and discarded when it is no longer 

required. Alternatively it can be used to generate an assembly containing modules, types and 

methods that may be saved to disk and used outside the scope of the currently executing 

program. 

In contrast with the high level code generated by the CodeDOM the IL generated by 

Reflection.Emit is at a similar level of abstraction to the source ARM assembly code. The 

number of instructions required to emulate a specific ARM instruction may be significant, 

especially if the condition codes are involved but it still generates many, many fewer instructions 

than the CodeDOM [11]. 

4.1.5 Dynamic Language Runtime 

The Dynamic Language Runtime (DLR) [24] is a library that sits on top of the CLR and provides 

a set of runtime services for supporting dynamic languages9. These services include: 

• Expression trees which are used to represent the semantics of a programming language. 

• Call site caching, which is a mechanism where operands and operations are cached so 

that if the same operation and operand types are seen subsequently the cached version can 

be used. This saves repeatedly looking up the same method. 

• Dynamic object interoperability, a set of classes and interfaces is provided that enable 

representation of dynamic objects and operations by language implementers. 

4.1.5.1 Expression Trees 

Expressions and Expression Trees form the basis of the translation mechanism in the binary 

translator described in this thesis. Expressions are implementations of the abstract Expression 

class. The System.Linq.Expressions namespace contains a large number of Expression classes 

that implement various programming language constructs. It also includes an Expression class 

that provides static factory methods to create the various node types. E.g. The Expression.Add 

                                                
9 Examples include Ruby, Python, Lisp, Smalltalk, Lua and many more. 
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factory method creates an instance of the BinaryExpression class that represents an addition 

operation without overflow checking. A key feature of expressions is that any operands of an 

expression are themselves expressions. This enables representing any source code as a tree of 

expression objects. An additional advantage to using the Expression class is that the class 

manages the IL stack transparently. 

An expression tree is a tree of objects where each node in the tree is an instance of an Expression 

object. An Expression tree is “also a representation of a program that can be manipulated at 

runtime” [25]. 

For example Figure 6 shows a simple C# assignment translated to an Expression tree. 

C# Expression tree 

_cFlag	  =	  1;	   Expression.Assign(	  
Expression.Field(Expression.Constant(this),	  _cFlagInfo),	  
Expression.Constant(1))	  

Figure 6 Translation from C# to Expression tree 

To obtain an expression that represents the field in the class, the Expression.Field method 

requires a reference to the class that contains the field, which is supplied by 

Expression.Constant(this). The field itself is accessed via a FieldInfo object, which has been 

created previously. Expression.Constant(1) supplies the value to assign to the field and the 

Expression.Assign on the outside performs the assignment of the constant to the field. 

The expression syntax compares favorably to the CIL syntax for the same operation shown in 

Figure 7. 

C#	   CIL 

_cFlag	  =	  1;	   Ldarg_0	   	   //	  push	  a	  ref	  to	  the	  class	  
Ldc_I4_1	   	   //	  push	  the	  value	  to	  store	  
Stfld,	  _cFlagInfo	   //	  store	  value	  into	  field	  

Figure 7 Translation C# to CIL 

Despite the fact that the expression tree code is making 4 calls to CLR API functions there is 

little or no difference in the performance between the two implementations. This was determined 

empirically by writing a small test program to repeatedly assign a value to a field. The variability 
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between runs exceeds the difference between the two implementations. See Appendix B for a 

small test program demonstrating this. 

To execute an Expression tree, it is compiled into a delegate, which can then be called. A 

delegate is a type safe callback mechanism, or put more simply ‘a handle to piece of code that 

can be called’ [25]. The delegate provides C# with a mechanism that is similar to a function 

pointer in C/C++. A delegate can also be defined as a class that holds a reference to a method. 

The signature of the delegate must match the signature of the method. 

The delegate may be: 

• Created at runtime. 

• A custom delegate provided by the programmer. 

• One of the generic delegate types provided by the runtime. Two categories of generic 

delegate types are available, Func<T> delegates which return a value and Action<T> 

delegates which do not. 

The CLR executes the delegate by calling its invoke method. A delegate can have several 

methods chained to it, both static and instance methods. 

var	  assignDelegate	  =	  Expression.Lambda<Action>(assignExpression).Compile();	  
assignDelegate();	  
	  
The Compile method generates CIL that is available to be JIT compiled when the delegate is 

called. 

One of the primary purposes of expression trees is to implement dynamic programming 

languages. This also makes them ideal for creating a DBT. Both IronRuby10 and IronPython11 are 

implemented on the DLR, and work in a similar manner. Both use a tokenizer and a parser to 

generate an abstract syntax tree that is either an expression tree in the case of IronPython, or 

converted into an expression tree in the case of IronRuby. In these dynamic languages the 

expression trees are first interpreted, to reduce the start up time, before being compiled. 

                                                
10 http://ironruby.codeplex.com 
11 http://ironpython.net 
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In the case of DBT on the CLR the Expression tree simplifies implementing the instructions 

from the target language because there is no need to translate from the register architecture of 

ARM assembler to the stack architecture of the CLR’s IL. The JIT compiler manages the stack. 

4.1.5.2 Nested and Block Expressions 

The Expression tree syntax becomes difficult to read once expressions exceed a certain size, 

however the combination of the fact that most Expression methods take at least one Expression 

parameter and that the Block Expression allows expressions to be grouped means that simple 

expressions may be combined to form more complex ones. 

var	  accessR1	  =	  Expression.ArrayAccess(	  
	   	   	   Expression.Field(Expression.Constant(this),	  _registerInfo),	  
	   	   	   Expression.Constant(IndexR1));	  
var	  assignR1	  =	  Expression.Assign(accessR1,	  Expression.Constant(7));	  
var	  accessR2	  =	  Expression.ArrayAccess(	  
	   	   	   Expression.Field(Expression.Constant(this),	  _registerInfo),	  
	   	   	   Expression.Constant(IndexR2));	  
var	  assignR2	  =	  Expression.Assign(accessR2,	  Expression.Constant(8));	  
var	  block	  =	  Expression.Block(assignR1,	  assignR2);	  
	  
Figure 8 Block expression 

4.1.6 How the Dynamic Code is Executed 

Both Reflection.Emit and Expression trees can be used to add methods to the existing assembly. 

These methods are compiled to native code by the CLR’s just-in-time compiler when the method 

is called. The CodeDOM is a much less dynamic approach requiring the creation of an assembly 

containing a class. 

4.2 CLR Optimization 
A significant benefit of targeting a runtime such as the CLR is the optimizations that the runtime 

itself provides. The optimizations provided by the runtime also improve as new versions are 

released. There have been significant improvements to the CLR between .NET 2.0 and .NET 4.5. 

This is not an exhaustive list, but rather some of the documented optimizations included in the 

CLR JIT compiler [26], [27]: 

• Multi-core JIT [27] Added in .NET 4.5, when an application is started a background 

thread running on a different processor is also started to perform JIT compilation. The 

goal of running the compilation on a separate thread is to avoid the compilation overhead 
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in making method calls. When a method is required in the application, it has already been 

compiled on the background thread. To know which methods are required by the 

application and in what order the application generates an execution profile that is stored. 

The execution profile is used by the background thread to determine which methods to 

compile and the order in which to compile them. 

• Method inlining. The method call is replaced by the body of the method. The CLR has 

many rules governing which methods may be in-lined, which vary with the specific 

version of the CLR. The trend has been to allow more inlining of methods between the 

initial release of the CLR and the latest .NET 4.5 release. 

• Assertion propagation (what is known to be true), this is a generalization of constant 

propagation. 

• Constant folding, e.g. y = 3 * 2 is changed to y = 6 by the compiler. 

• Branch straightening via prediction which is reordering of code so that the likely path 

taken in a branch is moved to the fall through position [26]. 

• Tail call, if the last code element in method1 is a call to method2 call then the stack frame 

of method1 may be reused by method2 rather than adding another frame to the stack. 

This optimization may be shared between the language to IL compiler and the JIT IL to 

native compiler by the language compiler creating IL code that the JIT compiler is more 

likely to apply the tail call optimization to [28]. 

• Value type handling has been improved by implementing “value type scalar replacement” 

which is essentially converting value types that are suitable into a collection of scalars. 

Other improvements have been made that allow methods with value type parameters, 

local variables or return value to be inlined [29]. 

4.3 Challenges 
There are three major challenges to resolve in order to implement a DBT for ARM v4 ISA with 

CIL as a target. 

4.3.1 Hardware Simulation Challenges 

At first glance the translation from one instruction set to another might seem quite 

straightforward, however in the case of ARM v4 assembler to the System.Linq.Expression 

syntax there are a number of challenges. Many of these challenges are simply challenges of 
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dealing with code expansion; a single ARM instruction may expand into tens of Expressions. 

This code expansion is generally driven by the need to simulate features of the ARM v4 ISA in 

software: 

• Since CIL is executed on a stack machine the registers of the ARM processor must be 

simulated. 

• Many ARM instructions make use of addressing modes that are encoded in the 

instruction and the calculations performed by the addressing mode must be simulated. 

• Simulating the CPSR flags and the setting of the flags. 

• Accessing the simulated memory block. 

• Simulating conditional execution. 

See Appendix C for an example showing code expansion in a translated block.  

4.3.2 When and What to Translate 

Translation is expensive in terms of the computation time required to translate the code, so there 

is little point in translating code that is unlikely to be executed enough to recoup the cost of the 

translation. After a DBB is discovered it isn’t translated until some decision is reached regarding 

the expected pay back from translating the block. Various mechanisms have been used to decide 

when to translate from a simple execution count [7], to a heuristic based on the block size and 

the execution count [6] 

4.3.3 Translating Program Flow 

A very similar problem is deciding which regions of an executing program are hot and worth 

creating large translation units for. In the case of forming large translation units (LTU) there is 

the additional challenge of discovering which code should be included in the LTUs. Forming 

LTUs also opens up other optimization possibilities such as code reordering. Forming LTUs may 

also be regarded as translating the program flow. When the unit of translation is the DBB the 

emulation manger controls the flow of the executing translation. At the end of each DBB control 

is transferred back to the emulation manager to determine which block to execute next. The 

formation of LTUs requires that this flow of control be translated. An additional challenge to 

maximizing the performance of LTUs is to ensure that the translation doesn’t become so large 

that it adversely affects the JIT compilation time. 
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The final challenge of translation is purely a challenge for the programmer, ensuring that the 

generated translation is an accurate representation of the source program.
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5 Implementing a Dynamic Binary Translator 
Faculty and students in the CS department at the University of Victoria developed the ARMSim# 

ARM simulator, which runs on the .NET framework. This simulator is based on a simple fetch 

and decode interpreter, and as mentioned previously the decoder from the interpreter makes an 

ideal starting point for implementing a dynamic binary translator. Many additional components 

were required to create a functioning DBT. 

5.1 Hardware Simulation 
While the ARMSim# emulator contains a simulation of the processor state the implementation is 

tightly coupled to the graphical user interface. For this reason the registers and memory of the 

processor had to be implemented in a manner suitable for use in a translator. 

5.1.1 Registers 

Since the CLR is implemented as a stack machine there are no registers available to map the 

registers of the ARM architecture to. The registers of the ARM architecture must be simulated in 

a Context Block, described previously. A simple approach to implementing the context block is 

to make it globally accessible. Translated data instructions may access the global context block 

for many reasons: 

• Loading data from source registers. 

