
Dynamic Binary Translation on the .NET Platform

by

Patrick Andrew Wright

BSc, Victoria University of Wellington, New Zealand, 1994

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

© Patrick Andrew Wright, 2014
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other

means, without the permission of the author.

ii

Supervisory Committee

Dynamic Binary Translation on the .NET Platform

by

Patrick Andrew Wright

BSc, Victoria University of Wellington, New Zealand, 1994

Supervisory Commitee

Dr. Nigel Horspool, (Department of Computer Science)

Co-Supervisor

Dr. Micaela Serra, (Department of Computer Science)

Co-Supervisor

iii

Abstract
Supervisory Commitee

Dr. Nigel Horspool, Department of Computer Science

Co-Supervisor

Dr. Micaela Serra, Department of Computer Science

Co-Supervisor

Emulation is the practice of simulating one computer system on another. There are many

methods of implementing an emulator. They exist on a performance continuum from simple

interpretation to dynamic binary translation extended with various optimizations. Optimizations

are diverse, including just in time compilation, large translation units, shadow stack, register

mapping and many more. The goal of this thesis is to develop a high performance, portable

emulator for the ARM v4 architecture without requiring substantial code analysis. This thesis

describes the implementation of a dynamic binary translator translating to an intermediate

language targeting a virtual machine. Targeting a virtual machine ensures that the emulator is

portable. Optimizations implemented include forming large translation units and branch

straightening in hot regions. The particular combination of translating to intermediate form for a

virtual machine, and creating large translation units from hot regions does not seem to appear in

the literature. The performance of the described dynamic binary translator exceeds the

performance of an interpreter on the same platform by an order of magnitude. Code analysis was

only used to straighten branches in hot regions. While many popular dynamic binary translation

optimizations are not readily applicable when using a virtual machine target, the performance

achieved shows that using virtual machine as translation target is viable method of implementing

dynamic binary translator.

iv

Table of Contents
Supervisory Committee .. ii	

Abstract .. iii	

Table of Contents ... iv	

List of Tables ... viii	

List of Figures .. ix	

Acknowledgments .. xi	

Dedication ... xii	

1	 Introduction ... 1	

2	 Background ... 2	

2.1	 Emulation ... 2	

2.1.1	 Interpretation ... 2	

2.1.2	 Binary Translation ... 4	

2.1.3	 Dynamic Binary Translation ... 5	

3	 Previous Work .. 8	

3.1	 Reducing Translation Overhead ... 8	

3.2	 Reducing Execution Overhead ... 8	

3.2.1	 Translation Unit Size ... 9	

3.2.2	 Shadow Stack .. 11	

3.2.3	 Indirect Branch Target Caching/Software Indirect Jump Prediction 11	

3.2.4	 Map Source Registers to Target Registers .. 12	

3.2.5	 Optimize Condition Code Handling .. 12	

3.2.6	 Take Advantage of the Target ISA .. 12	

3.2.7	 Cache Decoded Instructions .. 12	

3.3	 Alternatives to Dynamic Binary Translation .. 12	

v

3.3.1	 Hybrid Static/Dynamic Translation ... 13	

3.3.2	 Hybrid Instruction Set Compiled Simulation .. 13	

3.4	 The ARM v4 Instruction Set Architecture and Binary Translation 13	

3.4.1	 PC Relative Addressing ... 13	

3.4.2	 Shifter Operand and Shifter Carry Out .. 13	

3.4.3	 Condition Flags .. 14	

3.4.4	 Conditional Execution ... 14	

4	 An Approach to Dynamic Binary Translation .. 15	

4.1	 The ARM v4 Architecture .. 16	

4.1.1	 Programmer’s Model ... 17	

4.1.2	 Instructions .. 19	

4.1.3	 CodeDOM ... 24	

4.1.4	 Reflection.Emit .. 24	

4.1.5	 Dynamic Language Runtime ... 26	

4.1.6	 How the Dynamic Code is Executed ... 29	

4.2	 CLR Optimization .. 29	

4.3	 Challenges .. 30	

4.3.1	 Hardware Simulation Challenges .. 30	

4.3.2	 When and What to Translate ... 31	

4.3.3	 Translating Program Flow ... 31	

5	 Implementing a Dynamic Binary Translator .. 33	

5.1	 Hardware Simulation .. 33	

5.1.1	 Registers .. 33	

5.1.2	 Memory ... 34	

5.1.3	 Translating Instructions ... 35	

vi

5.1.4	 Flag Setting and Condition Codes ... 36	

5.1.5	 Register to Stack Machine ... 39	

5.2	 What to Translate ... 40	

5.2.1	 Discovering Dynamic Basic Blocks .. 40	

5.2.2	 Translation ... 41	

5.2.3	 When to Translate .. 42	

5.3	 Translating Program Flow .. 42	

5.3.1	 Creating Large Translation Units .. 42	

5.4	 Measuring Performance .. 49	

5.5	 Testing .. 49	

6	 Benchmarking the Translator .. 50	

6.1	 Performance of Interpreter ... 50	

6.2	 Performance of Simple DBT .. 51	

6.3	 Performance of DBT using LTU .. 51	

6.4	 Comparing Different Approaches .. 52	

6.5	 Start Up ... 54	

6.5.1	 Loading .. 54	

6.5.2	 Translation and Hot Traces .. 55	

6.6	 When to Translate ... 56	

6.7	 What to Translate – Hot versus All .. 57	

6.8	 Garbage Collection ... 59	

7	 Conclusions and Future Work .. 62	

7.1	 Future Work ... 63	

7.1.1	 Performance ... 63	

7.1.2	 Integration with ARMSim# ... 64	

vii

7.1.3	 Measuring Performance ... 65	

7.1.4	 Thumb Instruction Support .. 65	

8	 Bibliography ... 66	

9	 Appendices .. 71	

9.1	 Appendix A: Benchmark ARM Assembler Programs ... 71	

9.1.1	 Bubble Sort .. 71	

9.1.2	 Sieve of Eratosthenes ... 72	

9.1.3	 Generate E to n Decimal Places .. 73	

9.2	 Appendix B: Comparing Translation Targets .. 75	

9.3	 Appendix C Code Expansion ... 77	

viii

List of Tables
Table 1	 EHS Performance improvement ... 10	

Table 2	 Average CPU ticks discarding start-up costs .. 53	

Table 3	 Cold versus warm execution time ... 54	

Table 4	 CPU Ticks for first run of each benchmark program ... 55	

Table 5	 Comparison of block counts in benchmark programs .. 55	

ix

List of Figures
Figure 1	 Static versus Dynamic Basic Block [1] ... 6	

Figure 2	 Three stage instruction pipeline (ARM 7 TDMI) .. 18	

Figure 3	 Format of the CPSR .. 18	

Figure 4	 Conditional execution .. 20	

Figure 5	 Stack manipulation overhead .. 25	

Figure 6	 Translation from C# to Expression tree ... 27	

Figure 7	 Translation C# to CIL .. 27	

Figure 8	 Block expression ... 29	

Figure 9	 Accessing simulated registers .. 33	

Figure 10	 Expression syntax mapping a source address to a target address 34	

Figure 11	 A simple instruction translation ... 35	

Figure 12	 Indirect branch translation ... 36	

Figure 13	 Translation of instruction with conditional execution. .. 37	

Figure 14	 Translation of flag setting instruction .. 39	

Figure 15	 Dynamic basic block discovery algorithm .. 41	

Figure 16	 Algorithm to decide when to translate a block .. 41	

Figure 17	 Compiling a translation ... 41	

Figure 18	 Profiling algorithm .. 43	

Figure 19	 Adjacency list .. 43	

Figure 20	 Directed weighted graph for bubble sort program .. 44	

Figure 21	 Extended profiling algorithm to detect and create a hot region 44	

Figure 22	 An Expression.Block implementing a loop ... 45	

Figure 23	 SCCs from bubble sort directed weighted graph ... 46	

Figure 24	 Control flow comparison between DBB translation and LTU translation 47	

Figure 25	 .NET Stopwatch class in use ... 49	

Figure 26	 Interpreter performance ... 50	

Figure 27	 Block DBT Performance ... 51	

Figure 28	 LTU DBT Performance ... 52	

Figure 29	 Bubble Sort benchmark execution times for different approaches 52	

x

Figure 30	 Sieve of Eratosthenes benchmark execution times for different approaches 53	

Figure 31	 Generate E benchmark execution times for different approaches 53	

Figure 32	 Performance effects of different translation threshold values for translating Generate

E program 56	

Figure 33	 Translating all blocks versus only hot blocks .. 58	

Figure 34	 Hot blocks only versus all blocks translated, after final translation 58	

Figure 35	 Minimum, maximum and average execution times for the interpreter running the

Generate E benchmark .. 59	

Figure 36	 Minimum, maximum and average execution times for the LTU translator running the

Generate E benchmark .. 60	

Figure 37	 CPU Ticks and Garbage Collection .. 60	

Figure 38	 Execution CPU ticks distribution .. 61	

xi

Acknowledgments
I wish to acknowledge all the people who have helped and guided me during my studies. I would

like to express my sincere gratitude to my supervisors, Dr. Nigel Horspool and Dr. Micaela

Serra. Lastly I want to thank my family members for their understanding and endless support.

xii

Dedication
For Jenny.

1 Introduction
This thesis investigates dynamic binary translation, which is a particular form of emulation.

Emulation may be described simply as the practice of simulating one computer system on

another. Emulation is useful for:

• Preservation (the ability to execute programs from an obsolete system).

• New system development – develop a system emulator as a precursor to developing the

hardware.

• Software development when no hardware is available. E.g. an emulator is built in to

Apple Computer’s Xcode development environment.

• Education, e.g. the UVic ARMSim#, an emulator for the ARM7TDMI processor.

• Migration, providing the ability to run programs from a previous platform. E.g. Apple

computer provided an emulator for Motorola when they migrated to PowerPC, and again

when they migrated to Intel processors.

• Performance tuning, e.g. an emulator may give access to count clock cycles for memory

access and other operations, which can be difficult even when hardware is available.

The goal of this thesis is to develop and describe a high performance, portable emulator for the

ARM v4 architecture. An existing interpreter will be extended to create a dynamic binary

translator (DBT) that implements some of the techniques discussed in the recent literature. The

implemented DBT runs on three platforms1 and is more than ten times faster than the interpreter

when compared using three benchmark programs. These results are achieved without requiring

static code analysis.

This thesis will first introduce the area of emulation, followed by a review of the technologies

used to implement the dynamic binary translator and the current literature in the area. The

implementation of the DBT and the incorporation of concepts from the literature will be

described and the results achieved discussed.

1 Microsoft Windows, Linux and Apple Macintosh OSX

2

2 Background

2.1 Emulation
A broad definition of emulation is “the process of implementing the interface and functionality

of one system or subsystem on a system or subsystem having a different interface or

functionality” [1]. The same authors give another definition, which is more useful for the

purpose of this thesis “In terms of instruction sets, emulation allows a machine implementing

one instruction set, the target instruction set, to reproduce the behaviour of software compiled to

another instruction set, the source instruction set”.

Emulation is an important enough area that large corporations have invested time and money to

create emulators. This is often done to allow software migration to new hardware, for example

Apple Computer provided the Rosetta emulator with OS X v10.4.4 to allow Intel based machines

to run software compiled for the earlier PowerPC machines.

There are several common techniques that are used to create emulators. These techniques exist

on a continuum of complexity, performance and resource requirements. Interpretation is the

simplest, slowest, least resource intensive technique while binary translation lies toward the other

end of the continuum requiring more resources but delivering superior performance. Several

other techniques including threaded interpretation and pre-coding lie between the two extremes.

2.1.1 Interpretation

Interpretation is a widely used technique for implementing high-level programming languages,

for example Perl, Ruby and Python are currently popular interpreted languages. However in the

context of emulation the goal is to interpret machine code rather than a high level language. The

operation of a simple interpreter may be defined as “stepping through the source program

instruction by instruction, reading and modifying the source state according to the instruction”

[1].

A simple interpreter may be described as having 3 parts:

1. Simulated memory area containing code, data and the stack.

2. A context block that stores the simulated state of the source machine.

3

3. The interpreter codes.

The interpreter operates by loading an instruction from the simulated memory area, decoding the

instruction and updating the state and/or memory based on the decoded instruction. This

approach is known as a decode-and-dispatch interpreter because there is a central loop that

decodes the instruction and dispatches it to a routine that updates the memory and state of the

simulated machine [1].

A simple interpreter may be enhanced in several ways. Common approaches include:

• Indirect Threaded interpretation removes the central dispatch loop and replaces it with

code to move directly to the next instruction at the end of each instruction interpretation

routine. The goal of this is to reduce the number of branch instructions executed. The key

component of this technique is the dispatch table, which maps instructions to routines that

interpret them. When interpretation of the current instruction is complete the next

instruction is decoded and the address of the routine to interpret it is obtained from the

dispatch table. This is referred to as indirect threading because of the indirection of the

dispatch table.

• When a source instruction is interpreted multiple times, some of the work that is done to

extract the meaning of the instruction is repeated. The precoding technique captures this

repeated work and stores the instruction in an intermediate form that allows the

instruction to be interpreted more easily. The operands and other information from the

instruction are extracted into the fields of the precoding. The precoding is based on the

instruction type so one precoding may be shared across multiple instructions. The

interpreter routine to execute the decoded instruction retains the mechanism from Indirect

Threaded interpretation that loads the next instruction, but now the dispatch table stores

the pointer to the routine that executes the pre-coded instruction. It has been suggested

that this technique is better suited to CISC architectures where the instruction decode is a

more complex process due to variable instruction lengths and layouts [1].

• Direct Threaded Interpretation is based on precoding but discards the dispatch table.

Instead of storing the address of the routine to execute the pre-coded instruction in the

dispatch table the address of the routine is held in the structure that contains the pre-

coded instruction.

4

2.1.2 Binary Translation

Binary translation is the process of converting the instructions of the source program into

instructions for the target and update the simulated state of the source machine. Each instruction

in the source program is mapped to a specific translation on the target that simulates the

operation of the source instruction. Two things separate binary translation from precoding:

1. The translated form is directly executable on the target and requires no interpreter

routine.

2. Each translation fragment maps to a specific source instruction, block or region.

Binary translation is a hard problem in the absence of a high level representation of the source

program because all knowledge of the program must be derived from the in memory

representation of the source program. In a static context this presents several significant

challenges [1]:

• Code discovery

• Code location

• Self referencing code

• Self modifying code

2.1.2.1 Code Discovery

Code discovery is the problem that it is hard to know in any given block of memory exactly

which bytes represent code and which represent data. This is a more significant problem with

CISC instruction sets, because of the inconsistent instruction lengths and layouts, but is relevant

to RISC also. For example the bytes following a jump instruction may or may not be code, or be

reachable if they are code.

Some common object/executable file formats separate code and data e.g. the Portable Executable

(PE) format on Windows. In the case of the PE format the operating system maps text areas as

execute/read-only and data areas as no execute/read write. However there may be read-only data

in the text area so code discovery remains an issue.

5

2.1.2.2 Code Location

Code location is the issue of knowing where in the target memory code is located. The problem

can be illustrated with an indirect jump such as the following ARM v4 instruction:

MOV	 PC,	 R2	
	
At runtime this causes the processor to branch to the location held in register 2, at translation

time the address is usually not known and sometimes cannot be known. We can assume that the

contents of R2 is an address in the memory block that contains the code and data. The issue is

that the address in R2 is a source address, which means that a mechanism to determine the

translated address at runtime must be implemented.

2.1.2.3 Self Referencing Code

Self-referencing code is where the program reads data from its code area. This is a variation of

the code location problem in that the address that is being read from must be translated to a target

address.

2.1.2.4 Self-Modifying Code

Self-modifying code is code which writes into its code area at runtime, so potentially instructions

may change after they have been translated. Again as with the code location problem, it’s also

necessary to be able to find the correct location to write to.

Data execution prevention (DEP) in modern operating systems normally prevents execution of

any writeable memory areas, except for privileged applications such as just-in-time (JIT)

compilers. The purpose of DEP is to improve the security of the operating system against attacks

such as buffer overflow exploitation.

2.1.3 Dynamic Binary Translation

One way to overcome some of these issues is to perform translation on the source program when

it is executing with actual data. This is dynamic translation, as code is discovered it is translated.

A simple DBT has several parts [1]:

• An emulation manager that controls the process at a high level.

• An interpreter.

6

• A binary translator that converts one or more source instructions to one or more target

instructions.

• A source code block – an address range in memory that contains the code and data of the

source program.

• A target code cache.

• A mechanism to map the source program counter to target program counter.

The general procedure is to build some minimal translation unit, which is called by the emulation

manager in place of interpreting individual instructions. This minimal translation unit may be

described as a dynamic basic block [1], which is defined as a block of instructions that starts with

the first instruction executed after a branch or a jump and ends with the next branch or jump

instruction. This differs from a static basic block in that it may contain multiple entry points. It

also means that a series of instructions may be present in multiple DBBs.

Static Basic Blocks Dynamic Basic Blocks

	 add	
	 load	
	 store	

Block	 1	 	 add	
	 load	
	 store	

Block	 1	

loop:	 load	
	 add	
	 store	
	 brcond	
skip	

Block	 2	 loop:	 load	
	 add	
	 store	
	 brcond	 skip	

	

	 load	
	 sub	

Block	 3	 	 load	
	 sub	

Block	 2	

skip:	 	 add	
	 store	
	 brcond	
loop	

Block	 4	 skip:	 	 add	
	 store	
	 brcond	 loop	

	

	 add	
	 load	
	 store	
	 jump	
indirect	

Block	 5	 loop:	 load	
	 add	
	 store	
	 brcond	 skip	

Block	 3	

	 	 	 skip:	 	 add	
	 store	
	 brcond	 loop	

Block	 4	

Figure 1 Static versus Dynamic Basic Block [1]

The execution of the translator may be described as follows:

1. From the program entry point instructions are interpreted until execution reaches the first

branch or jump instruction.

