
Binary Directional Marker Placement for Mobile Robot Localization

by

River Allen

B.Sc., University of Victoria, 2011

A Thesis Submitted in Partial Ful�llment of the

Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

c© River Allen, 2014

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Binary Directional Marker Placement for Mobile Robot Localization

by

River Allen

B.Sc., University of Victoria, 2011

Supervisory Committee

Dr. Sue Whitesides, Co-Supervisor

(Department of Computer Science)

Dr. Mantis Cheng, Co-Supervisor

(Department of Computer Science)

iii

Supervisory Committee

Dr. Sue Whitesides, Co-Supervisor

(Department of Computer Science)

Dr. Mantis Cheng, Co-Supervisor

(Department of Computer Science)

ABSTRACT

This thesis looks at the problem of optimally placing binary directional proximity

markers to assist a robot as it navigates waypoints through an environment. A

simple planar �ducial marker is developed to serve as the binary directional proximity

marker. A scoring function is proposed for marker placement as well as a method

for random generation of hallway maps. Several common metaheuristic algorithms

are run to �nd optimal marker placements with respect to the scoring function for a

number of randomly generated hallway maps. From these results, placements are then

evaluated by physical experimentation on an iRobot Create equipped with relatively

inexpensive webcams.

iv

ACKNOWLEDGEMENTS

I would like to begin by thanking my supervisor Dr. Sue Whitesides. Sue has

mentored me throughout the thesis process, imparting valuable life knowledge and

wisdom along the way. She has been the best supervisor a student could ask for. It

has been an pleasure and an honour to be Sue's student and I do not think I will ever

be capable of putting into words just how thankful I am for the opportunity.

I would also like to thank my co-supervisor, Dr. Mantis Cheng who sparked

passion and interest in this subject. I have learned an unquanti�able amount from

Dr. Cheng during my time at UVic. Without his incredible ability to teach and

inspire, I would not be here.

I especially want to thank Dr. Dimitri Marinakis for his immense knowledge and

for his encouragement during my graduate studies. Additionally, I thank Dr. Junaed

Sattar for his valuable commentary in his role as external examiner.

My family has always been vital to my success. During this thesis they have

continued to give me the constant love, support and motivation that I will always be

grateful for. The recent introduction of my niece and nephew into our family have

been of great signi�cance during this time.

Last but not least, I would like to thank my CGAR lab mates and personal friends

over the years. I give special thanks to Nishat who has been an incredible friend and

collaborator throughout this period.

Without the generous funding from NSERC sources, Howard E. Petch research

scholarship and various UVic scholarships this thesis would not have been possible.

v

Contents

Supervisory Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Problem Overview . 3

1.2 Outline . 6

1.3 Contributions . 6

2 Related Work 8

2.1 Directional Sensor Placement . 8

2.2 Fiducial Tags . 13

2.3 Applications . 15

3 Approach, Methodology and Parameter Estimation 18

3.1 Localization . 18

3.1.1 Motion Model . 18

3.1.2 Observation Model . 24

3.1.3 Uniform Visibility Model . 27

3.1.4 Resampling . 29

3.2 Localization Patches and the Scoring Function 30

3.2.1 A Theoretical Maximum Distance Deviation 33

vi

3.3 RedCometTag � Fiducial Planar Marker 34

3.3.1 Encoding . 35

3.3.2 Decoding . 37

3.3.3 Parameter Estimation . 39

3.3.4 Range and Angle . 40

3.3.5 False Positives, True Negatives, Interconfusion and Occlusion . 40

3.3.6 Implementation . 41

4 Simulation 48

4.1 Metaheuristic Optimization . 48

4.1.1 Hill Climbing . 49

4.1.2 Simulated Annealing . 50

4.1.3 Coordinate Descent . 53

4.1.4 Greedy Heuristic . 53

4.1.5 Uniform Placement . 54

4.2 Randomly Generated Hallway Environments for Marker Placement . 55

4.2.1 Marker Placement Poses . 58

4.2.2 Marker Placement Sampling 59

4.3 Results . 60

5 Experimentation 63

5.1 Environment . 63

5.2 Hardware . 64

5.3 Software . 65

5.4 Results . 67

5.4.1 Discussion of Results . 69

6 Conclusions 71

6.1 Contributions . 72

6.2 Alternative Scoring Functions . 72

6.3 Future Work . 74

Bibliography 75

Glossary 81

A Gradient Visibility Model 82

vii

B Reuleaux Triangle 85

C Box-and-whisker Plot 87

D Random Hallway Maps 89

E Experiment Runs Data 96

viii

List of Tables

Table 4.1 Score results with standard deviations on all maps for the four

metaheuristic algorithms. The lower the score the �better� the

placement. 61

Table 4.2 Computing time results with standard deviation of simulations on

all maps for the metaheuristic algorithms. The greedy heuristic

and uniform placement were only run once, so they have a stan-

dard deviation of 0 (not shown). Repeated trials were deemed

unnecessary as they are clearly faster than the others. 62

Table E.1 No Markers - Measured error from waypoints (meters). 96

Table E.2 Best Score Placement - Measured error from waypoints (meters). 97

Table E.3 Uniform Placement - Measured error from waypoints (meters). . 97

Table E.4 No Markers - number of Bumps between waypoints. 98

Table E.5 Best Score Placement - number of Bumps between waypoints. . 98

Table E.6 Uniform Placement - number of Bumps between waypoints. . . . 99

ix

List of Figures

Figure 1.1 An example of an o�ce environment a robot could traverse

through. Each pixel is a decimeter2. The dark blue pixels

represent area that is non-navigable. Red pixels represent the

path the robot is expected travel. Possible marker poses for

this map are provided and are shown as orange pixels; in this

case they correspond to corners. 3

Figure 1.2 A 2D annulus. The grey shaded area represents an annulus

sector. 5

Figure 2.1 The typical model for a sector-shaped directional sensor de-

�ned by the �ve parameters: (x, y, θ, α,R). This di�ers slightly

from our own visibility region model where α would be α
2
in

their model. 10

Figure 2.2 a) QR code (image from wikipedia.com). b) MaxiCode (image

from wikipedia.com). c) ARToolkit (image from ARToolkit

software package). d) ARTag (image from [1]). e) Cantag,

circle inner version (image from [2]) f) Fourier tag (image

from [3]). g) robust pseudo-random array �ducial marker (im-

age from [4]). 13

Figure 2.3 a) The remotely operated benthic crawler: Wally. b) An ex-

ample of a markers (yellow `9' sign) used by the teleoperaters

of Wally to help them localize. The images are from Ocean

Networks Canada. 16

Figure 3.1 An illustration of the robot (gray circle) at time t−1 moving to

a new position at time t using the control inputs utlinear, u
t
angular. 19

x

Figure 3.2 Example of 5000 samples taken from a 3D (x, y, θ) zero mean

multivariate Gaussian plotted in 2D (x, y). Each of these par-

ticles can be seen to represent a possible initial pose of the

robot. The orientation of each sample is not shown. 23

Figure 3.3 The spread of particles at di�erent intervals as the robot trav-

els 40 meters from the bottom left to the top right. The par-

ticles have been projected into 2D (x, y). 24

Figure 3.4 The uniform visibility marker model. 27

Figure 3.5 Particles in the particle �lter before and after observation

when the marker is detected. 30

Figure 3.6 a) The environment as an occupancy grid (orange is navigable

area). b) The discrete annulus sector (blue). c) The visibility

grid (teal) overlayed in the environment. The visibility grid

considers line of sight. The visibility grid is outlined by the

discrete annulus sector (blue). 32

Figure 3.7 a) Visibility grid 1; b) Visibility grid 2; and c) The overlay

grid comprised of the two visibility grids and environment oc-

cupancy grid (the blue lines are added to help distinguish the

shape of the visibility grids). Two example waypoints W1 and

W2 are included. Using this marker placement, W1 will have

a score of the area of the yellow region where the two visibil-

ity grids overlap. This marker placement will also give W2 a

score of the area of the large, orange, southern region of the

occupancy grid where no visibility grids are present. 32

Figure 3.8 The patch formed around the waypoint w by the markers at

positions marked �x� is a Reuleaux triangle. Using the uniform

sensing model seen in Figure 3.5a. Here are the particles: a)

before observing and b) after observing. After observation, the

particles are more densely inside the Reuleaux triangle patch. 34

Figure 3.9 Examples of the RedCometTag. 35

Figure 3.10 A histogram of the hamming distance between all valid codes

and their three rotations. 37

xi

Figure 3.11 A visualization of the encoding process. The marker data

is input through Reed-Solomon to produce a forward error

correcting code. The data and forward error correcting code

are concatenated and split into a 6×6 matrix of bits to produce

the RedCometTag. 37

Figure 3.12 Process of decoding a RCTag a) the original image, b) the

image converted to grayscale and smoothed using a Gaussian

kernel, c) the image adaptively thresholded using a 401 size

window, d) Canny edge detection [5] on the smoothed image

b), e) the contours found, f) the remaining four point contours,

g) the data sample points for the perspective matrix formed

by the rectangle (orange circles are data points, green circles

are border points) and h) the �nal resolved markers. 42

Figure 3.13 The three parameters evaluated against the successful detec-

tion of a marker taken at various distances and angles: a)

the Gaussian blur σ parameter; b) the threshold window size

percent parameter tw; and c) the C threshold parameter tc. . 43

Figure 3.14 Example images of measurements at di�erent distances and

lighting. 44

Figure 3.15 Example images of measurements with di�erent angles and

lighting. 45

Figure 3.16 Plots describing the successful detection of a marker with dif-

ferent cameras: a) The marker is at a 0 angle with multiple

distances; b) MLC3000 angle readings at multiple distances;

and c) LC310 angle readings at multiple distances. 46

Figure 3.17 Examples of failures with RCTag: a) images that are too dark

will lead to failed detection (marker at bottom center); b) im-

ages that are too bright or if the marker is subject to spectral

re�ection will usually fail (the markers are in the top left); c)

the original source image of a false positive; and d) the red

box within a poster is detected as marker 4. 47

xii

Figure 4.1 Example randomly generated hallway maps. The unit length

along x and y axes is decimeters. The red dots represent way-

points with the teal lines connecting them to demonstrate po-

tential paths. 56

Figure 4.2 Steps for generating a random hallway map: a) generate the

'L' line segments (shown by the white pixels); b) in�ate the `L'

line segment points to form hallways; c) generate a collection

of waypoints to form a path using the initial `L' line segments;

and d) add random �rooms� and nooks to generate the �nal

randomly generated hallway map. 57

Figure 4.3 Illustrations for steps for �nding the inner edges of the hallway

map: a) the original hallway map; b) the map from a) eroded

using a 3-by-3 square structuring element; and c) the inner

edges found by the di�erence of a) and b). 59

Figure 4.4 Uniformly spaced selection of 15% of all the marker poses of

Figure 4.3c. 60

Figure 5.1 a) The southern half of the fourth �oor of the ECS Building

and the waypoints the robot will traverse. b) One of the hall-

way segments the robot traverses. c) The same hallway as b),

but from the opposite perspective. The light from the window

can make marker detection more di�cult. 64

Figure 5.2 a) The iRobot Create �tted with �ve webcams to give the

robot a near omnidirectional �eld of view. b) The back of the

robot, showing the microcontroller and wiring. 65

Figure 5.3 An example of the �eld of view of the robot using the �ve

cameras. In the upper part of the image, the �ve cameras have

large blind spots. By turning 36o left and including these new

images, the blind spots are fewer and signi�cantly smaller. . . 66

Figure 5.4 The placements produced by the coordinate descent and uni-

form placement algorithms for the ECS map. The white circles

represent marker locations. The visibility grids of the mark-

ers are overlayed on one another and each visibility grid is

outlined in blue. 67

xiii

Figure 5.5 Each colour line represents an individual run. (Top row) The

measured error between each waypoint for the 5 runs of each

placement of markers. (Bottom row) The number of times the

robot bumped into the wall between waypoints for the 5 runs

of each placement. A run is stopped as a failure if either 10

bumps occurred between a waypoint or the distance from the

robot to its next waypoint was greater than four meters. . . . 68

Figure 5.6 Box-and-whisker plot of the waypoints reached for each place-

ment. See Appendix C for an explanation of the box-and-

whisker plot. 69

Figure A.1 (a) The uniform visibility marker model. (b) The gradient

visibility marker model. 82

Figure A.2 (a) Equation A.2 of the gradient visibility model with rmin =

0.5 and rmax = 3. (b) Equation A.3 of the gradient visibility

model with αjt = 50o. 83

Figure B.1 a) The formation of the Reuleaux triangle by 3 uniformly

placed markers (marked by `x') around a waypoint at the cen-

ter. b) The properties of the Reuleaux triangle given we only

know R− rw. 85

Figure C.1 An illustration of the box-and-whisker plot with some example

input data. 87

Chapter 1

Introduction

As computers systems have become more and more ubiquitous in automating every-

day tasks, automation is rapidly accelerating into the physical world in the form of

robotics. In 2012, NASA successfully autonomously landed the Curiosity rover on

the surface of Mars. The mission was a huge feat because of the di�culty involved

with decelerating and landing in the Martian environment the 899 kg rover payload

which was equipped with sensitive scienti�c equipment. In the same spirit, Google

is conducting the Google Lunar XPrize where several commercial teams are compet-

ing to land rovers on the Moon's surface by 2016 for $30 million dollars in prizes.

The vast improvements of and access to robotics are not limited to space, with new

robotic systems constantly being built and improved for ocean �oor mapping, deep

sea exploration and observing, search and rescue, self-driving cars and automated

warehouses to name a few applications. Consumer robotic products have also arisen,

robot vacuum cleaners, toys and the vast growth of quadcopters due to the large

hobbyist DIY (do it yourself) drone movement.

This growing push of interest in robotics applications requires constant innovation

on all fronts in the �eld of robotics. One aspect of robotics is the sub�eld of mobile

robotics, which is concerned with the problem of e�ectively moving a robot around

an environment. This is especially of importance when dealing with robotic systems

that are designed for autonomous or semi-autonomous control. A requirement of

autonomous and semi-autonomous control is that a robot be able to know its current

position with some level of accuracy. The problem of a robot determining its current

position and orientation (pose) is known as localization. There have been great strides

taken in localization, but with all these advancements there continues to be a need

for developing methods that allow a robot to be able to localize using simpler and

2

lower cost solutions.

The ideas of this thesis are inspired by earlier work to place directional ultrasonic

beacons [6] to assist a robot in localization. This thesis sets aside directional ultra-

sonic beacons to look instead at the notion of optimally placing what we call binary

directional proximity markers in an environment to provide localization capabilities

to a robot as it travels along waypoints.

A binary directional proximity marker can be detected by a robot when the robot

is within what we call the visibility region or �eld of visibility of the marker. In this

thesis, our markers are implemented as a crude planar �ducial marker system (signs

printed on paper that a camera can detect). Hence, the visibility region for this

type of marker is a function of the robot's distance from the marker and the robot's

direction vector to the marker with respect to the outward normal of the marker.

Throughout this thesis, we will refer to related research in the problem of sensor

placement. While a marker and sensor are obviously di�erent, they share certain

similarities. A sensor has a �eld of view described by its sensing range. With a binary

directional proximity sensor its �eld of view or range determines whether a target is

detected. Similarly, a marker has a �eld of visibility or visibility region such that,

when a robot is within the visibility region, the robot can detect the marker. Whether

the binary directional proximity sensor detects a robot that has entered its �eld of

view or the robot detects the binary directional proximity marker in the marker's

visibility region, the localization information gained is determined by the region of

the �eld of view or visibility region, respectively. We recognize that markers and

sensors are not exactly the same, but we believe previous sensor placement research

is relevant. As such, this thesis will focus on the placement of markers, but some of

the ideas presented may be possible to translate over to binary directional proximity

sensor research.

One bene�t given by the use of markers is that they do not consume power unlike

most active sensors. As a result, this thesis does not require dealing with the issue of

minimizing power consumption, in contrast to other sensor placement research.

To measure the e�ectiveness of a given placement of markers an intuitive scoring

function is proposed. Using this scoring function, we run several common meta-

heuristic algorithms to �nd �good� placements for a speci�ed number of markers on

randomly generated hallway maps. Finally, the �good� metaheuristic placements us-

ing the proposed scoring function are tested on a physical robot in an actual o�ce

hallway. The results of this experimentation are then discussed.

3

1.1 Problem Overview

Now we give a high-level description of the overall problem. The problem is de�ned

formally as:

Given an environment map, a desired robot path described by a se-

quence of waypoints, and a discrete collection of possible directional marker

poses, what is a good con�guration of these marker poses? Here, we as-

sume that there are only k markers and that we want to minimize the

deviation of the robot from each waypoint as it travels along the sequence

of waypoints.

Figure 1.1: An example of an o�ce environment a robot could traverse through. Each
pixel is a decimeter2. The dark blue pixels represent area that is non-navigable. Red
pixels represent the path the robot is expected travel. Possible marker poses for this
map are provided and are shown as orange pixels; in this case they correspond to
corners.

In this thesis, an environment map, G, is a binary, 2D, m × n occupancy grid

where each 0 grid square represents non-navigable area (usually a wall) and each 1

grid square represents free-space or navigable area. For simplicity, we represent a path

as sequence of discrete 2D waypoints that a robot will travel along. The waypoints

lie in navigable area in the environment map.

Localization is the process of determining a robot's true position and orientation

(or pose). The localization problem comes in three general �avours: robot tracking or

local localization, global localization, and the �kidnapped robot� problem. The robot

4

tracking problem is the well researched topic of tracking a robot's position as it moves

around an environment where some belief of its initial position is known. How the

robot moves through the environment is usually known a priori and modeled with

some error, where this error is mitigated using markers to aid in the control of the

robot. The global localization problem is the problem of localizing a robot within an

environment without any prior belief of its position � that is, all initial positions in the

environment are equally likely. The kidnapped robot problem is a combination of robot

tracking and global localization: a robot travels around an environment, but can be

�teleported� to another location. The problem then becomes one of determining the

robot's position given its sudden relocation to new surroundings. A related area of

research is the problem of moving a robot through an environment with little or no

a priori knowledge of the environment. Thus, a robot must map the environment

as it moves through it, and its current localization state will inform mapping. This

then feeds back into the map which will inform localization, if the robot returns

to mapped areas. This well known problem is called Simultaneous Localization and

Mapping (SLAM). For more on the subject, the reader is directed to Thrun et al. [7].

This thesis will focus on robot tracking. Any possible extensions of this work to

global localization and/or the kidnapped robot problem are left for future work.

Just as humans may use their eyes, ears, sense of balance and touch to navigate

their surroundings, so too must a robot use sensor information to localize itself.

There are many sensor systems that exist to accomplish localization (or just position

estimation), one of the most popular being the Global Positioning System (GPS).

