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ABSTRACT

The Vlasov-Poisson system is most commonly used to model the movement of charged

particles in a plasma or of stars in a galaxy. It consists of a kinetic equation known

as the Vlasov equation coupled with a force determined by the Poisson equation.

The system in Euclidean space is well-known and has been extensively studied under

various assumptions. In this paper, we derive the Vlasov-Poisson equations assuming

the particles exist only on the 2-sphere, then take an in-depth look at particles which

initially lie along a great circle of the sphere. We show that any great circle is an

invariant set of the equations of motion and prove that the total energy, number of

particles, and entropy of the system are conserved for circular initial distributions.
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Chapter 1

Introduction

Since there are many charged particles in a plasma and many stars in a galaxy, it

is impractical to model their movement individually. Instead, we often assume the

moving parts to be point particles and describe them all at once using a distribution

function. We then take what we know about the forces involved to derive a set of

equations which can be used to accurately predict how the distribution will evolve

in time. In Euclidean space, the equations have been established for many years so

we simply choose the equations that are appropriate according to the assumptions

required, and proceed to study the equations in whatever way we wish. For example,

in the study of plasmas, both relativity and changing magnetic fields are taken into

account by the Vlasov-Maxwell system [1]. If the magnetic fields and effects of rela-

tivity are negligible, then the Vlasov-Poisson system proves to be a good model. In

self-gravitating systems (those considered in stellar dynamics or cosmology), a fully

relativistic treatment requires the use of the Einstein-Vlasov system [20]. Again, if

relativity is ignored, the Vlasov-Poisson equations are suitable. In between the fully

relativistic Einstein-Vlasov and the fully Newtonian Vlasov-Poisson systems lies the

Vlasov-Manev system, in which the Newtonian gravitational potential is replaced by

a slightly perturbed potential in the Vlasov-Poisson equation [6]. This treatment is

particularly interesting because it shows the advance of the perihelion of Mercury

without using relativity. In all of these models, the physical system is assumed to be

collisionless; however it should be mentioned that collisions can be taken into account

via the Boltzmann equation and its variations. These are just a few of the many sys-

tems used to describe the movement of ions in plasma or stars in space. In this thesis,

we shall reduce our scope to consider only the stellar dynamical case (i.e. a group of

self-gravitating stars in space) and make the following physical assumptions:
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1. Our stars have unit mass and are identical to each other.

2. There are no collisions1.

3. Relativistic effects are negligible (i.e. v � c, where c is the speed of light).

In response to these assumptions, we identify the Vlasov-Poisson system as the logical

set of equations to study. However, our next requirement will prevent us from using

the equations already established–we assume the stars are within a curved space. Our

goal for this thesis is to extend some of the results from flat space to non-Euclidean

spaces, and find out what happens under the assumption that physical space is not

flat. If space has positive curvature like a sphere, how does this change the Vlasov-

Poisson equations? Do the properties of the system in Euclidean space also exist in

the curved problem?

On small scales, the curvature of the universe is negligible and therefore until

recently there has been no reason to suspect that our ambient space is anything but

flat (Euclidean). However, with recent studies of the cosmic background radiation

some researchers have concluded that a curved universe may better fit the acquired

data. Therefore any work done on curved spaces is very relevant and could even hold

the key to testing whether the universe is curved at all. The study of any equations

that might be useful for predicting the motions of stars and galaxies is particularly

interesting since on such large scales the differences between flat and non-Euclidean

space become relevant.

Although the Vlasov-Poisson system has been studied extensively in the Euclidean

setting, as far as we can tell it has never been considered on curved spaces without

the use of general relativity. Therefore, a crucial first step in our work is to derive

the systems of equations in such a way that they agree with everything we know

physically about the space. Consequently, we begin by making some preliminary

assumptions that must be satisfied by our equations so that they can be applied to

real-life situations. The most fundamental assumption is on the gravitational force

between two masses: it is attractive, proportional to the masses, directed along the

geodesic connecting the masses, and it depends on the geodesic distance between the

masses. As we shall see, any differences between the resulting equations in curved

space and the corresponding equations in Euclidean space are due to this difference

in the gravitational force.

1we will also need to exclude antipodal positions – configurations on the sphere in which particles
are separated by a geodesic distance of π – for the same reason.
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This thesis is organized as follows. In Chapter 2, we begin by giving an introduc-

tion to the mathematics of the Vlasov-Poisson system in Euclidean space, including a

brief discussion of the literature surrounding the subject. We supplement this discus-

sion with a slightly more detailed description of the interesting phenomenon known

as Landau damping to show the usefulness of studying these equations. After this,

we compile some relevant technical parts of geometry, such as the coordinates and

metrics we will use throughout the thesis. In Chapter 3, we derive the Vlasov-Poisson

system on the 2-sphere. To motivate the section, we begin with the simple example

of a gravitational field due to a point mass on the sphere. We then extend this case

and derive the Poisson equation for an arbitrary mass distribution using Gauss’s Law.

After obtaining the Poisson equation, we solve it using the known expression for the

fundamental solution of the Laplacian to get the gravitational potential. The next

step is finding the equations of motion for an individual particle using Lagrangian

mechanics. The form of the equations is previously known but the calculation is re-

produced here for completion. We finally put together all of this information in the

form of the Vlasov-Poisson system on the 2-sphere. Now having all the information we

need, we proceed to Chapter 3, in which we consider another special case: we assume

our initial distribution is such that all particles lie along a great circle of the sphere.

We prove that any great circle is an invariant set for the equations of motion on the

sphere and then re-derive the Vlasov-Poisson system for this distribution. From it,

we determine that several quantities are conserved along solutions: total number of

particles, total mechanical energy, Casimirs, and entropy. We believe these conserva-

tion laws will be helpful in determining the existence of global solutions in the future.

After this we linearize the system in preparation for future work. We finish the thesis

with a summary and some comments about future explorations into the world of the

Vlasov-Poisson system on curved spaces.
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Chapter 2

Background

2.1 The Euclidean Vlasov-Poisson system

Within the framework of kinetic theory, the Vlasov-Poisson system for stellar dynam-

ics describes the time-evolution of a group of collisionless particles, whose motion is

determined by the gravitational field the particles collectively create, and models the

behaviour of large groups of stars or galaxies1. We are interested in the initial value

problem of the system; namely, given an initial distribution f0 = f(0, x, v), can we

find the phase space distribution f at any time t ∈ R? The simplest place to start

seems to be with what is called the Liouville equation

df

dt
= 0. (2.1)

This equation means physically that if one follows a single particle through phase

space, the phase-space density surrounding the particle will not change. This is

somewhat difficult to imagine since we are accustomed to seeing only physical space;

however, in [5], Binney and Tremaine give an illuminating analogy to this situation.

Imagine a large footrace in which all the runners move at constant speeds. Initially,

the runners will be clumped together at the start line but their speeds will be widely

distributed. At the end of the race, the number of runners crossing the finish line

within a short time of each other will be much smaller, but the difference in their

speeds will be much smaller as well, thereby conserving the phase-space density.

We can use this conservation equation as a starting place for our derivation. If we

1a typical galaxy may contain hundreds of billions of stars and planets, so it is reasonable to use
these equations to model them.
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substitute f = f(t, x, v) so that f depends on time, position, and velocity, and then

use the chain rule we get

df

dt
=
∂f

∂t
+
∂x

∂t
· ∇xf +

∂v

∂t
· ∇vf = 0. (2.2)

Now we have a partial differential equation. But what determines
∂x

∂t
and

∂v

∂t
? These

functions describe the motion of a single particle in the system, so they are found by

solving the equations of motion

ẋ = v

v̇ = F (x),
(2.3)

where a dot indicates a derivative with respect to time, and F is the sum of the forces

acting on a particle of position x. In our system, the only force acting on a particle

is the force generated by the whole group of particles. Therefore, the force will be

the gradient of the gravitational force function generated by the particle distribution,

according to the Poisson equation

∆U = −4πρ(x) (2.4)

coupled with the condition ρ(x) =
∫
fdv, where F = ∇U . In 3-dimensional Euclidean

space, for example, the closed set of equations is

∂
∂t
f(t, x, v) + v · ∇R3f(t, x, v) +∇R3U(t, x) · ∇vf(t, x, v) = 0,

−∆R3U(x) = 4πρ(x),

ρ(x) :=
∫
R3 f(x, v)dv,

(2.5)

where x = (x1, x2, x3) ∈ R3 is particle position, v = (v1, v2, v3) = (ẋ1, ẋ2, ẋ3) ∈ R3 is

particle velocity, t ∈ R is time, f = f(t, x, v) is the distribution function (or phase-

space density), U(t, x) is gravitational force function, and ρ(t, x) is spatial density.

The symbol ∇R3 indicates the gradient operator and ∆R3 represents the Laplacian

operator so that

∇R3f =

(
∂f

∂x1

,
∂f

∂x2

,
∂f

∂x3

)
(2.6)

and

∆R3f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

. (2.7)
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The operator ∇v is

∇v =

(
∂

∂v1

,
∂

∂v2

,
∂

∂v3

)
, (2.8)

and the symbol · stands for the dot product in R3 so that x ·y = x1y1 +x2y2 +x3y3. A

classical solution to the system is described in the following definition, taken from [19].

Definition 1. A function f : I × R3 × R3 → [0,∞) is a classical solution of the

Vlasov Poisson system on the open interval I ⊂ R if the following holds:

(i) The function f is continuously differentiable with respect to all its variables.

(ii) The induced spatial density ρ = ρf and force function U = Uf exist on I × R3.

They are continuously differentiable, and U is twice continuously differentiable

with respect to x.

(iii) For every compact subinterval J ⊂ I the field ∇xU is bounded on J × R3.

(iv) The functions f, ρ, U satisfy the Vlasov-Poisson system on I × R3 × R3.

Here,∇xU is the gradient of U with respect to the position variable. Since the force

function U is dependent on the spatial density ρ, which in turn is dependent on the

phase-space density f , the system reduces to a non-linear partial differential equation

on f . As such, it took many years and many researchers to prove the existence of

global solutions to the Vlasov-Poisson system in Euclidean space. Before the global

existence problem could be settled, several less general problems were considered.

For instance, in 1952 Kurth gave the first proof of local existence of solutions, [3].

In 1977 Batt proved global existence for spherically symmetric solutions [2], and in

1985 Bardos and Degond proved global existence of solutions with the assumption

of small initial data, [12]. The existence of global solutions with general initial data

was proved by Pfaffelmoser in 1990 and independently by Lions and Perthame in

1991, [18] [15].

2.2 Linear Landau Damping

One of the most interesting qualities of the Vlasov-Poisson system is its ability to

predict a phenomenon known as Landau damping which occurs in isolated, collision-

less particle systems. Physically speaking, the system of particles can be thought of

as having two parts: the first part is the background field generated by the moving
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particles, and the second is the particles themselves. If a particle has a speed which

is close to but greater than the wave speed of the field, then it will lose energy to the

wave and the field will be anti-damped. Conversely, if the particle has a speed which

is close to but lesser than the wave speed of the field, then it will gain energy from

the wave and the field will be damped. This phenomenon is highly counter-intuitive

on a macroscopic scale since there are no external forces (or collisions) present to

damp the field; nonetheless, in 1946, Landau predicted this behaviour through his

purely mathematical study of the Vlasov-Poisson system and his results were con-

firmed experimentally for the plasma case in 1964 by Malmberg and Wharton, [16].

In the gravitational case, Landau damping and other so-called “violent relaxation”

processes2 lend an explanation for the short relaxation times of galaxies. We now

briefly summarize3 the derivation of Landau damping as presented in [22] in the

plasma physics setting, starting with the usual Vlasov-Poisson system

∂tf + v · ∂x · f + F (t, x) · ∂vf = 0,

F = −∂xW ∗x ρ,

ρ(t, x) :=
∫
R f(t, x, v)dv,

(2.9)

where the subscript x, for instance, denotes that the derivative or convolution is taken

with respect to the spatial variable. If one compares this set of equations to the set

presented in the last section, there is a slight difference– the equations use F , the

force field due to the particles, rather than U , the force function due to the particles.