7

2. The branch or jump instruction ends the dynamic basic block (DBB).

3. The DBB may be translated and stored in the translated block cache (TBC). The source

program counter to target program counter map is updated to point to the translated

block. Now the block can be executed without falling back to the emulation manager

between translated instructions.

4. Before an instruction following a branch or jump is interpreted the emulation manager

checks the TBC for a translation for the address of the next block:

a. If the address is a miss in the TBC the next block is interpreted until execution

reaches a branch or jump instruction which ends the DBB.

b. If the address is a hit in the TBC the translated block is executed. At the end of

the translated block control passes back to the emulation manager.

A primary goal of Dynamic Binary Translation is to significantly improve performance when

compared to an interpreter as well as being easier to implement than a Static Translator. While a

DBT may require additional memory to store the translated code cache and extra execution time

to create the translated instructions it has performance potential well beyond the interpreter. DBT

has been widely used to implement emulators [2] including:

• Apple Computer, M68K to PowerPC

• Transitive Corporation, QuickTransit Motorola Power PC to Intel x86 (also SPARC to

x86, x86 to Power Architecture)

• DEC, FX!32 x86 to DEC Alpha

• HP ARIES, HP 9000 HP-UX to HP Integrity HP_UX 11i

• Sun Microsystems Wabi x86 to SPARC

8

3 Previous Work
Current work in dynamic binary translation is focused in several areas:

• The reduction of the overhead associated with binary translation [3], [4].

• The ability to target many different kinds of applications without being limited to static

program code [5].

• The ability to observe the simulated system state at any point during a simulation [6].

• The ability to easily change the target architecture from one instruction set architecture

(ISA) to another [7].

However the main focus of research is on improving the performance of binary translation

through reducing the associated overhead. This overhead has been characterized in several ways:

• The overheard is made up of translation overhead and execution overhead. Most

processor time is spent executing translated code so optimizing the translated code to

reduce the execution overhead is important [4].

• A less generalized view of the overhead is that it is comprised of overhead from

initialization, cold code translation, profiling, and hot trace building, all of which should

be targeted to reduce their impact [3].

• Another view is that there is overhead in translating code and in executing translated code

and a balance must be struck between the two. Up to some limit improving the quality of

the translated code pays off with a reduction in overall execution time [8].

3.1 Reducing Translation Overhead
While this is described as needing to be balanced with the execution overhead, there appears to

be very little work being done to reduce it. One way to reduce the translation effort is to simply

translate only the ‘hot’ blocks [9], [6].

3.2 Reducing Execution Overhead
The approaches to improving the quality of translated code are many and varied, some address

improving the efficiency of running the translated code, others address the issue of code

expansion and attempt to reduce the number of target instructions that are generated for each

source instruction. Proposed approaches for reducing execution overhead include:

9

• Increase translation unit size

• Shadow stacks

• Indirect branch target caching/software indirect jump prediction

• Duplicate and rearrange code

• Map source registers to target registers

• Optimize condition code handling

• Take advantage of powerful instructions in the target ISA that may replace several source

instructions

• Cache decoded instructions for reuse by the interpreter

The first three of the above can be grouped together as mechanisms to reduce calls to the

emulation manager. The emulation manager in a binary translator performs a similar role to the

dispatcher in an interpretive simulator. When a translation unit’s execution is completed the

emulation manager determines whether execution can continue from the translation cache or

whether further source code must be translated.

3.2.1 Translation Unit Size

A common approach to reducing calls to the emulation manager is to execute larger units of

code. Larger units of code may improve performance in two ways:

1. Give fewer points at which to return to the emulation manager (minimize context

switching).

2. Provide the compiler of the translated code greater scope for optimization (improve code

quality).

While some DBT systems have used single instructions [5] as the translation unit, it is more

common that the unit of translation is the basic block, [6], [9] or dynamic/extended basic block

[10], [11].

Generating larger translation units is an active area of research. The general approach is to

profile the execution of the program and monitor the number of times that each basic block is

executed. Blocks that are executed more times than a configurable threshold value are marked as

hot blocks. Various schemes have been proposed for making use of the hot block profile.

10

The Edinburgh High-speed Simulator (EHS) implements four execution modes to investigate the

effects of translation unit size [12]. The system maintains a counter to track the total number of

interpreted blocks and only performs translation after some number of blocks have been

interpreted. They refer to the interval between two successive translations as an epoch. During an

epoch the simulator builds an execution profile for each physical page. The baseline mode counts

the number of times each block on the page is interpreted and translates the ‘hot’ blocks. This is

referred to as basic block (BB) mode. There are three additional large translation unit (LTU)

modes with translation units of increasing size. In LTU mode a control flow graph (CFG) is

created for each physical page, the page may contain several separate CFGs, one or more

combined CGs or a combination of separate and combined CFGs. The first increment of

translation unit size use strongly connected components (SCC) as translation units. An SCC is a

collection of basic blocks that have hot control flow graph (CFG) arcs between them, and any

attached linear regions. Tarjan’s algorithm is used to extract the strongly connected components

from the page. The next increment in translation unit size is the CFG where each CFG within the

page forms a translation unit. The final translation unit is the page that contains one or more

CGFs. The page LTU has the best simulation performance, but the performance difference

between the large translation unit approaches is minimal.

Translation Unit Performance Improvement over BB
SCC 1.63
CFG 1.64
Page 1.67
Table 1 EHS Performance improvement

A similar approach is to create hot regions, which are arbitrary CFG sub-graphs constructed from

hot basic blocks and the blocks neighboring them that are also hot [13] [8].

Another mechanism is to patch the end of a translated block with a jump to the start of the next

BB [14], [15]. This may be the simplest approach since no profiling is involved. A similar

approach is lazy block linking, where blocks are only linked together when a context switch

occurs [16].

11

A significant difference between these approaches is whether the large execution units are

formed by joining together smaller translation units [13] or compiled directly to larger translation

units [12].

Creating dynamic basic blocks often results in code duplication as more than one entry point

may exist to the same piece of code. This code duplication has been measured and found to only

increase the generated code size minimally [4], [13].

3.2.2 Shadow Stack

When a function is called the return address is usually stored in a register or pushed onto the

stack to enable the epilogue of the called function to jump to the saved location. In a DBT

returning from a function call may entail returning to the emulation manager to determine the

address of the next instruction to execute. The shadow stack is a mechanism to avoid the cost of

mapping the source return address to the target return address when returning from a function

call. The address of the translated block to return to is saved on the shadow stack, while the

address of the source address to return to is stored in the source stack. On return from the

function call, if the address from the shadow stack matches the translation of the address from

the source stack, the target address from the shadow stack can be used to access the next

translated block directly. If the addresses don’t match or there is no translated block for the

address, then the call goes to the emulation manager [1], [16]. The shadow stack technique is

only applicable to DBTs that maintain both a source program counter and a target program

counter (TPC). Many of the DBTs that are JIT compiled do not maintain a TPC [6], [11]. This

idea can be extended to preemptively translate the code at the return site if it has not already been

translated [17].

3.2.3 Indirect Branch Target Caching/Software Indirect Jump Prediction

Software indirect jump prediction exploits the observation that indirect branch targets seldom or

never change. By profiling the execution of the code the common destinations for an indirect

branch may be recorded and used to directly access the translated block. The simulation can fall

back to the emulation manager if the target is an address that has no translation. This can be

achieved by adding a series of if statements that check the return address to the end of the

function body [1]. A similar but more expensive operation at run time is to use the indirect

12

branch target address to look up Target PC values which allows the translated branch target to be

executed directly without returning to the emulation manager [17], [16].

3.2.4 Map Source Registers to Target Registers

A simple way to manage the translation of source registers is to map them to memory. However

this causes significant overhead as each read or write from a register requires a memory

operation. One way to avoid this overhead is map source registers directly to target registers for

each register use in a basic block [14], or within a region [8].

3.2.5 Optimize Condition Code Handling

Simulating the condition code flags in memory incurs significant overhead in a similar manner to

simulating registers in memory. It is possible to avoid this overhead if the effect of the

instruction on the condition code flags in the source ISA matches the behavior in the target ISA

[8].

3.2.6 Take Advantage of the Target ISA

In some case the target ISA contains powerful instructions that may map to several source ISA

instructions. For example in the ARM v4 ISA the MLA maybe used to simulate the sequence of

MUL and ADD instructions in the Intel x86 ISA. Patterns of instructions in the source ISA

suitable to be mapped to a single target instruction may be found by constructing directed flow

graphs for each basic block and the searching for sub-graphs that match the pattern that can be

replaced by a single instruction [18].

3.2.7 Cache Decoded Instructions

In general there is little mention in the literature of the interpretation stage of DBT. However,

one scheme for improving the efficiency of the interpretation stage is to cache the decoded

instructions for future use, saving the cost of repeated decodes [6].

3.3 Alternatives to Dynamic Binary Translation
As discussed previously performing binary translation in a static context has a significant

number of challenges. Combining static and dynamic binary translation can overcome the

difficulties of creating a static translation and create a translation with performance that exceeds

a typical dynamic binary translator.

13

3.3.1 Hybrid Static/Dynamic Translation

One approach to combining dynamic and static translation is to statically decode the program,

adding instructions into a single translation unit until a branch to a location that cannot be

statically determined is encountered. When the entire program has been translated and is

executing, dynamic branches are profiled and if the destination of the branch is not in the current

translated block a ‘miss’ is generated. If a sequence of instructions generates too many misses it

is recompiled using the collected branch destination information [11].

3.3.2 Hybrid Instruction Set Compiled Simulation

Another approach to combining static and dynamic translation is to perform a static analysis to

create a decoder for each type of instruction that is discovered in the program [19]. The compiler

optimizes the decoder for each instruction type when the translator is compiled. The compilation

time for the translator for the program is minimized because only the instructions discovered in

the program have translators compiled, not the whole of the ISA. At run time instructions are

executed one at a time giving the flexibility of interpretive simulation.

3.4 The ARM v4 Instruction Set Architecture and Binary Translation
The ARM ISA has several features that provide additional challenges for binary translation [20].

3.4.1 PC Relative Addressing

PC relative addressing is an instance of the code discovery problem. Large constants may be

loaded from the text section by using the PC as the base address for the LDR (Load Register)

instruction. The PC that is used must be the source PC. PC relative addressing may also be used

to implement switch statements [20], [17].

3.4.2 Shifter Operand and Shifter Carry Out

The ARM v4 ISA provides several addressing modes for instruction operands, as described in

section 4.1.2.8. While some of these modes generate an operand from a straightforward

immediate or register value, others may apply one of several shift operations to generate the

operand value. Instructions using an addressing mode that is performing a shift to calculate the

operand value require additional code in the translation to perform the shift. Using this type of

addressing in an instruction also sets the C flag if there is a Carry Out from the shifter operand.

So translated code also has to provide a mechanism to set the C flag [20].

14

3.4.3 Condition Flags

Many instructions in the ARM ISA may set the condition codes, the comparison instructions,

CMN, CMP, TEQ and TST, as well as arithmetic, logical or move instructions. Exactly how the

flags are set depends on the instruction. Flag setting introduces considerable translation overhead

to any instruction that sets the flags. The translator requires additional functionality to handle the

specific flag setting for the various instruction groups [20].

3.4.4 Conditional Execution

Nearly all instructions in the ARM v4 ISA contain a conditional execution prefix as described in

section 4.1.2.1. This prefix determines if the instruction will be executed based on the settings of

the flags in the Current Program Status Register (CPSR), described in section 4.1.1.3. The action

of checking the CPSR flags can introduce a considerable overhead to the translation of any

particular instruction. The number of flags checked depends upon the particular condition code.

Any instruction that has a condition code prefix other than “always” requires that the translator

generate code that implements the condition code check. On some other architectures similar

condition code mechanisms exist and there may be ways to use the target architectures condition

code flags to emulate those of the source architecture, in place of generating a translation that

checks the simulated CPSR [8].

15

4 “An Approach to Dynamic Binary Translation”
In this thesis we investigate the specific case of implementing a portable dynamic binary

translator for the ARM v4 ISA. The translator is portable because it runs on both the Microsoft

.NET Common Language Runtime (CLR) and the Mono open source implementation of the

ECMA C# and CLR standards. Mono is supported on the Linux, OS X and Windows operating

systems2. The translator implements the usual features of a DBT as well as some of the

optimization techniques described in Chapter 3 Previous Work that are suited to CIL as a

translation target, including:

• Large translation units

• Code layout changes

• Code duplication

• Conditional execution optimization

• Branch condition inversion

The ARMSim#3 emulator previously developed in the Department of Computer Science at the

University of Victoria was implemented in C# on Microsoft’s .Net platform. The interpreter

extracted from ARMSim# provided a readily available starting point to develop a DBT from.

Choosing to use the ARMSim# interpreter made using the same development environment the

default choice. In turn, choosing to develop the DBT using CIL as the target constrained the

implementation in other ways. Many of the techniques outlined in Chapter 3 Previous Work are

not suited to an intermediate language as a translation target or cannot be readily implemented on

a stack machine.

• Register mapping is not a useful technique in this context as there are no registers to map

to.

2 http://www.mono-project.com/Main_Page
3 ARMSim# is an ARM7TDMI emulator that provides simulation of state including the 16
general purpose registers and the CPSR, the L1 Cache, both code and data, main Memory, and
the Stack. ARMSim# also includes an assembler and a linker, so that when a file is loaded it is
automatically assembled and linked [40].

16

• CIL does not contain powerful instructions that multiple ARM assembler instructions

may be mapped to.

The approach taken in this thesis combines several techniques from Chapter 3. Instructions are

translated in isolation and combined to form DBBs. DBBs are coalesced to form large translation

units that span hot regions in the control flow graph.

The particular combination of translating to an intermediate language for a virtual machine and

forming large translation units from hot traces does not seem to appear in the literature.

4.1 The ARM v4 Architecture
Implementing a translator for the ARM processor requires some understanding of the features of

the device that a programmer may use. There are many versions of the ARM architecture. This

thesis describes a translator for the ARM7TDMI processor, which implements the ARM v4

architecture. The ARM is a RISC processor [21] and as such implements these typical features:

• The instruction fields have fixed lengths and are uniform across different instructions.

Instruction decoding is simplified because the same mechanism can be used to decode

different instructions, wherever instructions share the same layout. For example all data

processing instructions share the same addressing mode options in the shifter operand.

• Addressing modes are simple with the address for the load or store instructions being

determined from a combination of values in registers and immediate values in the

instruction.

• A large uniform register file, which means there are a large number of registers and they

are all a uniform 32 bits.

• A load/store architecture, which means that instructions do not manipulate memory

directly, rather instructions manipulate registers. Memory is loaded into registers,

manipulated by instructions and stored from registers back to memory.

17

4.1.1 Programmer’s Model

4.1.1.1 Modes

There are seven processor modes in the ARM architecture, for the purpose of this thesis we are

only interested in User mode, which is normal program execution mode. The other six modes are

generally only used by the operating system.

4.1.1.2 Registers

Although the ARM processor has 31 general-purpose registers, only 16 are visible to the

programmer in user mode. The remaining non-visible registers are used for speeding up

exception processing [21]. Exceptions are outside the scope of this thesis so I will not mention

them further. The use of the registers is defined by the ARM calling convention [22] as follows:

• Registers 0 to 11 or 12 are available for the use of the programmer

• Register 12 is the intra procedure call scratch register (IP)

• Register 13 is by convention used as the stack pointer (SP)

• Register 14 is the Link Register (LR) used to hold the return address of the Branch and

Link instruction, which is used when making a function call

• Register 15 is the program counter (PC)

The programmer may change the PC directly; this is sometimes described as the program counter

being exposed [17]. Changing the PC directly is the equivalent of a branch instruction. However

the PC should only be read or written according to the specified rules. [21][A2-7] ARM v4 and

earlier have a three-stage instruction pipeline so the PC contains the address of the next

instruction to fetch, two instructions after the instruction being executed. 4This is important for

calculating branch destinations when translating instructions [21][A1-5].

Each column in Figure 2 represents a single clock cycle, so in each cycle the processor:

• Fetches an instruction.

• Decodes the instruction fetched in the last clock cycle.

• Executes the instruction fetched two cycles ago.

4 More recent versions of the architecture have deeper pipelines, but the 2 instruction offset is
maintained for reasons of compatibility

18

Figure 2 Three stage instruction pipeline (ARM 7 TDMI)

4.1.1.3 Current Program Status Register

The current program status register (CPSR) shown in Figure 3 is a special purpose register

outside of the general-purpose registers 0 through 15. The bits of interest in the CPSR are the

highest 5 and the lowest 8 (bits 8 through 26 are defined as Do Not Modify).

Figure 3 Format of the CPSR

Bits 31 to 28 are the condition code flags, N, Z, C and V. These flags are modified by

comparison instructions, as well as arithmetic, logical and move instructions. Many of the

arithmetic, logical and move instructions may be flag setting or flag-preserving depending on

whether the instructions S bit is set. If the S bit is set:

• The N flag is set to 1 if the result of the instruction is negative when viewed as 2’s

complement signed integer. Otherwise the N flag is 0.

• The Z flag is set to 1 if the result is zero; otherwise it is set to 0.

• The C flag is set in one of four ways depending on the instruction. The C flag is the carry

flag, so if the operation would have produced a carry then the flag is set.

• The V flag is the overflow flag and is generally set if an operation causes a signed

overflow, but it may be set for other reasons.

Bit 27 is the Q flag and is used in some variants of the ARM architecture that support Enhanced

DSP Extensions.

Fetch Decode Execute

Fetch Decode Execute
Fetch Decode Execute

time

instructions

31 627282930 35 1 04 27826

N QVCZ Do Not Modify(Read As Zero)
M
0

M
1

M
2

M
3

M
4TFI

19

The bottom 8 bits of the CPSR are known as control bits. The I bit and the F bit enable and

disable interrupts, the T bit is set when in thumb mode which is an alternative operation mode

supported by the ARM processor that uses 16 bit instructions. The M bits indicate the processor

mode. The control bits are not modifiable in User mode code so they will not be discussed

further.

4.1.1.4 Memory

In the ARM architecture v4 memory is a single address space of 2^32 8 bit bytes, with unsigned

integer addresses from 0 to 2^32 – 1. This address space may also be viewed as 2^20 32 bit

words aligned on 4 byte boundaries.