Although GPS is practical in many applications, it has the detriment of not being

able to function in several key environments: underwater, underground, indoor and

areas on an extraterrestrial surface not equipped with the necessary and complex

satellite infrastructure. GPS also has a position error bound of several meters when

used in civilian applications on Earth, which may be more error than certain mobile

robotics problems can tolerate.

The sensor focused on in this thesis is the camera which will be used to detect

binary directional proximity markers. This means a marker is associated with a binary

output (0 or 1) that is determined by whether the robot is within a visibility region of

the marker (1) or is outside the visibility region (0). In order for our system to work,

the robot must have an omni-directional �eld-of-view. An additional assumption is

that each marker is uniquely identi�able. In this thesis, the markers are planar �ducial

markers �xed to �at upright surfaces. Fiducial markers are arti�cial visual landmarks

5

placed in an environment to assist an agent in some task. For our purposes, the agent

is a robot, and the task is mobile robot localization. Our �ducial markers are planar

for reasons discussed below.

Figure 1.2: A 2D annulus. The grey shaded area represents an annulus sector.

The visibility region for the �ducial marker is represented by a 2D annulus sector

(see Figure 1.2) that is described by a 6-parameter vector: < xm, ym, θm, α, r, R >.

The �rst three parameters < xm, ym, θm > describe the marker's pose while the last

three parameters < α, r, R > describe the sector angle α, the minimum detection

range r and the maximum detection range R. The θm of the marker corresponds

to the yaw of the marker, where the the marker's pitch is �xed upright and roll is

�xed. For our problem, α is generally assumed to satisfy 0 < α ≤ π as any visual

detector behind the plane of the planar marker will be assumed incapable of seeing

the front side of the marker. Testing if a point p is within the annulus sector can be

done relatively e�ciently by �rst converting the test point p =< xp, yp > to polar

coordinates origined at the marker's position < xm, ym >:

rp =
√

(xp − xm)2 + (yp − ym)2

θp = arctan(yp − ym, xp − xm).

The transformation to polar coordination yields the new vector < rp, θp >. The

binary function that indicates whether a point is in the annulus sector can then be

determined using the following function:

6

f(rp, θp) =

{
1 If r ≤ rp ≤ R, |θp − θm| ≤ α

0 Otherwise.

The main focus of this thesis is the problem of placing these planar �ducial markers

in a �good � way so as to minimize robot error as the robot traverses a path through an

environment. The use of �good � is intentionally vague to encompass the fact that an

appropriate formal de�nition of the type of error to be minimized is task dependent.

There can be many trade-o� issues, and the solution found will likely be non-ideal,

but acceptable. This optimization process is explored through the simulation of

various metaheuristic optimization techniques. These simulation results are then

used to inform physical localization experimentation with a robot in an actual o�ce

environment which will in turn validate the �ndings of the simulation.

1.2 Outline

This section brie�y reviews the intent and content of the remaining chapters.

In Chapter 2, we discuss related work, motivation and applications of this work

to provide context for the reader.

In Chapter 3, we delve into more details about the problem and discuss some of

the practical challenges in passing through the threshold from theoretical models to

physical reality.

In Chapter 4, we look into the simulation aspects of the thesis. Di�erent meta-

heuristic algorithms are described and evaluated to demonstrate their e�ectiveness at

marker placement. The metaheuristic algorithms are evaluated on random maps of

hallway environments; the process for generating these random maps is also detailed.

In Chapter 5, we explore evaluating marker placements in an actual physical

o�ce environment and detail the software and hardware involved to accomplish these

experiments.

In Chapter 6, we present a summary of the research and results presented in this

thesis as well as re�ect on possible future work.

1.3 Contributions

This thesis explores a number of various aspects-of-interest, but its main contributions

can be summarized by the following:

7

1. Evaluation in simulation and experimentation of various metaheuristics under

di�erent parameters for the directional sensor placement problem.

2. An original computational method, together with source code, for generating

random 2D o�ce maps.

3. A Python library for encoding and decoding a simple planar �ducial marker:

redcomet.

8

Chapter 2

Related Work

In this chapter we will provide background on related work to the problem as well as

describe possible applications.

2.1 Directional Sensor Placement

Sensor networks, especially wireless sensor networks, encompass a major area of re-

search because of their numerous applications. Wireless sensor networks can involve

a variety of sensors including infrared, sonar, radio and light sensors. These sensors

tend to be active, that is, they require a power source, which can enable them to have

greater range and intelligence. Sensors or markers that are not powered are passive

and include passive Radio Frequency Identi�cation (RFID) [8], light re�ectors [9] and

�ducial markers, for example. The sensors that form sensor networks are then used

to accomplish a variety of useful tasks such as localization, environment sensing, and

surveillance to name a few. One aspect of sensor networks is choosing the location

and orientation of the sensors. In some research, sensors are distributed randomly or

uniformly about an environment, irrespective of cost and e�ective coverage. Other

research, and the focus of this thesis, deals with the placement of sensors to best fa-

cilitate the e�ectiveness of the sensors for some set of tasks. There is a large body of

literature on sensor placement with omni-directional sensor coverage, wherein sensor

coverage areas are usually modeled as circles or spheres. The focus of this thesis does

not consider these problems, but instead focuses on directional sensors.

When the task of the system that uses the sensors is unknown, the notion of an

e�ective sensor placement tends to be de�ned by a sensor placement that covers an

9

environment or target points in an environment. When dealing with only directional

sensors, this is called the directional sensor coverage problem. A relatively recent

survey on the directional sensor coverage problem is that of Guvensan and Yavuz [10]

and serves as a good introduction to the �eld. One of the original papers on directional

sensor placement with randomly deployed sensors is that of Ai and Abouzeid [11].

In the paper, the authors de�ne the Maximum Coverage with Minimum Sensors

(MCMS) problem, whereby sensors are randomly placed in an environment and the

goal is to orient them to cover target points. For this problem, sensors have �ve

parameters: position (x, y), orientation, sector angle and radius. These parameters

de�ne a sector (see Figure 2.1). The MCMS problem is de�ned as follows (taken

from [11]):

�Given: A set of targets S = {s1, s2, ..., sm} to be covered; a set of n homogenous

directional sensors, each of which has p possible orientations, randomly deployed in a

two-dimensional plane. Hence, a collection of subsets F = {Φij, 1 ≤ i ≤ n, 1 ≤ j ≤ p}
can be generated based on the TIS test1, where each element Φij is a subset of S.�

�Problem: Find a subcollection Z of F , with the constraint that at most one

Φij can be chosen for the same i, to maximize the cardinality of the union of chosen

∪(i,j)Φij (i.e., the number of covered targets) while minimizing the cardinality of

Z = {Φij, (i, j) is chosen} (i.e., the number of activated directional sensors).�

Ai and Abouzeid prove the MCMS problem to be NP-Complete by converting

MCMS to the NP-Complete MAX_COVER problem [12] in polynomial time. In

addition, they provide an Integer Linear Programming (ILP) formulation for the

problem that leads to an optimal exponential time solution, which does not scale

well. For large target coverage problems, Ai and Abouzeid also describe two greedy

algorithms: a centralized greedy algorithm and a distributed greedy algorithm. The

distributed greedy algorithm is scalable as it allows sensors to con�gure themselves

amongst local neighbors without the need for a central hub. Their simulations show

that the distributed greedy algorithm gives comparable coverage results to the cen-

tralized greedy approach, but uses more sensors.

Fusco and Gupta build on the work of Ai and Abouzeid in [13], describing the

k-coverage maximization problem. In k-coverage maximization, the problem is the

same as MCMS except that it is not enough to cover a target once � it must be

covered k times, where k ≥ 1. They, too, describe a greedy approach for �nding the

1�TIS� means �Target In Sector�, and the TIS test evaluates whether a given point is in a given
sector.

10

Figure 2.1: The typical model for a sector-shaped directional sensor de�ned by the
�ve parameters: (x, y, θ, α,R). This di�ers slightly from our own visibility region
model where α would be α

2
in their model.

minimum number of sensors needed and prove that the greedy algorithm will k-cover

at least half the targets.

Wu et al. [14] also look at the k-coverage directional sensor placement problem,

but from the point-of-view of a probabilistic sensor model. There are two types of

sensor models: binary and probabilistic. In a binary sensor model, if a target is

within the coverage region of the sensor it is regarded as detected; otherwise, it is

not detected. (Note that, this thesis assumes a binary sensor model, but discusses

a probabilistic model in Appendix A). In a probabilistic sensor model, the sensor's

coverage is probabilistic, where di�erent points in the environment will give di�erent

probability densities according to the sensor model of whether the target will be

detected by the sensor. Given the probabilistic sensor model constraints, Wu et

al. [14] give an ILP-based approximation algorithm and distributed approach called

the Coverage Bene�t Detection Algorithm.

In recent work by Akbarzadeh et al. [15], the authors detail a far more sophisti-

cated and realistic 3D probabilistic directional sensor model than that used in most

previous coverage research. They test several coverage placement algorithms with

real terrain maps to demonstrate real world issues that arise as a result of points

in the map having a blocked line-of-sight to sensors in the real-world terrain. They

prove that an existing geometric approach to coverage is far less e�ective at coverage

than the optimization techniques they test.

Although these discussed approaches focus on coverage, they do not consider or

do not assume the knowledge of the possible path a robot will take and as a result,

the �best� coverage is not always e�cient or e�ective when the main focus is ensuring

11

accurate mobile robot navigation.

Some initial work on sensor placement for localizing a robot with the inclusion of

error was done by Zhang [16]. Sensors were represented by their covariance matrices2,

assumed to be Gaussian and ellipses de�ned by the eigenvectors2 and values of the

covariance matrix. Zhang then framed the problem as determining the orientations

around a common origin that would minimize the determinant of the joint covariance

matrix of all the sensors. Zhang proved that if a non-trivial local optimum con�g-

uration (angles that are not 0o and 90o) of orientations exists then it is the global

optimum and its minimum covariance ellipse is a circle. This approach made several

simplifying assumptions that are not practical in more complicated real world prob-

lems. For example, the scope of the work does not include consideration of a robot

moving around the environment.

Jourdan and Roy [18] detail optimal sensor placement with respect to their Posi-

tion Error Bound (PEB) function, a lower bound for range-based localization sensors

which is similar to the geometric dilution of precision (a metric for measuring the

quality of a con�guration of GPS satellites), but which accounts for sensor bias and

sensor variance dependent on the distance of the reading. A certain number of k

sensors are placed on boundaries of polygons to minimize the overall average PEB

at speci�c points using a coordinate descent algorithm that they prove to converge

with a speci�c error bound. This approach does not include the robot, but focuses

on minimizing error at speci�c points in an environment.

Vitus and Tomlin [19] take the robot's uncertainty along a planned trajectory into

account when placing omnidirectional sensors. Using a linear Gaussian approach, the

robot's error is represented by a collection of Gaussian covariance matrices along the

planned path. The covariance matrix at a point along the path is determined through

the covariance of the previous state and the covariance of sensors that are visible at

that current state. To determine whether a sensor is visible given that a sensor

has a maximum sensing range, the positional covariance at a point along the path is

represented by an ellipse of the position covariance with a given Chi square con�dence

δ (typically δ ≥ 85%). If the sensing range of the sensor completely encompasses the

robot's covariance ellipse, then the robot can likely be perceived. Using M sensors,

the optimal placement of sensors is determined based on minimizing the sum of the

traces of the covariance matrices. The authors present an incremental algorithm

2For more information on covariance matrices as they relate to multivariate normal density func-
tion and eigenvectors the reader is directed to [17].

12

where a new sensor is appended to the existing ones and its pose is optimized with

gradient descent. They demonstrate through simulation that their approach provides

better placements more consistently than does simulated annealing.

Beinhofer et al. [20] evaluated placement of arti�cial landmarks using a so-called

unscented Kalman Filter approximation of the robot's traversal of a trajectory. They

proved that a particular subset of the problem of arti�cial landmark placement, where

the decision of movement of the robot is not directly determined by the previous state,

is a submodular set function. The intuitive consequence of a submodular function is

that the positive e�ects of adding landmarks will diminish as more and more land-

marks are added. Nemhauser et al. [21] proved that a greedy approximation algorithm

for submodular set functions gives a guaranteed result of at least (1− 1
e
) ≈ 63% of the

optimal solution. In the case where a robot's movement is determined by the previous

state (autonomous control) and submodularity no longer holds, their simulations and

experiments showed that a greedy approximation algorithm still performs well in this

case.

Recently, Beinhofer et al. [22] improves on similar work by Vitus and Tomlin, in

that points along a given path are represented by Gaussian distributions and com-

puted through linear Gaussians. The problem is altered so that instead of k landmarks

being placed to minimize the overall error of the robot's trajectory, landmarks are

instead incrementally added to satisfy the property that the robot does not devi-

ate from the desired path by more than a distance threshold dmax with a probability

pmin. Although the number of landmarks the algorithm uses may not be the minimum

number of landmarks for the global optimum, it gives a heuristic minimum number

of landmarks to satisfy deviation constraints. Their approach is thoroughly validated

through extensive experimentation with dmax = 0.5 meters and pmin = 99%. These

results are extended to be more robust in [23], wherein optimal landmark placement

would take into consideration the possibility of missing or unobserved landmarks.

Analogous research to that presented in this thesis was reported in the Master's

thesis of Meger [24]. That thesis dealt with localizing a mobile robot �tted with �du-

cial markers that moved within a camera sensor network (in contrast, this thesis has

cameras on the robot and �ducial markers in the environment). The camera network

approach has many bene�ts as a signi�cant amount of information to estimate the

robot's pose can be gained using a camera network. It is also a logical approach in

an environment where a camera network may already exist, as is typically the case

with security surveillance systems. However, in remote or underwater environments,

13

such a camera network may not be as feasible or practical. Cameras within the net-

work require power and the cameras require calibration. In underwater environments

cameras have a reduced �eld of view � a problem that also exists for any cameras

on a robot. That said, it may be more cost e�ective and practical to �ood an envi-

ronment with many crude markers and out�t a robot with cameras than to power a

large network of camera sensors. We recognize that both approaches have di�erent

advantages in di�erent circumstances.

2.2 Fiducial Tags

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.2: a) QR code (image from wikipedia.com). b) MaxiCode (image from
wikipedia.com). c) ARToolkit (image from ARToolkit software package). d) ARTag
(image from [1]). e) Cantag, circle inner version (image from [2]) f) Fourier tag (image
from [3]). g) robust pseudo-random array �ducial marker (image from [4]).

Planar �ducial markers encode data into a planar pattern that can be decoded

by computer vision techniques. While this thesis will use �ducial markers in the

experimental component, the topic of �ducial markers is not a focus of this thesis,

so we will not go into depth on the subject. For a more complete overview of the

topic the reader is recommended to read [4], which gives a relatively recent and in-

depth review of existing marker systems. Some of the most common visual encodings

are the DensoWave Quick Response (QR) Code (Figure 2.2a) and UPS' MaxiCode

14

(Figure 2.2b). Both these systems are designed for use as barcodes and therefore

are used to encode relatively large amounts of data. Decoding then requires a good

capture of the barcode. In applications where the barcode must be read from a range

of perspectives and at di�erent resolutions, decoding is not very robust, and so the

use of barcodes does not serve as an optimal choice for robot localization.

Two bitonal (i.e. only two tones are used) �ducial markers of note were developed

in the early 2000's for use in augmented reality, but have extended to far di�erent

applications as well (i.e. [25]). A major contribution has been the Augmented Real-

ity Toolkit (ARToolkit), a �ducial marker whereby the marker pattern consists of a

unique symbol surrounded by a dark border (Figure 2.2c). Recognition of the marker

is accomplished by calculating the correlation of detected sample pixels to all marker

symbols being used in the particular application. The dark border surrounding the

symbol also gives the added bene�t that the four corners that de�ne the marker square

can be used as four known points in the environment which can then be used to deter-

mine the 3D position and orientation of the viewer. This approach has several issues,

such as the correlation process mistaking one marker for another (interconfusion) as

well as scalability concerns as the number of markers used increases. An alternative

approach is the Augmented Reality Tag (ARTag) created by Fiala [1], which incorpo-

rates a linear error correcting codes approach. A binary data ID from roughly the

range [0, 1024] is encoded with a Reed-Solomon error correcting code together with

a checksum into a 36 bit packet. This packet is then arranged into a 6× 6 grid that

de�nes the markers (see Figure 2.2d). There are a variety of di�erent markers that

are very similar to ARTag (Cantag, ARToolkit Plus, BinAryID, etc.). Olson [26] im-

plemented and detailed a C and Java open source tag called AprilTag that is a more

robust ARTag. We became aware of AprilTag after implementing our own �ducial

marker and so we decided to continue with our simple Python implementation (see

Chapter 3.3) instead of using AprilTag. Use of AprilTag may be done in future work.

Stathakis et al. [4, 27] introduce the Robust Psuedo-Random Array Marker, a

colour-based �ducial marker that can better handle occlusion and that a�ords 3D

pose estimation. Rather than relying on edge detection methods to recognize the

border of a marker, this marker uses pseudo random arrays as unique features that

can be used to detect the presence of a marker. Although a seemingly logical choice

for this thesis, it was not chosen for reasons discussed in Chapter 3.

A common feature with the previous mentioned approaches is the assumption

that the data of markers is either completely recognized in full or not at all. This

15

leads to distance thresholds, where after some distance the marker is assumed to be

no longer recognizable and ceases to provide any information. One �ducial tag that

allows for smooth degradation of information as distance from the marker increases is

the Fourier tag [28, 3], which encodes marker data by transforming the binary digits

of the marker into relatively high amplitude peaks in the frequency domain. The

Fourier tag was not selected for this thesis because the need for smooth degradation

is not required and introduces more complexity.

Harle and Hopper [29] describe a system that increases the robustness and data of

markers by creating a cluster of multiple Cantag �ducial markers [2] (see Figure 2.2e

for one example of a Cantag marker). This gives a much greater data size, as data

can be stored amongst a collection of markers. Any failure to recognize an individual

marker is mitigated by the recognition of the other markers in the cluster. This is

an interesting approach, but introduces far more complexity than necessary for our

goals.

2.3 Applications

Investigation into di�erent approaches to localization will continue to be relevant

because there will always exist applications where GPS is not available: under the

surface of the ocean [30], underground and in indoor environments. Other sensors

can make up where GPS fails, but they do have problems � one of the major issues

being cost. Planar �ducial markers are relatively cheap as the majority of cost is in

the printer ink and can be measured in cents. Because of their low price, �ooding an

environment with a large number of markers is not an issue, assuming that placement

of the markers can be readily done. Most sensors in a sensor network require power to

operate as well as transmit readings over a radio. The use of power usually requires the

use of batteries, which limits sensor lifetime or requires sensor maintenance. Because

the �ducial markers are made of paper their lifetime is not of critical concern. A binary

sensor is the most primitive sensor that can exist and although modern sensors provide

a variety of useful information for localization, binary sensing can still provide some

information. For example, the modern �ducial markers discussed above can be used to

estimate the pose of the viewer to the marker, but as far as we are aware this requires

the camera to be calibrated. Setting aside the bene�ts of price and maintenance that

markers give, it is also possible to imagine scenarios where the camera of the robot

becomes uncalibrated or damaged during operation, but is still capable of detecting

16

markers without the capability of accurately using the pose estimation information

from the marker. By being aware of the the crudest form of observation, the detection

or lack of detection of certain markers, a robot can still operate with some e�ectiveness

in its environment knowing that a marker is only visible under certain conditions (i.e.

within an annulus sector origined at the marker).

