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Integration of multisensor airborne data for object based image analysis, and spectral 

classification of individual trees is complicated by the multi-modal operation of 

complimentary sensors required for intersensor calibration. Simplified and generalized 

representations of sensor data impacts the ability to calibrate, rectify, segment, and 

extract scene objects represented as differing scales. This research project examines the 

effect and implications of using lidar to calibrate, and rectify airborne imaging 

spectrometer to an appropriate resolution digital surface model. Through the use of a 

normalized digital canopy surface model, tree objects are detected and integrated with 

field surveyed species data for trees of classification interest. Canopy structure is used to 

segment, and extract airborne imaging spectrometer data for assessment and suitability in 

species classification. 
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Chapter 1 - Introduction 

1.1 Introduction 

 

Increased spatial resolution of Airborne Imaging Spectrometers (AIS) on the order of 0.5-

1.5m provides a unique opportunity to address influences of variations in signal-to-noise 

ratios (S/N) prevalent within specific objects and its effect on classification and feature 

extraction. One such analytical framework involves the definition and use of Individual 

Tree Crown (ITC) objects. ITC objects are vector representations of an individual tree 

crown, either as a point based object, or as polygon based object, representing the tree 

crown as projected onto a ground surface.  

 

 The detection of ITCs is well established within the remote sensing literature, with initial 

studies of passive optical imagery examining the relationship between high reflectance at 

the apex of a crown, and detection using local maxima filters (D. G. Leckie et al., 2005; 

Niemann, Adams, & Hay, 1998; Wulder, Niemann, & Goodenough, 2000). Successful 

detection of ITCs is related to the spatial resolution of the image used to detect them, and 

the scale and size of the ITCs as scene objects. A remote sensing scene model that 

contains objects that are larger than the image resolution is considered an H-resolution 

model, while an image resolution that is larger than the objects of interest is considered 

an L-resolution model (Strahler, Woodcock, & Smith, 1986).  ITC objects that are 

relatively small compared to the pixel resolution of the image present an L-resolution 

model and can contribute to errors of omission, as the local maxima detected potentially 

represents a cluster of trees.  For the same image resolution, ITCs of a comparatively 

larger size are represented by multiple image pixels, an H-resolution model, and tend to 

have higher detection rates; however they can suffer due to errors of commission, due to 

multiple local maxima being detected. The passive optical detection algorithms used for 

ITCs have been successfully extended into studies of Airborne Lidar Scanner (ALS) 

derived rasters and provide similar detection capacities (D. Leckie et al., 2003). ITCs 

detected from ALS data can be used to produce vector representations of crowns based 

on their structure, useful as segmentation objects in Object Based Image Analysis 

(OBIA).  Object based segmentation of individual tree crowns provides a mechanism to 
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reduce noise from adjacent image spectra by removing them from analysis; effectively 

increasing the signal to noise ratio, and reducing spectral variance.  The ability to extract 

object specific and appropriate spectral information for an ITC is directly related to the 

spatial resolution of the ALS and AIS data.   The resolution of ALS data has a direct 

impact on the ability to detect ITC scene objects; when this resolution is poorly matched 

to the AIS and imagery is segmented, the resulting ITC spectra will not represent the 

object appropriately.  Inappropriate spectral segmentation adds noise to ITC objects 

potentially causing problems for subsequent classifications. 

 

The projects presented in this thesis take advantage of H-resolution ALS data appropriate 

in resolution for ITC object detection and AIS segmentation. This OBIA based analysis 

enables within ITC spectral extraction for evaluation of species based classification. 

 

Given the reliance on the use of both form and function through lidar and hyperspectral 

data, within-crown ITC spectral sampling must be supported through the close integration 

of onboard sensors, from acquisition to final spectral sampling.  This thesis examines the 

end-to-end integration of multisensory data through the use of two TRSI/UVic 

Multisensor Airborne Platforms (MAP). Examples of two specific forest surveys are used 

to illustrate the sensor integration, object definition and subject analysis. Both of these 

surveys include discrete return lidar, VNIR hyperspectral data, and orthophotography. 

The Lidar surveys have point density sufficient to support image calibration, and were 

used to generate a top of reflective canopy Digital Surface Model (DSM) for 

hyperspectral orthorectification, and object definition to support spectral extraction.  High 

spatial resolution imaging spectrometer data, by its very nature provides both enhanced 

opportunities for object based spectral extraction, and combined with high-resolution 

lidar based raster models; enable assessment and validation of both the calibration and 

rectification process.  The following sections describe the acquisition, processing, 

rectification, and validation of AIS flightlines collected using the TRSI/UVic MAP-series 

integrated sensor platforms. 
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1.2 MAP Series Overview  

 

The TRSI / UVic MAP platforms are highly integrated remote sensing platforms that are 

designed to support an onboard hyperspectral AIS with adjacently mounted discrete multi 

return ALS, Inertial Navigation System (INS) and a high resolution digital frame camera.  

Utilizing a common airframe and almost identical acquisition geometry, the ALS 

provides multiple co-registered lidar returns in the form of a point cloud enabling three-

dimensional positional information coincident to the Instantaneous Field of View (IFOV) 

of each rectified AIS pixel.  Mounting the sensors on the same rigid platform allows an 

INS derived, single platform trajectory and error budget to be shared for direct 

georeferencing of ALS, AIS, and digital frame camera.  Simultaneous collection of 

sensor data ensures that structural information measured using the ALS is temporally 

consistent and relevant for rectification of the optical data collected by the AIS and frame 

camera.  

1.3 Acquisition and Study Site overview 

 

This thesis examines two study sites located on the mid-coast of British Columbia. The 

first site is located on southern portion of King Island; the second study site is Pack Lake. 

Both sites are dominated by coastal coniferous forests and mountainous coastal terrain. 

The King Island site was surveyed using the MAP-2 a lightweight rotary platform 

system, while the Pack Lake Sound site was surveyed using the MAP-1 surveyed from a 

fixed wing aircraft. The main difference between the two platforms is the low weight and 

compact nature of the MAP-2 and its capability to image at a higher spatial resolution 

than the MAP-1, based on its ability for slow speed, high frame rate acquisition at a low 

altitude. Further details on the MAP series integrated sensor platforms is found in the 

calibration and rectification chapter. 

1.3.1 King Island Study Site 

 

The King Island study site (51° 57’ N, 127° 52’ W), is located on the central coast of 

British Columbia at the north end of Fitz Hugh Sound. The study site, and area imaged 
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for the survey occupy approximately 8000 hectares on the southern portion of the island.  

The site elevation ranges from 0-645m above sea level, characterized by steep slopes, and 

multiple watersheds crossing the acquisition area (Figure 1).  

     

 
Figure 1. King Island Digital Surface Model 

 

 

Figure 2. King Island Canopy Height Model 
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The King Island study site is dominated by Western red cedar, with co-dominant Western 

hemlock and Amabilis fir. In addition patches of Sitka spruce and Mountain hemlock also 

grow within the study area. The Canopy Height Model (CHM) depicted in Figure 2. 

depicts canopies up to 80m in height and provides an indication of areas where old 

growth stands dominate the study site. 

 

The site was surveyed on July 16
th

 2010 between 11:50 and 14:00 Pacific Standard Time, 

acquired at this time of day to minimize bidirectional reflectance.  Using the MAP-2 

sensor cluster, a total of 29 flightlines were surveyed utilizing a Bell 206B Jet Ranger 

rotary platform. Each flightline consisted of coincident, and concurrent, discrete multi-

return lidar, VNIR hyperspectral, digital frame camera images, and platform position and 

orientation information as collected by the INS. The use of a rotary platform for this 

survey was necessary to follow the complex terrain at a relatively constant above ground 

elevation, while at the same time maintain a stable over ground platform velocity. A fixed 

wing platform is unable to dynamically follow the underlying terrain with the result being 

large magnitude shifts in field of view while moving over highly variable terrain as found 

in the study site.  

1.3.2 Pack Lake Study Site 

 

The Pack Lake Study site (51° 10’ 30‖ N, 127° 32’ 30‖ W ), is located on the central 

coast of British Columbia, north of Mereworth Sound. The study site and area imaged for 

this project occupy approximately 14,000 hectares of forested land surrounding the lake. 

The site elevation ranges from 0-600m above sea level and is characterized by the north 

side of the lake with a southern aspect and an area south of the lake with a North facing 

aspect. The study site is dominated by Western red cedar, being the leading species for 

most of the acquisition area. Mountain hemlock, Western hemlock, Amabilis fir and 

Sitka Spruce are found throughout the acquisition site with Red alder located in many of 

the riparian areas.  

 

The site was imaged on August 16
th

, 2012 between 11:30 and 14:00 Pacific Standard 

Time, the acquisition was acquired at this time to take advantage of solar illumination 
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geometry and to minimize bi-directional reflectance.  The area was surveyed with the 

MAP-1 sensor cluster mounted on a Piper Navajo airframe, flying in an alternating 

East/West acquisition pattern imaging a total of 20 overlapping flightlines.  

 

1.4 Research Questions and Associated Objectives 

The overall objective of this thesis is to examine the integration of multisensor airborne 

data utilizing an object oriented spectral classification for individual trees. Two main 

research questions guide this research. 

 

1) What are the geometric effects to raw imagery of survey parameters, calibration, and 

rectification in terms of data representation before spectral sampling? 

 

2) Can Airborne Imaging Spectrometer spectra be classified at a species level using the 

Spectral Angle Mapper Algorithm? 

 

Based on the research questions, the objectives are as follows: 

 

1) To examine the end to end processing methodology and examine best practices to 

ensure data integrity and spatial consistency between raw lidar point data, the 

lidar derived raster models supporting calibration, rectification and segmentation 

of coincident hyperspectral. 