4.1.1.5 Data Types

The ARM processor itself supports 3 data sizes:

1. Word, which is normally aligned to 4 byte boundaries. The 4 bytes making up the word

with the address A, are at A, A+1, A+2, A+3.

2. Half-Word, which is normally aligned to 2 byte boundaries.

3. Byte.

The data types are extended to include double word values when the floating point coprocessor is

present and quad word values when the DSP unit is present.

4.1.1.6 Memory Alignment

The ARM processor operates most efficiently when data access is aligned, the address for a word

is word-aligned and the address for a halfword is halfword-aligned. The assembler provides a

directive for the programmer to align data. Alignment is not compulsory but there is a

performance penalty for unaligned access.

4.1.2 Instructions

Version 4 of the ARM architecture supports two different instructions sets. By default

instructions are 32 bits. However there is a second instruction set, called the Thumb instruction

set which is a re-encoded 16 bit subset of the 32 bit instruction set. The Thumb instruction set is

not in the scope of this thesis.

20

The Architecture Reference Manual [21] [A1-5] states “The ARM instruction set can be divided

into six broad classes of instruction”:

• Branch instructions

• Data-processing instructions

• Status register transfer instructions

• Load and Store instructions

• Coprocessor instructions

• Exception-generating instructions”

4.1.2.1 Conditional Execution

Before considering the classes of instructions it is important to note that most instructions may

be executed conditionally. The top 4 bits of nearly all instructions is the condition code. This

code determines which flag or combination of flags from the CPSR must be checked in order for

the instruction to be executed.

Loop:	
CMP	 r1,	 #0	
SUBGT	 r1,	 r1,	 #1	
BNE	 loop	
Figure 4 Conditional execution

The small loop shown in Figure 4 demonstrates conditional execution. The compare (CMP)

instruction sets the flags in the CPSR based on the results of the comparison as follows:

• N flag is set to the MSB of the result of r1 – 0

• Z flag is set if r1 – 0 = 0

• C flag is set if r1 – 0 >= 0

• V flag is set if r1 – 0 generates a 32 bit signed overflow5

The SUBGT instruction is conditionally executed on checking the flags in the CPSR. For GT the

flags are checked as follows:

• Z flag is clear

5 Subtraction causes an overflow if the operands have different signs, and the first operand and
the result have different signs.(Seal, 2000)

21

• N flag equals V flag

Before the BNE instruction is executed the flags in the CPSR are checked as follows:

• Z flag is clear

The default condition code prefix is always (mnemonic AL) which instructs the processor to

execute the instruction regardless of the setting of the flags. The remaining 14 conditions cover:

• Tests for equality and non-equality.

• Tests for <, <=, > and >+ inequalities in both signed and unsigned arithmetic.

• Each flag to be tested individually.

[21][A1-5]

One purpose of conditional execution is to reduce the number of branch instructions. Reducing

branches is beneficial because they cause the instruction pipeline to be flushed. A conditional

instruction that is not executed is equivalent to a no operation (NOP) instruction [21].

4.1.2.2 Branch Instructions

The ARM processor has several different branch instructions as well as allowing direct setting of

the program counter which has the same effect as a branch (There are very specific rules as to

how the program counter may be changed).

1. B is the plain branch instruction.

2. BL is the branch and link instruction, effectively a subroutine call. Setting the L bit

causes the instruction to save the return address in the link register (register 14). At the

end of the subroutine the link register can be copied into the program counter to return

from the subroutine.

3. BX is the branch and exchange instruction, this instruction branches to a destination that

is held in a register. This instruction allows the option of changing into Thumb mode.

The other significant difference between 1 – 3 and 4 above is that 1 – 3 branch to an immediate

value that is encoded in the instruction, whereas 4 is indirect and branches to a destination held

in a register.

22

4.1.2.3 Data Processing Instructions

There are 16 data processing instructions, which perform operations including addition,

subtraction, logical and, logical or etc. All the data processing instructions, except for move and

move negative, take two source operands. The first source operand is always a register. The

second source operand is called the shifter operand and is calculated using one of eleven modes.

All the data processing instructions may update the condition code flags in the CPSR depending

on whether the S bit is set. Exactly how the flags are set is specific to the instruction.

4.1.2.4 Status Register Access Instructions

These two instructions allow the value of the CPSR to be loaded into a register or updated from a

value in a register.

4.1.2.5 Load and Store Instructions

Load instructions retrieve a value from memory into a register, store instructions save a value

from a register to memory. The instructions come in two forms:

1. Operates on 32-bit word or 8-bit unsigned byte values

2. Loads or stores 16-bit unsigned halfwords and loads 8-bit byte or 16-bit halfwords with

sign extension.

Similarly to the data processing instructions the load and store instructions have several

addressing modes available to determine the memory address to read from or write to.

4.1.2.6 Coprocessor Instructions

The ARM processor has a set of instructions specifically for communication with coprocessors.

These instructions fall outside the scope of this thesis.

4.1.2.7 Exception-Generating Instructions

The binary translation application described in this thesis makes minimal use of the software

interrupt instruction (SWI) to terminate a program. The SWI instruction is normally used to

allow user mode to transfer control to privileged Operating System code. Breakpoint (BKPT) is

the other exception generating instruction; this instruction is not available in the translator

described in this thesis.

23

4.1.2.8 Addressing Modes

In the ARM v4 architecture there are five addressing modes associated with five different classes

of instructions.

• Mode 1 - Data processing operands

• Mode 2 - Load and store word or unsigned byte

• Mode 3 – Miscellaneous Loads and stores

• Mode 4 – Load and store multiple

• Mode 5 – Load and store coprocessor

4.1.2.9 Setting of CPSR Flags Depends on Specific Instruction:

The MOV instruction sets the flags in the following manner:

• N Flag = MSB of destination register

• Z Flag = if destination register == 0 then 1 else 0

• C Flag = shifter carry out

• V Flag unaffected

Whereas the SUB instruction does the following

• N Flag = MSB of destination register

• Z Flag = if destination register == 0 then 1 else 0

• C Flag = NOT Borrow From6(operand a – operand b)

• V Flag = Overflow From7(operand a – operand b)

However, how instructions set the flags fall into several groups so that it is possible to maintain a

small collection of methods to generate the flag checking translations.

6 “Returns 1 if the subtraction specified as its parameter caused a borrow (the true result is less
than 0, where the operands are treated as unsigned integers), and returns 0 in all other cases. This
delivers further information about a subtraction which occurred earlier in the pseudo-code. The
subtraction is not repeated.” (Seal, 2000)
7 “Returns 1 if the addition or subtraction specified as its parameter caused a 32-bit signed
overflow. Addition generates an overflow if both operands have the same sign (bit[31]), and the
sign of the result is different to the sign of both operands. Subtraction causes an overflow if the
operands have different signs, and the first operand and the result have different signs.”(Seal,
2000)

24

This is a very brief outline of the ARM processor. For further information, refer to the ARM

Architecture Reference Manual [21].

As discussed at the start of this chapter the previously implemented ARMSim# interpreter runs

on Microsoft’s .NET platform. This made the most obvious choice of target instruction set one of

the dynamic code generation technologies supported on the .NET platform. The ability to easily

generate and execute code dynamically also makes the .NET framework attractive as a

translation target. The .NET framework provides several mechanisms for generating dynamic

code:

1. CodeDOM

2. Reflection.Emit

3. ExpressionTrees

4.1.3 CodeDOM

The CodeDOM is a library of types that provide representations for many types of source code

items. A multi-step process allows using this library to create assemblies that can be stored in

memory (or on disk) and executed dynamically.

While CodeDOM has been used as a translation target for binary translation it’s a poor choice if

simulation performance is an important goal. CodeDOM requires the use of a high level

language such as C# as the translation target and each source instruction may generate as many

as 1500 native target instructions [11].

4.1.4 Reflection.Emit

Another possibility for generating code dynamically is the System.Reflection.Emit library. A

major benefit of using IL as the translation target is that it allows access to all of the features of

the CLR. Using IL it is possible to generate methods, classes and assemblies. Assemblies may be

saved to disk, as well as executed dynamically.

However using CIL directly makes the job of the programmer considerably more difficult for

two reasons. The first is that it is hard to ensure the correctness of the CIL, “… unfortunately

Reflection.Emit makes it very easy to generate invalid IL …” and “But the correctness and

validity of IL is a far more subtle matter” [23].

25

Because the emitted CIL is not available until runtime, the only way to investigate the validity of

the generated code is to capture the emitted output using WinDBG or a similar console debugger.

The second challenge with emitting CIL directly is that while the ARM processor is a register

machine, the CLR is a stack machine. This means that the process of translating ARM

instructions to CIL is a two part process where the instruction must be translated to the

equivalent CIL instruction or instructions, but also the register manipulation performed by the

instruction must be translated to the equivalent stack machine sequence. This introduces a large

amount of code overhead to each translated instruction that the programmer is responsible for8.

ARM Asm CIL

sub	 r1,	 r2,	 r3	 Ldarg_0	 	 	 	 //	 push	 reference	 to	 class	 instance	
Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	
Ldc_I4,	 (int)rd	 	 	 //	 push	 index	 of	 rd	
Ldarg_0	 	 	 //	 push	 reference	 to	 class	 instance	
Ldfld,	 _registerInfo	 //	 push	 ref	 to	 the	 registers	 array	
Ldc_I4,	 (int)rn	 	 //	 push	 index	 of	 rn	
Ldelem_U4	 	 	 //	 push	 the	 value	 from	 rn	
Ldarg_0	 	 	 	 //	 push	 reference	 to	 class	 instance	
Ldfld,	 _registerInfo	 	 //	 array	 info	
Ldc_I4,	 (int)	 rm	 	 	 //	 push	 index	 of	 rm	
Ldelem_U4	 	 	 	 //	 push	 the	 value	 from	 rm	
Sub	 	 	 	 //	 perform	 subtraction	
Stelem,	 typeof(uint)	 	 //	 store	 element	 in	 rd	

Figure 5 Stack manipulation overhead

Figure 5 shows the translation of a simple subtraction instruction to CIL. Translating to the stack

machine requires inserting instructions to configure the stack from the simulation context block,

performing the desired operation and storing the result from the stack back to the context block.

The stack machine nature of this code can be seen in that the initial items pushed onto the stack

are the register array and the index of the register in which to store the result, and the last

instruction stores the result.

An obvious limitation of translating one instruction at a time is that the stack is reconfigured for

each instruction, generating overhead when the results from one instruction and that state of the

stack may be useful to the next instruction – hence the idea of translating blocks of instructions

8 See Appendix C for an example of code expansion due to simulating register access and CPSR
flag setting and checking.

26

rather than isolated instructions. In practice this may require two passes to generate the IL,

removing redundant store and load instructions on a second pass.

The emitted CIL is used to can be used in various ways. Used in the most minimal way it can

generate a dynamic method, which is stored in memory and discarded when it is no longer

required. Alternatively it can be used to generate an assembly containing modules, types and

methods that may be saved to disk and used outside the scope of the currently executing

program.

In contrast with the high level code generated by the CodeDOM the IL generated by

Reflection.Emit is at a similar level of abstraction to the source ARM assembly code. The

number of instructions required to emulate a specific ARM instruction may be significant,

especially if the condition codes are involved but it still generates many, many fewer instructions

than the CodeDOM [11].

4.1.5 Dynamic Language Runtime

The Dynamic Language Runtime (DLR) [24] is a library that sits on top of the CLR and provides

a set of runtime services for supporting dynamic languages9. These services include:

• Expression trees which are used to represent the semantics of a programming language.

• Call site caching, which is a mechanism where operands and operations are cached so

that if the same operation and operand types are seen subsequently the cached version can

be used. This saves repeatedly looking up the same method.

• Dynamic object interoperability, a set of classes and interfaces is provided that enable

representation of dynamic objects and operations by language implementers.

4.1.5.1 Expression Trees

Expressions and Expression Trees form the basis of the translation mechanism in the binary

translator described in this thesis. Expressions are implementations of the abstract Expression

class. The System.Linq.Expressions namespace contains a large number of Expression classes

that implement various programming language constructs. It also includes an Expression class

that provides static factory methods to create the various node types. E.g. The Expression.Add

9 Examples include Ruby, Python, Lisp, Smalltalk, Lua and many more.

27

factory method creates an instance of the BinaryExpression class that represents an addition

operation without overflow checking. A key feature of expressions is that any operands of an

expression are themselves expressions. This enables representing any source code as a tree of

expression objects. An additional advantage to using the Expression class is that the class

manages the IL stack transparently.

An expression tree is a tree of objects where each node in the tree is an instance of an Expression

object. An Expression tree is “also a representation of a program that can be manipulated at

runtime” [25].

For example Figure 6 shows a simple C# assignment translated to an Expression tree.

C# Expression tree

_cFlag	 =	 1;	 Expression.Assign(
Expression.Field(Expression.Constant(this),	 _cFlagInfo),	
Expression.Constant(1))	

Figure 6 Translation from C# to Expression tree

To obtain an expression that represents the field in the class, the Expression.Field method

requires a reference to the class that contains the field, which is supplied by

Expression.Constant(this). The field itself is accessed via a FieldInfo object, which has been

created previously. Expression.Constant(1) supplies the value to assign to the field and the

Expression.Assign on the outside performs the assignment of the constant to the field.

The expression syntax compares favorably to the CIL syntax for the same operation shown in

Figure 7.

C#	 CIL

_cFlag	 =	 1;	 Ldarg_0	 	 //	 push	 a	 ref	 to	 the	 class	
Ldc_I4_1	 	 //	 push	 the	 value	 to	 store	
Stfld,	 _cFlagInfo	 //	 store	 value	 into	 field	

Figure 7 Translation C# to CIL

Despite the fact that the expression tree code is making 4 calls to CLR API functions there is

little or no difference in the performance between the two implementations. This was determined

empirically by writing a small test program to repeatedly assign a value to a field. The variability

28

between runs exceeds the difference between the two implementations. See Appendix B for a

small test program demonstrating this.

To execute an Expression tree, it is compiled into a delegate, which can then be called. A

delegate is a type safe callback mechanism, or put more simply ‘a handle to piece of code that

can be called’ [25]. The delegate provides C# with a mechanism that is similar to a function

pointer in C/C++. A delegate can also be defined as a class that holds a reference to a method.

The signature of the delegate must match the signature of the method.

The delegate may be:

• Created at runtime.

• A custom delegate provided by the programmer.

• One of the generic delegate types provided by the runtime. Two categories of generic

delegate types are available, Func<T> delegates which return a value and Action<T>

delegates which do not.

The CLR executes the delegate by calling its invoke method. A delegate can have several

methods chained to it, both static and instance methods.

var	 assignDelegate	 =	 Expression.Lambda<Action>(assignExpression).Compile();	
assignDelegate();	
	
The Compile method generates CIL that is available to be JIT compiled when the delegate is

called.

One of the primary purposes of expression trees is to implement dynamic programming

languages. This also makes them ideal for creating a DBT. Both IronRuby10 and IronPython11 are

implemented on the DLR, and work in a similar manner. Both use a tokenizer and a parser to

generate an abstract syntax tree that is either an expression tree in the case of IronPython, or

converted into an expression tree in the case of IronRuby. In these dynamic languages the

expression trees are first interpreted, to reduce the start up time, before being compiled.

10 http://ironruby.codeplex.com
11 http://ironpython.net

29

In the case of DBT on the CLR the Expression tree simplifies implementing the instructions

from the target language because there is no need to translate from the register architecture of

ARM assembler to the stack architecture of the CLR’s IL. The JIT compiler manages the stack.

4.1.5.2 Nested and Block Expressions

The Expression tree syntax becomes difficult to read once expressions exceed a certain size,

however the combination of the fact that most Expression methods take at least one Expression

parameter and that the Block Expression allows expressions to be grouped means that simple

expressions may be combined to form more complex ones.

var	 accessR1	 =	 Expression.ArrayAccess(
	 	 	 Expression.Field(Expression.Constant(this),	 _registerInfo),	
	 	 	 Expression.Constant(IndexR1));	
var	 assignR1	 =	 Expression.Assign(accessR1,	 Expression.Constant(7));	
var	 accessR2	 =	 Expression.ArrayAccess(
	 	 	 Expression.Field(Expression.Constant(this),	 _registerInfo),	
	 	 	 Expression.Constant(IndexR2));	
var	 assignR2	 =	 Expression.Assign(accessR2,	 Expression.Constant(8));	
var	 block	 =	 Expression.Block(assignR1,	 assignR2);	
	
Figure 8 Block expression

4.1.6 How the Dynamic Code is Executed

Both Reflection.Emit and Expression trees can be used to add methods to the existing assembly.

These methods are compiled to native code by the CLR’s just-in-time compiler when the method

is called. The CodeDOM is a much less dynamic approach requiring the creation of an assembly

containing a class.

4.2 CLR Optimization
A significant benefit of targeting a runtime such as the CLR is the optimizations that the runtime

itself provides. The optimizations provided by the runtime also improve as new versions are

released. There have been significant improvements to the CLR between .NET 2.0 and .NET 4.5.

This is not an exhaustive list, but rather some of the documented optimizations included in the

CLR JIT compiler [26], [27]:

• Multi-core JIT [27] Added in .NET 4.5, when an application is started a background

thread running on a different processor is also started to perform JIT compilation. The

goal of running the compilation on a separate thread is to avoid the compilation overhead

30

in making method calls. When a method is required in the application, it has already been

compiled on the background thread. To know which methods are required by the

application and in what order the application generates an execution profile that is stored.

The execution profile is used by the background thread to determine which methods to

compile and the order in which to compile them.

• Method inlining. The method call is replaced by the body of the method. The CLR has

many rules governing which methods may be in-lined, which vary with the specific

version of the CLR. The trend has been to allow more inlining of methods between the

initial release of the CLR and the latest .NET 4.5 release.

• Assertion propagation (what is known to be true), this is a generalization of constant

propagation.

• Constant folding, e.g. y = 3 * 2 is changed to y = 6 by the compiler.