The problem of a robot requiring accurate traversal along routine paths in a known

environment is very common in the automation of factory and warehouse enterprises.

Because of its location here in Victoria, we now elaborate on an interesting example

that is provided by the NEPTUNE Canada project, under Ocean Networks Canada.

At the time of this writing, NEPTUNE Canada is the largest underwater observatory

in the world. The overall goal of NEPTUNE Canada is to provide a network of long-

term in situ observatories to collect data on underwater environments for the study

of a wide range of topics [31]. These include fauna populations, methane deposits,

bacterial mats, and shifts in ocean properties over time in relation to climate change,

to name a few.

(a) (b)

Figure 2.3: a) The remotely operated benthic crawler: Wally. b) An example of a
markers (yellow `9' sign) used by the teleoperaters of Wally to help them localize.
The images are from Ocean Networks Canada.

One area being monitored as part of Ocean Networks Canada is Barkley Canyon

because of its extensive hydrate mounds. To allow for mobile observation of hydrates,

Barkley Canyon is equipped with a benthic (sea-�oor) remotely operated crawler

known as �Wally� (see Figure 2.3a). Its purpose is to monitor �methane �ux variations

and gas hydrate dynamics at the Barkley Canyon hydrate outcrops� [32]. Wally is

powered by a 70 meter cable connected to the Barkley Hydrates instrument platform

17

operating at a depth of 870 meters. The instrument platform also provides high

bandwidth communication to and fromWally. Wally was designed and is teleoperated

by a team at Jacob's University in Bremen, Germany. There are two crawlers, Wally

I and Wally II, but only one robot is active at the underwater site at any time. It

operates for approximately one year and is swapped for the other robot during the

summer. The swapped out robot is then taken to the surface for repairs and upgrades.

A long-term goal is to eventually have Wally operate autonomously. The choice of

sensors and their placement can become an issue as the the cost associated with sensor

placement underwater can be expensive. In addition, it could be of some value to

localize Wally's pose using the existing old data, which include buoyant markers that

are used by Wally's teleoperaters (see Figure 2.3b).

The sea-�oor conditions of Barkley Canyon are quite dynamic. Strong currents

will cause markers to slightly move, change orientation and be buried. The sea-�oor

is very uniform in texture, but can change drastically over time making the �nding

of landmark features di�cult. The environmental noise of marine snow and sediment

clouds can also make the accurate detection of landmarks di�cult. Under these

conditions, the simple act of a marker being detected where it would only be visible

from a certain range and/or angle may be the only useful and recognizable source of

data for localization purposes.

18

Chapter 3

Approach, Methodology and

Parameter Estimation

In this chapter, we discuss some of the theoretical background and reasoning for the

approach of this thesis. Because the research of this thesis is ultimately intended for

application in the physical world, discussion will also include some of the nuances and

challenges associated with moving from theory to practice.

3.1 Localization

In the real world it is di�cult to truly know the exact pose of a robot to in�nite

precision. As a result, it is common in robotics to best view the pose of a robot through

the perspective of �belief�. Belief is described mathematically through probability and

random variables. A random variable Y is a function with a discrete or continuous

domain (or sample space) and a range such that for every value y in the range of Y

p(Y = y) ≥ 0 and
∫
p(Y = y) dy = 1.

In the next sections, we discuss the notion of a robot's �belief� about its pose,

as it makes a movement or action given inputs and resolves error through marker

observation. We speci�cally use a particle �lter in this thesis (which we will describe),

so we provide some of the high level mathematical background to justify why it works.

3.1.1 Motion Model

We assume our robot will be operating in 2 dimensions and will work in discrete

steps of time. The interval between time steps may not necessarily be constant, but

19

Figure 3.1: An illustration of the robot (gray circle) at time t − 1 moving to a new
position at time t using the control inputs utlinear, u

t
angular.

the robot's state at time t is represented by a random variable Xt that describes the

robot's pose in a global coordinate frame (without error):

Xt =


xt

yt

θt


Here, (xt, yt) represents the robot's position with respect to a global origin and

θt is the robot's orientation with respect to the global origin axes. We focus on

modeling a mobile robot that traverses an environment. When the robot moves it

alters its state between each discrete time step. The type of robot we work with is

a di�erential drive robot, which can drive straight as well as turn in place. (The

actual robot used is described in more detail later in Chapter 5). In our work, to

control the robot to move from one point to another, we use a sequence of in-place

turns and straight-line movements, or angular and linear movements. These are

given by linear and angular inputs: utlinear and utangular at time t, respectively (see

Figure 3.1). The linear and angular control inputs describe the linear distance the

robot has traveled on its current heading and the change in its heading. The change

in distance and heading is ultimately described by the linear and angular velocity,

for example utlinear = vtlinear(t− (t− 1)) where vtlinear is a velocity given to the robot.

Some models will view control inputs as the velocity inputs at di�erent times. In our

case, we work with a robot's onboard odometry. The robot we use is equipped with

a tachometer on each wheel which gives us the distance the robot has traveled and

20

turned when polled.

Assuming the robot moves perfectly, the robot's new pose after one time step t−1

to t can be approximated by the linear transformation:
xt

yt

θt

1

 =


1 0 0 utlinear × cos θt−1

0 1 0 utlinear × sin θt−1

0 0 1 utangular

0 0 0 1




xt−1

yt−1

θt−1

1


Because our robot operates in the physical world, errors will inevitably occur as

the robot travels. These errors can be caused by several factors, such as an imperfect

actuation of the robot and wheel(s) slippage, to name a few. Such errors must be

considered when working with a robot operating in the real world. To account for

error, we include possible errors from linear and angular motions: etlinear and e
t
angular

respectively for time t. We assume the error is described by zero mean normal distri-

butions:

N (x, µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2

etlinear = N (0, σtlinear
2
)

etangular = N (0, σtangular
2
)

where σtlinear and σ
t
angular are standard deviations based on observing the deviation

of the robot as it moves and the particular movement at time t. Intuitively, a larger

linear distance traveled at time t should have σtlinear ≥ σt−1linear if the robot at t − 1

traveled a smaller linear distance. The same logic applies to σtangular.

To represent the belief about a robot's pose while considering error, we represent

the belief about a robot's pose as a random variable. The belief about the robot's

initial position at time t = 0 is encapsulated in the notation: bel(X0). For the conve-

nience of the reader, we mention now that the random variable we use to represent

X0 is still not de�ned, but the following is meant to demonstrate the requirements

and implications for any random variable. We will discuss more about the random

variable used shortly.

Given we know bel(Xt), we can predict the robot's pose after a given motion

command by incorporating the odometry readings after a motion and the belief about

21

a robot's pose at the previous state by using a motion model or action model :

bel(Xt) =

∫
p(Xt|ut, Xt−1) bel(Xt−1) dX (3.1)

Equation 3.1 is the motion model of the classic Bayes Filter. The p(Xt|ut, Xt−1),

from a high-level perspective, describes through the language of probability how the

belief of the robot will change given the motion input ut and previous belief Xt−1.

This component will introduce what the expected error from such a motion will be

(for a particle �lter visualization of this, see Figure 3.3). The reason we use the line

over bel (i.e. bel(Xt)) is that the motion model serves as a intermediary step for

when we correct for error using observations (described below in Section 3.1.2). If

there were no correction for error included, we could simply have bel(Xt) = bel(Xt),

but the state of the robot would accumulate errors. One of the key implications of

Equation 3.1 is that the only information taken into account is the previous state

Xt−1 and the current motion ut; all previous states Xt−2, Xt−3, ..., X0 and motions

ut−1, ut−2, ..., u1 are assumed to be encompassed in the previous state. This assump-

tion (theMarkov assumption1) makes the motion model recursive and this assumption

works well enough in practice.

As mentioned above, Equation 3.1 describes any random variable. With that in

mind, the choice for the random variable to represent the belief about the robot's

pose will ultimately a�ect how Equation 3.1 is actually implemented. One of the

logical choices for a random variable is one of the most common probability density

functions: the multivariate Gaussian function. The multivariate Gaussian function is

the Gaussian function extended into > 1 dimensions. It is parameterized by a d-vector

mean µ and d× d square covariance matrix Σ, where d is the number of dimensions.

For our purposes where we are working in 2D and consider the robot's orientation

(x, y, θ), so d = 3. In cases where a robot operates in 3D, a system must consider the

3D position of the robot (x, y, z) as well as its three orientations: yaw, pitch and roll.

In such a 3D system (not used in this thesis), the multivariate Gaussian function

would been be de�ned by d = 6. In order for the multivariate Gaussian function

to exist, we assume Σ is comprised of real numbers and must be nonsingular (i.e.

|Σ| 6= 0) and positive de�nite (i.e. given any non-zero column vector b, bT Σ b > 0).

The probability density for a given d-vector x can be found by:

1For more information about the Markov assumption refer to [17].

22

pdf(x, µ,Σ) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3.2)

Using a multivariate Gaussian function for the random variable Xt leads to a

commonly used �lter: the Kalman �lter [33]. Although this thesis does not use the

Kalman �lter, we believe its existence warrants mention. The formulation of the

Kalman �lter requires a linear Gaussian motion and observation model (the observa-

tion model will be discussed below). The Kalman �lter's requirement for everything

to be Gaussian and linear is not always realistic or possible (i.e. some sensors will

not return readings that are in a (x, y, θ) Gaussian form). Solutions to address these

requirements have arisen. One example is the Extended Kalman �lter, which works

by approximating an action and/or observation model that is a nonlinear di�eren-

tiable function by a partial derivative Jacobian matrix through a �rst order Taylor

series expansion. This essentially approximates an action or observation model into

a linear Gaussian form [7]. This linear approximation can then be used within the

Kalman �lter. The �rst order Taylor series approximation can work quite well when

the approximated model(s) have small error, but if the error is large then the �lter can

su�er as the models are only an approximation [7]. An additional issue that can arise

from working with the Kalman �lter is that a Gaussian function is unimodal, that is

it only has one peak. In the course of localization, especially global localization, it is

possible that the robot could likely be in any one of multiple general locations. The

Kalman �lter is quite e�cient and entails certain requirements that can usually be

satis�ed, but not so in our case.

A popular alternative to Kalman �lters, and the one used in this thesis, is the

Monte Carlo Localization (MCL) approach [34] �rst introduced as the bootstrap �lter

by Gordon, Salmond and Smith [35]. The basis of MCL is that a probability density

function that represents the belief of our robot's pose, which is continuous, can be

approximately represented by a �large� discrete collection of samples or particles2.

This approach is commonly known as a particle �lter. The use of `large' is left vague,

but the number of particles N that are necessary to e�ectively represent a probability

density function is dependent on the properties and complexity of the function. As

a reminder, the domain of the probability density function for this thesis is the set

of possible poses (x, y, θ) of the robot in its environment. A density function with

2This thesis will use the words `particles' and `samples' interchangeably. At times we will also refer
to the process of taking samples � which involves generating samples or particles from a probability
density function using pseudo random number generation.

23

Figure 3.2: Example of 5000 samples taken from a 3D (x, y, θ) zero mean multivariate
Gaussian plotted in 2D (x, y). Each of these particles can be seen to represent a
possible initial pose of the robot. The orientation of each sample is not shown.

many dimensions and possible modes (multimodal) will likely require more particles.

By discretizing the probability density function into N samples, each sample can be

viewed as a possible pose of the robot. The size of N can be �xed or dynamic. The

choice of N is typically in the thousands with current processors. In this thesis, we

arbitrarily set N = 5000 which proved overly su�cient. We de�ne a sample i at time

t as:

sit =


xit

yit

θit


Additionally, each sample has a corresponding weight wit that satis�es

∑N
i=1w

i
t =

1. Initially, when t = 0, particles are sampled from a multivariate Gaussian function

where the mean µ0 is the starting pose of the robot and the covariance matrix Σ0 has

relatively low variance relative to how well known the starting pose is. In the case of

global localization, samples can be taken from a uniform density function, sampled

within the navigable area in an environment. An example of particles for the particle

�lter generated at time t = 0 can be seen in Figure 3.2. The weight for every particles

i at t = 0 is wi0 = 1
N
.

With the particle �lter, updating the robot's pose after a movement can be viewed

24

Figure 3.3: The spread of particles at di�erent intervals as the robot travels 40 meters
from the bottom left to the top right. The particles have been projected into 2D (x, y).

as moving each particle using samples from the motion model. In our case, we draw

N samples from φit = etlinear and ψit = etangular. Recall, etlinear and etangular are 1D

normal functions with zero means and standard deviations described by σtlinear and

σtangular, respectively. They describe the error of the linear and angular motions. After

a movement of utlinear and u
t
angular at time t, then a particle sit−1 is updated by:

sit =


xit

yit

θit

1

 =


1 0 0 (utlinear + φit)× cos θit−1

0 1 0 (utlinear + φit)× sin θit−1

0 0 1 utangular + ψit

0 0 0 1




xit−1

yit−1

θit−1

1

 (3.3)

Equation 3.3 is applied to all N particles and comprises the robot's belief after

moving bel(Xt). Figure 3.3 demonstrates this process where particles in the particle

�lter are taken at intervals after applying input commands over 40 meters of travel.

3.1.2 Observation Model

As seen in the Figure 3.3, as a robot continues to travel the motion errors will accu-

mulate, such that as time goes to in�nity, so too will the error. Ultimately, a robotic

system must bound this error in order to accomplish any meaningful navigation. To

25

bound the error, the robot must collect sensor observations, either through an exter-

nal positioning system or by observing its environment for landmarks, that is, features

in an environment that help the robot determine where it is. In our work, the robot

observes arti�cial landmarks in the environment in the form of planar �ducial markers

that are �xed at known locations which can be speci�ed.

After the robot has updated its previous belief (bel(Xt−1)) following a movement

that completes by time t to get a preliminary belief about its new pose (bel(Xt)),

the robot observes its environment and detects or does not detect every marker in

the environment. Given M total markers in the environment, these observations

are represented by the collection of observations zt = {z1t , z1t , ..., zMt }, where z
j
t is a

random variable associated with marker j at time t. In this thesis, we treat markers

as binary directional proximity markers, so we de�ne the observation random variable

zjt as capable of taking on only two events: if the marker is detected, zjt = 1; if the

the marker is not detected zjt = 0.

After the robot observes the environment resulting in a collection of marker read-

ings zt, the robot's preliminary belief (bel(Xt)) after moving needs to be revised using

the marker readings to get the new belief (bel(Xt)). This is accomplished mathemat-

ically by the observation model or sensor model of the Bayes Filter [7]:

bel(Xt) = η

∫
p(zt|bel(Xt)) bel(Xt) dX (3.4)

Here η is a normalization factor, that is, a constant that represents a component

of Bayes' theorem that ensures all values sum to 1. The exact value of the normal-

ization factor is not important for now. Throughout the various equations below, the

normalization factor changes, but we keep the same notation η.

We assume that the detections of markers are independent of one another, so this

allows us to re-express Equation 3.4 as:

bel(Xt) = η

∫ (M∏
j=1

p(zjt | bel(Xt))

)
bel(Xt) dX (3.5)

In the particle �lter, the belief of the robot's pose is described by the weights

associated with the particles. The collection of the particles st and their weights wt

comprise bel(Xt). Thus, for the particle �lter, Equation 3.5 is simpli�ed by determin-

ing the weight for each particle given the observations:

26

wit =

(
M∏
j=1

p(zjt | sit)

)
wit−1

where we let wit denote the preliminary weight of the particle sit before normalization

to ensure that all the weights should sum to 1.

To simplify the model, we introduce a 0,1-valued random variable vi,jt that is

associated with the visibility of a marker j at time t by the particle sit. The random

variable indicates whether the particle sit is within the visibility region of marker

j, namely, vi,jt = 1 when the particle is in the visibility region of marker j and

vi,jt = 0 otherwise. Our approach borrows some of the ideas from Djuri¢ et al. in [36].

This new random variable gives rise to the following expression for the conditional

probability p(zjt | sit):

p(zjt | sit) = η

∫
v

p(zjt | v
i,j
t , s

i
t) p(v

i,j
t | sit) dv (3.6)

By assuming conditional independence, this can then be simpli�ed to:

p(zjt | sit) = η

∫
v

p(zjt | v
i,j
t) p(vi,jt | sit) dv (3.7)

Because vi,jt is discrete, the integral of Equation 3.7 becomes a discrete sum:

p(zjt | sit) = η
∑
v

p(zjt | v
i,j
t) p(vi,jt | sit) (3.8)

= η
(
p(zjt | v

i,j
t = 1) p(vi,jt = 1 | sit) + p(zjt | v

i,j
t = 0) p(vi,jt = 0 | sit)

)
(3.9)

Because zjt and vi,jt are discrete and only take the values {0, 1}, the conditional

probability distribution for zjt and v
i,j
t is simple to represent in table form:

p(zjt = 1 | vi,jt = 1) = a

p(zjt = 1 | vi,jt = 0) = b

p(zjt = 0 | vi,jt = 1) = c

p(zjt = 0 | vi,jt = 0) = d

In the table, a+ b = 1, c+ d = 1, a > b and d > c.

If the detection of markers were perfect within the annulus sector and never de-

tected outside the annulus sector then a = d = 1 and b = c = 0. In reality, there are

27

times where the robot will miss the detection of a marker when the robot is within

the visibility region and successfully detect the marker when the robot is outside the

visibility region. The values for a, b, c, d will ultimately a�ect the impact of a detected

marker or lack of detected marker on the belief of the robot's pose. If a is close to 1

and the robot does not detect the marker when the robot is within the visibility region

of the marker, the particle �lter will con�dently make a huge a mistake. Similar logic

applies for d. The values chosen can be found through experimentation, but a and d

should chosen to prevent the particle �lter from becoming too con�dent. We chose

the following values after observing the robot and for the sake of simplicity:

p(zjt = 1 | vi,jt = 1) 0.85

p(zjt = 1 | vi,jt = 0) 0.15

p(zjt = 0 | vi,jt = 1) 0.15

p(zjt = 0 | vi,jt = 0) 0.85

With p(zjt | v
i,j
t) de�ned, we need to de�ne p(vi,jt | sit). Because sit is continuous,

p(vi,jt = 1 | sit) and p(vi,jt = 0 | sit) must be continuous distributions. In the next

sections we look at the uniform continuous probability distribution to describe the

visibility model. An alternative probability distribution for a visibility model is de-

scribed in Appendix A, but it is not used in this thesis.