Thus, in this discussion, we assume the solution to the Poisson equation has the

form U = W ∗ ρ and the force is then given by F = −∂xU . Spatially homogeneous

stationary solutions to (2.9) are found to be of the form f 0(v) and the equations are

linearized about these solutions by setting f = f 0(v) + h(t, x, v), where ‖h‖ << 1

in some sense. Since f 0 does not contribute to the force field4, substituting this

perturbed f into (2.9) yields

∂th+ v · ∂xh+ F [h] · ∂v(f 0 + h) = 0, (2.10)

2see [17].
3we take here the one-dimensional case but note that in [22], the calculations are based in d

dimensional space.
4indeed, F = −∂xW ∗

∫
f0(v)dv = −W ∗

∫
∂xf

0(v)dv = 0.
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where F [h] = −∂xW ∗x,v h. Since h is small, the quadratic term F [h] · ∂vh will be

small compared to the other terms, so our linearized equation is

∂th+ v · ∂xh+ F [h] · ∂vf 0 = 0. (2.11)

Solving this linear equation by the method of characteristics, taking the Fourier trans-

form in x and v, then integrating in v results in an equation on the Fourier transform

of the spatial density associated with h in which the solution modes evolve in time

independently of each other. As such, we can fix the mode and study the equa-

tion5 using the Fourier-Laplace transform. The final outcome is eventually a stability

condition on f 0, taken from Proposition 3.7 in [22]:

Proposition 1 (Sufficient condition for stability in dimension 1). If W is an even

potential with ∇W ∈ L1(T), and f 0 = f 0(v) is an analytic6 profile on R such that

(f 0)′(v) = O(1/|v|)), then the Vlasov equation with interaction W , linearized near

f 0, is linearly stable under analytic perturbations as soon as the condition

∀ω ∈ R, (f 0)′(ω) = 0 =⇒ Ŵ (k)

∫
(f 0)′(v)

v − ω
dv < 1 (2.12)

is satisfied for all k 6= 0.

Here Ŵ is the Fourier transform of W in the position variable and L1(T) stands

for the space of Lebesgue integrable functions on the one-dimensional torus. The

stability mentioned in the proposition indicates that the force due to the perturbed

distribution, F [h], decays exponentially with time.

As an example, take a Newtonian gravitational interaction, Ŵ (k) = − 1

|k|2
, and

a Gaussian stationary solution f 0(v) = ρ0

√
β

2π
e−βv

2/2. As long as ρ0β < |k|2, the

conditions in the proposition are satisfied and we get stability. The result of numeric

simulations of W , ρ combinations similar to those completed in [23] produce the

images in Figure 2.1, which clearly show the exponential decay of F [h] in time. The

damping makes sense according to our physical understanding since in the Gaussian

distribution the particles having speeds slightly smaller than the speed of the wave

are more numerous than the particles having speeds slightly larger than the speed of

5it turns out to be a Volterra equation.
6locally given by a convergent power series
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the wave, therefore resulting in a net energy loss of the wave, and a damping of the

force.

Figure 2.1: Data from numerical solutions to the linear Vlasov-Poisson system for
Coulomb interactions and Gaussian equilibrium solutions, taken from [23]. Here,
the vertical axis measures the logarithm of the maximum electric force field and the
horizontal axis is time. From the figure it is clear that the maximum electric field
decays to zero exponentially with time.

2.3 Local Coordinates on S2

In our problem, we are interested in the movement of a group of particles on the

2-sphere, so that each particle’s position vector x = (x1, x2, x3) is contained in S2

where

S2 :=
{
x x2

1 + x2
2 + x2

3 = 1
}
.

We embed the 2-sphere in 3-dimensional Euclidean space, R3, but note that the

particles cannot move into this external space and no forces they generate can cross

into R3 \ S2. Instead, all movement is within S2 and all force field lines are along

the geodesics of the 2-sphere as in Figure 2.2. This means a particle at position x

has a velocity which exists in the tangent space of the sphere at x, denoted by TxS2.

Another way to describe this property is that for each particle on the sphere with

phase space coordinates (x, v), we have x · v = 0. Since we are working on a two
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Figure 2.2: Gravitational field at x ∈ S2 due to a point mass.

dimensional spherical space, calculations will often be simplified if we use spherical

coordinates and parametrize the surface using two angular variables. In the following,

we denote the position vector by

x = x(θ) = (x1, x2, x3) = (sin θ1 cos θ2, sin θ1 sin θ2, cos θ1) (2.13)

where θ1 is the zenith angle and θ2 is the azimuthal angle as in Figure 2.3. Using

these definitions, we can write the angles θ1, θ2 in terms of the rectangular coordinates

x1, x2, x3 according to7

θ1 = arccos

(
x3√

x2
1 + x2

2 + x2
3

)
θ2 = arctan

(
x2

x1

) (2.14)

7Here we note that we technically must extend the arctan function periodically so that its range
is (−π, π].
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for θ1 ∈ [0, π] and θ2 ∈ (−π, π]. We define êr, ê1, and ê2 to be orthogonal unit vectors

in the direction of increasing r, θ1, and θ2, respectively according toêr

ê1

ê2

 =

sin θ1 cos θ2 sin θ1 sin θ2 cos θ1

cos θ1 cos θ2 cos θ1 sin θ2 − sin θ1

− sin θ2 cos θ2 0


x̂1

x̂2

x̂3

 (2.15)

where x̂1, x̂2, and x̂3 are the usual rectangular Cartesian unit vectors, and define

v = ω1ê1 + ω2 sin θ1ê2,

where ω1 ∈ R and ω2 ∈ R. Acceleration is then

a = −(ω2
2 sin2 θ1 + ω2

1)êr + (ω̇1 − ω2
2 sin θ1 cos θ1)ê1 + (ω̇2 sin θ1 + 2ω1ω2 cos θ1)ê2.

(2.16)

The ambient Euclidean space R3 in which the sphere is embedded induces a natural

Figure 2.3: Spherical coordinates for the unit 2-sphere.

Riemannian metric on the sphere. We know the Euclidean metric is given by the

quadratic form

ds2 = (dx1)2 + (dx2)2 + (dx3)2 (2.17)
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and since our Riemannian metric is induced by the ambient space R3, we can obtain

it by restricting (2.17) to S2 through calculating the differential of (2.13), i.e.

ds2 |S2 = (cos θ1 cos θ2dθ1 − sin θ1 sin θ2dθ2)2

+(cos θ1 sin θ2dθ1 + sin θ1 cos θ2dθ2)2 + (− sin θ1dθ1)2

= (dθ1)2 + sin2 θ1(dθ2)2.

(2.18)

Based on this, we can define the matrix formed by the components of the standard

metric tensor on the 2-sphere as

gij =

[
1 0

0 sin2 θ1

]
(2.19)

with inverse

gij =

1 0

0
1

sin2 θ1

 . (2.20)

Tangent vectors are given by

θ̂1 = ê1

θ̂2 = sin θ1 ê2.
(2.21)

The gradient on S2 is then

∇S2 f = g11 ∂f

∂θ1

θ̂1 + g22 ∂f

∂θ2

θ̂2 =


∂f

∂θ1(
1

sin θ1

)
∂f

∂θ2

 , (2.22)

the divergence on S2 is

divS2 F =
2∑
j=1

(
1√

det g

)
∂

∂θj

(√
det g Fj

)
=

1

sin θ1

∂

∂θ1

(sin θ1F1) +
1

sin θ1

∂

∂θ2

(sin θ1F2)

=
1

sin θ1

∂

∂θ1

(sin θ1F1) +
∂

∂θ2

F2,

(2.23)
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and the Laplacian (Laplace-Beltrami operator) on S2 is

∆S2 f = divS2 (∇S2f) =
1√

det g

∑
i,j

∂

∂θi

(√
det g gij

∂f

∂θj

)
=

1

sin θ1

[
∂

∂θ1

sin θ1
∂f

∂θ1

+
∂

∂θ2

sin θ1

(
1

sin2 θ1

)
∂f

∂θ2

]
=

1

sin θ1

∂

∂θ1

(
sin θ1

∂f

∂θ1

)
+

1

sin2 θ1

∂2f

∂θ2
2

= cot θ1
∂f

∂θ1

+
∂2f

∂θ2
1

+
1

sin2 θ1

∂2f

∂θ2
2

(2.24)

in local coordinates, where det g is the determinant of (2.19). The volume form on

S2 is calculated via

Ω =
√
|det g| dθ1 ∧ dθ2 = sin θ1dθ1dθ2, (2.25)

see [21], for instance. A note about calculations on S2: there are in general two

ways to complete calculations on the sphere. The first is to extend the functions by

homogeneity to R3 (i.e. replace x with x/|x| where the form of the function allows),

do computations using the standard R3 operators, then restrict back to the space S2

using |x|2 = 1, x · v = 0. The second method is to use the local operators (as defined

above) directly.
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Chapter 3

Gravitation and the Vlasov-Poisson

system on the unit 2-sphere

In studying the Vlasov-Poisson system on any space, it is crucial to understand the

physical laws that govern movement on the space. Therefore, we dedicate a substan-

tial amount of time to understanding how gravity works on the 2-sphere. We begin

with a very simple example involving a point mass on the sphere in the hope that

examining this problem will help us when we attempt to derive the expressions for

gravitational fields due to arbitrary distributions. After our exploration of gravity on

the sphere, we derive the equations of motion of a particle due to a gravitational field

and conclude the chapter with the new form of the Vlasov-Poisson system, which can

be applied to a wide range of mass distributions on the sphere.

3.1 Gravity on the unit 2-sphere

In the last chapter, we explained that gravitational field lines on the sphere are bent so

that the gravitational force between any two masses lies along the geodesic connecting

them. In this section, we use this property to develop the tools we need to derive the

Poisson equation and subsequently find the form of the gravitational potential on the

sphere that is required to close the Vlasov-Poisson system.

3.1.1 Gravitational field due to a point mass

As a motivational example, consider a particle of mass m placed at the north pole

of the unit sphere (i.e. at θ1 = 0). Gauss’s law says if we choose any Gaussian



15

Figure 3.1: Gaussian curve C for a point mass located at the north pole of S2.

surface surrounding the particle, then the negative of the gravitational flux through

the Gaussian surface will be proportional to the enclosed mass1. So we have

−Φ = −
∮
g · dl = m, (3.1)

where Φ =
∮
g · dl is the flux through the Gaussian surface, g is the gravitational

field strength due to the mass, and m is the mass of the particle. Since everything

is constrained to the sphere, including the gravitational field, our Gaussian surface

will be a closed curve in S2. Let us choose our curve, C, to be a circle as pictured

in Figure 3.1 so that the circle’s equation in S2 is θ1 = constant ≤ π/2. Then the

gravitational field at every point on the circle is perpendicular to C and constant due

to symmetry, so we can simplify our expression in (3.1) to

|g||C| = m. (3.2)

1Note here that we have chosen units such that the proportionality constant is equal to one.
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Noticing that the circumference of our circle is 2π sin θ1 allows us to write

2π sin θ1|g| = m, (3.3)

which implies

|g| = m

2π sin θ1

.

As already stated, since the point mass has circular symmetry and is positioned at

the north pole, the gravitational field will be directed along longitudinal lines, so our

gravitational field as a vector is

g = − m

2π sin θ1

ê1 (3.4)

where the negative sign indicates that gravitation is attractive. This gives some

motivation for the following derivations of Gauss’s law and the Poisson equation on

S2.