• Branch straightening via prediction which is reordering of code so that the likely path

taken in a branch is moved to the fall through position [26].

• Tail call, if the last code element in method1 is a call to method2 call then the stack frame

of method1 may be reused by method2 rather than adding another frame to the stack.

This optimization may be shared between the language to IL compiler and the JIT IL to

native compiler by the language compiler creating IL code that the JIT compiler is more

likely to apply the tail call optimization to [28].

• Value type handling has been improved by implementing “value type scalar replacement”

which is essentially converting value types that are suitable into a collection of scalars.

Other improvements have been made that allow methods with value type parameters,

local variables or return value to be inlined [29].

4.3 Challenges
There are three major challenges to resolve in order to implement a DBT for ARM v4 ISA with

CIL as a target.

4.3.1 Hardware Simulation Challenges

At first glance the translation from one instruction set to another might seem quite

straightforward, however in the case of ARM v4 assembler to the System.Linq.Expression

syntax there are a number of challenges. Many of these challenges are simply challenges of

31

dealing with code expansion; a single ARM instruction may expand into tens of Expressions.

This code expansion is generally driven by the need to simulate features of the ARM v4 ISA in

software:

• Since CIL is executed on a stack machine the registers of the ARM processor must be

simulated.

• Many ARM instructions make use of addressing modes that are encoded in the

instruction and the calculations performed by the addressing mode must be simulated.

• Simulating the CPSR flags and the setting of the flags.

• Accessing the simulated memory block.

• Simulating conditional execution.

See Appendix C for an example showing code expansion in a translated block.

4.3.2 When and What to Translate

Translation is expensive in terms of the computation time required to translate the code, so there

is little point in translating code that is unlikely to be executed enough to recoup the cost of the

translation. After a DBB is discovered it isn’t translated until some decision is reached regarding

the expected pay back from translating the block. Various mechanisms have been used to decide

when to translate from a simple execution count [7], to a heuristic based on the block size and

the execution count [6]

4.3.3 Translating Program Flow

A very similar problem is deciding which regions of an executing program are hot and worth

creating large translation units for. In the case of forming large translation units (LTU) there is

the additional challenge of discovering which code should be included in the LTUs. Forming

LTUs also opens up other optimization possibilities such as code reordering. Forming LTUs may

also be regarded as translating the program flow. When the unit of translation is the DBB the

emulation manger controls the flow of the executing translation. At the end of each DBB control

is transferred back to the emulation manager to determine which block to execute next. The

formation of LTUs requires that this flow of control be translated. An additional challenge to

maximizing the performance of LTUs is to ensure that the translation doesn’t become so large

that it adversely affects the JIT compilation time.

32

The final challenge of translation is purely a challenge for the programmer, ensuring that the

generated translation is an accurate representation of the source program.

33

5 Implementing a Dynamic Binary Translator
Faculty and students in the CS department at the University of Victoria developed the ARMSim#

ARM simulator, which runs on the .NET framework. This simulator is based on a simple fetch

and decode interpreter, and as mentioned previously the decoder from the interpreter makes an

ideal starting point for implementing a dynamic binary translator. Many additional components

were required to create a functioning DBT.

5.1 Hardware Simulation
While the ARMSim# emulator contains a simulation of the processor state the implementation is

tightly coupled to the graphical user interface. For this reason the registers and memory of the

processor had to be implemented in a manner suitable for use in a translator.

5.1.1 Registers

Since the CLR is implemented as a stack machine there are no registers available to map the

registers of the ARM architecture to. The registers of the ARM architecture must be simulated in

a Context Block, described previously. A simple approach to implementing the context block is

to make it globally accessible. Translated data instructions may access the global context block

for many reasons:

• Loading data from source registers.

• Storing data in destination registers.

• Accessing the program counter to calculate offsets for immediate addressing.

The System.Linq.Expression namespace provides a mechanism to access an array by index. This

provides a way to implement translation of the actions of data transfer instructions on the

simulation of the ARM processor’s registers. For example:

1.	 Expression.ArrayAccess	
2.	 (
3.	 	 Expression.Field(
4.	 	 	 Expression.Constant(this),	
5.	 	 	 	 _registerInfo),	
6.	 	 Expression.Constant(rd)	
7.)	
Figure 9 Accessing simulated registers

34

The Field expression on Line 3 provides the ArrayAccess expression on line 1 with the array to

access. The Constant expression on line 4 is a reference to the object that the Field is a member

of. The variable _registerInfo on line 5 is an instance of the System.Reflection.FieldInfo class

that holds meta-data about the _registers array. This meta-data is used to access the array via

Expression syntax. Fields may also be accessed by name. The second Constant expression on

line 6 is the index of the element to retrieve, where the value of the index is supplied by a local

variable, rd.

This Expression.ArrayAccess is used to obtain the value of a register for use as an input in

another expression or as an assignment target when creating an assignment Expression.

5.1.2 Memory

The source program to execute must be stored in memory to allow access to the code and data.

This is implemented as a simple array of bytes. To access the program code and data requires

mapping from a source address to a target address, which is an array index value. This can be

summarized as:

Index = (instruction address – program base address) >> 2

An expression tree to perform this mapping is shown in Figure 10.

1.Expression.ArrayAccess(
2.	 Expression.Field(Expression.Constant(this),	 _programInfo),	
3.	 	 Expression.Convert(
4.	 	 	 Expression.RightShift(
5.	 	 	 	 Expression.Subtract(instructionAddr,	
6.	 	 	 	 	 Expression.Constant(_baseAddress)),	
7.	 	 	 	 Expression.Constant(2)),	
8.	 	 	 typeof(int))	
9.);	
Figure 10 Expression syntax mapping a source address to a target address

The Expression.ArrayAccess on line 1 accesses the array that stores the program, the variable

_programInfo is similar to the _registerInfo variable above. The Expression.Convert on line 3

generates the index into the array. It converts the unsigned integer generated by the

Expression.RightShift into a signed integer. The conversion is required because the .NET CLR

doesn’t permit an array to be indexed by an unsigned integer.

35

The arrays used to model memory and registers could have been implemented using the

System.Collections.Generic.Dictionary class. This was investigated because it removed the

requirement to map the SPC to the TPC, but the impact on simulation performance was

significant.

5.1.3 Translating Instructions

Translating an instruction requires that we generate an expression to:

1. Evaluate the condition code evaluation if the instruction is conditional.

2. Increment the source program counter.

3. Update the simulation state.

4. Set the condition codes if required.

Not all instructions require all steps. Many instruction translations simply increment the program

counter and update the simulation state. For example:

SUB	 R3,	 R2,	 R1	
	
Translates to the following in Expression syntax:

1.	 Expression.Block(
2.	 Expression.AddAssign(
3.	 	 Expression.ArrayAccess(
4.	 	 	 Expression.Field(Expression.Constant(this),	 _registerInfo),	
5.	 	 	 Expression.Constant(ProgramCounter)),	
6.	 	 Expression.Constant((uint)4))	
7.	 Expression.Assign(
8.	 	 Expression.ArrayAccess(
9.	 	 	 Expression.Field(Expression.Constant(this),	 _registerInfo),	
10.	 	 	 Expression.Constant(rd)),	
11.	 	 Expression.Subtract(
12.	 	 	 Expression.ArrayAccess(
13.	 	 	 	 Expression.Field(
14	 	 	 	 	 Expression.Constant(this),	 _registerInfo),	
15.	 	 	 	 Expression.Constant(rn)),	
16.	 	 	 Expression.ArrayAccess(
17.	 	 	 	 Expression.Field(
18.	 	 	 	 	 Expression.Constant(this),	 _registerInfo),	
19.	 	 	 	 Expression.Constant(regM))	
20.));	
Figure 11 A simple instruction translation

36

Lines 2 through 6 form an expression to increment the program counter.

Lines 7 through 20 store the result of the subtraction expression in the simulated register, using

the value of the local variable rd to index into the array that simulates the ARM processor’s

registers.

5.1.3.1 Indirect Branches

Indirect branches are those branches whose destination is not known until runtime. For example:

MOV	 PC,	 R2	
	
The address loaded from R2 is a SPC address so it must be mapped to a TPC address.

1.Expression.Assign(
2.	 Expression.ArrayAccess(
3.	 	 Expression.Field(Expression.Constant(this),	 _registerInfo),	
4.	 	 	 Expression.Constant(pc))),	
5.	 Expression.ArrayAccess(
6.	 	 Expression.Field(Expression.Constant(this),	 _programInfo),	
7.	 	 	 Expression.Convert(
8.	 	 	 	 Expression.RightShift(
9.	 	 	 	 Expression.Subtract(Expression.ArrayAccess(
10.	 	 	 	 	 Expression.Field(Expression.Constant(this),	
11.	 	 	 	 	 	 _registerInfo),	 Expression.Constant(r2)),	
12.	 	 	 	 	 Expression.Constant(_baseAddress)),	
13.	 	 	 	 Expression.Constant(2)),	
14.	 	 	 typeof(int))	
Figure 12 Indirect branch translation

The indirect branch translation combines a simulated memory access with manipulating the

simulated registers. The Expression.Assign on line 1 is the direct translation of the move

instruction, assigning the value from the address in R2 to the PC. The nested expressions are

necessary “boilerplate” code to access the simulated state. The memory access code duplicates

the code in Figure 10 and the register access code duplicates the code in Figure 9.

5.1.4 Flag Setting and Condition Codes

5.1.4.1 Conditional Instructions

As discussed previously ARM instructions may be executed conditionally which means that the

condition check must be translated. A simple optimization is to only generate flag checking code

for those instructions that have a condition code other than always.

37

ARM Expression Tree

MOVNE	 R3,	 R2	 Expression.IfThen(
	 Expression.NotEqual(
	 	 Expression.Field(
	 	 	 Expression.Constant(this),	
	 	 	 “_zFlag”),	
	 	 Expression.Constant(1)),	
	 Expression.Assign(
	 	 Expression.ArrayAccess(
	 	 	 Expression.Field(
	 	 	 	 Expression.Constant(this),	
	 	 	 	 “_registerList”),	
	 	 	 Expression.Constant(R3Index)),	
	 	 Expression.ArrayAccess(
	 	 	 Expression.Field(
	 	 	 	 Expression.Constant(this),	
	 	 	 	 “_registerList”),	
	 	 	 Expression.Constant(R2Index))))	

Figure 13 Translation of instruction with conditional execution.

Figure 13 illustrates the translation of a conditionally executed instruction. The simulated

registers exist in an array that is an instance variable of the class that holds the simulated state.

The indices of the accessed registers are passed into the method generating the translation as the

variables R2Index and R3Index. NE or not equal is a simple translation as it checks only the Z

flag from the CPSR, but the general case of translating a conditionally executed instruction is

similar. One thing that can be seen from this example is the code expansion where 14

Expressions are required to translate the single ARM instruction, this is one of the challenges of

translating assembler, it is very terse and the code expansion is challenging for the programmer

to manage.

5.1.4.2 Flag Setting

Setting the simulated CPSR causes code expansion in a similar manner to checking the flags in

the previous section. As described previously, how the flags are set is dependent on the specific

instruction, but all are translated in a similar manner. It is also possible to extract and reuse the

flag setting code, so that different instructions may use the same flag setting code. The SUB

instruction with the S bit set, sets the flags as described in 4.1.2.9, its translation is shown in

Figure 14.

ARM Expression Tree

38

ARM Expression Tree

SUBS R2, R1, #1 //	 set	 up	 operands	 for	 instruction	
var	 operandA	 =	 Expression.ArrayAccess(
	 	 Expression.Field(Expression.Constant(this),	 	
	 _registerInfo),	 Expression.Constant(indexR1)	
	
var	 operandB	 =	 Expression.Constant(1);	
	
//	 set	 up	 destination	 to	 store	 result	
var	 result	 =	 Expression.ArrayAccess(
	 	 Expression.Field(Expression.Constant(this),	 	 	
	 	 	 _registerInfo),	
	 	 Expression.Constant(indexR2));	
	
//	 perform	 subtraction	 and	 store	 result	
var	 Reg2	 =	 Expression.Assign(result,	
	 	 Expression.Subtract(operandA,	 operandB));	
	
//	 set	 the	 simulated	 C	 flag	
var	 setC	 =	 Expression.IfThenElse(
	 Expression.LessThan(operandA,	 operandB),	
	 Expression.Assign(
	 	 Expression.Field(
	 	 	 Expression.Constant(this),	 _cFlagInfo),	
	 	 Expression.Constant(0)),	
	 Expression.Assign(
	 	 Expression.Field(
	 	 	 Expression.Constant(this),_cFlagInfo),	
	 	 Expression.Constant(1)));	
	
//	 set	 the	 simulated	 Z	 flag	
var	 setZ	 =	 Expression.IfThenElse(
	 Expression.Equal(result,	
	 	 Expression.Constant((uint)0)),	
	 Expression.Assign(
	 	 Expression.Field(
	 	 	 Expression.Constant(this),_zFlagInfo),	
	 	 Expression.Constant(1)),	
	 Expression.Assign(
	 	 Expression.Field(
	 	 	 Expression.Constant(this),_zFlagInfo),	
	 	 Expression.Constant(0)));	
	
//	 set	 the	 simulated	 N	 flag	
var	 setN	 =	 Expression.Assign(
	 Expression.Field(
	 	 Expression.Constant(this),	
	 	 _nFlagInfo),	
	 Expression.Convert(
	 	 Expression.RightShift(
	 	 	 result,	
	 	 	 Expression.Constant(31)),	
	 	 typeof	 (int)));	

39

ARM Expression Tree

	
//	 set	 the	 simulated	 V	 flag	
var	 setV	 =	 Expression.IfThenElse(
	 Expression.And(
	 	 Expression.NotEqual(
	 	 	 Expression.RightShift(
	 	 	 	 operandA,	 Expression.Constant(31)),	
	 	 	 Expression.RightShift(
	 	 	 	 operandB,	 Expression.Constant(31))),	
	 	 Expression.NotEqual(
	 	 	 Expression.RightShift(
	 	 	 	 operandA,	 Expression.Constant(31)),	
	 	 	 Expression.RightShift(
	 	 	 	 result,	 Expression.Constant(31))),	
	 Expression.Assign(
	 	 Expression.Field(
	 	 	 Expression.Constant(this),	 _vFlagInfo),	
	 	 Expression.Constant(1)),	
	 Expression.Assign(
	 	 Expression.Field(
	 	 	 Expression.Constant(this),	 _vFlagInfo),	
	 	 Expression.Constant(0)));	
	
//	 combine	 the	 instruction	 and	 flag	 setting	 translations	
var	 translation	 =	 Expression.Block(Reg2,	 setC,	 setZ,	 setN,	 setV);	
	

Figure 14 Translation of flag setting instruction

The overhead introduced by setting the flags is obviously significant. ARM code that contains

many flag setting instructions may prove challenging to translate with good performance.

When creating large expressions such as this it is easy for them to become deeply nested and for

their meaning to be obscured. The use of Expression.Block in combination with assigning

comprehensible expressions to temporary variables and creating functions for frequently used

expressions makes the code readable.

5.1.5 Register to Stack Machine

As outlined in section 4.1.4 dealing with the stack machine nature of the CLR is challenging

when emitting CIL directly using the Reflection.Emit class. The use of the

System.Linq.Expression class to generate dynamic methods overcomes this difficulty and frees

the developer from having to manage the state of the CLR’s stack. The remaining issue with

dealing with the stack machine is generating the code to simulate the memory and register access

as outlined above in sections 5.1.1 and 5.1.2.

40

5.2 What to Translate
The ARMSim# interpreter forms the basis for this investigation of binary translation. However,

the ARMSim# simulator runs inside a graphical user interface, which makes it unsuitable for

measuring performance. A message pump thread drives the GUI, running a loop. This interferes

with measuring the performance of the interpreter in isolation. Instead the interpreter modules

were extracted into a standalone application in order to enable more precise measurements.

The interpreter loop extracted from ARMSim# works as follows. Program code and data is

loaded into a simulated memory area. The entry point is specified by an assembler directive and

defaults to the start of the text area if it is not specified. The first instruction is fetched from this

address. The program counter is incremented to point to the next instruction. The condition code

prefix of the loaded instruction is checked against the simulated CPSR (current program status

register) and if the instruction is to be executed it is passed to the decoder. The instruction is

decoded and the result is applied to the simulation of the state of the target architecture, called

the Context Block by [1]. Each instruction is dispatched and decoded every time it is executed.

When the state has been updated the loop starts again, loading the instruction that the program

counter is pointing to. The interpreter proceeds in this fashion until the execution halts.

Interpretation in the simulator halts when an SWI instruction is encountered.

Many of the previously discussed DBT systems do not translate instructions until they are

profiled and determined to be “hot” according to some metric. As mentioned previously,

translators generally perform translation on blocks of instructions rather than on individual

instructions in isolation, which requires that metadata is collected during execution to determine

which blocks are worth translating. The initial unit of translation in the DBT described in this

thesis is the dynamic basic block.