3.1.3 Uniform Visibility Model

Figure 3.4: The uniform visibility marker model.

28

One of the simplest notions for p(vi,jt | sit) is to make the assumption that any point

that is visible, no matter if it is in the middle of the annulus sector or at the very

edge, is equally likely. A continuous distribution that embodies this is the continuous

uniform distribution. The continuous uniform distribution for an interval [a, b] is

de�ned as:

U[a,b](x) =

{
1
|b−a| If a ≤ x ≤ b

0 Otherwise
(3.10)

This continuous uniform distribution only works for an interval, but the idea can

easily be extended for the annulus sector. We de�ne a continuous distribution for

marker j as:

U jt (sit) =

{
1

νjt
If rj ≤ rit ≤ Rj, |ωit − θj| ≤ αj

0 Otherwise
(3.11)

where νjt is the area of the visibility annulus sector, rjt , R
j
t are the minimum and

maximum range of marker j respectively, θjt is the orientation of the marker j and

αjt is the sector angle of marker j. Additionally, rit and ω
i
t are the distance and angle

from the sample sit to marker j respectively de�ned by:

rit =

√
(xit − x

j
t)

2 + (yit − y
j
t)

2

ωit = arctan(yit − y
j
t , x

i
t − x

j
t)

If we assume that every visible point is equally likely then we de�ne p(vi,jt = 1 | sit)
and p(vi,jt = 0 | sit) as:

p(vi,jt = 1 | sit) = U jt (sit) (3.12)

p(vi,jt = 0 | sit) = 1− U jt (sit) (3.13)

An illustration of Equation 3.12 given several (x, y) points can be seen in Fig-

ure 3.4.

It should be noted that the probability density 1

νjt
comes from the area of the

visibility annulus sector νjt .

29

3.1.4 Resampling

After sensing observations and computing the new weights for each particle, each

sample is then normalized to remove η and ensure all the weights sum to 1:

wit =
wit∑N
k=1w

k
t

When the observations have been considered, particles that clearly do not rep-

resent the robot's state should likely be removed. If the underlying distribution is

known, new particles can be generated from it. If it is unknown, a practical solution

can be to get new particles by reusing existing particles in such a way that the new

particles better �t the belief of the robot's state after observation. In this process

of selecting new particles from existing ones, particles with a higher weight should

have a better chance of being selected during the resampling process. In this thesis,

we use an O(N) running time algorithm (see Algorithm 1) that is discussed in [7].

The algorithm gives good importance replacement without sacri�cing too many low

weight particles.

Algorithm 1: Low_variance_sampler(St,Wt) (taken from [7])

1 St ← ∅
2 r ← rand(0;N−1)
3 c← w1

t

4 i← 1
5 for m← 1 . . . N do
6 u← r +N−1(m− 1)
7 while u > c do
8 i← i+ 1
9 c← c+ wit

10 add sit to St

11 return St

The resampled particles become St and each of the weights associated with the

particles is set to wjt = 1
N
for fairness. Using the observation model of Equation 3.9

given the uniform visibility models of Equation 3.12, the �gures in Figure 3.5 demon-

strate particles after resampling. When resampling is complete, the collection of

particles and weights now encompass the robot's belief at time t. The full particle

�lter algorithm for one time iteration is shown in Algorithm 2.

30

(a) Uniform visibility model (before) (b) Uniform visibility model (after)

Figure 3.5: Particles in the particle �lter before and after observation when the marker
is detected.

Algorithm 2: Particle_�lter(St−1,Wt−1, Ut, Zt)

1 for i← 1 . . . N do
2 sit ← p(sit|sit−1, Ut)
3 for i← 1 . . . N do
4 for j ← 1 . . .M do
5 wit ←

(
p(zjt | vit = 1)p(vi,jt = 1 | sit) + p(zjt | vit = 0)p(vi,jt = 0 | sit)

)
wit−1

6 Wt =
wit∑N
k=1 w

k
t

∀wit ∈ Wt

7 St = Low_variance_sampler(St,Wt)

8 Wt =
1

N
∀wit ∈ Wt

9 return St,Wt

3.2 Localization Patches and the Scoring Function

When the annulus sector visibility regions of markers are placed in an environment,

they along with the environment form a collection of possibly overlapping planar

regions. In this thesis, we will refer to these planar regions as patches in keeping

with terminology from the literature [37]. More precisely, we de�ne that a patch is a

maximal connected planar region such that all its points are seen by the same set of

markers. Thus, the patches partition the environment. Each patch has a signature,

that is the set of markers that see its points. Adjacent patches must have di�erent

signatures. However, depending on the environment and placement of markers it is

31

possible two nonadjacent patches can have the same signature. In a binary sensor

network, a target's localization belief is tied to the area of the patch within which it is

sensed [37]. Given k sensors (or markers) the total number of possible signatures that

can occur is 2k. Although 2k implies an exponential function, this requires that all

visibility regions overlap with all other visibility regions. In practice, this is quite rare

because ensuring e�ective coverage of an area or targets will likely result in clusters

of markers at di�erent areas and having k be large enough to create this concern for

a single area is likely the result of a highly ine�ective placement of markers. Because

the area of a patch relates to the localization belief of a target (in this case the target

is our robot), the area of patches can be used as a metric to evaluate the e�ectiveness

of a marker placement.

Let M = {m1,m2, ...,mk} denote a placement of k markers, where mi gives the

position and orientation of the ith marker. The robot traverses through the envi-

ronment through a sequence of m waypoints W = {w1, w2, ..., wm}. The distance

between waypoints should be small enough that the robot should be able to move to

the next waypoint with small error by only dead reckoning. Because the robot must

traverse through m waypoints W , the metric we use is the area of the patch covering

a waypoint wi ∈ W . Speci�cally, we de�ne the overall e�ectiveness g(E,M,W) of

markers M in an environment E as:

g(E,M,W) =
m∑
i=1

f(E,M,wi) (3.14)

where f(E,M,wi) gives the area of the patch that contains the waypoint wi. The

function g(E,M,W) that evaluates the e�ectiveness of a placement of markers will

be our scoring function. Given the waypoints W and environment E the goal then

becomes to �nd a marker placement M of k markers that makes g(E,M,W), our

scoring function, as small as possible.

To simplify the problem: markers and waypoints are discretized to work within

an occupancy grid. A discretized approximation of a marker's visibility region is a

discretized annulus sector (see Figure 3.6b). The environment may block the visibility

of the discretized annulus sector through obstructions, such as walls (Figure 3.6a).

We call the grid that takes into account the line-of-sight of a discrete annulus sector

a visibility grid (Figure 3.6c). A naive line-of-sight test can be quickly implemented

that tests whether all the points in the visibility grid are visible from the marker's

(xm, ym) position, checking if any point along a line from the marker position to the

32

(a) (b) (c)

Figure 3.6: a) The environment as an occupancy grid (orange is navigable area).
b) The discrete annulus sector (blue). c) The visibility grid (teal) overlayed in the
environment. The visibility grid considers line of sight. The visibility grid is outlined
by the discrete annulus sector (blue).

(a) (b) (c)

Figure 3.7: a) Visibility grid 1; b) Visibility grid 2; and c) The overlay grid comprised
of the two visibility grids and environment occupancy grid (the blue lines are added
to help distinguish the shape of the visibility grids). Two example waypoints W1 and
W2 are included. Using this marker placement, W1 will have a score of the area of
the yellow region where the two visibility grids overlap. This marker placement will
also give W2 a score of the area of the large, orange, southern region of the occupancy
grid where no visibility grids are present.

point in the discretized annulus sector intersects with an obstruction.

Because we are working in the discrete realm, this allows us to work with a �nite

number of possible poses for the markers. We are using planar �ducial markers,

so we make the design decision that each marker must placed against a wall. By

placing the markers against walls, the orientation of markers becomes �xed and all

possible positions for marker placements are the grid points along the boundary of the

environment occupancy grid. All possible poses can then be represented by a set S of

33

visibility grids corresponding to all possible marker poses. For our discrete purposes,

we de�ne a marker placement M ′ as M ′ ⊂ S. To be clear, a marker placement M ′ is

a collection of k visibility grids representing a discrete placement of k corresponding

marker poses.

The visibility grids that form a marker placement M ′ can be overlayed on top

of one another within the environment to form an overlay grid (see Figure 3.7).

Di�erent patches in a placement M will have di�erent values based on the total

number of the overlayed visibility grids at a given grid point in the overlay grid. These

di�erent discrete patches (the continuous set of grid points contained in a patch) can

be naively labeled by iterating over the unique number of overlaps present using a

common black and white labeling algorithm on each unique overlap. Such a black

and white labeling algorithm can be found in many textbooks (i.e. [38]). The total

number of labels after this process will then be the total number of patches. Finding

an approximation of the area of the patch that contains a particular waypoint wi

can be done by �rst �nding the label Li that corresponds to waypoint wi and then

�nding the total number of occurrences of Li. This results in an approximate area

of the visibility grid f ′(E,M ′, wi), which is the discrete version of f(E,M,wi) (see

Figure 3.7). With f ′(E,M ′, wi), we rede�ne our scoring function g
′(E,M ′,W) for the

discrete case:

g′(E,M ′,W) =
m∑
i=1

f ′(E,M ′, wi) (3.15)

We will be using Equation 3.15 from this point on in our simulations (Chapter 4) and

experimentation (Chapter 5).

3.2.1 A Theoretical Maximum Distance Deviation

Although we are using an approach to minimize the overall area of the patches of the

waypoints, an alternative approach could be taken similar to that by Beinhofer et

al. [22] that attempts to provide guarantees of maximum deviation � the maximum

distance of the robot's true location from a waypoint. Although this topic is left for

future work, we thought it useful to mention a simple geometric heuristic for a trivial

open space environment with homogeneous markers that can be placed anywhere and

oriented in any direction and where possible line-of-sight blockage is not considered.

For each waypoint, place a circle of radius rw centered at the waypoint. Place three

34

(a) (b)

Figure 3.8: The patch formed around the waypoint w by the markers at positions
marked �x� is a Reuleaux triangle. Using the uniform sensing model seen in Fig-
ure 3.5a. Here are the particles: a) before observing and b) after observing. After
observation, the particles are more densely inside the Reuleaux triangle patch.

markers uniformly at regular angular intervals around the circle with each facing

the waypoint. Suppose that all of the markers have the same maximum sensing

distance R, minimum sensing distance r, and maximum sensing angle 2α. If the

circle's radius rw satis�es r ≤ rw < R the patch in which all of the markers overlap

will form a Reuleaux triangle (see Figure 3.8). The area of this Reuleaux triangle is
1
2
(π−

√
3)((1− 1√

3
)(R− rw))2 and the maximum deviation of a point in this triangle

from the waypoint would be (1√
3−1)(R − rw) (see Appendix B for more details). If

more than n markers are added uniformly around the circle, where n ≥ 3 and n

is odd, then they will form an n-Reuleaux polygon. A Reuleaux triangle was used

because it only uses three markers, provides a tight shape with constant width and

by the Blaschke-Lebesgue theorem: �...amongst all convex domains of constant width

w, the Reuleaux triangle has the smallest area...� [39].

3.3 RedCometTag � Fiducial Planar Marker

This thesis uses a planar �ducial marker called RedCometTag (RCTag) that is heavily

in�uenced by the ARTag created by Fiala [1]. It di�ers in a few minor aspects which

will be described in detail below. Before delving into the details of the �ducial marker,

it is necessary to justify some of the reasons for this approach. Because we are only

requiring the detection of a marker, we opted to forego unnecessary complexity that

35

is present in some of the other marker systems reviewed in Chapter 2.2. For our

purposes, this required markers that were black and white, could be printed and

detected on letter size paper, and that could e�ectively handle 25 or more markers.

Although the RCTag may not have been the best choice for a �ducial marker in

general, it is nevertheless su�cient for our purposes.

3.3.1 Encoding

(a) Marker 55 (b) Marker 456

Figure 3.9: Examples of the RedCometTag.

ARTag is a bitonal, commonly black and white, �ducial marker that encodes

approximately 10243 unique marker IDs that can be quickly and robustly decoded

using a camera. The fact that there are essentially 1024 possible unique marker IDs

comes from the fact that ARTag uses 10 bits to encode the marker ID (210 = 1024).

To increase robustness, ARTag uses error checking and error correcting techniques

from coding theory to handle errors. For error checking capabilities, 10 bits are used

for a cyclic redundancy check (CRC). To potentially recover from errors, an additional

16 bits are used for Reed-Solomon forward error correcting. The 10 data bits, 10 CRC

bits and 16 Reed-Solomon bits sum to a total of 36 bits for each string that represents

a marker. ARTag splits the 36 bit encoded string into a 6× 6 grid of bits represented

as unit squares. A black unit square represents a 0 and white unit square represents

3Not all 1024 markers are valid or �safe�. For example, the `0' marker (without the use of a mask)
is a black square. In addition, the number of valid markers can be doubled with a trick that involves
inverting the tone of each grid square, including the border. The exact number of valid markers for
ARTag is 1001 [40].

36

a 1. The 6 × 6 grid is bordered by a two unit thick border of black squares. The

two bit padded border has a few bene�ts. The thick border makes a marker's overall

rectangle shape more prevalent in the detection phase, discussed later in Section 3.3.2.

Additionally, the border can help reduce false positives in the decoding process, as a

detected marker should have a border that is uniformly 0.

As its name suggests, ARTag was designed with a focus for use in augmented

reality. In augmented reality, it is key to know the 3D pose of an object that one

intends to highlight or alter. In a pinhole model camera, at least four known points

are required to create a perspective matrix that allows one to potentially map 2D

points/pixels in an image to 3D points in the real world. ARTag is comprised of

a square, and thus when recognized, its four corners can serve to determine the

perspective matrix, if its position is known. In reality, cameras have intrinsic errors

that can a�ect the mapping of 2D points/pixels in an image to 3D real world points

using the perspective matrix. This can be corrected by calibrating a camera using

well known techniques [41, 42]. The process for calibrating a camera can be quite

involved4. This thesis does not adopt this feature of the marker as the focus is on a

binary observation model, so its implementation would be unnecessary.

RCTag is very similar to ARTag, but di�ers with a few cruder, less e�ective

simpli�cations (see Figure 3.9). Like ARTag, RCTag uses 36 bits, but instead of

using 10 data bits like ARTag, RCTag uses 12 data bits. The reason for this is that

RCTag bypasses the 10 bit CRC and uses a 24 bit Reed-Solomon code, speci�cally

part of a 255 byte Reed-Solomon encoder. This simpli�es the implementation, but

can lead to issues with the minimum hamming distance between markers. One way

to signi�cantly reduce false positives and interconfusion (discussed in Section 3.3.5) is

to ensure that the minimum hamming distance between all marker encodings is large.

The minimum hamming distance for a given marker can be determined by �nding the

minimum hamming distance between all markers and their 3 rotations. A histogram

of the overall hamming distance between all markers can be seen in Figure 3.10. There

are 220 �bad� codes that have a minimum hamming distance of 0 or 4, making them

particularly vulnerable for misreading, so they are not used. Other than these bad

codes, all other codes have a minimum hamming distance of 6 against any other code

and rotation. A minimum hamming distance this low increases the chances of false

positives and interconfusion. Another issue with this Reed-Solomon simpli�cation is

that it uses an odd number of bytes (24 bits = 3 bytes). Because of the nature of

4There are techniques being developed to make camera calibration less e�ortful [43, 44].

37

Reed-Solomon codes, there are no byte error correcting gains with 3 bytes over using

only 2 bytes. The main reason for these changes was that it made implementation

simple and the markers functioned e�ectively enough for experimentation purposes.

Figure 3.10: A histogram of the hamming distance between all valid codes and their
three rotations.

Figure 3.11: A visualization of the encoding process. The marker data is input
through Reed-Solomon to produce a forward error correcting code. The data and
forward error correcting code are concatenated and split into a 6 × 6 matrix of bits
to produce the RedCometTag.

3.3.2 Decoding

The decoding process of RCTag resembles the decoding process of ARTag. First,

colours are not necessary, so the image is converted to grayscale. To reduce noise

in the image, the image is smoothed by convolving it with a Gaussian kernel (see

Figure 3.12b). A major component of the decoding process is determining possible

markers or more simply: detecting valid rectangles. To detect rectangles, the edges

of the image must be determined, see Figure 3.12d. Edges are found using the classic

38

Canny Edge Detector algorithm [5]. The detected edges are used to �nd contours,

speci�cally the corner points that de�ne contours, see Figure 3.12e. To make detection

more robust to large amounts of noise, this process is repeated on two down-sampled

versions of the image, where the images are down-sampled in size by half, then a

quarter. Any contours they detect are scaled up by the inverse of their down sampling

scale (i.e. if the down sampled image scale is half, its detected contour points need

only be scaled by 2). Valid rectangles can be easily identi�ed from the set of all

detected contours by checking if the contour has 4 corners and that the area formed

by the contour is above some minimum area. Through testing, this minimum area

was found to be 500 pixels2. If a contour meets these criteria it becomes a candidate

marker.

Candidate markers need to be evaluated to recognize whether they are valid RC-

Tags. The recognition process begins by using the four corners of the rectangle as

four necessary input points to solve a perspective matrix. A perspective matrix is

essentially a matrix describing the translation, rotation and skew values needed to

map points from one plane to another. To ensure a suitable perspective matrix, the

corners used to build the perspective matrix should be relatively accurately known.

This requires that the detected corners we used be determined down to a sub pixel

accuracy, which is accomplished by using a sub pixel window algorithm.

With an accurate perspective matrix we can map sample bit points to their cor-

responding pixels in the detected rectangle, see Figure 3.12g. If the pixel intensity

at a sample point is dark it should be a 0, and if it is bright it should be a 1. Due

to variable lighting conditions, we using the Local Mean C Adaptive Thresholding

technique [45] to �nd a valid threshold to make bit sampling more robust to lighting

variations, see Figure 3.12c. The pixel values of these sample points are then used

to form a 36 bit string that can be quickly decoded using a 255 byte Reed-Solomon

decoder. The orientation of the viewed marker is unknown. As a result, all 4 orien-

tations of the 36 bits must be evaluated to check if the RCTag in the image has been

rotated. In the 6× 6 square matrix form, the 36 bit string can be rotated clockwise

quickly by �rst multiplying on the left by a matrix for re�ecting about the line y = x

and then taking the transpose of the result:

39

B =



0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0


(BA)T = C

Here A is the 6× 6 square matrix of the 36 bit string, B is the re�ection matrix for

re�ection about the line y = x and C, the result, is A rotated clockwise by π
2
. If a

valid bit string is successfully decoded using Reed-Solomon then an RCTag has been

recognized (Figure 3.12h).