3.1.2 Gauss’s Law

Gauss’s law is a physical law that relates the amount of mass in a region to the flux

of the gravitational field out of the region. In the calculation above, we used the

integral form of the law, but there is also a differential form:

(−divS2 F ) (x) = ρ(x) (3.5)

for all x ∈ S2. The equation means that the number of gravitational field lines leading

to any position x is equal to the mass density at that point.

3.1.3 The Poisson equation

In this section, we derive the Poisson equation on S2 so that we have access to the

most general way to find the gravitational field on the sphere.

Lemma 1. The Poisson equation on S2 is

−∆S2 U = ρ, (3.6)

where U : S2 → R, ∆S2 is the Laplace-Beltrami operator on S2 given by (2.24), and
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ρ : S2 → R is a C1 function of x.

Proof. Any conservative force, such as gravitation, on a Riemannian manifold can be

written as the gradient of some force function2. So we have

F = ∇S2 U. (3.7)

Substituting this into (3.5) yields

−divS2 (∇S2 U) = ρ. (3.8)

For U ∈ C∞, we have divS2 (∇S2U) = ∆S2U , where ∆ is the Laplace-Beltrami operator

on the sphere given by (2.24). Therefore we can rewrite the above as

−∆S2 U = ρ, (3.9)

which we refer to as the Poisson equation on S2.

Let’s consider the well-posedness of this equation. If we integrate our Poisson

equation (3.6) over the sphere, we get

−
∫
S2

∆S2U =

∫
S2
ρ (3.10)

and rewriting ∆S2 = divS2 (∇S2U) gives us

−
∫
S2

divS2 (∇S2U) =

∫
S2
ρ. (3.11)

Now the divergence theorem3 on S2 says that the left hand side must be equal to

−
∫
∂S2
∇S2U · n̂ dL (3.12)

but ∂S2 is empty, so the left hand side of (3.10) is zero. Substituting this yields

0 =

∫
S2
ρ. (3.13)

2see for instance Proposition 5.60 of [10]
3see Appendix A.1.



18

Thus, in order for our Poisson equation to be well defined, we require

∫
S2
ρ = 0,

a property which is physically impossible since we identify ρ with a mass density.

However, if we take out the mean of ρ, then (3.6) makes sense. This trick is known

as Jean’s swindle in galactic dynamics, see [17] or [5].

3.1.4 Solution to the Poisson equation

Lemma 2. A solution to (3.6), the Poisson equation on S2, is given by

U(x) =
1

2π

∫
S2

log cot

[
d(x, y)

2

]
ρ(y)dy, (3.14)

where d(x, y) is the geodesic distance between x and y on S2.

Proof. According to [7], a spherically symmetric fundamental solution to the Lapla-

cian on the unit 2-sphere is given by

G(x, y) =
1

2π
log cot

[
d(x, y)

2

]
, (3.15)

where d(x, y) = cos−1 (x · y) is the geodesic distance between x and y on the unit

sphere. In other words, G solves

−∆S2G(x, y) =
δ(θ1 − θ′1)⊗ δ(θ2 − θ′2)

sin θ1

, (3.16)

where x = (sin θ1 cos θ2, sin θ1 sin θ2, cos θ1), y = (sin θ′1 cos θ′2, sin θ
′
1 sin θ′2, cos θ′1). Since

a fundamental solution of the Laplacian must satisfy∫
S2

(−∆S2ϕ)(y)G(x, y)dy = ϕ,

for any test function4 ϕ, a solution to the Poisson equation is

U(x) =

∫
S2
G(x, y)ρ(y)dy. (3.17)

Substituting (3.15) into this expression yields the desired result.

4a C∞ function with compact support.
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If we wish, we can use d(x, y) = cos−1(x · y) to rewrite U as

U(x) =
1

2π

∫
S2
ρ(y) log cot

[
1

2
cos−1 (x · y)

]
dy (3.18)

and use trigonometric identities to write

cot

[
1

2
cos−1 (x · y)

]
=

1 + cos cos−1(x · y)

sin cos−1(x · y)
=

1 + (x · y)√
1− (x · y)2

, (3.19)

so we get

U(x) =
1

2π

∫
S2
ρ(y) log

(
1 + (x · y)√
1− (x · y)2

)
dy, (3.20)

for x, y ∈ S2.

Corollary. The solution to the Poisson equation on S2 in local spherical coordinates

is given by

U (x(θ)) =
1

2π

x
ρ(y(θ′)) log

(
1 + (x(θ) · y(θ′))√
1− (x(θ) · y(θ′))2

)
sin θ′1dθ

′
1dθ
′
2. (3.21)

Proof. Parametrizing x and y in (3.20) using x = (sin θ1 cos θ2, sin θ1 sin θ2, cos θ1) and

y = (sin θ′1 cos θ′2, sin θ
′
1 sin θ′2, cos θ′1) gives the desired expression, where the area unit

dy has been transformed according to

dy =

∣∣∣∣( ∂y

∂θ1

)
×
(
∂y

∂θ2

)∣∣∣∣ dθ′1dθ′2
= |(cos θ′1 cos θ′2, cos θ′1 sin θ′2,− sin θ′1)× (− sin θ′1 sin θ′2, sin θ

′
1 cos θ′2, 0)| dθ′1dθ′2

= sin θ′1dθ
′
1dθ
′
2.

3.1.5 Gravitational potential: Homogeneity and Euler’s For-

mula

The force function U given above is defined only for x ∈ S2; however, we can easily

extend it to values of x that are in R3 \ S2. From the above expressions for U , we see

that U(kx) = U(x) for all k 6= 0, which by definition means that U is a homogeneous
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function of degree 0 for all x ∈ S2. We extend the force function as

Ū(x) = U

(
x

|x|

)
=

1

2π

∫
S2
ρ

(
y

|y|

)
log

(
|x||y|+ (x · y)√
|x|2|y|2 − (x · y)2

)
dy (3.22)

so that Ū is defined on x ∈ R3, coincides with U for x ∈ S2, and is also homogeneous

of degree 0. Due to this homogeneity, we can apply Euler’s formula for homogeneous

functions5 to get

x · ∇R3Ū(x) = 0, (3.23)

a result we will use later. If we restrict x back to S2, the formula reads

x · ∇S2U(x) = 0 (3.24)

and means physically that the gravitational force is perpendicular to x for x ∈ S2.

3.1.6 Gravitational field due to a point mass, revisited

As a check, let us calculate the gravitational field due to a point mass at the north

pole via our formula for the gravitational force function, (3.21) – it should match

(3.4). Let the point mass be located at θ = (0, 0). The distribution describing a

particle of unit mass at this point is

ρ(y) =
δ(θ′1)

2π sin θ′1
(3.25)

so that ∫
S2
ρ(y)dy =

∫ π

−π

∫ π

0

ρ(y(θ′)) sin θ′1dθ
′
1dθ
′
2 = 1.

Substituting this expression for ρ into (3.21) gives us

U(x(θ)) =
1

2π

x δ(θ′1)

2π sin θ′1
log

[
1 + x(θ) · y(θ′)√
1− (x(θ) · y(θ′))2

]
sin θ′1dθ

′
1dθ
′
2

=
1

2π

x δ(θ′1)

2π
log

[
1 + x(θ) · y(θ′)√
1− (x(θ) · y(θ′))2

]
dθ′1dθ

′
2.

(3.26)

5see for example [8].
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When θ′1 = 0, we have

x · y = sin θ1 cos θ2 sin(0) cos(θ′2) + sin θ1 sin θ2 sin(0) sin(θ′2) + cos θ1 cos(0) = cos θ1

so that (3.26) becomes

U(x(θ)) =
1

2π
log

[
1 + cos θ1√
1− cos2 θ1

]
=

1

2π
log

[
1 + cos θ1

sin θ1

]
=

1

2π
log

[
cot

(
θ1

2

)]
.

(3.27)

Using (2.22) we then calculate the field generated by U to be

∇S2U(x(θ)) =
∂U

∂θ1

ê1

=
1

2π

[(
tan

θ1

2

)(
− csc2 θ1

2

)(
1

2

)]
ê1

= − 1

2π

(
1

sin θ1

)
ê1

= − m

2π sin θ1

ê1,

(3.28)

which agrees with (3.4).

3.1.7 Gravitational force due to an arbitrary distribution

Proposition 2. The gravitational force on a unit mass particle located at x ∈ S2 due

to a spatial distribution ρ : S2 → R is given by

∇S2U =
1

2π

∫
S2

y − (x · y)x

[1− (x · y)2]
ρ(y)dy. (3.29)

Proof 1. We can extend U by homogeneity as in (3.22) by replacing x with
x

|x|
so
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that (3.20) becomes

Ū(x) =
1

2π

∫
S2
ρ(y) log

(
|x|+ (x · y)√
|x|2 − (x · y)2

)
dy. (3.30)

From this we can calculate using the usual gradient in R3 that

∇R3Ū =
1

2π

∫
S2

|x|2y − (x · y)x

[|x|2 − (x · y)2]
ρ (y) dy, (3.31)

so that after restricting to the sphere (i.e. invoking |x|2 = 1), we get

∇S2U =
1

2π

∫
S2

y − (x · y)x

[1− (x · y)2]
ρ(y)dy, (3.32)

as required.

Proof 2. This force can also be calculated using ∇S2 directly. Applying the gradient

on S2 from (2.22) to (3.21) yields

∇S2U(x(θ)) = ∇S2

[
1

2π

x
ρ(y) log

(
1 + (x · y)√
1− (x · y)2

)
sin θ′1dθ

′
1dθ
′
2

]

=
1

2π

x
ρ(y)∇S2

[
log

(
1 + (x · y)√
1− (x · y)2

)]
sin θ′1dθ

′
1dθ
′
2,

(3.33)

where x and y are functions of θ1, θ2 and θ′1, θ
′
2, respectively, and the gradient is taken
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with respect to the unprimed coordinate system. Using (2.22) we get that

∇S2

[
log

(
1 + (x · y)√
1− (x · y)2

)]

=

[√
1− (x · y)2

1 + x · y

][√
1− (x · y)2 + (1 + x · y) [1− (x · y)2]

−1/2
(x · y)

1− (x · y)2

]
∂(x · y)

∂θ1

ê1

+
1

sin θ1

[√
1− (x · y)2

1 + x · y

][√
1− (x · y)2 + (1 + x · y) [1− (x · y)2]

−1/2
(x · y)

1− (x · y)2

]
∂(x · y)

∂θ2

ê2

=

[
1− (x · y)2 + x · y + (x · y)2

[1− (x · y)2] [1 + (x · y)]

] [
∂(x · y)

∂θ1

ê1 +
1

sin θ1

∂(x · y)

∂θ2

ê2

]
=

[
1

1− (x · y)2

]
∇S2(x · y).

(3.34)

A short calculation6 shows ∇S2(x · y) = y− (x · y)x for x, y ∈ S2, so substituting into

(3.33) we get (3.29) and our proposition is proved.

3.2 Equations of Motion on the unit 2-sphere

The equations of motion are expressions of Newton’s second law: the acceleration of

a particle is proportional to the net force exerted upon it. In this section, we use

Lagrangian mechanics to derive the equations of motion for a single particle in a

gravitational field ∇S2U on the unit 2-sphere.

Proposition 3. The equations of motion for a particle with position x = x(θ) on the

sphere S2 under the effect of a force function U : S2 → R are

θ̇1 = ω1

θ̇2 = ω2

ω̇1 =
∂U

∂θ1

+ ω2
2 sin θ1 cos θ1

ω̇2 =

(
1

sin2 θ1

)
∂U

∂θ2

− 2ω1ω2 cot θ1

(3.35)

in local coordinates.