5.2.1 Discovering Dynamic Basic Blocks

Dynamic basic blocks are discovered as the program executes in the interpreter. The DBB ends

when a branch or SWI instruction is encountered. To manage this process there is a nested

emulation loop where the outer loop controls interpreting blocks and the inner loop manages

interpreting the individual instructions within the block. For example:

while	 (!at	 end	 of	 program){	
	 if(this	 instruction	 is	 not	 recorded	 as	 starting	 a	 block){	

41

	 	 record	 the	 start	 of	 a	 block	
	 	 newBlock	 =	 true	
	 }	
	 while	 (!at	 end	 of	 block){	
	 	 interpret	 instruction	
	 }	
	 if(newBlock	 =	 true){	
	 	 record	 the	 end	 of	 the	 block	
	 	 add	 the	 block	 to	 the	 dbb	 list	
	 }	
}	
	
Figure 15 Dynamic basic block discovery algorithm

When the program exits a list of all the dynamic basic blocks that were executed has been

generated. The entry address and exit address of each dynamic basic block are recorded in this

list. Translation is expensive so we want to set a threshold for the number of times a block

should be interpreted before it is translated. We add a counter to track the number of times a

block has been interpreted; if the block count exceeds some threshold then the block is

translated. For example:

increment	 block	 execution	 count	
if(this	 instruction	 is	 not	 recorded	 as	 starting	 a	 block){	
	 Record	 the	 start	 of	 a	 block	
	 New	 Block	 =	 true	
}	
while(!at	 end	 of	 block){	
	 if(block	 execution	 count	 exceeds	 threshold){	
	 	 interpret	 and	 translate	 instruction	
	 }	
	 else{	
	 	 interpret	 instruction	
	 }	
}	
if(block	 execution	 count	 exceeds	 threshold)	 {	
	 Create	 translated	 block	
}	
Figure 16 Algorithm to decide when to translate a block

5.2.2 Translation

To translate a dynamic basic block the translated instructions in the block are combined into a

BlockExpression. Then an Action delegate is compiled from the BlockExpression and stored in

the translated block cache. For example:

BlockExpression	 block	 =	 Expression.Block(…);	
translatedBlock	 =	 Expression.Lamda<Action>(block).Compile();	
Figure 17 Compiling a translation

42

The translated block cache is implemented as a dictionary using the starting addresses of the

translated blocks as keys. Control is returned to the emulation manager at the end of each

translated block. Each translated block ends with a branch instruction, which sets the value of the

Program Counter based on the condition test. When control returns to the emulation manager it

checks the translated block cache using the Program Counter as a key. If the block address given

by the Program Counter is a hit in the translated block cache the translation is executed,

otherwise the interpreter executes the block. As program execution continues the proportion of

translated blocks to interpreted blocks increases until the majority of instructions are being

executed via their translations. Although the simple DBT has significant performance gains

when compared to the interpreter it is mostly useful as a starting point for investigating

mechanisms for further speeding up program execution. This basic DBT is similar to “Gear 1”

described by [8] or QEMU [14].

Another reason that this may be considered a simple DBT is that data instructions are translated

but control flow instructions are not.

5.2.3 When to Translate

Deciding when to translate is difficult because it requires looking into the future to see how

many times an instruction will be executed. A pragmatic approach is to assume that once a block

has been executed some number of times that it is likely that it will be executed many more times

and therefore is worth translating. This approach is taken in many of the translators described in

Chapter 3 [7], [6] and is the approach taken in this thesis.

5.3 Translating Program Flow
A translator that uses basic blocks as its final translation step is in a sense a hybrid. While all

code that is executed may be translated code, between blocks it behaves much like an interpreter,

dropping back to the emulation manager to determine which block to execute next.

5.3.1 Creating Large Translation Units

Executing the simulator using the profiler in Visual Studio 2010 Ultimate shows that the simple

DBT described previously spends most of its execution time in the emulation manager accessing

the translated block cache. One way to reduce this overhead is to implement a mechanism that

coalesces hot blocks into hot regions and reduces the number of times that the simulation returns

43

to the emulation manager. To determine which blocks in the program are hot requires profiling

the execution of the program.

An ‘edge profile’ is created by recording the number of times each edge that leaves a block is

taken. Since all blocks end with a branch instruction (disregarding the SWI instruction) there can

only be one or two edges leaving a block. The edge profile records the starting block, the ending

block and the number of times that the edge was taken. When execution of a block is complete,

and before returning to the emulation manager, if the profile has an entry the edge the count is

incremented, if there is no entry for the edge an entry is created and incremented. As pseudo

code:

1.	 while(!atEndOfProgram)	 {	 //	 main	 emulation	 loop	
2.	 	 …	
3.	 	 if	 (!ProfileContainsEdge(blockStart,	 nextBlock)){	
4.	 	 	 AddEdgeToProfile(blockStart,	 nextBlock);	
5.	 	 }	
6.	 	 IncrementProfileCountForEdge(blockStart,	 nextBlock);	
Figure 18 Profiling algorithm

Profiling the program execution and recording the number of times each edge between blocks is

traversed generates a directed weighted graph. This graph is stored in a .NET dictionary (a hash

table) with block starting addresses as keys and a dictionary for the value. The nested dictionary

uses the addresses of adjacent blocks as keys and the number of times the edge has been

traversed as the value.

Figure 19 Adjacency list

Figure 19 shows a node in the graph, as it is stored in the hash table/dictionary. The block at

address 4124 has 2 edges that leave it, to the blocks at addresses 4144 and 4160. The edge to

4144 has been traversed 4877 times and the edge to 4160 has been traversed 3124 times. The

whole edge profile of a small program such as bubble sort may be displayed in a graphic form,

for example:

key value key value

4124

4160

4144

3124

4877

4144

44

Figure 20 Directed weighted graph for bubble sort program

Although creating the edge profile is more involved than creating a block profile, it makes

discovering hot regions in the profile more straightforward. Each time an edge count is

incremented it is tested against a threshold value to determine if the edge is hot. When an edge is

found to be hot, the address of the block with the hot edge is recorded. When the number of hot

edges exceeds some threshold value, a hot region may be created. In pseudo code:

1.	 while(!atEndOfProgram)	 //	 main	 emulation	 loop	
2.	 {	
3.	 	 …	
4.	 	 if	 (!ProfileContainsEdge(blockStart,	 nextBlock))	 {	
6.	 	 	 AddEdgeToProfile(blockStart,	 nextBlock);	
7.	 	 }	
8.	 	 IncrementProfileCountForEdge(blockStart,	 nextBlock);	
9.	 	 if(EdgeIsHot(blockStart,	 nextBlock))	 {	
10.	 	 	 AddToBlocksWithHotEdgesList(blockStart,	 nextBlock);	
11.	 	 	 hotEdgeCount++;	
12.	 	 }	
13.	 	 If(hotEdgeCount	 >	 hotRegionThreshold)	 {	
14.	 	 	 CreateHotRegion();	
15.	 	 }	
Figure 21 Extended profiling algorithm to detect and create a hot region

1

6

7

4

5

32

1

3124

5 121
126

1

4774 3227

4877

109 18

45

5.3.1.1 Forming Hot Regions

Creating larger translation units requires translating the control flow instructions in addition to

the already translated data handling instructions. The previously translated and compiled blocks

could be combined to form regions. However the last instruction in each of these blocks sets up

the program counter for return to the emulation manager. In the context of the hot region this

instruction is likely to be both redundant and incorrect. Instead the translations of the individual

instructions, which remain in the instruction translation cache, can be combined to form regions

containing control flow. This assumes that instructions have not been modified since they were

translated, so the translator has the limitation of no self-modifying code.

5.3.1.1.1 Labels and Gotos

The System.Linq.Expressions namespace includes Expressions for control flow including

Expression.Label and Expression.Goto. An Expression.Label is inserted to provide a destination

for control flow to branch to. An Expression.Goto takes an Expression.Label parameter whose

location it transfers control to. For example:

1.	 Expression.Block(
2.	 	 Expression.Label(“start”),	
3.	 	 Expression.Expression.SubtractAssign(
4.	 	 	 Expression.Field(Expression.Constant(this),	 _someValue),	
5.	 	 	 Expression.Constant(1)),	
6.	 	 Expression.IfThen(
7.	 	 	 Expression.Equal(
8.	 	 	 	 Expression.Constant(0),	
9.	 	 	 	 Expression.Field(Expression.Constant(this),	 _someValue)),	
10.	 	 	 Expression.Goto(“start”)	
11.)	
12.)	
Figure 22 An Expression.Block implementing a loop

To create the hot region, control flow is required within the region and to exit the region. When

the interpreter first sees a block, an Expression.Label is created for the block and stored in a hash

table using the block start address as the key. When creating the hot region these previously

stored labels are inserted into the start of each block when the block is translated. As well, the

labels are available to use in Expression.Goto, even when the destination block has not yet been

added to the hot region translation. Similarly, to be able to insert Expression.Goto instructions

that exit the region, an Expression.Label is required to supply to the Expression.Goto. This

46

Expression.Label(“exit”) is created at the beginning of creating the hot region translation, and

inserted as the last expression in the Expression.Block that implements the hot region. An

additional implication here is that when an Expression.Goto(“exit”) is encountered the PC must

be set correctly.

5.3.1.1.2 Sub-graph or Connected Hot Blocks

Similar to the approach taken by other researchers [12] this thesis makes use of Tarjan’s [30]

strongly connected components (SCC) algorithm. The output from Tarjan’s SCC algorithm is a

collection of lists each containing the addresses of a set of blocks that are strongly connected. A

block is strongly connected to another block if they are in the same directed cycle in the control

flow graph.

This thesis relied on a simple threshold where once n edges had been traversed x times Tarjan’s

algorithm was run to find the SCCs. The components that contain one or more hot edges and

more than one dynamic basic block are used to create translated regions.

Figure 23 below shows the SCCs from the directed weighted graph for the bubble sort program,

inside the dotted line are the hot edges and blocks.

Figure 23 SCCs from bubble sort directed weighted graph

Combining the lists of SCCs and the translated instructions in the translated instruction cache,

we have sufficient information to create translated hot regions.

432
3124

4774 3227

4877

6

5

47

5.3.1.1.3 Translating Branch Instructions

Figure 24 Control flow comparison between DBB translation and LTU translation

To form a LTU the branch instructions that end every DBB that is included in the LTU must be

translated in the context of the LTU rather than simply returning to the emulation manager. To

add a translated block to the region, we insert a label for the start of the block, and then add all of

the instructions in the block up to the terminating branch instruction. The branch instruction can

only be added when it has been analyzed to determine which of the 4 categories it falls into.

1. Neither edge leaving the block is hot:

• Add the existing translated branch instruction and a goto expression to exit the region.

The translated branch instruction from the translated instruction cache sets the

program counter correctly.

2. The branch condition true edge is hot and the branch condition false edge is not:

• If the block is the last block in the sub-graph list, insert a goto expression back into

the region and fall through to the region exit.

DBB

DBB
Emulation
Manager

Emulation
Manager

DBB DBB

DBB

DBB

Hot Region

Dynamic Basic Blocks Large Translation Unit

48

• If the next block in the sub-graph list is the branch target/hot edge, invert the branch

condition so that control flow falls through on the hot edge and insert a goto

expression to exit the region.

• If the next block in the sub-graph list is not in the control flow for this block, then the

branch target/hot edge requires a goto expression to a labeled block in the hot region,

and the fall through edge requires a goto expression to exit the hot region.

3. The branch condition false edge is hot and the branch condition true edge is not:

• If the block is the last block in the sub-graph list, invert the condition, set up a goto

expression back into the region, and fall through to the region exit.

• If the next block in the sub-graph list is the fall through/hot edge don’t modify the

instruction at all, set up a goto expression to exit the region if the condition is true and

fall through on the hot edge.

• If the next block in the sub-graph list is not in the control flow for this block, then the

branch target requires a goto expression to exit the region and the fall through

requires a goto expression to a labeled block in the hot region.

4. Both edges leaving the block are hot:

• If the block is the last block in the sub-graph list, insert a goto expression for each

edge back into the region.

• If the next block in the sub-graph list is the branch target, invert the branch condition

to fall through to the branch target instead and insert a goto expression to the original

fall through address.

• If the next block in the sub-graph list is the fall through address, then translate the

control flow normally generating a goto expression for the branch target.

Notable in previous description is the optimization of inverting the branch conditions to reduce

the number of goto expressions required to implement the translation. Reducing the number of

goto expressions that are within the hot region has significant performance benefits. By inverting

the branch conditions for branches with one hot edge the goto expressions can be confined to the

cooler edges leaving the hot region. Inverting branch conditions also means that the code layout

is no longer in the same order as the source program [1].

49

The hot region replaces the entry in the translated block cache for the first block in the region.

When the emulation manager finds a hit in the translated block cache for the blocks starting

address the translated region is executed.

5.4 Measuring Performance
To evaluate the various implementations and mechanisms, a method of measuring different

execution times is required. The .NET framework provides a Stopwatch class, which provides an

API that mimics a stopwatch. Included in the Stopwatch are methods including Start(), Stop(),

Reset(), ElapsedMilliseconds() and ElapsedTicks(). The Stopwatch is simple to use and was used

frequently to collect execution times. For example:

1.	 var	 _sw	 =	 new	 Stopwatch();	
2.	 _sw.Start();	
3.	 SomeMethodRequiringTiming();	
4.	 _sw.Stop();	
5.	 var	 elapsed	 =	 _sw.ElapsedTicks;	
	
Figure 25 .NET Stopwatch class in use

ElapsedTicks are used to measure execution time since a tick has a precise time value. The

duration of a tick is 1 second divided by the Stopwatch.Frequency. The Stopwatch.Frequency

depends on the hardware the system is running on but it generally results in a tick that is

significantly less than a millisecond. On an Intel Core 2 Duo T8100 running at 2.10 GHz the tick

duration is approximately 69 nanoseconds.

The performance of the translator running the benchmark programs was measured using the

Stopwatch. The translator ran each benchmark 20 times and the duration of each execution was

recorded.

5.5 Testing
Accuracy of translation is of utmost importance in a dynamic binary translator to ensure that the

emulator correctly models the behaviour of the source ISA. The interpreter that the dynamic

binary translator is based on was used as a reference to ensure the correct behaviour of the

translator. The effect of a translated instruction on the architected state of the emulator was

manually compared to the effect of interpreting the same instruction. If both translated and

interpreted instructions affected the architected state of the emulator in the same way the

translation was regarded as being correct.

50

6 Benchmarking the Translator
As discussed previously instrumentation was added to the translator to determine the time taken

for each execution. Several small programs were used to benchmark the performance of the

simulator, including:

• Bubble sort, sorting 128 random values

• Sieve of Eratosthenes, finding all prime numbers less than 8190

• Generate the first 20 decimal digits of e.

See section 9.1 Appendix A for the ARM assembler listings of the benchmark programs.

To measure the performance of the translated code the translator must execute the generated

code multiple times. The reasons for this are reviewed in sections 6.5 and 6.8.

6.1 Performance of Interpreter
The performance of the interpreter was recorded to provide a baseline to compare with the DBT

implementations. In Figure 26 the cold code startup cost is seen in the first run where the time

taken is approximately 100 000 CPU ticks more than subsequent runs.

Figure 26 Interpreter performance

Figure 26 shows the average execution time over 1000 executions of the three benchmark

programs running in the interpreter. The benchmark program is run 20 times per execution. This

chart illustrates two interesting behaviors:

50000	

150000	

250000	

350000	

450000	

550000	

650000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

CPU	 Ticks	

Run	 Count	

Bubble	 Sort	

Sieve	

Generate	 E	

51

• Relatively constant execution time after the initial run.

• Relatively constant decrease in execution time between the first run and the subsequent

runs.

Startup behavior is discussed in more detail in section 6.5.

6.2 Performance of Simple DBT
Figure 27 shows the average execution time over 1000 executions of the three benchmark

programs running in the Dynamic Basic Block translator. As with the interpreter the benchmark

program is run 20 times per execution. The most noticeable difference between this chart and

Figure 26 above is the initial slow down and the subsequent speed up. The slowdown is caused

by the overhead of translation, and the speedup is due to executing translated blocks rather than

interpreting each block. The behavior of the first 5 runs is also significantly different to the

interpreter; this is discussed further in section 6.7.

Figure 27 Block DBT Performance

6.3 Performance of DBT using LTU
Figure 28 shows the average execution time over 1000 executions of the three benchmark

programs running in the Large Translation Unit translator. As with the interpreter and DBB the

benchmark is run 20 times per execution. Noticeable in this chart is the longer first execution,

almost double the time taken for the initial run in the DBB translator. This is caused by the

additional overhead of creating large translation units. The speed increase in the 6th and

subsequent runs of the benchmark programs is also notable when compared to the DBB

1000	

10000	

100000	

1000000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

CPU	 Ticks	

Run	 Count	

Bubble	 Sort	

Sieve	

Generate	 E	

52

translator. Additionally the LTU translator exhibits uneven execution times for the first five runs

similar to the DBB translator. This is discussed further in section 6.5.

Figure 28 LTU DBT Performance

Also noticeable is the similarity in first execution times for all three benchmarks, this is

discussed further in section 6.5.

6.4 Comparing Different Approaches
The performance improvement of the DBB translator over the interpreter and the LTU translator

over the DBB translator can be seen immediately when they are plotted on the same axes.

Figure 29 Bubble Sort benchmark execution times for different approaches

1000	

10000	

100000	

1000000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

CPU	 Ticks	

Run	 Count	

Bubble	 Sort	

Sieve	

Generate	 E	

1000	

10000	

100000	

1000000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

CPU	 Ticks	
Interpre=er	

DBB	

LTU	

53

Figure 30 Sieve of Eratosthenes benchmark execution times for different approaches

Figure 31 Generate E benchmark execution times for different approaches

Figure 29, Figure 30, and Figure 31 show the three different approaches on the same set of axes

for each benchmark program. The cold start overhead can be seen for the first execution of all

the approaches. Discarding the initial run the performance improvement of the DBB translator

versus the interpreter is dramatic for all three benchmarks. The performance improvement of the

LTU translator versus the DBB translator is a little less dramatic but equally significant.

Benchmark Interpreter DBB (n times faster) LTU (n times faster)

Bubble Sort 146025 21391(6.82) 5655(25.82)

Sieve 456873 56254(8.12) 27720(16.48)

Generate E 57497 7417(7.75) 2577(22.31)

Table 2 Average CPU ticks discarding start-up costs

10000	

100000	

1000000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

CPU	 Ticks	

Run	 Count	

Interpreter	

DBB	

LTU	

1000	

10000	

100000	

1000000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

CPU	 Ticks	

Run	 Count	

Interpre=er	

DBB	

LTU	

54

The performance increase for the average execution time, discarding the startup overhead is

shown in Table 2. The numbers in brackets show the speed increase relative to the time taken to

run the benchmark on the interpreter. The performance of the LTU translator versus the DBB

translator is significantly better than the improvement seen between these two techniques in the

Edinburgh High Speed (EHS) simulator [12]shown in Table 1. This is may be due to the EHS

simulator being designed for both observability and performance.