• Storing data in destination registers. 

• Accessing the program counter to calculate offsets for immediate addressing. 

The System.Linq.Expression namespace provides a mechanism to access an array by index. This 

provides a way to implement translation of the actions of data transfer instructions on the 

simulation of the ARM processor’s registers. For example: 

1.	   Expression.ArrayAccess	  
2.	   (	  
3.	   	   Expression.Field(	  
4.	   	   	   Expression.Constant(this),	  
5.	   	   	   	  _registerInfo),	  
6.	   	   Expression.Constant(rd)	  
7.	   )	  
Figure 9 Accessing simulated registers 
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The Field expression on Line 3 provides the ArrayAccess expression on line 1 with the array to 

access. The Constant expression on line 4 is a reference to the object that the Field is a member 

of. The variable _registerInfo on line 5 is an instance of the System.Reflection.FieldInfo class 

that holds meta-data about the _registers array. This meta-data is used to access the array via 

Expression syntax. Fields may also be accessed by name. The second Constant expression on 

line 6 is the index of the element to retrieve, where the value of the index is supplied by a local 

variable, rd. 

This Expression.ArrayAccess is used to obtain the value of a register for use as an input in 

another expression or as an assignment target when creating an assignment Expression. 

5.1.2 Memory 

The source program to execute must be stored in memory to allow access to the code and data. 

This is implemented as a simple array of bytes. To access the program code and data requires 

mapping from a source address to a target address, which is an array index value. This can be 

summarized as: 

Index = (instruction address – program base address) >> 2 

An expression tree to perform this mapping is shown in Figure 10. 

1.Expression.ArrayAccess(	  
2.	   Expression.Field(Expression.Constant(this),	  _programInfo),	  
3.	   	   Expression.Convert(	  
4.	   	   	   Expression.RightShift(	  
5.	   	   	   	   Expression.Subtract(instructionAddr,	  
6.	   	   	   	   	   Expression.Constant(_baseAddress)),	  
7.	   	   	   	   Expression.Constant(2)),	  
8.	   	   	   typeof(int))	  
9.);	  
Figure 10 Expression syntax mapping a source address to a target address 

The Expression.ArrayAccess on line 1 accesses the array that stores the program, the variable 

_programInfo is similar to the _registerInfo variable above. The Expression.Convert on line 3 

generates the index into the array. It converts the unsigned integer generated by the 

Expression.RightShift into a signed integer. The conversion is required because the .NET CLR 

doesn’t permit an array to be indexed by an unsigned integer. 
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The arrays used to model memory and registers could have been implemented using the 

System.Collections.Generic.Dictionary class. This was investigated because it removed the 

requirement to map the SPC to the TPC, but the impact on simulation performance was 

significant. 

5.1.3 Translating Instructions 

Translating an instruction requires that we generate an expression to: 

1. Evaluate the condition code evaluation if the instruction is conditional. 

2. Increment the source program counter. 

3. Update the simulation state. 

4. Set the condition codes if required. 

Not all instructions require all steps. Many instruction translations simply increment the program 

counter and update the simulation state. For example: 

SUB	  R3,	  R2,	  R1	  
	  
Translates to the following in Expression syntax: 

1.	  Expression.Block(	  
2.	   Expression.AddAssign(	  
3.	   	   Expression.ArrayAccess(	  
4.	   	   	   Expression.Field(Expression.Constant(this),	  _registerInfo),	  
5.	   	   	   Expression.Constant(ProgramCounter)),	  
6.	   	   Expression.Constant((uint)4))	  
7.	   Expression.Assign(	  
8.	   	   Expression.ArrayAccess(	  
9.	   	   	   Expression.Field(Expression.Constant(this),	  _registerInfo),	  
10.	   	   	   Expression.Constant(rd)),	  
11.	   	   Expression.Subtract(	  
12.	   	   	   Expression.ArrayAccess(	  
13.	   	   	   	   Expression.Field(	  
14	   	   	   	   	   Expression.Constant(this),	  _registerInfo),	  
15.	   	   	   	   Expression.Constant(rn)),	  
16.	   	   	   Expression.ArrayAccess(	  
17.	   	   	   	   Expression.Field(	  
18.	   	   	   	   	   Expression.Constant(this),	  _registerInfo),	  
19.	   	   	   	   Expression.Constant(regM))	  
20.	   ));	  
Figure 11 A simple instruction translation 
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Lines 2 through 6 form an expression to increment the program counter. 

Lines 7 through 20 store the result of the subtraction expression in the simulated register, using 

the value of the local variable rd to index into the array that simulates the ARM processor’s 

registers. 

5.1.3.1 Indirect Branches 

Indirect branches are those branches whose destination is not known until runtime. For example: 

MOV	  PC,	  R2	  
	  
The address loaded from R2 is a SPC address so it must be mapped to a TPC address. 

1.Expression.Assign(	  
2.	   Expression.ArrayAccess(	  
3.	   	   Expression.Field(Expression.Constant(this),	  _registerInfo),	  
4.	   	   	   Expression.Constant(pc))),	  
5.	   Expression.ArrayAccess(	  
6.	   	   Expression.Field(Expression.Constant(this),	  _programInfo),	  
7.	   	   	   Expression.Convert(	  
8.	   	   	   	   Expression.RightShift(	  
9.	   	   	   	   Expression.Subtract(Expression.ArrayAccess(	  
10.	   	   	   	   	   Expression.Field(Expression.Constant(this),	  
11.	   	   	   	   	   	   _registerInfo),	  Expression.Constant(r2)),	  
12.	   	   	   	   	   Expression.Constant(_baseAddress)),	  
13.	   	   	   	   Expression.Constant(2)),	  
14.	   	   	   typeof(int))	  
Figure 12 Indirect branch translation 

The indirect branch translation combines a simulated memory access with manipulating the 

simulated registers. The Expression.Assign on line 1 is the direct translation of the move 

instruction, assigning the value from the address in R2 to the PC. The nested expressions are 

necessary “boilerplate” code to access the simulated state. The memory access code duplicates 

the code in Figure 10 and the register access code duplicates the code in Figure 9. 

5.1.4 Flag Setting and Condition Codes 

5.1.4.1 Conditional Instructions 

As discussed previously ARM instructions may be executed conditionally which means that the 

condition check must be translated. A simple optimization is to only generate flag checking code 

for those instructions that have a condition code other than always. 
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ARM Expression Tree 

MOVNE	  R3,	  R2	   Expression.IfThen(	  
	   Expression.NotEqual(	  
	   	   Expression.Field(	  
	   	   	   Expression.Constant(this),	  
	   	   	   “_zFlag”),	  
	   	   Expression.Constant(1)),	  
	   Expression.Assign(	  
	   	   Expression.ArrayAccess(	  
	   	   	   Expression.Field(	  
	   	   	   	   Expression.Constant(this),	  
	   	   	   	   “_registerList”),	  
	   	   	   Expression.Constant(R3Index)),	  
	   	   Expression.ArrayAccess(	  
	   	   	   Expression.Field(	  
	   	   	   	   Expression.Constant(this),	  
	   	   	   	   “_registerList”),	  
	   	   	   Expression.Constant(R2Index))))	  

Figure 13 Translation of instruction with conditional execution. 

Figure 13 illustrates the translation of a conditionally executed instruction. The simulated 

registers exist in an array that is an instance variable of the class that holds the simulated state. 

The indices of the accessed registers are passed into the method generating the translation as the 

variables R2Index and R3Index. NE or not equal is a simple translation as it checks only the Z 

flag from the CPSR, but the general case of translating a conditionally executed instruction is 

similar. One thing that can be seen from this example is the code expansion where 14 

Expressions are required to translate the single ARM instruction, this is one of the challenges of 

translating assembler, it is very terse and the code expansion is challenging for the programmer 

to manage. 

5.1.4.2 Flag Setting 

Setting the simulated CPSR causes code expansion in a similar manner to checking the flags in 

the previous section. As described previously, how the flags are set is dependent on the specific 

instruction, but all are translated in a similar manner. It is also possible to extract and reuse the 

flag setting code, so that different instructions may use the same flag setting code. The SUB 

instruction with the S bit set, sets the flags as described in 4.1.2.9, its translation is shown in 

Figure 14. 

ARM Expression Tree 
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ARM Expression Tree 

SUBS R2, R1, #1 //	  set	  up	  operands	  for	  instruction	  
var	  operandA	  =	  Expression.ArrayAccess(	  
	   	   Expression.Field(Expression.Constant(this),	  	  
	   _registerInfo),	  Expression.Constant(indexR1)	  
	  
var	  operandB	  =	  Expression.Constant(1);	  
	  
//	  set	  up	  destination	  to	  store	  result	  
var	  result	  =	  Expression.ArrayAccess(	  
	   	   Expression.Field(Expression.Constant(this),	  	   	  
	   	   	   _registerInfo),	  
	   	   Expression.Constant(indexR2));	  
	  
//	  perform	  subtraction	  and	  store	  result	  
var	  Reg2	  =	  Expression.Assign(result,	  
	   	   Expression.Subtract(operandA,	  operandB));	  
	  
//	  set	  the	  simulated	  C	  flag	  
var	  setC	  =	  Expression.IfThenElse(	  
	   Expression.LessThan(operandA,	  operandB),	  
	   Expression.Assign(	  
	   	   Expression.Field(	  
	   	   	   Expression.Constant(this),	  _cFlagInfo),	  
	   	   Expression.Constant(0)),	  
	   Expression.Assign(	  
	   	   Expression.Field(	  
	   	   	   Expression.Constant(this),_cFlagInfo),	  
	   	   Expression.Constant(1)));	  
	  
//	  set	  the	  simulated	  Z	  flag	  
var	  setZ	  =	  Expression.IfThenElse(	  
	   Expression.Equal(result,	  
	   	   Expression.Constant((uint)0)),	  
	   Expression.Assign(	  
	   	   Expression.Field(	  
	   	   	   Expression.Constant(this),_zFlagInfo),	  
	   	   Expression.Constant(1)),	  
	   Expression.Assign(	  
	   	   Expression.Field(	  
	   	   	   Expression.Constant(this),_zFlagInfo),	  
	   	   Expression.Constant(0)));	  
	  
//	  set	  the	  simulated	  N	  flag	  
var	  setN	  =	  Expression.Assign(	  
	   Expression.Field(	  
	   	   Expression.Constant(this),	  
	   	   _nFlagInfo),	  
	   Expression.Convert(	  
	   	   Expression.RightShift(	  
	   	   	   result,	  
	   	   	   Expression.Constant(31)),	  
	   	   typeof	  (int)));	  
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ARM Expression Tree 

	  
//	  set	  the	  simulated	  V	  flag	  
var	  setV	  =	  Expression.IfThenElse(	  
	   Expression.And(	  
	   	   Expression.NotEqual(	  
	   	   	   Expression.RightShift(	  
	   	   	   	   operandA,	  Expression.Constant(31)),	  
	   	   	   Expression.RightShift(	  
	   	   	   	   operandB,	  Expression.Constant(31))),	  
	   	   Expression.NotEqual(	  
	   	   	   Expression.RightShift(	  
	   	   	   	   operandA,	  Expression.Constant(31)),	  
	   	   	   Expression.RightShift(	  
	   	   	   	   result,	  Expression.Constant(31))),	  
	   Expression.Assign(	  
	   	   Expression.Field(	  
	   	   	   Expression.Constant(this),	  _vFlagInfo),	  
	   	   Expression.Constant(1)),	  
	   Expression.Assign(	  
	   	   Expression.Field(	  
	   	   	   Expression.Constant(this),	  _vFlagInfo),	  
	   	   Expression.Constant(0)));	  
	  
//	  combine	  the	  instruction	  and	  flag	  setting	  translations	  
var	  translation	  =	  Expression.Block(Reg2,	  setC,	  setZ,	  setN,	  setV);	  
	  

Figure 14 Translation of flag setting instruction 

The overhead introduced by setting the flags is obviously significant. ARM code that contains 

many flag setting instructions may prove challenging to translate with good performance.  