6see Appendix A.4 for proof.
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Proof 1. Let x = x(θ) be the coordinate of a single particle on our manifold S2 and

assume the only force acting on the particle is the gradient of our gravitational force

function, U . Assume further that the particle has unit mass. Then the kinetic energy,

T , of the particle is

T =
1

2
|v|2,

where v is the velocity of the particle. We can parametrize the particle’s spatial

coordinates using

x = êr = (sin θ1 cos θ2, sin θ1 sin θ2, cos θ1).

Differentiating with respect to time7 yields v = θ̇1ê1 + θ̇2 sin θ1ê2 and so we can write

the kinetic energy as

T =
1

2
(θ̇2

2 sin2 θ1 + θ̇2
1). (3.36)

We denote the gravitational force function at x by U(x(θ)) and define potential energy,

V , to be the negative of this force function, so we have

V = −U(x(θ)). (3.37)

Now we use Lagrangian dynamics8 to derive the equations of motion of the particle

at x. The Lagrangian, L, is defined as

L = T − V

and the equations of motion are given by the Euler-Lagrange equations

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1

= 0 and

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2

= 0.

(3.38)

Substituting our expressions for the kinetic and potential energies, (3.36) and (3.37),

7see Appendix A.5 for calculation.
8see for instance [11].
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respectively, gives us L =
1

2
(θ̇2

2 sin2 θ1 + θ̇2
1) + U(x(θ)) so that

∂L

∂θ1

= θ̇2
2 sin θ1 cos θ1 +

∂U

∂θ1

,
∂L

∂θ2

=
∂U

∂θ2

,

∂L

∂θ̇1

= θ̇1,
∂L

∂θ̇2

= θ̇2 sin2 θ1,

d

dt

(
∂L

∂θ̇1

)
= θ̈1,

d

dt

(
∂L

∂θ̇2

)
= θ̈2 sin2 θ1 + 2θ̇1θ̇2 sin θ1 cos θ1,

(3.39)

and finally the equations of motion are

θ̈1 =
∂U

∂θ1

+ θ̇2
2 sin θ1 cos θ1

θ̈2 =

(
1

sin2 θ1

)
∂U

∂θ2

− 2θ̇1θ̇2 cot θ1,

(3.40)

or as a first-order system,

θ̇1 = ω1

θ̇2 = ω2

ω̇1 =
∂U

∂θ1

+ ω2
2 sin θ1 cos θ1

ω̇2 =

(
1

sin2 θ1

)
∂U

∂θ2

− 2ω1ω2 cot θ1.

(3.41)

Proof 2. Alternatively, we could derive the equations of motion in extrinsic coordi-

nates as is done in [8]. For this method, we will need to make use of constrained

Lagrangian mechanics9 since the particles are restricted to positions on S2. For such

a situation the equations of motion will be given by

d

dt

(
∂L

∂vi

)
− ∂L

∂xi
− λ ∂f

∂xi
= 0 (3.42)

for i = 1, 2, 3, where L is the Lagrangian, f = 0 is the constraint equation, and

9again [11] is a good reference.
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λ is the Lagrange multiplier10. For us, the kinetic energy11 is T =
1

2
m|v|2|x|2, the

potential energy is V = −Ū with Ū defined in (3.22), and we have the constraint

equation f = x2
1 + x2

2 + x2
3 − 1 = 0. Our Lagrangian is then

L = T − V =
1

2
|v|2|x|2 + Ū

so that we calculate

∂L

∂xi
= |v|2xi + ∂xiŪ ,

∂L

∂vi
= vi|x|2,

d

dt

(
∂L

∂vi

)
= v̇i|x|2 + 2v2

i xi
∂f

∂xi
= 2xi,

(3.43)

for i = 1, 2, 3. Substituting these into (3.42) yields

v̇i|x|2 + 2v2
i xi − |v|2xi − ∂xiŪ − λ(2xi) = 0, (3.44)

for i = 1, 2, 3, or in vector form

v̇|x|2 + 2v(x · v)− |v|2x−∇R3Ū − 2λx = 0, (3.45)

where λ is the Lagrange multiplier and ∇R3 is the usual gradient in R3. Now we need

to find λ. First take the scalar product of (3.45) with x to get

(x · v̇)|x|2 + 2(x · v)(x · v)− |v|2|x|2 − x · ∇R3Ū − 2λ|x|2 = 0. (3.46)

Since our particle is constrained to the sphere, we can differentiate the equation

f = x2
1 + x2

2 + x2
3 − 1 = 0 with respect to time twice to get 2|v|2 + 2x · v̇ = 0. In

addition, we have x · ∇R3Ū = 0 from Euler’s formula, (3.23). Using these properties,

we can simplify (3.46) to

−|v|2|x|2 − |v|2|x|2 − 2λ|x|2 = 0 (3.47)

from which we get λ = −|v|2. Substituting λ = −|v|2 and |x|2 = 1 into (3.45) gives

10we need a single multiplier because we have one constraint equation taking us from three degrees
of freedom to two.

11the unexpected factor of |x|2 is a requirement evident from Hamiltonian mechanics, see Section
3.6 of [8].
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us

ẍ = ∇R3Ū(x)− |v|2x (3.48)

which is equivalent to

ẍ = ∇S2U(x)− |v|2x. (3.49)

We can recover (3.35) from (3.48) by changing to spherical coordinates in R3 and

restricting back to S2 using |x|2 = 1. After some calculations, this gives us

r̈ =
d

dt
|x|2 = 0

in the êr-direction,

θ̈1 − θ̇2
2 sin θ1 cos θ1 =

∂U

∂θ1

=⇒ θ̈1 =
∂U

∂θ1

+ θ̇2
2 sin θ1 cos θ1

in the ê1-direction, and

θ̈2 sin θ1 + 2θ̇1θ̇2 cos θ1 =
1

sin θ1

∂U

∂θ2

=⇒ θ̈2 =

(
1

sin2 θ1

)
∂U

∂θ2

− 2θ̇1θ̇2 cot θ1

in the ê2-direction, equations which are equivalent to (3.35).

3.2.1 The 2-sphere as an invariant set

In this section, we prove invariance of the 2-sphere; that is, we show that if a particle

starts on the sphere with velocity tangent to the sphere, then it will remain on the

sphere for all later time12. This is an important result since if our equations of

motion allowed particles off of the sphere, they would not be consistent with our

main assumption.

Proposition 4. If (x, v) ∈ R4 is a solution to (3.48) with initial conditions such that

|x(t0)|2 = 1 and (x · v)(t0) = 0, then |x|2 = 1 and x · v = 0 for all t > t0.

Proof. Write
d

dt
(|x|2) = 2x · v,

so that
d2

dt2
(|x|2) = 2|v|2 + 2x · v̇.

12Actually, the particle moves along geodesics of the sphere, but here we are only concerned with
the particle staying on the sphere.
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Since we assume (x, v) satisfies (3.49), this is the same as

d2

dt2
(|x|2) = 2|v|2 + 2x · (∇R3Ū (x)− |v|2x),

which is equivalent to

d2

dt2
(|x|2) = 2x · ∇R3Ū + 2|v|2(1− |x|2).

Appealing to Euler’s Formula, (3.23), we have x · ∇R3Ū = 0 and so

d2

dt2
(|x|2) = 2|v|2(1− |x|2)

for x ∈ R3.

Let y = |x|2. Then we have

ÿ = 2|v|2(1− y),

which can be written as the following first-order system:

ẏ = z

ż = 2|v|2(1− y)

y(0) =, z(0) = 0

(3.50)

for y, z, |v|2 ∈ R. At the point (y, z) = (1, 0), we have ẏ = 0, ż = 0 so this point is by

definition an equilibrium solution. Since y := |x|2 and z := ẏ = 2x · v, we therefore

have |x|2 = 1 and x · v = 0 for all t ≥ t0.

3.3 The Vlasov-Poisson system on the unit 2-sphere

3.3.1 The Vlasov Equation

According to kinetic theory (see for instance, [14]), the governing equation for the

motion of a continuous particle distribution with no collisions is

d

dt
f = 0, (3.51)

where f is the phase-space distribution function. Since our f depends on the inde-

pendent coordinates t, θ1, θ2, ω1, ω2, we can use the chain rule to rewrite this equation
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as

∂tf + θ̇1 ∂θ1f + θ̇2 ∂θ2f + ω̇1 ∂ω1f + ω̇2 ∂ω2f = 0, (3.52)

where a dot indicates a derivative with respect to time. Using the equations of motion,

θ̇1 = ω1

θ̇2 = ω2

ω̇1 =
∂U

∂θ1

+ ω2
2 sin θ1 cos θ1

ω̇2 =

(
1

sin2 θ1

)
∂U

∂θ2

− 2ω1ω2 cot θ1,

(3.53)

we write (3.51) as

∂tf+ω1 ∂θ1f+ω2 ∂θ2f+
∂U

∂θ1

+(ω2
2 sin θ1 cos θ1) ∂ω1f+(sin−2 θ1

∂U

∂θ2

−2ω1ω2 cot θ1) ∂ω2f = 0,

(3.54)

or equivalently as

∂f

∂t
+

[
ω1

ω2

]
· ∇θf +


∂U

∂θ1

+ ω2
2 sin θ1 cos θ1(

1

sin2 θ1

)
∂U

∂θ2

− 2ω1ω2 cot θ1

 · ∇ωf = 0, (3.55)

where ∇θf =

(
∂f

∂θ1

,
∂f

∂θ2

)
and ∇ωf =

(
∂f

∂ω1

,
∂f

∂ω2

)
. We call this equation the Vlasov

equation for S2.

3.3.2 Density condition

In our solution of the Poisson equation, we use the spatial density ρ whereas in the

Vlasov equation we have the phase space density f . These two densities describe the

same particles and so they must agree. Therefore, we require that

ρ =

∫
R3

f dv. (3.56)
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Since our motion is restricted to the sphere, we can parametrize velocity space by

v = ϕ(ω), where

ϕ(ω1, ω2) =

cos θ1 cos θ2ω1 − sin θ1 sin θ2ω2

cos θ1 sin θ2ω1 + sin θ1 cos θ2ω2

sin θ1ω1

 , (3.57)

and change (3.56) to spherical coordinates via13

ρ =
x

f

∣∣∣∣ ∂ϕ∂ω1

× ∂ϕ

∂ω2

∣∣∣∣ dω1dω2. (3.58)

A short calculation yields ∣∣∣∣ ∂ϕ∂ω1

× ∂ϕ

∂ω2

∣∣∣∣ = sin θ1,

so our density condition for S2 becomes

ρ =
x

f sin θ1dω1dω2, (3.59)

where the integrals are taken over all possible values of ω1, ω2 such that extrinsic

velocity variable v belongs to the tangent space of S2.

3.3.3 The Vlasov-Poisson system

Now that we have derived the new Poisson and Vlasov equations, we can put them

together to form the closed Vlasov-Poisson system on S2



∂f

∂t
+

ω1

ω2

 · ∇θf +


∂U

∂θ1

+ ω2
2 sin θ1 cos θ1(

1

sin2 θ1

)
∂U

∂θ2

− 2ω1ω2 cot θ1

 · ∇ωf = 0,

−∆S2 U = ρ,

ρ =
x

f sin θ1 dω1dω2,

f(0, θ, ω) = f0(θ, ω),

(3.60)

13see for instance [10].
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where ∇θf =

(
∂f

∂θ1

,
∂f

∂θ2

)
, ∇ωf =

(
∂f

∂ω1

,
∂f

∂ω2

)
, (θ1, θ2) ∈ [0, π] × (−π, π]. Alterna-

tively, we could write this using our known form of U from (3.21) as

∂f

∂t
+

ω1

ω2

 · ∇θf +


∂U

∂θ1

+ ω2
2 sin θ1 cos θ1(

1

sin2 θ1

)
∂U

∂θ2

− 2ω1ω2 cot θ1

 · ∇ωf = 0,

U(x) =
1

2π

x
ρ(y(θ′)) log

(
1 + (x(θ) · y(θ′)√
1− (x(θ) · y(θ′))2

)
sin θ′1dθ

′
1dθ
′
2,

ρ =
x

f sin θ1 dω1dω2,

f(0, θ, ω) = f0(θ, ω).

