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ABSTRACT

This thesis describes a computational approach for analyzing the color aesthetics

of images from the perspective of color theory. Our work has been informed by the

works of Johannes Itten, one of the most influential theorists of color aesthetics.

To the best of our knowledge, developing computational models that are based on

Itten’s theories is our unique contribution to Computer Vision. We focus on three

aspects of color usage in visual art, namely modulation, contrast of hue and cold-warm

contrast. For modulation, we introduce the color palette, a novel 3D visualization of

the chromatic information of an image in the HSL space and propose a set of simple

descriptors for evaluating color modulation. For contrast of hue, we assess the spatial

color composition of the homogeneous regions. For cold-warm contrast, we assess

the spatial color composition of the homogeneous regions and the hue adjacencies.

Further, we assess the relative warmth of the homogeneous regions and adjacent hues.

We also propose a visualization, namely a 3D histogram to visualize the patterns of the

contrasts in an artist’s paintings. We validate our methods by comparing our results

with Itten’s descriptions and comments. We hope that this computational approach

improves the color-based features used in the aesthetic classification of images.
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Figure 3.17 Cézanne Paintings . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.18 Summary of normalized co-occurences for ‘Coronation of the

Virgin’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.19 Summary of normalized co-occurences for ‘La Belle Verriere’ . 50

Figure 3.20 Picasso Visualization- Contrast of hue results for homogeneous

regions and 3D histogram of relative proportions of hue homo-

geneities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.21 Detailed results for ‘Apples and Oranges’ by Cézanne . . . . . 52
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Chapter 1

Introduction

1.1 Motivation

In recent years, with the advances of social media and the high volume of photographs

in personal and online libraries, the study of aesthetics for the classification of images

has received increased attention from Computer Science, notably from areas such as

Computer Vision, Computer Graphics and Visual Analytics. This is motivated in part

by the overwhelming amount of visual data that we generate, share via downloading

and uploading on social networks, and store on our personal computing devices. Tools

are needed to make sense of such data, and to triage the meaningful, memorable, and

beautiful from the irrelevant, forgettable, and ordinary.

The classification of large numbers of images is not the only motivation for the

study of visual aesthetics from a computational perspective. Studying aesthetics

from a computational perspective may reveal some hidden aspects of this rather

elusive principle. The Oxford Advanced Learner’s Dictionary defines ‘aesthetic’ as

(1) ‘concerned with beauty and art and the understanding of beautiful things’ and

(2) ‘made in an artistic way and beautiful to look at’. Both definitions are vague and

don’t lead directly to explicit, quantifiable descriptions of aesthetic attributes.

Color is a common and powerful feature used in the assessment of aesthetic qual-

ity in images. However, knowledge of color-based aesthetic theories is limited among

Computer Vision researchers, resulting in an analysis of color composition that does

not necessarily differentiate well between images deemed as having high aesthetic

quality and low aesthetic quality. We aim to bring to Computer Vision some under-

standing and computational modelling of color-based aesthetic theories, and expect
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that the proposed models will improve the aesthetic classification of images.

‘Color harmony ’ is a common topic of discussion in color aesthetics. Color har-

mony is a common feature that Computer Vision researchers assess to discriminate

between high aesthetic quality and low aesthetic quality in images. Color harmony is

typically defined as the effect afforded by a pleasing color combination. This pleasing

effect has been the subject of debates for hundreds of years [61]. The state-of-the-art

color harmony models employed in the aesthetic classification of images in Computer

Vision are Moon & Spencer’s [41] and Matsuda’s [43]. Both models are based on lim-

ited empirical evidence gained from user studies, and do not offer a conceptual link

between their model and any color theories. The following excerpt from Westland

et al. [61] on the topic of color aesthetics shows the current disconnect between the

ways scientists and artists treat color aesthetics and color harmony: ‘... the recent

scientific approaches seem to be increasingly disconnected from the context of art and

design. Thus the preferences that are empirically determined in the laboratory may

bear no resemblance to the preferences and choices made by art and design practi-

tioners in the context of an expressive idea or in response to a design brief. The

last hundred years have seen a divergence in view between artists and scientists on

the topic of color aesthetics, and we suggest that this trend needs to be reversed if

significant progress is to be made in terms of understanding colour harmony.’ We

therefore turn our attention to color theory to understand color aesthetics.

Our study is a guided attempt at ‘understanding beautiful things’ from the per-

spective of color-based aesthetic theories. Two sets of color theories are widely

adopted: theories surrounding the traditional color wheel composed of three pri-

mary colors (red, yellow and blue) as described by Johannes Itten (1888-1967), and

theories surrounding the modern color wheel composed of five primary colors (red,

yellow, blue, green and purple) as described by Albert Munsell (1858-1918). Munsell

focussed on the accuracy of color representation, and his works strongly influenced

the creation of the CIE L*a*b* color space. Leading color theorist Birren(1900-1988)

who was the editor of many books on the topic of color perception, wrote the fore-

word for Itten’s second book [22], and describes him as follows: “he [Itten] has a

keen perception of the genius of the old masters and writes with rare enlightenment

on their color expression”. Further Birren wrote: “Johannes Itten was considered

one of the greatest teachers of the art of color of modern times ... His insistence on

spontaneity and personal expression with color - supported by adequate knowledge,

discipline and traning - became renowned”[23]. As such, our proposed approach is
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grounded in Itten’s formulation of color theory, which is detailed his two books: ‘The

art of color’ [22] and ‘The elements of color’ [23]. As one of the most influential theo-

rists of color aesthetics in modern times, Itten taught at the Bauhaus School of Art,

and formulated his color theories on the basis of perception. In his comprehensive

framework, he specified seven color contrasts, a color harmony model, and discussed

color modulation. According to Birren, the seven color contrasts are ”one of chief fea-

tures of Itten’s contribution to the art of color”. In his first book[22], Itten provided

examples of paintings that use the contrasts [22], and we use these examples as our

ground truth.

We focus on three specific aspects of color usage in visual art, namely color modula-

tion, contrast of hue and cold-warm contrast. Modulation is a concept Itten described

as subtle variations in tones and chroma. Using his description, we have developed

a computational model to measure and visualize modulation. From the list of seven

contrasts, we selected contrast of hue and cold-warm contrast as a starting point for

developing computational models that assess the contrasts in images. Further, Itten

refers to specific artists for their stylistic use of the two contrasts, thus we devel-

oped computational models to explore the patterns of use of these contrasts in their

paintings.

One of Itten’s contributions to art and design was ‘the idea that art could be

functional’ [14]. One such functional use is the application of design principles to

business documents. Business documents are communication tools for organizations,

that are used for both internal and external purposes. These purposes vary: reporting,

communicating new directions, providing instructions for new procedures, marketing

strategies, advertising campaigns. Examples of business documents include financial

reports, presentations, posters, letters, and magazines. Organizations place a signifi-

cant amount of information in documents. Most of them focus on the completeness of

the content at the expense of design considerations, leaving the reader to extract the

pertinent messages from the document. Document designers work on creating docu-

ment layouts that allow the reader to better understand the content of the document.

Document design topics include typesetting, layout, color and messaging. We take

first steps towards improving the aesthetics and readability of business documents by

applying principles from color-based aesthetic theories. As such, we investigate the

use of our computational models for analyzing color contrasts in business documents.
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1.2 Overview of thesis

This thesis is structured as follows:

Chapter 2 presents an overview of visual features used in the aesthetic classifi-

cation of images in Computer Vision. We investigate color-related features deeper

than other features. We also link low-level features that are directly gleaned from

pixel information to high-level concepts that are intended to better match human

perception of aesthetics in images. This is presented in Chapter 2.

Chapter 3 presents our computational models for (1) modulation, (2) contrast of

hue, (3) cold-warm contrast, (4) assessing patterns of contrast of hue in an artist’s

style, and (5) assessing patterns of cold-warm contrast in an artist’s style. We include

a detailed explanation of our methods and provide examples to illustrate the results.

Chapter 4 presents the databases on which we tested our computational models,

our results and a detailed analysis of our computational models. The first database

contains digital copies of paintings Itten discussed as examples illustrating the use

of the contrasts. For the images from this database, we provide our results and

a detailed analysis of our computational models for the two contrasts on selected

images. The second database contains images from artists that Itten mentioned for

the use of contrast of hue and the third database contains images from artists that

Itten mentioned for the use of cold-warm contrast. We provide our results and a

detailed analysis of our computational models for the exploration of the patterns of

the contrasts in the works of these artists.

Chapter 5 presents an explanation of the importance of design principles and

color in business documents. We further discuss the implementation details of our

computational models which we use to analyze the contrast of hue and cold-warm

contrast in business documents, our results and observations.

Chapter 6 presents a summary of the contributions of the thesis. We conclude by

listing possible future projects that could extend our work.
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Chapter 2

Related Work

The recent advances of social media and the high volume of photographs in personal

and online libraries have motivated the study of aesthetics for the classification of

images. The computer vision community has developed models to assess aesthetic

image quality by discriminating between high quality and low quality images using

features related to the whole image (global) and features related to regions of the

image (local). Figure 2.1 shows representative images from Photo.net, an online

peer-rated site for photographers.

Aesthetic judgement is highly qualitative, and is manifested as the viewer’s sub-

jective preference or emotional response towards an image [11][28][62]. Aesthetic

judgement is also influenced by cultural and generational constructs. According to

Marchesotti et al. [36], aesthetics and preference can be predicted using data-driven

approaches such as mimicking the best practices of professional photographers. One

of the photographic practices is to frame the image such that certain regions are in-

tentionally noticed. When a region from an image ‘pops out’ and grabs the attention

of the viewer, the region is salient. Saliency is caused by the ‘effective contrast’ be-

tween the region of interest and the rest of the image. Saliency is directly linked to

bottom-up processes of visual attention [5], as the information at a salient location

can be processed with less attention from the viewer [59]. The spotlight is a com-

mon metaphor for saliency: when a region is lit up with a spotlight, the spotlight

effect allows ‘for increased sensitivity and a more precise encoding of information from

this spatial location’ for the viewer [59]. Visual saliency influences human aesthetic

judgement by causing the viewer to notice more detail from the salient regions at

the expense of other regions. With this knowledge, the computer vision community

has developed methods that bridge the gap between high level concepts and low level
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6.72 6.61 6.41 6.54

(a) Photographs with average score 6.0 and above

4.36 4.12 4.08 5.64

(b) Photographs with average score below 6.0

Figure 2.1: Representative photographs from Photo.net [3] rated by online users.
Photos are scored from 1 to 7, however most photographs were scored 5 or higher.

features.

The focus of our research in aesthetics is on the study of color modulation and

contrasts in visual art. In the remainder of this chapter we will briefly describe visual

features in aesthetics (section 2.1). Our discussion of visual features includes low level

features (section 2.1.1), a discussion of color harmony models and connecting low level

features to high level concepts in Computer Vision systems of aesthetic classification

(section 2.1.2). We will also discuss the databases of images designed to test the

performance of the features (section 2.2). Lastly, we will introduce our approach to

the study of color modulation and contrasts (section 2.3).
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2.1 Visual features in aesthetic classification

Low-level features such as spatial composition, texture, blur, depth of field and color

are extracted directly from pixel information. Features for high level concepts are

derived from a combination of low-level features, and are intended to better match

human perception. The relationship between high level concepts and low-level fea-

tures is depicted in Figure 2.2.

Relevant	  Image	  features	  
[44][45]	  

Memorability	  
[21]	  

Colorfulness	  
[10][31][33][37][44]	  

Salience	  
[15][17][18][24]	  
[25][26][29][31]	  
[35[45][55][63]	  

Harmony	  
[8][43][45]	  

Simplicity	  
[30][44]	  

Realism	  
[30]	  

Photographic	  techniques	  
[30]	  

Illusion	  of	  movement	  
[51]	  

Describable	  AKributes	  
[15][30]	  

OrientaMon	  
[17][25][26][33][34]	  

Bags-‐of-‐features	  
Fisher	  Vectors	  

[21][39][42][43]	  
[53][56][62]	  

Color	  	  
InformaMon	  

[8][9][10][17][18][21][24][25][26]
[30][31][33][34][35][37][38][41][42]
[43][44][45][47][48][51][56][62]	  

Edge	  	  
DistribuMon	  

[17][30]	  

Blur	  &	  DoF	  
[9][10][15][30][33]	  
[34][37][38][51][57]	  

Rule	  of	  thirds	  
[10][15][31][33]	  	  
[37][38][44]	  

Figure 2.2: Relationship between high-level concepts and low-level features. High
level concepts are listed in the center column. Edges connect high level concepts to
low level features.

2.1.1 Low-level features

In 2006, Datta et al. [10] and Ke et al. [30] created some of the earliest systems for

the aesthetic classification of photographs based on subjective preference. Datta et



8

al.’s low level features include color, blur, ‘rule of thirds’ and ‘depth of field’ (DoF).

Ke et al.[30] proposed features that describe high level concepts and best practices

from photography such as ‘simplicity’, [the lack of] ‘realism’ typically expressed by

unusual poses, and ‘basic photographic techniques’ ; these high level features are linked

to color information, blur, and depth of field. We will now discuss the advances in

the field since Datta et al. [10] and Ke et al. [30].

Spatial composition

Spatial composition refers to the location and shape of certain regions in the image,

as well as the spatial distribution of specific features. Spatial composition plays an

important role in image aesthetics [50][44][31].

High quality photographs are assumed to have uniformly distributed edges, while

low quality photographs have cluttered backgrounds. The edge distribution of an

image is detected through image gradients that identify the strength of edges, followed

by filtering high intensity edges and measuring their compactness. An ideally simple

image is one whose high frequency edge distribution is compact and situated near the

center of the image [30] .

The aspect ratio of an image is also a feature of interest. The aspect ratio refers to

the ratio of the width and height. It is assumed that objects (or regions) whose aspect

ratio is approximately equal to the golden ratio(1.618) are aesthetically pleasing [10].

The ‘rule of thirds’ is a simplification of the golden ratio, and is a guideline in pho-

tography that can be applied to the aesthetic classification of images [44]. If an image

were divided into 3 equal vertical parts and 3 equal horizontal parts, the top-left and

top-right intersections of the vertical and horizontal lines are power points (depicted

in Figure 2.3). Power points are deemed to be locations where human attention is

naturally directed [16]. An image that follows the ‘rule of thirds’ principle contains a

region of interest near a power point. Li et al. [33] propose that the region enclosed

by the two central vertical and horizotal lines is the ‘focus region’ of the image. Mea-

sures for spatial composition include center of mass, variance and skewness, average

hue [15], average saturation [15] and average light [33][15].

Blur and DoF

Blur is typically an indicator of a low quality image [57]. An image with a blurred

background and a focussed foreground however, is a photographic technique used in
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Figure 2.3: Rule of thirds- the eye of the bee is located at the top-right power point
[4]

macro images featuring a contrast between ‘sharpness and unsharpness’ [51][30][33][38],

as depicted in Figure 2.4. The contrast is measured by the ‘depth of field’(DoF) [10].

The lower the DoF, the higher the quality of the image. According to Peters et

al. [51], blur is also an indicator of movement when the image is ‘unsharp in one

direction’ and ‘the stronger the blur, the stronger the impression of speed’.

Figure 2.4: Blur and Depth of Field- a blurred background creates a low depth of
field, thus creating a focus on the sharp robin [3]
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Color

Color is a visual feature that focusses the attention of the viewer regardless of the

position of the colored object [7]. “The color of photos have a significant influence

on their perceived quality” [43], as depicted in Figure 2.5. Color is extracted in the

early processing of visual stimuli [32], and is therefore seen before content [22]. Color

also evokes emotional responses in viewers [22][23]. Ke et al. [30] learn the difference

between the color palettes of professional images and snapshots through classification.

color grayscale

Figure 2.5: Photograph in color [3] and converted to grayscale, illustrating the impact
of color on our attention.

Color information in digital images is in the RGB color space by default, thus

each pixel contains three values that represent the amount of red, green and blue

respectively. The intensity of light in pixels is easily interpreted from RGB values,

however the range of color information humans perceive cannot be easily extracted

from RGB. RGB images however can be converted to a perceptually relevant color

space such as HSL (Hue, Saturation and Light), HSV (Hue, Saturation and Value),

CIE Lab or CIE Luv. Ou et al. [48][47] propose a 3 dimensional color emotion space.

The three ‘emotion’ channels are color activity, color weight and color heat.

Bags-of-features

Bags-of-features are representations that measure the statistics of a combination of

low level features on small patches of the image. Statistics are aggregated on the

bags-of-features for the whole image. These intermediate level representations are
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needed to bridge low level features and high level concepts [36][62][21]. Solli [56]

proposed a color-based-bags-of-emotion feature based on the emotion color space [48],

where bags-of-emotions are used to retrieve images with similar ‘emotional’ content.

Yanulevska et al. [62] propose clustering bags-of-visual words such that the center

of the k-cluster is a visual word correlated with users’ ratings of positive or negative

emotions.

Fisher vectors [39][53] are a generalization of bags-of-visual words, that also en-

codes local statistics. While bags-of-visual-words do not contain spatial information,

the Fisher vector is computed on hierarchically divided regions, where local patches

are extracted. The Fisher Vector looks at the distribution (2nd order statistics) of

the local descriptors assigned to each visual word, thus resulting in a probabilistic

visual vocabulary. The Fisher Vector describes patches as a continuous distribution.

2.1.2 High level concepts

Colorfulness

Colorfulness is measured by the contrast of color features between regions of interest,

or between regions of interest and the full image. Features include luminance [10][31],

clarity [37], chrominance [31], brightness [38][33], hue [33][30], saturation [33][9]. Luo

et al. [37] propose a dark channel feature to capture the clarity and colorfulness of

an area. A pixel si considered clear if it is not blurry. The dark channel feature is

a combined measurement of clarity, saturation and hue composition. Luo et al. [37]

found that their dark channel feature outperforms ‘clarity contrast’, blur, and other

color related features in the aesthetic classification of images.

Color harmony

“Color harmony is a key factor in the various aspects that determine the perceived

quality of a photo” [43]. The term ‘color harmony’ is often used to describe pleas-

ing color combinations [61][50][47], however color harmony theories differ. Burchett

[6] explains that “the predominant understanding of color harmony ...[is frequently

attributed]... to order, referring to uniformly spaced points in a color classification

system.” Moon & Spencer [41] introduced a quantitative model for color harmony,

based on the relative distance between colors. Given a color in the hue layer, areas of

‘identity’, ‘similarity’, ‘contrast’, and ‘ambiguity’ are determined in the color wheel as
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depicted in Figure 2.6. Any non-ambiguous combinations are harmonious. Although

psychological experiments do not support the Moon & Spencer model, the computer

vision and industrial design communities continue to use this model [20][61].

Figure 2.6: Moon & Spencer model of color harmony, depicting areas of ‘identity’,
‘similarity’, ‘contrast’ and ‘ambiguity’ in the hue layer [43]. If all the colors in the
image fall in the non-ambiguous areas, the color combination is harmonious.

Matsuda developed harmonious templates for fabric design in the hue layer as well

(depicted in Figure 2.7). He developed the templates based on the results of a user

study. Similar to Moon & Spencer, Matsuda’s templates are based on the relative

distance between two colors [43]. This model is also used in industrial design [58] and

Compter Vision.

ground object to the background, so that together they form a har-
monic color set (see Figure 1). In general, our algorithm is useful
for enhancing colors in images that are comprised of a collection of
parts originating from different sources and whose colors require
harmonization.

2 Background and Related Work

The study of color harmony is historically intertwined with the
study of the physical nature of light and color. Early discover-
ies in the theory of color harmony were made by such masters
as Newton, Goethe, Young, and Maxwell. Modern color theory,
which was developed at the beginning of the 20th century, deals
mainly with representations of colors, but it also discusses color
harmony [Munsell 1969; Ostwald and Birren 1969; Itten 1960].
Moon and Spencer [1944] introduced a quantitative representa-
tion of color harmony based on the Munsell color system [Munsell
1969]. At the same time, Granville and Jacobson [1944] presented a
quantitative representation of color harmony based on the Ostwald
color system [Ostwald and Birren 1969]. To a large degree, these
works define harmony as order.

Itten [1960] introduced a new kind of color wheel in which he de-
scribed color harmony, with an emphasis on hue. Itten’s color har-
mony theory is based on the relative positions of the hues on the
color wheel. For example, from the three primary colors of cyan,
magenta, and yellow, Itten designed a hue wheel of twelve colors.
He referred to complementary colors as a two-color harmony. Itten
also recognized the three-color harmony of hues that form an equi-
lateral triangle, the four-color harmony of hues forming a square,
the six-color harmony of a hexagon, etc. His schemes have been
widely adopted by artists and designers. Based on Itten’s schemes
and extensive psychophysical research, Matsuda [1995] introduced
a set of 80 color schemes, defined by combining several types of
hue and tone distributions. These schemes were used in [Tokumaru
et al. 2002] for harmony evaluation and color design. Our color
harmonization method is also based on these schemes.

There are various interactive tools that provide designers with har-
monic sets (e.g., [Color Schemer 2000; Color Wheel Expert 2000;
Nack et al. 2003]). Such applications provide the user with a set of
harmonic colors that accommodates the user’s requirements spec-
ified by a color seed and possibly a number of other parameters.
Meier et al. [1988] presented a system for designing colors based
on several color rules, and applied them to a graphical user inter-
face (GUI) building tool. The primary goal of their system was to
test whether an automated mechanism would be a viable solution to
the problem of choosing effective and tasteful colors. None of the
above systems offers a means to harmonize a given arbitrary color
image. The method we introduce in this paper automatically har-
monizes a given color palette through an optimization process, and
provides a means to automatically recolor an arbitrary image.

Our work is also related to general recoloring methods [Reinhard
et al. 2001; Welsh et al. 2002; Levin et al. 2004; Gooch et al.
2005; Ironi et al. 2005; Rasche et al. 2005]. Automatic recoloring
techniques require the user to provide a reference image. The rela-
tionship between the colors of the input and the reference images
are learned and transferred to recolor the given image. One of the
challenges in these techniques is to recolor the image in a coherent
way [Ironi et al. 2005]. In other words, contiguous spatial regions
in the input image should remain contiguous after the recoloring.
Our color harmonization process uses a graph-cut optimization to
enforce contiguous modification of colors in image space.

i type V type L type I type

T type Y type X type N type

Figure 2: Harmonic templates on the hue wheel. A collection of
colors that fall into the gray areas is considered to be harmonic.
The templates may be rotated by an arbitrary angle. The sizes of
the sectors are specified in the Appendix.