3.3.3 Parameter Estimation

To determine the visibility of markers for cameras on the robot in practice, images

of a marker at various distances and angles were collected. The RCTags generated

for these experiments were 600 pixels × 600 pixels that when printed on standard

letter sized paper were approximately 15.5 cm in width and height (see Figure 3.14).

For each distance and angle point of collection, �fty images were taken in arti�cial

lighting and �fty images were taken in natural lighting. There were two types of

cameras used by the robot: theMicrosoft LifeCam 3000 (MLC3000) and the Logitech

C310 (LC310). Parameters for both cameras had to be estimated. This resulted in

a collection of over 17,000 images (see Figures 3.14 and 3.15). Using this collection

of images, the e�ectiveness of parameters for each camera could be identi�ed by the

overall number of times the marker was detected in these images. There were three

main parameters that were evaluated: the amount of Gaussian blur (σ), the threshold

window size as a percentage of the total area size (tw) of images, and the C threshold

parameter (tc). The parameters can be dependent on one another, but for simplicity

the parameters were maximized sequentially. First, σ was evaluated with tw = 0.3

(0.3 is for a 30% window size) and tc = 0.0 (see Figure 3.13a). The peaks for σ occur

at about 0.5 and 0.3 for the MLC3000 and LC310 cameras respectively. Next, the

window size percentage was evaluated using the peak σ parameters just described

and with tc = 0.0 (see Figure 3.13b). The peaks for tw occur at about 0.9 and 0.1 for

40

the MLC3000 and LC310 cameras respectively. With the peak values of σ and tw for

the cameras estimated, we then estimate tc using these values (see Figure 3.13c). The

peak of tc occurs at about 21 and 7 for the MLC3000 and LC310 cameras respectively.

With the three parameters estimated for both cameras, we can now evaluate the

distance and angle visibility resolution for the markers. This will ultimately guide

the parameters that describe the visibility annulus sector of our planar �ducial marker

used in simulation (Chapter 4) and experimentation (Chapter 5).

3.3.4 Range and Angle

To facilitate optimal marker placement, we need to know the visibility annulus sector

for the RCTags. Experiments were conducted to determine the range over which the

RCTag could be consistently recognized. Our experimentation involves traversing a

hallway that may not be well lit in some areas, so the images captured also included

natural lit images of the marker (see Figure 3.14). The experimental results show that,

as might be expected intuitively, consistent detection reduces as distance increases

(see Figure 3.16a). RCTag recognition has signi�cant drop-o�s before 0.7 and after

4.5 meters.

To form the visibility annulus sector it is also necessary to know the angular range

over which RCTag has consistent recognition. Experiments were conducted rotating

the marker at di�erent angles to the camera from di�erent distances, see Figure 3.15.

The results (Figures 3.16b and 3.16c) demonstrate that recognition begins to fail at

around 30o when rotated left or right from facing the camera at certain distances.

The results show that the cameras detect the marker with di�erent consistency

under di�erent circumstances. To encapsulate the visibility of both cameras into

a single visibility annulus sector, we de�ne the shape parameters of the visibility

annulus sector to be α = 30o, r = 0.7 meters and R = 4.5 meters.

3.3.5 False Positives, True Negatives, Interconfusion and Oc-

clusion

RCTag is e�ective enough for our localization experiments, but it still requires men-

tion of some issues, speci�cally, the detection of false positives (detecting the presence

of a marker when none is present), true negatives (not detecting a marker when it

is present) and interconfusion [1] (detecting a marker, but recognizing the incorrect

41

code).

False positives can be an issue for RCTag when it is in the presence of a highly

variable, rectangle cluttered area (e.g. boxes, bulletin boards containing documents).

Although it does not consistently succumb to false positives, there are cases where it

will sporadically detect a marker in the clutter. This can best be demonstrated in

Figures 3.17c and 3.17d where an obscure box within a poster is detected as marker

4. Interconfusion can occur in a similar fashion to false positives, where a marker

is incorrectly read and the hamming distance is small enough to read it as another

marker ID.

True negatives tend to occur most in the presence of extreme lighting conditions

and when the marker is obstructed. Marker recognition will usually fail when the im-

age is too dark as in the case of Figure 3.17a or when the image is too bright or subject

to spectral re�ection as in the case of Figure 3.17b. Although the autothresholding

discussed in Section 3.3.2 can correct for some variance in indoor lighting conditions,

it does not perform as well under these circumstances.

Other �ducial markers can handle some level obstruction relatively well, but RC-

Tag fails when occluded, even partially.

3.3.6 Implementation

The implementation for RCTag, both encoding and decoding, was written in Python,

and used the OpenCV, reedsolo [46](a Reed Solomon python package) and Numpy/S-

cipy libraries. The code was also in�uenced by the talk given by Mike Thompson [47].

The source code for RCTag can be found at https://bitbucket.org/raw/redcomet.

42

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.12: Process of decoding a RCTag a) the original image, b) the image con-
verted to grayscale and smoothed using a Gaussian kernel, c) the image adaptively
thresholded using a 401 size window, d) Canny edge detection [5] on the smoothed
image b), e) the contours found, f) the remaining four point contours, g) the data
sample points for the perspective matrix formed by the rectangle (orange circles are
data points, green circles are border points) and h) the �nal resolved markers.

43

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
σ

36

38

40

42

44

46

48

50

52

Pe
rc

en
t d

et
ec

te
d

(%
)

MLC3000
LC310

(a)

0.0 0.2 0.4 0.6 0.8 1.0
tw

0

10

20

30

40

50

60

Pe
rc

e
n
t

d
e
te

ct
e
d
 (

%
)

MLC3000
LC310

(b)

−10 0 10 20 30 40 50
tc

0

10

20

30

40

50

60

70

Pe
rc

en
t d

et
ec

te
d

(%
)

MLC3000
LC310

(c)

Figure 3.13: The three parameters evaluated against the successful detection of a
marker taken at various distances and angles: a) the Gaussian blur σ parameter; b)
the threshold window size percent parameter tw; and c) the C threshold parameter
tc.

44

(a) MLC3000: 0.5 m (b) MLC3000: 0.5 m

(c) LC310: 0.5 m (d) LC310: 0.5 m

(e) MLC3000: 3.5 m (f) MLC3000: 3.5 m

(g) LC310: 3.5 m (h) LC310: 3.5 m

Figure 3.14: Example images of measurements at di�erent distances and lighting.

45

(a) MLC3000: 3.5 m, −40o (b) MLC3000: 3.5 m, −40o

(c) LC310: 3.5 m, −40o (d) LC310: 3.5 m, −40o

(e) MLC3000: 3.5 m, 40o (f) MLC3000: 3.5 m, 40o

(g) LC310: 3.5 m, 40o (h) LC310: 3.5 m, 40o

Figure 3.15: Example images of measurements with di�erent angles and lighting.

46

(a)

(b)

(c)

Figure 3.16: Plots describing the successful detection of a marker with di�erent cam-
eras: a) The marker is at a 0 angle with multiple distances; b) MLC3000 angle
readings at multiple distances; and c) LC310 angle readings at multiple distances.

47

(a) (b)

(c) (d)

Figure 3.17: Examples of failures with RCTag: a) images that are too dark will lead
to failed detection (marker at bottom center); b) images that are too bright or if the
marker is subject to spectral re�ection will usually fail (the markers are in the top
left); c) the original source image of a false positive; and d) the red box within a
poster is detected as marker 4.

48

Chapter 4

Simulation

To determine an algorithm for �nding good placements of markers using the proposed

scoring function g′(E,M ′,W) (Chapter 3.2), we turn to simulation to evaluate several

common metaheuristic techniques. These metaheuristic techniques will score various

placements of markers using the scoring function to arrive at a �good placement.�

All of the simulation source code created for this thesis was written in Python and

is available upon request. Python was chosen because of its cross-platform capabili-

ties, ease of scienti�c computing with the Numpy and Scipy libraries, relatively fast

speed, basic parallel processing functionality using the built-inmultiprocessing library,

and trivial integration with the robot code used in experimentation (Chapter 5).

4.1 Metaheuristic Optimization

Recall that in Section 3.2, we score a marker placement based on the sum of areas

of the patches covering waypoints. One con�guration of markers is regarded as su-

periour to another if it has a smaller score. The scoring process was simpli�ed by

discretizing the environment and visibility regions into a collection of grid points.

This scoring function is clearly non-linear, as can be demonstrated with the follow-

ing simple example. Consider an environment E and two markers A and B that

both overlap a single waypoint w such that f ′(E, {A,B}, w) < f ′(E, {A}, w) and

f ′(E, {A,B}, w) < f ′(E, {B}, w). This then means that

f ′(E, {A,B}, w) < f ′(E, {A}, w) + f ′(E, {B}, w)

which implies

f ′(E, {A,B}, w) 6= f ′(E, {A}, w) + f ′(E, {B}, w)

49

This violates additivity (i.e. h(x, y) = h(x)+h(y)), a requirement for a linear function.

Because we are working with a discrete, non-linear function we turn to common

metaheuristic algorithms to �nd a good, though likely suboptimal, marker placement

that may have many local minima and maxima. There are many metaheuristic algo-

rithms, so we evaluate three popular choices as well as a greedy approach. We believe

the scoring function we are using is likely a submodular set function or can be con-

verted into one. This would imply a strict lower bound for the greedy algorithm [21].

4.1.1 Hill Climbing

In order to �nd the best placement of k markers with N possible marker poses where

k < N , a brute force approach would have to evaluate all possible positions and

would require
(
N
k

)
= N !

k!(N−k)! evaluations. It is not atypical for a given environment

to have N = 180 and k = 30, resulting in a total of 1.3× 1034 combinations. To put

that number into context, an estimate for the total number of stars in the universe

is 3× 1023. That many possibilities is unfeasible to search over. Because of this, we

turn to metaheuristic algorithms, and one simple algorithm that works relatively well

is hill climbing [17].

Hill climbing works by picking an initial random placement of markers Cc =

{M1,M2, . . . ,Mk} and evaluating it to get a score of uc. Hill climbing then typically

searches through all of its neighbours (de�ned shortly) and �nds the neighbour Cn

with the lowest score un. This neighbour then becomes the new Cc. This process is

then repeated over and over, with hill climbing moving towards an optimum. For our

problem, we de�ne a neighbour placement Cn of a marker placement Cc to satisfy

||Cc
⋂
Cn|| = k − 1, that is, neighbours only di�er by one marker placement. Thus,

any marker placement has k(N − k) neighbours.

Evaluating the e�ectiveness of a given marker placement takes time, and the total

number of neighbours for a marker placement can be quite large. As a result, searching

over all neighbours may not be feasible. When the number of neighbours is large an

adaption to the algorithm is to look at random neighbours, and if a neighbour has

a lower score un than the current best score uc, then that neighbour placement is

chosen as the new placement Cc. This is called �rst-choice and is considered to work

well enough in cases where there are a large number of neighbours [17].

Hill climbing can eventually get trapped in a local optimum, where there are

no neighbours with a lower score. To get out of the local optimum, one solution

50

is to restart the hill climbing process again with a new initial marker placement.

Determining the number of iterations before hill climbing can assume it is in a local

optimum requires a design decision. The number of iterations should be large enough

that hill climbing can assume it has reached a local optimum, but small enough so

that it is not wasting iterations looking for a better neighbour. We chose to set

the number of iterations before restarting to be a percentage of the total number of

iterations. The percentage chosen was 10% because it seemed to give relatively good

results over other percentages.

The pseudo code implementation of our random restart �rst-choice hill climbing

algorithm can be seen in Algorithm 3.

4.1.2 Simulated Annealing

Simulated annealing is a common iterative metaheuristic algorithm proposed by Kirk-

patrick et al. [48] and is still commonly used today [17, 15]. Simulated annealing is

inspired by statistical mechanics, a process of looking at how a system with a large

number of particles (1020+) will behave overall instead of computing the behaviour of

each individual particle. An interesting property is that particle systems will, under

the right conditions, con�gure themselves into a lowest overall energy state (or ground

state) as a low temperature is imposed on the system. A system can have multiple

ground states, and a process known as annealing can be used to expose these ground

states. In annealing, a system is brought to a high melting temperature and then the

temperature is slowly lowered, eventually leading to an alternative ground state.

This same concept is applied in optimization, but is simulated (i.e. simulated

annealing). The algorithm is giving an initial placement and operates similarly to

hill climbing: if a neighbouring placement has a better score, then the neighbouring

placement will be chosen at the next stage. Simulated annealing di�ers from hill

climbing in that in simulated annealing, the algorithm will randomly move to a lower

scoring neighbour placement. This movement allows it to potentially jump out of a

local optimum. The randomness of movement is determined by a �temperature� value.

A random number is sampled and if the random number is lower than the temperature

value, then a lower scoring placement is accepted. As a result, the temperature is

usually de�ned by a temperature function that decreases as a function of the number

of iterations processed. Thus, during the early iterations of optimization, simulated

annealing will jump frequently, but as the temperature is lowered simulated annealing

51

Algorithm 3: HillClimbing(g′, E,W, S, k)

Input: g′: Scoring function
Input: E: Environment occupancy grid
Input: W : Waypoints
Input: S: All visibility grids, S = {S1, S2, . . . SN}
Input: k: Number of visibility grids making up a marker placement, k < N

1 N ← ||S||
2 Cc ← Pick k visibility grids from S at random
3 Cg ← Cc
4 m← k(N − k)
5 uc ← g′(E,Cc,W)
6 ug ← uc
7 no_change ← 0
8 for i← 1 . . .m do
9 if no_change > m ∗ 0.1 then

10 no_change = 0
11 Cc ← Pick N random poses from S
12 uc ← g′(E,Cc,W)
13 continue

14 r ← uniform random integer from 1 . . . k
15 y ← uniform random integer from 1 . . . N and Sy /∈ Cc
16 Ci ← Cc
17 Cr

i ← Sy

18 ui ← g′(E,Ci,W)
19 if ui > uc then
20 no_change ← 0
21 uc ← ui
22 Cc ← Ci
23 if uc > ug then
24 ug ← uc
25 Cg ← Cc

26 else
27 no_change ← no_change +1

28 return Cg, ug

will approach a local optimium. The temperature function used in our simulations

is taken from Akbarzadeh et al. [15]: letting m denote the total number of iterations

and i denote the current iteration step, the temperature ti at iteration i is de�ned as

52

ti =
1

2
exp

(
−2 ln 2i

m

)
The pseudo code for simulated annealing can be seen in Algorithm 4.

Algorithm 4: Simulated Annealing(g′, E,W, S, k)

Input: g′: Scoring function
Input: E: Environment occupancy grid
Input: W : Waypoints
Input: S: All visibility grids, S = {S1, S2, . . . SN}
Input: k: Number of visibility grids making up a marker placement, k < N

1 N ← ||S||
2 Cc ← Pick k visibility grids from S at random
3 Cg ← Cc
4 m← k(N − k)
5 scorecurrent ← g′(E,Cc,W)
6 scoreglobal ← scorecurrent
7 for i← 1 . . .m do
8 r ← uniform random integer from 1 . . . k
9 y ← uniform random integer from 1 . . . N and Sy /∈ Cc

10 Ci ← Cc
11 Cr

i ← Sy

12 scorei ← g′(E,Ci,W)
13 if scorei > scorecurrent then
14 scorecurrent ← ui
15 Cc ← Ci
16 if scorecurrent > scoreglobal then
17 scoreglobal ← scorecurrent
18 Cg ← Cc

19 T ← T − t
20 else
21 x← uniform random real from 0 . . . 1

22 if x < 1
2
exp

(
−2 ln 2i

m

)
then

23 scorecurrent ← ui
24 Cc ← Ci

25 return Cg, scoreglobal

53

4.1.3 Coordinate Descent

Coordinate descent [49] is another metaheuristic algorithm that was implemented

for this thesis work to �nd �good� marker placements using the proposed scoring

function. Like hill climbing and simulated annealing, coordinate descent picks an

initial marker placement. With this initial marker placement, coordinate descent

picks a dimension (1 to k) of the marker placement and evaluates each available

marker pose to �nd the minimum score. It then does this for the remaining k − 1

dimensions, �nding the marker pose in each dimension that gives the minimum score

while keeping all other marker poses �xed. With k markers to be placed and N

possible poses for each marker, coordinate descent must perform N − k evaluations

for a single dimension; thus, k(N −K) evaluations in total. For fairness, this is why

hill climbing and simulated annealing are run for k(N − k) iterations. Coordinate

descent is like simulated annealing and hill climbing in that its result depends on the

initial marker placement. The pseudo code for the coordinate descent algorithm is

detailed in Algorithm 5.

4.1.4 Greedy Heuristic

One of the easiest and fastest running metaheuristic algorithms for optimizing a func-

tion is the greedy heuristic. The main purpose for implementing the greedy heuristic

was to determine if the other metaheuristic algorithms could demonstrate any signif-

icant improvement. The greedy heuristic implemented in this thesis resembles those

seen in [11] and [13]. It �nds a �good� marker placement by choosing visibility grids

one-by-one.

The greedy heuristic begins with an empty set Cc = ∅ of visibility grids. Each

marker in S = {S1, S2, . . . , SN} is then evaluated to �nd

Si = arg min
∀Si∈S

g′(E, {Si},W)

with Si, Cc = {Si}. This process is then done for a reduced set S

Cc of visibility grids:

Sj = arg min
∀Sj∈S, Sj /∈Cc

g′(E,Cc
⋃
{Sj},W)

Again, the current marker placement is then updated to include this visibility

54

Algorithm 5: Coordinate Descent(g′, E,W, S, k)

Input: g′: Scoring function
Input: E: Environment occupancy grid
Input: W : Waypoints
Input: S: All visibility grids, S = {S1, S2, . . . SN}
Input: k: Number of visibility grids making up a marker placement, k < N

1 N ← ||S||
2 Cc ← Pick k visibility grids from S at random
3 Cg ← Cc
4 uc ← g′(E,Cc,W)
5 ug ← uc
6 for each i ∈ k do
7 for j ← 1 . . . N do
8 if Sj ∈ Cc then
9 continue

10 Ci
c ← Sj

11 ui ← g′(E,Cc,W)
12 if ui > uc then
13 uc ← ui
14 Cc ← Ci
15 if uc > ug then
16 ug ← uc
17 Cg ← Cc

18 return Cg, ug

grid that produced the best score, Cc = Cc
⋃
{Sj}. This process is repeated until

||Cc|| = k.

The algorithm is not unlike coordinate descent, but runs in less time because the

evaluation of a smaller marker placement (i.e. ||Cc|| < k) tends to be faster than

evaluating a full marker placement (i.e. ||Cc|| = k). The pseudo code for the greedy

heuristic can be found in Algorithm 6.