(3.61)
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Chapter 4

The Vlasov-Poisson system for

circular initial data

A great circle of a unit 2-sphere is any circle contained in the sphere that has a unit

radius. If we require that the particles initially lie along the same great circle within

S2 with initial velocities directed tangent to the great circle, then we expect they will

remain on the great circle. In this chapter, we use the equations of motion to prove

this property and explore the Vlasov-Poisson system on one particular1 great circle

in S2.

Definition 2. We define the great circle C1,2 to be

C1,2 :=
{
x | x2

1 + x2
2 = 1, x3 = 0, x ∈ R3

}
, (4.1)

or equivalently in local coordinates as

C1,2 :=
{

(θ1, θ2) | θ1 =
π

2
, θ2 ∈ (−π, π]

}
, (4.2)

which is also known as the equator of S2.

1we restrict our discussion to a specific great circle, but this does not result in a loss of generality
since the same arguments can be applied to any great circle. In fact, any other great circle can be
obtained from C1,2 through a simple rotation of coordinates, due to the symmetry of 2-spheres.
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4.1 Great circles as invariant sets

Consider a phase space distribution of particles f in S2 given by

f(t, θ1, θ2, ω1, ω2) =
1

sin2 θ1

δ(θ1 −
π

2
)⊗ δ(ω1)g(t, θ2, ω2), (4.3)

so that the particles are distributed along the great circle C1,2 with velocities only in

the ê2 direction. The spatial density ρ is then given by

ρ =
x

f sin θ1dω1dω2 =
1

sin θ1

δ
(
θ1 −

π

2

)
ρg(t, θ2), (4.4)

where θ′2 ∈ (−π, π], and ρg =
x

g(t, θ2, ω2)dω2. From (3.32), we can write the force

on a particle at any position x ∈ S2 due to the distribution ρ as

∇S2U(x) = ((∇S2U)1, (∇S2U)2, (∇S2U)3)(x)

where

(∇S2U)1(x) =
1

2π

∫
S2

y1 − (x · y)x1

[1− (x · y)2]
ρ(y) dy,

(∇S2U)2(x) =
1

2π

∫
S2

y2 − (x · y)x2

[1− (x · y)2]
ρ(y) dy,

(∇S2U)3(x) =
1

2π

∫
S2

y3 − (x · y)x3

[1− (x · y)2]
ρ(y) dy.

(4.5)

Substituting (4.4) we get

(∇S2U)1(x(θ)) =
1

2π

∫ π

−π

cos θ′2 − (x · y) sin θ1 cos θ2

[1− (x · y)2]
ρg(y(θ′2)) dθ′2,

(∇S2U)2(x(θ)) =
1

2π

∫ π

−π

sin θ′2 − (x · y) sin θ1 sin θ2

[1− (x · y)2]
ρg(y(θ′2)) dθ′2,

(∇S2U)3(x(θ)) = − 1

2π

∫ π

−π

(x · y) cos θ1

[1− (x · y)2]
ρg(y(θ′2)) dθ′2,

(4.6)

where x · y = sin θ1 cos θ2 cos θ′2 + sin θ1 sin θ2 sin θ′2 since θ′1 = π/2.

Proposition 5. Each great circle on S2 is an invariant set for the equations of mo-

tion, (3.35).
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We shall give two proofs of this proposition.

Proof 1. Consider the equations of motion (3.49) for a single particle located at x ∈
S2. In the x3-direction we have

ẋ3 = v3

v̇3 = (∇S2U)3 − |v|2x3

(4.7)

where (∇S2U)3 is the force acting on the particle in the x3-direction. Changing to

spherical coordinates and using (4.6), we can rewrite (4.7) as

ẋ3 = −ω1 sin θ1

v̇3 = − 1

2π

∫ π

−π

(x · y) cos θ1

[1− (x · y)2]
ρg(y(θ′2)) dθ′2 −

(
ω2

2 sin2 θ1 + ω2
1

)
cos θ1.

(4.8)

We wish to find an equilibrium solution for this system, i.e. a point for which

(ẋ3, v̇3) = (0, 0). When (θ1, ω1) =
(π

2
, 0
)

, we calculate

ẋ3 = (0) sin
π

2
= 0

and

v̇3 = − 1

2π

∫ π

−π

(x · y) cos
π

2
[1− (x · y)2]

ρg(y(θ′2)) dθ′2 −
(
ω2

2 sin2 π

2
+ (0)2

)
cos

π

2
= 0,

with x · y 6= ±1. Therefore, we conclude that (θ1, ω1) =
(π

2
, 0
)

is an equilibrium

solution to the equations of motion with initial conditions (x3, v3)(0) = (0, 0) and so

the great circle C1,2 is an invariant set for the equations of motion. Since the choice

of great circle C1,2 was arbitrary, the above argument holds for any great circle on S2

with a simple rotation of coordinates.

Proof 2. Consider the quantity

u = x2
1 + x2

2

with x ∈ S2. Taking the time derivative of u and using our equations of motion,
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(3.49), for ẋ1 and ẋ2 yields

u̇ =
d

dt
(x2

1 + x2
2) = 2x1v1 + 2x2v2 (4.9)

for the first derivative. For the second derivative, we get

ü =
d

dt
(2x1v1 + 2x2v2) = 2(v2

1 + v2
2) + 2x1v̇1 + 2x2v̇2 (4.10)

and using our equations of motion,(3.49), again to replace v̇1, v̇2 we have

ü = 2(v2
1 + v2

2) + 2x1

[
(∇S2U)1 − |v|2x1

]
+ 2x2

[
(∇S2U)2 − |v|2x2

]
.

We can write this second order system as a first order system by introducing the new

variable w := u̇. After doing this, the system becomes

u̇ = w

ẇ = 2(v2
1 + v2

2) + 2x1 [(∇S2U)1 − |v|2x1] + 2x2 [(∇S2U)2 − |v|2x2] ,

(4.11)

where

u = u(x1(θ), x2(θ))

and

w = w(x1(θ), x2(θ), v1(θ, ω), v2(θ, ω)).

We are looking for equilibrium solutions to (4.11), so we need to know under which

conditions u̇ = ẇ = 0. This happens when (θ1, ω1) = (
π

2
, 0) since at this point we

have

x1 = sin
π

2
cos θ2 = cos θ2

x2 = sin
π

2
sin θ2 = sin θ2

v1 = (0) cos
π

2
cos θ2 − ω2 sin

π

2
sin θ2 = −ω2 sin θ2

v2 = (0) cos
π

2
sin θ2 + ω2 sin

π

2
cos θ2 = ω2 cos θ2

v2
1 + v2

2 = (−ω2 sin θ2)2 + (ω2 cos θ2)2 = ω2
2

|v|2 = (0)2 + ω2
2 sin2 π

2
= ω2

2
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x·y = sin
π

2
cos θ2 sin

π

2
cos θ′2+sin

π

2
sin θ2 sin

π

2
sin θ′2+cos

π

2
cos

π

2
= cos θ2 cos θ′2+sin θ2 sin θ′2

(∇S2U)1 =
1

2π

∫ π

−π

cos θ′2 − (x · y) sin
π

2
cos θ2

[1− (x · y)2]
ρg(y(θ′2)) dθ′2

=
1

2π

∫ π

−π

cos θ′2 − (x · y) cos θ2

[1− (x · y)2]
ρg(y(θ′2)) dθ′2

(∇S2U)2 =
1

2π

∫ π

−π

sin θ′2 − (x · y) sin
π

2
sin θ2

[1− (x · y)2]
ρg(y(θ′2)) dθ′2

=
1

2π

∫ π

−π

sin θ′2 − (x · y) sin θ2

[1− (x · y)2]
ρg(y(θ′2)) dθ′2,

so that

u̇ = 2x1v1 + 2x2v2 = −2 cos θ2ω2 sin θ2 + 2 sin θ2ω2 cos θ2 = 0

and

ẇ = 2(v2
1 + v2

2) + 2x1

[
(∇S2U)1 − |v|2x1

]
+ 2x2

[
(∇S2U)2 − |v|2x2

]
= 0.

This means the set of points for which (θ1, ω1) =
(π

2
, 0
)

is an equilibrium solution

to (4.11). Therefore, we can conclude that if all particles start on C1,2 with initial

velocities directed along C1,2, then the equations of motion (3.35) keep them there

for all time.

4.2 The Vlasov-Poisson system

Armed with the knowledge that particles starting on C1,2 remain on C1,2, we can

confidently restrict our problem to this class of distributions and discover the form

that the Vlasov-Poisson system has for them. Before deriving these equations, we

extend all functions of θ2 periodically so they are defined on θ2 ∈ R with period 2π.

Lemma 3. The Vlasov-Poisson system on the 2-sphere with initial distribution along

the great circle C1,2 is

∂f

∂t
+ ω2

∂f

∂θ2

+

(
− 1

2π

∫ π

−π
ρ(θ′2)

[
1

sin(θ2 − θ′2)

]
dθ′2

)
∂f

∂ω2

= 0. (4.12)

Proof. The spatial density for distributions on the great circle is from (4.3) and (4.4)
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given by

ρ(t, θ1, θ2) =
1

sin θ1

δ
(
θ1 −

π

2

)∫
g(t, θ2, ω2)dω2 =

1

sin θ1

δ
(
θ1 −

π

2

)
ρg(t, θ2). (4.13)

Next, we must calculate the gravitational force function at x due to the distribution

ρ. Starting with the solution to Poisson’s equation on the sphere from (3.14),

U(x) =
1

2π

∫
S2

log cot

[
d(x, y)

2

]
ρ(y)dy

and substituting our ρ from (4.13) yields

U(θ1, θ2) =
1

2π

∫ π

−π

∫ π

0

[
1

sin θ′1
δ(θ′1 −

π

2
)

∫
g(t, θ′2, ω2)dω2

]
log cot

[
d(x, y)

2

]
sin θ′1dθ

′
1dθ
′
2

=
1

2π

∫ π

−π
ρg(θ

′
2) log cot

[
d(x, y)

2

]
dθ′2,

(4.14)

where now the θ1 coordinate of y is π/2. We have on the sphere that

d(x, y) = cos−1(x · y), (4.15)

so substituting this into (4.14) gives us

U(θ1, θ2) =
1

2π

∫ π

−π
ρg(θ

′
2) log cot

[
cos−1(x · y)

2

]
dθ′2. (4.16)

We can rewrite this as

U(θ1, θ2) =
1

2π

∫ π

−π
ρg(θ

′
2) log

[√
1 + x · y
1− x · y

]
dθ′2

=
1

4π

∫ π

−π
ρg(θ

′
2) log

[
1 + sin θ1 cos(θ2 − θ′2)

1− sin θ1 cos(θ2 − θ′2)

]
dθ′2,

(4.17)

since x · y = sin θ1 cos θ2 cos θ′2 + sin θ1 sin θ2 sin θ′2. Now we must calculate the force

at x due to the distribution ρ for use in the Vlasov equation. Applying the gradient
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on S2 to (4.17) yields

∇S2U(θ1, θ2) =
∂U

∂θ1

ê1 +

(
1

sin θ1

)
∂U

∂θ2

ê2

=
1

4π

∫ π

−π
ρg(θ

′
2)

∂

∂θ1

log

[
1 + sin θ1 cos(θ2 − θ′2)

1− sin θ1 cos(θ2 − θ′2)

]
dθ′2 ê1

+
1

4π

∫ π

−π
ρg(θ

′
2)