 

2) To integrate field surveyed stem positions for spectral extraction, evaluation, 

classification and accuracy assessment.  

1.5 Thesis Structure 

 

This thesis is based on 4 chapters that utilize a systems approach to investigate the fusion 

of multisensor AIS data for object based, individual stem based spectral classification.  

The first chapter provides an introduction and background to the project, the integrated 
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MAP series sensor cluster and the research motivations. The second chapter is a detailed 

examination of the project study sites, sensor hardware, configuration, and characteristics 

and the data streams acquired. AIS radiometric and geometric calibration and 

rectification are discussed at the end of chapter two. The third chapter details the OBIA 

approach utilized for feature representation, extraction, integration and classification. 

Results are presented at the end of the third chapter. The final chapter is used to discuss 

the results and future potential research in this field. 
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 Chapter 2 – Acquisition, Calibration and Pre-processing 

 

2.1 Introduction to Acquisition/Processing/Calibration 

 

The purpose of this chapter is to provide background information on how AIS imagery 

was acquired, calibrated, and georeferenced utilizing complimentary and concurrently 

collected INS trajectory, and ALS derived raster models.  This background information is 

provided so that the reader is made aware of how independent sensors and their data 

streams are integrated, how this affects AIS feature representation, extraction, and 

positional accuracy of georeferenced pixels. 

 

The first part of this chapter provides an overview of the MAP series onboard sensors, 

including INS, ALS, AIS and digital frame camera, and how sensor characteristics and 

configuration relate to the two study sites. The next section describes how the onboard 

INS, and ALS data were integrated and calibrated to determine AIS sensor position and 

orientation, necessary for the direct georeferencing of image pixels as determined through 

ray tracing and intersection with an ALS derived DSM. 

 

2.2 Multisensor Airborne Platform Series  

 

The Multisensor Airborne Platform (MAP) series refers to two separate (MAP-1 and 

MAP-2) integrated systems for combined ALS, AIS, and digital orthophoto acquisition. 

Sensors are physically clustered together with minimized lever arm offsets and angular 

misalignment, enabling coincident and complimentary ALS measured point clouds for 

direct georeferencing and orthorectification of imagery data. The use of a strapdown INS 

provides synchronized position and orientation of the platform, relating unique 

acquisition geometry to each sensor through lever arm offsets and boresight calibration.  

The MAP-1 is the first generation of the series and at the time of this study encompassed 

an Applanix POS AV 510 INS, a Nikon D3 camera, a Specim AISA (Airborne Imaging 
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Spectrometer for Applications) Dual VNIR/SWIR AIS, and a multi-return discrete lidar 

system. The MAP-1 is flown utilizing a fixed wing Piper Navajo by Terra Remote 

Sensing, based out of Sidney B.C. The MAP-2 is a lightweight version of the MAP-1 and 

was specifically designed for a rotary platform and utilizes an Applanix POS AV 410, 

Nikon D3 camera, and a Specim AISA Eaglet VNIR sensor.  The Map-2 system flown on 

a Bell Jet Ranger platform is capable of low altitude high resolution surveys over 

complex terrain common place on the British Columbia coast.  The ability to acquire 

complementary multisensor data concurrently enables cost effective surveys with 

appropriate data for post survey data fusion.  In the following sections a detailed 

description of the hardware and configuration will be discussed. 

2.2.1 Inertial Navigation System 

 

The INS used for the King Island survey is the POS A/V 410, while for Pack Lake the 

system used is a POS A/V 510. The Applanix POS A/V is an integrated hardware and 

software system consisting of GPS hardware for positioning, and a strapdown INS for 

determining orientation. The INS is essential for providing a high frequency navigation 

and orientation solution for the platform and through the use of colinearity enabling 

direct georeferencing of time synchronized sensor measurements. The main difference 

between the POS A/V 410 and 510 are in terms of the absolute angular accuracy in terms 

of roll, pitch, and heading with the POS/AV 510 having the best obtainable absolute 

accuracy (Mostafa, 2001). 

2.2.2 LIDAR system 

 

The ALS system used for both the King Island and Pack Lake study site is a discrete 

multi-return lidar. The ALS is an active sensor capable of calculating distance between 

the sensor and the surface objects through the precise timing of emitted and received 

pulses of electromagnetic energy emitted at 1064nm. The pulse repetition frequency for 

the ALS was up to 150 kHz and was dependent on acquisition elevation. For each emitted 

pulse, up to three returns were detected from the incoming returned energy designated as 

first, intermediate and last return. The beam divergence for the pulse was 0.009°, with an 
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overall scan angle of 26° using an oscillating mirror to cover the scan pattern. The 

radiometric resolution of the intensity data was digitized at14bits.  To minimize boresight 

misalignment, the IMU is mounted directly to the top face of the ALS, effectively 

capable of modeling orientation of the ALS principle point.  Direct georeferencing 

utilizing lever arm offset GPS position and orientation from the IMU enable accurate 

positioning of lidar returns.   

 

2.2.3 Digital Frame Camera 

 

Digital aerial photographs were imaged with a Nikon D3X full frame 35mm camera.  The 

D3X utilizes a Complementary Metal Oxide Semiconductor (CMOS) sensor consisting of 

a detector array of 6048x4032 elements measuring 5.95µm. Strobe triggered frames were 

acquired encoding GPS timing information for each frame to enable synchronization with 

INS trajectory for direct georeferencing and orthorectification. Final othorectified images 

were output at a 0.25m spatial resolution. 

 

2.2.4 Aisa Eaglet  

 

The Aisa Eaglet, a VNIR hyperspectral AIS, was configured to record 212 spectral bands 

between the range of 396-1004nm. While 848 spectral bands are available for use on the 

Charge Coupled Device (CCD), this was reduced by spectrally binning by a factor of 

four. Spectral binning has been  used to increase the SNR from features of interest (Davis 

et al., 2002) and was used in this project to increase the SNR. The average sampling 

interval for this spectral range was 2.88nm. The Eaglet AIS utilizes a lens with a field of 

view of 58.55°, a focal length of 10.56mm, with CCD detector pixels measuring 7.4µ. 

The detector array consists of 1600 spatial pixels that were binned spatially twice to 

produce 800 image pixels. In 2x spatial binning mode the effective detector pixel size 

becomes 14.8µ enabling a Horizontal Instantaneous Field of View (HIFOV) of 0.083°.  
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Figure 3. Eaglet trajectory and 58.55° wide field of view in the across track dimension 

 

A major consideration of this project was the collection of high spatial resolution images 

in a difficult to survey mountainous terrain, where a rotary platform was the only 

practical option. A nominal ground sampling distance (GSD) of 0.5m pixels was planned 

for this project, however in practice maintaining a square pixel dimension is impossible.  

The dimensions of pushbroom AIS pixels at acquisition represent differing along and 

across track geometries determined by the above ground acquisition elevation the frame 

rate, and the acquisition elevation.  To achieve a nominal GSD of 0.5m, the frame rate 

was set to image at 40Hz while acquisition velocity was maintained as close to 20m/s as 

possible.  To maintain approximately square pixels, acquisition elevation was maintained 

close to 500m above the ground level (AGL) throughout the survey, however based on 

very complex terrain this was not always possible resulting in slight changes in the 

ground sampled for each pixel.  

            (
 

  
) 

 

    IFOV unbinned =0.0402° 

 

    IFOV 2x binning=0.0803° 

Equation 1. Instantaneous Field of View Calculation 
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The determination of a nominal GSD value for the project was based on a combination of 

sensor parameters, acquisition conditions and project goals. The IFOV of the sensor and 

acquisition height is the primary consideration in determining the across track dimension 

of ground pixels imaged by the sensor. While it would have been possible to acquire 

higher resolution spatial pixels in a spatially unbinned mode this would necessitate a 50% 

reduction in platform velocity in addition to a loss in SNR.  The across track pixel size of 

a ground pixel at ~400m AGL is 0.5m. To match the same along track dimension and 

have square pixels at a frame rate of 40Hz, it was necessary to image at an over ground 

velocity of 20m/s. The integration time of the sensor for the King Island study areas was 

set at 2ms. 

 

2.2.5 Aisa Eagle 

 

The Aisa Eagle is very similar to the Aisa Eaglet being a VNIR spectrometer with a 

design that predates the Eaglet.  The Eagle was configured to record in the spectral range 

between 392-996nm. A total of 528 spectral bands are available but to increase signal to 

noise the spectral bands were binned by a factor of four enabling 132 bands. The average 

sampling interval for this spectral range was 4.5nm. The Eagle AIS has a FOV of 36.76° 

a focal length of 18.49mm, with CCD detector pixels measuring 12µ. The detector array 

consists of 1024 spatial pixels of which the first 56 are reserved for a Fibre Optic 

Downwelling Irradiance Sensor (FODIS).  The sensor was configured in 2x Spatial 

binning mode, this provided 483 pixels in the across track dimension, and doubled the 

effective detector element to 24µ, this produced an HIFOV of 0.0744°. 

 

Similar to the King Island Eaglet survey, the Airborne Imaging Spectrometer for 

Applications (AISA) Eagle Pack Lake survey was performed with a goal of capitalizing 

on spatial resolution and enable individual tree crowns to be sampled with multiple 

spectra.  The limiting factor for this survey was that it utilized a fixed wing Piper Navajo 
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aircraft with the slowest practical survey speed being 65m/s. While, in theory, it is 

possible to set a frame rate of 65Hz to attempt and collect 1m pixels in the along track 

dimension, this frame rate based on past experience creates too much data throughput for 

the acquisition computer causing dropped frames. To compromise, a frame rate of 43Hz 

was set for the Pack Lake AISA survey enabling an along track dimension ground 

sampling distance of 1.5m when flying at a speed of 65m/s. To image pixels with a 

proportional across track dimension it was necessary to maintain an AGL acquisition 

elevation of approximately 1155m. The integration time for this survey was set a 7ms. 