3 Harmonic Schemes

The notion of color harmony in this work is based on the schemes
developed by Matsuda [Matsuda 1995; Tokumaru et al. 2002],
which descend from Itten’s notions of harmony [Itten 1960], widely
accepted in applicable fields involving colors. Figure 2 illustrates
the eight harmonic types defined over the hue channel of the HSV
color wheel. Each type is a distribution of hue colors that defines
a harmonic template: colors with hues that fall in the gray wedges
of the template are defined as harmonic according to this template.
We refer to these distributions as templates, since they define the
radial relationships on the color wheel, rather than specific colors
(meaning that any template may be rotated by an arbitrary angle).
The harmonic templates may consist of shades of the same col-
ors (types i, V and T), possibly with complementary colors (see
templates I, Y, X) or more complex combinations (template L and
its mirror image). The sectors of these templates are the domains
over which simple membership functions are defined. Color har-
mony is mainly affected by the hue channel; however, Tokumaru et
al. [2002] also addressed tone distribution functions for the values
of the S and V channels, and fuzzy rules for the correlation between
the hue templates and the tone distributions. For details, the reader
is referred to [Tokumaru et al. 2002].

The type-N template corresponds to gray-scale images and thus
is not dealt with in this work. Note that each of the remaining
seven templates consists of one or two sectors. Each hue h on
the color wheel is then associated with one of these sectors. The
simplest way is to associate h with the closest (in terms of arc
length) sector. Thus, we define ETm(α)(p) as the sector border
hue of template Tm with orientation α that is closest to the hue of
pixel p (m ∈ {i, I,L,T,V,X ,Y}).

Given an image, we fit a harmonic template Tm to the hue his-
togram of the image. We define a distance between the histogram
and a template, and determine the template that best fits our im-
age by solving an optimization problem. A template Tm together
with an associated orientation α defines a harmonic scheme, de-
noted by (m,α). Given a harmonic scheme (m,α), we define a
function F(X ,(m,α)) which measures the harmony of an image X
with respect to the scheme (m,α):

F(X ,(m,α)) = ∑
p∈X

���H(p)−ETm(α)(p)
��� ·S(p) , (1)

where H and S denote the hue and the saturation channels, respec-
tively; the hue distance � ·� refers to the arc-length distance on the
hue wheel (measured in radians); hues that reside inside the sec-
tors of Tm are considered to have zero distance from the template.

625

Figure 2.7: Matsuda’s Harmonic Templates [8] are based on the relative distance
between two colors. If all the colors in an image fall within the gray slice(s), the color
combination is harmonious.
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Ou et al. [46] propose that color harmony is additive, thus images containing

more harmonious features are preferred to images with fewer harmonious features.

Nishiyama et al. [43] propose ‘bags-of-color-patterns’ by identifying the dominant

color in the patch and applying the Moon & Spencer [41] measure of aesthetics.

Thus, the color harmony score of a photograph is the sum of the color harmony of

the patches.

Cohen-Or et al. [8] developed an algorithm to recolor an image to be more aes-

thetically pleasing by mapping all of the hues in an image to fit the regions in the

eight harmonic templates depicted in Figure 2.7. This is done by identifying the

dominant hue, then shifting all other hues to fit the closest hue region in the best

fitting harmonic template.

Saliency

“Salience is the distinct subjective perceptual quality which makes some items in the

world stand out from their neighbors and immediately grab our attention” [24]. Hu-

mans perceive salience because the region is distinguishable from the background

[55][45][31][35]. Saliency makes the image memorable [21][52].

Itti et al. [24] proposed a computational framework where a topographical feature

map is created for each of three features: color, intensity, orientation (to give the

impression of motion). Each pixel’s salience in the final map is determined by the

maximum value afforded by color, orientation and intensity [25]. Color is an important

feature in identifying salient regions in an image [29]. Color is assessed based on

‘double opponency’, a brain mechanism involved in processing color, where a color

has a blue-yellow (BY) component and a red-green (RG) component [26]. Since

warm colors attract attention [49], Gupta et al. [18] give the RG channel in double

opponency a higher weight.

Zhao [63] learns a saliency map that associates weights with features that seem

most promising for detecting saliency, by identifying where subjects (primates) will

fixate their gaze on an image. They found that faces attract attention fastest, followed

by orientation, then color and intensity.

Gopalakrishnan [17] measure the saliency among colors, by quantifying the ‘com-

pactness’ and ‘isolation’ of various competing colors and probabilistically evaluate

the saliency among them in the image. Rarity is measured by the distinctiveness of

a color with respect to other colors in the space, and the rarity of the complexity of
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orientations in the image space. Compactness is measured by the spatial confinement

of the orientations.

Simplicity

Simplicity is a high-level ‘describable attribute’ of images. Simplicity is detected using

the distribution of edges and assessing their compactness, the position of the region

in the image, hue count, contrast of light between the object and the background [30].

Relevant Image Appeal features

A relevant image appeal region are features in an image that are relevant to easthetic

appeal. According to Obrador et al. [44], a ‘relevant region’ is the region of a color-

segmented object whose relevance value is above a certain theshhold. ‘Relevance’ is

based on the principle of simplicity. An appeal map is constructed using colorfulness,

relevance and visual balance. The measure of relevance of an object depends on

the size of the object and its relative brightness. Further, the largest ‘non-relevant’

region is an ‘accent region’. Visual balance of the dominant regions is measured by

computing the centroids and radii of relevant regions. Sharpness is also a contrasting

region feature for image appeal [45]. The average distance between the centroids of

the relevant regions, and the standard deviation of the distance are most predictive

of aesthetic quality [44].

High-level describable attributes

High-level describable attributes are image cues that may be part of human-generated

descriptions of high quality images [15]. Three groupings of ‘describable attributes’

are predictors of perceived aesthetic quality: ‘compositional attributes’, ‘content at-

tributes’, and ‘sky-illumination attributes’. Compositional Attributes are characteris-

tics related to how closely the image follows the rule of thirds. Content attributes are

characteristics related to the presence of specific objects or categories of objects in-

cluding faces, animals and scene types. Sky-illumination attributes are characteristics

of the natural illumination present in a photograph.

Compositional attributes are detected using the ‘rule of thirds’, low depth-of-field

and saliency [15]. ‘Rule of thirds’ measurements include the average hue, saturation

and value of the region within the middle third of the image [10][45].
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2.2 Databases

The performance of feature sets is tested on databases of images. The databases

needed to assess the feature sets are built on the assumption of subjective preference.

Images need to be annotated with descriptive labels to extract meaningful relation-

ships between the feature set and the results. The challenge with annotating images

for aesthetic judgement is the subjective nature of the aesthetic experience. Com-

puter Vision researchers interested in assessing the perceptual quality of photographs

have the opportunity of learning and testing features on images that are rated by on-

line users. The inherent challenge of using social media ratings is the bias introduced

when a person’s ratings are affected by their friends ratings, or the photographs are

of a popular person or took place at a popular event or location [28].

Common databases are Photo.net [3][39][10][44], DPChallenge [1][30][43] [15][45],

Flickr [2]. Photo.net [3] is a gallery of categorized photographs uploaded by pho-

tographers, and critiqued and rated by its members. Scores range from 1 to 7. In

Figure 2.1, we showed sample images from Photo.net and the scores given by their

members. Similarly, DPChallenge [1] is also a digital photography contest site where

images are rated from 1 to 10. Flickr [2] is an online photo sharing application where

users comment and rate the images based on ‘interestingness’ with scores ranging

from 1 to 5. Dhar et al. [15] tested their feature sets on Flickr to capture interest-

ingness, and on Photo.net [3] to assess aesthetic quality. Datta et al. [11] propose

that Photo.net is the appropriate database for assessing aesthetics, and photographic

skill while DPChallenge [1] is the appropriate database for assessing overall aesthetic

quality of images categorized by topics and rated by the public. CUHK [10][39] is a

database derived from DPChallenge. Some databases such as the Van Gogh Museum

and the Kroller-Muller Museum [34][27] and ACQUINE [10] are not available to all

researchers. Some researchers create a private database of their own images [33][37]

and others combine their personal photographs and Flickr [31][38].

A recent advance in Computer Vision AVA [42], a database derived from DPChal-

lenge, addresses the need for collection, annotation and distribution of ground truth

data to help advance the research. AVA is a collection of images and meta-data

derived from DPChallenge, with 255000 images from 1447 photographic challenges

collapsed into 14 categories. Images selected contain aesthetic annotations which

are scores given by amateur and professional photographers. 66 textual tags provide

semantic annotations and manually selected challenges correspond to photographic
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styles about light, color and composition. Murray et al. [42] found that aesthetic

score distribution in AVA is largely gaussian, standard deviation is a function of

mean score, and images with high variance are often non-conventional.

Marchesotti et al. [36] created a bag-of-words vector for each image based on tex-

tual annotations associated with images in the AVA dataset. For topics that were too

vague to connect to attributes, they used unsupervised attribute discovery to attempt

to correlate the vague topics to relevant attributes. Using attractiveness scores and

supervised attribute discovery, they learn regression parameters, select discrimina-

tive textual features and attribute discriminability through clustering bigrams. They

found that the unsupervised attribute discovery, followed by the supervised attribute

discovery performed comparatively well to the generic image features of Fisher Vectors

and Bags-of-Words from their previous work [39].

2.3 Discussion

The current Computer Vision techniques for extracting color information that match

human perception are based on empirical results from various user studies, and the

methods are not grounded in color-based aesthetic theories. Our research is grounded

in Itten’s comprehensive color theories, as opposed to aesthetic rankings collected from

on-line photography communities. Itten offers a comprehensive model composed of

seven color contrasts, and techniques for achieving color harmony. His theories are

based on perception. According to Itten, “The eye and the mind achieve distinct

perception through comparison and contrast.” [23]

Itten’s significant contribution is his description of contrast where ‘visual percep-

tion is the result of seven specific methods of color contrast’: value (light), saturation,

hue, extension, warm/cool, complements and simultaneous contrast. This idea of ‘si-

multaneous contrast encompasses contrasts of hue, brightness, and colorfulness and

its ubiquitous phenomenon in color vision’ [61]. Itten’s color theories represent an

unexplored data source for deriving computational descriptors for aesthetic analysis.

The aesthetics of photographs do not generalize well to paintings. Davey [12]

explains that in a painting, ‘the subject matter is mediated through a sensibility. We

see how something was perceived, not what was perceived.’ The chromatic distribu-

tion of a painting represents one of the main expressive tools for the artist painter.

This is not valid for photographs, which are not ‘an interpretation of reality but a

presentation of how something looked’ [12]. For instance, the ‘simplicity’ measure
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proposed by Ke et al. [30] does not represent a valid measure of aesthetics in digital

images of paintings, since there are numerous masterpieces with intricate, complex

color schemes.

As a starting point, we created a visualization of a painting’s color palette in the

HSL color space. We also developed the following computational models:

• a computational model for the study of modulation within the color palette, our

measure for modulation encompasses hue-specific non-spatial color relationships

in a painting

• a computational model to measure the contrast of hue in paintings, this measure

is spatially relevant

• a computational model to measure cold-warm contrast in a painting, this mea-

sure complements the measures of modulation and can be interpreted as a spa-

tially relevant measure of inter-hue modulation

• we extrapolate both measures of contrast of hue and cold-warm contrast to

analyze the styles of selected artists based on Itten’s comments
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Chapter 3

Proposed Approach

Our proposed approach is grounded in Johannes Itten’s formulation of color the-

ory with a focus on perception, which is detailed his two books: ‘The art of color’

[22] and ‘The elements of color’ [23]. Itten’s works have been widely cited in aca-

demic publications[6][8][50][61][19][9], including the fields of psychology, color science,

graphics and aesthetics. Itten was recently cited in a ‘design management’ book as

an influential master in the functional movement of art, with ‘the idea that art could

be functional’[14].

Our interest in Itten’s theories lies in developing computational models that mea-

sure and assess the use of color in images, as related to understanding the aesthetic

experience. We chose Itten’s theories of color contrasts because his theories are trans-

latable into computational models. In his own words, Itten asserts that “The concept

of color harmony should be removed from the realm of subjective attitude into that of

objective principle”[23, p. 19]. In his books, Itten formulates and provides examples

for seven types of color contrasts. His use of geometric terminology and geometric

shapes in describing the color contrasts have inspired the quantitative measurements

and computational models we developed for two of the seven contrasts: contrast of hue

and cold-warm contrast. For those two contrasts, we developed a visualization model

to investigate the style of artists Itten refers to for contrast of hue and cold-warm con-

trast. Itten also discussed modulation, a concept he described as subtle variations in

tones and chroma. Using his description, we have developed a computational model

to measure and visualize modulation.

In this chapter, we first describe the main elements of Itten’s color theory used

in our work. Next, we provide a detailed description of our proposed computational

models for modulation and contrast.
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3.1 A summary of Itten’s Color Theory

Color spaces can be defined as geometric frameworks for visualizing and understand-

ing color relationships. Itten [22] [23] chooses to work with a spherical space because

its symmetry ‘serves to visualize the rule of complementaries, illustrates all fundamen-

tal relationships among colors, and between chromatic colors and black and white.’

Itten’s color sphere (see Figure 3.1), contains six equally spaced parallel circles,

parallel to the equatorial plane, which partition the sphere into seven zones. Twelve

meridians uniting the two poles are orthogonal to these zones. The two zones between

the white and equatorial zone are populated with evenly spaced tints (i.e. mixtures of

pure hues with white) of each hue. Similarly, two evenly spaced shades (i.e. mixtures

of pure hues with black) of each hue are found in the zones between the equatorial

and black zone. Tones (i.e. mixtures of pure hues with grey) are distributed with

radial symmetry inside the sphere.

Figure 3.1: The Itten Color Sphere. Views of the surface

The Itten color sphere is not a valid metric space from a mathematical viewpoint,

as it is designed for artistic purposes rather than for quantitative measurements. Our

approach works with a metric color space that is closest to Itten’s sphere, namely

the HSL (Hue-Saturation-Lightness) cylinder. In HSL, hues of maximal saturation

are located in the middle of the cylinder (which is consistent with Itten’s colour

sphere), whereas in other chromatic spaces, such as HSV, they are located at the
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top. The HSL color space is the color space most consistent with Itten’s color sphere,

allowing us to develop measures for modulation and color contrasts according to his

theory. Itten’s framework is based on the notion that the color sphere contains every

imaginable color, and each color has a unique coordinate position in the color sphere

as displayed in Figure 3.1. Each color from Itten’s color sphere maps to a coordinate

position composed of hue, saturation and light on the HSL color space. As the HSL

color space is cylindrical, very light and very dark colors from Itten’s sphere can

map to several coordinate positions at the top and bottom of the HSL color space;

those pixels however do not affect our models and implementation as they do not

contain chromatic information. The standardized representation of a color in the

cylindrical HSL system is (r, θ, z) (Figure 3.2). For a given pixel, Table 3.1 describes

the conversion of RGB values to the Cartesian coordinates within the HSL color

space. The following paragraph describes each of the three coordinates in the HSL

space.

Cartesian Coordinates in HSL Space

M = max(R,G,B)
Chroma m = min(R,G,B)

C = M −m

Hue H′ =


undefined, if C = 0
G−B
C

(mod 6) if M = R
B−R
C

+ 2 if M = G
R−G
C

+ 4 if M = B

H = H′ ∗ 60 deg

Saturation S =

{
0, if C = 0

C
1−|2L−1| otherwise

Light L =
M +m

2

Cartesian x = S ∗ cos(H)
Coordinates y = S ∗ sin(H)

z = 2 ∗ (L− 0.5)

Table 3.1: Conversion Table of RBG values to Cartesian coordinates in HSL Space

Hue is what we typically refer to as color in every day language. In effect, hue h

is the angular polar coordinate, h = θ, 0 ≤ θ ≤ 2π. The outer disk of the color sphere
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Figure 3.2: The HSL Cylinder

(Figure 3.3) represents the set of hues on Itten’s color wheel, which is equivalent to

the perimeter of the equatorial plane of the Itten sphere (Figure 3.1) or the equator

of the sphere.

Saturation is the strength of the color, and is represented by the radial coordinate

of the color inside the cylinder, s = r, 0 ≤ r ≤ 1. Along the equator of both the color

sphere and the HSL color space, hues are fully saturated, with a saturation value 1.

Along the vertical axis of the color sphere and the HSL color space, saturation is 0.

ranges between

Light values represent the darkness or dullness of a given color, along the vertical

axis of the sphere. In the HSL cylindrical coordinate system, l = z, 0 ≤ z ≤ 1. The

bottom of the sphere (black) is represented with light value l = 0, gradually increasing

towards grey at the center of the sphere (l = 0.5) then white at the top of the sphere

(l = 1).

Figure 3.3: The Itten Twelve-Part Color Wheel depicting the relative position of hues

The following examples describe the coordinate position for a few sample colors

(h = θ, 0 ≤ s ≤ 1, 0 ≤ l ≤ 1) in the HSL coordinate system (Figure 3.2) and the hue

specified by the angle θ (Figure 3.3):
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1. Black at the bottom of the sphere is represented by cylindrical coordinate

(θ, s, 0) where h = θ and 0 ≤ θ ≤ 2π

2. Neutral (or medium grey) is represented by (θ, 0, 0.5), where 0 ≤ θ ≤ 2π

3. White at the top of the sphere is represented by cylindrical coordinate (θ, s, 1)

where 0 ≤ θ ≤ 2π

4. Fully saturated colors are represented by (θ, 1, 0.5) where 0 ≤ θ ≤ 2π

3.2 Modulation

Itten defines modulation as the subtle, gradual, and local chromatic variation of color.

The presence or absence of modulation has a direct effect on the perception of con-

trast, regardless of the type of contrast. Let’s consider the cold-warm contrast as

an example. A highly modulated cold-warm contrast involves the presence of cold

and warm hues, with numerous, subtle intra-hue chromatic variations. These sub-

tle variations will attract and hold the gaze of the viewer, focussing her attention

onto the local details of the painting. According to Turner [60], ‘[...] the meaning of

modulation is that it embodies the transitional aspect of the experience, the feeling of

our attention shifting from here to there.’ In contrast, a low modulated cold-warm

contrast involves a limited number of hues, with bolder chromatic transitions between

usually large homogeneous regions. This leads the viewer to perceive the image as a

whole, and pay less attention to local detail.

Modulation is a defining element of an artist’s style. For instance, Itten high-

lights the extensive use of modulation by Cézanne: ‘To him [Cézanne], modulating a

color meant varying it between cold and warm, light and dark, or dull and intense.

Such modulation throughout the picture area accomplished new, vivid harmonies.’[22,

p. 15] On the other hand, ‘Matisse refrained from modulation, to [..] express simple,

luminous areas in subjective equilibrium.’[22, p. 16].

We pose two questions with respect to modulation: (1) can we visualize modu-

lation in the color space? (2) can we provide quantitative measures for modulation

using this visualization? First, we propose a new visualization of the chromatic dis-

tribution of a given painting in the HSL space, called the ‘color palette’. This 3D

visualization isolates the chromatic information from spatial or structural informa-

tion. In other words, we discard any shape-related information in order to focus only
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on the color distribution in the color space. Second, we propose that the 3D visual-

ization facilitates the study of color modulation and provides means for quantifying

the modulation for every hue sector of the HSL space. Hue-specific modulation is

measured via a set of three descriptors using first and second order statistics on the

color distribution within the HSL space. Our visualization and measures on modu-

lation are performed on a subset of the visual art exhibits discussed by Itten in [22]

and [23]. We show that our measures on modulation are consistent with Itten’s color

principles on modulation and contrast. Moreover, we claim that the proposed visu-

alization offers valuable insight into the nuances and subtleties of color modulation

expressed in a variety of painting styles.

3.3 Computational model for modulation

For a given painting, our proposed visualization maps all its unique color points in

the HSL space, thus obtaining the 3D ’color palette’ of the painting. Our approach

works with digital reproductions of paintings that need to be converted from RGB

to HSL (as in Table 3.1). Extrinsic Cartesian coordinates are preferred to intrinsic

cylindrical ones for the purpose of manipulating (rotating) the proposed visualization

about the z axis. It is worth mentioning that our color mapping in the HSL space

preserves Itten’s partition of the sphere in twelve hue sectors.

3.3.1 Descriptors for modulation

We propose a set of simple quantitative descriptors for modulation that are consis-

tent with Itten’s principles, definitions and descriptive comments. To measure the

modulation for a given hue sector, we consider the set of unique color points in each

hue sector of the HSL space. To focus on the chromatic range of colors, we avoid

grey pixels by mapping only pixels with saturation range s ≥ 0.1; we also avoid very

dark and very dull pixels by mapping only pixels with light values falling within the

center 75% of the light range, 0.125 ≤ l ≤ 0.875.

For each of the 12 hue sectors we first compute the average Euclidian distance

pdist of each color point p to its 5 nearest neighbours located in the same hue sector.

pdist =
5∑

i=1

√
(pix − px)2 + (piy − py)2 + (piz − pz)2

5
(3.1)
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Next, we compute the mean µdist of the distance pdist,

µdist =
N∑

i=1

pdist(i)

N
(3.2)

and the standard deviation σdist of the distance pdist.

σdist =

√√√√ 1

N

N∑

i=1

(pdist − µdist)2 (3.3)

Modulation is therefore described via the set of three scalar descriptors:

• the average distance µdist of a color point to its five closest neighbours (see

Equation 3.2). This is a measure of the spatial closeness of color points in a

given hue sector. Low values for µdist indicate subtle color transitions and thus

high modulation, whereas high values indicate more abrupt transitions, thus low

modulation.

• the standard deviation σdist of the distance of a color point to its five closest

neighbours (see equation 3.3). This is a measure of the variation of the spa-

tial closeness across the hue sector, i.e. of how modulation varies inside the

considered sector.

• the total numberN of distinct color points within the hue sector. This is a global

measure of modulation, and it is useful to provide context for the interpretation

of µdist and σdist values. For instance, consider an extreme hypothetical case

where a hue sector contains only five very close color points. In this case,

µdist will be low (estimating high modulation) and σdist will be high (estimating

uniform modulation). However, a low value for N is a stronger estimator for

low modulation, and overrides the estimations of µdist.