When creating large expressions such as this it is easy for them to become deeply nested and for 

their meaning to be obscured. The use of Expression.Block in combination with assigning 

comprehensible expressions to temporary variables and creating functions for frequently used 

expressions makes the code readable. 

5.1.5 Register to Stack Machine 

As outlined in section 4.1.4 dealing with the stack machine nature of the CLR is challenging 

when emitting CIL directly using the Reflection.Emit class. The use of the 

System.Linq.Expression class to generate dynamic methods overcomes this difficulty and frees 

the developer from having to manage the state of the CLR’s stack. The remaining issue with 

dealing with the stack machine is generating the code to simulate the memory and register access 

as outlined above in sections 5.1.1 and 5.1.2. 
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5.2 What to Translate 
The ARMSim# interpreter forms the basis for this investigation of binary translation. However, 

the ARMSim# simulator runs inside a graphical user interface, which makes it unsuitable for 

measuring performance. A message pump thread drives the GUI, running a loop. This interferes 

with measuring the performance of the interpreter in isolation. Instead the interpreter modules 

were extracted into a standalone application in order to enable more precise measurements. 

The interpreter loop extracted from ARMSim# works as follows. Program code and data is 

loaded into a simulated memory area. The entry point is specified by an assembler directive and 

defaults to the start of the text area if it is not specified. The first instruction is fetched from this 

address. The program counter is incremented to point to the next instruction. The condition code 

prefix of the loaded instruction is checked against the simulated CPSR (current program status 

register) and if the instruction is to be executed it is passed to the decoder. The instruction is 

decoded and the result is applied to the simulation of the state of the target architecture, called 

the Context Block by [1]. Each instruction is dispatched and decoded every time it is executed. 

When the state has been updated the loop starts again, loading the instruction that the program 

counter is pointing to. The interpreter proceeds in this fashion until the execution halts. 

Interpretation in the simulator halts when an SWI instruction is encountered. 

Many of the previously discussed DBT systems do not translate instructions until they are 

profiled and determined to be “hot” according to some metric. As mentioned previously, 

translators generally perform translation on blocks of instructions rather than on individual 

instructions in isolation, which requires that metadata is collected during execution to determine 

which blocks are worth translating. The initial unit of translation in the DBT described in this 

thesis is the dynamic basic block. 

5.2.1 Discovering Dynamic Basic Blocks 

Dynamic basic blocks are discovered as the program executes in the interpreter. The DBB ends 

when a branch or SWI instruction is encountered. To manage this process there is a nested 

emulation loop where the outer loop controls interpreting blocks and the inner loop manages 

interpreting the individual instructions within the block. For example: 

while	  (!at	  end	  of	  program){	  
	   if(this	  instruction	  is	  not	  recorded	  as	  starting	  a	  block){	  
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	   	   record	  the	  start	  of	  a	  block	  
	   	   newBlock	  =	  true	  
	   }	  
	   while	  (!at	  end	  of	  block){	  
	   	   interpret	  instruction	  
	   }	  
	   if(newBlock	  =	  true){	  
	   	   record	  the	  end	  of	  the	  block	  
	   	   add	  the	  block	  to	  the	  dbb	  list	  
	   }	  
}	  
	  
Figure 15 Dynamic basic block discovery algorithm 

When the program exits a list of all the dynamic basic blocks that were executed has been 

generated. The entry address and exit address of each dynamic basic block are recorded in this 

list. Translation is expensive so we want to set a threshold for the number of times a block 

should be interpreted before it is translated. We add a counter to track the number of times a 

block has been interpreted; if the block count exceeds some threshold then the block is 

translated. For example: 

increment	  block	  execution	  count	  
if(this	  instruction	  is	  not	  recorded	  as	  starting	  a	  block){	  
	   Record	  the	  start	  of	  a	  block	  
	   New	  Block	  =	  true	  
}	  
while(!at	  end	  of	  block){	  
	   if(block	  execution	  count	  exceeds	  threshold){	  
	   	   interpret	  and	  translate	  instruction	  
	   }	  
	   else{	  
	   	   interpret	  instruction	  
	   }	  
}	  
if(block	  execution	  count	  exceeds	  threshold)	  {	  
	   Create	  translated	  block	  
}	  
Figure 16 Algorithm to decide when to translate a block 

5.2.2 Translation 

To translate a dynamic basic block the translated instructions in the block are combined into a 

BlockExpression. Then an Action delegate is compiled from the BlockExpression and stored in 

the translated block cache. For example: 

BlockExpression	  block	  =	  Expression.Block(…);	  
translatedBlock	  =	  Expression.Lamda<Action>(block).Compile();	  
Figure 17 Compiling a translation 
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The translated block cache is implemented as a dictionary using the starting addresses of the 

translated blocks as keys. Control is returned to the emulation manager at the end of each 

translated block. Each translated block ends with a branch instruction, which sets the value of the 

Program Counter based on the condition test. When control returns to the emulation manager it 

checks the translated block cache using the Program Counter as a key. If the block address given 

by the Program Counter is a hit in the translated block cache the translation is executed, 

otherwise the interpreter executes the block. As program execution continues the proportion of 

translated blocks to interpreted blocks increases until the majority of instructions are being 

executed via their translations. Although the simple DBT has significant performance gains 

when compared to the interpreter it is mostly useful as a starting point for investigating 

mechanisms for further speeding up program execution. This basic DBT is similar to “Gear 1” 

described by [8] or QEMU [14]. 

Another reason that this may be considered a simple DBT is that data instructions are translated 

but control flow instructions are not. 

5.2.3 When to Translate 

Deciding when to translate is difficult because it requires looking into the future to see how 

many times an instruction will be executed. A pragmatic approach is to assume that once a block 

has been executed some number of times that it is likely that it will be executed many more times 

and therefore is worth translating. This approach is taken in many of the translators described in 

Chapter 3 [7], [6] and is the approach taken in this thesis. 

5.3 Translating Program Flow 
A translator that uses basic blocks as its final translation step is in a sense a hybrid. While all 

code that is executed may be translated code, between blocks it behaves much like an interpreter, 

dropping back to the emulation manager to determine which block to execute next. 

5.3.1 Creating Large Translation Units 

Executing the simulator using the profiler in Visual Studio 2010 Ultimate shows that the simple 

DBT described previously spends most of its execution time in the emulation manager accessing 

the translated block cache. One way to reduce this overhead is to implement a mechanism that 

coalesces hot blocks into hot regions and reduces the number of times that the simulation returns 
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to the emulation manager. To determine which blocks in the program are hot requires profiling 

the execution of the program. 

An ‘edge profile’ is created by recording the number of times each edge that leaves a block is 

taken. Since all blocks end with a branch instruction (disregarding the SWI instruction) there can 

only be one or two edges leaving a block. The edge profile records the starting block, the ending 

block and the number of times that the edge was taken. When execution of a block is complete, 

and before returning to the emulation manager, if the profile has an entry the edge the count is 

incremented, if there is no entry for the edge an entry is created and incremented. As pseudo 

code: 

1.	   while(!atEndOfProgram)	  {	  //	  main	  emulation	  loop	  
2.	   	   …	  
3.	   	   if	  (!ProfileContainsEdge(blockStart,	  nextBlock)){	  
4.	   	   	   AddEdgeToProfile(blockStart,	  nextBlock);	  
5.	   	   }	  
6.	   	   IncrementProfileCountForEdge(blockStart,	  nextBlock);	  
Figure 18 Profiling algorithm 

Profiling the program execution and recording the number of times each edge between blocks is 

traversed generates a directed weighted graph. This graph is stored in a .NET dictionary (a hash 

table) with block starting addresses as keys and a dictionary for the value. The nested dictionary 

uses the addresses of adjacent blocks as keys and the number of times the edge has been 

traversed as the value. 

 

Figure 19 Adjacency list 

Figure 19 shows a node in the graph, as it is stored in the hash table/dictionary. The block at 

address 4124 has 2 edges that leave it, to the blocks at addresses 4144 and 4160. The edge to 

4144 has been traversed 4877 times and the edge to 4160 has been traversed 3124 times. The 

whole edge profile of a small program such as bubble sort may be displayed in a graphic form, 

for example: 
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Figure 20 Directed weighted graph for bubble sort program 

Although creating the edge profile is more involved than creating a block profile, it makes 

discovering hot regions in the profile more straightforward. Each time an edge count is 

incremented it is tested against a threshold value to determine if the edge is hot. When an edge is 

found to be hot, the address of the block with the hot edge is recorded. When the number of hot 

edges exceeds some threshold value, a hot region may be created. In pseudo code: 

1.	   while(!atEndOfProgram)	  //	  main	  emulation	  loop	  
2.	   {	  
3.	   	   …	  
4.	   	   if	  (!ProfileContainsEdge(blockStart,	  nextBlock))	  {	  
6.	   	   	   AddEdgeToProfile(blockStart,	  nextBlock);	  
7.	   	   }	  
8.	   	   IncrementProfileCountForEdge(blockStart,	  nextBlock);	  
9.	   	   if(EdgeIsHot(blockStart,	  nextBlock))	  {	  
10.	   	   	   AddToBlocksWithHotEdgesList(blockStart,	  nextBlock);	  
11.	   	   	   hotEdgeCount++;	  
12.	   	   }	  
13.	   	   If(hotEdgeCount	  >	  hotRegionThreshold)	  {	  
14.	   	   	   CreateHotRegion();	  
15.	   	   }	  
Figure 21 Extended profiling algorithm to detect and create a hot region 
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5.3.1.1 Forming Hot Regions 

Creating larger translation units requires translating the control flow instructions in addition to 

the already translated data handling instructions. The previously translated and compiled blocks 

could be combined to form regions. However the last instruction in each of these blocks sets up 

the program counter for return to the emulation manager. In the context of the hot region this 

instruction is likely to be both redundant and incorrect. Instead the translations of the individual 

instructions, which remain in the instruction translation cache, can be combined to form regions 

containing control flow. This assumes that instructions have not been modified since they were 

translated, so the translator has the limitation of no self-modifying code. 