 

2.3 Radiometric Calibration / Atmospheric Correction 

 

The Eagle and Eaglet VNIR AIS sensors both use a CCD that digitizes and records a 

signal proportional to incoming photon energy at each detector element in the form of a 

12bit Digital Number (DN). Raw images encoded with DN’s are unit less, and need to be 

calibrated to radiance through a radiometric calibration. Radiometric calibration utilizes a 

calibration file of gain and offset and a dark current file. The dark current file, collected 

at the end of each flightline with the shutter closed, provides a measurement of 

background level DN per detector pixel that needs to be removed from each radiance file 

before applying the radiance calibration offsets.  Regular lab based radiometric 

calibration of the AISA Eaglet and Eagle sensor utilize an integration sphere with 

calibration reference lamps to characterize the response of each detector element across 

each spatial pixel. For each detector pixel a gain (c1) and offset (c0) value is calculated 

and recorded in a calibration file for radiometric pre-processing.  After dark current 

subtraction, the gain and offset calibration file is applied calibrating each pixel to at 

sensor radiance, L (mWcm
-2

 sr
-1

 µm
-1

). 

  

L=c0 + c1(DN) 

Equation 2. Equation relating DN to Radiance through calibrated gain and offset.  
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The transformation of data from DN to units of radiance, L, characterizes the signal 

strength acquired at each sensor pixel at flight altitude. In order to analyze surface 

features and objects with spectral techniques relying on spectral shape, data in 

Reflectance units are required. In this case it was necessary to perform a further 

radiometric correction to account for the contribution of the atmosphere on the measured 

signal. In the absence of in-scene calibration targets and field-collected spectra, the 

atmospheric correction was performed using a radiative transfer code. For the King 

Island and Pack lake dataset, MODerate Resolution Atmospheric TRANsmission 

(MODTRAN5) was used to transform the dataset from Radiance to Surface Reflectance. 

 

A Mid-Latitude Summer atmospheric model, with Maritime aerosol profile extinction 

was selected to characterize the atmosphere. Water vapor column was estimated at 

approximately 1.3 g/cm^2, while, based on clear sky conditions and information 

collected during data acquisition, visibility was estimated at 35 km. MODTRAN was run 

in radiance mode for each flight-line taking into account the proper viewing and 

illumination conditions. 

2.4 Digital Surface Model for Rectification 

 

The direct georeferencing technique used to reference AIS data relies on a raster based 

elevation model projected in a local mapping reference frame with orthometric elevations 

referenced to the same geodetic vertical datum as the position and orientation data 

modelled from the INS. It is necessary to use a consistent geoid model for the INS 

trajectory and DSM, as the relative distance between the sensor and elevation model is 

required ray tracing (Muller & Lehner, 2002).   

 

The use of consistent vertical datum, geoid model, and orthometric elevation between the 

sensor position and the DSM enable ray tracing between the sensor and the DSM 

enabling per pixel positioning. The representation and resolution of the digital elevation 

model has direct implications on the positioning of scan pixels and the ability to 

orthorectify the data.  Low acquisition altitude, wide sensor FOV and high surface relief 
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all impact the potential for displacement of georeferenced pixels if terrain is not modelled 

accurately  (Muller & Lehner, 2002). For the King Island Eaglet VNIR survey each of the 

previously mentioned conditions potentially affecting rectification is present. The sensor 

Field of View (FOV) of 58.55° is wide, acquisition altitude ~400m AGL is low, and 

relief in the form of both underlying ground terrain, as well above ground features such 

as tree canopies, measuring up to 80m, required a very detailed elevation model that 

represented the top of the reflective surface. A top of reflective surface elevation model, 

or DSM (Niemann, Frazer, Loos, & Visintini, 2009; Yoon, 2008) is a type of Digital 

Elevation Model (DEM) that models the top of the canopy and not the underlying 

topography that has traditionally been used in photogrammetry for image rectification. 

With tall features such as the trees found in the King Island study site it is very important 

that a DSM be used not only for AIS direct georeferencing but also rectification to reduce 

feature displacement (Schlapfer & Richter, 2002; Sheng, Gong, & Biging, 2003; Yoon, 

2008).  

 

Figure 4. Example of shifted feature spectral representation due to inappropriate DSM 

applied during the direct-georeferencing process. 
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  The use of a DSM and interrelated lidar derived raster models is integral to the 

representation, detection, and spectral sampling for object based sampling of trees and 

their canopies, as well as for the integration of field surveyed tree stem positions required 

for spectral endmember extraction. 

 

Lidar point clouds were delivered from TRSI in industry standard LAS 1.2 files with 

points classified into American Society for Photogrammetric Remote Sensing (ASPRS) 

classes, default (class 1) and ground (class 2).  The point density for this project averaged 

15 points / square meter and was deemed more than adequate for the creation of a 

continuous DSM at a 0.5m cell size resolution. A spatial resolution of 0.5m was chosen 

as it closely matched or was slightly smaller than the GSD based on survey elevation and 

spatial binning options as suggested by (Muller & Lehner, 2002).  To calculate the DSM, 

the lidar point cloud was first blocked into 1km x 1km tiles, each having a lower left hand 

origin registered to a whole 1000m interval easting and northing. The tiling scheme was 

applied for all raster images within the project enabling pixel alignment between images 

and point features derived from raster objects. This ensured that treetops and tree crowns 

derived from lidar appropriately positioned for spectral extraction of hyperspectral 

spectra. Each tile was subsequently used to raster model 2000x2000 0.5m raster images 

using the maximum elevation value from all class 1 and 2 points contained within the cell 

boundary. 
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Figure 5. Lidar point cloud cross section and maximum-z DSM gridding representation 

 

 This technique was employed as to not interpolate new elevations in the output raster 

wherever possible preserving the original elevation of the highest returned lidar posting 

wherever possible. Small data gaps in the output DSM were filled using linear 

interpolation.  Large water features in the project area were characterized by low to non-

existent point density and therefore created voids in output raster tiles.  To provide a valid 

elevation for these features, hydro flattening was employed (Heidemann, 2012). Hydro 

flattening is a procedure where vector representations of the water body were used to 

create raster masks attributed with the mean elevation of the point returns found within 

the water body. These water masks were then mosaicked into the raster elevation tiles, 

therefore creating a continuous valid surface for the rectification procedure. 
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2.5 INS Trajectory and Integration 

 

Inherent to the design and function of AIS is the requirement of trajectory information 

that adequately models sensor position and orientation for each sequentially acquired 

line. In the absence of an accurately synchronized trajectory, raw flightlines consist of a 

time series of precisely timed sequential scan lines as depicted in Figure 6. If no lines are 

logged as being dropped it is possible to determine the duration of the flightline 

accurately by multiplying the number of lines by the inverse of the frame rate. While this 

duration is accurate, the Start of Line (SOL) event marker may not be accurate due to 

time lags in the acquisition system.  Examining a raw flightline provides a qualitative 

interpretation as to general platform attitude throughout the survey but without trajectory 

data, the required External Orientation (EO) of the sensor’s perspective centre for each 

sequential scan line cannot be determined, and scan lines cannot be positioned in a 

mapping reference frame. 

 

Figure 6. Raw AIS Flightline depicted as a sequential time series  

 

 

The Applanix POS/AV 410 and 510 were used for the King Island and Pack Lake survey 

respectively. The POS/AV integrates positional information from the onboard GPS 

sensors as well as orientation measurements recorded from the IMU; this information is 

used to model the trajectory.  The IMU consists of three pairs of accelerometers and 
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gyroscopes mounted orthogonally to enable the determination of angular orientation in 

respect to the three principles axes of the platform. The three axis are typically denoted 

as, x positive towards the nose of the aircraft, y positive towards the left wing tip, and z 

positive towards the top of the aircraft (Muller & Lehner, 2002). Roll angle ω, is 

measured with respect to the x axis, pitch ψ with respect to the y axis, and finally heading 

angle κ, measured with respect to the z axis. 

  

 

Figure 7. IMU Orientation Reference Frame (reproduced from Muller et al. 2002 p.3)  

 

The purpose of a gyroscope is to measure change in angular velocity with respect to each 

axis, enabling the determination of platform orientation in respect to each axis. The 

purpose of the accelerometer is to measure the linear acceleration of the platform in 

respect to each axis.  Post processing of the GPS position and IMU orientation through 

POSPac software provides a Smoothed Best Estimate of Trajectory (SBET). The SBET 

file contains GPS time stamped records of position and orientation at up to 200Hz; 

however for the two presented surveys this data was resampled to 50Hz providing a 

trajectory satisfying the suggestion by Muller & Lehner, (2002) that the INS frequency be 

at least as high as the AIS frame rate. The EO parameters provided by the SBET 

trajectory file are referenced to the INS reference point and co-ordinate system origin. 
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The AIS is slightly offset in position and orientation from the INS reference point, it is 

therefore necessary to relate the EO parameters to the AIS perspective center through the 

use of measured offsets called lever arm offsets. To determine the angular misalignment 

between the INS co-ordinate system and the AIS co-ordinate system it is necessary to 

calibrate the system using a boresight calibration detailed in Section 2.6.   

