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ABSTRACT

Bismuth ferrite (BFO) is a multiferroic material with cross-correlation between

magnetic and electric orders. With no applied external fields the spin structure of

BFO is anitferromagnetic and cycloidal. This ordering prevents the detection of the

weak ferromagnetism known to exist in the material. The application of magnetic

and electric fields of suitable strength and direction is capable of compelling the Fe3+

spins to align in a homogeneous, antiferromagnetic fashion. This report details how

numerical methods were used to simulate the spin alignment of a BFO system under

different fields. The results were compiled into electric field-magnetic field phase

diagrams of BFO to show the divide between cycloidal and homogeneous systems.
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X̂ and B ‖ Ŷ) compared with analytical conical cycloid and

homogeneous cases for P ‖ [111].
D

J
=

2π

5
,
D′

J
= 0.60,

gµB
JS

=

0.317 T−1 and A = E = 0. . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.4 Electric field phase diagram. From Reference [9]. . . . . . . . . 45

Figure 4.5 〈‖Q‖〉 versus E ‖ −X̂. A = 0,
D

J
=

2π

5
,
D′

J
= 0.60,

ξ

J
=

5.77× 10−5 V cm−1 and no magnetic field with P ‖ [001]. . . . 48

Figure 4.6 〈‖Q‖〉 versus E ‖ −X̂. A = 0,
D

J
=

2π

5
,
D′

J
= 0.60,

ξ

J
=

5.77× 10−5 V cm−1 and no magnetic field with P ‖ [111]. . . . 49

Figure 4.7 〈‖Q‖〉 and magnetization modulus versus BX . A = 0,
D

J
=

2π

5
,

D′

J
= 0.60,

gµB
JS

= 0.318 T−1 and no electric field (P ‖ [001]). . 50

Figure 4.8 〈‖Q‖〉 and magnetization modulus versus BX . A = 0,
D

J
=

2π

5
,

D′

J
= 0.60,

gµB
JS

= 0.318 T−1 and no electric field (P ‖ [111]). . 51

Figure 4.9 〈‖Q‖〉 and magnetization modulus versus BY . A = 0,
D

J
=

2π

5
,

D′

J
= 0.60,

gµB
JS

= 0.318 T−1 and no electric field (P ‖ [001]). . 52

Figure 4.10〈‖Q‖〉 and magnetization modulus versus BY . A = 0,
D

J
=

2π

5
,

D′

J
= 0.60,

gµB
JS

= 0.318 T−1 and no electric field (P ‖ [111]). . 53

Figure 4.11〈‖Q‖〉 and magnetization modulus versus BZ . A = 0,
D

J
=

2π

5
,

D′

J
= 0.60,

gµB
JS

= 0.318 T−1 and no electric field (P ‖ [001]). . 54

Figure 4.12〈‖Q‖〉 and magnetization modulus versus BZ . A = 0,
D

J
=

2π

5
,

D′

J
= 0.60,

gµB
JS

= 0.318 T−1 and no electric field (P ‖ [111]). . 54

Figure 4.13EX −BX phase diagram. E ‖ −X̂ and B ‖ X̂. (P ‖ [001]). . . . 55



ix

Figure 4.14EX −BX phase diagram. E ‖ −X̂ and B ‖ X̂ (P ‖ [111]). . . . 55

Figure 4.15EX −BY phase diagram. E ‖ −X̂ and B ‖ Ŷ (P ‖ [001]). . . . 56
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Chapter 1

Introduction

As magnetic memory elements become increasingly small, there is the desire to limit

the energy and increase the speed needed to switch them. The states of magnetic

memory elements are conventionally switched via the local application of a magnetic

field. If instead an electric field could be applied to switch the element, this would

lower the energy required to write to the element. The memory itself should remain

magnetic, to take advantage of the persistent nature of magnetic memory elements [1].

For a magnetic memory to be able to be controlled electrically, there needs to be

interplay between magnetic and electric orders. The material bismuth ferrite (BiFeO3

or BFO) displays such interplay at room temperature. As such, it is a material of great

interest in the pursuit of creating an electrically-controlled magnetic memory device.

This kind of capability could also be useful in the development of MRAM (magnetic

random access memory), a technology that promises to integrate the computer hard

drive into its processor [2].