5.3.1.1.1 Labels and Gotos 

The System.Linq.Expressions namespace includes Expressions for control flow including 

Expression.Label and Expression.Goto. An Expression.Label is inserted to provide a destination 

for control flow to branch to. An Expression.Goto takes an Expression.Label parameter whose 

location it transfers control to. For example: 

1.	   Expression.Block(	  
2.	   	   Expression.Label(“start”),	  
3.	   	   Expression.Expression.SubtractAssign(	  
4.	   	   	   Expression.Field(Expression.Constant(this),	  _someValue),	  
5.	   	   	   Expression.Constant(1)),	  
6.	   	   Expression.IfThen(	  
7.	   	   	   Expression.Equal(	  
8.	   	   	   	   Expression.Constant(0),	  
9.	   	   	   	   Expression.Field(Expression.Constant(this),	  _someValue)),	  
10.	   	   	   Expression.Goto(“start”)	  
11.	   	   )	  
12.	   )	  
Figure 22 An Expression.Block implementing a loop 

To create the hot region, control flow is required within the region and to exit the region. When 

the interpreter first sees a block, an Expression.Label is created for the block and stored in a hash 

table using the block start address as the key. When creating the hot region these previously 

stored labels are inserted into the start of each block when the block is translated. As well, the 

labels are available to use in Expression.Goto, even when the destination block has not yet been 

added to the hot region translation. Similarly, to be able to insert Expression.Goto instructions 

that exit the region, an Expression.Label is required to supply to the Expression.Goto. This 
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Expression.Label(“exit”) is created at the beginning of creating the hot region translation, and 

inserted as the last expression in the Expression.Block that implements the hot region. An 

additional implication here is that when an Expression.Goto(“exit”) is encountered the PC must 

be set correctly. 

5.3.1.1.2 Sub-graph or Connected Hot Blocks 

Similar to the approach taken by other researchers [12] this thesis makes use of Tarjan’s [30] 

strongly connected components (SCC) algorithm. The output from Tarjan’s SCC algorithm is a 

collection of lists each containing the addresses of a set of blocks that are strongly connected. A 

block is strongly connected to another block if they are in the same directed cycle in the control 

flow graph. 

This thesis relied on a simple threshold where once n edges had been traversed x times Tarjan’s 

algorithm was run to find the SCCs. The components that contain one or more hot edges and 

more than one dynamic basic block are used to create translated regions. 

Figure 23 below shows the SCCs from the directed weighted graph for the bubble sort program, 

inside the dotted line are the hot edges and blocks. 

 

 

Figure 23 SCCs from bubble sort directed weighted graph 

Combining the lists of SCCs and the translated instructions in the translated instruction cache, 

we have sufficient information to create translated hot regions. 

432
3124

4774 3227

4877

6

5



47 

 

5.3.1.1.3 Translating Branch Instructions 

 

Figure 24 Control flow comparison between DBB translation and LTU translation 

To form a LTU the branch instructions that end every DBB that is included in the LTU must be 

translated in the context of the LTU rather than simply returning to the emulation manager. To 

add a translated block to the region, we insert a label for the start of the block, and then add all of 

the instructions in the block up to the terminating branch instruction. The branch instruction can 

only be added when it has been analyzed to determine which of the 4 categories it falls into. 

1. Neither edge leaving the block is hot: 

• Add the existing translated branch instruction and a goto expression to exit the region. 

The translated branch instruction from the translated instruction cache sets the 

program counter correctly. 

2. The branch condition true edge is hot and the branch condition false edge is not: 

• If the block is the last block in the sub-graph list, insert a goto expression back into 

the region and fall through to the region exit. 
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• If the next block in the sub-graph list is the branch target/hot edge, invert the branch 

condition so that control flow falls through on the hot edge and insert a goto 

expression to exit the region. 

• If the next block in the sub-graph list is not in the control flow for this block, then the 

branch target/hot edge requires a goto expression to a labeled block in the hot region, 

and the fall through edge requires a goto expression to exit the hot region. 

3. The branch condition false edge is hot and the branch condition true edge is not: 

• If the block is the last block in the sub-graph list, invert the condition, set up a goto 

expression back into the region, and fall through to the region exit. 

• If the next block in the sub-graph list is the fall through/hot edge don’t modify the 

instruction at all, set up a goto expression to exit the region if the condition is true and 

fall through on the hot edge. 

• If the next block in the sub-graph list is not in the control flow for this block, then the 

branch target requires a goto expression to exit the region and the fall through 

requires a goto expression to a labeled block in the hot region. 

4. Both edges leaving the block are hot: 

• If the block is the last block in the sub-graph list, insert a goto expression for each 

edge back into the region. 

• If the next block in the sub-graph list is the branch target, invert the branch condition 

to fall through to the branch target instead and insert a goto expression to the original 

fall through address. 

• If the next block in the sub-graph list is the fall through address, then translate the 

control flow normally generating a goto expression for the branch target. 

Notable in previous description is the optimization of inverting the branch conditions to reduce 

the number of goto expressions required to implement the translation. Reducing the number of 

goto expressions that are within the hot region has significant performance benefits. By inverting 

the branch conditions for branches with one hot edge the goto expressions can be confined to the 

cooler edges leaving the hot region. Inverting branch conditions also means that the code layout 

is no longer in the same order as the source program [1]. 
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The hot region replaces the entry in the translated block cache for the first block in the region. 

When the emulation manager finds a hit in the translated block cache for the blocks starting 

address the translated region is executed. 

5.4 Measuring Performance 
To evaluate the various implementations and mechanisms, a method of measuring different 

execution times is required. The .NET framework provides a Stopwatch class, which provides an 

API that mimics a stopwatch. Included in the Stopwatch are methods including Start(), Stop(), 

Reset(), ElapsedMilliseconds() and ElapsedTicks(). The Stopwatch is simple to use and was used 

frequently to collect execution times. For example: 

1.	   var	  _sw	  =	  new	  Stopwatch();	  
2.	   _sw.Start();	  
3.	   SomeMethodRequiringTiming();	  
4.	   _sw.Stop();	  
5.	   var	  elapsed	  =	  _sw.ElapsedTicks;	  
	  
Figure 25 .NET Stopwatch class in use 

ElapsedTicks are used to measure execution time since a tick has a precise time value. The 

duration of a tick is 1 second divided by the Stopwatch.Frequency. The Stopwatch.Frequency 

depends on the hardware the system is running on but it generally results in a tick that is 

significantly less than a millisecond. On an Intel Core 2 Duo T8100 running at 2.10 GHz the tick 

duration is approximately 69 nanoseconds. 

The performance of the translator running the benchmark programs was measured using the 

Stopwatch. The translator ran each benchmark 20 times and the duration of each execution was 

recorded. 

5.5 Testing 
Accuracy of translation is of utmost importance in a dynamic binary translator to ensure that the 

emulator correctly models the behaviour of the source ISA. The interpreter that the dynamic 

binary translator is based on was used as a reference to ensure the correct behaviour of the 

translator. The effect of a translated instruction on the architected state of the emulator was 

manually compared to the effect of interpreting the same instruction. If both translated and 

interpreted instructions affected the architected state of the emulator in the same way the 

translation was regarded as being correct. 
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6 Benchmarking the Translator 
As discussed previously instrumentation was added to the translator to determine the time taken 

for each execution. Several small programs were used to benchmark the performance of the 

simulator, including: 

• Bubble sort, sorting 128 random values 

• Sieve of Eratosthenes, finding all prime numbers less than 8190 

• Generate the first 20 decimal digits of e. 

See section 9.1 Appendix A for the ARM assembler listings of the benchmark programs. 

To measure the performance of the translated code the translator must execute the generated 

code multiple times. The reasons for this are reviewed in sections 6.5 and 6.8. 

6.1 Performance of Interpreter 
The performance of the interpreter was recorded to provide a baseline to compare with the DBT 

implementations. In Figure 26 the cold code startup cost is seen in the first run where the time 

taken is approximately 100 000 CPU ticks more than subsequent runs.

 

Figure 26 Interpreter performance 

Figure 26 shows the average execution time over 1000 executions of the three benchmark 

programs running in the interpreter. The benchmark program is run 20 times per execution. This 

chart illustrates two interesting behaviors: 
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• Relatively constant execution time after the initial run. 

• Relatively constant decrease in execution time between the first run and the subsequent 

runs. 

Startup behavior is discussed in more detail in section 6.5. 

6.2 Performance of Simple DBT 
Figure 27 shows the average execution time over 1000 executions of the three benchmark 

programs running in the Dynamic Basic Block translator. As with the interpreter the benchmark 

program is run 20 times per execution. The most noticeable difference between this chart and 

Figure 26 above is the initial slow down and the subsequent speed up. The slowdown is caused 

by the overhead of translation, and the speedup is due to executing translated blocks rather than 

interpreting each block. The behavior of the first 5 runs is also significantly different to the 

interpreter; this is discussed further in section 6.7. 

 

Figure 27 Block DBT Performance 

6.3 Performance of DBT using LTU  
Figure 28 shows the average execution time over 1000 executions of the three benchmark 

programs running in the Large Translation Unit translator. As with the interpreter and DBB the 

benchmark is run 20 times per execution. Noticeable in this chart is the longer first execution, 

almost double the time taken for the initial run in the DBB translator. This is caused by the 

additional overhead of creating large translation units. The speed increase in the 6th and 

subsequent runs of the benchmark programs is also notable when compared to the DBB 
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translator. Additionally the LTU translator exhibits uneven execution times for the first five runs 

similar to the DBB translator. This is discussed further in section 6.5. 

 

Figure 28 LTU DBT Performance 

Also noticeable is the similarity in first execution times for all three benchmarks, this is 

discussed further in section 6.5. 

6.4 Comparing Different Approaches 
The performance improvement of the DBB translator over the interpreter and the LTU translator 

over the DBB translator can be seen immediately when they are plotted on the same axes. 

 

Figure 29 Bubble Sort benchmark execution times for different approaches 

1000	  

10000	  

100000	  

1000000	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   18	   19	   20	  

CPU	  Ticks	  

Run	  Count	  

Bubble	  Sort	  

Sieve	  

Generate	  E	  

1000	  

10000	  

100000	  

1000000	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  11	  12	  13	  14	  15	  16	  17	  18	  19	  20	  

CPU	  Ticks	  
Interpre=er	  

DBB	  

LTU	  



53 

 

 

Figure 30 Sieve of Eratosthenes benchmark execution times for different approaches 

 

Figure 31 Generate E benchmark execution times for different approaches 

Figure 29, Figure 30, and Figure 31 show the three different approaches on the same set of axes 

for each benchmark program. The cold start overhead can be seen for the first execution of all 

the approaches. Discarding the initial run the performance improvement of the DBB translator 

versus the interpreter is dramatic for all three benchmarks. The performance improvement of the 

LTU translator versus the DBB translator is a little less dramatic but equally significant. 

Benchmark Interpreter DBB (n times faster) LTU (n times faster) 

Bubble Sort 146025 21391(6.82) 5655(25.82) 

Sieve 456873 56254(8.12) 27720(16.48) 

Generate E 57497 7417(7.75) 2577(22.31) 

Table 2 Average CPU ticks discarding start-up costs 
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The performance increase for the average execution time, discarding the startup overhead is 

shown in Table 2. The numbers in brackets show the speed increase relative to the time taken to 

run the benchmark on the interpreter. The performance of the LTU translator versus the DBB 

translator is significantly better than the improvement seen between these two techniques in the 

Edinburgh High Speed (EHS) simulator [12]shown in Table 1. This is may be due to the EHS 

simulator being designed for both observability and performance. 

6.5 Start Up 
Regardless of the emulation technique used the first run of each of the benchmark programs is 

significantly slower than subsequent executions. There are several causes for the first run having 

poor performance relative to later runs, some are common to all emulation techniques and some 

are due to the translation mechanism in DBB and LTU translators: 

• The code and dynamically linked libraries have to be loaded. 

• There is significant overhead in translating the source to the target. 

• There is additional overhead in creating Large Translation Units. 