To utilize the trajectory information in the SBET file for positioning AIS scan lines it is 

necessary to ensure that the SOL event is accurately synchronized.  This synchronization 

is essential for appropriate attitude data being used to position each scan line using the 

appropriate exterior orientation.  AIS flightlines that are not time synchronized with 

trajectory information are evidenced by distorted geometry in rectified data. This 

distortion is particularly apparent when a poorly synchronized flightline has been imaged 

over a long linear feature, aligned parallel to the along track dimension of the flight, 

during a high amplitude roll event. The result of this roll event is linear features 

appearing distorted due to inappropriate attitude data being utilized during the 

rectification (Figure 8).   

 

Figure 8. Effect of poor time synchronization between INS and AIS 
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To ensure that time synchronization could be detected and corrected if necessary; all 

calibration flightlines were imaged with an intentional diagnostic roll feature over linear 

features as depicted Figure 9. 

  

 

Figure 9. Synchronized Raw Image with roll attitude plotted in blue line 

 

Flightlines with poor time synchronization were adjusted using an iterative procedure by 

rectifying flightlines with small time intervals until no distortion was apparent in along 

track linear features imaged concurrent to roll events. To ensure that appropriate linear 

features were selected for this process they were selected from concurrently imaged 

ortho-images and lidar intensity images.   

 

 

2.6 Boresight Calibration 

 

The boresight calibration procedure for the Aisa Eaglet is similar to other systems that 

employee direct georeferencing. Direct georeferencing utilizes the exterior (x,y,z) and 

attitude (roll,pitch,heading) of the sensor combined with the interior orientation of the 

sensor to derive the exterior orientation of the sensor’s across track field of view, and 

where this intersects with the digital surface model.  The major benefit of this system is 

that no ground control is needed (Muller & Lehner, 2002), other than to validate the 

calibration and rectification results.  The AISA Eaglet is mounted physically close to the 
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platform Motion Reference Unit (MRU); however slight angular differences exist 

between the mounting of the MRU and the AIS sensor co-ordinate systems. This 

misalignment between the sensor co-ordinate systems causes distortions and positional 

biases to rectified imagery if it is not accounted for through calibration and estimation of 

misalignment angles. 

 

Figure 10. Effect of AIS Boresight Misalignment Angle on uncalibrated flightlines 

 

The inherent angular misalignment between the ALS and IMU’s co-ordinate systems can 

be estimated utilizing a calibration procedure called boresighting. The boresight 

calibration procedure utilizes flightlines that are imaged over a flat calibration area with a 

series of flightlines that both overlap and intersect with objects that can be both identified 

and assessed within the image flightlines (Yastikli, Toth, & Brzezinska, 2008).  In the 

case of the King Island survey, the Bella Bella airport (52° 10’ 56‖ N 128° 9’ 15‖ W) was 

imaged and surveyed using a calibration pattern. The Bella Bella airport consists of well-

defined runway paint lines useful as ground control points, as well as tie points to enable 

assessment of both relative line to line calibration as well as absolute accuracy.  

 

To validate and assess the boresight calibration, lidar intensity raster images were 

modeled at 0.5m spatial resolution. Average intensity was calculated for each cell using 
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all lidar returns in the ground and default classes. The output intensity raster had a 

radiometric range of 14bits and was used to iteratively assess and adjust roll, pitch, and 

yaw misalignment angles observed between overlapping linear features from each of the 

calibration flightlines.  Utilizing this iterative procedure enabled a positional accuracy 

where control points between adjacent lines were found to be coincident within +/- 1 

pixel.  

2.7 Direct Georeferencing / Orthorectification 

 

The EO parameters refer to the six, position ( X0, Y0, Z0) and attitude, (roll ω, pitch ϕ, 

and yaw κ) that define the sensor acquisition geometry at the time of image acquisition. 

Traditionally photogrammetry using frame cameras has used well defined ground points 

to, through a process of aerial triangulation, estimate the six EO parameters (Cramer, 

Stallmann, & Haala, 2000). The estimation of these parameters using ground control 

points is a form of indirect orientation for georeferencing. Pushbroom AIS systems such 

as the AISA series sensor do not expose and collected full frame images and instead 

acquire sequential scan lines through the forward motion of an airborne platform. Each 

sequential scan line has an associated set of six EO parameters necessary for the 

georeferencing a scan line. Unlike a frame camera these EO parameters cannot be 

estimated using an indirect method such as aerial triangulation partially due to the 

inability to resolve ground locations using a single scan line, and the impractical 

necessity of needing ground control points for each scan line.  Direct georeferencing 

utilizes the INS to directly measure orientation of the IMU and through the use of lever 

arm offsets and boresight calibration enables the per scan line EO to be determined 

directly.  

   

The EO measured through the INS enables the sensor perspective center geometry to be 

determined for each scan line, but it is the integration of an appropriate elevation model 

that is important for orthorectification of sensor recorded pixels. Orthorectification is 

necessary to reconstruct the scene geometry that is recorded using the AIS in a sensor co-

ordinate system into a projected co-orindate system. The orthorectification procedure 
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ensures that surface features are geometrically correct and where sensor optical 

distortions are minimized, topographic relief is accounted for and trajectory information 

including instantaneous platform roll, pitch and heading are utilized for accurate scan line 

positioning. 

 

 Orthorectification of AIS data utilizes the EO parameters to project and, ray trace, a scan 

line specific sensor to DSM vector determining the intersection with the surface model 

(Schlapfer & Richter, 2002). The onboard Applanix POS A/V 410 & 510 is capable of 

high accuracy positioning and orientation at up to 200Hz, exceeding typical frame rates 

used for the AISA systems that tend to acquire not higher than 100Hz, enabling an 

optimized dataset for attitude as suggested by (Muller & Lehner, 2002). The limiting data 

source for determining accurate intersection of AIS data is therefore the elevation model 

used for orthorectification. The simultaneous survey of nearly coincident discrete multi-

return ALS with the two MAP systems enables a high accuracy DSM to be produced 

with multiple returns for most terrestrial features enabling a top of reflective canopy 

surface model to be gridded and if necessary modelled over large water features. The 

lidar system used for the two survey areas typically has a range resolution of 5-10cm, 

being a fraction of the smallest rectified AIS data and exceeding the guidelines for an 

elevation models accuracy as set out by Muller & Lehner, (2002).     
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 Chapter 3 – Tree Object Representation, Feature Extraction and 

Classification 

 

3.1 Introduction 

 

The close integration, calibration and rectification of AIS data through the use of 

complimentary ALS data and derivatives provide a unique opportunity for further data 

integration and fusion harnessing OBIA techniques.  OBIA provides techniques to 

segment image data into real world objects taking advantage of context and attribution 

for analysis. For this forestry based project using OBIA, individual trees are the specific 

objects of interest for analysis and are segmented through the use of an ALS derived 

CHM, and field surveyed tree positions. It is important to note that the CHM used for 

AIS segmentation is a ground normalized version of the DSM used for rectification with 

aligned pixels between all three data products. This pixel alignment enables structural 

information derived from the CHM to be used to segment the AIS data without alignment 

problems or resampling of AIS data; a problem common with projects using separate 

acquisitions and incompatible ALS geometries as evidenced in (Michael Alonzo, 

Bookhagen, & Roberts, 2014).  The use of OBIA forces an examination of the remote 

sensing scene models that relate image resolution to the object scale as outlined by 

(Strahler et al., 1986). Strahler et al. suggested that when the image resolution is high in 

comparison to the size of the object, an H-resolution model exists, whereas when the 

resolution is low and the size of the object is smaller than the pixel an L-resolution model 

exists.  With high resolution AIS on the order of 0.5-1.5m resolution as collected by the 

AISA series in these two projects an h-resolution model prevails for many of the trees in 

this project enabling segmentation of AIS data using a tree object and within object 

spectral sampling. Segmentation using tree objects ensures that only pixels coincident 

with the defined object are extracted for classification reducing the likelihood of spectra 

being extracted from adjacent land cover types.   The concept of image segmentation 

using tree objects is not new to the remote sensing discipline and has been used in both 
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automated methods to detect a tree’s apex (Wulder et al., 2000),  as well as to segment 

imagery through manual (Mike Alonzo, Roth, & Roberts, 2013; Clark, Roberts, & Clark, 

2005) and semi-automated techniques (Jones, Coops, & Sharma, 2010). A unique aspect 

of this project is the use of ALS used to rectify the AIS, derive tree objects, and finally 

segment the AIS utilizing the same ALS data.   

 

To accomplish the goal of crown coincident spectral extraction, a tree-based, object 

model was defined.  Individual trees are the primitive object of interest being defined and 

can be represented simply, by the geographic point or co-ordinate occupied by the tree. 

This one dimensional point location typically represents the apex of the canopy or 

geometric center of the crown and is structurally related to the highest vertical extension 

of the canopy. The crown apex, or treetop can be determined by field survey techniques, 

through spatial filtering techniques utilizing lidar, or using raster-based local maximum 

filtering techniques.  

 

The use of individual tree canopies is well established in airborne remote sensing for the 

detection of tree apex’s and canopies.  Early work to detect ITC’s relied on an 

observation in optical imagery of the brightest pixel in a local neighborhood was close to 

or at the apex of a tree. Through the use of a static 3x3 search kernel (Niemann et al., 

1998) detected treetops from digital ortho-photos. The use of a static kernel that was too 

small was noted to cause errors of commission, while too large of a static kernel caused 

errors of omission; to combat this (Wulder et al., 2000) utilized dynamic search kernels 

and were able to reduce the error of commission.     