While having many of the characteristics desirable for this new type of memory

device, BFO has drawbacks that challenge the realization of a lower power magnetic

memory. Firstly, it is antiferromagnetic, the spins in the material are antiparallel to

each other. In a ferromagnetic system, the magnetization can be detected and states

can be defined depending on which direction the magnetization is pointing. Whereas

in an antiferromagnetic system, there is zero net magnetization and thus, nothing to

read out. There are schemes where BFO is coupled to a ferromagnet and through

exchange bias [3], the magnetization of the ferromagnet can be controlled [4, 5], but

none where BFO can be used alone as a memory element. The second issue with

BFO is the nature of the antiferromagentism.

Bulk BFO has its antiferromagnetism wrapped in a spiral shape known as a cycloid
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(see Figure 1.1). Canted antiferromagnetic spin pairs produce local weak ferromag-

netism. However, the cycloid structure means that the local weak ferromagnetism

sinusoidally changes direction throughout the period of the cycloid and the weak

ferromagnetism sums to zero over the crystal, meaning that it is macroscopically un-

detectable. If the cycloid could be unwound and the antiferromagnetism in BFO was

merely of the homogeneous G-type kind, with canting still present, then the weak

ferromagnetism would not sum to zero and could be detected. Figure 1.2 shows an

illustration of the unwound cycloid with uniform weak ferromagnetism. From that,

there is the potential to have a controllable, measurable property of BFO—a neces-

sary component for memory read out. Several methods to unwind the cycloid were

discovered in the past; these include the use of strain [6], chemical substitution [7],

and the application of magnetic [8] or electric fields [9].

P̂

Q̂

Figure 1.1: Antiferromagnetic cycloid. The blue-green arrows represent the Néel
vector L and the red arrows represent the local weak ferromagnetism.

P̂

Q̂

Figure 1.2: Homogeneous, antiferromagnetic case. The blue-green arrows represent
the Néel vector L and the red arrows represent the local weak ferromagnetism.

While it is known that these methods will compel the system into homogeneous

ordering, the threshold magnitudes for certain field directions are not well known.

Nor has it been investigated, how combining multiple cycloid destroying effects at

the same time affects the cycloid. This thesis details a theory of simultaneously

applying magnetic and electric fields to a bulk BFO sample. The importance of un-

derstanding the electric field-magnetic field phase diagram of BFO has both practical



3

and fundamental aspects. The practical worth is in knowing the optimal way to re-

move the cycloid, returning to BFO’s potential utility as a memory element. If a

certain combination of field directions or strengths is favourable above others, that

is, less energy expensive, then, if it is reasonable to apply fields in those directions

to destroy the cycloid, that should be how the cycloid is destroyed. This thesis is of

fundamental importance due to its investigation into an aspect of BFO that has not

been probed. Are there new effects that happen when more than one field is applied

at once? Is there a field combination where the effects oppose each other?

1.1 A Brief Introduction to Multiferroic Materials

1.1.1 Ferroics

A ferroic material has some inherent, reversible ordering of one of its properties, given

certain environmental conditions are met, such as the material being at the proper

temperature [10]. Types of ferroic orders include ferroelectricity, ferromagnetism and

ferroelasticity. All ferroic materials are characterized by an order paramater. An order

parameter is some property of the material which is non-zero when the material is in

its ordered state and is zero when the material is not in its ordered state (see Figure

1.3).

Ferroelectricity

Ferroelectric materials have an electric polarization without the application of an

electric field. The polarization vector P is the order parameter of ferroelectrics. BFO

is a ferroelectric and has a very large polarization (P ∼ 100 µC/cm2) that points

along one of the cube diagonals of its perovskite unit cell [11]. The Curie temperature

(Tc) is the temperature below which the material is ferroelectric. BFO has a Curie

temperature of approximately 1140 K.

Ferromagnetism

In ferromagnetic materials, the spins of atoms parallel one another in the ordered

phase. Materials have a non-zero magnetic moment under no applied magnetic field.

Magnetization M is the order parameter here. Conventional magnetic memories are
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Figure 1.3: The order parameter is non-zero below its critical temperature.

made of ferromagnets. Were BFO ferromagnetic it would be almost the ideal material

for use in electrically-written memories.