6.5 Start Up
Regardless of the emulation technique used the first run of each of the benchmark programs is

significantly slower than subsequent executions. There are several causes for the first run having

poor performance relative to later runs, some are common to all emulation techniques and some

are due to the translation mechanism in DBB and LTU translators:

• The code and dynamically linked libraries have to be loaded.

• There is significant overhead in translating the source to the target.

• There is additional overhead in creating Large Translation Units.

6.5.1 Loading

The interpreter makes the effects of loading code more obvious than either of the translators

since all the code that is run in the first execution is also run in all subsequent executions. This

means that the difference between the first and subsequent runs is due only to the application and

dynamic library loading that is required the first time a program is executed. The simulator also

loads the memory image of the source program for each execution, and it is likely that this is at

least partially cached for subsequent executions.

Benchmark Cold Execution

Ticks

Warm Execution

Ticks

Difference Source code

size

Bubble Sort 239082 146025 93057 1.88 KB

Sieve of

Eratosthenes

594584 456873 137711 2.016KB

Generate E 145064 57497 87567 6.084KB

Table 3 Cold versus warm execution time

55

Table 3 shows that the difference between warm and cold execution is similar for each

benchmark even though the execution times are significantly different. There does not appear to

be any obvious relationship between the size of the benchmark program and start-up overhead.

6.5.2 Translation and Hot Traces

Both translation and creating hot traces add overhead to the first execution of a benchmark

program.

Benchmark Interpreter DBB LTU

Bubble Sort 239082	 692489(2.90)	 1107168(4.63)	

Sieve 549584 769527(1.40) 1108079(2.02)	

Generate E 145064	 882041(6.08)	 1466691(10.11)

Table 4 CPU Ticks for first run of each benchmark program

Table 4 shows the times taken for the first run of each benchmark using each simulation

mechanism. The number in brackets is the slowdown relative to the interpreter for that

simulation mechanism. The nature of the benchmark programs themselves is likely to influence

the time that they take to execute. The Sieve benchmark seems to be very slow in the interpreter,

possibly due to the memory intensive nature of the benchmark. The Generate E benchmark

which is more compute intensive runs relatively quickly. It is difficult to compare between the

benchmark programs without standardizing them in some way.

Differences between the benchmarks are also due to both the number of translated blocks, the

number of blocks in the hot region and the decisions about when and what to translate, discussed

further in section 6.6 and 6.7.

Benchmark Total DBBs Translated Blocks Blocks in hot region

Bubble Sort 7 5 5

Sieve 10 6 5

Generate E 13 8 9

Table 5 Comparison of block counts in benchmark programs

The Generate E benchmark is particularly slow in the first execution when creating LTUs due to

the fact that it translates any blocks that get included in the region that are not already translated.

This benchmark is also significantly slower for the first execution of the DBB translator. This

56

may be due in part to the fact that it is translating more blocks than the other benchmark

programs.

6.6 When to Translate
Both the DBB translator and the LTU translator have to determine when it is appropriate to

translate blocks or regions of source instructions into target instructions. For the DBB translator

this was based on:

• The number of times an instruction has been executed.

• The number of times a block has been executed.

This was extended in the LTU translator to:

• The number of times an edge has been traversed.

• The number of edges that have been traversed more than some number of times.

In the LTU translator the translation threshold, the combination of the number of hot edges and

the number of traversals required to make an edge hot can have a dramatic effect on the

performance of the translated program. When the threshold is set too low for a particular

program it is possible to fail to include edges in an LTU that are essential to the performance of

the program.

Figure 32 Performance effects of different translation threshold values for translating
Generate E program

1000	

10000	

100000	

1000000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

CPU	 Ticks	

Run	 Count	

Good	 threshold	

Poor	 threshold	

Dynamic	 Basic	 Blocks	

57

Figure 32 shows the effects of making the threshold for the number of hot edges required to form

an LTU too small for the generate E benchmark program. When the threshold is set too low the

control flow graph of the program does not include edges that subsequently become hot. The

LTU formed from the control flow graph at this point fails to reduce the number of returns to the

emulation manager and is more than twice as slow as the good threshold and slower than the

dynamic basic block translation.

If the number of hot edges required to form a region is set too high the translator is identical to

the DBB translator with some additional overhead of checking whether the condition to build an

LTU have been met. If the number of traversals required to denote an edge as hot is set too high

then forming the LTU for the hot region is delayed. Raising either of these thresholds

excessively prevents the conditions for creating LTUs from being met.

Using a fixed threshold for determining when to translate blocks and regions is not a very

satisfactory approach, since the threshold(s) may need to be reconfigured for each program that

is run. In the Edinburgh High Speed simulator [12], execution of a program is divided into

epochs. The end of an epoch is triggered every time the count of interpreted blocks exceeds some

threshold. This means that as the hot sections of the program are translated and fewer blocks are

interpreted the epochs grow longer. If the program execution moves to a different region of code

the number of blocks being interpreted increases and triggers the end of an epoch. At the end of

an epoch the control flow graph is analyzed to determine if there are any new regions to

translate.

6.7 What to Translate – Hot versus All
As mentioned in sections 6.2 and 6.3 the first several runs of both the DBB and LTU translators

have varying execution times. This variation is caused by translation of instructions and

translation of blocks continuing after the first execution of the benchmark program.

Running the Generate E benchmark program (the other benchmark programs exhibit similar but

not identical behavior) the second run discovers instructions that have not been translated and

translates them. The third and fourth runs are executing a mixture of interpreted and translated

code. On run five the blocks that were being interpreted have been flagged as requiring

translation. The translation of these blocks is of questionable value because these are instructions

58

that have taken 4 or 5 executions of the program to reach the translation threshold. Depending on

the translation threshold these blocks may only be executed once in any given execution of the

benchmark program.

The performance difference between translating all blocks and only those that are found to be hot

during the first execution can be seen in Figure 33. In the 5th execution of the Generate E

benchmark, three additional blocks are marked as hot and translated. This translation is an

artefact of the block execution count being used as the threshold to determine when to translate a

block and the block execution count continuing to be incremented during each execution of the

benchmark program. By not checking for blocks to translate after the first execution of the

benchmark program the translation of these cold blocks can be avoided.

Figure 33 Translating all blocks versus only hot blocks

Figure 34 Hot blocks only versus all blocks translated, after final translation

1000	

10000	

100000	

1000000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

CPU	 Ticks	

Run	 Count	

No	 cold	 blocks	 translated	

All	 Blocks	 Translated	

2500	

2550	

2600	

2650	

2700	

2750	

2800	

6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

CPU	 Ticks	

Run	 Count	

All	 Blocks	 Translated	

Only	 Hot	 Blocks	 Translated	

59

Figure 34 shows the improvement in execution times for the benchmark program after the

additional translation in run five. In this context there is an approximately 5% improvement in

performance. However the cost of this increase is around 120, 000 ticks, so approximately 1000

executions of the benchmark program are required to recover the cost of the translation.

This behaviour is observed in both the DBB and LTU translators because the LTU translator

only forms hot regions during the first execution of the benchmark program.

6.8 Garbage Collection
Looking at the raw timing values from the individual program runs occasionally the emulator

takes significantly more than the usual number of ticks to complete a run. These occasional

slowdowns are present for each of the benchmark programs and regardless of the emulation

mechanism.

Figure 35 Minimum, maximum and average execution times for the interpreter running the
Generate E benchmark

40000	

400000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

CPU	 Ticks	

Run	 Count	

Generate	 E	

60

Figure 36 Minimum, maximum and average execution times for the LTU translator running
the Generate E benchmark

Figure 35 and Figure 36 show the variation in run times for the first 20 executions of the

Generate E benchmark across 1000 runs of the simulator. The cause of these periodic

performance glitches was not immediately clear.

Initial investigation of the periodic performance decline employed the Perfmon.exe tool to

examine .NET memory performance counters while the simulator was running. The Perfmon.exe

tool showed that the garbage collector is active while the simulator is running, but provided no

way to correlate the activity of the simulator with the activity of the garbage collector. The .NET

garbage collector has been shown to have deleterious effects on simulator performance [11] so

this issue deserved further investigation.

Figure 37 CPU Ticks and Garbage Collection

1000	

10000	

100000	

1000000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

CPU	 Ticks	

Run	 Count	

Generate	 E	

1	

10	

100	

1000	

10000	

1	 6	 11	 16	 21	 26	 31	 36	 41	 46	 51	 56	 61	 66	 71	 76	 81	 86	 91	 96	
Run	 Count	

Benchmark	 CPU	 Ticks	

Gen	 0	 GC	 Count	

Gen	 1	 GC	 Count	

Gen	 2	 GC	 Count	

61

In an attempt to correlate the behaviour of the garbage collector with the performance glitches in

the simulator the simulator source code was instrumented using the PerformanceCounter class

provided by the .NET framework. Figure 37shows the first 100 runs from a 10000 run sequence.

The glitches in the benchmark CPU Ticks can be seen clearly but there is no obvious correlation

with the garbage collector generation count increasing. At the end of 10000 runs of the program

the generation 2 collection had run once and the generation 1 collector had run twice. The

frequency of simulator glitches was significantly higher than the frequency of generation 1 and

generation 2 garbage collection events. However since the performance counter for the garbage

collector is only incremented when the collection is completed it may not be possible to observe

a correlation with the point in time at which the garbage collector affects the running simulation.

Figure 38 Execution CPU ticks distribution

Figure 38 shows that effect of garbage collection on the execution time is less significant than it

might first seem. Figure 35 and Figure 36 reinforce this position since the average and minimum

execution times for each run remain close, indicating that values between the maximum and the

average occur infrequently.

0	

500	

1000	

1500	

2000	

2500	

3000	

3000	 8000	 13000	 18000	 23000	 28000	 33000	 38000	 43000	

Frequency	

CPU	 Ticks	

DistribuRon	

62

7 Conclusions and Future Work
A high performance, portable dynamic binary translator for the ARM v4 architecture was

developed. The translator, developed in two stages, showed dramatic performance improvements

at each stage. Overall, it demonstrated performance improvements of between 15 and 25 times

that of a simple decode and dispatch interpreter.

During the first stage, a dynamic basic block (DBB) translator was implemented, which

discovered DBBs as they were executed. An execution count was maintained for each DBB, and

when the count reached a threshold value, the DBB became ‘hot’ and was translated.

For the second stage, DBBs were coalesced into large translation units (LTU) by translating

control flow instructions. A count was maintained for each edge in the control flow graph (CFG).

When the number of ‘hot’ edges in the CFG exceeded some threshold the CFG was analysed

using Tarjan’s algorithm. Each strongly connected component (SCC) discovered by the

algorithm was checked. If it contained any hot edges, it was used to form an LTU. Additionally,

within each LTU the code layout was modified to reduce branching on the ‘hot’ path.

While Tarjan’s algorithm provided an efficient way of discovering SCCs in the CFG, not all of

the blocks in a SCC were necessarily hot. This resulted in the translation of blocks that were not

hot, which is an expensive operation with little payback. Other ways of forming LTUs might

provide better overall performance.

The use of a fixed threshold to control when to form large translation units was also problematic.

A threshold value that was too low reduced the performance of the LTU translator to that of the

DBB translator. A threshold that was too high delayed the formation of the hot region and

increased the cost of translation. Using an adaptive approach to decide when to create a hot

region could overcome this issue.

Translation is an expensive operation and the first execution of the target program running in the

translator was significantly slower than the first execution of the same program running in the

interpreter. The DBB translator adds the cost of discovering and translating DBBs to the cost of

interpreting the program. The LTU translator increases the time taken for the first execution

further by adding the cost of region detection and control flow translation. For the benchmark

63

programs used in this thesis the translation overhead increased in proportion with the number of

translated blocks.

The translated Bubble Sort benchmark program showed larger performance gains when

compared to the translated Sieve of Eratosthenes benchmark. The Sieve of Eratosthenes

benchmark is more compute intensive than the Bubble Sort benchmark so the translator may

offer superior performance when the source code is biased towards input/output operations rather

than data operations.

Combining translation to an intermediate form for execution by a virtual machine, and forming

large translation units does not seem to be described in the literature. Translating hot traces to

intermediate form for a compiler is described [31], as is creating hot regions in the virtual

machine [32]. This may be due to the use of a virtual machine with its stack architecture

preventing the use of many common dynamic binary translation optimizations that are available

when translating to a native ISA. However the optimizations provided by .NET CLR might

offset the need to implement these optimizations to some extent. For example the dead code

elimination provided by the CLR is useful in eliminating redundant flag setting code which is a

significant contributor to the code expansion issues experienced in translating from ARM v4

assembler to CIL.

7.1 Future Work
While this thesis proved the feasibility of implementing a dynamic binary translator with good

performance on the .NET platform there are several avenues that deserve further exploration:

• Performance

• Integration with ARMSim#

• Measuring Performance

• Thumb instruction set support

7.1.1 Performance

• One approach to improving performance is to perform some tasks in parallel [31], such as

generating translations. In this implementation the translation of an instruction happens

sequentially after it has been executed by the interpreter. The translation of the instruction

is not used until it is incorporated into a dynamic basic block that is being translated. By

64

performing the translation on a separate thread the interpreter thread would be free to

interpret the next instruction.

• The fixed translation threshold is both a performance and usability issue. To make the

translator truly useful and enhance its performance some form of adaptive mechanism is

required to ensure that translation happens when it is required. One possible mechanism

that could be implemented is the “epoch” based system of the Edinburgh High Speed

simulator [12].

• Translating all blocks in a strongly connected component of the CFG of a program may

not offer the best performance as work is being done to add blocks that are not hot to the

hot region. Reducing this work may significantly reduce the work done in the first

execution of any source program.

• One of the goals of this thesis was to avoid performing large amounts of code analysis.

However, some common structures that make use of the s bit version of an instruction

could potentially be easily optimized. If we know the flags are dead after they are

checked by the branch instruction in the following for loop [33] then the SUBS

instruction need only set the Z flag:

	 MOV	 R0,	 #loopcount	
loop	
	 …loop	 body…	
	 …	
	 SUBS	 R0,	 R0,	 #1	
	 BNE	 loop	
	

This would greatly reduce the size of any flag setting instructions.

• Implementing hot regions as single compiled functions may not be optimal for the CLR

JIT compiler. It may be better if each block formed a function that was called by the

region code. This would allow the JIT compiler to optimize and compile code as it

chooses as opposed to forcing the translation to be a single, possibly large, function.

Implementing this would require further investigation into the functionality provided by

the Expression class and the Reflection.Emit class in the .NET framework.

7.1.2 Integration with ARMSim#

Integrating the translator with the ARMSim# simulator could provide the simulator with

significantly improved performance while maintaining the ability to step and set breakpoints.

65

The DBT would need to be extended with a mechanism to switch it in and out of interpreter

mode. Switching modes would be quite straightforward for the DBB translator, but require some

way to break out of a hot region in the LTU translator that did not adversely affect the

performance.

Fully integrating the translator would also require implementing the instructions and instruction

variations that are not currently implemented.

7.1.3 Measuring Performance

The benchmark programs used in this thesis were small simple programs. It would be more

useful to use benchmarks that have been used previously such as EEMBC [12], [20], SpecInt95

[34] SPEC2000 [3], or MiBench [18]. However, using these benchmarks would require a more

complete implementation of the ARM ISA than is presented in this thesis.

7.1.4 Thumb Instruction Support

The T in the ARM7TDMI name specifies that the CPU supports the Thumb instruction set,

which is a 16 bit subset of the 32 bit instruction set. The Thumb instruction set is used to reduce

the memory footprint of a program. While the translator presented in this thesis does not

currently support the Thumb instruction set, extending it to do so should be relatively straight

forward.

66

8 Bibliography
[1] J. Smith and R. Nair, Virtual Machines, Versatile Platforms for Systems and Processes. San

Francisco: Morgan Kaufmann, 2005.

[2] Wikipedia. (2014, Mar.) Wikipedia. [Online].

http://en.wikipedia.org/wiki/Binary_translation

[3] Edson Borin and Youfeng Wu, "Characterization of DBT overhead.," in IEEE International

Symposium on Workload Characterization IISWC, Austin, 2009, pp. 178-187.

[4] Haibing Guan et al., "A Dynamic-Static Combined Code Layout Reorganization Approach

for Dynamic Binary Translation.," Journal of Software, vol. 6, no. 12, pp. 2341-2349, 2011.

[5] Achim Nohl et al., "A universal technique for fast and flexible instruction-set architecture

simulation," in Proceedings of the 39th annual Design Automation Conference (DAC '02),

New York, 2002, pp. 22-27.

[6] Nigel Topham and Daniel Jones, "High speed CPU Simulation Using LTU Dynamic Binary

Translation," in HiPEAC '09 Proceedings of the 4th International Conference on High

Performance Embedded Architectures and Compilers, Berlin, 2008, pp. 50-64.

[7] Marco Kaufmann, Matthias Häsing, Thomas Preußer, and Rainer Spallek, "The Java Virtual

Machine in retargetable, high-performance instruction set simulation," in Proceedings of the

9th International Conference on Principles and Practice of Programming in Java (PPPJ

'11), New York, 2011, pp. 21-30.

[8] Guilherme Ottoni et al., "Harmonia: a transparent, efficient, and harmonious dynamic

binary translator targeting the Intel® architecture," in Proceedings of the 8th ACM

International Conference on Computing Frontiers (CF '11), New York, 2011, p. Article No.

26.

[9] Claude Helmstetter, Vania Joloboff, Xinlei Zhou, and Xiaopeng Gao, "Fast Instruction Set

Simulation Using LLVM-based Dynamic Translation.," in International MultiConference of

67

Engineers and Computer Scientists, vol. 2188, Hong Kong, 2011, pp. 212-216.

[10] Bob Cmelik and David Keppel, "Shade: A fast instruction-set simulator for execution

profiling.," in Fast Simulation of Computer Architectures.: Springer, 1995, pp. 5-46.

[11] Antoine Trouvé and Kazuaki Murakami. (2010, January) Laboratoire d'Informatique

Fondamentale de Lille. [Online].

http://www2.lifl.fr/rapido/RAPIDO_2010/Rapido/rapido2010Proc.pdf

[12] Daniel Jones and Nigel Topham, "High Speed CPU Simulation Using LTU Dynamic Binary

Translation," High Performance Embedded Architectures and Compilers, pp. 50-64, 2009.