 

  The second tree-based object is an object based representation of the crown outline as 

would be projected on the ground surface.  The crown outline is a two dimensional 

polygon that estimates the unique footprint of the crown outline based predominately on 

the conical morphology typically displayed by coniferous trees. The two-dimensional 

object based definition of a treetop and tree crown rely on physical structure and 

morphology to enable segmentation of the AIS imagery and finally feature extraction 

based on this structure.  
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The use of OBIA segments the spectral imagery into an object domain reducing the 

occurrence of spectral extraction from objects other than the ones of interest. In the case 

of tree-based extraction, this removes spectral information from open exposed areas, 

water features, and low vegetation based on the exclusion of objects below a certain 

height threshold.  The ability to extract spectral information on a per crown basis using an 

object-based method enables spectral evaluation and filtering using within crown spectra 

and their associated lidar height information.  

 

This chapter describes the use of an object based approach for individual tree 

representation and subsequent classification using integrated field survey, ALS, and AIS 

data. An object-based model for this research was chosen based on the need to improve 

existing forest inventories that are typically estimated at a plot or stand level. The 

transition from stand, and plot species estimates and towards individual tree-based 

inventories is inevitable with high resolution remote sensing technologies providing wall 

to wall coverage becoming ubiquitous in many jurisdictions. 

 

The first section describes the modelling of treetop, and tree crown-objects for use in 

image segmentation based on, lidar derived, ground normalized CHM in a raster form. 

The tree objects attempt to represent, at a stem level, resolvable trees from the lidar 

CHM. The creation of a spatial database for tree objects is important as it allow a unique 

identifier to be assigned to each tree object enabling much of the geo-processing and 

classification results to be related back to the original tree objects. The next section 

describes how tree crowns were delineated from the CHM for use in the Pack Lake study. 

Integration of field sample data for both King Island and Pack Lake is presented with the 

final section describing the spectral classification and results. 
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Figure 11. Processing Flowchart 

3.2 Point Cloud Normalization  

 

The first step in the treetop detection is the creation of a CHM. The CHM is typically 

represented as an elevation model in the form of a regularly spaced raster where the 

elevation values at each cell location represent the highest vegetation height within a cell.  

In a CHM the ground is the vertical datum and is represented by 0m, each cell height can 

be compared to others within the study area enabling quick determination of the 

distribution of heights above ground.   

 

The CHM is enabled through the initial classification of the lidar point cloud into default 

and ground points encoded as ASPRS LAS file class 1 and 2 respectively. Relatively few 

returns from the ground surface in dense forested areas necessitated the construction of a 

TIN modeled surface to represent a continuous surface to which individual default class 

(1) points could be referenced to. The next step is the normalization of all class 1 and 2 

points by subtracting the elevation of the ground as modeled by the tin surface directly 
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below each point. This normalization process creates a new normalized point cloud in 

which all ground points have had their initial elevation subtracted from them and now 

have a height of 0, all default points have been normalized by the ground elevation as 

determined by the intersection of a point on the tin surface.   

 

  

 

Figure 12. Point Cloud Normalization 
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3.3 Canopy Height Model Gridding  

 

Modeling a raster based CHM involves gridding the normalized class 1 points. For the 

two study sites, the output CHM raster was calculated as the maximum height value 

within a cell rather than the average of all of the point cloud values for that grid cell. 

Using the average reduces the overall height and does not yield a true measure of the 

height of the vegetation at that point. Maximum height values are used to enable the use 

of kernel based raster algorithms for the detection and delineation of individual trees and 

surrounding canopies. 

 

3.4 Individual Tree Top Detection 

 

The detection of individual trees is enabled through the use of dynamic kernels, defined 

based on height ranges within the CHM. The concept behind this is that each detectible 

treetop is represented by a local maximum filter within the raster CHM, where the local 

neighbourhood is defined by a predetermined kernel of n x n dimensions centered on the 

treetop. We noted that the size of the kernel needed to accurately define the tree top 

varied with the size of the crown. Smaller crowns required a 3x3 kernel size while larger 

crowns were better suited for larger kernel sizes.  As there is an alometric relationship 

between crown size and tree height, (Avery, 1974), then the determination of the kernel 

size for a tree of a specified height is based on predefined ranges that increase with 

greater height values . For the King Island dataset, three ranges were used with three 

associated search kernels as follows: 

 

Kernel size Height Range (m) 

3x3 3-6 

5x5 6-35 

7x7 35-100 

 

Table 1. Tree top Search Kernel and Associated Height Range 



 

 

31 

 

The 3x3 range is used for tree heights that are between 3 and 6 meters, the somewhat 

larger trees between 5-35 meters are detected using the 5x5 kernel and larger treetops 

found using between 35-100 m are found using the 7x7 kernel.  This also implies that for 

the 1m cell size CHM that to satisfy the requirement of being a small treetop, it must be 

the largest cell within a 3m diameter ―crown‖, for a medium tree it must be the largest 

cell within a 5m diameter crown and for large trees it must be the largest within a 7m 

diameter crown.  In this manner, each CHM raster cell that is within the specified ranges 

has an associated kernel size, however only pixels that are the highest within their height 

range defined kernel will be considered a treetop.  The treetop detection method 

presented is logically biased towards conifer trees with raster based CHMs that exhibit a 

local maximum within a height and associated range defined kernel; this has the problem 

of poor detection of many deciduous trees that do not follow a conical like geometry. For 

deciduous species this algorithm tends to ―detect‖ multiple false apex’s, within one 

logical crown leading to errors of commission.   

3.5 Individual Tree Crown Delineation 

 

The tree object metaphor was extended for the Pack Lake dataset to enable multiple 

within crown spectral samples to be extracted. ITCs are defined conceptually based on 

the footprint of a tree’s crown outline as projected on the ground surface.  For isolated 

trees this outline can be observed in a CHM based on a high magnitude change in height 

at the edge of the crown and the adjacent surrounding ground terrain. In natural 

environments the crown outline is more difficult to determine as crowns tend to overlap 

and intersect with neighbouring trees. Crowns were delineated using an algorithm that 

utilizes the raster CHM used to determine treetops, the treetops detected, and a set of 

stopping rules.  The algorithm utilized is similar in method to that used by (Tiede, 

Hochleitner, & Blaschke, 2005). In an OBIA context the tree top is now an object 

primitive, while the ITC delineated is the real world object (Benz, Hofmann, Willhauck, 

Lingenfelder, & Heynen, 2004).  Crown delineation starts based on the pixel location of 

the highest treetop; using a local 3x3 kernel each of the surrounding pixels are 
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determined for membership in a crown object if they meet a defined set of criteria or 

rules.  The rules for crown membership are 1) height being lower than the seed pixel, 2) 

the height of a candidate pixel being greater than a defined percentage of the CHM and 3) 

a pixel being within a max crown radius associated with the initial seed point.  If each of 

these criteria is met the pixel is added to the crown and iteratively each added crown 

evaluates its outward neighbours to determine their membership within the crown. The 

crown region grows until no crown pixels have neighbours that satisfy membership 

within the crown object. Pixels delineated using this algorithm are masked once a crown 

has been defined and our not available for membership in subsequent crowns.  For the 

Pack Lake dataset the following height ranges, and rules were used: 

 

 

Range (m) Percentile Crown Radius (m) 

3-35 75 3 

35-70 65 6 

 

Table 2. ITC Stopping Rules 

 

The effect of the above ranges was that no CHM pixels were considered if their height 

was less than 3m, two classes of trees based on heights were delineated with small trees 

between 3-35m height being used as seed treetop pixels to delineate crowns up to a 3m 

radius as long as candidate crown pixel heights were at least 75% of the seed treetop 

value. For larger trees between 35-70m a crown could be delineated up to 6m in radius if 

a candidate pixel was at least 65% of the seed treetop value.   

 

Similar to the treetop detection, tree crown delineation and segmentation using this 

simplified model exhibits difficulty in the detection of deciduous canopies. As mentioned 

above, deciduous trees often have multiple local maxima within the canopy causing 

multiple treetop representations. These multiple treetops form the seed points for crown 

delineation and segmentation producing small multiple crowns, ―within crowns‖ in some 

deciduous trees. Deciduous trees are also problematic as their morphology does not 
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represent an inverted watershed or cone with the same apex to crown edge slope found 

with conifers. Shallow slopes and inflictions within the slope of the crown cause 

problems with the percentile based stopping rule with region growing terminating at 

some inflection points causing small crowns.  For coniferous species multiple local 

maxima and treetops are found within one logical delineated caused by two trees growing 

in close proximity to each other, candelabra features or tree that has had natural damage 

affecting the simplified cone geometry required for this algorithm.  Multiple treetops are 

realities within a single crown delineated using these stopping rules but have yet to be 

managed from a data processing perspective for future segmentation. Finally, it needs to 

be pointed out that for both the tree detection and the crown delineation, a smoothing 

filter is required to be run to on the raster CHM to reduce noise and to reduce the 

likelihood of multiple treetops found within a local kernel. While a smoothed CHM is 

used for detection and delineation, the position and height of the local maximum is 

always extracted from the original CHM dataset. 

 

3.6 Spectral Extraction 

 

The classification of tree species for the two study areas required the integration of field 

based data representing tree species of interest to create objects for image segmentation 

and feature extraction. The two study sites, King Island, and Pack Lake were analyzed 

sequentially and progress conceptually from the use of a one-dimensional object for tree 

extraction for King Island to a two-dimensional crown based object for the Pack Lake 

dataset.  The following sections outline the collection, and evaluation of field data, 

spectral extraction and finally classification and evaluation of spectra.  

 

3.6.1 Field Survey Data – Collection and Assessment 

 

Field data representing plots and stems of leading species for both the King Island, and 

Pack Lake study were provided by Strategic Forest Resource Management Inc. The 

datasets provided consisted of plot locations surveyed in the field using a Trimble GeoXT 
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mapping grade GPS in conjunction with tree stem locations, associated mensuration and 

attribute data.  