We illustrate how these descriptors work with two examples of paintings discussed

by Itten [22][23] that exhibit low and high modulation respectively:

Let us first consider ‘Composition 1928’ by Piet Mondrian[22, p. 44] [23, p. 36],

shown in Figure 3.4. Mondrian’s painting style employs contrast of hue. He works

with a very limited number of fundamental colors: yellow, red, blue, white and black.

According to Itten, ‘[Mondrian’s] feeling for clean design leads him to an unadorned,

visually strong, geometrical, elemental realism of form and color’ [22, p. 44].
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(a) Original (b) All colors

(c) Red (d) Yellow (e) Blue (f) Blue-Violet

Hue Sector µdist σdist N
∗103 ∗103

Red 0.93 2.5928 327
Yellow 1.897 3.94 190
Blue 0.166 0.497 599

Blue-Violet 0.77 2.63 125

(g) Top 4 hue sectors

Figure 3.4: ‘Composition 1928’ by Mondrian.Top row: image and its color palette;
Second and third row: red hue sector of color palette; red-orange hue sector of color
palette; orange hue sector of color palette; blue sector of color palette.

Second, let us discuss ‘Cafe at Evening’ by Van Gogh[22, p. 94] [23, p. 54], shown

in Figure 3.5. Van Gogh’s chromatic style features strong colors and simultaneous

contrast between yellow-orange and blue-violet. Itten discusses Van Gogh’s preference

for ‘using texture as a means of rhythmicizing and intensifying colors’ [22, p. 94].

Textured colors are highly modulated.

As shown in Table 3.4, Mondrian’s minimalist style is reflected in high values for

µdist (which estimate low modulation) in all hue sectors, except for blue, which is

slightly textured. In contrast, we obtain much lower values for µdist for all hues in

Van Gogh’s case.The number N of distinct color points per hue is also much higher
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(a) Image (b) All colors

(c) Red (d) Red-Orange (e) Orange (f) Blue

Hue Sector µdist σdist N
∗103 ∗103

Red 0.25 0.78 5214
Red-Orange 0.16 0.16 8345

Orange 0.07 0.09 18377
Blue 0.09 0.57 11507

(g) Top 4 hue sectors

Figure 3.5: ‘Cafe at evening’ by Van Gogh. Top row: image and its color palette;
Bottom row: red hue sector of color palette; red-orange hue sector of color palette;
orange hue sector of color palette; blue sector of color palette;Last row: mean and
standard deviation of color distribution in top 4 most populated hue sectors.

in Van Gogh than in Mondrian.

A visual comparison of the color palettes corresponding to the two paintings in

Figures 3.4 and 3.5 reveals the sparseness of Mondrian’s palette in contrast with the

compactness and continuity of Van Gogh’s palette. Intuitively, one may associate

high modulation to a smooth, continuous 3D color palette, and low modulation to a

sparse 3D palette.
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3.4 Contrasts

Figure 3.6: Itten’s Twelve-Part Color Circle, depicting primary, secondary and ter-
tiary colors.

Itten claims that contrast in color is what allows us to distinguish among colors,

in the same way that we perceive differences in size, light, etc. In his exploration

of color contrasts, he has identified seven categories. “Each [contrast] is unique in

character and artistic value, in visual, expressive, and symbolic effect; and together

they constitute the fundamental resource of color design” [23, p. 32]. We further

summarize Itten’s description of the contrasts.

Contrast of hue is the perceptual effect achieved when an image is primarily com-

posed of three fully saturated colors that are positioned on the vertices of an equi-

lateral triangle inside the color sphere. While any three colors positioned on an

equilateral triangle are contrasting, the effect of this contrast is strongest when the

three colors are primary, and weakest when using tertiary colors. Figure 3.6 shows

primary, secondary and tertiary hues. Itten states: “Just as black-white represents

the extreme of light-dark contrast, so yellow/red/blue is the extreme instance of [hue]

contrast”[23, p. 33]. For example, an image composed of yellow, red and blue is per-

ceived as having a stronger contrast than an image composed of orange, green and

violet. Further, such color combinations are also harmonious as the center of mass of

the three vertices on an equilateral triangle on the equatorial disk of the color sphere

coincides with medium-grey at the center of the sphere. In practice, Itten relaxes the

requirement of seeing only 3 colors in the composition, but maintains the requirement

that the colors making up the contrast are fully saturated.

Light-dark contrast is the perceptual effect achieved when different levels of bright-

ness are used in an image. Light levels affect perception whether the image is achro-

matic, has a single hue or several hues. Small changes to light levels can change the
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impression of an image, by making the colors significantly darker or dull.

Cold-warm contrast is the perceptual effect that some colors appear warm while

others appear cool. The warmest color is red-orange and the coldest color is blue-

green. Whether other colors in an image appear cold or warm depends on their

relative position with respect to these extremes. “Experiments have demonstrated

a difference of five to seven degrees [Fahrenheit] in the subjective feeling of heat or

cold between a workroom painted in blue-green and one painted red-orange.”[23, p. 45]

According to Itten, cold colors are also known to recede (appear as background), and

warm colors to advance (appear as foreground). [23, p. 46]

Complementary contrast is the perceptual effect created when opposite pairs of

color on the color wheel appear together. For each color, its complementary is located

diagonally across the color sphere. When a color and its complement are placed

next to each other, the combination is vivid. The combination of complimentary

colors is considered harmonious because the midpoint of the two vertices where the

colors are situated on the color circle coincides with medium grey. “The rule of

complementaries is the basis of harmonious design because its observance establishes

a precise equilibrium in the eye”[23, p. 49].

Simultaneous contrast is the perceptual effect where a viewer sees a color in an

image, and that color is actually not present. “Simultaneous contrast results from

the fact that for any given color the eye simultaneously requires the complementary

color, and generates it spontaneously if it is not already present”[23, p. 52]. When

simultaneous contrast occurs between a strong chromatic color and a grey, the grey

becomes tinged with the color of the complementary. Simultaneous contrast also

occurs between two hues that are not complementary, thus creating dynamic activity

or disturbed stability. According to Marini and Rizzi[40], well known illusions are

caused by simultaneous contrast as defined by Itten.

Contrast of saturation is the perceptual effect created when an intense (pure color)

and its diluted form appear in the same image. Examples of this effect appear in

faded, dull tones. “Dull tones, most especially grays, live by virtue of the vivid ones

surrounding them”[23, p. 58]

Contrast of extension is the perceptual effect achieved by manipulating the pro-

portion of colors in an image, based on the inherent luminosity of each color. The

concept of inherent luminosity comes from Goethe (1949-1832) where each hue is

assigned a value that reflects its natural brightness. For example, if pure yellow has

the highest brightness value, and pure violet has the lowest brightness value. When
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pure yellow and pure violet are placed next to each other, pure yellow will appear

brighter than pure violet. To create a harmonious image, the proportion of the colors

used should be the reciprocal of the inherent luminosity values.[23, p. 59]

We focus our work with contrasts on creating computational models for the study

of contrast of hue and cold-warm contrast as a starting point.

3.5 Computational models for color contrasts

Images characterized by contrast of hue contain well defined homogeneous regions of

color. Although complex color adjacencies may exist, the homogeneous regions take

precedence in the visual field. Images characterized by cold-warm contrast display

complex inter-hue relationships. Depending on the artist’s style and technique, cold-

warm contrast is seen between homogeneous regions, as well as locally modulated

adjacent regions.

To analyse contrast of hue and cold-warm contrast in a painting, we consider the

relative local position of the colored pixels and confer information about homogeneous

regions of color and regions of more complex color adjacencies. Co-occurence matrices

[13] are tools for estimating second-order statistics of the spatial distribution of image

intensities as they represent the relationship of intensities among neighbouring pixels.

Co-occurence matrices are typically used in texture analysis. We propose a novel use

of co-occurence matrices in order to identify local patterns of contrast of hue and

cold-warm contrast. We consider the adjacency relationship of the ‘isotropic 8 vertex

neighbourhood of a pixel’ as shown in Figure 3.7(a) and build our co-occurence matrix

accordingly.

In Figure 3.7 (b), we show how a co-occurence matrix is typically built with a

pixel to the right ‘adjacency’ relationship. For the image on the left, the entries

of the co-occurence matrix correspond to the number of instances of co-occurring

adjacencies in the image. For example, cell (3,3) of the co-occurence matrix contains

a 2, corresponding to the two pairs of 3’s in the image. When employing an ‘isotropic

8 pixel neighbourhood’, we consider the adjacencies between the center pixel and the

surrounding pixels as shown in Figure 3.7(c). For instance, the value of cell (4,3) is

6 and corresponds to the number of adjacencies between the center pixel 4 and its

neighbouring pixels of value 3.

In the next two sections, we will describe contrast of hue and cold-warm contrast

in detail, as well as provide algorithms for our computational models. To focus on
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the chromatic color information, we avoid very dark and very dull pixels by requiring

the pixels considered to be within the range 20 ≤ (R,G,B) ≤ 245. We also avoid

grey pixels by requiring the R,G and B values to have a minimum of 10% difference:

(R
G
, R
B
, B
G

) ≤ (0.9, 0.9, 0.9) or (R
G
, R
B
, B
G

) ≥ (1.1, 1.1, 1.1).

n1 n2 n3

n4 p n5

n6 n7 n8

(a) 8 vertex isotropic neighbourhood

(b) One pixel to the right adjacency

(c) Isotropic 8 pixel adjacency

Figure 3.7: Ilustrating the building of a co-occurence matrix. Image on the left,
co-occurence matrix to the right.
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3.5.1 Contrast of hue

Since contrast of hue is ‘illustrated by the undiluted colors in their most intense lu-

minosity’ [23, p. 33], our goal is to generate a normalized co-occurence matrix that

verifies the presence of homogeneous regions with fully saturated hues. With 12 hues,

we first generate a 12 x 12 co-occurence matrix that counts the number of times HP ,

the hue of pixel P is adjacent to HN , the hue of its neighbouring pixels N . Since

contrast of hue is characterized by fully saturated homogeneous regions, we impose

the requirement that only fully saturated pixels are counted. In our experience, 80%

of maximum saturation provides a robust way of handling artifacts and degradation,

hence we require SP (the saturation of the center pixel) and SNj (the saturation of the

jth neighbouring pixel) to both be ≥ 0.8. In Algorithm 1 we describe how we generate

N , a normalized co-occurence matrix of homogeneous regions. We initially build a

12x12 matrix C where adjacent pixels of uniform saturation and light are counted.

We also require that SP and SNj, be within saturation range ST while LP and LNj

(their light values) are within light range LT . Next we extract Cdiag, a 12x12 matrix

composed of the 3-cell diagonal band in C. In our experience, a homogeneous region

is rarely composed of a single hue and usually contains pixels of the adjacent hue in

the color wheel. For example, an orange region will contain red-orange pixels, as well

as yellow-orange pixels. Since we are only interested in the homogeneous regions,

we extract into Cdiag the 3 cell diagonal band as shown in Figure 3.8. Finally, to

compute N , we normalize Cdiag by dividing each cell by the sum of all entries in

Cdiag.

We therefore explore 3 ranges of saturation and light to identify which range is

best suited to capture the relevant co-occurences:

• Range 1: ST = 0, LT = 0. This range captures hue co-occurences where SP the

saturation and light values of surrounding pixels are identical to the saturation

and light values of the center pixel. This range is ideal for the study of contrast

of hue since it will convey the most information about ideally homogeneous

regions.

• Range 2: ST = 1/20, LT = 1/7. This range captures hue co-occurences where

the saturation values may differ up to 5%, and the light values are within

one light zone (1/7th of the vertical space), as shown in Figure 3.1. In our

experience, this range is sufficient for capturing 80% of the considered pixels in

the image.
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Data: Let P=(HP , SP , LP ) be a pixel with color information given in (H,S,L)
coordinates. Let Nj for j = 1..8 be the 8 neighbours of P .

Result: N, a normalized co-occurence matrix of homogeneous regions
//Initialization;
C[12][12]=0;
Cdiag[12][12]=0;
N[12][12]=0;
//Build raw co-occurence matrix C:
for each P do

for j=1..8 do
if SP ≥ 0.8 and SNj ≥ 0.8 then

if ‖SP − SNj‖ ≤ ST and ‖LP − LNj‖ ≤ LT then
C(HP , HNj) = C(HP , HNj) + 1;

end

end

end

end
//Put 3 cell diagonal band in Cdiag: for i=1..12 do

for j=1..12 do
if i=j or i=j+1 or i=j-1 then

Cdiag(i,j)=C(i,j);
end

end

end
Diag Total=sum(CDiag);
//Normalize diagonal band;
for i=1..12 do

for j=1..12 do

N(i, j)= Cdiag(i,j)
Diag Total

;

end

end
Algorithm 1: Contrast of Hue

• Range 3: ST = 1/10, LT = 1/7. This range captures hue co-occurences where

SP the saturation values of pixel P and the saturation level of surrounding pixels

SNj may differ by up to 10% and the light values LNj are within one light zone

(1/7th of the vertical space), as shown in Figure 3.1. In our experience, this

range is sufficient for capturing 95% of the considered pixels in the image.
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Adjacent contrasts with Saturation range ST
and Light range LT

R RO O YO Y YG G BG B BV V RV
R R *

RO * RO *
O * O *

YO * YO *
Y * Y *

YG * YG *
G * G *

BG * BG *
B * B *

BV * BV *
V * V *

RV * RV

Figure 3.8: Co-occurence matrix, Cdiag featuring the 3-cell diagonal band. The blank
cells contain adjacent co-occurences.

3.5.2 Cold-warm contrast

In cold-warm contrast, the perception of the heat contrast between hues is relative.

Based on the notion of cold and warm poles [23, p. 45], red-orange is always warm and

blue-green is always cool. ‘The intermediate hues between them in the color circle may

be either cold or warm according [to their contrast] with warmer and colder tones ’[23,

p. 46]. We propose a uniform quantization of the 12 hues by assigning warmth indices

of 0 to the coldest color (blue-green), and incrementally assigning higher indices to

hues in the color wheel until red-orange (warmth index 6) as seen in Figure 3.9(a).

We further propose measuring the strength of the cold-warm contrast for both the

homogeneus regions and finer modulated regions by considering the warmth contrast

strength as the absolute value of the difference between two warmth indices. A look

up table as shown in Figure 3.9(b) indicates the strength of the contrast between hues.

For example, red (warmth index 5) and orange (warmth index 5) offer no contrast

in warmth when placed next to one another; however, either of them placed next

to red-orange (warmth index 6) will appear mildly cooler. As a result, a red region

adjacent to an red-orange region will have a warmth contrast strength of 1, while a

red region adjacent to an orange region will have a warmth contrast strength of 0,

computed as the difference between the warmth indices (see Figure 3.9).
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(a) Warmth Index for hues

R RO O YO Y YG G BG B BV V RV
Warmth

Index (5) (6) (5) (4) (3) (2) (1) (0) (1) (2) (3) (4)
R (5) 0 1 0 1 2 3 4 5 4 3 2 1
RO (6) 1 0 1 2 3 4 5 6 5 4 3 2
O (5) 0 1 0 1 2 3 4 5 4 3 2 1
YO (4) 1 2 1 0 1 2 3 4 3 2 1 0
Y (3) 2 3 2 1 0 1 2 3 2 1 0 1
YG (2) 3 4 3 2 1 0 1 2 1 0 1 2
G (1) 4 5 4 3 2 1 0 1 0 1 2 3
BG (0) 5 6 5 4 3 2 1 0 1 2 3 4
B (1) 4 5 4 3 2 1 0 1 0 1 2 3
BV (2) 3 4 3 2 1 0 1 2 1 0 1 2
V (3) 2 3 2 1 0 1 2 3 2 1 0 1
RV (4) 1 2 1 0 1 2 3 4 3 2 1 0

(b) cold-warm contrast strengths for adjacent hues

Figure 3.9: (a) hue warmth values (b) look up table of warmth contrast strength
values computed as the difference of warmth indices
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Data: Let P=(HP , SP , LP ) be a pixel with color information given in (H,S,L)

coordinates. Let Nj for j = 1..8 be the 8 neighbours of P .

Result: Nhom, a normalized co-occurence matrix of homogeneous regions

Nadj, a normalized co-occurence matrix of hue adjacencies

//Initialization;

C[12][12]=0, Cdiag[12][12]=0, Cadj[12][12]=0, Nhom[12][12]=0, Nadj[12][12]=0;

//Build raw co-occurence matrix C:

for each P do

for j=1..8 do

if 3
7
≤ LP ≤ 4

7
and 3

7
≤ LNj ≤ 4

7
then

if and ‖SP − SNj‖ ≤ ST and ‖LP − LNj‖ ≤ LT then

C(HP , HNj) = C(HP , HNj) + 1;

end

end

end

end

//Put 3 cell diagonal band in Cdiag, and remaining cells in Cadj:

for i=1..12 do

for j=1..12 do

if i=j or i=j+1 or i=j-1 then

Cdiag(i,j)=C(i,j);

else

Cadj(i,j)=C(i,j);

end

end

end

Diag Total=sum(Cdiag);

Adj Total=sum(Cadj);

//Normalize diagonal band, normalize adjacencies:

for i=1..12 do

for j=1..12 do

Nhom(i, j)= Cdiag(i,j)
Diag Total

;

Nadj(i, j)= Cadj(i,j)
Adj Total

;

end

end
Algorithm 2: Cold-warm contrast
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For cold-warm contrast, our goal is to generate two normalized co-occurence ma-

trices: Nhom that verifies the presence of homogeneous regions whose hues contrast

in warmth, and Nadj that verifies the presence of contrasting adjacent hues. Since we

have 12 hues, we first generate a 12 x 12 co-occurence matrix that counts the num-

ber of times HP , the hue of pixel P is adjacent to HN , the hue of its neighbouring

pixel N . Since cold-warm contrast is characterized by colors whose light values lie

within the center light zone[23, p. 48], we only count adjacent pixels in the range
3
7
≤ (LP , LN) ≤ 4

7
. To ensure that adjacent pixels counted are of uniform saturation

and light, we also require that SP and SNj, the saturations of the two pixels are within

saturation range ST while LP and LNj, their light values are within light range LT .

We therefore explore 3 ranges of saturation and light to identify which range is

best suited to capture the relevant co-occurences:

• Range 1: ST = 0, LT = 0. This range captures hue co-occurences where the

saturation and light values of surrounding pixels are identical to the saturation

and light values of the center pixel. This range is ideal for the study of Cold

Warm Contrast in homogeneous regions of good quality images.

• Range 2: ST = 1/20, LT = 1/7. This range captures hue co-occurences where

the saturation values may differ up to 5%, and the light values are within

one light zone (1/7th of the vertical space), as shown in Figure 3.1. In our

experience, this range is sufficient for capturing 80% of the considered pixels in

the image.

• Range 3: ST = 1/10, LT = 1/7. This range captures hue co-occurences where

SP the saturation values of pixel P and the saturation level of surrounding

pixels SNj may differ by up to 10% and the light values are within one light

zone (1/7th of the vertical space), as shown in Figure 3.1. In our experience,

this range is sufficient for capturing 95% of the considered pixels in the image.

As discussed previously, a homogeneous region of one hue typically contains pixels

of the adjacent hue in the color wheel. We extract into Cdiag the 3 cell diagonal band

as shown in Figure 3.8. We store the remaining cells into Cadj. Finally, to compute

Nhom, we normalize Cdiag by dividing each cell by the sum of all entries in Cdiag.

Since perceptually, there is no difference in the order of hue adjacencies for cold-

warm contrast (for example orange-blue adjacencies are treated the same way as blue-

orange adjacencies), we add the co-occurence counts of equivalent hue adjacencies. To
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compute Nadj, we normalize the cells in Cadj by dividing each cell of Cadj by Adj Total,

the sum of all adjacent hue co-occurences. In our analysis of cold-warm contrast in an

image, we assess the contrast in the homogeneous regions by considering the relative

percentages in Nhom along with the warmth index in Figure 3.9(a); we also assess the

strength of the contrast in hue adjacencies by considering the relative percentages in

Nadj and look up the warmth contrast strength in Figure 3.9(b). All warmth contrast

strengths range from 0 to 6. The strength of the contrast is computed as the difference

of the warmth indices of two hues CS(Hi, Hj) = |CWI(Hi)−CWI(Hj)|. We interpret

a warmth contrast strength of 0 to mean no contrast, 1 and 2 as low contrast, 3 and

4 medium, 5 and 6 as high contrast.

3.5.3 Worked example

Let us consider the checkered image in Figure 3.10 (a) to illustrate the computational

steps in our algorithms. Figure 3.10(b) is the corresponding 6x6 pixel matrix repre-

senting the hues of the image. Let us also assume that all pixels in this image have

saturation value 1, and light value 0.5. Since all pixels are uniform in saturation and

light values, are fully saturated and the light values lie within the center zone, the

image shows both contrast of hue and cold-warm contrast. The resulting co-occurence

matrices Cdiag are the same for both Algorithms 1 and 2, N of Algorithm 1 is the same

as Nhom of Algorithm 2 while Nadj in Algorithm 2 provides the normalized adjacencies

count.