1

sin θ1

∂

∂θ2

log

[
1 + sin θ1 cos(θ2 − θ′2)

1− sin θ1 cos(θ2 − θ′2)

]
dθ′2 ê2

=
1

4π

∫ π

−π
ρg(θ

′
2)

2 cos θ1 cos(θ2 − θ′2)

1− sin2 θ1 cos2(θ2 − θ′2)
dθ′2 ê1

+
1

4π

∫ π

−π
ρg(θ

′
2)

−2 sin(θ2 − θ′2)

1− sin2 θ1 cos2(θ2 − θ′2)
dθ′2 ê2

=
1

2π

∫ π

−π

ρg(θ
′
2)

1− sin2 θ1 cos2(θ2 − θ′2)
[cos θ1 cos(θ2 − θ′2) ê1 − sin(θ2 − θ′2) ê2] dθ′2,

(4.18)

so that the force on a particle on the circle C1,2 is

∇S2U
(π

2
, θ2

)
= − 1

2π

∫ π

−π
ρg(θ

′
2)

[
sin(θ2 − θ′2)

1− cos2(θ2 − θ′2)

]
dθ′2 ê2

= − 1

2π

∫ π

−π
ρg(θ

′
2)

[
1

sin(θ2 − θ′2)

]
dθ′2 ê2

(4.19)

and we see that there is no force in the ê1 direction, as expected. To get our Vlasov

equation, we substitute (4.3) and (4.19) into (3.60) with ω1 = 0 so that for particles

on the circle C1,2, the Vlasov-Poisson system reduces to

∂g

∂t
+ ω2

∂g

∂θ2

+

(
− 1

2π

∫ π

−π
ρg(θ

′
2)

[
1

sin(θ2 − θ′2)

]
dθ′2

)
∂g

∂ω2

= 0 (4.20)

with ρg(t, θ
′
2) =

∫
g(t, θ2, ω2)dω2. Re-labelling g as f and ρg as ρ yields the desired

equation.

In what follows, we will often use an alternate form of the system, given by the

next corollary.
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Corollary. The Vlasov-Poisson system on C1,2 can be written as

∂f

∂t
+ ω2

∂f

∂θ2

+ F [ρ]
∂f

∂ω2

= 0,

F [ρ] =
∂U

∂θ2

= − 1

2π

∫ π

−π
ρ(θ′2)

[
1

sin(θ2 − θ′2)

]
dθ′2

ρ =

∫
f dω2.

(4.21)

Following Definition 1 for solutions in R3, we impose the following definition for

classical solutions on C1,2.

Definition 3. A function f : I×R×R→ [0,∞) is a classical solution of the Vlasov-

Poisson system for circular initial data on the open interval I ⊂ R if the following

hold:

(i) The function f is continuously differentiable with respect to all its variables.

(ii) The induced spatial density ρ and force function U exist on I×R. They are con-

tinuously differentiable, and U is twice continuously differentiable with respect

to θ2.

(iii) For every compact subinterval J ⊂ I the field ∇S2U is bounded on J × R3.

(iv) The functions f, ρ, U satisfy the Vlasov-Poisson system (4.12) on I × R× R.

In addition to these conditions, we require that f is compactly supported in ω2.

This is physically justified since we are assuming relativistic effects are negligible, and

therefore the speeds of the particles must be small compared to the speed of light.

4.2.1 Conserved quantities

There are several quantities that are conserved along solutions of the Vlasov-Poisson

system in R3 including total number of particles, total mechanical energy, Casimirs,

and entropy, [17], [6]. In this section, we explore which, if any, of these quantities

are also constants of the Vlasov-Poisson system with mass initially distributed on

C1,2. We assume f is a classical solution to the Vlasov-Poisson system as defined in

Definition 3 and also impose the condition that f is compactly supported in ω2.
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Lemma 4. The total number of particles of the system,∫ ∫ π

−π
f(t, θ2, ω2)dθ2dω2, (4.22)

is conserved.

Proof. Integrate the Vlasov-Poisson system (4.21)

0 =
x [

∂f

∂t
+ ω2

∂f

∂θ2

+ F [ρ]
∂f

∂ω2

]
dθ2dω2

=
x ∂f

∂t
dθ2dω2 +

x
ω2
∂f

∂θ2

dθ2dω2 +
x

F [ρ]
∂f

∂ω2

dθ2dω2

=
d

dt

∫ ∫ π

−π
f dθ2dω2 +

∫ ∫ π

−π
ω2
∂f

∂θ2

dθ2dω2 +

∫ π

−π

∫
F [ρ]

∂f

∂ω2

dω2dθ2

=
d

dt

∫ ∫ π

−π
f dθ2dω2 −

∫ ∫ π

−π
f
∂ω2

∂θ2

dθ2dω2 −
∫ π

−π

∫
f
∂F [ρ]

∂ω2

dω2dθ2

=
d

dt

∫ ∫ π

−π
f dθ2dω2,

where we have used the fact that f has compact support in ω2 and is 2π-periodic in

θ2. Therefore the total number of particles in the system is conserved as required.

Lemma 5. The total mechanical energy of the system of particles,

E := T + V =
1

2

∫ ∫ π

−π
fω2

2 dθ2dω2 −
∫ π

−π
Uρ dθ2, (4.23)

is conserved.

Proof. The total mechanical energy of the system is by definition the sum of the total

kinetic energy and the total potential energy. In order to get the total kinetic energy,

we integrate the kinetic energy of each particle over phase space

T =

∫ ∫ π

−π
fω2

2 dθ2dω2. (4.24)

The total potential energy is similarly obtained by integrating the potential energy

of each particle over position space

V = −
∫ π

−π
U(θ1, θ2)ρ(θ2) dθ2, (4.25)
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so that the total mechanical energy is

E := T + V =
1

2

∫ ∫ π

−π
fω2

2 dθ2dω2 −
∫ π

−π
Uρ dθ2. (4.26)

To get our conservation law, we multiply the Vlasov equation,

∂f

∂t
+ ω2

∂f

∂θ2

+
∂U

∂θ2

∂f

∂ω2

= 0, (4.27)

by
1

2
ω2

2 and integrate over phase space. The first term becomes

1

2

∫ ∫ π

−π
ω2

2

∂f

∂t
dθ2dω2 =

d

dt

(
1

2

∫ ∫ π

−π
ω2

2f dθ2dω2

)
=

d

dt
T, (4.28)

and the second term is

1

2

∫ ∫ π

−π
ω3

2

∂f

∂θ2

dθ2dω2 =
1

2

∫
ω3

2

(∫ π

−π

∂f

∂θ2

dθ2

)
dω2 = 0 (4.29)

since f(π) = f(−π). The last term is

1

2

∫ ∫ π

−π
ω2

2

(
∂U

∂θ2

)
∂f

∂ω2

dθ2dω2

=
1

2

∫ π

−π

(
∂U

∂θ2

)∫
ω2

2

∂f

∂ω2

dω2dθ2

= −1

2

∫ π

−π

(
∂U

∂θ2

)∫
f
∂ω2

2

∂ω2

dω2dθ2

= −
∫ π

−π

(
∂U

∂θ2

)∫
ω2f dω2dθ2

(4.30)

since f has compact support in ω2. We can write this as

−
∫
ω2

∫ π

−π

(
∂U

∂θ2

)
f dω2dθ2 =

∫
ω2

∫ π

−π

(
∂f

∂θ2

)
U dω2dθ2 (4.31)

by again using the fact that f(−π) = f(π). If we substitute ω2
∂f

∂θ2

= −∂f
∂t
− ∂U

∂θ2

∂f

∂ω2
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from the Vlasov equation we get

−
∫ ∫ π

−π

[
∂f

∂t
+
∂U

∂θ2

∂f

∂ω2

]
U dθ2dω2

= −
∫ ∫ π

−π

∂f

∂t
Udθ2dω2 −

∫ ∫ π

−π

∂U

∂θ2

∂f

∂ω2

U dθ2dω2

= − d

dt

∫ π

−π
U

∫
f dω2dθ2 +

∫ π

−π

∫
f
∂

∂ω2

(
U
∂U

∂θ2

)
dω2dθ2

= − d

dt

∫ π

−π
Uρ dθ2

=
d

dt
V

(4.32)

So that putting all three terms together yields

d

dt
E =

d

dt
(T + V ) = 0, (4.33)

and our conservation is proved.

There are many other quantities which are conserved along solutions of the Vlasov-

Poisson system. In fact, the integral of any function of a stationary solution will be

conserved. These integrals are commonly called Casimirs or Casimir functionals and

are given by the following definition.

Definition 4. The Casimirs of the Vlasov-Poisson system are defined in R3 to be

x
A(f(x, v)) dxdv, (4.34)

where A is any arbitrary smooth function.

Mathematicians will often study the stability of solutions of the Vlasov-Poisson

system compared to that of special stationary solutions given by the minimizers of

the total energy under Casimir constraints2.

Lemma 6. The Casimirs of the Vlasov-Poisson system on the sphere with initial

spatial density on a great circle,

x
A(f(θ2, ω2)) dθ1dω2, (4.35)

2see for instance [9].
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are conserved along solutions.

Proof. Substituting f = f(θ2, ω2), dx = dθ2, dv = dω2 in Definition 4 yields the

Casimirs of the system with initial spatial density on a great circle,

x
A(f(θ2, ω2))dθ2dω2. (4.36)

The function A(f) satisfies the Vlasov equation (4.20) since by the chain rule we have

∂A(f)

∂t
+ ω2

∂A(f)

∂θ2

+
∂U

∂θ2

∂A(f)

∂ω2

= A′(f)

[
∂f

∂t
+ ω2

∂f

∂θ2

+
∂U

∂θ2

∂f

∂ω2

]
= 0. (4.37)

So we can integrate over position and velocity space and write

0 =

∫ ∫ π

−π

[
∂A(f)

∂t
+ ω2

∂A(f)

∂θ2

+
∂U

∂θ2

∂A(f)

∂ω2

]
dθ2dω2

=

∫ ∫ π

−π

∂A(f)

∂t
dθ2dω2 +

∫ ∫ π

−π
ω2
∂A(f)

∂θ2

dθ2dω2 +

∫ ∫ π

−π

∂U

∂θ2

∂A(f)

∂ω2

dθ2dω2

=
d

dt

∫ ∫ π

−π
A(f) dθ2dω2 −

∫ ∫ π

−π
A(f)

∂ω2

∂θ2

dθ2dω2 −
∫ π

−π

∫
∂

∂ω2

∂U

∂θ2

A(f) dθ2dω2

=
d

dt

∫ ∫ π

−π
A(f) dθ2dω2,

where we have used the fact that A is a function of f and therefore 2π-periodic in θ2.

We conclude that the Casimirs are conserved along solutions.

A special type of Casimir functional is the entropy of the system, which is a

measure of the randomness or disorder of a system. Conservation of entropy reflects

the preservation of information of the system in that whatever information is given

about the system initially remains for all time.

Definition 5. The entropy of the system in R3 is defined to be

S = −
x

f log f dxdv. (4.38)

Lemma 7. The entropy of the system on the sphere with initial spatial density on a

great circle

S = −
x

f(θ2, ω2) log(f(θ2, ω2)) dθ2dω2 (4.39)

is constant along solutions.
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Proof. Substituting f = f(θ2, ω2), dx = dθ2, dv = dω2 for the circle yields the entropy

for initial distribution on a great circle,

S = −
x

f(θ2, ω2) log(f(θ2, ω2)) dθ2dω2. (4.40)

Setting A(f) = −f log f in Lemma 6 yields the desired result.

It is interesting to note that although conservation of entropy occurs in the Vlasov-

Poisson system, entropy is not generally conserved in the closely-related Boltzmann

equation. Instead, entropy exclusively increases with time due to the inclusion of

collisions in the model3.