 

Field surveys of stem locations are essential to train and validate classification algorithms 

as used in image analysis but must be assessed in terms of position and attribute integrity.  

GPS positional accuracy may not be good enough in steep sloped, dense forest areas due 

to poor satellite coverage and a high multipath environment.  The number and position of 

GPS Space Vehicles (SV) available for a positional fix can be occluded based on steep 

terrain that masks and occludes the SV transmitted radio signal, the result of this can be a 

sub-optimal constellation for GPS positioning and degradation in differentially corrected 

position.  Dense forest areas characterized by the study sites present a secondary 

challenge in terms multipath, of radio signals transmitted by SV’s interacting with 

reflective objects existing in the path between the SV and the GPS instrument. This 

condition causes a delay in the reception of signal due to a longer path length 

contributing to spurious range calculations and a poor positional solution. Field surveyed 

stems in this study were positioned using an azimuth and distance offset from the plot 

centered point surveyed by the GPS; as such these positions are intrinsically biased by 

poor GPS positions of the plot centre. Positioning of stems is typically represented by the 

edge of the tree at Diameter at Breast Height (DBH), offset to the centre of the trunk by 

half the DBH value or radius.  While the center of the trunk as referenced by an offset 

provides a logical geometric centre for stem positioning it can be a poor match for spectra 

extracted using remotely sensed imagery where a treetop or crown apex pixel may 

provide optimal illumination, albedo, and potentially signal. This problem is best 

evidenced in trees where the apex and trunk centre are not horizontally coincident due to 

leaning or natural growth pattern. Field samples where the comment attribute contained 

information suggesting leaning were removed from the stem database to mitigate against 

obviously offset ground to apex positions.   

 

Previous passive optical studies have indicated a potential benefit for the use of crown 

apex pixels based on high signal and low spectral variation. Based on this research it was 

thought that spectra located close to the apex would provide the best quality spectra for 
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classification purposes based on optimal signal and by capitalizing on a simple one-

dimensional extraction location thought less likely to be influenced by neighbouring trees 

of other species where a multi pixel per crown approach may extract spectra from a 

neighbour.  

     

3.6.2 Training Database Spectral Extraction – King Island 

 

The King Island study site utilized the field surveyed positions of tree species provided 

by Strategic Forest Resource Management (SFRM) to construct a spectral endmember 

library based on the spectral responses as extracted from positions of species as field 

surveyed. While 503 field surveyed stems were provided, 495 were coincident with 

hyperspectral flightlines and available for spectral extraction, classification and validation 

of species of interest. 

 

 

Tree Species Class Code n 

Amabilis Fir (Abies amabilis) Ba 18 

Western red cedar (Thuja plicata) Cw 342 

Western hemlock (Tsuga heterophylla) Hw 103 

Sitka spruce (Picea sitchensis) Ss 20 

Yellow Cedar (Chamaecyparis nootkatensis) Yc 12 

Total  495 

 

Table 3. King Island Field Surveyed Stems Training Data Distribution 

 

For each field surveyed position in the King Island training database a coincident 

hyperspectral signature was extracted. During this stage of the research project it was felt 

that a single spectrum positioned at the highest point of the tree would be optimal in 

terms of albedo and spatial confidence within the crown. Each candidate field position 

was assessed in terms of encoded attribute information including species code, cruise 



 

 

36 

height, spatial confidence and field report comments. These database attributes were 

assessed in conjunction with orthophotos, raster canopy height model, and point cloud in 

terms of positional information and attribute integrity. Any samples that had obvious 

integrity issues were removed from analysis. 

 

 Each extracted spectrum was encoded using a unique identification attribute that linked 

the spectra back to the field surveyed stem database. The unique identifier attribute 

consisted of the species code followed by a serial number unique to the stem. The wide 

field of view of the AISA Eaglet combined with areas of high relief caused occluded 

pixels, under sampling and high off nadir acquisition geometries. To maximize for 

spectral extraction of features close to nadir geometry, each sample was assigned to the 

nearest flightline.  For each flightline the assigned features were extracted and encoded 

by unique identifier and species code. On a per species basis, descriptive statistics were 

calculated to visually assess and interpret spectral signatures on the basis of their mean, 

standard deviation and co-efficient of variance. In addition the mean calculated spectra 

for each species class was used for exploratory classification and to provide a means to 

compare the multi-endmember approach. 

 

Figure 13. Species Average Reflectance 
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Figure 14. Averaged Species Standard Deviation 

 

 

Figure 15. Averaged Species Spectra- Coefficient of Variation 
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3.6.3 Training Database Spectral Extraction – Pack Lake  

 

The Pack Lake study consisted of a similar coastal site to King Island and benefited from 

advances occurring with ALS/AIS integration and fusion being researched at the 

Hyperspectral and Lidar Research Group (HLRG). In contrast to the poorly balanced 

King Island field data, the field sampling for the Pack Lake study site was more equitably 

distributed for dominant species including collection of Red alder, a deciduous species. 

 

Further refinement of ITC based detection and delineation provided an opportunity to 

examine the extraction of field positioned tree spectra utilizing a two-dimensional canopy 

object segmented from the lidar. The distribution of species surveyed for Pack Lake is 

presented in Table 4, and depicts the number of candidate field samples available for ITC 

extraction; the low sample size of Mountain hemlock necessitated its removal from 

analysis. 

 

Tree Species Class Code n 

Amabilis Fir (Abies amabilis) Ba 33 

Western red cedar (Thuja plicata) Cw 65 

Red Alder (Alnus rubra) Dr 33 

Mountain hemlock (Tsuga mertensiana) Hm 2 

Western hemlock (Tsuga heterophylla) Hw 66 

Lodgepole pine (Pinus contorta) Pl 21 

Sitka spruce (Picea sitchensis) Ss 17 

Yellow cedar (Chamaecyparis nootkatensis) Cy 33 

Total  270 

 

Table 4. Pack Lake Training Species Distribution 

 

The first step in integrating the field based stem for tree crown spectral extraction 

involved geoprocessing of the field data provided for the study area.  Field samples of 
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species of interest were provided as a shapefile intended to represent the treetop of 

candidate trees. For each database record, species, tree height, and other attribute 

information was presented. The ITC vectors that were delineated from lidar provided a 

systematic approach to delineating crowns using segmentation stopping rules based on 

height, percentile and radius that were applied evenly to each raster cell in an image. This 

methodology removes some of the arbitrary decisions that could be introduced from a 

human interpreter.  At the outset of the project, part of the field data integration and 

geoprocessing involved the plan to use ITC vectors for the spatial joining of field 

surveyed tree objects, effectively promoting the point attribute to the enclosing ITC 

polygon.  An aspect not perceived about the Pack Lake field survey data was the 

existence of field survey positions where two trees were closely clumped together, 

occurring for both same and differing species. The result of clumped field surveyed trees 

is that some ITC polygons from the lidar would contain multiple-species class features 

creating an ITC object with ambiguity towards its species designation.  To ensure a 

logical one to one relationship between ITC and field surveyed points, all ITC polygons 

that contained more than one field stem were not permitted in the spatial join. The 

remaining ITC polygons were now featuring aware of the field surveyed trees they 

encompassed.   

The use of an ITC object model was implemented in such a manner that it was used both 

as a structure based segmentation object as well as unique tree object within a geographic 

database that was attributed from multiple data sources. A custom designed software tool 

was used to subset the ITC polygons attributed with field data, extract coincident CHM 

heights, lidar point cloud, and AISA Eagle rectified reflectance within the crown 

boundary.  In opposition to the one flightline pixel per tree object used for the King 

Island project, the Pack Lake dataset increased the spectral sampling of crown object 

where they intersected multiple flightlines. Part of the ITC driven extraction involves the 

calculation of crown specific lidar and spectral metrics including location albedo and 

crown relative albedo. 

 

To explore effect of albedo for classification, ITC spectra were extracted based on a filter 

where the top 50% albedo pixels were extracted for use as ITC endmembers to use for 
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extraction and classification. The input into the Pack Lake Spectral Angle Mapper (SAM) 

classification were an endmember library consisting of spectra attributed with the parent 

ITC, crownID, unique field survey stem ID, and species code. Additional attributes could 

be examined by using a database table join if necessary. 

3.7 Classification 

 

ITC based spectra extracted using the one-dimensional ITC model introduced for the 

King Island Project and the two-dimensional ITC model for Pack Lake were both 

implemented using the SAM classification scheme. The following sections detail the 

classification performed for the two study sites.  

 

3.7.1 Spectral Angle Mapper 

 

The classification of extracted tree spectra was based on a modification of the non-

parametric SAM described in (Kruse et al., 1993). The SAM algorithm enables an 

angular calculation of spectral similarity between a known spectra and unknown spectra. 

The angle is calculated between a pair of n-dimensional vectors representing the two 

target spectra. Low spectral angles indicate spectral similarity, while high values are 

indicative of spectra with differing shapes.  SAM is theoretically insensitive to changes in 

albedo as it is the relative angle between unknown and known spectra not the length of 

the vector representing the spectra of interest that is calculated. 
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Equation 3. Spectral Angle Equation 
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Figure 16. Spectral Angle Example 

 

To create reference spectra, field surveyed stem locations were used to guide extraction 

using two techniques both utilizing a multi-endmember approach. The multi-endmember 

approach attempts to characterize the inherent natural variability that occurs with 

intraspecies  reflectance spectra due to bio-chemical and bio-physical differences 

(Bateson, Asner, & Wessman, 2000; Debba, Cho, & Mathieu, 2009). For the King Island 

study, multiple endmembers per species class were extracted utilizing field surveyed 

positions to guide top of reflective canopy spectra. For the Pack Lake study, field 

surveyed locations of stems were used as seed points to guide a crown object-based 

segmentation, multiple endmember spectral extraction and classification.  