Traversing the image from left to right, and top to bottom, the raw co-occurence

matrix C in Figure 3.10(d) is computed based on the ‘isotropic 8 vertex neighbour-

hood’ adjacency. For example, consider the vertex at position (3,3) of green hue as

shown in Figure 3.10 (c). We count the co-occurences at pixel (3,3) as: G-R(1), G-

Y(2), G-G(3) and G-B(2). Once the matrix C is computed, the co-occurences along

the diagonal band of C are extracted into Cdiag, and the remaining cells of C are

placed in Cadj. Both Cdiag and Cadj are shown in Figure 3.11. To compute Ndiag, we

divide each cell of Cdiag by DiagTotal, the sum of all the cells in Cdiag. For example,

the sum of all cells in Cdiag is 112. The percentage of red-red co-occurences in Ndiag is

computed at 24
112

= 21%. To compute Nadj, we sum equivalent adjacencies and divide

each cell of Cadj by AdjTotal, the sum of all the cells in Cadj. For example, the number

of yellow-blue co-occurences is 15, and the number of blue-yellow co-occurences is also

15, and the sum of all hues adjacencies is 102. Since we do not differentiate between
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(a) Image

R R Y Y B B
R R Y Y B B
B B G G Y Y
B B G G Y Y
Y Y B B R R
Y Y B B R R

(b) 6 x 6 pixel representation

R Y Y
B G G
B G G

(c) 8 vertex
neighbourhood
for pixel (3,3)

R RO O YO Y YG G BG B BV V RV
R 24 0 0 0 8 0 2 0 8 0 0 0

RO 0 0 0 0 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0 0 0 0 0

YO 0 0 0 0 0 0 0 0 0 0 0 0
Y 8 0 0 0 38 0 9 0 15 0 0 0

YG 0 0 0 0 0 0 0 0 0 0 0 0
G 2 0 0 0 9 0 12 0 9 0 0 0

BG 0 0 0 0 0 0 0 0 0 0 0 0
B 8 0 0 0 15 0 9 0 38 0 0 0

BV 0 0 0 0 0 0 0 0 0 0 0 0
V 0 0 0 0 0 0 0 0 0 0 0 0

RV 0 0 0 0 0 0 0 0 0 0 0 0

(d) Raw co-occurence matrix with uniform saturation and uniform light

Figure 3.10: A simple checkered example
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R RO O YO Y YG G BG B BV V RV
R 24 0 0 0 0 0 0 0 0 0 0 0

RO 0 0 0 0 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0 0 0 0 0

YO 0 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 38 0 0 0 0 0 0 0

YG 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 12 0 0 0 0 0

BG 0 0 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 38 0 0 0

BV 0 0 0 0 0 0 0 0 0 0 0 0
V 0 0 0 0 0 0 0 0 0 0 0 0

RV 0 0 0 0 0 0 0 0 0 0 0 0

(a) Cdiag

R RO O YO Y YG G BG B BV V RV
R 0 0 0 0 8 0 2 0 8 0 0 0

RO 0 0 0 0 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0 0 0 0 0

YO 0 0 0 0 0 0 0 0 0 0 0 0
Y 8 0 0 0 0 0 9 0 15 0 0 0

YG 0 0 0 0 0 0 0 0 0 0 0 0
G 2 0 0 0 9 0 0 0 9 0 0 0

BG 0 0 0 0 0 0 0 0 0 0 0 0
B 8 0 0 0 15 0 9 0 0 0 0 0

BV 0 0 0 0 0 0 0 0 0 0 0 0
V 0 0 0 0 0 0 0 0 0 0 0 0

RV 0 0 0 0 0 0 0 0 0 0 0 0

(b) Cadj

Figure 3.11: Cdiag and Cadj derived from C for checkered example

yellow-blue and blue-yellow adjacencies, the percentage of yellow-blue co-occurences

in Nadj is 15+15
102

= 29%.

To analyze this image for contrast of hue, we only need to look at Nhom, and see

that yellow and blue each have 34% of the co-occurences, red has 21% and green

has 11%. We confirm by looking at the image that yellow and blue each occupy the

same number of blocks and make up the largest proportion of the image, followed by

red then green. To analyze the results for cold-warm contrast, we look at Nhom with

the warmth index and Nadj with the warmth contrast strength (see Figure 3.9). The
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R RO O YO Y YG G BG B BV V RV
R 21% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
O 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

YO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Y 0% 0% 0% 0% 34% 0% 0% 0% 0% 0% %0 %0

YG 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
G 0% 0% 0% 0% 0% 0% 11% 0% 0% 0% 0% 0%

BG 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
B 0% 0% 0% 0% 0% 0% 0% 0% 34% 0% 0% 0%

BV 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
V 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RV 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(a) Normalized Homogeneous Regions Nhom

R RO O YO Y YG G BG B BV V RV
R 0% 0% 0% 0% 16% 0% 4% 0% 16% 0% 0% 0%

RO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
O 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

YO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Y 0% 0% 0% 0% 0% 0% 18% 0% 29% 0% 0% 0%

YG 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
G 0% 0% 0% 0% 0% 0% 0% 0% 18% 0% 0% 0%

BG 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
B 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

BV 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
V 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

RV 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

(b) Normalized Adjacencies Nadj

Figure 3.12: Normalized Homogeneous Regions Nhom and Adjacencies Nadj for the
checkered example.

results are summarized in Figure 3.13. We see that a medium contrast of 4 occurs

between the blue and red homogeneous regions, as well as green and red; however

red and blue share more adjacencies than red and green, making the red and blue

contrast more perceptually relevant. We also see that yellow offers a weak contrast

of 2 with both green and blue. Since yellow-blue adjacencies are more common than

yellow-green adjacencies, we conclude that the contrast of yellow with blue is more

perceptually relevant for cold-warm contrast. Green is also adjacent to blue but offers
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(a) Checkered Image

Hue Percentage Warmth Index
Yellow 34% 3
Blue 34% 1
Red 21% 5

Green 11% 1

(b) Homogeneous regions

Adjacent Hues Percentage Warmth Contrast
Yellow-Blue 29% 2

Yellow-Green 18% 2
Green-Blue 18% 0
Red-Blue 16% 4

Red-Green 4% 4

(c) Adjacencies

Figure 3.13: Summary of results for checkered color image

no contrast in warmth.

3.5.4 Analysis of paintings with the proposed computational

models

Using our algorithm and comments from Itten, we use our algorithms to verify that

they capture well the contrast of hue and cold-warm contrast. We also investigate the

range of saturation and light appropriate for capturing the contrast in each painting.

In this chapter, we limit our discussion to one painting for each contrast, and will

discuss the remaining paintings in Chapter 4 (Results).

For contrast of hue, let us consider Charonton’s ‘The Coronation of the Virgin’

shown in Figure 3.14. “In the composition of this monumental painting, Charonton

used the colors gold, orange, red, blue, green, white and gray. At the top, he begins

with yellow [...]. This condenses into darker orange [...]. Contrasting [...] is the red

of the mantles of Father and Son’ [22, p. 40]. Our results for this painting are sum-
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marized in Figure 3.18 (page 49). Looking at the painting, we see large homogeneous

regions of red, orange and blue, with some green and gold. We confirm that the homo-

geneous regions in this image are captured by our methods in range ST = 0, LT = 0,

with the exception of blue represented by the least percentage of co-occurences. Our

algorithm mostly ignored the large dark-blue regions due to their very low light levels.

The highly saturated blue in the image is interwoven with shades of dark grey and

black, thus reducing the co-occurences computed.

Figure 3.14: Coronation of the Virgin

For cold-warm contrast, let us consider ‘La Belle Verriere’, a famous stained glass

painting in Chartres Cathedral (shown in Figure 3.15) . Itten describes this painting:

‘The blue of the dress appears against a red-orange ground, lending it a cold, radiant

light. The ice blue and red-orange are intense cold-warm contrast’ [22, p. 68]. Figure

3.19 (page 50) shows the painting, and summary of results. We note that in our digital

copy of the image, some of the blue appears violet. In the first range of saturation and

light ST1 = 0, LT1 = 0, we confirm that red, blue and red-orange homogeneous regions

are dominant. We also note the medium warmth contrast strength of 4 between red

and blue homogeneous regions, and high warmth contrast strength of 5 between red-

orange and blue which confirms Itten’s statement about the intensity of the contrast.

To correctly capture the adjacencies we see in the image, the second range ST1 =

1/20, LT1 = 1/7 is needed.

We therefore conclude that our algorithms capture contrast of hue and cold-warm

contrast well.
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Figure 3.15: La Belle Verriere

3.5.5 Analysis of artists’ chromatic style

Itten briefly mentioned several artists for having used contrast of hue or cold-warm

contrast in their work. To explore these contrasts in their works, we developed a

computational model to visualize the contrasts in several paintings by the same

artist. Our results on each painting consist of a list of normalized co-occurences

from Nhom and Nadj. We display the values in Nhom and Nadj in a 3D histogram.

We represent the percentage of co-occurences in homogeneous regions and adjacen-

cies as bar graphs. The histogram of the homogeneous regions in each painting is

HISThom(image)= [Nhom(R), Nhom(RO), ... Nhom(V ),Nhom(RV )] for each of the

12 hues, and HISTadj(image)=[Nadj(R − RO), Nadj(R − O), ... Nadj(V − RV )] for

each of 55 hue adjacencies. To explore an artist’s style, we analyze the normalized

co-occurences displayed side by side and vertically, resulting in a 3D histogram.

For contrast of hue, Itten mentioned Stefan Lochner, Fra Angelico, Botticelli,

Mondrian, Picasso, Leger, Miro, and the early works of Franz Marc, Kandinksy and

Macke. Our computational model diplays the normalized co-occurences in homoge-

neous regions for all of an artist’s paintings sequentially. In this chapter, we explore

Picasso’s style by studying 5 of his paintings using our computational model. The

styles of the remaining artists will be explored in Chapter 4 (Results).

In Figure 3.16, we display all 5 of Picasso’s paintings. In Figure 3.20, we show the
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percentage of co-occurences in the homogenous regions for each painting and each of

the three ranges of saturation and light. In figure 3.20(c), we plot the homogeneities

over 12 hues, Nhom, grouped by range of saturation and light in a 3D histogram:

Cruxficion Girl Reading At Table Guernica Guitar on the Mantle Piece Weeping Women

Figure 3.16: Picasso paintings

• Cruxificion. Our algorithm computes co-occurences for fully saturated homo-

geneous regions. The first range ST1 = 0, LT1 = 0 identifies red has having

76% of co-occurences, followed by orange at 12%, then yellow-orange at 8%.

In the other two ranges, ST1 = 1/20, LT1 = 1/7 and ST1 = 1/10, LT1 = 1/7,

red co-occurences are still the majority, followed by yellow-orange then orange.

For this painting, we conclude that the contrasting hues are red, orange and

yellow-orange.

• Girl Reading at Table. Our algorithm identifies fully saturated homoneous re-

gions in the order of orange followed by red-orange then yellow-orange and

yellow in all three ranges. The orange and red-orange in the chair contrast with

the yellow and yellow-orange of the lamp.

• Guernica. This painting has no chromatic information, therefore our algorithm

has zeros for all hues co-occurences. We include it only for completeness.

• Guitar on the Mantle Piece. Our algorithm computes that red-orange as the

largest homogeneous regions, followed by orange in all three ranges. The first

range ST1 = 0, LT1 = 0 also brings in red as only 1% of the co-occurences.

• Weeping Women. Our algorithm computes that the homogeneous regions are

primarily yellow-orange, followed by orange, red-orange, and red in the first

range (ST1 = 0, LT1 = 0). The other two ranges detect a small amount of
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yellow as well, however the yellow homogeneous regions are not fully saturated.

We conclude that the first range is sufficient for detecting the fully saturated

homogeneous regions: yellow-orange, orange, red, and red-orange.

The first 3D histogram in Figure 3.20(c) shows the normalized co-occurences of

the homogeneous regions for all 5 paintings in the range ST1 = 0, LT1 = 0. The

first column of the 3D Histogram (in black) is a plot of the homogenous values of

the painting ‘Cruxificion’ shown in Figure 3.20(b) for the range ST1 = 0, LT1 = 0.

Each column plots the percentage of homogeneities for 12 hues, from red (R) at the

bottom to red-violet (RV) at the top. The lengths of the bars are proportional to the

percentages listed in Figure 3.20(b). Similarly, the second column (in dark grey) is

a plot of the homogenous values of ‘Girl Reading At Table’ in the same saturation

and light range. Therefore the first 3D Histogram in Figure 3.20(c), is a plot of

all homogeneities from all 5 of Picasso’s paintings in the range ST1 = 0, LT1 = 0.

The second and third 3D histograms, plot the homogeneities in the second range

ST1 = 1/20, LT1 = 1/7 and third range ST1 = 1/10, LT1 = 1/7 respectively, while

maintaing the order of the paintings.

By looking at the 3D histograms of Picasso’s paintings, we see that his use of

contrast of hue is focussed on hues between red and yellow-orange. Although he uses

blues and greens, these hues do not satisfy the requirement of being fully saturated.

We also see that the ranges ST1 = 1/20, LT1 = 1/7 and ST1 = 1/10, LT1 = 1/7 do not

provide us with significantly different information about paintings, therefore the first

range ST1 = 0, LT1 = 0 is sufficient for our analysis of Picasso’s 5 chosen paintings.

We see from this example that the 3D histograms are valuable, as they allow us to

identify the dominant colors in an artist’s palette.

For cold-warm contrast, Itten mentioned Bonnard, Cézanne, Monet, Pissaro and

Renoir. Our computational model displays the normalized co-occurences in homoge-

neous regions as well as adjacencies for all of an artist’s paintings sequentially. In this

chapter, we explore the works of Cézanne for cold-warm contrast as shown in Figure

3.17. We will first explore each of the images in detail, then explore the 3D histograms

of the normalized co-occurences for homogeneous regions and adjacencies as shown

in Figure 3.25 on page 56. The styles of the remaining artists will be explored in

Chapter 4 (Results).

We will describe our results for four paintings (shown in Figure 3.17):

• Apples and Oranges. In this painting, Cézanne employs yellow, orange, blue,
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Apples and Oranges Full Bowl Montagne St. Victoire Card Players

Figure 3.17: Cézanne Paintings

violet and pink. Our digital copy of the image shows more blue and violet for

the regions that appear green in the physical copy of the image [22], and yellow

fruits appear orange. Itten says: ‘In the still life “Apples and Orange”, all hues

of the color circle are employed ... The four principal colors [red, green, blue,

orange] are distributed throughout the surface in diversely modulated patches.’

Further he says: ‘The pictorial expression of the work results from modulations

in cold-warm contrast ...For this he uses colors of equal brilliance, taking their

chromatic sequence from the color circle. Yellow, green, blue, violet, pink and

light orange succeed each other. These cold-warm modulations produce the en-

chantment of the objective world which Cézanne was striving for’ [22, p. 75].

The painting and our results are displayed in Figure 3.21. Our results for ho-

mogeneous regions confirm the presence of almost all hues, with the exception

of yellow and green which appear orange and violet in the digital image. We

also observe a contrast of warm hues (red, orange and red-orange) with cooler

hues (blue, blue-violet and violet). In the adjacencies, we see each hue adja-

cent to red-violet which is the prevalent color of the background in the digital

copy of the image. Since Cézanne varies the saturation of the colors, we need

the third range to get an accurate computation of the co-occurences. We note

the warmth contrast strengths in the third range of light and saturation show a

high contrast between homogeneous regions, but a weak and mild contrast in

the adjacencies. In general, all three ranges provide similar information.

• Full Bowl. Itten did not comment about this painting. The painting and our

results are displayed in Figure 3.22. We observe from the painting a green

background with hints of yellow and red. The fruits in the foreground are red,

yellow, orange and green, placed over a yellow and yellow-orange table. The

relative proportion of co-ocurences in the homogeneous regions remains the
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same for all three contrasts, however the third range is needed to capture the

red-orange and yellow adjacencies with moderate warmth contrast strength 3.

• La Montagne St. Victoire. Itten’s analysis of this painting is focused on mod-

ulation and the use of complementary contrast. Our analysis will focus on the

elements of cold-warm contrast. Itten says of the chromatic construction: ‘The

four colors principally used are set in the three separate planes. In the fore-

ground there is dusky brown-violet. In the middle distance, yellow-green and

orange predominate, and in the background blue’. He also says: ’Thus on be-

holding this landscape, one clearly discerns an organization into three horizontal

planes’ [22, p. 84]. The painting and our results are displayed in Figure 3.23.

Unfortunately, the digital copy of this image does not do justice to the organiza-

tion of hues Itten describes. In the digital image, the dark blue of the mountain

appears of the same color as the blue-green of the sky, and the dusky brown-

violet is also blue-green. Our algorithm therefore detects blue-green as having

the largest percentage of the homogeneous regions. The orange, yellow-orange,

yellow and green in the middle plane are in small connected patches, which

appears in the adjacencies of the second and third range, weak warmth contrast

strength, yet significantly warmer than the blue regions on the background and

foreground. The yellow and green captures in all three ranges is indicative of

the high modulated regions in the middle ground of the image.

• Card Players. Itten did not comment about this painting. The painting and our

results are displayed in Figure 3.24. We observe in the painting the orange table,

the player on the right with a yellow-orange coat, and the red-orange wall in the

background. In contrast, the player on the left has yellow-green interspersed

with yellow on his coat; yellow and yellow-green are also interspersed in the

background above the brown wall. The homogeneous regions are well captured

in all three ranges, and the adjacencies are captured in the second and third

ranges of saturation and light.

In Figure 3.25, we display the digital copies of the paintings in the top half of

the figure. In the second half, we display the 3D histograms of the homogeneous

regions for all three ranges, as well as the histogram of the adjacencies to allow us to

analyze the artist’s style. Let us consider the first row of Figure 3.25(b). In the first

3D histogram, we plot the normalized percentages of the homogeneous hue regions of

the 4 paintings over 12 hues, in the order the images appear in Figure 3.25(a). All
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hues are listed from red at the bottom, to red-violet at the top. Each hue has its

warmth index in parentheses. The first column (displayed in black) corresponds to the

homogeneous regions of ‘Apples and Oranges’ and the length of the bars corresponds

to the results in Figure 3.21 for the range ST1 = 0, LT1 = 0. For example, we see

longer bars in the red, red-orange and orange hues (warmer hues), and shorter bars for

blue-violet, violet and red-violet (cooler hues). The second column (displayed in dark

grey) corresponds to the homogeneous regions of ‘Full Bowl’, for which we see the

tallest bar at yellow, corresponding to the results in Figure 3.22. The third column

(displayed in light grey) corresponds to the homogeneous regions of ‘La Montagne St.

Victoire’, for which we see the tallest bar at blue-green, corresponding to our results

in Figure 3.23. The last column (displayed in white) corresponds to the homogeneous

regions of the painting ’Card Players’, for which we see the tallest bars at yellow and

yellow-orange, corresponding in turn to the results in Figure 3.24.

The next three 3D histograms display the results of 55 hue adjacencies ranging

from R-O to O-Y. To better visualize these results, we separated the adjacencies into

three groups: 1) R-O to O-Y displayed in the second 3D histogram, 2) O-YG to

Y-RV displayed in the third 3D histogram, and 3) YG-GB to BV-RV displayed in

the last 3D histogram. Each hue adjacency has its warmth contrast strength value in

parentheses. For example, a bar at Y-G(2) indicates the percentage of co-occurences

captured by our algorithm for regions of yellow adjacent to green. Yellow has a

warmth index of 3 and green has a warmth index of 1, resulting in a low warmth

contrast strength of 2. The columns are also listed for each painting in the order

the paintings appear in Figure 3.25(a). Similarly, the length of the bars corresponds

to the normalized hue adjacency results for each painting. Further, the next two

rows of 3D histograms display the results for the ranges ST1 = 1/20, LT1 = 1/7

and ST1 = 1/10, LT1 = 1/7 respectively. Looking at the 3D histogram results for

Cézanne’s four paintings, we see that the homogeneous regions of his paintings are

well saturated, as expanding the range of saturation and light does not change the

relative proportion of co-occurences. In the hue adjacencies however, the second and

third range captured different proportions of co-occurences than the first. Therefore

the third range ST1 = 1/10, LT1 = 1/7 is needed to accurately capture the hue

adjacencies.