6.5.1 Loading 

The interpreter makes the effects of loading code more obvious than either of the translators 

since all the code that is run in the first execution is also run in all subsequent executions. This 

means that the difference between the first and subsequent runs is due only to the application and 

dynamic library loading that is required the first time a program is executed. The simulator also 

loads the memory image of the source program for each execution, and it is likely that this is at 

least partially cached for subsequent executions. 

Benchmark Cold Execution 

Ticks 

Warm Execution 

Ticks 

Difference Source code 

size 

Bubble Sort 239082 146025 93057 1.88 KB 

Sieve of 

Eratosthenes 

594584 456873 137711 2.016KB 

Generate E 145064 57497 87567 6.084KB 

Table 3 Cold versus warm execution time 
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Table 3 shows that the difference between warm and cold execution is similar for each 

benchmark even though the execution times are significantly different. There does not appear to 

be any obvious relationship between the size of the benchmark program and start-up overhead. 

6.5.2 Translation and Hot Traces 

Both translation and creating hot traces add overhead to the first execution of a benchmark 

program. 

Benchmark Interpreter  DBB LTU 

Bubble Sort 239082	   692489(2.90)	   1107168(4.63)	  

Sieve 549584 769527(1.40) 1108079(2.02)	  

Generate E 145064	   882041(6.08)	   1466691(10.11) 

Table 4 CPU Ticks for first run of each benchmark program 

Table 4 shows the times taken for the first run of each benchmark using each simulation 

mechanism. The number in brackets is the slowdown relative to the interpreter for that 

simulation mechanism. The nature of the benchmark programs themselves is likely to influence 

the time that they take to execute. The Sieve benchmark seems to be very slow in the interpreter, 

possibly due to the memory intensive nature of the benchmark. The Generate E benchmark 

which is more compute intensive runs relatively quickly. It is difficult to compare between the 

benchmark programs without standardizing them in some way. 

Differences between the benchmarks are also due to both the number of translated blocks, the 

number of blocks in the hot region and the decisions about when and what to translate, discussed 

further in section 6.6 and 6.7. 

Benchmark Total DBBs Translated Blocks Blocks in hot region 

Bubble Sort 7 5 5 

Sieve 10 6 5 

Generate E 13 8 9 

Table 5 Comparison of block counts in benchmark programs 

The Generate E benchmark is particularly slow in the first execution when creating LTUs due to 

the fact that it translates any blocks that get included in the region that are not already translated. 

This benchmark is also significantly slower for the first execution of the DBB translator. This 
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may be due in part to the fact that it is translating more blocks than the other benchmark 

programs. 

6.6 When to Translate 
Both the DBB translator and the LTU translator have to determine when it is appropriate to 

translate blocks or regions of source instructions into target instructions. For the DBB translator 

this was based on: 

• The number of times an instruction has been executed. 

• The number of times a block has been executed. 

This was extended in the LTU translator to: 

• The number of times an edge has been traversed. 

• The number of edges that have been traversed more than some number of times. 

In the LTU translator the translation threshold, the combination of the number of hot edges and 

the number of traversals required to make an edge hot can have a dramatic effect on the 

performance of the translated program. When the threshold is set too low for a particular 

program it is possible to fail to include edges in an LTU that are essential to the performance of 

the program. 

 

Figure 32 Performance effects of different translation threshold values for translating 
Generate E program 
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Figure 32 shows the effects of making the threshold for the number of hot edges required to form 

an LTU too small for the generate E benchmark program. When the threshold is set too low the 

control flow graph of the program does not include edges that subsequently become hot. The 

LTU formed from the control flow graph at this point fails to reduce the number of returns to the 

emulation manager and is more than twice as slow as the good threshold and slower than the 

dynamic basic block translation. 

If the number of hot edges required to form a region is set too high the translator is identical to 

the DBB translator with some additional overhead of checking whether the condition to build an 

LTU have been met. If the number of traversals required to denote an edge as hot is set too high 

then forming the LTU for the hot region is delayed. Raising either of these thresholds 

excessively prevents the conditions for creating LTUs from being met.  

Using a fixed threshold for determining when to translate blocks and regions is not a very 

satisfactory approach, since the threshold(s) may need to be reconfigured for each program that 

is run. In the Edinburgh High Speed simulator [12], execution of a program is divided into 

epochs. The end of an epoch is triggered every time the count of interpreted blocks exceeds some 

threshold. This means that as the hot sections of the program are translated and fewer blocks are 

interpreted the epochs grow longer. If the program execution moves to a different region of code 

the number of blocks being interpreted increases and triggers the end of an epoch. At the end of 

an epoch the control flow graph is analyzed to determine if there are any new regions to 

translate. 

6.7 What to Translate – Hot versus All 
As mentioned in sections 6.2 and 6.3 the first several runs of both the DBB and LTU translators 

have varying execution times. This variation is caused by translation of instructions and 

translation of blocks continuing after the first execution of the benchmark program. 

Running the Generate E benchmark program (the other benchmark programs exhibit similar but 

not identical behavior) the second run discovers instructions that have not been translated and 

translates them. The third and fourth runs are executing a mixture of interpreted and translated 

code. On run five the blocks that were being interpreted have been flagged as requiring 

translation. The translation of these blocks is of questionable value because these are instructions 
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that have taken 4 or 5 executions of the program to reach the translation threshold. Depending on 

the translation threshold these blocks may only be executed once in any given execution of the 

benchmark program. 

The performance difference between translating all blocks and only those that are found to be hot 

during the first execution can be seen in Figure 33. In the 5th execution of the Generate E 

benchmark, three additional blocks are marked as hot and translated. This translation is an 

artefact of the block execution count being used as the threshold to determine when to translate a 

block and the block execution count continuing to be incremented during each execution of the 

benchmark program. By not checking for blocks to translate after the first execution of the 

benchmark program the translation of these cold blocks can be avoided. 

 

Figure 33 Translating all blocks versus only hot blocks 

 

Figure 34 Hot blocks only versus all blocks translated, after final translation 
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Figure 34 shows the improvement in execution times for the benchmark program after the 

additional translation in run five. In this context there is an approximately 5% improvement in 

performance. However the cost of this increase is around 120, 000 ticks, so approximately 1000 

executions of the benchmark program are required to recover the cost of the translation. 

This behaviour is observed in both the DBB and LTU translators because the LTU translator 

only forms hot regions during the first execution of the benchmark program. 

6.8  Garbage Collection 
Looking at the raw timing values from the individual program runs occasionally the emulator 

takes significantly more than the usual number of ticks to complete a run. These occasional 

slowdowns are present for each of the benchmark programs and regardless of the emulation 

mechanism. 

 

Figure 35 Minimum, maximum and average execution times for the interpreter running the 
Generate E benchmark 
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Figure 36 Minimum, maximum and average execution times for the LTU translator running 
the Generate E benchmark 

Figure 35 and Figure 36 show the variation in run times for the first 20 executions of the 

Generate E benchmark across 1000 runs of the simulator. The cause of these periodic 

performance glitches was not immediately clear. 

Initial investigation of the periodic performance decline employed the Perfmon.exe tool to 

examine .NET memory performance counters while the simulator was running. The Perfmon.exe 

tool showed that the garbage collector is active while the simulator is running, but provided no 

way to correlate the activity of the simulator with the activity of the garbage collector. The .NET 

garbage collector has been shown to have deleterious effects on simulator performance [11] so 

this issue deserved further investigation. 

 

Figure 37 CPU Ticks and Garbage Collection 
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In an attempt to correlate the behaviour of the garbage collector with the performance glitches in 

the simulator the simulator source code was instrumented using the PerformanceCounter class 

provided by the .NET framework. Figure 37shows the first 100 runs from a 10000 run sequence. 

The glitches in the benchmark CPU Ticks can be seen clearly but there is no obvious correlation 

with the garbage collector generation count increasing. At the end of 10000 runs of the program 

the generation 2 collection had run once and the generation 1 collector had run twice. The 

frequency of simulator glitches was significantly higher than the frequency of generation 1 and 

generation 2 garbage collection events. However since the performance counter for the garbage 

collector is only incremented when the collection is completed it may not be possible to observe 

a correlation with the point in time at which the garbage collector affects the running simulation. 

 

Figure 38 Execution CPU ticks distribution 

Figure 38 shows that effect of garbage collection on the execution time is less significant than it 

might first seem. Figure 35 and Figure 36 reinforce this position since the average and minimum 

execution times for each run remain close, indicating that values between the maximum and the 

average occur infrequently. 
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7 Conclusions and Future Work 
A high performance, portable dynamic binary translator for the ARM v4 architecture was 

developed. The translator, developed in two stages, showed dramatic performance improvements 

at each stage. Overall, it demonstrated performance improvements of between 15 and 25 times 

that of a simple decode and dispatch interpreter. 

During the first stage, a dynamic basic block (DBB) translator was implemented, which 

discovered DBBs as they were executed. An execution count was maintained for each DBB, and 

when the count reached a threshold value, the DBB became ‘hot’ and was translated. 

For the second stage, DBBs were coalesced into large translation units (LTU) by translating 

control flow instructions. A count was maintained for each edge in the control flow graph (CFG). 

When the number of ‘hot’ edges in the CFG exceeded some threshold the CFG was analysed 

using Tarjan’s algorithm. Each strongly connected component (SCC) discovered by the 

algorithm was checked. If it contained any hot edges, it was used to form an LTU. Additionally, 

within each LTU the code layout was modified to reduce branching on the ‘hot’ path. 

While Tarjan’s algorithm provided an efficient way of discovering SCCs in the CFG, not all of 

the blocks in a SCC were necessarily hot. This resulted in the translation of blocks that were not 

hot, which is an expensive operation with little payback. Other ways of forming LTUs might 

provide better overall performance. 

The use of a fixed threshold to control when to form large translation units was also problematic. 

A threshold value that was too low reduced the performance of the LTU translator to that of the 

DBB translator. A threshold that was too high delayed the formation of the hot region and 

increased the cost of translation. Using an adaptive approach to decide when to create a hot 

region could overcome this issue. 

Translation is an expensive operation and the first execution of the target program running in the 

translator was significantly slower than the first execution of the same program running in the 

interpreter. The DBB translator adds the cost of discovering and translating DBBs to the cost of 

interpreting the program. The LTU translator increases the time taken for the first execution 

further by adding the cost of region detection and control flow translation. For the benchmark 
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programs used in this thesis the translation overhead increased in proportion with the number of 

translated blocks. 

The translated Bubble Sort benchmark program showed larger performance gains when 

compared to the translated Sieve of Eratosthenes benchmark. The Sieve of Eratosthenes 

benchmark is more compute intensive than the Bubble Sort benchmark so the translator may 

offer superior performance when the source code is biased towards input/output operations rather 

than data operations. 

Combining translation to an intermediate form for execution by a virtual machine, and forming 

large translation units does not seem to be described in the literature. Translating hot traces to 

intermediate form for a compiler is described [31], as is creating hot regions in the virtual 

machine [32]. This may be due to the use of a virtual machine with its stack architecture 

preventing the use of many common dynamic binary translation optimizations that are available 

when translating to a native ISA. However the optimizations provided by .NET CLR might 

offset the need to implement these optimizations to some extent. For example the dead code 

elimination provided by the CLR is useful in eliminating redundant flag setting code which is a 

significant contributor to the code expansion issues experienced in translating from ARM v4 

assembler to CIL. 