 

3.7.2 Individual Tree stem based classification – King Island 

The SAM algorithm was used for two approaches for the King Island dataset. The first 

method utilized the average spectra on a per species basis to examine the performance of 

per species mean spectra for classifying all members within the database. For the average 

spectra method each endmember in the database has an angle calculated between it and 

each species averaged spectra.  The lowest calculated angle between test and average 

spectra indicates the best match of spectral similarity. To assess how well mean spectra 

are capable of classifying spectra of their own nominal species class, a classification 

matrix is used to enumerate the number of times the test spectra were classified closest to 
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each average endmember. Through the use of a confusion matrix performance of the 

classifier can be assessed.   

 

The second method is based on the cross validation leave one out method and is often 

applied where low samples do not provide adequate data for training and validation.  In 

this SAM classification method all endmembers become library spectra except for one 

test endmember, which is removed from the library, having its spectral angle calculated 

against each library endmember. The closest match, based on lowest angle, and library 

endmember species code, is recorded for each test spectra enabling a confusion matrix to 

be tabulated to assess classification accuracy and performance. 

 

3.7.3 Crown Based spectral classification – Pack Lake 

 

The classification for the Pack Lake study area utilized the SAM algorithm using a leave 

one out cross validation approach to enable evaluation of ITC extracted crown spectra. 

Using an iterative approach, each crown spectra was removed from the library and the 

spectral angle was calculated against all members remaining in the library, with the 

lowest spectral angle, associated spectral ID and species designation recorded. Tabulation 

of smallest spectral angle and class membership per species is presented in the results 

section.   

 

3.8 Results 

The results of the extracted and classified tree spectra are predominately presented 

through the use of classification or confusion matrices for each of the two study sites. 

   

3.8.1 King Island Individual Tree based SAM Classification Results 

 

The results of the per species average spectra SAM classification for King Island are 

presented in Table 5. 
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 Ba Cw Hw Ss Yc Row 

Total 

Producers 

Accuracy % 

Error of 

Omission % 

Ba 11 0 2 3 2 18 61.11 38.89 

Cw 63 84 78 61 56 342 24.56 75.44 

Hw 22 7 47 8 19 103 45.63 54.37 

Ss 7 3 5 4 1 20 20.00 80.00 

Yc 1 1 2 0 8 12 66.67 33.33 

Column Total 104 95 134 76 86 495   

User's 

Accuracy % 

10.58 88.42 35.07 5.26 9.30    

Error of 

Commision % 

89.42 11.58 64.93 94.74 90.70  Overall 

Accuracy % 

31.11 

Table 5. Species Average Spectra SAM Confusion Matrix 

 

The confusion matrix presented for the average species class SAM indicate the ability for 

a set of species designated spectra to be classified correctly through the use of a species 

class representative average spectral endmember.  For each species code the proportion 

of correctly classified test spectra to the total number of spectra in that species class is 

indicated by the producer’s accuracy. The producers accuracy only considers how well 

the within class test spectra were able to be classified correctly, the test spectra 

incorrectly classified as other classes is indicated by the error of omission. In the case of 

using an average representative endmember spectra, Balsam (Ba) and Yellow Cedar (Yc) 

both performed better than the other species but were unable to be classified correctly 

39% and 33% of the time correctly.  For all other species the use of an averaged spectrum 

produced very poor results. The user’s accuracy is a measure of the proportion of spectra 

that were originally belonging within a class to the number of test spectra actually 

classified as a species.  A low user’s accuracy for a class such as Ba is an indication that a 

very low proportion of spectra classified as Ba were actually Ba. The low user’s accuracy 

for Ba, Hw, Ss, and Yc all indicate confusion between other species and these classes.  

The relatively high user’s accuracy for Cw suggests that despite poor producer’s accuracy 
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and high levels of omission, very few other spectra were misclassified as Cw. The overall 

accuracy indicates the overall proportion of correctly classified spectra to the total 

number of spectra. 

 

 

 

The second SAM classification technique utilized a cross-validation leave one out 

approach.  The results for the classification in terms of a confusion matrix are presented 

in table 

 Ba Cw Hw Ss Yc Row 

Total 

Producers 

Accuracy %  

Error of 

Omission 

% 

Ba 12 4 2 0 0 18 66.67 33.33 

Cw 6 249 65 20 2 342 72.81 27.19 

Hw 4 57 33 6 3 103 32.04 67.96 

Ss 1 13 4 2 0 20 10.00 90.00 

Yc 0 9 2 0 1 12 8.33 91.67 

Column Total 23 332 106 28 6 495   

User's Accuracy % 52.17 75.00 31.13 7.14 16.67    

Error of 

Commision % 

47.83 25.00 68.87 92.86 83.33  Overall 

Accuracy % 

60.00 

Table 6. Full Range Multi-Endmember SAM Confusion Matrix 

 

The results presented in Table 6 depict a considerable improvement in overall accuracy 

with large increases to most species for their producer’s accuracy. The Balsam producer’s 

accuracy increased marginally, however this is taken in the context of a much improved 

Ba user’s accuracy indicating less confusion with other species being misclassified as Ba. 

Western red cedar showed a nearly threefold increase in producer’s accuracy with 

associated high user accuracy.  Western hemlock had a small decrease in both producers 

and users accuracy; however that had been spread out more evenly between other species 

shifting more towards Western red cedar. Sitka spruce had a 50% drop in producer’s 
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accuracy with increased confusion with Western red cedar and less with Balsam.  The 

Yellow cedar class producer accuracy dropped considerably with associated extremely 

high errors of both omission and commission. 

 

The third classification for the King Island Dataset utilized a subsetted spectral range to 

try to try to remove portions of shortwave and near infrared where noise appeared to be 

evidenced.  A spectral subset between 480-850nm utilized an otherwise identical leave 

one out cross validation SAM as explained for the full range classification. 

 

 

 Ba Cw Hw Ss Yc Row 

Total 

Producers 

Accuracy  % 

Error of 

Omission 

% 

Ba 12 6 0 0 0 18 66.67 33.33 

Cw 6 278 47 7 4 342 81.29 18.71 

Hw 2 62 33 5 1 103 32.04 67.96 

Ss 0 12 4 4 0 20 20.00 80.00 

Yc 0 11 1 0 0 12 0.00 100.00 

Column Total 20 369 85 16 5 495   

User's Accuracy % 60.00 75.34 38.82 25.00 0.00    

Error of 

Commision % 

40.00 24.66 61.18 75.00 100.00  Overall 

Accuracy % 

66.06 

Table 7.  Spectral Subset Multi-Endmember SAM Confusion Matrix 

 

The spectrally subset results for King Island show an increase in overall accuracy from 

the full band multi-endmember and have an associated increase in producers accuracy for 

all species except for Yellow cedar.  The Yellow cedar training dataset was unable to 

correctly classify any other Yellow cedar, 4 of 5 trees classified as Yellow cedar were in 

fact Red Cedar. The producer’s accuracy also improved for all species other than Yellow 

Cedar with an associated drop in the error of commission. 
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3.8.2 Pack Lake Crown based SAM Results 

 

 

 Cw/Yc Hw/Ba Ss Dr Pl Row 

Total 

Producers 

Accuracy % 

Error of 

Omision % 

Cw/Yc 378 101 20 4 34 537 70.39 29.61 

Hw/Ba 115 671 34 52 4 876 76.60 23.40 

Ss 19 28 52 4 0 103 50.49 49.51 

Dr 5 57 3 85 0 150 56.67 43.33 

Pl 40 6 0 0 16 62 25.81 74.19 

Column Total 557 863 109 145 54 1728   

User's Accuracy 

% 

67.86 77.75 47.71 58.62 29.63    

Error of 

Commision % 

32.14 22.25 52.29 41.38 70.37  Overall 

Accuracy % 

69.56 

Table 8. Pack Lake SAM Confusion Matrix 

 

The Pack Lake confusion matrix represents the results of extracting multiple ITC spectra 

while using albedo thresholding for extracted pixels to maximize the high reflectance 

pixels with a high signal to noise ratio.  Based on difficulty to separating Western 

Hemlock and Balsam and Western red cedar and Yellow cedar, two aggregate classes 

were created.  The overall performance of the multi-endmember per ITC has a similar 

overall accuracy to the King Island full range classification and spectrally subset 

classification but should not be directly compared due to the difference in species classes 

and aggregated classes.  The producer and user’s accuracy for Cw/Yc and Hw/Ba depicts 

reasonable success at Cw/Yc and Hw/Ba test spectra matching with other endmember 

library spectra of the same classes. Sitka Spruce based on producer’s accuracy performs 

better than the King Island Ss class but still has confusion other coniferous species. 

Additionally Ss has a high error of commission indicating 53% of spectra classed as 
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Sitka, are not Sitka Spruce spectra.  Red alder has a high degree of confusion with Hw/Ba 

indicating poor separability between these classes. Lodgepole pine, Pl performs the worst 

with nearly three quarters of all Pl test spectra classifying as something other than 

Lodgepole pine. 
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Chapter 4 – Discussion and Future Work 

 

The assessment of multisensor data integration for ITC based spectral classification has 

provided a unique opportunity to investigate the effects of acquisition, calibration, 

georeferencing, and lidar guided segmentation. The relationship between image 

resolution and object scale are highlighted in the AIS/ALS survey over the King Island 

project area. At a scene object level, an ITC has a continuous representation ranging  

from a seedling to old growth trees, creating a dynamic scale relationship between a 

given sensor resolution and the tree object. For very small tree crowns an L-resolution 

relationship exists with the AIS data, suggesting a much different spectral contribution 

from the objects that exist within the IFOV of a sensor pixel. This relationship 

dynamically changes with tree crowns to a multi AIS pixel per crown relationship, and 

more of an H-resolution scene object model.  For ITC spectral extraction, using a lidar 

driven structural segmentation, it would be beneficial to determine crown size thresholds 

where positional uncertainty is assessed for appropriateness for a crown extraction.   