4.1.5 Uniform Placement

The �nal placement strategy we evaluate is uniformly placing a given k visibility

grids around the environment. The uniform placement process is deterministic, and

involves evenly placing the visibility grids amongst the possible visibility grids S. Be-

cause this even spacing has gaps, the uniform placements are modulo shifted through

55

Algorithm 6: Greedy Heuristic(g′, E,W, S, k)

Input: g′: Scoring function
Input: E: Environment occupancy grid
Input: W : Waypoints
Input: S: All visibility grids, S = {S1, S2, . . . SN}
Input: k: Number of visibility grids making up a marker placement, k < N

1 N ← ||S||
2 Cc ← ∅
3 Cg ← Cc
4 uc ← g′(E,Cc,W)
5 ug ← uc
6 for i← 1 . . . k do
7 Cc ← Cg
8 for j ← 1 . . . N do
9 if Sj ∈ Cc then

10 continue

11 Ci
c ← Sj

12 uc ← g′(E,Cc,W)
13 if uc > ug then
14 ug ← uc
15 Cg ← Cc

16 return Cg, ug

all intermediate spaces. The modulo shift with the best score is then the returned

uniform marker placement.

4.2 Randomly Generated Hallway Environments for

Marker Placement

To thoroughly test the metaheuristic algorithms they need to be evaluated against a

variety of di�erent indoor o�ce-like hallway environments. To accomplish this testing,

an algorithm for generating simple o�ce environments was developed as part of this

thesis work. Examples of randomly generated hallway maps can be seen in Figure 4.1.

This algorithm is based on procedural generation methods like those in [50].

Before going into the details of the algorithm, it is best to begin with its motiva-

tion. To understand the underlying idea of the algorithm we ask: what is the purpose

of a typical o�ce building hallway? For the most part, a hallway's sole purpose is to

56

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Example randomly generated hallway maps. The unit length along x and
y axes is decimeters. The red dots represent waypoints with the teal lines connecting
them to demonstrate potential paths.

57

(a) (b)

(c) (d)

Figure 4.2: Steps for generating a random hallway map: a) generate the 'L' line
segments (shown by the white pixels); b) in�ate the `L' line segment points to form
hallways; c) generate a collection of waypoints to form a path using the initial `L'
line segments; and d) add random �rooms� and nooks to generate the �nal randomly
generated hallway map.

58

serve as a �tunnel� through a building through which people can travel from point A

to point B e�ciently. To simplify design, construction and travel, many o�ce hall-

ways are orthogonal, or comprised of 90o turns. This results in hallways that consist

of a collection of `L' line segments; see Figure 5.1a for an example of an actual o�ce

hallway. The hallway random map generation algorithm is built around this basic

observation.

Initially, two points p1, p2 within an occupancy grid or �map� are randomly chosen,

where p1 6= p2. These two points form the �rst `L' segment, where the `L' segment

is a straight horizontal line followed by a straight vertical line or vice-versa from p1

to p2. The total number of `L' segments is randomly chosen in a range of positive

integers. The succeeding `L' segments are created in a similar manner to the �rst

except that p1 is randomly chosen from any point along the existing `L' segments.

The result of all points along the `L' line segments can be seen in Figure 4.2a. These

`L' line segment points are then in�ated to form the hallway, as seen in Figure 4.2b.

A bene�t of this approach is that the intervals along the line segments that form the

hallways can be used to form waypoints that a robot might travel. Waypoints and

the visualization of a possible path are shown in Figure 4.2c.

To make the maps more heterogeneous, �rooms� are overlayed on top of the hall-

way. �Rooms�, in this case, are simply rectangles of randomly chosen width and height

that are added at random points along the hallway. They result in more open areas

that resemble nooks that might be observed in a typical hallway. These nooks give

maps a less uniform and more believable look, as seen in Figure 4.2d.

4.2.1 Marker Placement Poses

Given an orthogonal hallway map, the next step is to determine possible positions for

markers to be placed. In the physical world, planar markers will be placed against the

hallway wall, which will �x their orientation with outward normals being normal to

the wall. Given the map, this involves �nding the inner edges of the hallway, or the

discrete inner navigable boundaries of the occupancy grid (Figure 4.3c). Finding the

inner edges can be achieved using well known edge and corner �nding techniques [51,

5], but because our map or occupancy grid is binary and orthogonal there is a simpler

approach.

A simpler approach involves using the binary morphological operation of erosion

to �nd the inner edge of the hallway. Binary morphological operations are primitive

59

(a) (b) (c)

Figure 4.3: Illustrations for steps for �nding the inner edges of the hallway map: a)
the original hallway map; b) the map from a) eroded using a 3-by-3 square structuring
element; and c) the inner edges found by the di�erence of a) and b).

binary operations that are framed around applying a structuring element or mask

B against every grid point in a binary grid A. The erosion operation A 	 B = C

overlays the center of B on every grid point p of A such that B is contained in A

when placed at p. If every grid point in B with value `1' overlaps with a grid point of

value 1 in A centered at p, then p is set to 1; otherwise, p is set to 0. Using a square,

3-by-3 structure element B given by:

B =

1 1 1

1 1 1

1 1 1

 ,
the occupancy grid is eroded by a one grid point thick border (Figure 4.3b). The

removed border comprises the inner edges of the hallway G along which the markers

will be placed (Figure 4.3c). The inner edges G can be found by subtracting the

original map E (Figure 4.3a) by the eroded map (E 	B):

G = E − (E 	B)

4.2.2 Marker Placement Sampling

The planar markers are placed on the walls of the o�ce environment at consistent,

�xed heights. This is modeled on the 2D map of the environment as placements

on the inner edges of the occupancy grid G. In the previous section, the method

for �nding the inner edges was described. The number of possible grids points for

60

Figure 4.4: Uniformly spaced selection of 15% of all the marker poses of Figure 4.3c.

marker poses that the metaheuristic algorithms have to consider can be larger than

necessary and results in much larger computational e�ort. To reduce the number of

a possible marker positions S to be tested, the inner edges of G are sampled. For

simplicity, sampling is done uniformly. An example of uniform sampling can be seen

in Figure 4.4.

4.3 Results

To evaluate the performance of the metaheuristic algorithms, each metaheuristic al-

gorithm was tasked with e�ectively (relative to the scoring function) placing markers

in 30 randomly generated hallway maps (the maps can be seen in Appendix D). The

number of markers to be placed was dependent on the size of the map. Hill climbing,

simulated annealing and coordinate descent are stochastic, that is they give results

that are non-deterministic. Because these metaheuristic algorithms are stochastic

each was given 30 iterations for fair assessment. The greedy heuristic and uniform

placement are deterministic, so they were only run once.

The results of the metaheuristic placements can be seen in Table 4.1. Additionally,

the computing time results for placements are given in Table 4.2. Because the maps

61

di�er in complexity and waypoints, the number of markers used were di�erent for

each map. The number of each markers used in each map are also included.

The results indicate that a clear advantage of a certain metaheuristic algorithm is

di�cult to determine. The greedy heuristic (GH) produced the best scores in general,

but not signi�cantly better than hill climbing (HC) or coordinate descent (CD). The

main bene�t of the greedy heuristic, though, is its speed in �nding a placement

solution. Uniform placement (UP) gave poor results for the scoring function, but

�nished far quicker than any of the other algorithms. Simulated annealing (SA)

consistently performed very poorly. It is possible that the temperature function, large

neighbour space and/or limited iterations hindered its ability to �nd good placements.

Map ID # of Markers UP HC SA CD GH
000 42 1.42E+04 4.16E+03 ±2.27E+02 7.61E+03 ±3.05E+02 4.24E+03 ±2.62E+02 4.01E+03
001 40 1.17E+04 3.11E+03 ±2.02E+02 6.05E+03 ±2.89E+02 3.26E+03 ±2.20E+02 2.95E+03
002 23 7.54E+03 2.36E+03 ±1.69E+02 4.03E+03 ±2.78E+02 2.39E+03 ±1.58E+02 2.70E+03
003 9 4.07E+03 1.13E+03 ±9.26E+01 1.50E+03 ±1.43E+02 1.14E+03 ±1.82E+02 1.05E+03
004 9 5.48E+03 1.47E+03 ±1.18E+02 2.08E+03 ±1.43E+02 1.47E+03 ±1.72E+02 1.49E+03
005 25 4.34E+03 2.15E+03 ±1.38E+02 3.43E+03 ±1.96E+02 2.17E+03 ±1.76E+02 2.17E+03
006 14 3.39E+03 1.95E+03 ±1.51E+02 2.69E+03 ±2.01E+02 1.88E+03 ±1.42E+02 1.77E+03
007 34 1.67E+04 3.32E+03 ±1.42E+02 7.13E+03 ±6.28E+02 3.31E+03 ±1.91E+02 3.05E+03
008 13 3.22E+03 1.87E+03 ±1.15E+02 2.48E+03 ±1.50E+02 1.87E+03 ±1.42E+02 1.60E+03
009 12 4.53E+03 1.72E+03 ±1.49E+02 2.44E+03 ±2.00E+02 1.82E+03 ±2.02E+02 1.74E+03
010 20 6.65E+03 2.37E+03 ±1.42E+02 3.46E+03 ±2.26E+02 2.32E+03 ±1.28E+02 2.35E+03
011 6 5.40E+03 1.10E+03 ±1.09E+02 1.25E+03 ±1.36E+02 1.00E+03 ±1.22E+02 1.15E+03
012 20 5.54E+03 1.79E+03 ±1.18E+02 2.89E+03 ±2.30E+02 1.79E+03 ±1.50E+02 1.54E+03
013 30 1.13E+04 3.74E+03 ±2.31E+02 6.91E+03 ±3.30E+02 3.80E+03 ±2.56E+02 3.51E+03
014 10 2.44E+03 1.34E+03 ±1.00E+02 1.78E+03 ±2.14E+02 1.27E+03 ±1.22E+02 1.30E+03
015 15 3.04E+03 1.94E+03 ±1.73E+02 2.88E+03 ±2.28E+02 1.95E+03 ±1.69E+02 1.85E+03
016 12 3.93E+03 1.55E+03 ±1.41E+02 2.26E+03 ±1.59E+02 1.53E+03 ±1.21E+02 1.57E+03
017 28 1.06E+04 2.93E+03 ±1.49E+02 5.11E+03 ±2.14E+02 2.94E+03 ±1.73E+02 2.94E+03
018 33 1.40E+04 3.25E+03 ±1.68E+02 6.10E+03 ±4.05E+02 3.46E+03 ±1.69E+02 3.44E+03
019 6 3.51E+03 1.16E+03 ±1.40E+02 1.44E+03 ±1.84E+02 1.06E+03 ±1.45E+02 9.95E+02
020 21 4.53E+03 1.78E+03 ±1.05E+02 2.87E+03 ±1.53E+02 1.72E+03 ±1.27E+02 1.72E+03
021 24 5.69E+03 2.56E+03 ±1.08E+02 3.95E+03 ±2.39E+02 2.57E+03 ±1.42E+02 2.64E+03
022 3 1.53E+03 7.55E+02 ±7.46E+01 7.81E+02 ±1.10E+02 7.00E+02 ±9.11E+01 6.63E+02
023 25 1.48E+04 2.68E+03 ±1.92E+02 4.42E+03 ±2.40E+02 2.85E+03 ±2.45E+02 2.65E+03
024 21 4.57E+03 1.36E+03 ±7.27E+01 2.25E+03 ±1.49E+02 1.43E+03 ±1.12E+02 1.53E+03
025 15 5.70E+03 2.11E+03 ±1.40E+02 3.24E+03 ±1.72E+02 2.12E+03 ±2.49E+02 1.84E+03
026 26 8.52E+03 2.73E+03 ±1.53E+02 4.67E+03 ±2.80E+02 2.71E+03 ±1.42E+02 2.72E+03
027 14 3.32E+03 1.66E+03 ±1.07E+02 2.37E+03 ±1.72E+02 1.63E+03 ±9.38E+01 1.59E+03
028 20 6.17E+03 2.69E+03 ±1.82E+02 4.03E+03 ±2.23E+02 2.72E+03 ±2.29E+02 2.74E+03
029 7 7.11E+03 1.67E+03 ±1.29E+02 2.05E+03 ±1.99E+02 1.61E+03 ±1.49E+02 1.41E+03

ALL 19.2 6.79E+03 ±4.03E+03 2.15E+03 ±8.19E+02 3.47E+03 ±1.79E+03 2.16E+03 ±8.63E+02 2.09E+03 ±8.22E+02

Table 4.1: Score results with standard deviations on all maps for the four metaheuris-
tic algorithms. The lower the score the �better� the placement.

62

Map ID # of Markers UH (sec) HC (sec) SA (sec) CD (sec) GH (sec)
000 42 6.01 268.13 ±9.36 230.75 ±4.60 261.04 ±12.24 162.12
001 40 6.19 223.19 ±7.93 182.60 ±2.27 215.34 ±14.19 139.41
002 23 2.52 61.26 ±3.22 53.47 ±1.02 60.43 ±4.77 40.34
003 9 0.52 4.67 ±0.18 4.24 ±0.15 4.58 ±0.35 2.83
004 9 0.60 5.74 ±0.23 4.98 ±0.15 5.51 ±0.52 3.80
005 25 2.88 70.08 ±3.55 58.45 ±0.96 65.14 ±4.56 38.94
006 14 1.00 11.39 ±0.45 10.71 ±0.28 11.40 ±0.84 8.50
007 34 3.29 157.82 ±6.09 99.34 ±1.84 131.68 ±9.80 93.33
008 13 1.02 12.50 ±0.65 11.40 ±0.31 12.08 ±0.82 8.29
009 12 0.72 8.43 ±0.40 8.06 ±0.16 8.41 ±0.56 5.47
010 20 1.50 27.87 ±0.92 25.84 ±0.51 27.93 ±1.80 16.79
011 6 0.28 1.86 ±0.11 1.74 ±0.06 1.89 ±0.13 1.34
012 20 1.80 35.85 ±1.77 30.88 ±0.67 34.98 ±2.66 23.57
013 30 4.27 127.92 ±4.70 116.74 ±1.34 129.38 ±8.93 79.10
014 10 0.74 6.09 ±0.29 5.46 ±0.19 5.98 ±0.41 3.84
015 15 1.37 16.95 ±0.70 15.43 ±0.30 16.98 ±1.21 11.25
016 12 0.82 11.46 ±0.46 10.67 ±0.24 11.84 ±0.87 7.20
017 28 3.76 111.39 ±4.10 95.98 ±1.07 107.71 ±5.33 75.24
018 33 3.99 138.50 ±6.20 100.53 ±1.26 123.85 ±7.40 82.30
019 6 0.28 1.90 ±0.07 1.76 ±0.05 1.89 ±0.15 1.39
020 21 1.86 42.17 ±1.44 36.36 ±0.78 41.77 ±2.91 29.11
021 24 2.50 63.47 ±3.59 55.85 ±1.47 62.15 ±5.33 42.12
022 3 0.10 0.28 ±0.01 0.28 ±0.01 0.29 ±0.03 0.21
023 25 2.42 77.35 ±3.48 64.68 ±1.14 74.46 ±5.32 54.07
024 21 1.79 39.33 ±2.00 32.30 ±0.73 37.89 ±2.80 24.90
025 15 1.66 26.51 ±0.90 24.09 ±0.37 26.23 ±1.99 15.79
026 26 3.34 89.93 ±3.25 71.87 ±1.10 83.93 ±5.68 59.64
027 14 0.90 14.86 ±0.78 13.04 ±0.28 14.57 ±0.78 9.72
028 20 1.82 37.72 ±1.62 35.09 ±0.67 38.52 ±2.44 24.96
029 7 0.48 3.44 ±0.09 3.29 ±0.07 3.43 ±0.23 2.20

ALL 19.2 2.01E+00 ±1.59E+00 5.66E+01 ±6.68E+01 4.69E+01 ±5.45E+01 5.40E+01 ±6.34E+01 3.56E+01 ±4.09E+01

Table 4.2: Computing time results with standard deviation of simulations on all maps
for the metaheuristic algorithms. The greedy heuristic and uniform placement were
only run once, so they have a standard deviation of 0 (not shown). Repeated trials
were deemed unnecessary as they are clearly faster than the others.

63

Chapter 5

Experimentation

To test the e�ectiveness of proposed solutions to the marker placement problem in

the real world, experiments were conducted in a real indoor o�ce environment using

printed �ducial markers and a robot equipped with cameras. The e�ectiveness of

placements was evaluated and scored in the same manner as described in Chapter 4

with the various metaheuristic algorithms.

5.1 Environment

The environment used for experimentation is the southern half of the fourth �oor

of the Engineering and Computer Science Building (ECS) on the campus of the

University of Victoria (Figure 5.1a). This area is a carpeted indoor o�ce hallway

(Figure 5.1b). The robot is given a set of waypoints along the center of the hallway.

There are three connected hallway segments the robot traverses, for an approximate

total distance of 45 meters. The hallway's width is approximately 1.6 meters except

for a few areas where it can deviate by approximately ±0.2 meters. The lighting in

the hallway segments can be quite di�erent, with some areas being arti�cially lit and

others being lit naturally by windows. This can lead to stark contrasts in lighting, as

seen in Figure 5.1c.

The building is in active use, so the hallways frequently experience bursts of human

tra�c. People can obscure the robot's �eld of view and generally make experimental

runs less consistent. Although humans add excellent variability in many experiments,

in this case their randomness could cause an unfair disadvantage to one of the place-

ments. For this reason, the experiments were paused when humans approached and

64

(a)

(b) (c)

Figure 5.1: a) The southern half of the fourth �oor of the ECS Building and the
waypoints the robot will traverse. b) One of the hallway segments the robot traverses.
c) The same hallway as b), but from the opposite perspective. The light from the
window can make marker detection more di�cult.

were resumed when they became out-of-range.

5.2 Hardware

For our experimentation we used the iRobot Create because of its relatively low cost

(Figure 5.2a). Although the Create is quite pro�cient at moving along the hallway

carpeted environment, its onboard yaw odometry is quite inaccurate. As a result,

the robot was equipped with a ITG-3200 gyro to measure the robot's change in yaw.

The gyro is not a perfect sensor, so any errors the gyro incurs accumulate over time �

a�ecting the robot. Nonetheless, the gyro makes the robot's navigation more accurate

than without. To read the gyro requires a device that can read I2C and transmit

via USB. The robot was also equipped with an Arduino Nano which serves only to

transmit the gyro's data (Figure 5.2b).

65

(a) (b)

Figure 5.2: a) The iRobot Create �tted with �ve webcams to give the robot a near
omnidirectional �eld of view. b) The back of the robot, showing the microcontroller
and wiring.

To detect the presence of markers, the robot is equipped with �ve webcams dis-

tributed at equal angular intervals at the top of the robot. Three of the �ve web-

cams wereMicrosoft LifeCam 3000 s (MLC3000) and the remaining two were Logitech

C310 s (LC310). Both had a cost of roughly $40 CAD at the time they were purchased.