7.1 Future Work 
While this thesis proved the feasibility of implementing a dynamic binary translator with good 

performance on the .NET platform there are several avenues that deserve further exploration: 

• Performance 

• Integration with ARMSim# 

• Measuring Performance 

• Thumb instruction set support 

7.1.1 Performance 

• One approach to improving performance is to perform some tasks in parallel [31], such as 

generating translations. In this implementation the translation of an instruction happens 

sequentially after it has been executed by the interpreter. The translation of the instruction 

is not used until it is incorporated into a dynamic basic block that is being translated. By 
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performing the translation on a separate thread the interpreter thread would be free to 

interpret the next instruction. 

• The fixed translation threshold is both a performance and usability issue. To make the 

translator truly useful and enhance its performance some form of adaptive mechanism is 

required to ensure that translation happens when it is required. One possible mechanism 

that could be implemented is the “epoch” based system of the Edinburgh High Speed 

simulator [12]. 

• Translating all blocks in a strongly connected component of the CFG of a program may 

not offer the best performance as work is being done to add blocks that are not hot to the 

hot region. Reducing this work may significantly reduce the work done in the first 

execution of any source program. 

• One of the goals of this thesis was to avoid performing large amounts of code analysis. 

However, some common structures that make use of the s bit version of an instruction 

could potentially be easily optimized. If we know the flags are dead after they are 

checked by the branch instruction in the following for loop [33] then the SUBS 

instruction need only set the Z flag: 

	   MOV	   R0,	  #loopcount	  
loop	  
	   …loop	  body…	  
	   …	  
	   SUBS	   R0,	  R0,	  #1	  
	   BNE	   loop	  
	  

This would greatly reduce the size of any flag setting instructions. 

• Implementing hot regions as single compiled functions may not be optimal for the CLR 

JIT compiler. It may be better if each block formed a function that was called by the 

region code. This would allow the JIT compiler to optimize and compile code as it 

chooses as opposed to forcing the translation to be a single, possibly large, function. 

Implementing this would require further investigation into the functionality provided by 

the Expression class and the Reflection.Emit class in the .NET framework. 

7.1.2 Integration with ARMSim# 

Integrating the translator with the ARMSim# simulator could provide the simulator with 

significantly improved performance while maintaining the ability to step and set breakpoints. 
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The DBT would need to be extended with a mechanism to switch it in and out of interpreter 

mode. Switching modes would be quite straightforward for the DBB translator, but require some 

way to break out of a hot region in the LTU translator that did not adversely affect the 

performance. 

Fully integrating the translator would also require implementing the instructions and instruction 

variations that are not currently implemented. 

7.1.3 Measuring Performance 

The benchmark programs used in this thesis were small simple programs. It would be more 

useful to use benchmarks that have been used previously such as EEMBC [12], [20], SpecInt95 

[34] SPEC2000 [3], or MiBench [18]. However, using these benchmarks would require a more 

complete implementation of the ARM ISA than is presented in this thesis. 

7.1.4 Thumb Instruction Support 

The T in the ARM7TDMI name specifies that the CPU supports the Thumb instruction set, 

which is a 16 bit subset of the 32 bit instruction set. The Thumb instruction set is used to reduce 

the memory footprint of a program. While the translator presented in this thesis does not 

currently support the Thumb instruction set, extending it to do so should be relatively straight 

forward. 
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9 Appendices 

9.1 Appendix A: Benchmark ARM Assembler Programs 

9.1.1 Bubble Sort 

Adapted from ARM: Assembly Language Programming by Peter Knaggs, 2006. 

http://www.rigwit.co.uk/ARMBook/ARMBook.pdf. 

.text	  

.global	  _start	  
_start:	  
	   LDR	   R6,	  =Start	   	   @	  pointer	  to	  start	  of	  list	  
	   MOV	   R0,	  #0	  	   @	  clear	  register	  
	   LDRB	   R0,	  [R6]	   	   @	  get	  the	  length	  of	  the	  list	  
	   MOV	   R8,	  R6	  	   @	  make	  a	  copy	  of	  the	  start	  of	  the	  list	  
SORT:	  
	   ADD	   R7,	  R6,	  R0	   	   @	  get	  address	  of	  last	  element	  
	   MOV	  	   R1,	  #0	  	   @	  zero	  flag	  for	  changes	  
	   ADD	   R8,	  R8,	  #1	   	   @	  move	  1	  byte	  up	  the	  list	  each	  iteration	  
NEXT:	  
	   LDRB	   R2,	  [R7]	   	   @,	  #-‐1	  @	  load	  the	  1st	  byte	  
	   SUB	   R7,	  R7,	  #1	  
	   LDRB	   R3,	  [R7]	   	   @	  and	  the	  second	  
	   CMP	   R2,	  R3	  	   @	  compare	  them	  
	   BCC	   NOSWITCH	   	   @	  branch	  if	  R2	  less	  than	  R3	  
	   STRB	   R2,	  [R7],	  #1	  @otherwise	  swap	  the	  bytes	  
	   STRB	   R3,	  [R7]	   	   @like	  this	  
	   ADD	   R1,	  R1,	  #1	   	   @	  flag	  that	  changes	  made	  
	   SUB	   R7,	  R7,	  #1	   	   @	  decrement	  address	  to	  check	  
NOSWITCH:	  
	   CMP	   R7,	  R8	  	   @	  have	  we	  checked	  enough	  bytes	  
	   BHI	   NEXT	   	   	   @	  if	  not	  do	  innner	  loop	  
	   CMP	   R1,	  #0	  	   @	  did	  we	  make	  changes	  
	   BNE	   SORT	   	   	   @	  if	  so	  check	  again	  outer	  loop	  
DONE:	  
	   SWI	   	   0x11	  
.data	  
.align	  
Start:	  .byte	  0x80,	  0x2a,	  0x5b,	  0x60,	  0x3f,	  0xd1,	  0x19,	  0x30,	  0xc5,	  0x66,	  0xEF,	  0x19,	  
0x11,	  0x9B,	  0xC7,	  0x1C,	  0x63,	  0x94,	  0x82,	  0x5F,	  0xA9,	  0xD7,	  0x62,	  0x27,	  0xB5,	  0x78,	  
0x7B,	  0x7D,	  0xCB,	  0x57,	  0xFF,	  0x16,	  0xF9,	  0xB5,	  0x9C,	  0x4F,	  0xCF,	  0x04,	  0xC1,	  0x2E,	  
0xC0,	  0x6B,	  0x49,	  0x4D,	  0x07,	  0xFE,	  0x97,	  0x67,	  0xA0,	  0x60,	  0xA6,	  0x2D,	  0xC5,	  0x91,	  
0x62,	  0x28,	  0xAA,	  0x9B,	  0xEA,	  0x04,	  0x15,	  0x4A,	  0x0B,	  0x01,	  0xA4,	  0xDF,	  0x12,	  0x4D,	  
0xDF,	  0xCE,	  0x81,	  0x22,	  0x6E,	  0x5C,	  0xDD,	  0x57,	  0xB3,	  0xFA,	  0x3B,	  0x68,	  0x71,	  0xEC,	  
0x50,	  0x63,	  0x93,	  0xA5,	  0x57,	  0x6E,	  0xA3,	  0x97,	  0x22,	  0x63,	  0x1B,	  0x74,	  0x6B,	  0x49,	  
0x64,	  0x39,	  0x39,	  0x28,	  0xB8,	  0xEE,	  0xEA,	  0x4F,	  0x2A,	  0x2B,	  0x62,	  0x38,	  0x28,	  0xE5,	  
0xBF,	  0x1D,	  0x1F,	  0xE6,	  0x63,	  0x29,	  0xBD,	  0x13,	  0x99,	  0x27,	  0xC6,	  0xDF,	  0x90,	  0x1D,	  
0x43,	  0xD4,	  0xDD,	  0x55,	  0xE6	  
List:	  .word	  Start	  
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9.1.2 Sieve of Eratosthenes 

Adapted from http://www.peter-cockerell.net/aalp/html/ch-6.html 

.equ	  org,	  2000;DIM	  org	  2000	  
@;REM	  Register	  allocations	  
@;count	  =	  0	   ;	  R0	  
@;ptr	  =	  1	   ;	  R1	  
@;i	  =	  2	   ;	  R2	  
@;mask	  =	  3	   ;	  R3	  
@;base	  =	  4	   ;	  R4	  
@;prime	  =	  5	   ;	  R5	  
@;k	  =	  6	   ;	  R6	  
@;tmp	  =	  7	   ;	  R7	  
@;size	  =	  8	   ;	  R8	  
@;iter	  =	  9	   ;	  R9	  
@;link	  =	  14	   ;	  R14/LR	  
.equ	  SIZE,	  8190	   @;SIZE	  =	  8190	  
.equ	  iterations,	  10	  @;iterations	  =	  10	  
@;The	  array	  of	  SIZE	  flags	  is	  stored	  32	  per	  word	  from	  address	  'theArray'.	  
@;The	  zeroth	  element	  is	  stored	  at	  bit	  0	  of	  word	  0,the	  32nd	  element	  at	  	  
@;bit	  0	  of	  word	  1,	  and	  so	  on.	  'Base'	  is	  word-‐aligned	  
@;	  
@;Registers:	  
@;	  count	  holds	  the	  number	  of	  primes	  found	  
@;	  mask	  used	  as	  a	  bit	  mask	  to	  isolate	  the	  required	  flag	  
@;	  ptr	  used	  as	  a	  general	  pointer/offset	  into	  the	  array	  
@;	  i	  used	  as	  a	  counting	  register	  
@;	  size	  holds	  the	  value	  SIZE	  for	  comparisons	  
@;	  base	  holds	  the	  address	  of	  the	  start	  of	  the	  array	  
@;	  prime	  holds	  the	  current	  prime	  number	  
@;	  k	  holds	  the	  current	  entry	  being	  'crossed	  out'	  
@;	  tmp	  is	  a	  temporary	  
@;	  iter	  holds	  the	  count	  of	  iterations	  
@;	  
sieve:	  
	   MOV	  R9,#iterations	  
mainLoop:	  
	   ADR	  R4,theArray	  
	   MVN	  R3,#0	  	   	   @;Get	  &FFFFFFFF,	  ie	  all	  bits	  set	  
	   LDR	  R8,=SIZE	  	   @;Initialise	  the	  array	  to	  all	  'true'.	  First	  store	  the	  
	   	   	   	   @;complete	  words	  (SIZE	  DIV	  32	  of	  them),	  then	  the	  partial	  
	   	   	   	   @;word	  at	  the	  end	  
	   MOV	  R2,	  R8,	  LSR	  #5	   	   ;Loop	  counter	  =	  number	  of	  words	  
	   MOV	  R1,R4	  	   	   	   ;Start	  address	  for	  initing	  array	  
initLp:	  
	   STR	  R3,[R1],#4	   @;Store	  a	  word	  and	  update	  pointer	  
	   SUBS	  R2,R2,#1	  	   @;Next	  word	  
	   BNE	  initLp	  
	   LDR	  R7,[R1]	   	   @;Get	  last,	  incomplete	  word	  
	   MOV	  R3,R3,LSR	  #2	   @	  32-‐SIZE	  MOD	  32	  @;Clear	  top	  bits	  
	   ORR	  R7,R7,R3	  	   @;Set	  the	  bottom	  bits	  
	   STR	  R7,[R1]	   	   @;Store	  it	  back	  
	   MOV	  R2,#0	   	   @;Init	  count	  for	  main	  loop	  
	   MOV	  R0,#0	  
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lp:	  
	   MOV	  R1,R2,LSR	  #5	   @;Get	  word	  offset	  for	  this	  bit	  
	   MOV	  R3,#1	   	   @;Get	  mask	  for	  this	  bit	  
	   AND	  R7,R2,#31	  	   @;Bit	  no.	  =	  i	  MOD	  32	  
	   MOV	  R3,R3,LSL	  R7	  
	   LDR	  R7,[R4,R1,LSL	  #2]	  @;Get	  the	  word	  
	   ANDS	  R7,R7,R3	  	   @;See	  if	  bit	  is	  set	  
	   BEQ	  nextLp	   	   @;No	  so	  skip	  
	   ADD	  R5,R2,R2	  	   @;Get	  prime	  
	   ADD	  R5,R5,#3	  
	   ADD	  R6,R2,R5	  	   @;Get	  intial	  k	  
	   ADD	  R0,R0,#1	  	   @;Increment	  count	  
while:	  
	   CMP	  R6,R8	   	   @;While	  k<=size	  
	   BGT	  nextLp	  
	   MOV	  R1,R6,LSR	  #5	   @;Get	  word	  for	  flags[k]	  
	   MOV	  R3,#1	  
	   AND	  R7,R6,#31	  
	   MOV	  R3,R3,LSL	  R7	  
	   LDR	  R7,[R4,R1,LSL	  #2]	  
	   BIC	  R7,R7,R3	  	   @;Clear	  this	  bit	  
	   STR	  R7,[R4,R1,LSL	  #2]	   @;Store	  it	  back	  
	   ADD	  R6,R6,R5	  	   @;Do	  next	  one	  
	   B	  while	  
nextLp:	  
	   ADD	  R2,R2,#1	  	   @;Next	  i	  
	   CMP	  R2,R8	  
	   BLE	  lp	  
	   SUBS	  R9,R9,#1	  
	   BNE	  mainLoop	  
	   SWI	  0x11	  
theArray:	  
.space	  1023	  
.end	  
	  