4.2.2 Equilibria

Proposition 6. Any distribution f(t, θ2, ω2) = f 0(ω2) is a spatially homogeneous

equilibrium solution of (4.20), the Vlasov-Poisson system on C1,2.

Proof. Any stationary solution by definition must satisfy (4.20) with
∂f

∂t
= 0, i.e.

ω2
∂f

∂θ2

+

(
∂U

∂θ2

)
∂f

∂ω2

= 0. (4.41)

Consider a spatially homogeneous distribution function f = f 0(ω2). For this form of

f , we get
∂f 0

∂θ2

= 0, (4.42)

so the first term in (4.41) is 0. We can use (4.13) to calculate

ρ =

∫
f 0 dω2 = ρ0, (4.43)

where ρ0 is a constant. From (4.21) we get that the force due to the homogeneous

distribution is

F [ρ0] = − 1

2π

∫ π

−π

1

sin(θ2 − θ′2)
ρ0 = 0, (4.44)

since ρ0 is a constant. Therefore the second term in (4.41) vanishes and we conclude

that f(θ2, ω2) = f 0(ω2) is a spatially homogeneous equilibrium (stationary) solution

to (4.20).

3see [22].
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For the next equilibrium solution, we will require a definition.

Definition 6. The microscopic energy of the system of particles is defined to be

E(x, v) =
|v|2

2
− U(x), (4.45)

or in spherical coordinates

E(x, v) =
1

2
ω2

2 − U(x(θ2)), (4.46)

where U =

∫ π

−π
G(θ2 − θ′2)

∫
f(θ′2, ω2)dω2dθ

′
2.

Proposition 7. Any function of the microscopic energy is a stationary solution of

(4.20), the Vlasov-Poisson system on C1,2.

Proof. Any stationary solution by definition must satisfy (4.20) with
∂f

∂t
= 0, i.e.

ω2
∂f

∂θ2

+

(
∂U

∂θ2

)
∂f

∂ω2

= 0. (4.47)

Consider a function of the microscopic energy defined in Definition 6 so that f = f̄(E),

where f̄ is an arbitrary function f̄ : R→ R. For this form of f , we get

ω2
∂f̄(E)

∂θ2

+

(
∂U

∂θ2

)
∂f̄(E)

∂ω2

= f̄ ′(E)

[
ω2
∂E

∂θ2

+

(
∂U

∂θ2

)
∂E

∂ω2

]
= f̄ ′(E)

[
−ω2

∂U

∂θ2

+

(
∂U

∂θ2

)
ω2

]
= 0

(4.48)

as long as the condition U =

∫ π

−π
G(θ2 − θ′2)

∫
f(θ′2, ω2)dω2dθ

′
2 is satisfied. There-

fore we conclude that f = f̄(E) is a spatially homogeneous equilibrium (stationary)

solution to (4.20).
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4.3 The Linear Vlasov-Poisson system

In the study of the Vlasov-Poisson system it is common to first linearize the equation

about an equilibrium solution before studying the non-linear version. For the Eu-

clidean case at least, important behaviour such as Landau damping becomes evident

even from the simpler linearized system. Therefore, in this section we linearize the

system derived for C1,2 in order to help with further studies.

4.3.1 Linearization of the Vlasov equation on C1,2

Let f 0 = f 0(ω2) be a homogeneous equilibrium solution to (4.21) as in the previous

section and suppose f(t, θ2, ω2) = f 0(ω2) + h(t, θ2, ω2) where h is 2π-periodic and

‖h‖ << 1. We have

∂U0

∂θ2

= 0,
∂f 0

∂t
= 0, and

∂f 0

∂θ2

= 0, (4.49)

and from (4.13)

ρ =

∫ [
f 0 + h(t, θ2, ω2)

]
dω2

= ρ0 +

∫
h dω2

= ρ0 + ρh,

(4.50)

where we have used ρh to denote

∫
h dω2. From this and (4.21) we calculate the

force on a particle at
(π

2
, θ2

)
to be

F [ρ] = − 1

2π

∫ π

−π

1

sin(θ2 − θ′2)

(
ρ0 + ρh

)
dθ′2

= − 1

2π

∫ π

−π

1

sin(θ2 − θ′2)

(
ρh
)
dθ′2

=: F [ρh].

(4.51)
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Therefore the Vlasov equation,
∂f

∂t
+ ω2

∂f

∂θ2

+ F [ρ]
∂f

∂ω2

= 0, becomes

∂(f 0 + h)

∂t
+ ω2

∂(f 0 + h)

∂θ2

+ F [ρ]
∂(f 0 + h)

∂ω2

= 0

∂h

∂t
+ ω2

∂h

∂θ2

+ F [ρh]
∂(f 0 + h)

∂ω2

= 0.

(4.52)

For distributions in which the quadratic term F [ρh]
∂h

∂ω2

is negligible compared to the

linear terms for small h, we can further reduce to

∂h

∂t
+ ω2

∂h

∂θ2

+ F [ρh]
∂f 0

∂ω2

= 0, (4.53)

where

F [ρh] = − 1

2π

∫ π

−π

1

sin(θ2 − θ′2)

(
ρh
)
dθ′2.

We refer to (4.53) as the linearized Vlasov equation on C1,2.
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Chapter 5

Conclusions and Extensions

In this thesis, we took the first steps in exploring the Vlasov-Poisson system in curved

spaces. We completed numerous preliminary calculations to accurately determine an

acceptable form of the Vlasov-Poisson system on the unit 2-sphere. These included

deriving the Poisson equation (with help from [7]), writing an expression for the

form of the solution of it, and finding the gravitational potential due to an arbitrary

distribution. We then took a special distribution in which the particles were arranged

on a great circle of the sphere and moving with a velocity directed along the same

great circle. This led us to a nice one-dimensional problem that we could study in

a variety of ways. We determined the new form of the gravitational potential and

force, and proved a number of conservation laws.

In Diacu’s book [8], it is mentioned that the qualitative aspects of the stellar

dynamics of constant curvature spaces can be studied by ignoring the magnitude of

the curvature and including only the sign1. Therefore, we expect that our results

here can be applied easily to spaces of any positive constant curvature. In addition

to this extension, there are countless avenues left to explore within the umbrella of

the Vlasov-Poisson system on spaces of constant curvature. Some of these are:

• Existence and uniqueness of global solutions for circular initial data.

• Stability criteria (including criteria for Landau damping) for the linearized equa-

tion with circular initial data.

• Initial distributions other than those on great circles.

• Extension to the 3-sphere; this would be the most relevant to our physical space.

1this is justified through a coordinate change and rescaling of the time variable.
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• Comparison of results using Vlasov-Poisson to results from Einstein-Vlasov (or

other methods involving relativity).

We expect the topics in this thesis can be explored equally well under the assumption

of a negatively curved space, in which the particles move on the hyperbolic unit

sphere. Given the time it took to solve the analogous problem in Euclidean space,

we expect proving the existence (or non-existence) and uniqueness of global solutions

for general initial data will likely be a difficult but rewarding problem. A proof of

the existence or non-existence of non-linear Landau damping, a challenging problem

in Euclidean space, would be another great result.
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Appendix A

Additional Information

A.1 Spherical Coordinates for R3

In the following, we denote the position vector in spherical coordinates by x(r, θ1, θ2)

where r is Euclidean distance measured from the origin, θ1 is the zenith angle (mea-

sured from the positive z-axis), and θ2 is the azimuthal angle (measured from the

positive x-axis in the xy-plane) as in Figure 2.3. We define the coordinate change

ϕ : (x1, x2, x3)→ (r, θ1, θ2) by:

x1 = r sin θ1 cos θ2

x2 = r sin θ1 sin θ2

x3 = r cos θ1

(A.1)

so that the inverse relationship is

r =
√
x2

1 + x2
2 + x2

3

θ1 = arccos

(
x3√

x2
1 + x2

2 + x2
3

)
θ2 = arctan

(
x2

x1

) (A.2)
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with r ∈ [0,∞), θ1 ∈ [0, π], θ2 ∈ [0, 2π). We define êr, ê1, and ê2 to be orthogonal

unit vectors in the direction of increasing r, θ1, and θ2, respectively so that

êr :=
∂x

∂r
/

∣∣∣∣∂x∂r
∣∣∣∣ = sin θ1 cos θ2 x̂1 + sin θ1 sin θ2 x̂2 + cos θ1 x̂3

ê1 :=
∂x

∂θ1

/

∣∣∣∣ ∂x∂θ1

∣∣∣∣ = cos θ1 cos θ2 x̂1 + cos θ1 sin θ2 x̂2 − sin θ1 x̂3

ê2 :=
∂x

∂θ2

/

∣∣∣∣ ∂x∂θ2

∣∣∣∣ = − sin θ2 x̂1 + cos θ2 x̂2.

(A.3)

Taking the time derivative of (A.1) and simplifying yields

ẋ1 = ṙ sin θ1 cos θ2 + rθ̇1 cos θ1 cos θ2 − rθ̇2 sin θ1 sin θ2

ẋ2 = ṙ sin θ1 sin θ2 + rθ̇1 cos θ1 sin θ2 + rθ̇2 sin θ1 cos θ2

ẋ3 = ṙ cos θ1 − rθ̇1 sin θ1

(A.4)

so we define

v1 = ωr sin θ1 cos θ2 + rω1 cos θ1 cos θ2 − rω2 sin θ1 sin θ2

v2 = ωr sin θ1 sin θ2 + rω1 cos θ1 sin θ2 + rω2 sin θ1 cos θ2

v3 = ωr cos θ1 − rω1 sin θ1

(A.5)

where ωr = ṙ, ω1 = θ̇1, and ω2 = θ̇2, so that v = v1 x̂1 + v2 x̂2 + v3 x̂3. The angular

velocities are given in terms of v by:

ωr = sin θ1 cos θ2v1 + sin θ1 sin θ2v2 + cos θ1v3

ω1 =
1

r
cos θ1 cos θ2v1 +

1

r
cos θ1 sin θ2v2 −

1

r
sin θ1v3

ω2 = − sin θ2

r sin θ1

v1 +
cos θ2

r sin θ1

v2.

(A.6)
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Taking derivatives and simplifying again yields

v̇1 = ω̇r sin θ1 cos θ2 + 2ωrω1 cos θ1 cos θ2 − 2ωrω2 sin θ1 sin θ2

+rω̇1 cos θ1 cos θ2 − rω2
1 sin θ1 cos θ2 − 2rω1ω2 cos θ1 sin θ2

−rω̇2 sin θ1 sin θ2 − rω2
2 sin θ1 cos θ2

v̇2 = ω̇r sin θ1 sin θ2 + 2ωrω1 cos θ1 sin θ2 + 2ωrω2 sin θ1 cos θ2

+rω̇1 cos θ1 sin θ2 − rω2
1 sin θ1 sin θ2 + 2rω1ω2 cos θ1 cos θ2

+rω̇2 sin θ1 cos θ2 − rω2
2 sin θ1 sin θ2

v̇3 = ω̇r cos θ1 − 2ωrω1 sin θ1 − rω̇1 sin θ1 − rω2
1 cos θ1.