Although it was assumed in previous chapters that the robot has an omnidirectional

�eld of view, this was not true in practice. The �eld of view for each of the web-

cams was limited to 60o or less. This resulted in major blind spots for the robot.

To lessen these blind spots, when the robot made observations, it performed an ad-

ditional 36o counterclockwise rotation (Figure 5.3) to collect more images to aid in

marker recognition. After taking su�cient images, it returned with a 36o clockwise

rotation.

5.3 Software

The software to drive and localize the robot was built upon the Robot Operating

System (ROS) software package [52]. ROS is a highly modular message passing

system that passes messages between processes (nodes) locally or over a network. It

closely resembles a client-server architecture, where nodes subscribe and publish to

topics where messages are posted and read by other nodes asynchronously. ROS was

selected because it is open source and has evolved a relatively good community and

66

Figure 5.3: An example of the �eld of view of the robot using the �ve cameras. In the
upper part of the image, the �ve cameras have large blind spots. By turning 36o left
and including these new images, the blind spots are fewer and signi�cantly smaller.

67

documentation for embedded and computer vision applications. ROS also runs in

C++ and/or Python, which allowed for easy integration of the simulation code into

the experimentation code.

5.4 Results

(a) CD Placement (b) Uniform Placement

Figure 5.4: The placements produced by the coordinate descent and uniform place-
ment algorithms for the ECS map. The white circles represent marker locations. The
visibility grids of the markers are overlayed on one another and each visibility grid is
outlined in blue.

To test the e�ectiveness of the proposed scoring function, we ran the fourth �oor

ECS map through the metaheuristic algorithms detailed in Chapter 4. To decrease

the number of all possible poses for the markers, we uniformly selected 5% of the in-

ner edge points (discussed in Chapter 4.2.2). A higher sampling percent would have

greatly increased the running time of �nding optimal local placements, and given the

resolution of the ECS map the choice of 5% did not seem unreasonable. We eval-

uated the highest scoring placement among all the proposals from heuristics (HC,

SA, CD, GH), a uniform placement, and the robot traveling the waypoints without

the use of markers. The latter choice of no markers was introduced to serve as a

control benchmark and ultimately proved necessary. The highest scoring placement

came from a coordinate descent placement that clumped markers around the way-

points (Figure 5.4a), as might be predicted, given the scoring function chosen. The

68

0 2 4 6 8 10 12 14
Waypoint

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Er
ro

r f
ro

m
 w

ay
po

in
t (

m
)

(a) No Markers

0 2 4 6 8 10 12 14
Waypoint

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Er
ro

r f
ro

m
 w

ay
po

in
t (

m
)

(b) Best Score Placement

0 2 4 6 8 10 12 14
Waypoint

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Er
ro

r f
ro

m
 w

ay
po

in
t (

m
)

(c) Uniform Placement

0 2 4 6 8 10 12 14
Waypoint

0

2

4

6

8

10

Bu
m
ps

(d) No Markers

0 2 4 6 8 10 12 14
Waypoint

0

2

4

6

8

10

Bu
m
ps

(e) Best Score Placement

0 2 4 6 8 10 12 14
Waypoint

0

2

4

6

8

10

Bu
m
ps

(f) Uniform Placement

Figure 5.5: Each colour line represents an individual run. (Top row) The measured
error between each waypoint for the 5 runs of each placement of markers. (Bottom
row) The number of times the robot bumped into the wall between waypoints for the
5 runs of each placement. A run is stopped as a failure if either 10 bumps occurred
between a waypoint or the distance from the robot to its next waypoint was greater
than four meters.

coordinate descent placement had a score of 5456 as compared to the uniform place-

ment (Figure 5.4b) score of 71676. Experiments were then conducted to evaluate the

e�ectiveness of these placements in practice.

Experimentation consisted of performing �ve runs of the robot evaluating the co-

ordinate descent placement, uniform placement and with no markers placed. The

robot traveled through the ECS hallway following the waypoints and would peri-

odically pause to observe markers after one meter of travel or if it bumped into a

wall. When the robot reached a waypoint, the robot paused and a human would

measure the distance of the robot from its desired waypoint. Due to limitations with

the robot, the robot was permitted to bump into the wall. The information gained

from bumping into the wall was used by the particle �lter. If the robot bumped into

the wall ten times between traveling from one waypoint to the next, the run would

be stopped and considered a failure. This policy was enacted based on observations

that after about 8 or 9 consecutive bumps the robot's true pose would no longer be

69

No Markers Uniform Placement Best Score Placement0

2

4

6

8

10

12

14

W
ay

po
in

t r
ea

ch
ed

Figure 5.6: Box-and-whisker plot of the waypoints reached for each placement. See
Appendix C for an explanation of the box-and-whisker plot.

accurately represented by the particle �lter (discussed in Chapter 3.1). A robot run

would also stop and be considered a failure if the robot's perceived position was in

error exceeding four meters to the next waypoint. This was usually the case when

the robot's true pose would no longer be represented by the particle �lter and by

chance, the robot would be traveling away from its next waypoint. Each run took

approximately 25 to 35 minutes to complete, depending on the distance the robot

traveled. The results of the experimentation can be seen in Figures 5.5 and 5.6. The

recorded measurements for each run can be seen in Appendix E.

The results indicate that the uniform placement of markers performed better than

the runs without markers and the coordinate descent placement, which was the place-

ment with the best score out of all evaluated placements by the various heuristics.

This was surprising because of the score the uniform placement had relative to the co-

ordinate descent score using the proposed scoring function. It was also surprising how

poorly coordinate descent performed � providing a marker placement that appeared

no better than using no markers at all when physical experiments were done.

5.4.1 Discussion of Results

The experiments lend evidence that the proposed scoring function is not able to

accurately capture the e�ectiveness of a marker placement.

70

The uniform placement tended to perform better than the best scoring placement

and no markers. One possible explanation may be that the distance between way-

points (2.3 to 4 meters) was too far. Thus, the accumulated errors in the robot's mo-

tion between waypoints may be been too great. If the waypoints were more frequent,

for example every 1 to 1.5 meters, the metaheuristics may have found a placement

similar to the uniform placement. More waypoints would have led to patches which

together would have provided more coverage of the environment.

During the runs, there were cases where the robot would fail to detect certain

markers which would lead to inappropriate movements. This was especially noticeable

when the robot moved around corners (waypoints 5 and 9). The proposed scoring

function currently does not take into account when the robot does not observe markers

that should be visible. Doing so might lead to better and more robust placements.

Additionally, having the robot look for markers after 1 meter of travel was imposed

as a practical matter, to keep the experimental runs from taking overly long. More

frequent observations may have greatly assisted the robot's localization capability, at

the expense of time needed to travel along the waypoints.

The experimentation also exposed some �aws in the intuition behind the proposed

scoring function. Although the patch area ultimately determines the localization

bound for the robot, it does not appear to be su�cient for a �good� placement in

practice. A patch at a waypoint that allows e�ective localization for the robot is only

useful if the robot can reach that patch. This leads to an observation that the patch

at a waypoint is not necessarily the most important factor. The patches in between

waypoints and around waypoints, that collectively partition the environment, can

have an impact on robot localization. The knowledge of these patches can also be

used to assist motion planning. If the robot, from its current position, follows a linear

path through large patches, it could be more e�ective to plot an alternative path to

or through smaller area patches if possible. This is similar to some of our previous

work [53] that looked at navigating a robot between low risk regions.

The proposed scoring function's scoring of placements did not take into account

the robot's motion and error model as it traversed the environment with a given

marker placement. Thus, how the robot would behave when navigating and observing

an environment with a particular placement was unknown.

Possible alternative scoring functions for future work are discussed in Chapter 6.2.

71

Chapter 6

Conclusions

As robots increase in use and availability, mobile robotics will continue to be a �eld

of interest and value. In this thesis, we explored an aspect of mobile robotics, namely,

the placement of binary directional sensors along waypoints to assist a robot in local-

ization in known environments. We modeled a binary directional marker's visibility

region as an annulus sector � which takes into account the minimum range most

sensors possess. We turned away from binary directional proximity sensors that use

batteries and developed a crude, planar �ducial marker we named RedComet based

on ARTag [1]. We proposed a scoring function for evaluating the e�ectiveness of a

placement of markers that involved minimizing the patch area around waypoints. The

nature of the problem required a metaheuristic approach to �nd an optimal placement

with respect to the scoring function, so several common metaheuristic algorithms were

evaluated. In addition, an algorithm was developed for generating random hallways

maps. These maps were then used to evaluate the metaheuristic algorithms. Over-

all, the greedy heuristic appeared to give relatively good results with a better time

complexity than the other cases.

To validate the proposed scoring function, physical experiments with a robot in a

real hallway environment were conducted on a placement with the best score found

using the proposed scoring function, a uniform placement, and �nally, the same hall-

way environment with no markers placed. The results from experimentation implied

that best score placement did not perform as well as the uniform placement.

While research projects often limit themselves in scope entirely to simulation re-

sults, we found that the inclusion of physical experiments exposed weaknesses in the

scoring function. Our experimentation demonstrated the strong need for physical

experiments in order for a hypothesis about a good marker placement to be honestly

72

evaluated. Improvement of the scoring function by an iterative process, alternating

between physical experiments and simulation, would be valuable albeit time con-

suming process for future research. Clearly, future re�nements require experimental

results to ensure that a scoring function re�ects the reality of the robot. Although the

physical results were not consistent with the �optimal� results found by simulation

based on our scoring function, the pursuit of better inroads into binary sensing and

placement should continue because of the relative simplicity and low cost this method

promises. This thesis may serve as guidance to the challenges involved in this pursuit.

6.1 Contributions

While this thesis has explored many facets of directional binary marker placement

the major contributions can be summarized as follows,

1. The evaluation of several metaheuristics were evaluated in simulation and ex-

perimentation with di�erent parameters on the directional binary placement

problem.

2. An algorithm with Python source code for generating random 2D o�ce maps.

3. Redcomet : a Python library for encoding and decoding a simple planar �ducial

marker similar to ARTag.

The thesis may provide an introduction and guidance to future researchers who

continue research on the directional binary marker and sensor placement problem.

6.2 Alternative Scoring Functions

The physical experiments of this thesis exposed issues with the proposed scoring

function, as discussed in Chapter 5.4.1. One of the main issues of the proposed

scoring function is the underlying assumption that minimizing patches at waypoints

is all that is necessary. If the robot misses the waypoint patch or improperly detects

markers there, then there is no localization improvement. To deal with this, possible

future scoring functions could score marker placements based on other patches as

well as those at waypoints. For example, a possible scoring function could include the

patch area of the waypoint as well as the patch areas for all patches adjacent to the

73

waypoint patch. This could lead to marker placements that will improve localization

when the robot gets near a waypoint � as the scoring function will also try to minimize

all the patches around a waypoint.

Another approach to the scoring function is to focus less on the waypoints and

more on coverage. That is, focus on a scoring function that leads to useful localization

patches throughout the environment. This could be done in a way similar to Beinhofer

et al. [22] approach where the scoring function rewards a relatively small maximum

patch area. A crude approximation of this could be to have the scoring function be

the area of the patch with the maximum area. Minimizing this score would lead to a

placement that partitions the entire environment into relatively small patches. This

could be useful for coverage and allowing a robot to use patches in path planning (as

mentioned in Chapter 5.4.1).

These approaches all are still heuristics that approximate a �good� marker place-

ment for mobile robot localization. Although they may prove e�ective, none of them

take into account the robot actually navigating through the environment or give a

bound on how well the robot will navigate under a given marker placement. One

possible avenue of further study is following a similar strategy to marker placement

as Vitus and Tomlin [19] and Beinhofer et al [22]. This approach would involve hav-

ing the scoring function be directly related to how well a simulation of the robot

would travel the waypoints given a marker placement. In their work, a sensor is only

capable of giving readings to the robot when the robot's entire region of probable

positions lies within the sensor's �eld of view. These readings give information about

the robot's pose that can then be used to reduce the robot's pose error. With binary

directional proximity markers, the localization value of detecting a marker is that the

robot is likely in the visibility region of the marker. So, if the robot's region of most

probable positions lies within the visibility region of a marker, there is no localization

bene�t. This means such a scoring function following this approach would need to be

supplemented by alternative means.

One possibility is to simulate the robot navigating the environment using a par-

ticle �lter. The scoring function would then be how well the robot navigates the

environment given a marker placement. A speci�c example could be the maximum

deviation of the robot's position from the path through the waypoints. A major is-

sue with this approach is that the particle �lter is non-deterministic, so for a given

marker placement to be evaluated would require a number of runs to ensure statisti-

cally meaningful evaluation. This could lead to heavy computational run times just

74

to test a single marker placement. Finding a minimum score marker placement could

involve thousands of such tests.

Ultimately, any continued e�ort into developing a scoring function must be eval-

uated through physical experiments. That said, future work into �nding an e�ective

scoring function could prove very useful.

6.3 Future Work

Throughout the process of exploring this problem, there were several avenues of fur-

ther study that were not pursued due to time constraints. In this section, some of

these possible future paths of study are discussed.

The only localization problem explored in this thesis was that of robot tracking.

It could be of interest to experiment with the e�ectiveness of marker placement in

regards to global localization and the kidnapped robot problem. Exploring this could

help demonstrate real world robustness.

Lastly, it became clear during experimentation that placement of �ducial markers

in an environment shared with people could be visually unpleasant to the eye. This

could become an issue of using this approach in certain environments. It would be

interesting to reevaluate this approach from a human-robot interaction point-of-view

with a focus on placement localization that takes into account aesthetics. This could

coincide well with work on more aesthetically pleasing and/or subtle �ducial markers

([54, 55]) and may be interesting to design and carry out experiments from this

perspective.

75

Bibliography

[1] M. Fiala, �ARTag revision 1, a �ducial marker system using digital techniques,�

Tech. Rep. 7419/ERB-1117, National Research Council Publication, Nov. 2004.

[2] A. Rice, A. Beresford, and R. Harle, �Cantag: an open source software toolkit

for designing and deploying marker-based vision systems,� in Proceedings of the

IEEE International Conference on Pervasive Computing and Communications

(PerCom), pp. 10�21, Mar. 2006.

[3] A. Xu and G. Dudek, �Fourier tag: A smoothly degradable �ducial marker system

with con�gurable payload capacity,� in Proceedings of the Canadian Conference

on Computer and Robot Vision (CRV), pp. 40�47, May 2011.

[4] A. Stathakis, �Vision-based localization using reliable �ducial markers,� Master's

thesis, University of Ottawa, 2012.

[5] C. Harris and M. Stephens, �A combined corner and edge detector,� in Proceed-

ings of the Alvey Vision Conference (AVC), pp. 147�151, Sept. 1988.

[6] R. Allen, N. MacMillan, D. Marinakis, R. I. Nishat, R. Rahman, and S. White-

sides, �The range beacon placement problem for robot navigation,� in Proceedings

of the Canadian Conference on Computer and Robot Vision (CRV), pp. 151�158,

May 2014.

[7] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics

and Autonomous Agents). The MIT Press, 2005.

[8] S. Han, H. Lim, and J. Lee, �An e�cient localization scheme for a di�erential-

driving mobile robot based on RFID system,� IEEE Transactions on Industrial

Electronics, vol. 54, pp. 3362�3369, Dec. 2007.

76

[9] Y. Mesaki and I. Masuda, �A new mobile robot guidance system using optical

re�ectors,� in Proceedings of the IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), vol. 1, pp. 628�635, July 1992.

[10] M. Amac Guvensan and A. Gokhan Yavuz, �On coverage issues in directional

sensor networks: A survey,� Ad Hoc Networks, vol. 9, pp. 1238�1255, Sept. 2011.

[11] J. Ai and A. A. Abouzeid, �Coverage by directional sensors in randomly de-

ployed wireless sensor networks,� Journal of Combinatorial Optimization, vol. 11,

pp. 21�41, Feb. 2006.

[12] D. S. Hochbaum, �Approximation algorithms for NP-hard problems,� p. 94�143,

Boston, MA, USA: PWS Publishing Co., 1997.

[13] G. Fusco and H. Gupta, �Selection and orientation of directional sensors for cov-

erage maximization,� in Proceedings of the IEEE Communications Society Con-

ference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON),

pp. 1�9, June 2009.

[14] Y. Wu, J. Yin, M. Li, Z. En, and Z. Xie, �E�cient algorithms for probabilistic

k-coverage in directional sensor networks,� in Proceedings of the International

Conference on Intelligent Sensors, Sensor Networks and Information Processing

(ISSNIP), pp. 587�592, Apr. 2008.

[15] V. Akbarzadeh, C. Gagne, M. Parizeau, M. Argany, and M. Mostafavi, �Prob-

abilistic sensing model for sensor placement optimization based on line-of-sight

coverage,� IEEE Transactions on Instrumentation and Measurement, vol. 62,

no. 2, pp. 293�303, 2013.

[16] H. Zhang, �Two-dimensional optimal sensor placement,� IEEE Transactions on

Systems, Man and Cybernetics, vol. 25, pp. 781�792, May 1995.

[17] S. J. Russell and P. Norvig, Arti�cial intelligence: a modern approach. Prentice

Hall series in arti�cial intelligence, Upper Saddle River: Prentice Hall, 3rd ed.,

2010.

[18] D. B. Jourdan and N. Roy, �Optimal sensor placement for agent localization,�

ACM Transactions on Sensor Networks, vol. 4, pp. 1�40, June 2008.

77

[19] M. P. Vitus and C. J. Tomlin, �Sensor placement for improved robotic naviga-

tion,� in the Online Proceedings of Robotics: Science and Systems, June 2010.

[20] M. Beinhofer, J. Müller, and W. Burgard, �Near-optimal landmark selection for

mobile robot navigation,� in Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), May 2011.

[21] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, �An analysis of approxima-

tions for maximizing submodular set functions�I,� Mathematical Programming,

vol. 14, pp. 265�294, Dec. 1978.

[22] M. Beinhofer, J. Müller, and W. Burgard, �E�ective landmark placement for ac-

curate and reliable mobile robot navigation,� Robotics and Autonomous Systems,

vol. 61, pp. 1060�1069, Oct. 2013.

[23] M. Beinhofer, J. Muller, A. Krause, and W. Burgard, �Robust landmark selec-

tion for mobile robot navigation,� in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 3637�2643, Nov. 2013.

[24] D. P. Meger, �Planning, localization, and mapping for a mobile robot in a camera

network,� Master's thesis, McGill University, 2007.

[25] G. Dudek, J. Sattar, and A. Xu, �A visual language for robot control and pro-

gramming: A human-interface study,� in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), pp. 2507�2513, Apr. 2007.

[26] E. Olson, �AprilTag: A robust and �exible visual �ducial system,� in Proceed-

ings of the IEEE International Conference on Robotics and Automation (ICRA),

pp. 3400�3407, May 2011.