We also conclude that our algorithm captures cold-warm contrast well in Cézanne’s

paintings.
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(a) Coronation of the Virgin

Chromatic Ground Truth: Orange, blue, red, gold, green
(Blue-green in original image appears blue in digital image)

ST1 = 0, LT1 = 0 Percentage ST1 = 1/20, LT1 = 1/7 Percentage ST1 = 1/10, LT1 = 1/7 Percentage

RO 42% RO 26% RO 23%
R 16% O 18% O 20%
O 12% R 16% R 16%

YO 5% B 1% YO 2%
Y 2% B 1%

YG 1%
B 1%

(b) Homogeneous Regions

Figure 3.18: Summary of normalized co-occurences for ‘Coronation of the Virgin’
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(a) La Belle Ver-
riere

Chromatic ground truth: ice-blue and red-orange
Some blue from original image appears violet in digital image

ST1 = 0, LT1 = 0 Warmth ST1 = 1/20, LT1 = 1/7 Warmth ST1 = 1/10, LT1 = 1/7 Warmth
Index Index Index

R(49%) 5 B(30%) 1 B(32%) 1
B(18%) 1 R(22%) 5 R(20%) 5
RO(6%) 6 BG(7%) 0 BG(7%) 0
O(6%) 5 BV(6%) 2 BV(6%) 2

BV(4%) 2 O(5%) 5 O(4%) 5
BG(3%) 0 RO(4%) 6 RO(3%) 6
G(2%) 1 G(3%) 1 G(3%) 1
Y(1%) 3 Y(1%) 3 Y(1%) 3

YG(1%) 2 YG(1%) 2 YG(1%) 2

(b) Homogeneous Regions

ST1 = 0, LT1 = 0 Warmth ST1 = 1/20, LT1 = 1/7 Warmth ST1 = 1/10, LT1 = 1/7 Warmth
Strength Strength Strength

R-V(9%) 2 R-RV(6%) 1 R-O(6%) 0
R-RV(9%) 1 R-O(6%) 0 R-RV(5%) 1
RO-V(5%) 3 R-V(5%) 2 R-V(5%) 2
O-V(5%) 2 B-V(3%) 2 G-B(3%) 0

YO-V(5%) 1 BV-RV(3%) 2 B-V(3%) 2
Y-V(5%) 0 G-B(3%) 0 BV-RV(3%) 2

YG-V(5%) 1 O-RV(3%) 1 O-RV(3%) 1
G-V(5%) 2 B-RV(3%) 3 B-RV(3%) 3

BG-V(5%) 3 RO-RV(3%) 2 RO-RV(3%) 2
B-V(5%) 2 G-BV(3%) 1 G-RV(2%) 3

(c) Adjacencies

Figure 3.19: Summary of normalized co-occurences for ‘La Belle Verriere’
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Cruxficion Girl Reading At Table Guernica

Guitar on the Mantle Piece Weeping Women

(a) Paintings

Painting Range R R-O O Y-O Y Y-G G B-G B B-V V R-V
ST = 0, LT = 0 76% 1% 12% 8% 1% 0% 0% 0% 0% 0% 0% 0%

Cruxifixion ST = 1/20, LT = 1/7 42% 1% 13% 23% 2% 0% 0% 0% 0% 0% 0% 0%
ST = 1/10, LT = 1/7 41% 2% 13% 22% 2% 0% 0% 0% 0% 0% 0% 0%
ST = 0, LT = 0 0% 20% 67% 6% 1% 0% 0% 0% 0% 0% 0% 0%

Girl Reading At Table ST = 1/20, LT = 1/7 0% 15% 55% 8% 1% 0% 0% 0% 0% 0% 0% 0%
ST = 1/10, LT = 1/7 0% 14% 54% 7% 1% 0% 0% 0% 0% 0% 0% 0%
ST = 0, LT = 0 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Guernica ST = 1/20, LT = 1/7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
ST = 1/10, LT = 1/7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
ST = 0, LT = 0 1% 96% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Guitar on the Mantle Piece ST = 1/20, LT = 1/7 0% 80% 9% 0% 0% 0% 0% 0% 0% 0% 0% 0%
ST = 1/10, LT = 1/7 0% 79% 10% 0% 0% 0% 0% 0% 0% 0% 0% 0%
ST = 0, LT = 0 4% 4% 28% 61% 0% 0% 0% 0% 3% 0% 0% 0%

Weeping Women ST = 1/20, LT = 1/7 4% 4% 23% 59% 1% 0% 0% 0% 4% 0% 0% 0%
ST = 1/10, LT = 1/7 4% 4% 22% 58% 1% 0% 0% 0% 4% 0% 0% 0%

(b) Percentage of Co-occurences in Homogeneous Regions computed for all 5 paintings

ST = 0, LT = 0 ST = 1/20, LT = 1/7 ST = 1/10, LT = 1/7

(c) 3D Histograms Visualizing Homogeneous regions in all 5 paintings, grouped by range of light and
saturation

Figure 3.20: Picasso Visualization- Contrast of hue results for homogeneous regions
and 3D histogram of relative proportions of hue homogeneities.
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(a) Painting

Chromatic ground truth: yellow, blue, orange, violet and pink
Homogeneous regions

Warmth Warmth Warmth
ST1 = 0, LT1 = 0 Index ST1 = 1/20, LT1 = 1/7 Index ST1 = 1/10, LT1 = 1/7 Index

R(32) 5 R(33) 5 R(32) 5
O(25) 5 O(20 5 O(19) 5

RO(21) 6 RO(16) 6 RO(15) 6
V(8) 3 V(3) 3 V(3) 3

YO(2) 4 YO(1) 4 YO(1) 4
BV(2) 2 BV(1) 2 BV(1) 2
RV(2) 4 RV(1) 4 RV(1) 4
B(1) 1 B(1) 1 B(1) 1

Adjacencies

Contrast Contrast Contrast
ST1 = 0, LT1 = 0 Strength ST1 = 1/20, LT1 = 1/7 Strength ST1 = 1/10, LT1 = 1/7 Strength

R-RV(14) 1 R-RV(13) 1 R-RV(13) 1
BV-RV(8) 2 BV-RV(6) 2 R-V(7) 2
RO-RV(7) 2 RO-RV(6) 2 RO-RV(6) 2
O-RV(7) 1 O-RV(6) 1 O-RV(6) 1

YO-RV(7) 0 YO-RV(6) 0 YO-RV(6) 0
Y-RV(7) 1 Y-RV(6) 1 Y-RV(6) 1

YG-RV(7) 2 YG-RV(6) 2 YG-RV(6) 2
G-RV(7) 3 G-RV(6) 3 G-RV(6) 3

BG-RV(7) 4 B-RV(6) 3 BV-RV(6) 2
B-RV(7) 3 B-RV(6) 3

(b) Normalized co-occurences

Figure 3.21: Detailed results for ‘Apples and Oranges’ by Cézanne
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(a) Painting

Chromatic ground truth: none available

Homogeneous regions

Warmth Warmth Warmth
ST1 = 0, LT1 = 0 Index ST1 = 1/20, LT1 = 1/7 Index ST1 = 1/10, LT1 = 1/7 Index

Y(62) 3 Y(44) 3 Y(44) 3
YO(16) 4 YO(12) 3 YO(12) 3
YG(14) 2 YG(11) 2 YG(11) 2

G(2) 1 G(2) 1 G(2) 1
O(1) 5 O(1) 5 O(1) 5

Adjacencies

Contrast Contrast Contrast
ST1 = 0, LT1 = 0 Strength ST1 = 1/20, LT1 = 1/7 Strength ST1 = 1/10, LT1 = 1/7 Strength

O-Y(100) 2 YO-YG(65) 2 YO-YG(60) 2
O-Y(26) 2 O-Y(29) 2
Y-G(9) 2 Y-G(10) 2

RO-Y(2) 3

(b) Normalized co-occurences

Figure 3.22: Detailed results for ‘Full Bowl’ by Cézanne
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(a) Painting

Chromatic ground truth:blue, orange, violet and yellow-green
Homogeneous regions

Warmth Warmth Warmth
ST1 = 0, LT1 = 0 Index ST1 = 1/20, LT1 = 1/7 Index ST1 = 1/10, LT1 = 1/7 Index

BG(72) 0 BG(49) 0 BG(48) 0
G(13) 1 G(14) 1 G(14) 1
O(3) 5 O(6) 5 O(6) 5

YO(3) 4 YO(5) 4 YO(4) 4
B(3) 1 B(2) 1 B(2) 1
Y(1) 3 Y(2) 3 Y(2) 3

YG(1) 2 YG(2) 2 YG(2) 2

Adjacencies

Contrast Contrast Contrast
ST1 = 0, LT1 = 0 Strength ST1 = 1/20, LT1 = 1/7 Strength ST1 = 1/10, LT1 = 1/7 Strength

Y-G(100) 2 Y-G(23) 2 Y-G(22) 2
YO-YG(12) 2 YO-YG(17) 2

O-Y(6) 2 YO-G(6) 3
YG-BG(5) 2 O-Y(6) 2
YO-G(4) 3 YG-BG(4) 2
R-O(3) 0 R-O(3) 0

Y-BG(3) 3 O-YG(2) 3
YO-BG(3) 4 Y-BG(2) 3

R-B(3) 4 YO-BG(2) 4
G-B(3) 0 R-B(2) 4

(b) Normalized co-occurences

Figure 3.23: Detailed results for ‘Montagne St. Victoire’ by Cézanne
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(a) Painting

Chromatic ground truth: none available
Homogeneous regions

Warmth Warmth Warmth
ST1 = 0, LT1 = 0 Index ST1 = 1/20, LT1 = 1/7 Index ST1 = 1/10, LT1 = 1/7 Index

O(54) 5 O(47) 5 O(46) 5
YO(32) 4 YO(25) 4 YO(25) 4
RO(8) 6 RO(6) 6 RO(6) 6
Y(2) 3 Y(2) 3 Y(2) 3
G(1) 1 YG(1) 2 YG(1) 2

Adjacencies

Contrast Contrast Contrast
ST1 = 0, LT1 = 0 Strength ST1 = 1/20, LT1 = 1/7 Strength ST1 = 1/10, LT1 = 1/7 Strength

O-Y(13) 2 O-Y(19) 2
YO-YG(11) 2 YO-YG(12) 2

R-O(8) 0 R-O(9) 0
G-B(6) 0 Y-G(4) 2
Y-G(5) 2 G-B(4) 0

R-BV(4) 3 O-YG(4) 3
O-YG(3) 3 O-G(3) 4
O-G(3) 4 YO-B(3) 3

YO-B(3) 3 YG-B(3) 1
YG-B(3) 1 R-BV(3) 3

(b) Normalized co-occurences

Figure 3.24: Detailed results for ‘Card Players’ by Cézanne
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Apples and Oranges Full Bowl Montagne St. Victoire

Card Players

(a) Paintings

Homogeneous Adjacent Adjacent Adjacent
R to RV R-O to O-Y O-YG to Y-RV YG-GB to BV-RV

ST = 0, LT = 0

ST = 1/20, LT = 1/7

ST = 1/10, LT = 1/7

(b) Visualizing Homogeneous regions and Adjacencies

Figure 3.25: Cézanne Visualization- Histogram of homogeneous regions with warmth
indices and warmth contrast strengths for adjacencies listed in parentheses.
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Chapter 4

Experiments

4.1 Database

The collection of images upon which we test our computational models for modulation,

contrast of hue and cold-warm contrast are images displayed and discussed in Itten’s

book ‘The Art of Color’[22]. Table 4.1 shows the database of these 23 images. In

this chapter, we discuss the results obtained by the proposed computational models

for modulation, contrast of hue and cold-warm contrast. We test our computational

models for analyzing artist styles on a collection of paintings from artists whom Itten

mentioned for contrast of hue (see Table 4.2 on page 75) and cold-warm contrast (see

Table 4.3 on page 85 and Table 4.4 on page 86). We also test the robustness of our

algorithms on different digital versions of two selected paintings (see Table 4.5 on

page 91).

4.2 3D Visualization and Modulation

The proposed measures for color modulation, as well as the color palette visualization

were applied to a subset of 10 out of the 28 paintings discussed by Itten in [22] and

[23], as a means to validate our computational models and the proposed color palette

visualization with respect to modulation.

The 3D visualization of the color palette in the HSL color space requires the

image to be converted from RGB to HSL, as explained in Chapter 3. HSL values

range from 0 to 1. Hue values of 0 to 1 correspond to 0 to 360◦, representing the

hue circle. To focus on the chromatic range of colors in the image and to get a



58

Artist Painting Size in Source
pixels

Manuscript Apocalypse Revelations de Saint Jean 439 x 585 http://www.encyclopedie.bseditions.fr/

de Saint Sever
Enguerrand Charonton Coronation of the Virgin 812 x 685 http://en.wikipedia.org/

wiki/Enguerrand_Quarton

Paul de Limbourg May day excursion 798x857 http://en.wikipedia.org/wiki/

Tr\%C3\%A8s_Riches_Heures_du_Duc_de_Berry

Piet Mondrian Composition in Red II 396x 470 http://www.anthroposophie.net/bibliothek/

kunst/malerei/mondrian/bib_mondrian.htm

Francisco de Zurbaran Lemons Oranges and rose 800 x 443 http://oldpainting.tumblr.com/post/

6213971975/francisco-de-zurbaran

-still-life-with-lemons

Rembrandt Man in Golden Helmet 441 x 600 http://en.wikipedia.org/wiki/Rembrandt

Picasso Guitar on a mantle piece 436 x 600 http://www.pbase.com/

bmcmorrow/image/101087544/medium

Chartres La Belle Verriere 366x 1331 http://commons.wikimedia.org/wiki/File:Chartres

_-_Notre-Dame-de-la-Belle-Verri\%C3\%A8re.JPG

Grunewald Angel choir 162 x 256 http://en.wikipedia.org/wiki/Isenheim_Altarpiece

Isenheim altarpiece
Renoir Le moulin de la galette 103 x 156 http://en.wikipedia.org/wiki

(detail) /Pierre-Auguste_Renoir

Claude Monet Houses of parliament 1164 x 1024 http://pictify.com/347016/claude-monet-london

-houses-of-parliament-

the-sun-shining-through-the-fog

Paul Cézanne Apples and Oranges 600 x 463 http://en.wikipedia.org/wiki/Apples_and_oranges

Jan van Eyck Madonna of 470 x 500 http://en.wikipedia.org/wiki/

the Chancellor Rolin Madonna_of_Chancellor_Rolin

Piero della Francesca Solomon Receiving 464 x 341 http://www.clivestratford.com

the Queen Sheba /tag/piero-della-francesca/

Paul Cézanne La Montagne 417 x 327 http://album.aufeminin.com/album/

Sainte-Victoire 668204/peintures-15850439.html

Manuscript Apocalypse Satan and the locusts 383 x 497 http://www.mmlab2.rlc.dcccd.edu/artc1353n03

de Saint Sever /assignments/unit1/Color.html

El Greco Stripping of Christ 714 x 1211 http://www.ibiblio.org/wm/paint/auth/greco/

Vincent van Gogh Café at Evening 232 x 300 http://www.bandagedear.com/product/

cafe-terasse-in-the-evening-by-vincent-van-gogh

Georges de la Tour Newborn babe 1010 x 829 http://www.wga.hu/frames-e.html?

/html/l/la_tour/georges/2/08newbo.html

Henri Matisse Le Piano 319 x 370 http://www.moma.org/collection

/object.php?object_id=78908

Konrad Witz The synagogue 833 x 940 http://padraigrooney.com/blog/?p=42

Seurat Un dimanche 1249 x 834 http://nl.wikipedia.org/wiki/Dimanche_d’%C3

a la Grande Jatte %A9t%C3%A9_%C3%A0_la_Grande_Jatte

Ingres Reclining Odalisque 849 x 476 http://en.wikipedia.org/wiki/Grande_Odalisque

Table 4.1: Database of paintings described by Itten: artist name, painting name,
source

proportionally accurate visualization, we map the HSL values such that the color

pixels are placed in their correct position in the HSL cylinder, centered with medium

gray at position (0,0,0). We discard pixels that are very dark (−1 ≤ l ≤ −0.75), very

dull (0.75 ≤ l ≤ 1), and gray (s ≤ 0.1).
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4.2.1 A comparative analysis of low and high color modula-

tion

The results obtained on the Van Gogh and Mondrian paintings have been already

discussed in Chapter 3. The remaining 8 visualizations are shown in Figures 4.1 and

Figure 4.2, while the corresponding measures of modulation are given in Table 4.6

on page 101. The remainder of this section will discuss, for each analyzed painting,

the results yielded by our computational model for modulation in light of Itten’s

comments. Images will be repeated when appropriate to support readability.

‘Reclining Odalisque’ by Ingres has a simple color composition that sustains the

principal curves in the image. In Table 4.6, our measures correspond to high modula-

tion for blue-violet, orange, yellow-orange, and blue. These sectors are characterized

by low values for µdist and high values for N . Our findings support Itten’s explana-

tions: ‘The color composition is very simple. Blue, orange, brown, and yellow are

pure colors, modulated with black, white, and gray.’

‘Un Dimanche a la Grande Jatte’ by Seurat yields the highest modulation values

in the yellow-green, green, and blue-violet hue sectors. Blue-violet colors the dress

of the lady standing at the right, and the grass and the trees are mixtures of yellow,

green, and yellow-green. All these areas are highly modulated, according to Itten:

‘None of these areas are painted in homogeneously mixed colors; each consists of many

distinguishable notes, meeting as smooth textures only in the eye of the observer.’

For ‘May-Day Excursion’ by Limbourg, we have computed high modulation values

in yellow-green and green, which are hues expressive of spring and lend the scene a

joyous and lively expression. Interestingly, despite the obvious differences in style

between Seurat (impressionist) and Limbourg (Dutch medieval miniaturist painter),

the two paintings convey the same enjoyment of spring via modulation in green hues.

‘Houses of Parliament in fog’ by Monet results are highly modulated in blue, blue-

violet, and red. Warm (red) modulating tones are used for the last rays of the setting

sun, which contrasts with cold (blue and blue-violet) tones of the foggy buildings

and water. According to Itten ‘[Monet] meant to portray the shimmer of light in the

air and over warm fields, color refractions in cloud and mist, highlights of flowing,

undulant water, and the alternation of sunny and shady green in the foliage of trees’.

‘Le Piano’ by Matisse is an example of the use of low modulation in all hues

except red, green, and blue (see Table 4.2). The painting contains large areas of

quasi-homogenous color. The contrast is bold and unmodulated. According to Itten,
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‘Over many years of activity, Matisse increasingly negated local color and modeling

in light and shade. His paintings became more and more flat and abstract.’

Computed modulation measures for ‘Newborn Babe’ by de la Tour show high

modulation only in the red hues. All other hue sectors are low-modulated. Some of

the hue sectors are not populated at all, leading to zero-values. Low modulation in

all populated hue sectors except red results in an introverted, meditative mood as

indicated by Itten.

‘Apples and Oranges’ by Cézanne is a good example of modulated cold-warm

contrast, as results show that red is the highest modulated hue, followed by blue-

violet and violet. One may note that ‘Apples and Oranges’ and ‘Houses of Parliament

in fog’ employ the same modulated cold-warm contrast. However, the two paintings

convey a very different message and mood. This is due to differences in other aesthetic

elements such as shape and composition, and relative ratios of green colors.

‘The Synagogue’ by Witz employs high modulation in the orange contrasting to

high modulation in violet. Orange corresponds to portions of the lady’s dress, which

is transformed into ‘a living, vibrant chord of simultaneous resonance.’

4.3 Contrast of hue and cold-warm contrast

In Chapter 3, we illustrated our computational model for contrast of hue by discussing

the results on ‘The Coronation of the Virgin’, and our computational model for cold-

warm contrast by discussing our results on ‘La belle verriere’. We also illustrated our

computational models for analyzing artists’ styles for contrast of hue by discussing

our results on a collection of Picasso’s paintings, and cold-warm contrast by discussing

our results on Cézanne’s paintings. In this section, we will discuss the remainder of

the paintings that Itten discussed and analyze the styles of artists he mentions with

respect to both contrasts.

4.3.1 Contrast of hue results on Itten’s dataset

Contrast of hue occurs when a painting contains only a few fully saturated hues.

Although adjacencies exist, they are few and do not represent the focus of the painting.

In this section we will analyze in detail the remaining three paintings that Itten

discussed as examples for showing contrast of hue:

• Limbourg’s ‘May-Day Excursion’
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(a) Ingres (b) Seurat (c) Limbourg (d) Monet

Figure 4.1: Paintings and their corresponding color palettes shown in incremental
120◦ rotations about the z axis. Column a) ‘Reclining Odalisque’ by Ingres; Column
b) ‘Un Dimanche a la Grande Jatte’ by Seurat; Column c)‘May Day excursion’ by
Limbourg; Column d) ‘Houses of Parliament in fog’ by Monet

• ‘L’eglise d’Ephese’ found in a manuscript Apocalypse de Saint Sever. Although

we were not able to find the image Itten has in his book, we used ‘Revelations

de Saint Jean’ (see Figure 4.4), a different image from the same manuscript as

he explicitly states that all images in the manuscript use contrast of hue.

• Mondrian’s ‘Composition in Red II’ - in place of Mondrian’s Composition 1928

due to the difficulty in finding a good quality version of Composition 1928. Yet,

according to Itten, Mondrian’s artistic style is based on the use of contrast of

hue.

Itten refers to Limbourg’s ‘May-Day Excursion’ as a perfect example contrast

of hue[22]. Figure 4.3 shows the image, and the summary of the contrast of hue
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(a) Matisse (b) de la Tour (c) Cézanne (d) Witz

Figure 4.2: Paintings and their corresponding color palettes shown in incremental 120◦

rotations about the z axis. Column a) ‘Le Piano’ by Matisse; Column b) ‘Newborn
Babe’ by de la Tour; Column c) ‘Apples and Oranges’ by Cézanne; Column d) ‘The
Synagogue’ by Witz

co-occurence results in the homogeneous regions that are captured within the three

ranges we measured. The contrast of hue takes place between blue, orange and yellow-

orange wich are fully saturated and are detected in the first range of parameters

(ST = 0, LT = 0). The large patch of green is not fully saturated, and shows some

variation in the light and saturation, and as such is detected in the second range of

parameters (ST = 1/20, LT = 1/7). For this image, the first range ST = 0, LT = 0 is

sufficient for capturing the hues involved in the contrast of hue.

Itten discussed the painting ‘L’eglise d’Ephese’ from the manuscript of Saint Sever

as an example of constrast of hue. We were unable to find a digital copy of the image

and therefore ran our algorithm on ‘Revelations de Saint Jean’, another painting
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Chromatic ground truth: blue, red, green and some yellow-gold (brownish)

ST1 = 0, LT1 = 0 Percentage ST1 = 1/20, LT1 = 1/7 Percentage ST1 = 1/10, LT1 = 1/7 Percentage

B 81% B 68% B 65%
O 3% YG 5% YG 6%

YO 3% O 4% O 4%
YG 3% RO 3% YO 4%
RO 2% YO 3% Y 4%
Y 2% Y 3% RO 3%
R 1% R 1% R 1%

G 1%

Figure 4.3: Summary of normalized co-occurences for ‘May-Day Excursion’

from the same manuscript. According to Itten, the whole manuscript employs the

Constrast of Hue. Figure 4.4 displays the image, and the percentage of co-occurences

in the homogeneous regions. All three ranges of parameters capture YO, O, RO

and Y. The third range of parameters (ST1 = 1/10, LT1 = 1/7), however, accurately

captures orange and red-orange as having the largest co-occurences. This is likely

due to discoloration in the image, caused by the aging of the manuscript.

Mondrian’s ‘Composition in Red II’ is another example of contrast of hue, in the

same theme as his ‘Composition 1928’ mentioned by Itten. Figure 4.5 displays the

image, and the percentage of co-occurences in the homogeneous regions. Blue having

less co-occurences than yellow in the first range (ST1 = 0, LT1 = 0), and appearing
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Homogeneous regions
ST1 = 0, LT1 = 0 Percentage ST1 = 1/20, LT1 = 1/7 Percentage ST1 = 1/10, LT1 = 1/7 Percentage

YO 32% O 24% O 24%
O 27% YO 21% RO 19%

RO 22% RO 19% YO 19%
Y 5% Y 2% Y 2%

Figure 4.4: Summary of normalized co-occurence for ‘Revelations de Saint Jean’

correctly in the second range is an unexpected result. This is due to the vertical and

horizontal lines in the blue region that break up the homogeneity of the region. These

lines are seen when we zoom into the image. This effect is likely an artifact of the

digital copy rather than the original painting. As such, the range ST1 = 0, LT1 = 0 is

sufficient for capturing the contrast of hue.

We thus confirm that the first range is sufficient in capturing the contrast of hue

when the image quality is good. Otherwise, broadening the range is necessary.
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Homogeneous regions

ST1 = 0, LT1 = 0 Percentage ST1 = 1/20, LT1 = 1/7 Percentage ST1 = 1/10, LT1 = 1/7 Percentage

R 95% R 88% R 88%
Y 3% Y 3% Y 3%
B 2% B 9% B 9%

Figure 4.5: Summary of normalized co-occurence for ‘Composition in Red II’

4.3.2 Contrast of hue results per artist

We applied our algorithm for contrast of hue on a collection of paintings from artists to

whom Itten referred for the use of contrast of hue: Fra Angelico, Botticelli, Kandinsky,

Macke, Franz Marc and Miro. Table 4.2 on page 75 displays our database of images

for the contrast of hue.