 

Complicating the relationship between a dynamically changing ITC scene object 

throughout the scene is the dynamic spatial resolution of an ALS, especially when 

acquired from a rotary platform over a scene like King Island. The constantly changing 

acquisition geometry to accommodate for terrain and surficial relief, coupled with 

differing over ground velocities produce a range of across track and along track pixel 

dimensions. Changes in sensor orientation produce over and under sampled portions of 

flightlines creating uneven coverage for flightlines and features within them.  The use of 

a nominal square pixel size to represent the combination of flight altitude, and speed over 

ground/frame rate is always a compromise. If too large of a rectification pixel size is 

chosen it will imply to the end user that the signal has been acquired spatially over a 

larger area than the original acquisition condition represents. Conversely the use of too 

small of a pixel size for rectification will cause many portions of the output rectified data 

to have null values and at the same time implying less area sampled on the ground.  The 

existence of null values in imagery data causes difficulty for assessment and 
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interpretation of scene objects and problems for calibration and assessment.  These AIS 

scene resolution and tree object, dynamic scale relationships are compounded by similar 

scale and resolution problems encountered by the lidar data used for segmentation. A 

simple scene resolution to object scale mismatch is also encountered through the use of 

field survey data collected for ITC spectral endmember extraction.  If a single pixel 

coincident with the survey co-ordinate is extracted for classification and training there is 

an inherent positional uncertainty that is more problematic for within crown object 

sampling of small crown diameter trees. ALS has similar scene object scale and 

resolution implications for feature representation and segmentation. If differing 

resolutions exist between multiple airborne sensors, feature extraction can be influenced 

by misaligned pixel to pixel alignment, or the vector clipping geometry used to extract 

raster data. All of these object scale, and resolution relationships influence the spectral 

information extracted and the representation of the object of interest and should be 

carefully considered when integrating multi-sensor data. 

 

The classification results do not lead to any direct conclusions regarding the ability to 

classify individual tree species at an ITC level due to poorly balanced datasets. The King 

Island dataset had a comparatively large sample size of Western red cedar but the low 

sample numbers for and representation of species such as, Sitka spruce, Balsam and 

Yellow cedar do not provide the capacity to draw conclusions on either how 

representative the extracted spectra are of the indicated species, or if classification 

accuracy may improve, if a larger sample was available. Western hemlock was a 

problematic species, particularly with the King Island dataset, as many of the field cruise 

surveyed stems were attributed with a ―cruise height‖ attribute that indicated that they 

were either co-dominant trees or suppressed below the dominant leading species. For 

most of King Island, Western red cedar appeared to be dominant.  The problem with the 

hemlocks that are below the top of the reflective canopy surface is that they tend to be 

occluded by many sensor acquisition geometries, providing very little in the way of 

reflectance data that can be ascertained as being completely occupied by the suppressed 

stem.  It is possible that the social position of Western hemlock in relationship to other 

species caused spectra from the correct planner field co-ordinate to be extracted, yet was 
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actually was more representative of the species occluding the understory hemlock 

causing poor classification results.  The overall poor performance of SAM based on mean 

spectra is consistent with previous research by Cho et al (2010) into the use of species 

specific endmembers represented by a mean or representative spectra. A similar study 

using mean spectra  (Debba et al., 2009) found similar poor classification performance 

using a similar SAM technique.  The increased performance of the King Island multi-

endmember per species classification is consistent with other individual ITC research.  

The slight improvement in performance based on spectral range could be due to noisy 

spectral regions, but could also be related to research advocating for an optimal band 

selection method.  

 

The King Island dataset has interesting potential for further classification work through 

the use of ITC segmentation and spectral extraction. With an increased sample size using 

crown object for segmentation a more balanced within crown sample for each species 

could be examined.   

 

The Pack Lake dataset provided a better sample distribution on a per species basis, 

however was countered by a coarser scene resolution with almost twice as coarse spatial 

resolution when compared to King Island. This coarser image resolution impacted spatial 

confidence when using a segmentation driven approach, especially for small crown 

diameter species such as balsam and pine. The addition of deciduous Red alder to the 

Pack Lake study proved to be difficult for species classification based on the observed 

poor classification performance. The poor alder classification could be related to the 

algorithm used for ITC delineation and the expected conifer object geometry the 

algorithm performs best with.  ITC crown outlines delineated for observed stands of Red 

alder encompassed a fractional amount of the canopy, likely a result of stopping rules that 

are evaluated with conifers in the study area.  The performance of the classifier was also 

observed spatially within the context of the scene and suffered from particularly poor 

performance for trees that were located in the southern portion of the image with a north 

aspect. This classification performance problem could be related to poor solar 

illumination geometry and low absolute albedo. Similar to the suppressed Western 
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hemlocks found in the King Island site, there may have been endmembers included in the 

library that had very poor signal to noise based on shadowed or partially included 

geometry.  To manage this low albedo, an absolute threshold could be used to remove a 

training endmember from analysis. This albedo problem would be insensitive to the 

relative per albedo thresholding that is part of the crown extraction, a low absolute albedo 

sample that is the highest in a crown will still be extracted. 

 

While the use of OBIA and an ITC segmentation model for AIS canopy classification is 

not unique to this study, and has been implemented with promising results in both 

tropical (Féret & Asner, 2013), and urban tree studies (Michael Alonzo et al., 2014), the 

results can’t be directly compared. While the urban and tropical ITC studies referenced 

above follow a similar methodology for segmentation, and classification, to the two study 

sites in this thesis, there are many differences that may explain differences in apparent 

classification capability. 

 

 The two mid-coast study sites presented in this thesis are dominated by coniferous ITCs, 

with the dominant, most abundant, and largest crown size belonging to mature Western 

red cedars.  Other conifers sampled within the study site including Yellow cedar, Sitka 

spruce, Western & Mountain hemlock, and Lodgepole pine were used for classification 

purposes; however these ITCs tended to have considerably smaller crown areas, 

overlapped with neighboring crowns, or were not emergent from the canopy, in the same 

way that Western red cedar was. In contrast to the two mid-coast studies, the tropical and 

urban studies cited tend to have rich species diversity, utilize emergent or spatially 

isolated crowns and have much larger crowns for each of the species studied. 

 

The examination of the end-to-end integration of multi-sensor airborne imaging for an 

object based classification reveals how interrelated each of the systems is throughout 

acquisition, calibration, rectification and segmentation.  The high level of integration on 

the MAP series of sensors at a hardware level enables acquisition of ALS suitable for 

calibration, rectification, and OBIA segmentation for AIS feature extraction.  The use of 

ITC based OBIA using AIS data for coastal forestry applications is complicated by 
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dynamic acquisition geometry caused by changes in underlying terrain and platform 

attitude.  The use of structure driven lidar based segmentation provides a first step in 

reducing noise from adjacent scene objects and providing ITC relevant spectra for use in 

a classification algorithm. It is suggested that future work should continue to examine the 

within crown spectra extracted, both in terms of their relative albedo and shape, as well 

as their relationship to other crowns of the same species class.  The ITC itself should be 

examined in terms of overall area, shape, and number of associated AIS pixels to ensure 

that candidate crowns are appropriate for inclusion with the species class.    
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Appendix A 
List of Abbreviations 

Abbreviation Definition Page 

AGL Above Ground Level 11 

AIS Airborne Imaging Spectrometer 1 

AISA Airborne Imagining Spectrometer for Applications 12 

ALS Airborne Lidar Scanner 1 

ASPRS  

American Society for Photogrammetric Remote 

Sensing 16 

CCD Charge Coupled Device 10 

CHM Canopy Height Model 5 

CMOS Complementary Metal Oxide Semiconductor 10 

DBH Diameter at Breast Height 34 

DEM Digital Elevation Model 15 

DN Digital Number 13 

DSM Digital Surface  Model 2 

EO External Orientation 18 

FODIS Fiber Optic Downwelling Irradiance Sensor 12 

FOV Field of View 15 

GPS Global Positioning System 9 

GSD Ground Sampling Distance 11 

H-resolution High resolution 1 

HIFOV Horizontal Field of View 10 

HLRG Hyperspectral Lidar Research Group 38 

IFOV Instantaneous Field of View 3 

IMU Inertial Measurement Unit 10 

INS Inertial Navigation System 3 

ITC Individual Tree Crown 1 

L-resolution low resolution 1 
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MAP Multiple Airborne Platforms 2 

MODTRAN 5 MODerate resolution atmospheric TRANsmission 14 

MRU Motion Reference Unit 22 

OBIA Object Based Image Analysis 1 

POS A/V Position and Orientation System for Airborne Vehicles 8 

SAM Spectral Angle Mapper 40 

SBET Smoothed Best Estimate of Trajectory 19 

SFRM Strategic Forest Research Management 35 

SNR Signal to Noise Ratio 1 

SOL Start of Line 18 

SV Space Vehicle 34 

SWIR Short Wave Infrared 9 

TRSI Terra Remote Sensing Incorporated 2 

VNIR Visible Near Infrared 2 

 

 