Antiferromagnetism

Unlike in ferromagnets, the spins of antiferromagnets are antiparallel: neighbouring

spins point in opposite directions. The total magnetization for antiferromagnets is

zero. This is why they cannot be used by themselves as memory elements. There

is no detectable parameter to distinguish between states. The two sublattices of an

antiferromagnet do have net magnetizations. The difference of the sublattice magne-

tizations is used to determine the order parameter, L = M1 −M2, which is known

as the Néel vector. While M is easy to measure using inductance, the detection of

L is much harder, usually requiring neutron or X-ray scattering experiments. Be-

low the Néel temperature (TN) a material is antiferromagnetic. The TN of BFO is

approximately 640 K.
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Ferrimagnetism

Ferrimagnetism is a magnetic ordering intermediate between ferromagnetism and an-

tiferromagnetism. Like in antiferromagets, neighbouring spins are antiparallel. How-

ever, the spins are of unequal magnitude, with the spins of one sublattice of greater

magnitude than the other. This gives rise to net magnetization. Since M1 6= M2,

both M = M1 + M2 and L = M1 −M2 are non-zero.

Ferroelasticity

In ferroelastic materials, strain and symmetry reduction take place below a certain

critical temperature which can be switched by applied stress.

1.1.2 More Than One at a Time

When multiple ferroic orders are present in the same phase in a material, the material

is said to be multiferroic. Below 640 K, BFO is both ferroelectric and antiferromag-

netic and thus multiferroic. BFO is one of the only room temperature multiferroics

and, as a result, it has been the focus of much research over the past decade [12].

How to search for materials that are multiferroic is an issue of much discussion. If

we leave other ferroic orders and just focus on ferroelectricity and (anti)ferromagnetism,

the conventional pathway for one would seem to prevent the other from arising. This

is due to ferroelectricity generally requiring an empty d-shell to allow for cations to

be off-centre, which when replicated throughout the material leads to a net electric

polarization. Magnetism generally requires partially filled d-shells [13, 14, 15].

BFO circumvents the issue by using its Fe3+ ion to give rise to its antiferromag-

netism and its Bi3+ ion to give rise to its ferroelectricity (the mechanism of ferroelec-

tricity in BFO is quite different from the usual d0 mechanism: it involves instead the

lowering of the energy of the 6s2 lone pair in Bi3+ when the ions goes off-centre [16]).

Because the two ferroic orders are associated with different cations, it was assumed

that the coupling between the two orders was relatively weak. However, recent re-

search has challenged this notion. A recent experiment showed a magnon frequency

shift that was linear with respect to an external applied electric field and 105 times

larger than any other known electric field-induced magnon shift [17]. Further research

into the theory behind this experimental result has shown how electric fields can be

used to eliminate cycloidal ordering in BFO [9].
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1.2 Bismuth Ferrite

Figure 1.4: Two unit cells of bismuth ferrite. The purple atoms are Bi3+, red O2−

and gold Fe3+. The left cell displays the cubic axes for BFO and the right cell shows
the rhombohedral axes that it is convenient to use in describing BFO (see Chapter 2).
Adapted from Reference [9].

BFO (see Figure 1.4) has a distorted rhombohedral perovskite structure. It be-

longs to the R3c space group. A space group is the collection of operations (eg.

rotations and translations) which when performed on a crystal leave it unaltered [18].

Its electric polarization is along one of its eight pseudocubic diagonal; [111] for exam-

ple. The magnetic ground state of BFO is a spiral of the cycloid type, with period

of 620 Å. The spins lie in the plane formed by the polarization P and the cycloid

propagation vector Q, which points along one of three directions perpendicular to P

(for instance, when P ‖ [111], Q can point along [110] and cyclic permutations). See

Figure 1.1 for an example of this.

The cycloid in BFO is due to a spin-orbit effect [19]. The electric polarization in

BFO compels the spins to arrange in a cycloid in order to interact with the polariza-

tion [20]. This is referred to as a spin-current effect.

Spin-orbit coupling also gives rise to the weak ferromagnetism due to spin canting

in BFO [21, 22, 23]. It has been found that the average strength of the ferromag-
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netism is 0.06 µB/Fe and is sinusoidal along the direction perpendicular to the cycloid

plane [24]. This result gives hope of BFO having applications in magnetic memory

technology. There is a detectable ferromagnetic moment. Of course, before BFO can

be used in industry, its inherent cycloid must be destroyed so that the order parameter

M becomes homogeneous.