[13] Florian Brandner, Andreas Fellnhofer, Andreas Krall, and David Riegler, "Fast and accurate

simulation using the llvm compiler framework.," in Proceedings of the 1st Workshop on

Rapid Simulation and Performance Evaluation: Methods and Tools, vol. 9, Paphos, Cyprus,

2009, pp. 1-6. [Online]. http://www.complang.tuwien.ac.at/cd/brandner/papers/rapido09-

brandner.pdf

[14] Fabrice Bellard, "QEMU, AFastand Portable Dynamic Translator," in Proceedings of the

2005 USENIX Annual Technical Conference, Anaheim, 2005, pp. 41-46.

[15] Emmett Witchel and Mendel Rosenblum., "Embra: Fast and flexible machine simulation.,"

ACM SIGMETRICS Performance Evaluation Review., vol. 24, no. 1, pp. 68-79, 1996.

[16] Chun-Chen Hsu et al., ""LnQ: Building High Performance Dynamic Binary Translators

with Existing Compiler Backends"," in International Conference on Parallel Processing

(ICPP), 2011, pp. 226-234.

[17] Ryan W. Moore, Jose A. Baiocchi, Bruce R. Childers, Jack W. Davidson, and Jason D.

Hiser, "Addressing the challenges of DBT for the ARM architecture.," in Proceedings of the

2009 ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for

embedded systems (LCTES '09), New York, 2009, pp. 147-156.

[18] Xuhao Chen, Zhong Zheng, Li Shen, Wei Chen, and Zhiying Wang, "GSM: An Efficient

68

Code Generation Algorithm for Dynamic Binary Translator.," in Fourth International

Symposium on Parallel Architectures, Algorithms and Programming (PAAP), Tianjin, 2011,

pp. 231-235.

[19] Mehrdad Reshadi, Prabhat Mishra, and Nikil Dutt, "Hybrid-compiled simulation: An

efficient technique for instruction-set architecture simulation," ACM Transactions on

Embedded Computer Systems, vol. 8, no. 3, p. 27, 2009.

[20] Jiunn-Yeu Chen, Wuu Yang, Tzu-Han Hung, Hong-Men Su, and Wei-Chung Hsu, "“A

Static Binary Translator for Efficient Migration of ARM-based Applications”," in 6th

Workshop on Optimizations for DSP and Embedded Systems (ODES), Boston, 2008, pp. 55-

64. [Online]. http://odes-workshop.weebly.com/uploads/6/5/6/0/6560023/odes-

8_proceedings.pdf

[21] David Seal, Ed., ARM Architecture Reference Manual, 2nd ed. Harlow: Addison Wesley,

2000.

[22] ARM Ltd. (2012, Nov.) ARM Information Center. [Online].

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf

[23] Chris Sells and Shawn Van Ness. (2002, August) Dr Dobb's. [Online].

http://www.drdobbs.com/generating-code-at-run-time-with-reflect/184416570

[24] Microsoft. (2014) Microsoft Developer Network. [Online]. http://msdn.microsoft.com/en-

us/library/dd233052(v=vs.110).aspx

[25] Jeff Hardy. (2012) The Architecture of Open Source Applications. [Online].

http://www.aosabook.org/en/ironlang.html

[26] S. Biswas. (2009, April) MSDN Magazine. [Online]. http://msdn.microsoft.com/en-

us/magazine/dd569747.aspx#id0400010

[27] Ashwin Kamath, "An Overview of Performance Improvements in.Net 4.5," MSDN

Magazine, vol. 27, no. 4, pp. 76-81, April 2012.

69

[28] David Broman. (2007, Jun) David Broman's CLR Profiling API Blog. [Online].

http://blogs.msdn.com/b/davbr/archive/2007/06/20/enter-leave-tailcall-hooks-part-2-tall-

tales-of-tail-calls.aspx

[29] Fei Chen. (2007, Nov.) MSDN Blogs. [Online].

http://blogs.msdn.com/b/clrcodegeneration/archive/2007/11/02/how-are-value-types-

implemented-in-the-32-bit-clr-what-has-been-done-to-improve-their-performance.aspx

[30] R.E. Tarjan, "Depth-first search and linear graph algorithms," SIAM Journal on Computing

Vol.1, Iss.2, pp. 146-160, 1972.

[31] Edler von Koch T., Kyle S., Franke B., Topham N. Böhm I., "Generalized just-in-time trace

compilation using a parallel task farm in a dynamic binary translator," in Proceedings of the

32nd ACM SIGPLAN conference on Programming language design and

implementation(PLDI '11), New York, 2011, pp. 74-85.

[32] Ian Rodgers. (2001, April) School of Computer Science, Manchester University. [Online].

ftp://ftp.cs.man.ac.uk/pub/apt/papers/irogers_prep01.pdf

[33] William Hohl, ARM Assembly Language. Boca Raton, FL, USA: CRC Press, 2009.

[34] Mark Probst, Andreas Krall, and Bernhard Scholz, "Register Liveness Analysis for

Optimizing Dynamic Binary Translation," in Ninth Working Conference on Reverse

Engineering (WCRE’02}, Richmond, 2002, pp. 35-44.

[35] A. H. J. Sale, "The Calculation of e to Many Significant Digits," The Computer Journal,

vol. 11, no. 2, pp. 229-230, 1968.

[36] Nigel Topham, Björn Franke, Daniel Jones, and Daniel Powell, "Adaptive High-speed

Processor Simulation.," in Processor and System-On-Chip Simulation. New York: Springer

Verlag, 2010, pp. 145-160.

[37] Jeremy Singer, "JVM versus CLR: a comparative study.," in Proceedings of the 2nd

international conference on Principles and practice of programming in Java (PPPJ '03),

70

New York, 2003, pp. 167-169.

[38] Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg, "Virtual machine showdown:

Stack versus registers.," ACM Transactions on Architecture and Code Optimization

(TACO), vol. 4, no. 4, p. 36, 2008.

[39] Jeffrey Richter, C# via CLR.: Microsoft Press, 2012.

[40] N. Horspool, M. Serra, and W. Lyons. (2008, Dec) The ARMSim# User Guide. [Online].

http://armsim.cs.uvic.ca/AttachedFiles/ARMSim_UserGuide4Plus.pdf

71

9 Appendices

9.1 Appendix A: Benchmark ARM Assembler Programs

9.1.1 Bubble Sort

Adapted from ARM: Assembly Language Programming by Peter Knaggs, 2006.

http://www.rigwit.co.uk/ARMBook/ARMBook.pdf.

.text	

.global	 _start	
_start:	
	 LDR	 R6,	 =Start	 	 @	 pointer	 to	 start	 of	 list	
	 MOV	 R0,	 #0	 	 @	 clear	 register	
	 LDRB	 R0,	 [R6]	 	 @	 get	 the	 length	 of	 the	 list	
	 MOV	 R8,	 R6	 	 @	 make	 a	 copy	 of	 the	 start	 of	 the	 list	
SORT:	
	 ADD	 R7,	 R6,	 R0	 	 @	 get	 address	 of	 last	 element	
	 MOV	 	 R1,	 #0	 	 @	 zero	 flag	 for	 changes	
	 ADD	 R8,	 R8,	 #1	 	 @	 move	 1	 byte	 up	 the	 list	 each	 iteration	
NEXT:	
	 LDRB	 R2,	 [R7]	 	 @,	 #-‐1	 @	 load	 the	 1st	 byte	
	 SUB	 R7,	 R7,	 #1	
	 LDRB	 R3,	 [R7]	 	 @	 and	 the	 second	
	 CMP	 R2,	 R3	 	 @	 compare	 them	
	 BCC	 NOSWITCH	 	 @	 branch	 if	 R2	 less	 than	 R3	
	 STRB	 R2,	 [R7],	 #1	 @otherwise	 swap	 the	 bytes	
	 STRB	 R3,	 [R7]	 	 @like	 this	
	 ADD	 R1,	 R1,	 #1	 	 @	 flag	 that	 changes	 made	
	 SUB	 R7,	 R7,	 #1	 	 @	 decrement	 address	 to	 check	
NOSWITCH:	
	 CMP	 R7,	 R8	 	 @	 have	 we	 checked	 enough	 bytes	
	 BHI	 NEXT	 	 	 @	 if	 not	 do	 innner	 loop	
	 CMP	 R1,	 #0	 	 @	 did	 we	 make	 changes	
	 BNE	 SORT	 	 	 @	 if	 so	 check	 again	 outer	 loop	
DONE:	
	 SWI	 	 0x11	
.data	
.align	
Start:	 .byte	 0x80,	 0x2a,	 0x5b,	 0x60,	 0x3f,	 0xd1,	 0x19,	 0x30,	 0xc5,	 0x66,	 0xEF,	 0x19,	
0x11,	 0x9B,	 0xC7,	 0x1C,	 0x63,	 0x94,	 0x82,	 0x5F,	 0xA9,	 0xD7,	 0x62,	 0x27,	 0xB5,	 0x78,	
0x7B,	 0x7D,	 0xCB,	 0x57,	 0xFF,	 0x16,	 0xF9,	 0xB5,	 0x9C,	 0x4F,	 0xCF,	 0x04,	 0xC1,	 0x2E,	
0xC0,	 0x6B,	 0x49,	 0x4D,	 0x07,	 0xFE,	 0x97,	 0x67,	 0xA0,	 0x60,	 0xA6,	 0x2D,	 0xC5,	 0x91,	
0x62,	 0x28,	 0xAA,	 0x9B,	 0xEA,	 0x04,	 0x15,	 0x4A,	 0x0B,	 0x01,	 0xA4,	 0xDF,	 0x12,	 0x4D,	
0xDF,	 0xCE,	 0x81,	 0x22,	 0x6E,	 0x5C,	 0xDD,	 0x57,	 0xB3,	 0xFA,	 0x3B,	 0x68,	 0x71,	 0xEC,	
0x50,	 0x63,	 0x93,	 0xA5,	 0x57,	 0x6E,	 0xA3,	 0x97,	 0x22,	 0x63,	 0x1B,	 0x74,	 0x6B,	 0x49,	
0x64,	 0x39,	 0x39,	 0x28,	 0xB8,	 0xEE,	 0xEA,	 0x4F,	 0x2A,	 0x2B,	 0x62,	 0x38,	 0x28,	 0xE5,	
0xBF,	 0x1D,	 0x1F,	 0xE6,	 0x63,	 0x29,	 0xBD,	 0x13,	 0x99,	 0x27,	 0xC6,	 0xDF,	 0x90,	 0x1D,	
0x43,	 0xD4,	 0xDD,	 0x55,	 0xE6	
List:	 .word	 Start	

72

9.1.2 Sieve of Eratosthenes

Adapted from http://www.peter-cockerell.net/aalp/html/ch-6.html

.equ	 org,	 2000;DIM	 org	 2000	
@;REM	 Register	 allocations	
@;count	 =	 0	 ;	 R0	
@;ptr	 =	 1	 ;	 R1	
@;i	 =	 2	 ;	 R2	
@;mask	 =	 3	 ;	 R3	
@;base	 =	 4	 ;	 R4	
@;prime	 =	 5	 ;	 R5	
@;k	 =	 6	 ;	 R6	
@;tmp	 =	 7	 ;	 R7	
@;size	 =	 8	 ;	 R8	
@;iter	 =	 9	 ;	 R9	
@;link	 =	 14	 ;	 R14/LR	
.equ	 SIZE,	 8190	 @;SIZE	 =	 8190	
.equ	 iterations,	 10	 @;iterations	 =	 10	
@;The	 array	 of	 SIZE	 flags	 is	 stored	 32	 per	 word	 from	 address	 'theArray'.	
@;The	 zeroth	 element	 is	 stored	 at	 bit	 0	 of	 word	 0,the	 32nd	 element	 at	 	
@;bit	 0	 of	 word	 1,	 and	 so	 on.	 'Base'	 is	 word-‐aligned	
@;	
@;Registers:	
@;	 count	 holds	 the	 number	 of	 primes	 found	
@;	 mask	 used	 as	 a	 bit	 mask	 to	 isolate	 the	 required	 flag	
@;	 ptr	 used	 as	 a	 general	 pointer/offset	 into	 the	 array	
@;	 i	 used	 as	 a	 counting	 register	
@;	 size	 holds	 the	 value	 SIZE	 for	 comparisons	
@;	 base	 holds	 the	 address	 of	 the	 start	 of	 the	 array	
@;	 prime	 holds	 the	 current	 prime	 number	
@;	 k	 holds	 the	 current	 entry	 being	 'crossed	 out'	
@;	 tmp	 is	 a	 temporary	
@;	 iter	 holds	 the	 count	 of	 iterations	
@;	
sieve:	
	 MOV	 R9,#iterations	
mainLoop:	
	 ADR	 R4,theArray	
	 MVN	 R3,#0	 	 	 @;Get	 &FFFFFFFF,	 ie	 all	 bits	 set	
	 LDR	 R8,=SIZE	 	 @;Initialise	 the	 array	 to	 all	 'true'.	 First	 store	 the	
	 	 	 	 @;complete	 words	 (SIZE	 DIV	 32	 of	 them),	 then	 the	 partial	
	 	 	 	 @;word	 at	 the	 end	
	 MOV	 R2,	 R8,	 LSR	 #5	 	 ;Loop	 counter	 =	 number	 of	 words	
	 MOV	 R1,R4	 	 	 	 ;Start	 address	 for	 initing	 array	
initLp:	
	 STR	 R3,[R1],#4	 @;Store	 a	 word	 and	 update	 pointer	
	 SUBS	 R2,R2,#1	 	 @;Next	 word	
	 BNE	 initLp	
	 LDR	 R7,[R1]	 	 @;Get	 last,	 incomplete	 word	
	 MOV	 R3,R3,LSR	 #2	 @	 32-‐SIZE	 MOD	 32	 @;Clear	 top	 bits	
	 ORR	 R7,R7,R3	 	 @;Set	 the	 bottom	 bits	
	 STR	 R7,[R1]	 	 @;Store	 it	 back	
	 MOV	 R2,#0	 	 @;Init	 count	 for	 main	 loop	
	 MOV	 R0,#0	

73

lp:	
	 MOV	 R1,R2,LSR	 #5	 @;Get	 word	 offset	 for	 this	 bit	
	 MOV	 R3,#1	 	 @;Get	 mask	 for	 this	 bit	
	 AND	 R7,R2,#31	 	 @;Bit	 no.	 =	 i	 MOD	 32	
	 MOV	 R3,R3,LSL	 R7	
	 LDR	 R7,[R4,R1,LSL	 #2]	 @;Get	 the	 word	
	 ANDS	 R7,R7,R3	 	 @;See	 if	 bit	 is	 set	
	 BEQ	 nextLp	 	 @;No	 so	 skip	
	 ADD	 R5,R2,R2	 	 @;Get	 prime	
	 ADD	 R5,R5,#3	
	 ADD	 R6,R2,R5	 	 @;Get	 intial	 k	
	 ADD	 R0,R0,#1	 	 @;Increment	 count	
while:	
	 CMP	 R6,R8	 	 @;While	 k<=size	
	 BGT	 nextLp	
	 MOV	 R1,R6,LSR	 #5	 @;Get	 word	 for	 flags[k]	
	 MOV	 R3,#1	
	 AND	 R7,R6,#31	
	 MOV	 R3,R3,LSL	 R7	
	 LDR	 R7,[R4,R1,LSL	 #2]	
	 BIC	 R7,R7,R3	 	 @;Clear	 this	 bit	
	 STR	 R7,[R4,R1,LSL	 #2]	 @;Store	 it	 back	
	 ADD	 R6,R6,R5	 	 @;Do	 next	 one	
	 B	 while	
nextLp:	
	 ADD	 R2,R2,#1	 	 @;Next	 i	
	 CMP	 R2,R8	
	 BLE	 lp	
	 SUBS	 R9,R9,#1	
	 BNE	 mainLoop	
	 SWI	 0x11	
theArray:	
.space	 1023	
.end	
	

9.1.3 Generate E to n Decimal Places

Based on A. J. H. Sale [35] and N. Horspool

@;GenerateE	
@;	 Based	 on	 A.	 Sale	 and	 N.	 Horspool	
@;	 Stores	 the	 decimal	 part	 of	 e	 in	 the	 array	 defined	 below	
.equ	 nDigits,	 20	
.equ	 n,	 32	 ;this	 is	 calculated	 in	 the	 C#	 version,	 but	 just	 fix	 it	 here	
	
@;	 R0	 is	 the	 main	 loop	 counter	 -‐-‐	 dd	 in	 cs	 version	
@;	 R1	 is	 the	 inner	 loop	 counter	 -‐-‐	 i	 in	 c#	 version	
@;	 R2	 -‐-‐	 c	 in	 the	 C#	 version,	 also	 used	 in	 initing	 the	 coeffs	
@;	 R3	 is	 the	 starting	 address	 of	 the	 coefficients	 array	
@;	 R4	 is	 the	 value	 to	 init	 the	 coefficents	 with,	 when	 nDigits	 ==	 1000,	 max	 coeff	 is	
463,	 use	 a	 32	 bit	 value	 to	 start	 with	 	
@;	 R5	 is	 used	 to	 hold	 the	 value	 read	 from	 the	 coeffs	 	
@;	 R6	 is	 used	 to	 hold	 intermediate	 results	
@;	 R9	 is	 the	 number	 of	 digits	 to	 calculate	 e	 to	