An example of Fra Angelico’s painting is ‘Tangere’. In this image, the contrast of

hue occurs between the dress of the kneeling saint, the yellow and yellow-orange halo

around both saints as well as the golden fence in the background. Figure 4.6 shows

the image and the co-occurence patterns in the homogeneous regions. The chromatic

range is captured in the first range of parameters (ST1 = 0, LT1 = 0). Both of Fra

Angelico’s painting in our database and the 3D histograms to visualize the contrast

of hue co-occurence patterns in the homogeneous regions of the results are shown in

Figure 4.7 (page 67). Our observations of the paintings and the co-occurence results

in the homogeneous regions are that Fra Angelico used orange as the dominant hue

and kept the contrasting colors in the range of red to yellow-orange in the color wheel.

An example of Botticelli’s painting is ‘The Madonna’. Figure 4.8 (page 68) shows
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Homogeneous regions
ST1 = 0, LT1 = 0 ST1 = 1/20, LT1 = 1/7 ST1 = 1/10, LT1 = 1/7

O 63% O 61% O 61%
Y-O 17% Y-O 9% Y-O 9%
R-O 4% R-O 6% R-O 5%

R 1% R 1% R 1%
Y 1%

Figure 4.6: Fra Angelico-Tangere

the image and the co-occurence patterns in the homogeneous regions. In this image,

the contrast of hue occurs between the red, orange and dark clothing at the bottom

left of the image. This chromatic range is captured in the first range of parameters

(ST1 = 0, LT1 = 0). The remainder of Botticelli’s paintings and the 3D histograms

to visualize the contrast of hue co-occurence patterns in the homogeneous regions

are shown in Figure 4.9 (page 69). Our observations of Botticelli’s paintings is that

homogeneous regions have a similar color scheme with one dominant hue and one or

more secondary hues.

An example of Kandinsky’s painting is ‘Church of St. Ursula’. Figure 4.10 (page

70) shows the image and the co-occurence patterns in the homogeneous regions. The

contrast of hue occurs between the saturated patches of color: yellow green, orange,

blue-violet, yellow. The first range of parameters captures the co-occurences of the

homogenous regions more accurately than the second range of parameters, as the

blue-violet sky has more co-occurences than the yellow patches. Both of Kandinsky’s

paintings in our database, and the 3D histograms to visualize the contrast of hue
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Adoration of the Magi Tangere

(a) Macke

ST = 1/10, LT = 1/7

(b) 3D Visualization of homogeneous regions

Figure 4.7: Fra Angelico Visualization- Histogram of homogeneous regions

co-occurence patterns in the homogeneous regions are shown in Figure 4.11 (page

71). Our observations of Kandinsky’s paintings are that he uses no more than three

principal hues, which is in line with contrast of hue.

An example of Macke’s painting is ‘Market in Algiers’. Figure 4.12 (page 72 shows

the image and the contrast of hue co-occurence patterns in the homogeneous regions.

The contrast of hue occurs between the saturated regions of color such as red, orange,

yellow, green. The second range of parameters (ST = 1/20, LT = 1/7) produces more

accurate results, due to mild variations in the light and saturation. The remainder of

Macke’s paintings and the 3D histograms to visualize the contrast of hue co-occurence

patterns in the homogeneous regions are shown in Figure4.13 (page 76). We observe

that Macke uses few dominant hues in the contrasting homogeneous regions and these

hues are adjacent in the color wheel.

An example of Franz Marc’s painting is ‘Blue Horse’. Figure 4.14 (page 77)



68

Homogeneous regions
ST1 = 0, LT1 = 0 ST1 = 1/20, LT1 = 1/7 ST1 = 1/10, LT1 = 1/7

YO 43% O 20% O 31%
O 27% YO 25% YO 23%
R 14% R 15% R 15%

RO 8% RO 7% RO 7%
Y 3% Y 2% Y 2%

Figure 4.8: Botticelli- The Madonna

shows the image and the co-occurence patterns in the homogeneous regions. In this

image, the contrast of hue occurs primarily between the blue, red-orange and yellow

as captured in the first range of parameters. The remainder of Franz Marc’s paintings

and the 3D histograms to visualize the contrast of hue co-occurence patterns in the

homogeneous regions are shown in Figure 4.15 (page 78). We observe that Franz

Marc tends to use one dominant hue, as detected in the first range of parameters

(ST1 = 0, LT1 = 0).

An example of Miro’s painting is ‘The Garden’. Figure 4.16 (page 79) shows

the image and the co-occurence patterns in the homogeneous regions. In this image,

saturated patches of many contrasting colors compete over the light blue background.

The range of colors is well captured in the first range of parameters. The remainder of

Miro’s paintings and the 3D histograms to visualize the contrast of hue co-occurence

patterns in the homogeneous regions are shown in Figure 4.17 (page 80). We observe

that Miro uses few dominant hues and these hues are adjacent in the color wheel.

We conclude as such that our computational model for exploring the contrast of

hue patterns in an artist’ style is valuable.
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Gallileo Madonna (detail) Madonna and child

The Madonna Gallileo Annunciation
Primavera De Venus The Madonna Annunciation

(a) Botticelli

ST = 0, LT = 0 ST = 1/20, LT = 1/7 ST = 1/10, LT = 1/7

(b) 3D Visualization of homogeneous regions

Figure 4.9: Botticelli Visualization- Histogram of homogeneous regions

4.3.3 Cold-warm contrast results on Itten’s dataset

Cold-warm contrast is achieved by contrasting the warmth of the homogeneous re-

gions, as well as the more subtle interplay of the hues within medium light range, and

no light changes. There is no requirement for the saturation to remain unchanged,

however, in the pure sense of the use of cold-warm contrast, it is best to assume that

contrast of saturation is not at play. Our discussion in Chapter 3 includes an analysis

of the warmth indices for the hues, and the warmth contrast strength in the adjacen-

cies, and a detailed analysis of three of the seven paintings Itten discussed: Cézanne’s

‘Apples and Oranges’, Cézanne’s ‘La Montagne St.Victoire’ and ‘La belle verriere’.
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Homogeneous regions
ST1 = 0, LT1 = 0 ST1 = 1/20, LT1 = 1/7 ST1 = 1/10, LT1 = 1/7

YG 31% YG 36% YG 36%
O 17% O 19% O 18%

BV 16% Y 9% Y 9%
Y 10% BV 8% BV 8%

RO 7% RO 5% RO 5%
G 3% YO 3% YO 3%

YO 3% R 1% R 1%
R 1% G 1% R 1%

B 1% B 1%

Figure 4.10: Kandinksy-Church of St. Ursula

Warmth contrast strengths are mild (1,2), medium (3,4) and strong (5,6). We will

now analyze the remaining four paintings that Itten described as showing cold-warm

contrast :

• Grunewald’s ‘Angel Choir’

• Monet’s ‘Houses of Parliament’

• Renoir’s ‘Le Moulin de la Galette (Detail)’

• Witz’ ‘The Synagogue’

Grunewald’s ‘Angel Choir’ is a portion of a larger painting: ‘The Eisenheim Alter-

piece’. According to Itten, the bright angel in the front is painted in light cold-warm
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Church of St. Ursula Reiter

(a) Kandisky

ST = 0, LT = 0 ST = 1/20, LT = 1/7 ST = 1/10, LT = 1/7

(b) 3D Visualization of homogeneous regions

Figure 4.11: Kandinsky Visualization- Histogram of homogeneous regions

modulation of cool red and warm orange and gold, the soloist in the middle is ‘clad

in hues from cool red to warm orange’ contrasting with the yellow-green holo of the

angel in the back. Figure 4.18 (page 81) displays the image, the cold-warm contrast

results in the homogeneous regions and adjacencies. The second range of parameters

(ST1 = 1/20, LT1 = 1/7) is needed to capture the homogeneous regions as well as

adjacencies. The homogeneous regions show that we have a generally warm image

with a warmth index range of 4 to 6, and the adjacencies show a mild to medium

warmth contrast strength.

Monet’s ‘Houses of Parliament’ imparts a strong feeling of cold-warm contrast

as the sun breaks through the fog. According to Itten, ‘Monet uses the cold-warm

contrast orange/blue-violet’[22, p. 74]. Figure 4.19 (page 82) displays the image, the
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Homogeneous regions
ST1 = 0, LT1 = 0 ST1 = 1/20, LT1 = 1/7 ST1 = 1/10, LT1 = 1/7

YG 46% YG 25% YG 25%
R 24% R 25% R 25%

RO 7% O 11% O 11%
O 6% YO 10% YO 10%

YO 6% RO 9% RO 9%
Y 5% Y 4% Y 3%
G 1% G 1% G 1%

Figure 4.12: Macke- Market in Algiers

cold-warm contrast results in the homogeneous regions and adjacencies. The results

show that the second range of parameters (ST1 = 1/20, LT1 = 1/7) captures the

co-occurences in the homogeneous regions, as well as the modulations reflected in the

adjacencies. The sharpest warmth contrast occurs between red-orange (warmth index

6 ) and the small bit of blue-green (warmth index 0 ).

In describing the cold-warm effect of Renoir’s ‘Le Moulin de la galette’, Itten only

discusses the portion with the face of the woman in the center of the image. Figure

4.20 (page 83) displays the image, the cold-warm contrast results in the homogeneous

regions and adjacencies. According to Itten “The colors in this painting all have a

semblance of reflection [...] This effect is owing to cold-warm contrast”[22, p. 72]. The

results show that the third range of parameters (ST1 = 1/10, LT1 = 1/7) captures

the co-occurences in the homogeneous regions, as well as the modulations of yellow

and green reflected in the adjacencies. The warmth index captures the warmth of the

image (warmth index 4 and 5 ) with a mild contrast in the adjacencies.
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In his discussion of ‘The Synagogue’, Itten highlights that the yellow dress is

modulated with violet tones of a similar brilliance and warm shadow tones seen in

the red-orange of the sleeves. Figure 4.21 (page 84) displays the image, the cold-

warm contrast results in the homogeneous regions and adjacencies. The third range

of parameters (ST1 = 1/10, LT1 = 1/7) is needed to capture BV-RV adjacencies in

the image. The high percentage of co-occurences in the homogeneous regions that

have a high warmth index (4-6) is indicative of the overall warmth of the image. The

adjacencies reflect modulations with mild and medium contrast strength.

We conclude as such that our computational model is a valuable tool in analyzing

cold-warm contrast in paintings. The second range of parameters is needed to capture

the contrast, and the third range is needed for lower quality images.

4.3.4 Cold-warm contrast results per artist

In Chapter 3, we used our computational model to assess the use of cold-warm contrast

in Cézanne’s paintings grounded in Itten’s comments and descriptions. Itten also

mentioned that the following artists use cold-warm contrast in their work: Bonnard,

Monet, Pissaro and Renoir. Table 4.3 on page 85 and Table 4.4 on page 86 show the

database of images we used to test our computational model.

An example of Bonnard’s painting is ‘Earthly Paradise’. Figure 4.22 (page 87)

displays the image, and the cold-warm contrast results for the homogeneous regions

and adjacencies. This painting is highly modulated. In the second range of parameters

(ST1 = 1/20, LT1 = 1/7), we see that that the warmth index of the homogeneous

regions ranges from 0 to 6. In the adjacencies, the warmth contrast strength values

show a pattern of mild contrast. Both of Bonnard’s paintings in our database, and

the 3D histograms to visualize the cold-warm contrast co-occurence patterns in both

the homogeneous regions and the adjacencies are displayed in Figure 4.23 (page 88).

In the second row of 3D histograms (ST1 = 1/20, LT1 = 1/7), we observe that the

homogeneous regions in Bonnard’s paintings are mostly warm with a peak at orange

(warmth index 5 ). We also observe that the peaks in the adjacencies are of mild and

medium warmth contrast strength.

An example of Monet’s painting is ‘Water Lilies’. Figure 4.24 (page 89) displays

the image, the cold-warm contrast results for the homogeneous regions and adjacen-

cies. For this painting, we need the third range of parameters (ST1 = 1/10, LT1 = 1/7)

as the quality is poor. We see a mostly cool image with homogenous regions having
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a warmth index of 1 and 0, contrasted with small amount of cooler hues. We also

see highly modulated mild to medium contrasts in the adjacencies. The remainder of

Monet’s paintings are displayed in Figure 4.25 (page 92). The 3D histograms to visu-

alize the cold-warm contrast co-occurence patterns in both the homogeneous regions

and the adjacencies are displayed in Figure 4.26 (page 93). We see a pattern where the

highest percentage of co-occurences is clustered around one peak in the homogeneous

regions, as captured by the second range of parameters (ST1 = 1/20, LT1 = 1/7).

This result corresponds to our observation that Monet painted many portraits with a

lanscape in the background. Some of his paintings are primarily warm, some are pri-

marily cold, while others have both warm and cold hues. The peaks in the adjacencies

have a mild warmth contrast strength.
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Artist Painting Size in Source
pixels

Sandro Botticelli Annunciation 600 x 587 http://historylink101.com/art

/Sandro_Botticelli/pages/26_Annunciation_jpg.htm

Sandro Botticelli Gallileo 350 x 450 http://www.theguardian.com/science/gallery

/2009/mar/12/galileo-exhibition-florence-strozzi

Sandro Botticelli Madonna and child 578 x 800 http://www.artcyclopedia.com

/artists/botticelli_sandro.html

Sandro Botticelli Madonna (detail) 417 x 585 http://botticellipaintings.com/

Sandro Botticelli Primavera de Venus 431 x 585 http://www.artble.com/artists

/sandro_botticelli/paintings/primavera

Sandro Botticelli The Madonna 285 x 411 http://www.canvasreplicas.com/Botticelli.htm

Fra Angelico Adoration of the Magi 859 x 550 http://englishclass.jp/reading/topic/Fra_Angelico

Fra Angelico Tangere 781 x 1034 http://en.wikipedia.org/wiki/Noli_me_tangere

Franz Marc Blue Horse 337 x 450 http://franzmarcpaintings.com/

Franz Marc Fighting Forms 1914 1102 x 771 http://franzmarcpaintings.com/

Franz Marc Fox 338 x 450 http://franzmarcpaintings.com/

Franz Marc Mandrill 900 x 608 http://reproarte.com/de/bilder/der-mandrill-detail

Franz Marc The enchanted mill 1913 821 x 1169 http://www.wikiart.org/en/franz-marc

/the-enchanted-mill-1913

Franz Marc The first animals 1913 1077 x 918 http://www.wikiart.org/en/franz-marc

/the-first-animals-1913

Kandinsky Church of St.Ursula 416 x 599 http://www.wikiart.org/en/wassily-kandinsky

/munich-schwabing-with-the-church-of-st-ursula-1908

Kandinsky Reiter 500 x 366 http://en.wikipedia.org/wiki/Wassily_Kandinsky

Macke A Street 376 x 500 http://www.augustmacke.org

Macke Children at the pump 470x x 401 http://www.augustmacke.org

Macke Colored Composition 370 x 500 http://www.augustmacke.org

Macke Colored Forms II 404 x 500 http://www.augustmacke.org

Macke Farbige Formen III 408 x 500 http://www.augustmacke.org

Macke Garden Gate 146 x 180 http://www.augustmacke.org

Macke Market in Algier 376 x 500 http://www.augustmacke.org

Macke Tegernsee Landscape 460 x 500 http://www.augustmacke.org

Macke Turkish Caf 344 x 500 http://www.augustmacke.org

Macke Vegetable Fields 470 x 370 http://www.augustmacke.org

Miro Dona 3 398 x 571 http://joanmiro.com

Miro Dutch Interiors 481 x 637 http://metmuseum.org

Miro Dutch 474 x 593 http://utopiadystopiawwi.wordpress.com

/surrealism/joan-miro/dutch-interior/

Miro Plage de Mont Roig 500 x 407 http://catalogue.successiomiro.com/

Miro Portrait Oil 425 x 539 http://www.abs-art.com/

Miro Self Portrait 607 x 734 http://joanmiro.com

Miro The farm 700 x 599 http://www.ebuypainting.com/

Miro The garden 334 x 425 http://www.ebuypainting.com/

Miro The Red Sun 382 x 500 http://www.ebuypainting.com/

Miro There was 640 x 640 http://www.ebuypainting.com/

a little Magpie
Miro The singing fish 510 x 640 http://www.ebuypainting.com/

Miro The village Prades 423 x 374 http://www.ebuypainting.com/

Picasso Cruxificion 731 x 561 http://www.statveritas.com.ar/Arte/CPA-06.htm

Picasso Girl Reading At Table 446 x 549 http://www.reproduction-gallery.com/oil_painting

/details/copy_artist/1069414354/masterpiece/Pablo_Picasso

/museum_quality/Girl_Reading_at_a_Table_1934.xhtml

Picasso Guernica 758 x 339 http://arts-wallpapers.com/wallpaper/guernica/

Picasso Guitar on the Mantle Piece 436 x 600 http://www.pbase.com/bmcmorrow/image/101087544

Picasso Weeping Woman 870 x 1058 http://www.pablopicasso.org/the-weeping-woman.jsp

Table 4.2: Artists who used contrast of hue: Botticelli, Fra Angelico, Franz Marc,
Kandinksky, Macke
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A Street Market in Algier Turkish Cafe Coloured Forms II

Farbige Formen III Garden Gate Tegernsee Landscape Colored Composition

Children at the Pump Vegetable Fields

(a) Macke

ST = 1/10, LT = 1/7

(b) 3D Visualization of homogeneous regions

Figure 4.13: Macke Visualization- Histogram of homogeneous regions
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Homogeneous regions
ST1 = 0, LT1 = 0 ST1 = 1/20, LT1 = 1/7 ST1 = 1/10, LT1 = 1/7
B 46% B 59% B 59%

RO 27% Y 14% Y 14%
Y 19% RO 8% RO 7%

YO 4% YO 6% YO 6%
BG 2% BG 2% BG 2%

Figure 4.14: Franz Marc - Blue Horse
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Blue Horse The Enchanted Mill 1913 Fox

Mandrill Tangere The First Animals 1913

(a) Franz Marc

ST = 1/10, LT = 1/7

(b) 3D Visualization of homogeneous regions

Figure 4.15: Franz Marc Visualization- Histogram of homogeneous regions
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Homogeneous regions
ST1 = 0, LT1 = 0 ST1 = 1/20, LT1 = 1/7 ST1 = 1/10, LT1 = 1/7

R 36% R 26% R 26%
G 23% G 19% G 19%

BG 16% B 19% B 19%
B 13% BG 15% BG 15%

BV 4% BV 3% O 3%
V 3% O 3% V 2%

RO 1% RO 2% RO 2%
O 1% V 2% YO 1%

YO 1% YO 1% Y 1%

Figure 4.16: Miro- The garden
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Dona 3 Dutch Interiors Dutch The Singing Fish

Portrait Oil Self-portrait The Red Sun The Garden

The Farm There was a little magpie Plage de Mont-roig The Village Prades

(a) Miro

ST = 0, LT = 0 ST = 1/20, LT = 1/7 ST = 1/10, LT = 1/7

(b) Visualizing Homogeneous regions and Adjacencies

Figure 4.17: Miro Visualization- Histogram of homogeneous regions
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Homogeneous regions

ST1 = 0, LT1 = 0 Warmth ST1 = 1/20, LT1 = 1/7 Warmth ST1 = 1/10, LT1 = 1/7 Warmth
Index Index Index

O(47%) 5 O(45%) 5 O(45%) 5
RO(37%) 6 RO(22%) 6 RO(21%) 6
R(11%) 5 R(8%) 5 R(8%) 5
YO(4%) 4 YO(2%) 4 YO(2%) 4

Adjacencies

ST1 = 0, LT1 = 0 Contrast ST1 = 1/20, LT1 = 1/7 Contrast ST1 = 1/10, LT1 = 1/7 Contrast
Strength Strength Strength

R-O(50%) 1 R-O(38%) 1
O-Y(21%) 2 O-Y(38%) 2
O-YG(7%) 3 YO-YG(10%) 2

YO-YG(7%) 2 O-YG(5%) 3
YO-G(7%) 3 YO-G(5%) 3
R-RV(7%) 1 R-RV(5%) 1

Figure 4.18: Summary of normalized co-occurences for ‘Angel choir’
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Homogeneous Regions

ST1 = 0, LT1 = 0 Warmth ST1 = 1/20, LT1 = 1/7 Warmth ST1 = 1/10, LT1 = 1/7 Warmth
Index Index Index

B(58%) 1 B(38%) 1 B(38%) 1
R(12%) 5 R(18%) 5 R(18%) 5
BV(9%) 2 BV(6%) 2 BV(6%) 2
V(4%) 3 RO(6%) 6 RO(6%) 6

RO(4%) 6 O(4%) 5 O(4%) 5
RV(1%) 4 V(3%) 3 V(3%) 3
YO(1%) 4 G(1%) 1 G(1%) 1
G(1%) 1 BG(1%) 0 BG(1%) 0

BG(1%) 0

Adjacencies

ST1 = 0, LT1 = 0 Contrast ST1 = 1/20, LT1 = 1/7 Contrast ST1 = 1/10, LT1 = 1/7 Contrast
Strength Strength Strength

R-RV(11%) 1 R-RV(8%) 1 R-RV(8%) 1
B-RV(8%) 3 R-V(6%) 2 R-V(6%) 2
Y-RV(6%) 1 BV-RV(5%) 1 BV-RV(5%) 2
G-RV(6%) 3 O-RV(4%) 1 O-RV(4%) 1

RO-RV(6%) 2 RO-RV(4%) 2 RO-RV(4%) 2
O-RV(6%) 1 G-RV(4%) 3 G-RV(4%) 3

YO-RV(6%) 0 Y-RV(4%) 1 Y-RV(4%) 1
YG-RV(6%) 2 YO-RV(4%) 0 YO-RV(4%) 0
BG-RV(6%) 4 BG-RV(4%) 4 BG-RV(4%) 4

Figure 4.19: Summary of normalized co-occurences for ‘Houses of Parliament’
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Homogeneous Regions

ST1 = 0, LT1 = 0 Warmth ST1 = 1/20, LT1 = 1/7 Warmth ST1 = 1/10, LT1 = 1/7 Warmth
Index Index Index

O(100%) 5 O(87%) 5 O(87%) 5
YO(6%) 4 YO(5%) 4

Adjacencies

ST1 = 0, LT1 = 0 Contrast ST1 = 1/20, LT1 = 1/7 Contrast ST1 = 1/10, LT1 = 1/7 Contrast
Strength Strength Strength