9.1.3 Generate E to n Decimal Places 

Based on A. J. H. Sale [35] and N. Horspool 

@;GenerateE	  
@;	  Based	  on	  A.	  Sale	  and	  N.	  Horspool	  
@;	  Stores	  the	  decimal	  part	  of	  e	  in	  the	  array	  defined	  below	  
.equ	  nDigits,	  20	  
.equ	  n,	  32	  ;this	  is	  calculated	  in	  the	  C#	  version,	  but	  just	  fix	  it	  here	  
	  
@;	  R0	  is	  the	  main	  loop	  counter	  -‐-‐	  dd	  in	  cs	  version	  
@;	  R1	  is	  the	  inner	  loop	  counter	  -‐-‐	  i	  in	  c#	  version	  
@;	  R2	  -‐-‐	  c	  in	  the	  C#	  version,	  also	  used	  in	  initing	  the	  coeffs	  
@;	  R3	  is	  the	  starting	  address	  of	  the	  coefficients	  array	  
@;	  R4	  is	  the	  value	  to	  init	  the	  coefficents	  with,	  when	  nDigits	  ==	  1000,	  max	  coeff	  is	  
463,	  use	  a	  32	  bit	  value	  to	  start	  with	  	  
@;	  R5	  is	  used	  to	  hold	  the	  value	  read	  from	  the	  coeffs	  	  
@;	  R6	  is	  used	  to	  hold	  intermediate	  results	  
@;	  R9	  is	  the	  number	  of	  digits	  to	  calculate	  e	  to	  
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generatee:	  
	   MOV	  R9,#nDigits	  
	   MOV	  R0,#0	  
	   MOV	  R2,#n	  
	   	   	   	  
	   ADR	  R3,coeffs	  ;start	  address	  for	  initing	  coeffs	  
initcoeffs:	  
	   MOV	  R4,#1	  
	   STR	  R4,[R3],#4	   ;store	  1	  in	  the	  word	  and	  update	  the	  	  
	   	   	   	   	   	   	   	   	   	   ;pointer	  
	   SUBS	  R2,	  R2,	  #1	   ;set	  z	  if	  result	  is	  0	  
	   BNE	  initcoeffs	   ;branch	  if	  z	  clear	  
	   ADR	  R4,result	  ;	  R4	  points	  to	  the	  result	  
	   SUB	  R3,	  R3,	  #4	   ;	  R3	  points	  to	  the	  last	  coeff	  
mainloop:	  
	   ADD	  R2,	  R9,	  #1	   	   ;set	  up	  c	  
	   MOV	  R2,	  R2,	  LSR	  #1	   ;c	  =	  (nDigits	  +	  1)/2	  
	   MOV	  R1,	  #n	   	   	   ;init	  the	  inner	  loop	  counter	  
	   SUB	  R1,	  R1,	  #1	   	   ;i	  =	  n	  -‐	  1	  
innerloop:	  
	   LDR	   	   R5,	  [R3]	   	   ;	  R3	  is	  pointing	  at	  coefs	  element	  i	  
	   ADD	   	   R6,	  R5,	  R5,	  LSL#3	   ;	  coefs[i]	  *	  9	  
	   ADD	  	  	  	  	  R6,	  R6,	  R5	   	   ;	  (coefs[i]	  *	  9)	  +	  coefs[i]	  	  
	   ADD	  	   R2,	  R2,	  R6	   	   	   ;	  c	  =	  coefs[i]*10	  +	  c	  
	   ADD	  	   R7,	  R1,	  #2	   	   	   ;	  i	  +	  2	  is	  the	  divisor	  
	   MOV	  	   R6,	  R2	  	   	   	   ;	  copy	  c	  to	  dividend	  
	   BL	   	   divide	  	   	   	   ;modulo	  is	  returned	  in	  R6	  
	   STR	   	   R6,	  [R3],	  #-‐4	  ;	  post	  decrement	  the	  address	  in	  R3	  and	  store	  in	  
	   	   	   	   	   ;	  the	  coefs	  array	  
	   MOV	   	   R2,	  R8	  	   ;	  store	  the	  quotient	  back	  in	  c	  
	   SUB	  R1,	  R1,	  #1	   	   ;	  i-‐-‐	  
	   CMP	  R1,	  #0	  
	   BGE	  innerloop	  	   ;	  i	  >=	  0	  
	   ADR	   R3,	  result	   	   ;	  reset	  r3	  to	  point	  to	  the	  last	  element	  
	   SUB	  R3,	  R3,	  #4	   	   ;	  of	  the	  coefs	  array	  
	   STR	  R2,	  [R4],	  #4	   ;	  store	  c	  and	  increment	  the	  pointer	  
	   ADD	  R0,	  R0,	  #1	   	   	   	   ;	  dd++	  
	   CMP	  R0,R9	   	   	   	   	   ;	  dd	  <	  nDigits	  
	   BLT	  mainloop	  
	   SWI	  0x11	  
	   @;	  from	  ARM	  Assembly	  Language,	  William	  Hohl	  
divide:	   	   ;	  input	  dividend	  R6,	  divisor	  R7,	  quotient	  R8,	  	  
	   	   ;	  output	  	  quotient	  R8,	  remainder	  R6	  
	   	   ;	  overwrites	  R5	  
	   MOV	  R5,	  #1	  
divide1:	  
	   CMP	   R7,#0x80000000	  
	   CMPCC	  R7,	  R6	  
	   MOVCC	  R7,	  R7,	  LSL#1	  
	   MOVCC	  R5,	  R5,	  LSL#1	  
	   BCC	  divide1	  
	   MOV	  R8,#0	  
divide2:	  
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	   CMP	   	   R6,	  R7	  
	   SUBCS	   R6,	  R6,	  R7	  
	   ADDCS	   R8,	  R8,	  R5	  
	   MOVS	   R5,	  R5,	  LSR#1	  
	   MOVNE	   R7,	  R7,	  LSR#1	  
	   BNE	   	   divide2	  
	   MOV	   	   pc,lr	   	   ;return	  form	  subroutine	  
coeffs:	  
.space	  128	   	   ;	  this	  is	  the	  space	  for	  the	  coefficients	  storage,	  32	  words	  
result:	  
.space	  80	   	   ;	  the	  decimal	  part	  of	  e	  20	  words	  for	  20	  decimal	  places	  
	  

9.2 Appendix B: Comparing Translation Targets 
Both Reflection.Emit and the Expression classes can be used to generate dynamically executable 

code. Since performance is a primary goal of binary translation it was necessary to compare their 

performance. This small program compares the time for making an update to the value of an 

instance field using the Expression class versus performing the same operation using IL via 

Reflection.Emit. 

using	  System;	  
using	  System.Collections;	  
using	  System.Collections.Generic;	  
using	  System.Diagnostics;	  
using	  System.Linq.Expressions;	  
using	  System.Reflection;	  
using	  System.Reflection.Emit;	  
using	  System.Linq;	  
	  
namespace	  ExpressionCallTest	  
{	  
	  	  	  	  public	  class	  Program	  
	  	  	  	  {	  
	  	  	  	  	  	  	  	  private	  static	  List<long>	  _expressionTimes;	  
	  	  	  	  	  	  	  	  private	  static	  List<long>	  _reflectionTimes;	  	  
	  
	  	  	  	  	  	  	  	  private	  static	  void	  Main(string[]	  args)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  _expressionTimes	  =	  new	  List<long>();	  
	  	  	  	  	  	  	  	  	  	  	  	  _reflectionTimes	  =	  new	  List<long>();	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  var	  test	  =	  new	  MethodInvocationTest();	  
	  	  	  	  	  	  	  	  	  	  	  	  test.TestMethodCall();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  var	  ftc	  =	  new	  FieldTestClass();	  
	  	  	  	  	  	  	  	  	  	  	  	  ftc.DisplayTestField();	  
	  	  	  	  	  	  	  	  	  	  	  	  var	  sw	  =	  new	  Stopwatch();	  
	  	  	  	  	  	  	  	  	  	  	  	  var	  efs	  =	  ftc.GetExpressionFieldSetter();	  
	  	  	  	  	  	  	  	  	  	  	  	  for	  (var	  i	  =	  0;	  i	  <	  100;	  i++)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  sw.Start();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  efs();	  //	  Set	  field	  to	  1	  using	  expression	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  _expressionTimes.Add(sw.ElapsedTicks);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  sw.Reset();	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  Debug.Print("Av	  time	  to	  call	  expression	  {0}	  ticks",	  	   	   	   	  
	   	   _expressionTimes.Average());	  
	  	  	  	  	  	  	  	  	  	  	  	  Debug.Print("Total	  for	  100	  calls	  -‐	  expression	  {0}	  ticks",	  	   	   	  
	   	   _expressionTimes.Sum());	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  ftc.DisplayTestField();	  
	  	  	  	  	  	  	  	  	  	  	  	  var	  rfs	  =	  ftc.GetReflectionFieldSetter();	  
	  	  	  	  	  	  	  	  	  	  	  	  for	  (var	  i	  =	  0;	  i	  <	  100;	  i++)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  sw.Start();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  rfs();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  _reflectionTimes.Add(sw.ElapsedTicks);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  sw.Reset();	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  Debug.Print("Av	  time	  to	  call	  Reflection	  field	  set	  {0}	  ticks",	  	   	  
	   	   _reflectionTimes.Average());	  
	  	  	  	  	  	  	  	  	  	  	  	  Debug.Print("Total	  for	  100	  calls	  -‐	  Reflection	  field	  set	  {0}	  ticks",	  	  
	   	   _reflectionTimes.Sum());	  
	  	  	  	  	  	  	  	  	  	  	  	  sw.Stop();	  
	  	  	  	  	  	  	  	  	  	  	  	  ftc.DisplayTestField();	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  Console.WriteLine("OK	  -‐	  hit	  enter	  to	  exit");	  
	  	  	  	  	  	  	  	  	  	  	  	  Console.ReadLine();	  
	  	  	  	  	  	  	  	  }	  
	  	  	  	  }	  
	  
	  	  	  	  public	  class	  FieldTestClass	  
	  	  	  	  {	  
	  	  	  	  	  	  	  	  private	  int	  _testField;	  
	  	  	  	  	  	  	  	  private	  readonly	  FieldInfo	  _testFieldInfo;	  
	  