(A.7)

The gradient, divergence, and Laplacian in spherical coordinates are, respectively:

∇R3f =
∂f

∂r
êr +

1

r

∂f

∂θ1

ê1 +
1

r sin θ1

∂f

∂θ2

ê2

divR3F = êr ·
∂F

∂r
+

1

r
ê1 ·

∂F

∂θ1

+
1

r sin θ1

ê2 ·
∂F

∂θ2

∆R3f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ1

∂

∂θ1

(
sin θ1

∂f

∂θ1

)
+

1

r2 sin2 θ1

∂2f

∂θ2
2

(A.8)

where f is any scalar function of θ and F is any vector-valued function of θ. If we

wish to hold r constant, then all the above simplify to

A.2 Non-unit spheres

In the following, we assume x ∈ S2
R where S2

R is the R-radius 2-sphere. We denote

the position vector in spherical coordinates by x(R, θ1, θ2) where R is the (constant)

Euclidean distance measured from the origin, θ1 is the zenith angle (measured from

the positive x3-axis), and θ2 is the azimuthal angle (measured from the positive x1-axis

in the x1x2-plane) as in Figure 2.3. We define the coordinate change ϕ : (x1, x2, x3)→
(R, θ1, θ2) by:

x1 = R sin θ1 cos θ2

x2 = R sin θ1 sin θ2

x3 = R cos θ1

(A.9)



53

so that the inverse relationship is

R =
√
x2

1 + x2
2 + x2

3

θ1 = arccos

(
x3√

x2
1 + x2

2 + x2
3

)
θ2 = arctan

(
x2

x1

) (A.10)

with R ∈ [0,∞), θ1 ∈ [0, π], θ2 ∈ [0, 2π). We define êr, ê1, and ê2 to be orthogonal

unit vectors in the direction of increasing r, θ1, and θ2, respectively so that

êr :=
∂x

∂r
/

∣∣∣∣∂x∂r
∣∣∣∣ = sin θ1 cos θ2 x̂1 + sin θ1 sin θ2 x̂2 + cos θ1 x̂3

ê1 :=
∂x

∂θ1

/

∣∣∣∣ ∂x∂θ1

∣∣∣∣ = cos θ1 cos θ2 x̂1 + cos θ1 sin θ2 x̂2 − sin θ1 x̂3

ê2 :=
∂x

∂θ2

/

∣∣∣∣ ∂x∂θ2

∣∣∣∣ = − sin θ2 x̂1 + cos θ2 x̂2.

(A.11)

Taking the time derivative of (A.9) and simplifying yields

ẋ1 = Rθ̇1 cos θ1 cos θ2 −Rθ̇2 sin θ1 sin θ2

ẋ2 = Rθ̇1 cos θ1 sin θ2 +Rθ̇2 sin θ1 cos θ2

ẋ3 = Ṙ cos θ1 −Rθ̇1 sin θ1

(A.12)

so we define
v1 = Rω1 cos θ1 cos θ2 −Rω2 sin θ1 sin θ2

v2 = Rω1 cos θ1 sin θ2 +Rω2 sin θ1 cos θ2

v3 = Rω1 sin θ1

(A.13)

where ω1 = θ̇1, and ω2 = θ̇2, so that v = v1 x̂1 + v2 x̂2 + v3 x̂3. The angular velocities

are given in terms of v by:

ω1 =
1

R
cos θ1 cos θ2v1 +

1

R
cos θ1 sin θ2v2 −

1

R
sin θ1v3

ω2 = − sin θ2

R sin θ1

v1 +
cos θ2

R sin θ1

v2.

(A.14)
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Taking derivatives and simplifying again yields

v̇1 = +Rω̇1 cos θ1 cos θ2 −Rω2
1 sin θ1 cos θ2 − 2Rω1ω2 cos θ1 sin θ2

−Rω̇2 sin θ1 sin θ2 −Rω2
2 sin θ1 cos θ2

v̇2 = +Rω̇1 cos θ1 sin θ2 −Rω2
1 sin θ1 sin θ2 + 2Rω1ω2 cos θ1 cos θ2

+Rω̇2 sin θ1 cos θ2 −Rω2
2 sin θ1 sin θ2

v̇3 = −Rω̇1 sin θ1 −Rω2
1 cos θ1.

(A.15)

The gradient, divergence, and Laplacian in spherical coordinates are, respectively:

∇Rf =
1

R

∂f

∂θ1

ê1 +
1

R sin θ1

∂f

∂θ2

ê2

divRF =
1

R
ê1 ·

∂F

∂θ1

+
1

R sin θ1

ê2 ·
∂F

∂θ2

∆Rf =
1

R2 sin θ1

∂

∂θ1

(
sin θ1

∂f

∂θ1

)
+

1

R2 sin2 θ1

∂2f

∂θ2
2

(A.16)

The Poisson equation then is

−∆RU = ρ. (A.17)

The solution from [7] is given by

UR =

∫
S2R

1

2π
log cot

(
d(x/R, y/R)

2

)
ρ(y) dy (A.18)

where x, y ∈ S2
R. The equations of motion for a particle on S2

R are

θ̈1 = θ̇2
2 sin θ1 cos θ1 +

1

R2

∂UR
∂θ1

θ̈2 =
1

R2 sin2 θ1

∂UR
∂θ2

− 2θ̇1θ̇2 cot θ1.

(A.19)

The Vlasov equation in local coordinates turns into

∂f

∂t
+ ω · ∇θf +


1

R2

∂UR
∂θ1

+ θ̇2
2 sin θ1 cos θ1

1

R2 sin2 θ1

∂UR
∂θ2

− 2θ̇1θ̇2 cot θ1

 · ∇ωf = 0, (A.20)
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and the density condition is∫
TxS2

f dv =

∫
R2

f

∣∣∣∣ ∂v∂ω1

× ∂v

∂ω2

∣∣∣∣ dω1dω2 =

∫
R2

R sin θ1f dω1dω2. (A.21)

Therefore, our new system for non-unit spheres is

∂f

∂t
+ ω · ∇θf +


1

R2

∂UR
∂θ1

+ θ̇2
2 sin θ1 cos θ1

1

R2 sin2 θ1

∂UR
∂θ2

− 2θ̇1θ̇2 cot θ1

 · ∇ωf = 0

UR =

∫
S2R

1

2π
log cot

(
d(x/R, y/R)

2

)
ρ(y) dy

ρ =

∫
R2

R sin θ1f dω1dω2.

(A.22)

A.3 Theorems on Manifolds

Theorem 1 (Divergence Theorem). Let X be a Riemannian manifold with volume

form ΩX , ∂X be the boundary of X with volume form Ω∂X and let ξ be a compactly

supported vector field on X. Then∫
∂X

(ξ · n̂) Ω∂X =

∫
X

(divΩX
ξ) ΩX (A.23)

Proof. Classical result, see for instance [13].

Theorem 2. Let X be a Riemannian manifold with volume form ΩX , ∂X be the

boundary of X with volume form Ω∂X , ψ be a scalar function on X and F be a

compactly supported vector field on X. Then∫
∂X

ψ(F · n̂)Ω∂X =

∫
X

[(∇ΩX
ψ) · F + (divΩX

F )ψ] ΩX (A.24)

Proof. Use ξ = ψF in Theorem 1 where ψ is a scalar function on X and F is a vector

field on X.
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A.4 Proof of ∇S2(x · y) = y − (x · y)x for x, y ∈ S2

Proposition 8. For x, y ∈ S2, we have

∇S2(x · y) = y − (x · y)x. (A.25)

Proof. The definiton of ∇S2 from (2.22) is

∇S2 f =

(
∂f

∂θ1

)
ê1 +

(
1

sin θ1

)
∂f

∂θ2

ê2 (A.26)

so we can write

∇S2(x · y) =
∂(x · y)

∂θ1

ê1 +

(
1

sin θ1

)
∂(x · y)

∂θ2

ê2

=
∂x

∂θ1

· y ê1 +

(
1

sin θ1

)
∂x

∂θ2

· y ê2

(A.27)

We have from (2.15)

ê1 = cos θ1 cos θ2x̂1 + cos θ1 sin θ2x̂2 − sin θ1x̂3

ê2 = − sin θ2x̂1 + cos θ2x̂2

(A.28)

and from (2.13)

x = (sin θ1 cos θ2, sin θ1 sin θ2, cos θ1) . (A.29)

Using these, (A.27) becomes

∇S2(x · y) =
∂x

∂θ1

· y (cos θ1 cos θ2x̂1 + cos θ1 sin θ2x̂2 − sin θ1x̂3)

+

(
1

sin θ1

)
∂x

∂θ2

· y (− sin θ2x̂1 + cos θ2x̂2)

= (cos θ1 cos θ2y1 + cos θ1 sin θ2y2 − sin θ1y3)

× (cos θ1 cos θ2x̂1 + cos θ1 sin θ2x̂2 − sin θ1x̂3)

+

(
1

sin θ1

)
(− sin θ1 sin θ2y1 + sin θ1 cos θ2y2)

× (− sin θ2x̂1 + cos θ2x̂2)

(A.30)
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so that in the x1-direction we have

cos2 θ1 cos2 θ2y1 + cos2 θ1 sin θ2 cos θ2y2 − sin θ1 cos θ1 cos θ2y3 + sin2 θ2y1 − sin θ2 cos θ2y2

= y1

(
cos2 θ1 cos2 θ2 + sin2 θ2

)
+ y2 (cos2 θ1 − 1) (sin θ2 cos θ2)− y3 (sin θ1 cos θ1 cos θ2)

= y1

(
(1− sin2 θ1) cos2 θ2 + sin2 θ2

)
+ y2

(
− sin2 θ1

)
(sin θ2 cos θ2)− y3 (sin θ1 cos θ1 cos θ2)

= y1

(
1− sin2 θ1 cos2 θ2

)
+ y2

(
− sin2 θ1

)
(sin θ2 cos θ2)− y3 (sin θ1 cos θ1 cos θ2)

= y1 − (sin θ1 cos θ2) (y1 sin θ1 cos θ2 + y2 sin θ1 sin θ2 + y3 cos θ1)

= y1 − x1 (y1x1 + y2x2 + y3x3)

= y1 − x1 (x · y) ,

in the x2-direction we have

cos2 θ1 sin θ2 cos θ2y1 + cos2 θ1 sin2 θ2y2 − sin θ1 cos θ1 sin θ2y3 − sin θ2 cos θ2y1 + cos2 θ2y2

= y1 (cos2 θ1 sin θ2 cos θ2 − sin θ2 cos θ2) + y2

(
cos2 θ1 sin2 θ2 + cos2 θ2

)
− y3 sin θ1 cos θ1 sin θ2

= y1

(
− sin2 θ1 sin θ2 cos θ2

)
+ y2

(
(1− sin2 θ1) sin2 θ2 + cos2 θ2

)
− y3 sin θ1 cos θ1 sin θ2

= y1

(
− sin2 θ1 sin θ2 cos θ2

)
+ y2

(
1− sin2 θ1 sin2 θ2

)
− y3 sin θ1 cos θ1 sin θ2

= y2 − sin θ1 sin θ2 (y1 sin θ1 cos θ2 + y2 sin θ1 sin θ2 + y3 cos θ1)

= y2 − x2 (y1x1 + y2x2 + y3x3)

= y2 − x2 (x · y) ,

and in the x3-direction we have

− sin θ1 cos θ1 cos θ2y1 − sin θ1 cos θ1 sin θ2y2 + sin2 θ1y3

= − sin θ1 cos θ1 cos θ2y1 − sin θ1 cos θ1 sin θ2y2 + (1− cos2 θ1)y3

= y3 − cos θ1 (sin θ1 cos θ2y1 + sin θ1 sin θ2y2 + cos θ1y3)

= y3 − x3 (y1x1 + y2x2 + y3x3)

= y3 − x3 (x · y) .

Putting these components together yields our desired expression.
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A.5 Calculation of v = θ̇1ê1 + θ̇2 sin θ1ê2

We have x = (sin θ1 cos θ2, sin θ1 sin θ2, cos θ1). Differentiating x with respect to time

yields

dx

dt
= θ̇1 cos θ1 cos θ2x̂1 − θ̇2 sin θ1 sin θ2x̂1 + θ̇1 cos θ1 cos θ2x̂2 + θ̇2 sin θ1 cos θ2x̂2 − θ̇1 sin θ1x̂3

= θ̇1ê1 + θ̇2 sin θ1ê2

(A.31)

where we have used the definition of unit vectors given in (2.15).
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