[27] A. Stathakis and E. Petriu, �Robust pseudo-random �ducial marker for indoor

localization,� in Proceedings of the IEEE International Symposium on Robotic

and Sensors Environments (ROSE), pp. 19�24, Sept. 2011.

[28] J. Sattar, E. Bourque, P. Giguere, and G. Dudek, �Fourier tags: Smoothly

degradable �ducial markers for use in human-robot interaction,� in Proceedings

of the Canadian Conference on Computer and Robot Vision (CRV), pp. 165�174,

May 2007.

78

[29] R. Harle and A. Hopper, �Cluster tagging: Robust �ducial tracking for smart

environments,� in Proceedings of the International Conference on Location- and

Context-Awareness (LoCA), no. 3987 in Lecture Notes in Computer Science,

pp. 14�29, Springer Berlin Heidelberg, Jan. 2006.

[30] P. Corke, C. Detweiler, M. Dunbabin, M. Hamilton, D. Rus, and I. Vasilescu, �Ex-

periments with underwater robot localization and tracking,� in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), pp. 4556�

4561, Apr. 2007.

[31] C. Bonnet, A. Spicer, M. Hoeberechts, D. Owens, D. Abeysirigunawardena,

M. Heesemann, K. Juniper, M. Matabos, S. Mihaly, K. Moran, A. Ravindran,

and M. Scherwath, NEPTUNE Canada: an invitation to science. Victoria, B.C:

University of Victoria, 2012.

[32] L. Thomsen, C. Barnes, M. Best, R. Chapman, B. Pirenne, R. Thomson, and

J. Vogt, �Ocean circulation promotes methane release from gas hydrate outcrops

at the NEPTUNE canada barkley canyon node,� Geophysical Research Letters,

vol. 39, Aug. 2012.

[33] R. E. Kalman, �A new approach to linear �ltering and prediction problems,�

Transactions of the ASME - Journal of basic Engineering, vol. 82, pp. 35�45,

1960.

[34] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, �Monte carlo localization for

mobile robots,� in Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), vol. 2, pp. 1322�1328, May 1999.

[35] N. Gordon, D. Salmond, and A. F. M. Smith, �Novel approach to nonlinear/non-

gaussian bayesian state estimation,� IEEE Proceedings F, Radar and Signal Pro-

cessing, vol. 140, no. 2, pp. 107�113, 1993.

[36] P. Djuric, M. Vemula, and M. Bugallo, �Target tracking by particle �ltering in

binary sensor networks,� IEEE Transactions on Signal Processing, vol. 56, no. 6,

pp. 2229�2238, 2008.

[37] N. Shrivastava, R. M. U. Madhow, and S. Suri, �Target tracking with binary

proximity sensors: Fundamental limits, minimal descriptions, and algorithms,�

79

in Proceedings of the ACM International Conference on Embedded Networked

Sensor Systems (SenSys), p. 251�264, Nov. 2006.

[38] M. Sonka, Image processing, analysis, and machine vision. Paci�c Grove, CA:

PWS Pub, 2nd ed., 1999.

[39] M. Bezdek, �On a generalization of the blaschke-lebesgue theorem for disk-

polygons,� Contributions to Discrete Mathematics, vol. 6, no. 1, pp. 77�85, 2011.

[40] M. Fiala, �Designing highly reliable �ducial markers,� IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 32, pp. 1317�1324, July 2010.

[41] R. Tsai, �A versatile camera calibration technique for high-accuracy 3D machine

vision metrology using o�-the-shelf TV cameras and lenses,� IEEE Journal of

Robotics and Automation, vol. 3, no. 4, pp. 323�344, 1987.

[42] Z. Zhang, �A �exible new technique for camera calibration,� IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330�1334,

2000.

[43] M. Fiala and C. Shu, �Self-identifying patterns for plane-based camera calibra-

tion,� Machine Vision and Applications, vol. 19, pp. 209�216, July 2008.

[44] M. Groÿe, M. Scha�er, B. Harendt, and R. Kowarschik, �Camera calibration

using time-coded planar patterns,� Optical Engineering, vol. 51, pp. 1�9, Aug.

2012.

[45] G. Bradski, �Opencv library,� Dr. Dobb's Journal of Software Tools, 2000.

[46] T. Filiba, �reedsolo,� 2012 (Accessed June 2014). https://pypi.python.org/

pypi/reedsolo.

[47] M. Thompson, �Fiducial markers for robotic vision, navigation and object

recognition,� Nov. 2009 (Accessed June 2014). http://archive.org/details/

HBRobotics_Fiducial-Markers.

[48] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, �Optimization by simulated

annealing,� Science, vol. 220, pp. 671�680, 1983.

[49] D. P. Bertsekas, Nonlinear programming. Belmont, MA: Athena Scienti�c, 1999.

https://pypi.python.org/pypi/reedsolo
https://pypi.python.org/pypi/reedsolo
http://archive.org/details/HBRobotics_Fiducial-Markers
http://archive.org/details/HBRobotics_Fiducial-Markers

80

[50] D. Ashlock, T. Manikas, and K. Ashenayi, �Evolving a diverse collection of robot

path planning problems,� in Proceedings of the IEEE Congress on Evolutionary

Computation (CEC), pp. 1837�1844, July 2006.

[51] J. Canny, �A computational approach to edge detection,� IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679�698, 1986.

[52] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng, �ROS: an open-source robot operating system,� IEEE International

Conference on Robotics and Automation (ICRA) Workshop on Open Source Soft-

ware, vol. 3, no. 3.2, 2009.

[53] N. MacMillan, R. Allen, D. Marinakis, and S. Whitesides, �Range-based naviga-

tion system for a mobile robot,� in Proceedings of the Canadian Conference on

Computer and Robot Vision (CRV), pp. 16�23, May 2011.

[54] Z. Farkas, P. Korondi, D. Illy, and L. Fodor, �Aesthetic marker design for home

robot localization,� in Proceedings of the Annual Conference of IEEE Industrial

Electronics Society (IECON), pp. 5510�5515, Oct. 2012.

[55] S. Saito, A. Hiyama, T. Tanikawa, and M. Hirose, �Indoor marker-based local-

ization using coded seamless pattern for interior decoration,� in Proceedings of

the IEEE Virtual Reality Conference (VR), pp. 67�74, Mar. 2007.

[56] J. W. Tukey, Exploratory data analysis. Addison-Wesley series in behavioral

science, Reading, MA: Addison-Wesley Pub. Co, 1977.

81

Glossary

ARTag Augmented Reality Tag. 14, 34

ECS The Engineering and Computer Science Building at the University of Victoria.

63

localization The problem of determining the pose of a robot. 1

overlay grid Visibility grids added on top of each other. 33

pose Cartesian position and orientation (i.e. (x, y, θ) in 2D). 1

RCTag RedCometTag. 34

ROS Robot Operating System. 65

SLAM Simultaneous Localization and Mapping. 4

visibility grid The discretized annulus sector of a marker's visibility region after

considering its line-of-sight given obstructions in the environment. 31

82

Appendix A

Gradient Visibility Model

(a) (b)

Figure A.1: (a) The uniform visibility marker model. (b) The gradient visibility
marker model.

An alternative to the uniform visibility model discussed in Section 3.1.3 is to use a

probabilistic visibility model that allows for a more gradual change in the probability

density function values as opposed to the hard thresholds of the uniform continuous

distribution. This leads us to the following gradient visibility model. First, using

the probabilistic model from Akbarzadeh et al. [15], we de�ne a function that is the

di�erence of two sigmoid functions:

h(x) =
1

1 + exp(−β1 (x − α1))
− 1

1 + exp(−β2 (x − α2))
(A.1)

where β1 and β2 are constants that de�ne the shape of the curves, and α1 and α2

83

0 1 2 3 4 5 6 7
Meters

0.0

0.2

0.4

0.6

0.8

1.0

h
j r
(x
)

β r
min=11.0, β r

max=5.0

β r
min=15.0, β r

max=9.0

β r
min=19.0, β r

max=13.0

(a)

−150 −100 −50 0 50 100 150
Degrees

0.0

0.2

0.4

0.6

0.8

1.0

h
j θ
(x
)

βθ=1.0

βθ=3.0

βθ=5.0

(b)

Figure A.2: (a) Equation A.2 of the gradient visibility model with rmin = 0.5 and
rmax = 3. (b) Equation A.3 of the gradient visibility model with αjt = 50o.

determine the lower and higher midpoints of each curve. Next, this function is then

used to de�ne a function for the gradient of the distance from the sample point to

the marker:

hjr(r
i
t) =

1

1 + exp(−βrmin (rit − rmin))
− 1

1 + exp(−βrmax (rit − rmax))
(A.2)

and a function for the gradient of the angle from the sample point to the marker:

hjθ(ω
i
t) =

1

1 + exp(−βθ (ωit + αjt))
− 1

1 + exp(−βθ (ωit − αjt))
(A.3)

The constants −βrmin , −βrmin and −βθ describe the steepness of the dropo� (see

Figure A.2).

Finally, to use Equations A.2 and A.3 as de�nitions for continuous probability

distributions, the expressions on the right of A.2 and A.3 must be normalized. For

equation A.2 the possible domain of distances is from [0,∞), so the integration of

hjr(r
i
t) is from 0 to ∞:

νjr =

∫ ∞
0

hjr(r
i
t) drit

νjr =
1

βrmax
ln |1 + exp(βrmaxrmax)| −

1

βrmin
ln |1 + exp(βrminrmin)| (A.4)

and similarly for hjθ(ω
i
t):

84

νjθ =

∫ 180o

−180o
hjθ(ω

i
t) dωit

νjθ =
1

βθ

[
ln |1 + exp(−βθωit + βθα

j
t)| − ln |1 + exp(−βθωit − βθα

j
t)|
]180o
−180o (A.5)

With the normalizing constants νjr and ν
j
θ we can then de�ne our gradient visibility

distribution as:

p(vi,jt = 1 | sit) =
hjr(r

i
t)

νjr
× hjθ(ω

i
t)

νjθ
(A.6)

p(vi,jt = 0 | sit) = 1−

(
hjr(r

i
t)

νjr
× hjθ(ω

i
t)

νjθ

)
(A.7)

The results for sample points using the gradient visibility distribution for equa-

tion A.6 can be seen in Figure A.1b.

85

Appendix B

Reuleaux Triangle

(a) (b)

Figure B.1: a) The formation of the Reuleaux triangle by 3 uniformly placed markers
(marked by `x') around a waypoint at the center. b) The properties of the Reuleaux
triangle given we only know R− rw.

In this appendix, we elaborate on the details of the Reuleaux triangle discussed

in Chapter 3.2.1. Based on the uniform placement of three markers rw distance

around the waypoint center, we know the distance from the waypoint center to the

marker edge is R− rw (see Figure B.1a). Because the markers are uniformly placed,

the overlap of all their annulus sector visibility regions form a Reuleaux triangle. By

de�nition, a Reuleaux triangle has a constant width w and an area of 1
2
(π−
√

3)w2 [39].

Within a Reuleaux triangle is an equilateral triangle, where each side is length w and

the angles at each corner are 60o. From this we can observe certain properties as seen

in Figure B.1b.

86

Although we do not know what w is and want to �nd it, it can be seen that:

w = w sin(60o) + ((R− rw)− w

2
tan(30o))

After simplifying (with sin(60o) =
√
3
2
and tan(30o) =

√
3):

w =
R− rw
1−
√

3

Substituting w into the original area formula arising from the de�nition of a

Reuleaux triangle, the area of this Reuleaux triangle is 1
2
(π−

√
3)((1− 1√

3
)(R−rw))2.

The maximum deviation d within this triangle is the distance from the waypoint

to a point on the boundary of the triangle. This maximum deviation distance is

d = w − (R − rw). By again substituting for w, the maximum deviation distance

has an upper bound of d = (1√
3−1)(R− rw). If the angle 2α of the annulus sectors is

smaller than that needed to �ll the Reuleaux triangle, given a particular value for rw,

then the maximum distance from the waypoint to this other shape will be less than

(1√
3−1)(R− rw). This is why d is given as an upper bound.

87

Appendix C

Box-and-whisker Plot

Figure C.1: An illustration of the box-and-whisker plot with some example input
data.

In this appendix we describe the box-and-whisker plot used in Chapter 5.4. The

box-and-whisker plot is a type of plot created by John Tukey [56] that can help

illustrate the distribution of data points � in particular, their skew and variance

(Figure C.1). The box component of the box-and-whisker plot is de�ned by three

88

quartiles. The second quartile (Q2) is the median of all the data points. The �rst

quartile (Q1) is the median of all data points lower than and including the second

quartile, while the third quartile (Q3) is the median of all data points higher than

and including the second quartile. The size of the box InterQuartile Range (IQR) is

de�ned as Q3−Q1.

In this thesis, the top whisker of the box-and-whisker plot is de�ned as the max-

imum data point that is less than or equal to Q3 + (1.5 × IQR). Similarly, the

bottom whisker is de�ned as the minimum data point that is greater than or equal

to Q1 − (1.5 × IQR). Any data points above the top whisker or below the bottom

whisker are considered outliers and plotted as points.

89

Appendix D

Random Hallway Maps

The following �gures are the random hallway maps (occupancy grids and waypoints)

generated using our method described in Chapter 4.2 for simulation in Chapter 4.3.

The seed for each random hallway map is the map ID number (i.e. the seed for

`Map 0' is 0).

90

Map 0 Map 1

Map 2 Map 3

91

Map 4 Map 5

Map 6 Map 7

Map 8 Map 9

92

Map 10 Map 11

Map 12 Map 13

Map 14 Map 15

93

Map 16 Map 17

Map 18 Map 19

Map 20 Map 21

94

Map 22 Map 23

Map 24 Map 25

Map 26 Map 27

95

Map 28 Map 29

96

Appendix E

Experiment Runs Data

This section includes the data of all the physical experimental runs of the robot in

the hallway as discussed in Chapter 5.4. To recap, the total length of the run was

approximately 45 meters, with the width of the hallway being approximately 1.6 ±0.2

meters. The distance between waypoints varied from approximately 2.3 to 4 meters.

Most runs that failed were the result of 10 bumps, but some also failed because the

robot had an error distance from the expected waypoint exceeding 4 meters. This

was usually the result of the robot moving in the wrong direction. These failures are

indicated by `Err'.

Waypoint Run 1 Run 2 Run 3 Run 4 Run 5
1 0.0 0.0 0.0 0.0 0.0
2 0.27 0.23 0.34 0.17 0.28
3 0.37 0.26 0.54 0.32 0.46
4 0.31 0.1 0.63 0.22 0.47
5 0.35 0.16 0.68 0.05 0.81
6 0.4 0.84 1.44 0.72 0.72
7 0.58 - - - 0.87
8 0.66 - - - 1.32
9 1.0 - - - 2.43
10 0.93 - - - -
11 1.54 - - - -
12 1.83 - - - -
13 2.28 - - - -
14 2.72 - - - -

Table E.1: No Markers - Measured error from waypoints (meters).

97

Waypoint Run 1 Run 2 Run 3 Run 4 Run 5
1 0.0 0.0 0.0 0.0 0.0
2 0.1 0.1 0.12 0.09 0.05
3 0.23 0.39 0.05 0.05 0.22
4 0.6 0.53 0.1 0.05 0.17
5 0.54 - 0.18 0.08 0.21
6 - - 0.68 0.07 0.34
7 - - 1.37 0.09 0.41
8 - - 1.38 0.43 0.42
9 - - 2.32 0.32 0.98
10 - - - 0.32 -
11 - - - 0.54 -
12 - - - 0.8 -
13 - - - 1.14 -
14 - - - 1.39 -

Table E.2: Best Score Placement - Measured error from waypoints (meters).

Waypoint Run 1 Run 2 Run 3 Run 4 Run 5
1 0.0 0.0 0.0 0.0 0.0
2 0.1 0.42 0.22 0.41 0.17
3 0.11 0.35 0.38 0.33 0.12
4 0.05 0.54 0.38 0.41 0.3
5 0.22 1.0 0.05 0.36 0.16
6 0.37 - 0.42 0.32 0.23
7 0.43 - 0.75 0.21 0.59
8 0.08 - 1.57 0.32 0.79
9 0.94 - 1.79 0.69 0.87
10 0.73 - - 0.45 0.71
11 0.95 - - 0.68 1.31
12 1.0 - - 0.89 1.6
13 1.17 - - 1.1 1.98
14 1.4 - - 1.38 2.37

Table E.3: Uniform Placement - Measured error from waypoints (meters).

98

Waypoint Run 1 Run 2 Run 3 Run 4 Run 5
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 1 0 0
4 0 0 0 0 1
5 0 0 3 0 2
6 0 5 5 1 0
7 0 10 10 10 0
8 0 - - - 5
9 0 - - - 4
10 0 - - - Err
11 4 - - - -
12 0 - - - -
13 1 - - - -
14 2 - - - -

Table E.4: No Markers - number of Bumps between waypoints.

Waypoint Run 1 Run 2 Run 3 Run 4 Run 5
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 1 0 0 0
5 9 10 0 0 0
6 10 - 2 0 0
7 - - 3 0 0
8 - - 0 0 2
9 - - 3 0 3
10 - - 10 0 Err
11 - - - 0 -
12 - - - 0 -
13 - - - 0 -
14 - - - 0 -

Table E.5: Best Score Placement - number of Bumps between waypoints.

99

Waypoint Run 1 Run 2 Run 3 Run 4 Run 5
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 2 0 0 0
5 0 2 0 0 1
6 0 10 0 0 0
7 0 - 1 0 0
8 2 - 3 0 2
9 2 - 0 0 0
10 0 - 10 0 0
11 0 - - 0 4
12 0 - - 0 0
13 0 - - 0 1
14 0 - - 1 2

Table E.6: Uniform Placement - number of Bumps between waypoints.

	Supervisory Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem Overview
	Outline
	Contributions

	Related Work
	Directional Sensor Placement
	Fiducial Tags
	Applications

	Approach, Methodology and Parameter Estimation
	Localization
	Motion Model
	Observation Model
	Uniform Visibility Model
	Resampling

	Localization Patches and the Scoring Function
	A Theoretical Maximum Distance Deviation

	RedCometTag – Fiducial Planar Marker
	Encoding
	Decoding
	Parameter Estimation
	Range and Angle
	False Positives, True Negatives, Interconfusion and Occlusion
	Implementation

	Simulation
	Metaheuristic Optimization
	Hill Climbing
	Simulated Annealing
	Coordinate Descent
	Greedy Heuristic
	Uniform Placement

	Randomly Generated Hallway Environments for Marker Placement
	Marker Placement Poses
	Marker Placement Sampling

	Results

	Experimentation
	Environment
	Hardware
	Software
	Results
	Discussion of Results

	Conclusions
	Contributions
	Alternative Scoring Functions
	Future Work

	Bibliography
	Glossary
	Gradient Visibility Model
	Reuleaux Triangle
	Box-and-whisker Plot
	Random Hallway Maps
	Experiment Runs Data