74

	
	
generatee:	
	 MOV	 R9,#nDigits	
	 MOV	 R0,#0	
	 MOV	 R2,#n	
	 	 	 	
	 ADR	 R3,coeffs	 ;start	 address	 for	 initing	 coeffs	
initcoeffs:	
	 MOV	 R4,#1	
	 STR	 R4,[R3],#4	 ;store	 1	 in	 the	 word	 and	 update	 the	 	
	 	 	 	 	 	 	 	 	 	 ;pointer	
	 SUBS	 R2,	 R2,	 #1	 ;set	 z	 if	 result	 is	 0	
	 BNE	 initcoeffs	 ;branch	 if	 z	 clear	
	 ADR	 R4,result	 ;	 R4	 points	 to	 the	 result	
	 SUB	 R3,	 R3,	 #4	 ;	 R3	 points	 to	 the	 last	 coeff	
mainloop:	
	 ADD	 R2,	 R9,	 #1	 	 ;set	 up	 c	
	 MOV	 R2,	 R2,	 LSR	 #1	 ;c	 =	 (nDigits	 +	 1)/2	
	 MOV	 R1,	 #n	 	 	 ;init	 the	 inner	 loop	 counter	
	 SUB	 R1,	 R1,	 #1	 	 ;i	 =	 n	 -‐	 1	
innerloop:	
	 LDR	 	 R5,	 [R3]	 	 ;	 R3	 is	 pointing	 at	 coefs	 element	 i	
	 ADD	 	 R6,	 R5,	 R5,	 LSL#3	 ;	 coefs[i]	 *	 9	
	 ADD	 	 	 	 	 R6,	 R6,	 R5	 	 ;	 (coefs[i]	 *	 9)	 +	 coefs[i]	 	
	 ADD	 	 R2,	 R2,	 R6	 	 	 ;	 c	 =	 coefs[i]*10	 +	 c	
	 ADD	 	 R7,	 R1,	 #2	 	 	 ;	 i	 +	 2	 is	 the	 divisor	
	 MOV	 	 R6,	 R2	 	 	 	 ;	 copy	 c	 to	 dividend	
	 BL	 	 divide	 	 	 	 ;modulo	 is	 returned	 in	 R6	
	 STR	 	 R6,	 [R3],	 #-‐4	 ;	 post	 decrement	 the	 address	 in	 R3	 and	 store	 in	
	 	 	 	 	 ;	 the	 coefs	 array	
	 MOV	 	 R2,	 R8	 	 ;	 store	 the	 quotient	 back	 in	 c	
	 SUB	 R1,	 R1,	 #1	 	 ;	 i-‐-‐	
	 CMP	 R1,	 #0	
	 BGE	 innerloop	 	 ;	 i	 >=	 0	
	 ADR	 R3,	 result	 	 ;	 reset	 r3	 to	 point	 to	 the	 last	 element	
	 SUB	 R3,	 R3,	 #4	 	 ;	 of	 the	 coefs	 array	
	 STR	 R2,	 [R4],	 #4	 ;	 store	 c	 and	 increment	 the	 pointer	
	 ADD	 R0,	 R0,	 #1	 	 	 	 ;	 dd++	
	 CMP	 R0,R9	 	 	 	 	 ;	 dd	 <	 nDigits	
	 BLT	 mainloop	
	 SWI	 0x11	
	 @;	 from	 ARM	 Assembly	 Language,	 William	 Hohl	
divide:	 	 ;	 input	 dividend	 R6,	 divisor	 R7,	 quotient	 R8,	 	
	 	 ;	 output	 	 quotient	 R8,	 remainder	 R6	
	 	 ;	 overwrites	 R5	
	 MOV	 R5,	 #1	
divide1:	
	 CMP	 R7,#0x80000000	
	 CMPCC	 R7,	 R6	
	 MOVCC	 R7,	 R7,	 LSL#1	
	 MOVCC	 R5,	 R5,	 LSL#1	
	 BCC	 divide1	
	 MOV	 R8,#0	
divide2:	

75

	 CMP	 	 R6,	 R7	
	 SUBCS	 R6,	 R6,	 R7	
	 ADDCS	 R8,	 R8,	 R5	
	 MOVS	 R5,	 R5,	 LSR#1	
	 MOVNE	 R7,	 R7,	 LSR#1	
	 BNE	 	 divide2	
	 MOV	 	 pc,lr	 	 ;return	 form	 subroutine	
coeffs:	
.space	 128	 	 ;	 this	 is	 the	 space	 for	 the	 coefficients	 storage,	 32	 words	
result:	
.space	 80	 	 ;	 the	 decimal	 part	 of	 e	 20	 words	 for	 20	 decimal	 places	
	

9.2 Appendix B: Comparing Translation Targets
Both Reflection.Emit and the Expression classes can be used to generate dynamically executable

code. Since performance is a primary goal of binary translation it was necessary to compare their

performance. This small program compares the time for making an update to the value of an

instance field using the Expression class versus performing the same operation using IL via

Reflection.Emit.

using	 System;	
using	 System.Collections;	
using	 System.Collections.Generic;	
using	 System.Diagnostics;	
using	 System.Linq.Expressions;	
using	 System.Reflection;	
using	 System.Reflection.Emit;	
using	 System.Linq;	
	
namespace	 ExpressionCallTest	
{	
	 	 	 	 public	 class	 Program	
	 	 	 	 {	
	 	 	 	 	 	 	 	 private	 static	 List<long>	 _expressionTimes;	
	 	 	 	 	 	 	 	 private	 static	 List<long>	 _reflectionTimes;	 	
	
	 	 	 	 	 	 	 	 private	 static	 void	 Main(string[]	 args)	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 _expressionTimes	 =	 new	 List<long>();	
	 	 	 	 	 	 	 	 	 	 	 	 _reflectionTimes	 =	 new	 List<long>();	
	
	 	 	 	 	 	 	 	 	 	 	 	 var	 test	 =	 new	 MethodInvocationTest();	
	 	 	 	 	 	 	 	 	 	 	 	 test.TestMethodCall();	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 var	 ftc	 =	 new	 FieldTestClass();	
	 	 	 	 	 	 	 	 	 	 	 	 ftc.DisplayTestField();	
	 	 	 	 	 	 	 	 	 	 	 	 var	 sw	 =	 new	 Stopwatch();	
	 	 	 	 	 	 	 	 	 	 	 	 var	 efs	 =	 ftc.GetExpressionFieldSetter();	
	 	 	 	 	 	 	 	 	 	 	 	 for	 (var	 i	 =	 0;	 i	 <	 100;	 i++)	
	 	 	 	 	 	 	 	 	 	 	 	 {	

76

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 sw.Start();	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 efs();	 //	 Set	 field	 to	 1	 using	 expression	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 _expressionTimes.Add(sw.ElapsedTicks);	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 sw.Reset();	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 	 	 	 	 Debug.Print("Av	 time	 to	 call	 expression	 {0}	 ticks",	 	 	 	 	
	 	 _expressionTimes.Average());	
	 	 	 	 	 	 	 	 	 	 	 	 Debug.Print("Total	 for	 100	 calls	 -‐	 expression	 {0}	 ticks",	 	 	 	
	 	 _expressionTimes.Sum());	
	
	 	 	 	 	 	 	 	 	 	 	 	 ftc.DisplayTestField();	
	 	 	 	 	 	 	 	 	 	 	 	 var	 rfs	 =	 ftc.GetReflectionFieldSetter();	
	 	 	 	 	 	 	 	 	 	 	 	 for	 (var	 i	 =	 0;	 i	 <	 100;	 i++)	
	 	 	 	 	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 sw.Start();	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 rfs();	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 _reflectionTimes.Add(sw.ElapsedTicks);	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 sw.Reset();	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	
	 	 	 	 	 	 	 	 	 	 	 	 Debug.Print("Av	 time	 to	 call	 Reflection	 field	 set	 {0}	 ticks",	 	 	
	 	 _reflectionTimes.Average());	
	 	 	 	 	 	 	 	 	 	 	 	 Debug.Print("Total	 for	 100	 calls	 -‐	 Reflection	 field	 set	 {0}	 ticks",	 	
	 	 _reflectionTimes.Sum());	
	 	 	 	 	 	 	 	 	 	 	 	 sw.Stop();	
	 	 	 	 	 	 	 	 	 	 	 	 ftc.DisplayTestField();	
	
	 	 	 	 	 	 	 	 	 	 	 	 Console.WriteLine("OK	 -‐	 hit	 enter	 to	 exit");	
	 	 	 	 	 	 	 	 	 	 	 	 Console.ReadLine();	
	 	 	 	 	 	 	 	 }	
	 	 	 	 }	
	
	 	 	 	 public	 class	 FieldTestClass	
	 	 	 	 {	
	 	 	 	 	 	 	 	 private	 int	 _testField;	
	 	 	 	 	 	 	 	 private	 readonly	 FieldInfo	 _testFieldInfo;	
	
	 	 	 	 	 	 	 	 public	 FieldTestClass()	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 _testFieldInfo	 =	 typeof	 (FieldTestClass).GetField("_testField",	 	 	
	 	 BindingFlags.NonPublic	 |	 BindingFlags.Instance);	
	 	 	 	 	 	 	 	 }	
	
	

//	 get	 a	 delegate	 to	 set	 the	 field	 using	 the	 Expression	 class	
public	 Action	 GetExpressionFieldSetter()	
{	
	 var	 a	 =	 Expression.Assign(Expression.Field(Expression.Constant(this),	 	
	 "_testField"),	 Expression.Constant(1));	
	 return	 Expression.Lambda<Action>(a).Compile();	 	
}	
	
public	 delegate	 void	 DynMethDelegate();	
	
//	 get	 a	 delegate	 to	 set	 the	 fields	 using	 Reflection	

77

public	 DynMethDelegate	 GetReflectionFieldSetter()	
{	
	 //	 set	 arg	 0	 as	 an	 instance	 of	 the	 type	
	 Type[]	 methodArgs	 =	 {typeof(FieldTestClass)};	 	
	
	 var	 dm	 =	 new	 DynamicMethod("dynMeth",	 null,	 methodArgs,	 typeof	 	
	 (FieldTestClass));	
	 var	 il	 =	 dm.GetILGenerator();	
	 il.Emit(OpCodes.Ldarg_0);	
	 il.Emit(OpCodes.Ldc_I4_2);	
	 il.Emit(OpCodes.Stfld,	 _testFieldInfo);	
	 il.Emit(OpCodes.Ret);	
	 return	 (DynMethDelegate)dm.CreateDelegate(typeof(DynMethDelegate),	
this);	
}	
	
public	 void	 DisplayTestField()	
{	
	 Debug.Print("test	 field	 =	 {0}",	 _testField);	
}	

}	
	

9.3 Appendix C Code Expansion
The following small basic block of ARM assembler demonstrates the code expansion issue when

translated to CIL. These three lines initialize a block of memory with the value that is stored in

R3, the address to initialize is stored in R1 and the number of words to initialize is stored in R2.

initLp:	
	 STR	 R3,[R1],#4	 @;Store	 a	 word	 and	 update	 pointer	
	 SUBS	 R2,R2,#1	 @;Next	 word	
	 BNE	 initLp	
	
The following is a CIL translation of the above block, color coded for each instruction. Code

expansion due to accessing simulated registers and setting simulated CPSR flags is readily

evident. The first block in each CIL translation increments the program counter. The STR

instruction is simulated with a block of instructions to update the word in memory and a block of

instructions to increment the pointer to the next word in memory

//	 Store	 a	 word	 and	 update	 pointer	
incPc1:	
	 Ldarg_0	 	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 (int)pc	 	 	 //	 push	 index	 of	 pc	
	 Ldarg_0	 	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	

78

	 Ldc_I4,	 (int)pc	 	 	 //	 push	 index	 of	 pc	
	 Ldelem_U4	
	 Ldc_I4,	 4	 	 	 	 	
	 Add	 	 	 	 	 	 //	 increment	 the	 pc	 value	
	 Stelem,	 typeof(uint)	 	 //	 store	 pc	 	 	 	 	 	 	 	
	 Ldarg_0	 	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _programInfo	 	 //	 push	 ref	 to	 the	 program	 array	
generateIndex:	
	 Ldarg_0	 	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 1	 	 	 	 	 //	 push	 index	 of	 R1	
	 Ldc_I4,	 4096	
	 Sub	
	 Ldc_I4,	 2	
	 Shr	
	 Ldarg_0	 	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 3	 	 	 	 //	 push	 index	 of	 R3	
	 Ldelem_U4	 	 	 //	 push	 R3	 value	
	 Stelem,	 typeof(uint)	 //	 store	 into	 progarray[R1]	
	
incrR1:	
	 Ldarg_0	 	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 1	 	 	 	 //	 push	 index	 of	 R1	
	 Ldarg_0	 	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 1	 	 	 	 //	 push	 index	 of	 R1	
	 Ldelem_U4	
	 Ldc_I4,	 4	 	 	 	 	
	 Add	 	 	 	 //	 increment	 the	 R1	 value	
	 Stelem,	 typeof(uint)	 	 //	 store	 R1	 	
	
The translation of the SUBS instruction is constructed from a block of instructions that load the

simulated registers and perform the subtraction, followed by several blocks that set the simulated

CPSR flags.

decrement	 counter	 and	 update	 flags	 	 	 	 	 	
incPc2:	
	 Ldarg_0	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 (int)pc	 	 //	 push	 index	 of	 pc	
	 Ldarg_0	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 (int)pc	 	 //	 push	 index	 of	 pc	
	 Ldelem_U4	
	 Ldc_I4,	 4	 	 	
	 Add	 	 //	 increment	 the	 pc	 value	
	 Stelem,	 typeof(uint)	 	 //	 store	 pc	
decR2:	
	 Ldarg_0	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 2	 	 //	 push	 index	 of	 R2	

79

	 Ldarg_0	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 2	 	 //	 push	 index	 of	 R2	
	 Ldelem_U4	 	 //	 push	 the	 value	 from	 R2	
	 Ldc_I4,	 1	 	 //	 push	 1	
	 Sub	 	 //	 perform	 subtraction	
	 Stelem,	 typeof(uint)	 	 //	 store	 element	 in	 R2	
cflag:	
	 Ldarg_0	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _flagsInfo	 	 //	 push	 ref	 to	 the	 flags	 array	
	 Ldc_I4,	 (int)cFlagIndex	 //	 push	 index	 of	 c	 flag	
	 Ldc_I4,	 1	
	 Ldarg_0	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 2	 	 //	 push	 index	 of	 register	
	 Ldelem_U4	
	 bgt	 clearCflag	
setCflag:	
	 Ldc_I4,	 1	
	 Br	 storeCflag	
clearCflag:	 	
	 Ldc_I4,	 0	
storeCflag:	
	 Stelem,	 typeof(uint)	
zflag:	
	 Ldarg_0	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _flagsInfo	 	 //	 push	 ref	 to	 the	 flags	 array	
	 Ldc_I4,	 (int)zFlagIndex	 //	 push	 index	 of	 z	 flag	
	 Ldarg_0	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 2	 	 //	 push	 index	 of	 R2	
	 Ldelem_U4	 	 //	 push	 the	 value	 from	 R2	
	 Brfalse	 setZflag	 //	 r2	 ==	 0,	 z	 =	 1	
clearZflag:	
	 Ldc_I4,	 0	
	 Br	 storeZflag	
setZflag:	
	 Ldc_I4,	 1	
storeZflag:	
	 Stelem,	 typeof(uint)	
nflag:	
	 Ldarg_0	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _flagsInfo	 	 //	 push	 ref	 to	 the	 flags	 array	
	 Ldc_I4,	 (int)nFlagIndex	 //	 push	 index	 of	 n	 flag	
	 Ldarg_0	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 2	 	 //	 push	 index	 of	 R2	
	 Ldelem_U4	 	 //	 push	 the	 value	 from	 R2	
	 Ldc_I4,	 31	
	 Shr	 	 //	 set	 n	 to	 the	 MSB	 of	 the	 result	
storeNflag:	
	 Stelem,	 typeof(uint)	
vflag:	
	 Ldarg_0	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _flagsInfo	 	 //	 push	 ref	 to	 the	 flags	 array	

80

	 Ldc_I4,	 (int)nFlagIndex	 //	 push	 index	 of	 v	 flag	
	 Ldarg_0	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 2	 	 //	 push	 index	 of	 R2	
	 Ldelem_U4	 	 //	 push	 the	 value	 from	 R2	 	
	 Ldc_I4,	 31	
	 Shr	 	 //	 get	 msb	 from	 op	 1	
	 Ldc_I4,1	
	 Ldc_I4,	 31	
	 Shr	 	 //	 get	 msb	 from	 op2	
	 Beq	 clearVflag:	
	 Ldfld,	 _registerInfo	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 2	 	 //	 push	 index	 of	 R2	
	 Ldelem_U4	 	 //	 push	 the	 value	 from	 R2	 	
	 Ldc_I4,	 31	
	 Shr	 	 //	 get	 msb	 from	 op	 1	
	 Ldfld,	 _registerInfo	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 2	 	 //	 push	 index	 of	 R2	
	 Ldelem_U4	 	 //	 push	 the	 value	 from	 R2	 	
	 Ldc_I4,	 31	
	 Shr	 	 //	 get	 msb	 from	 result	 	
	 Beq	 clearVflag:	
setVflag:	
	 Ldc_I4,	 1	
	 Br	 storeVflag:	
clearVflag:	
	 Ldc_I4,	 0	
storeVflag:	
	 Stelem,	 typeof(uint)	
	
The final block of CIL corresponds to the branch instruction where the not equal prefix checks if

the simulated Z flag is clear.

branchInitLp:	
	 Ldarg_0	 	 	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _flagsInfo	 	 	 //	 push	 ref	 to	 the	 flags	 array	
	 Ldc_I4,	 (int)zFlagIndex	 //	 push	 index	 of	 v	 flag	
	 Ldelem_U4	
	 brfalse	 fallthrough	
	 Ldarg_0	 	 	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 (int)pc	 	 	 //	 push	 index	 of	 pc	
	 Ldc_I4,	 4132	 	 	 //	 next	 instruction	
	 Stelem,	 typeof(uint)	 	 //	 store	 pc	
	 br	 done	
fallthrough:	
	 Ldarg_0	 	 	 	 	 //	 push	 reference	 to	 class	 instance	
	 Ldfld,	 _registerInfo	 	 //	 push	 ref	 to	 the	 registers	 array	
	 Ldc_I4,	 (int)pc	 	 	 //	 push	 index	 of	 pc	
	 Ldc_I4,	 4120	 	 	 //	 start	 of	 loop	
	 Stelem,	 typeof(uint)	 //	 store	 pc	
done:	