Y-G(100%) 2 O-Y(50%) 2
Y-G(50%) 2

Figure 4.20: Summary of normalized co-occurences for ‘Le moulin de la galette’
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Homogeneous Regions
ST1 = 0, LT1 = 0 Warmth ST1 = 1/20, LT1 = 1/7 Warmth ST1 = 1/10, LT1 = 1/7 Warmth

Index Index Index

O(43%) 5 O(40%) 5 O(40%) 5
YO(20%) 4 YO(16%) 4 YO(16%) 4
R(13%) 5 R(9%) 5 R(9%) 5
RO(4%) 6 RO(4%) 6 RO(4%) 6
Y(3%) 3 Y(2%) 3 Y(2%) 3
V(3%) 3 B(2%) 1 B(2%) 1

RV(3%) 4 V(2%) 3 V(2%) 3
G(2%) 1 YG(1%) 2 YG(1%) 2

BG(2%) 0 G(1%) 1 G(1%) 1
BV(2%) 2 BG(1%) 0 BG(1%) 0
YG(1%) 2 BV(1%) 2 BV(1%) 2

RV(1%) 4 RV(1%) 4

Adjacencies
ST1 = 0, LT1 = 0 Contrast ST1 = 1/20, LT1 = 1/7 Contrast ST1 = 1/10, LT1 = 1/7 Contrast

Strength Strength Strength

R-RV(9%) 1 R-RV(8%) 1 R-RV(8%) 1
R-V(8%) 2 R-V(7%) 2 R-V(7%) 2

B-RV(6%) 3 R-O(6%) 0 R-O(6%) 0
G-RV(5%) 3 BV-RV(5%) 2 BV-RV(5%) 2

RO-RV(5%) 2 O-RV(4%) 1 O-RV(4%) 1
O-RV(5%) 1 B-RV(4%) 3 B-RV(4%) 3

YO-RV(5%) 0 RO-RV(4%) 2 RO-RV(4%) 2
Y-RV(5%) 1 YO-RV(4%) 0 YO-RV(4%) 0

YG-RV(5%) 2 Y-RV(3%) 1 Y-RV(3%) 1
BG-RV(5%) 4 G-RV(3%) 3 YG-RV(3%) 2

Figure 4.21: Summary of normalized co-occurences for ‘The Synagogue’
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Artist Painting Size in Source
pixels

Bonnard Earthly Paradise 2240 x 1717 http://www4.ncsu.edu/~tjarmst3/gallery

/edenic_scenes1.html

Bonnard The breakfast room 302 x 420 http://www.moma.org/collection

/object.php?object_id=79604

Paul Cézanne Card players 696 x 584 http://nl.wikipedia.org/wiki

/De_kaartspelers_(C\%C3\%A9zanne)

Paul Cézanne Full bowl 740 x 600 http://s644.photobucket.com/

Claude Monet Argenteuil 550 x 461 http://www.monetpainting.net/paintings/redboats.php

Claude Monet Bridge over a pond of water lillies 112 x 140 http://www.metmuseum.org/collection

/the-collection-online/search/437127

Claude Monet Camille au metier 509 x 599 http://www.artistdaily.com/blogs/oilblog/archive

/2011/10/24/he-was-rejected-over-and-over.aspx

Claude Monet Camille Monet 800 x 595 http://www.metmuseum.org/collection

on a garden bench /the-collection-online/search/438003

Claude Monet Dejeuner sur l’herbe 220 x 256 http://en.wikipedia.org/wiki/Claude_Monet

Claude Monet Grain Stack 762 x 600 http://www.wikiart.org/en

/claude-monet/grainstack-at-sunset

Claude Monet Houses of parliament 1164 x 1024 http://pictify.com/347016/claude-monet-london-houses

-of-parliament-the-sun-shining-through-the-fog

Claude Monet Jardin a Sainte Adresse 792 x 599 http://www.metmuseum.org/collection

/the-collection-online/search/437133

Claude Monet Jean Monet on his hobby horse 730 x 599 http://www.metmuseum.org/collection

/the-collection-online/search/438435

Claude Monet La maison du pecheur 762 x 600 http://commons.wikimedia.org/wiki

/File:Claude_Monet_029.jpg

Claude Monet le bateau Atelier 500 x 600 http://commons.wikimedia.org/wiki

/File:Claude_Monet_Le_bateau_atelier.jpg

Claude Monet Madame Monet 359 x 600 http://en.wikipedia.org/wiki/Claude_Monet

en costume Japonais
Claude Monet Mouth of the Seine 800 x 571 http://en.wikipedia.org/wiki/Claude_Monet

Claude Monet Poppies Blooming 800 x 576 http://en.wikipedia.org/wiki/Claude_Monet

Claude Monet Renoir 220 x 269 http://pixels.com/featured/claude-monet-reading-

a-newspaper-pierre-auguste-renoir.html

Claude Monet Rue Montorgueil 36 x 600 http://en.wikipedia.org/wiki/Rue_Montorgueil

Claude Monet Sea Roses 800 x 372 http://www.canvasreplicas.com/Monet320.htm

Claude Monet Seine Bassin 780 x 600 http://www.impressionism.org/teachimpress

/browse/lesson1.htm

Claude Monet Soleil Levant 304 x 234 http://www.fotopedia.com/wiki/Impression

,_Sunrise#!/items/flickr-9607515361

Claude Monet Spring Time 784 x 600 http://en.wikipedia.org/wiki/File:Claude_Monet_

-_Springtime_-_Google_Art_Project.jpg

Claude Monet Sunshine and Snow 800 x 577 http://www.apollo-magazine.com/gallery-making

-colour-at-the-national-gallery-london/

Claude Monet The artist garden at Vetheuil 467 x 599 http://www.claudemonetgallery.org

/The-Artist’s-Garden-at-Vetheuil--1880.html

Claude Monet The artist house a Argenteuil 738 x 600 http://en.wikipedia.org/wiki/Claude_Monet

Claude Monet Train in the snow 795 x 599 http://commons.wikimedia.org/wiki

/File:Claude_Monet_-_Train_in_the_Snow.jpg

Claude Monet Water Lillies 140 x 140 http://en.wikipedia.org/wiki/Water_Lilies

Claude Monet Weeping Willow 600 x 497 http://en.wikipedia.org/wiki/Claude_Monet

Claude Monet Woman in a garden 740 x 599 http://en.wikipedia.org/wiki/Claude_Monet

Claude Monet Woman with Parasol 394 x 600 http://en.wikipedia.org/wiki/Claude_Monet

Claude Monet Les Tilleuls a Poissy 478 x 599 http://elblogdetuico.blogspot.ca

/2013/07/tuico-y-la-pintura.html

Table 4.3: Artists who used cold-warm contrast : Bonnard, Cézanne, Monet
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Artist Painting Size in Source
pixels

Pissaro Boulevard Montmartre 724 x 600 http://gizgaleri.blogspot.ca/2014/04/camille-pissaro.html

Pissaro Entree du Village 713 x 600 http://authorherstorianparent.blogspot.ca

/2011_11_01_archive.html

Pissaro Landscape at Pointoise 220 x 162 http://www.impressionismus-gemaelde.de/Pissarro

/Landschaft-bei-Pontoise.jpg.php

Pissaro Le Verger 730 x 600 http://totallyhistory.com/camille-pissarro/

Pissaro The church at Eragny 497 x 600 http://en.wikipedia.org/wiki/Camille_Pissarro

Pissaro The Harvest 800 x 444 http://en.wikipedia.org/wiki/Camille_Pissarro

Pissaro Washer Woman 162 x 199 http://en.wikipedia.org/wiki/Camille_Pissarro

Pissaro Hay Harvest at Eragny 619 x 515 http://en.wikipedia.org/wiki/Camille_Pissarro

Renoir Dance a Bougival 1576 x 2971 http://www.impressionismus-gemaelde.de/Renoir

/Der-Tanz-in-Bougival.jpg.php

Renoir Girl Braiding her hair 489 x 600 http://en.wikipedia.org/wiki/Pierre-Auguste_Renoir

Renoir Girls at Piano 220 x 297 http://en.wikipedia.org/wiki/Pierre-Auguste_Renoir

Renoir Le Balancoire 466 x 599 http://en.wikipedia.org/wiki/Pierre-Auguste_Renoir

Renoir Les Baigneuses 736 x 599 http://en.wikipedia.org/wiki/Pierre-Auguste_Renoir

Renoir Lise Sewing 491 x 600 http://en.wikipedia.org/wiki/Pierre-Auguste_Renoir

Renoir The two sisters 220 x 273 http://en.wikipedia.org/wiki/Pierre-Auguste_Renoir

Renoir Le Moulin de la galette 103 x 156 http://en.wikipedia.org/wiki/Pierre-Auguste_Renoir

Table 4.4: Artists who used cold-warm contrast : Pissaro, Renoir
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(a) Painting

Homogeneous regions

Warmth Warmth Warmth
ST1 = 0, LT1 = 0 Index ST1 = 1/20, LT1 = 1/7 Index ST1 = 1/10, LT1 = 1/7 Index

YO(26%) 4 O(21%) 5 O(21%) 5
O(21%) 5 YO(18%)) 4 YO(18%)) 4
Y(18%)) 3 Y(10%)) 3 Y(10%)) 3
G(9%) 1 G(9%) 1 G(9%) 1

YG(6%) 2 YG(7%) 2 YG(7%) 2
RO(3%) 6 RO(3%) 6 RO(3%) 6
R(2%) 5 R(2%) 5 R(2%) 5

BG(2%) 0 BG(2%) 0 BG(2%) 0
B(2%) 1 B(2%) 1 B(2%) 1

Adjacencies

Contrast Contrast Contrast
ST1 = 0, LT1 = 0 Strength ST1 = 1/20, LT1 = 1/7 Strength ST1 = 1/10, LT1 = 1/7 Strength

R-RV(16%) 1 R-RV(7%) 1 YO-YG(7%) 2
G-RV(9%) 3 YO-YG(6%) 2 R-RV(7%) 1

RO-RV(8%) 2 O-Y(4%) 2 R-O(5%) 0
O-RV(8%) 1 R-O(4%) 0 O-Y(5%) 2

YO-RV(8%) 0 R-V(4%) 2 R-V(4%) 2
Y-RV(8%) 1 BV-RV(4%) 2 Y-G(4%) 2

YG-RV(8%) 2 O-RV(4%) 1 BV-RV(4%) 2
BG-RV(8%) 4 RO-RV(4%) 2 O-RV(4%) 1
B-RV(8%) 3 Y-G(4%) 2 B-RV(4%) 3

BV-RV(8%) 2 RO-RV(3%) 2

(b) Normalized co-occurences

Figure 4.22: Bonnard - Earthly Paradise
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Breakfast Room Earthly Paradise

(a) Bonnard

Homogeneous Adjacent Adjacent Adjacent
R to RV R-O to O-Y O-YG to Y-RV YG-GB to BV-RV

ST = 0, LT = 0

ST = 1/20, LT = 1/7

ST = 1/10, LT = 1/7

(b) Visualizing Homogeneous regions and Adjacencies

Figure 4.23: Bonnard Visualization- Histogram of homogeneous regions with warmth
indices and warmth contrast strengths for adjacencies listed in parentheses.
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(a) Painting

Homogeneous regions

Warmth Warmth Warmth
ST1 = 0, LT1 = 0 Index ST1 = 1/20, LT1 = 1/7 Index ST1 = 1/10, LT1 = 1/7 Index

B(56%) 1 B(38%) 1 B(37%) 1
G(16%) 1 G(10%) 1 G(10%) 1
BG(5%) 0 BG(4%) 0 BG(4%) 0
R(5%) 5 R(3%) 5 V(3%) 3
Y(3%) 3 BV(3%) 2 R(2%) 5

YG(3%) 2 O(2%) 5 YG(%2) 2
BV(3%) 2 YG(2%) 2 O(1%) 5

V(1%) 3 Y(1%) 3
V(1%) 3

Adjacencies

Contrast Contrast Contrast
ST1 = 0, LT1 = 0 Strength ST1 = 1/20, LT1 = 1/7 Strength ST1 = 1/10, LT1 = 1/7 Strength

YO-YG(50%) 2 R-V(6%) 2 G-B(7%) 0
RO-BV(50%) 4 G-B(5%) 0 R-V(6%) 2

R-RV(5%) 1 O-V(5%) 2
O-V(4%) 2 B-V(4%) 2
B-V(4%) 2 RO-V(4%) 3

R-BV(3%) 3 R-RV(3%) 1
RO-V(3%) 3 R-O(3%) 0
R-O(3%) 0 R-BV(3%) 3

G-RV(3%) 3 YO-V(3%) 1
G-BV(3%) 1 Y-V(3%) 0

(b) Normalized co-occurences

Figure 4.24: Monet - Water Lillies

An example of Pissaro’s painting is ‘Entree du Village’. Figure 4.27 (page 94) dis-

plays the image and the cold-warm contrast results for the homogeneous regions and

adjacencies. In this painting, there is a clear and strong contrast in the homogeneous

regions captured by the second range of parameters (ST1 = 1/20, LT1 = 1/7). The
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largest percentage of co-occurences occurs in the cold blue-green grass (warmth index

0), the next highest percentage of co-occurences takes place in the orange trees, paths

and rooftops (warmth index 5). The warmth contrast strength of the homogeneous

regions is high (warmth contrast strength 5). The adjacencies range in warmth con-

trast strength 0 to 4. The remainder of Pissaro’s paintings, and the 3D histograms

to visualize the cold-warm contrast co-occurence patterns in both the homogeneous

regions and the adjacencies are displayed in Figure 4.28 (95). We observe that Pis-

saro uses several hues in the homogeneous regions, causing some of the paintings

to be primarily warm, primarily cold, or have a contrast between the cold and the

warm homogeneous regions. Notable peaks in the adjacencies have warmth contrast

strengths of 0,1 and 2.

An example of Renoir’s painting is ‘The two sisters’. Figure 4.29 (page 96) dis-

plays the image, the cold-warm contrast results for the homogeneous regions and

adjacencies. The second range of parameters (ST1 = 1/20, LT1 = 1/7) captures the

cold-warm contrast between the homogeneous regions where green has the highest

percentage of co-occurences, and contrasts with orange at a warmth contrast strength

of 4. In the adjacencies, the strongest contrast of warmth occurs between orange and

green. The image is also highly modulated between green and blue, both of which are

cold hues that do not contrast in warmth. The remainder of Pissaro’s paintings, and

the 3D histograms to visualize the cold-warm contrast co-occurence patterns in the

homogeneous regions and the adjacencies is displayed in Figure 4.30 (page 97). In the

homogeneous regions, we note that Renoir uses one or two dominant hues, which we

confirm by observation. We do not observe a particular pattern in the adjacencies.

Our computational model for capturing the cold-warm contrast in images is a

valuable tool for assessing the presence of the contrast. The first range of parameters

(ST1 = 0, LT1 = 0) is not an appropriate choice, as the range does not allow for

any variation in saturation and light. In our experience, cold-warm contrast in good

quality images can be detected in the second range of parameters (ST1 = 1/20, LT1 =

1/7), still capturing co-occurences of colors with similar light and saturation values.

The third range is generally needed for poor quality images.

4.3.5 Robustness

To test the robustness of our algorithms, we applied our algorithms and visualization

for artist styles to three different copies of the same image, and analyze the results.
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For contrast of hue, we applied Algorithm 1 to three different copies of Miro’s ‘The

singing fish’. The images and the results are shown in Figure 4.31 on page 98. We

found that our algorithm is consistent for detecting homogeneous regions for all three

images and all three ranges. For cold-warm contrast, we applied Algorithm 2 to three

different copies of Pissaro’s ‘Entree du Village’. The images and the results are shown

in Figure 4.32 on page 99. We found that our algorithm is consistent in detecting

homogeneous regions in all three copies of the image. In the adjacencies, we found

that the set of adjacencies detected in images with lower resolution are a subset of

adjacencies detected in the high resolution image. This result is expected as a higher

resolution reflect more modulations, and as a result more adjacencies. We conclude as

such that our algorithm is consistent for detecting adjacencies in images, and sensitive

to resolution.

Artist Painting Size in Source
pixels

Pissaro Entree du Village 713 x 600 http://authorherstorianparent.blogspot.ca

/2011_11_01_archive.html

Pissaro Entre du Village 520 x 437 http://www.oilpaintings-sales.com/oil-paintings/

camille-pissarro-entree-du-

village-de-voisins-1872-78664.html

Pissaro Entre du Village 2024 x 1702 http://en.wikipedia.org/wiki/Camille_Pissarro

Miro The singing fish 510 x 640 http://www.ebuypainting.com/

Miro The singing fish 500 x 627 http://stringvisions.ovationpress.com/2011/06/

amazing-singing-fish/

Miro The singing fish 759x 960 http://paintingandframe.com/uploadpic/joan_miro

/big/the_singing_fish.jpg

Table 4.5: Images used for robustness test: ‘Entree du Village’ (cold-warm contrast)
and ‘The singing fish’ (contrast of hue)
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Madame Monet Bridge Over a Pond Camille Camille Monet Dejeuner
en costume japonais of Water Lilies au Metier on a Garden Bench sur l’herbe

Graystaks Houses of Jardin a Jean Monet La Maison
Parliament Sainte Adresse his hobby horse du pecheur

Le Bateau Argenteuil Rue The Artist’s Garden Renoir
Montorgueil at Vetheuil

Mouth of Sea Seine Soleil Spring
the Seine Roses Bassin Levant time

Sunshine The Artist’s House Poppies Train in Water
and snow at Argenteuil Blooming the snow Lillies

Weeping Woman in Women with Les Tilleuls
Willow a garden parasol a Poissy

Figure 4.25: Monet Visualization- Paintings
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Visualizing Homogeneous and Adjacent hues in Monet’s Paintings:
Homogeneous Adjacent Adjacent Adjacent

R to RV R-O to O-Y O-YG to Y-RV YG-GB to BV-RV

ST = 0, LT = 0

ST = 1/20, LT = 1/7

ST = 1/10, LT = 1/7

Figure 4.26: Monet Visualization- Histogram of homogeneous regions with warmth
indices and warmth contrast strengths for adjacencies listed in parentheses.
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(a) Painting

Homogeneous regions

Warmth Warmth Warmth
ST1 = 0, LT1 = 0 Index ST1 = 1/20, LT1 = 1/7 Index ST1 = 1/10, LT1 = 1/7 Index

BG(59%) 0 BG(31%) 0 BG(31%) 0
G(15%) 1 O(16%) 5 O(16%) 5
B(15%) 1 G(12%) 1 G(12%) 1
O(3%) 5 B(7%) 1 B(7%) 1

RO(1%) 6 YO(4%) 4 YO(4%) 4
YO(1%) 4 RO(2%) 6 RO(2%) 6

YG(2%) 2 YG(2%) 2
Y(1%) 3 Y(1%) 3

Adjacencies

Contrast Contrast Contrast
ST1 = 0, LT1 = 0 Strength ST1 = 1/20, LT1 = 1/7 Strength ST1 = 1/10, LT1 = 1/7 Strength

R-BV(22%) 3 Y-G(11%) 2 YO-YG(12%) 2
RO-BV(11%) 4 YO-YG(11%) 2 Y-G(12%) 2
O-BV(11%) 3 O-Y(7%) 2 O-Y(9%) 2

YO-BV(11%) 2 R-O(5%) 0 YO-G(6%) 3
Y-BV(11%) 1 YO-G(5%) 3 R-O(5%) 0

YG-BV(11%) 0 G-B(3%) 0 O-YG(4%) 3
G-BV(11%) 1 YG-BG(3%) 2 G-B(3%) 0

BG-BV(11%) 2 O-G(2%) 4 O-G(3%) 4
R-V(2%) 2 YG-BG(3%) 2

O-YG(2%) 3 O-B(2%) 4

(b) Normalized co-occurences

Figure 4.27: Pissaro - Entree du Village
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Boulevard Montmartre Entree du Village Landscape at Pointoise Washer woman

The Church at Eragny The Harvest Le Verger Harvest at Eragny

(a) Pissaro

Homogeneous Adjacent Adjacent Adjacent
R to RV R-O to O-Y O-YG to Y-RV YG-GB to BV-RV

ST = 0, LT = 0

ST = 1/20, LT = 1/7

ST = 1/10, LT = 1/7

(b) Visualizing Homogeneous regions and Adjacencies

Figure 4.28: Pissaro Visualization- Histogram of homogeneous regions with warmth
indices and warmth contrast strengths for adjacencies listed in parentheses.
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(a) Painting

Homogeneous regions

Warmth Warmth Warmth
ST1 = 0, LT1 = 0 Index ST1 = 1/20, LT1 = 1/7 Index ST1 = 1/10, LT1 = 1/7 Index

G(16%) 1 G(12%) 1 G(12%) 1
O(10%) 5 O(7%) 5 O(6%) 5
B(10%) 1 B(5%) 1 B(5%) 1
YG(7%) 2 YG(5%) 2 YG(4%) 2
BG(4%) 0 BG(4%) 0 BG(4%) 0
RO(4%) 6 YO(3%) 4 YO(3%) 4
YO(2%) 4 Y(3%) 3 Y(2%) 3
Y(2%) 3 RO(2%) 6 RO(2%) 6
R(2%) 5 R(2%) 5 R(2%) 5

BV(1%) 2
V(1%) 3

Adjacencies

Contrast Contrast Contrast
ST1 = 0, LT1 = 0 Strength ST1 = 1/20, LT1 = 1/7 Strength ST1 = 1/10, LT1 = 1/7 Strength

G-B(9%) 0 G-B(8%) 0 G-B(8%) 0
YO-BV(9%) 2 Y-G(6%) 2 R-O(6%) 0
G-BV(9%) 1 R-O(6%) 0 Y-G(6%) 2
R-BV(6%) 3 O-Y(6%) 2 O-Y(6%) 2
Y-BV(6%) 1 YO-YG(5%) 2 YO-YG(5%) 2
R-V(6%) 2 O-G(4%) 4 O-G(5%) 4

YO-V(6%) 1 YO-G(4%) 3 YO-G(4%) 3
O-Y(3%) 2 O-YG(4%) 3 O-YG(4%) 3

YO-YG(3%) 2 R-G(2%) 4 YG-B(3%) 2
YO-G(3%) 3 YG-B(2%) 1 R-G(2%) 4

(b) Normalized co-occurences

Figure 4.29: Renoir - The two sisters
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Dance A Bougival Le Moulin de la galette Girls at piano La Balancoire

Girl Braiding Her Hair Lise Sewing The Two Sisters Les baigneuses

(a) Renoir

Homogeneous Adjacent Adjacent Adjacent
R to RV R-O to O-Y O-YG to Y-RV YG-GB to BV-RV

ST = 0, LT = 0

ST = 1/20, LT = 1/7

ST = 1/10, LT = 1/7

(b) Visualizing Homogeneous regions and Adjacencies

Figure 4.30: Renoir Visualization - 3D histogram of homogeneous regions with
warmth indices and warmth contrast strengths for adjacencies listed in parentheses.
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510 x 640 500 x 627 759 x 960

(a) Miro

ST = 0, LT = 0 ST = 1/20, LT = 1/7 ST = 1/10, LT = 1/7

(b) Visualizing Homogeneous regions

Figure 4.31: Robustness Visualization for contrast of hue - 3D histogram of homo-
geneous regions



99

703 x 600 520 x 437 2024 x 1702

(a) Robustness for cold-warm contrast

Homogeneous Adjacent Adjacent Adjacent
R to RV R-O to O-Y O-YG to Y-RV YG-GB to BV-RV

ST = 0, LT = 0

ST = 1/20, LT = 1/7

ST = 1/10, LT = 1/7

(b) Visualizing Homogeneous regions and Adjacencies

Figure 4.32: Robustness Visualization for cold-warm contrast - 3D histogram of
homogeneous regions and adjacencies.