	  	  	  	  	  	  	  	  public	  FieldTestClass()	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  _testFieldInfo	  =	  typeof	  (FieldTestClass).GetField("_testField",	  	   	  
	   	   BindingFlags.NonPublic	  |	  BindingFlags.Instance);	  
	  	  	  	  	  	  	  	  }	  
	  
	  

//	  get	  a	  delegate	  to	  set	  the	  field	  using	  the	  Expression	  class	  
public	  Action	  GetExpressionFieldSetter()	  
{	  
	   var	  a	  =	  Expression.Assign(Expression.Field(Expression.Constant(this),	  	  
	   "_testField"),	  Expression.Constant(1));	  
	   return	  Expression.Lambda<Action>(a).Compile();	  	  
}	  
	  
public	  delegate	  void	  DynMethDelegate();	  
	  
//	  get	  a	  delegate	  to	  set	  the	  fields	  using	  Reflection	  
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public	  DynMethDelegate	  GetReflectionFieldSetter()	  
{	  
	   //	  set	  arg	  0	  as	  an	  instance	  of	  the	  type	  
	   Type[]	  methodArgs	  =	  {typeof(FieldTestClass)};	  	  
	  
	   var	  dm	  =	  new	  DynamicMethod("dynMeth",	  null,	  methodArgs,	  typeof	  	  
	   (FieldTestClass));	  
	   var	  il	  =	  dm.GetILGenerator();	  
	   il.Emit(OpCodes.Ldarg_0);	  
	   il.Emit(OpCodes.Ldc_I4_2);	  
	   il.Emit(OpCodes.Stfld,	  _testFieldInfo);	  
	   il.Emit(OpCodes.Ret);	  
	   return	  (DynMethDelegate)dm.CreateDelegate(typeof(DynMethDelegate),	  
this);	  
}	  
	  
public	  void	  DisplayTestField()	  
{	  
	   Debug.Print("test	  field	  =	  {0}",	  _testField);	  
}	  

}	  
	  

 

9.3 Appendix C Code Expansion 
The following small basic block of ARM assembler demonstrates the code expansion issue when 

translated to CIL. These three lines initialize a block of memory with the value that is stored in 

R3, the address to initialize is stored in R1 and the number of words to initialize is stored in R2.  

initLp:	  
	   STR	  R3,[R1],#4	  @;Store	  a	  word	  and	  update	  pointer	  
	   SUBS	  R2,R2,#1	  @;Next	  word	  
	   BNE	  initLp	  
	  
The following is a CIL translation of the above block, color coded for each instruction. Code 

expansion due to accessing simulated registers and setting simulated CPSR flags is readily 

evident. The first block in each CIL translation increments the program counter. The STR 

instruction is simulated with a block of instructions to update the word in memory and a block of 

instructions to increment the pointer to the next word in memory 

//	  Store	  a	  word	  and	  update	  pointer	  
incPc1:	  
	   Ldarg_0	  	   	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  (int)pc	  	   	   //	  push	  index	  of	  pc	  
	   Ldarg_0	  	   	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
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	   Ldc_I4,	  (int)pc	  	   	   //	  push	  index	  of	  pc	  
	   Ldelem_U4	  
	   Ldc_I4,	  4	   	   	   	   	  
	   Add	   	   	   	   	   	   //	  increment	  the	  pc	  value	  
	   Stelem,	  typeof(uint)	  	   //	  store	  pc	   	   	   	   	   	   	   	  
	   Ldarg_0	  	   	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _programInfo	  	   //	  push	  ref	  to	  the	  program	  array	  
generateIndex:	  
	   Ldarg_0	  	   	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  1	   	   	  	   	   //	  push	  index	  of	  R1	  
	   Ldc_I4,	  4096	  
	   Sub	  
	   Ldc_I4,	  2	  
	   Shr	  
	   Ldarg_0	  	   	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  3	   	   	  	   //	  push	  index	  of	  R3	  
	   Ldelem_U4	   	   	   //	  push	  R3	  value	  
	   Stelem,	  typeof(uint)	   //	  store	  into	  progarray[R1]	  
	  
incrR1:	  
	   Ldarg_0	  	   	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  1	   	   	  	   //	  push	  index	  of	  R1	  
	   Ldarg_0	  	   	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  1	   	   	  	   //	  push	  index	  of	  R1	  
	   Ldelem_U4	  
	   Ldc_I4,	  4	   	   	   	   	  
	   Add	   	   	   	   //	  increment	  the	  R1	  value	  
	   Stelem,	  typeof(uint)	  	   //	  store	  R1	   	  
	  
The translation of the SUBS instruction is constructed from a block of instructions that load the 

simulated registers and perform the subtraction, followed by several blocks that set the simulated 

CPSR flags. 

decrement	  counter	  and	  update	  flags	   	   	   	   	   	  
incPc2:	  
	   Ldarg_0	  	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  (int)pc	  	   //	  push	  index	  of	  pc	  
	   Ldarg_0	  	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  (int)pc	  	   //	  push	  index	  of	  pc	  
	   Ldelem_U4	  
	   Ldc_I4,	  4	   	   	  
	   Add	   	   //	  increment	  the	  pc	  value	  
	   Stelem,	  typeof(uint)	  	   //	  store	  pc	  
decR2:	  
	   Ldarg_0	  	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  2	   	   //	  push	  index	  of	  R2	  
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	   Ldarg_0	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  2	   	   //	  push	  index	  of	  R2	  
	   Ldelem_U4	   	   //	  push	  the	  value	  from	  R2	  
	   Ldc_I4,	  1	   	   //	  push	  1	  
	   Sub	   	   //	  perform	  subtraction	  
	   Stelem,	  typeof(uint)	  	   //	  store	  element	  in	  R2	  
cflag:	  
	   Ldarg_0	  	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _flagsInfo	  	   //	  push	  ref	  to	  the	  flags	  array	  
	   Ldc_I4,	  (int)cFlagIndex	   //	  push	  index	  of	  c	  flag	  
	   Ldc_I4,	  1	  
	   Ldarg_0	  	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  2	   	   //	  push	  index	  of	  register	  
	   Ldelem_U4	  
	   bgt	  clearCflag	  
setCflag:	  
	   Ldc_I4,	  1	  
	   Br	  storeCflag	  
clearCflag:	   	  
	   Ldc_I4,	  0	  
storeCflag:	  
	   Stelem,	  typeof(uint)	  
zflag:	  
	   Ldarg_0	  	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _flagsInfo	  	   //	  push	  ref	  to	  the	  flags	  array	  
	   Ldc_I4,	  (int)zFlagIndex	   //	  push	  index	  of	  z	  flag	  
	   Ldarg_0	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  2	   	   //	  push	  index	  of	  R2	  
	   Ldelem_U4	   	   //	  push	  the	  value	  from	  R2	  
	   Brfalse	  setZflag	   //	  r2	  ==	  0,	  z	  =	  1	  
clearZflag:	  
	   Ldc_I4,	  0	  
	   Br	  storeZflag	  
setZflag:	  
	   Ldc_I4,	  1	  
storeZflag:	  
	   Stelem,	  typeof(uint)	  
nflag:	  
	   Ldarg_0	  	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _flagsInfo	  	   //	  push	  ref	  to	  the	  flags	  array	  
	   Ldc_I4,	  (int)nFlagIndex	   //	  push	  index	  of	  n	  flag	  
	   Ldarg_0	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  2	   	   //	  push	  index	  of	  R2	  
	   Ldelem_U4	   	   //	  push	  the	  value	  from	  R2	  
	   Ldc_I4,	  31	  
	   Shr	   	   //	  set	  n	  to	  the	  MSB	  of	  the	  result	  
storeNflag:	  
	   Stelem,	  typeof(uint)	  
vflag:	  
	   Ldarg_0	  	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _flagsInfo	  	   //	  push	  ref	  to	  the	  flags	  array	  



80 

 

	   Ldc_I4,	  (int)nFlagIndex	   //	  push	  index	  of	  v	  flag	  
	   Ldarg_0	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  2	   	   //	  push	  index	  of	  R2	  
	   Ldelem_U4	   	   //	  push	  the	  value	  from	  R2	  	  
	   Ldc_I4,	  31	  
	   Shr	   	   //	  get	  msb	  from	  op	  1	  
	   Ldc_I4,1	  
	   Ldc_I4,	  31	  
	   Shr	   	   //	  get	  msb	  from	  op2	  
	   Beq	  clearVflag:	  
	   Ldfld,	  _registerInfo	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  2	   	   //	  push	  index	  of	  R2	  
	   Ldelem_U4	   	   //	  push	  the	  value	  from	  R2	  	  
	   Ldc_I4,	  31	  
	   Shr	   	   //	  get	  msb	  from	  op	  1	  
	   Ldfld,	  _registerInfo	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  2	   	   //	  push	  index	  of	  R2	  
	   Ldelem_U4	   	   //	  push	  the	  value	  from	  R2	  	  
	   Ldc_I4,	  31	  
	   Shr	   	   //	  get	  msb	  from	  result	   	  
	   Beq	  clearVflag:	  
setVflag:	  
	   Ldc_I4,	  1	  
	   Br	  storeVflag:	  
clearVflag:	  
	   Ldc_I4,	  0	  
storeVflag:	  
	   Stelem,	  typeof(uint)	  
	  
The final block of CIL corresponds to the branch instruction where the not equal prefix checks if 

the simulated Z flag is clear. 

branchInitLp:	  
	   Ldarg_0	  	   	   	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _flagsInfo	  	   	   //	  push	  ref	  to	  the	  flags	  array	  
	   Ldc_I4,	  (int)zFlagIndex	   //	  push	  index	  of	  v	  flag	  
	   Ldelem_U4	  
	   brfalse	  fallthrough	  
	   Ldarg_0	  	   	   	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  (int)pc	  	   	   //	  push	  index	  of	  pc	  
	   Ldc_I4,	  4132	  	   	   //	  next	  instruction	  
	   Stelem,	  typeof(uint)	  	   //	  store	  pc	  
	   br	  done	  
fallthrough:	  
	   Ldarg_0	  	   	   	   	   //	  push	  reference	  to	  class	  instance	  
	   Ldfld,	  _registerInfo	  	   //	  push	  ref	  to	  the	  registers	  array	  
	   Ldc_I4,	  (int)pc	  	   	   //	  push	  index	  of	  pc	  
	   Ldc_I4,	  4120	  	   	   //	  start	  of	  loop	  
	   Stelem,	  typeof(uint)	   //	  store	  pc	  
done:	  