4.3.6 Discussion

Our 3D visualization of chromatic information in a painting is novel. We proposed

simple quantitative descriptors for modulation and our experimental results show that
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the measures are consistent with Itten’s comments and explanations. With a database

of paintings described in detail by Itten, and a database of additional images organized

by artist, we establish that our computational models for capturing the contrast of

hue and cold-warm contrast are valuable tools in the assessment of these contrasts

and they offer important insight in the color composition of images.

In the contrast of hue, co-occurence matrices reflect the order of the size of ho-

mogeneous regions, and may contribute to predicting whether contrast of hue is at

play. Homogeneous regions reflect the number of dominant hues in the image and

adjacencies provide spatial information about the color composition. The first range

of parameters (ST1 = 0, LT1 = 0) is ideal for capturing the contrast of hue in good

quality images. In the cold-warm contrast, co-occurence matrices are helpful in an-

alyzing the contrast, but not predictive on their own. The warmth contrast indices,

however can be indicative high and low cold-warm contrast in images. For cold-warm

contrast, homogeneous regions reflect the distribution of dominant hues over the cold

and warm ranges, adjacencies reflect the subtle inter-hue relationships that create a

sense of heat and depth. The second range of parameters (ST1 = 1/20, LT1 = 1/7)

is ideal for capturing cold-warm contrast in good quality images. Our experimen-

tal results show that our computational models for contrast of hue and cold-warm

contrast, as well as exploring artists’ styles are consistent with Itten’s comments and

explanations.

Limitations: Our work has two limitations. First, several of the images we

analyzed are digital copies of paintings from a few hundred years ago, and as a result

the quality has suffered due to aging, discoloration, damage and digitization artifacts.

In those cases, we found it helpful to broaden the range of parameters on which we

measure the co-occurences for the poor quality images. Second, the pixel count is

an essential piece of information for both contrast of hue and cold-warm contrast,

and is not captured in our computational models. In using the v-8 neighbourhood,

we overcount each pixel by up to 8 times. The effect is that a slight increase in

a homogeneous regions creates significantly more co-occurences. To improve our

interpretation of co-occurences, we normalize the diagonal results (for homogeneous

regions) separately from the off-diagonals (for adjacencies).
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Ingres Seurat ‘Un Dimanche Limbourg ‘May- Monet ‘Houses
‘Reclining Odalisque’ à la Grande Jatte’ Day excursion’ of Parliament in fog’

Hue Sector µdist σdist N µdist σdist N µdist σdist N µdist σdist N
∗103 ∗103 ∗103 ∗103 ∗103 ∗103 ∗103 ∗103

Red 0.39 2.41 2227 0.14 1.38 5969 1.47 2.48 820 0.12 0.65 8987
Red-Orange 0.72 1.49 1429 0.26 0.84 2803 1.42 2.06 940 0.32 0.83 3576

Orange 0.13 0.36 9235 0.2 0.68 4918 0.27 1.59 4821 0.51 1.02 2176
Yellow-Orange 0.11 0.50 9264 0.34 1.08 2760 0.13 0.40 7089 2.27 7.90 315

Yellow 0.22 0.27 3573 0.07 0.51 7331 0.12 0.70 7279 3.24 16.14 194
Yellow-Green 0.36 1.28 1274 0.1 0.53 4083 0.04 0.44 18974 1.88 5.30 170

Green 0.47 1.40 385 0.05 0.40 20300 0.07 0.85 9706 0.67 2.58 387
Blue-Green 0.34 1.04 265 0.24 1.13 2978 0.59 1.89 1073 0.92 7.1 523

Blue 0.13 0.65 2092 0.10 0.3 6133 0.11 0.25 10463 0.04 0.56 23840
Blue-Violet 0.07 0.45 5006 0.06 0.37 5324 1.13 4.72 456 0.07 0.72 4624

Violet 0.22 1.21 1835 0.16 0.95 3075 1.03 4.44 168 0.19 1.79 2177
Red-Violet 0.64 2.42 459 0.63 4.17 1086 4.86 17.73 53 5.36 3.65 768

(a) Modulation measures for paintings shown in Figure 4.1 on page 61

Matisse de la Tour Cézanne Witz
‘Le Piano’ ‘Newborn Babe’ ‘Apples and Oranges’ ‘The Synagogue’

Hue Sector µdist σdist N µdist σdist N µdist σdist N µdist σdist N
∗103 ∗103 ∗103 ∗103 ∗103 ∗103 ∗103 ∗103

Red 0.16 1.57 8621 0.10 0.98 10924 0.06 0.16 23158 0.12 0.60 7521
Red-Orange 0.18 0.25 7487 0.14 0.75 8069 0.16 0.40 7320 0.24 1.55 3204

Orange 0.11 0.25 11840 0.57 1.08 2064 0.12 0.52 9876 0.09 0.50 9948
Yellow-Orange 0.28 1.24 2086 1.70 5.70 583 0.30 0.86 1536 0.23 0.78 4045

Yellow 0.52 3.44 743 8.33 50.91 112 0.67 1.74 460 0.61 0.71 1280
Yellow-Green 0.61 4.62 462 0 0 0 1.49 3.49 127 2.59 5.91 267

Green 0.10 0.91 9156 0 0 0 0.38 1.47 57 0.59 2.45 359
Blue-Green 2.00 11.78 171 0 0 0 0 0 0 0.35 0.57 536

Blue 0.18 0.91 3198 1.07 5.83 152 0.44 2.75 322 0.14 0.31 3253
Blue-Violet 0.36 2.26 1204 0.33 1.31 296 0.14 0.95 3542 0.12 0.91 2134

Violet 0.34 2.75 732 0.36 1.11 680 0.13 0.57 7614 0.1 1.02 2482
Red-Violet 0.52 2.70 386 0.58 2.15 538 0.33 0.86 3137 0.19 1.02 1165

(b) Modulation measures for paintings shown in Figure 4.2 on page 62

Table 4.6: Modulation measures for paintings shown in Figure 4.1 and Figure 4.2 on
page 61-62
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Chapter 5

Application of proposed methods

on business documents

5.1 Business documents

Business documents are communication tools for organizations, and are used for both

internal and external purposes. These purposes vary: reporting, communicating new

directions, providing instructions for new procedures, marketing stategies, and adver-

tising campaigns. Examples of business documents include financial reports, presen-

tations, posters, letters, and magazines.

Organizations place a significant amount of information in documents. Most of

them focus on the completeness of the content at the expense of design considerations,

leaving the reader to extract the pertinent messages from the document. Document

designers work on creating document layouts that allow the reader to better pro-

cess and understand the content of the document. Document design topics include

typesetting, layout, color and messaging.

Karen Schriver[54, p. 10] defines document design as follows: “Document design

is the field concerned with creating texts(broadly defined) that integrate words and

pictures in ways that help people to achieve their specific goals for using texts at

home, school or work. [...] Document design is the act of bringing together prose,

graphics and typography for purposes of instruction, information, or persuasion”.

The remainder of the chapter is structured as follows: we will discuss the impor-

tance of color in business documents (section 5.2), our proposed methods (section

5.3), describe our results (section 5.4) and discuss the use the contrasts in business
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documents (section 5.5).

5.2 Color in business documents

The spatial composition and color combination of a document are important aspects

of communicating the flow of a document to the reader. When document design-

ers choose color combinations, they intentionally select combinations that suit the

purpose of the document. A well constructed document will guide the reader to the

important messages and will give clear cues about the hierarchy of important content.

Emphasis is a design principle “concerned with the creation of areas of importance

for the viewer to focus upon”[16]. Color and contrast are properties by which people

group figures in their mind[54]. ‘Any sharp contrast will draw the reader’s attention.

Moreover, the sharper the contrast the more salient the effect’ [54].

In document design, color can be used to focus the reader’s attention on a par-

ticular portion of document. According to Itten, when the color combination of an

image is static, the combination is harmonious, and the set of colors in the image is

centered at a medium gray [23, pp. 19–20]. Feisner states that harmony is the ”visual

agreement of all parts of a work. [...] Two or more colors are harmonious if their

mixture yields gray; combinations that do not yield gray have high visual impact”[16,

pp. 74 – 75]. Feisner’s comments are in line with Itten’s color harmony constructs.

Harmonious (or static) color combination allow the reader to read the text and view

charts without distraction. On the other hand, if the designer’s intention is to ensure

the reader starts with a portion of the document, a discordant color can help create

the salient effect required, essentially a highlight. Discord is ”the effect obtained when

the value of a hue is opposite to is natural order”[16, p. 40]. See Table 5.1 for the

natural order of hue values.

When using figures in business documents, Schriver recommends the use of ‘strong

figures’, which she describes as having good gestalt properties such as ‘simplicity’,

‘regularity’ and ‘symmetry’. Strong figures also tend to be ‘closed’, surrounded by

a continuous contour. This contour allows strong figures to be more resistant to

’contextual influences’ than other types of figures. Circles for instance are strongest

because they are symmetrical to any angle, and simple figures are more effective than

complex figures.[54, p. 316]

In business documents, charts with colored segments are common. Since pie charts

are common visualizations that employ color, and fit the description of strong figures,
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Yellow-‐	  
orange	  

Orange	  

Red-‐	  
orange	  
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violet	  
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Figure 5.1: The values of hues. This diagram sows the relative values of hues at full
intensity. The horizontal broken line corresponds to middle-value gray[16, p. 39]

we focus our analysis of color in business documents on pie charts. We assess our

computational models for the analysis of contrast of hue and cold-warm contrast in

pie charts.

5.3 Analysis of contrasts in pie charts

Our motivation to study the use of contrasts in business documents stems from a

research collaboration with SAP, where we set out to improve the readability of

business documents through the automation of design principles. SAP is a software

company that provides business solutions and applications to a variety of business

sectors. Their customer reports contain results of their data analysis, which include

graphical representations of data presented in pie charts. Part of the task of improving

the readability of the reports was to take some first steps in adjusting the color

combinations in the pie charts so that they support readability rather than distract

the reader. To assess the existing contrasts in pie charts, we apply our computational

models to a database of 111 images of pie charts segmented from business documents

SAP provided.

We classified the images into charts with up to 3 hues, and charts with more

than 3 hues, and further into subgroups as represented in Table 5.1. Our images

are digitally created pie charts. We therefore assume that all pixels in a pie slice
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Sample Grouping Number Properties
image of images

up to 3 hues
1 6 low saturation colors

uniform size segments

up to 3 hues
2 14 bright colors

mixed size segments

up to 3 hues
3 16 mixed colors

mixed size segments

4 or more hues
4 28 lower saturation

uniform size segments

4 or more hues
5 18 bordered images

mixed colors
small slices

4 or more hues
6 29 mixture colors

mixed sized slices

Table 5.1: Classification of pie charts in SAP business documents

are homogeneously composed of the same hue, saturation and light. We test our

computational models for the analysis of contrast of hue and cold-warm contrast, as

described in Chapter 3 on each subgroup of images.

We have adjusted the parameters over which we test our computational models

of contrast of hue and cold-warm contrast to better fit pie charts. Our images are

digitally created pie charts. We therefore assume that all pixels in a pie slice are

homogeneously composed of the same hue, saturation and light.

The criteria for contrast of hue is that the colors in a pie chart must be fully

saturated colors. Therefore, homogeneous regions are fully saturated (S ≥ 0.8). The

criteria for cold-warm contrast is that the pixels of the homogeneous regions must be

in the center light range (0.4 ≤ L ≤ 0.6). We also require adjacent hues to be within

the center light region (0.4 ≤ L ≤ 0.6). For both contrasts, we set a loose uniformity

requirement (ST1 = 1/10, LT1 = 1/7) to account for fading between slices.
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5.4 Results

The contrast of hue and cold-warm contrast results for pie charts in group 1 are

displayed in Table 5.2. In the contrast of hue results, we observe peaks at green

and orange only, meaning that the violet is not sufficiently saturated to be detected.

Therefore this group of pie charts do not meet the criteria of contrast of hue. In the

cold-warm contrast results, we observe only one peak per image the homogeneous

regions, which means that some of the pie slices do not meet the cold-warm contrast

criteria. The peaks in the adjacencies show some adjacent hues with mild to medium

contrast strength.

Homogeneous
R to RV

Contrast of Hue
Homogeneous Adjacent Adjacent Adjacent

R to RV R-O to O-Y O-YG to Y-RV YG-GB to BV-RV

Cold Warm Contrast

Figure 5.2: 3D Histograms of contrast of hue and cold-warm contrast in group 1 pie
charts

The contrast of hue and cold-warm contrast results for pie charts in group 2
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are displayed in Table 5.3. The homogeneous regions are almost the same for both

contrasts, showing that the colors are fully saturated, and the light values are within

0.4 ≤ L ≤ 0.6. Many expected hue adjacencies are missing, this is caused by the

poor resolution of the pixels near the border surrounding each pie slice, causing the

light values of the pixels to be outside the light range (0.4 ≤ L ≤ 0.6). The set of

images in this group appear to meet the criteria for both contrast of hue and cold-

warm contrast. Some of the images show a high contrast strength(5) between adjacent

slices.

Homogeneous
R to RV

Contrast of Hue
Homogeneous Adjacent Adjacent Adjacent

R to RV R-O to O-Y O-YG to Y-RV YG-GB to BV-RV

Cold Warm Contrast

Figure 5.3: 3D Histograms of contrast of hue and cold-warm contrast in group 2 pie
charts

The contrast of hue and cold-warm contrast results for pie charts in group 3 are

displayed in Table 5.4. The overlap between the two 3D histograms of homogeneous

regions captured by the contrast of hue and cold-warm contrast shows that the hues
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are both fully saturated and in the light range 0.4 ≤ L ≤ 0.6. The presence of

adjacencies in the cold-warm contrast results shows that adjacent pie slices fit the

criteria of cold-warm contrast. The contrast strength of the adjacencies ranges from

mild to high.

Homogeneous
R to RV

contrast of hue
Homogeneous Adjacent Adjacent Adjacent

R to RV R-O to O-Y O-YG to Y-RV YG-GB to BV-RV

Cold Warm Contrast

Figure 5.4: 3D Histograms of contrast of hue and cold-warm contrast in group 3 pie
charts

The contrast of hue and cold-warm contrast results for pie charts in group 4

are displayed in Table 5.5. The images in this set are similar to each other. The

overlapping peaks between the 3D histograms of both the contrast of hue and cold-

warm contrast show that some pie slices are fully saturated and in the light range

0.4 ≤ L ≤ 0.6. The presence of adjacencies in the cold-warm contrast results shows

that some adjacent pie slices fit the criteria of cold-warm contrast. The contrast

strength of the adjacencies ranges from mild to high.

The contrast of hue and cold-warm contrast results for pie charts in group 5 are
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Homogeneous
R to RV

Contrast of Hue
Homogeneous Adjacent Adjacent Adjacent

R to RV R-O to O-Y O-YG to Y-RV YG-GB to BV-RV

Cold Warm Contrast

Figure 5.5: 3D Histograms of contrast of hue and cold-warm contrast in group 4 pie
charts

displayed in Table 5.6. The images in this set are similar to each other, with several

pie slices containing a mixture of saturations, and light levels. The overlapping peaks

between the 3D histograms of both the contrast of hue and cold-warm contrast show

that some pie slices are fully saturated and in the light range 0.4 ≤ L ≤ 0.6. The

presence of adjacencies in the cold-warm contrast results shows that some adjacent pie

slices fit the criteria of cold-warm contrast. The contrast strength of the adjacencies

is mostly high.

The contrast of hue and cold-warm contrast results for pie charts in group 6 are

displayed in Table 5.7. The images contain a mixture of hue, saturation and light

values and are not similar to each other. The contrast of hue results show that some

images fit the contrast of hue criteria. The results support that the images meet the
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Homogeneous
R to RV

Contrast of Hue
Homogeneous Adjacent Adjacent Adjacent

R to RV R-O to O-Y O-YG to Y-RV YG-GB to BV-RV

Cold Warm Contrast

Figure 5.6: 3D Histograms of contrast of hue and cold-warm contrast in group 5 pie
charts

cold-warm contrast criteria well, with varying cold-warm contrast strengths.

We observe that group 2, 3 and 6 mostly meet both the criteria for contrast of hue

and cold-warm contrast, while fewer images from groups 1,4 and 5 met the criteria.

The main difference between the pie charts that met the criteria and those that

did not, was the pie charts that met the requirements had fairly uniform light and

saturation ranges.

5.5 Discussion

The requirements of contrast of hue are difficult to implement for pie charts as they

often need more than three hues. Cold-warm contrast however offers a variety of
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Homogeneous
R to RV

Contrast of Hue
Homogeneous Adjacent Adjacent Adjacent

R to RV R-O to O-Y O-YG to Y-RV YG-GB to BV-RV

Cold Warm Contrast

Figure 5.7: 3D Histograms of contrast of hue and cold-warm contrast in group 6 pie
charts

options, with 12 hues, and a larger range of saturation levels to choose from. The

contrast strengths in the adjacencies would also allow designers to select adjacent hue

with intentional choices of mild, medium or high cold-warm contrast.
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Chapter 6

Conclusion and future work

6.1 Conclusion

Color is an important feature in the aesthetic classification of images, however knowl-

edge of color-based aesthetic theories in the Computer Vision community is limited.

Thus the color-related features developed do not necessarily differentiate well between

aesthetically high quality and low quality images. Our work aims at improving the

state-of-the-art methods of extracting relevant color information by introducing con-

cepts from color-based aesthetic theories and measures grounded in Itten’s theories.

We have made the following contributions:

1. Visualization: a 3D color palette of a painting in a metric color space consistent

with Itten’s color space

2. Computational models to measure:

(a) modulation using second order statistics

(b) contrast of hue in a painting, as well as assess patterns of contrast of hue

in a collection of paintings from an artist

(c) cold-warm contrast. In this model, we developed a uniform quantization of

warmth indices for hues, as well as a warmth contrast strength measure of

contrast between homogeneous regions of different hues, and adjacent hues.

We further developed a model to assess patterns of cold-warm contrast in

a collection of paintings from an artist
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3. An assessment of color use in business documents, namely assessing pie charts

for the presence of contrast of hue and cold-warm contrast

6.2 Future work

Computer Vision researchers working the aesthetic classification of images would ben-

efit from closer collaborations with the visual arts community. Such a collaboration

would improve the outcome of the Computer Vision aesthetic classification systems,

as design paradigms are learned from the visual art community. As such, our focus on

Itten’s color theories opens up many opportunities for research to further enrich Com-

puter Vision with color-based aesthetic theory knowledge. We envision the following

research projects:

Our work on modulation provides insight into the color palette of a painting. We

also touched upon modulation in paintings that employed cold-warm contrast. Further

research needs to be done to establish relationships between our modulation measures

and the various contrasts at play in a painting. Our work on the color contrasts was

focussed on two out of seven contrasts. Five contrasts remain to be explored: contrast

of light, contrast of saturation, complementary contrast, simultaneous contrast, and

contrast of extension. The study of contrast is directly related to color harmony.

The following excerpt from Itten provides a description of his color harmony model:

‘Suppose we have a double pointed needle universally pivoted at the center of the color

sphere. Let one point of the needle be directed at any spot on the sphere; then the

other point will indicate the symmetrical spot or complementary color value.... Thus

not only the opposite hues but also all their degrees of brilliance are in complementary

relation to each other’ [23, p.70]. This description inspires the exploration of geometric

relationships among contrasting and harmonious color combinations, based on the

spatial juxtaposition of the colors in the color sphere.

An extention of our work is in content-based-image-retrieval, an area of research

in Computer Vision where given a probe image, a ranked list of similar images is

retrieved from a larger collection. Typical techniques include computing the similarity

of the probe image with the images in the collection, based on features such as color,

texture and spatial composition. We anticipate that our color contrast features would

improve the precision and recall measures of the images.

Other extensions of our work on contrasts include generating a heat map to vi-

sualize the cold and warm contrasts in images based on the hue warmth indices we



114

developed. Further, the co-occurrences for homogeneous regions can be re-interpreted

by evaluating their square roots, as our current methods overcount the co-occurences

due to the V-8 relationship between a pixel and its neighbours. Re-interpretation of

the results in this new light may provide more concise comparisons of the homoge-

neous regions for both the contrast of hue and cold-warm contrast.

Finally, we discuss future work on business documents. Pie charts can be recolored

with a modified version of Cohen-Or’s[8] harmonization algorithm. Since contrast

of hue requires about three hues, and pie charts often contain more than 3 slices,

recoloring pie charts to meet the criteria of contrast of hue may not be helpful. Cold-

warm contrast however can create interesting color combinations for pie charts. Using

the cold-warm contrast strengths from Chapter 3, it would be interesting to explore

recoloring pie charts such that the strength of the cold-warm contrast in adjacent pie

slices is controlled to be mild, medium or high.
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