1.2.1 Electrical Control of Magnetism

It was mentioned above that the cycloid plane is tied to the direction of the po-

larization. This fact has been the primary avenue through which researchers have

attempted to gain electrical control of the magnetic ordering of BFO. The electric

polarization of BFO can be switched to any of the eight body diagonals of the dis-

torted rhombohedron with the application of an electric field, and this can force the

spins into a different plane. Because the cycloid propagation direction is coupled to

the polarization, switching the polarization can also change the propagation direction

of the cycloid.

In 2008 Lebeugle et al. [25] were able to switch the polarization of bulk BFO and

neutron diffraction determine that the spins indeed changed planes. Chu et al. [4]

placed ferromagnetic CoFe on top of BFO and through poling BFO and the exchange

bias between CoFe and BFO were able to switch the magnetization of CoFe domains.

Lebeugle et al. were able to show that CoFeB deposited onto BFO gained a uniaxial

magnetic anisotropy that could be matched with the cycloid of BFO. Electrical poling

could switch the direction of the anisotropy [5].

All of these experiments relied upon the coupling of the cycloid propagation di-

rection and the electric polarization. Rovillian et al. performed an experiment which

demonstrated that poling the electric polarization was not the only way to get a sub-

stantial magnetoelectric response from BFO [17]. In the experiment, an electric field

was applied to a sample of BFO. The field was varied and the frequencies of magnon

modes was recorded. There was a significant shift in the frequencies of magnon modes

with respect to applied electric field. To explain the shift, two electric field-dependent

effects permitted by the R3c symmetry of BFO were added to the free energy theory

of BFO. The theory also showed that an electric field beyond some threshold value

would unwind the cycloid, forcing BFO into a homogeneous magnetic ground state.



8

1.2.2 Last Dance: Killing the Cycloid

If the weak ferromagnetism of BFO is to be utilised then destroying the cycloid is

essential. There are many known methods to unwind the cycloid, e.g. strain [6],

application of an external magnetic field [26, 8, 27], and chemical substitution [28].

Magnetic fields with a strength of ∼ 18 T are known to destroy the cycloid in BFO

[26, 8, 27]. Recent theory work by Fishman [29] attempted to map the critical mag-

netic field for all orientations. Chemical substitution can also be used to destroy the

cycloid. Yuan et al. found that substituting Nd3+ in place of Bi3+ in BFO reduced

the electric polarization and changed the crystal structure [28]. With enough sub-

stitution, somewhere between x = 0.15 and x = 0.20 for Bi1−xNdxFeO3, the cycloid

went away.

However, none of these methods is tunable. As well, the methods cannot be used

for fast switching in a device. The goals of this thesis are to study the electric field

method to unwind the cycloid and how the electric field competes with an applied

magnetic field.

1.3 Magnetic Field

Strong magnetic fields, in the range of 18 T [26, 8, 27], are required to destroy the

cycloid in bulk BFO.

Popov et al. showed that the application of a magnetic field elicited a change in the

longitudinal electric polarization at a magnetic field strength of 20 T [8]. The change

depended on the direction of the applied field. For a field in the [001] orthorhombic

direction, below the critical field the longitudinal polarization increased with increas-

ing field. Shortly before reaching the critical value, the polarization ceased increasing

and very near the critical value began decreasing before having a substantial drop

at the critical value. Fields were also applied along the hexagonal crystal structure

directions of BFO and, in these instances, below the critical field the polarization

increased quadratically with increasing applied field. The range of the critical field

produced by the field theory model was Bz
c = (20–30) T.

Tokunaga et al. placed BFO crystals in magnetic fields of strengths up to and

including 55 T [27]. At temperatures ranging from 4.2 K to 300 K, they saw a change

in magnetization-magnetic field curves in the vicinity of 18 T. This led them to claim

that this corresponded to a transition to a homogeneous, canted antiferromagnet
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above 18 T. The group did not see any additional transitions as magnetic field strength

was increased. Park et al. also saw a change in the magnetization-magnetic field curve.

The transition at this work occured near 20 T [26]. The work was performed at 4.2 K.

There is substantial proof of the transition from cycloidal to homogeneous ordering

in bulk BFO in the range of 18–20 T. Recently, Fishman computed the orientation

dependence of the critical B field [29]. Fishman’s theory was based on a particular

family of variational magnetic states. In this thesis, we developed an unconstrained

numerical method and we will question some of Fishman’s results. A better model of

the system would allow for more insight into when the transition is taking place.

1.4 Electric Field

Magnetoelectric coupling present in BFO allows for the interplay of electric and mag-

netic orders. A magnetic field can affect the polarization, as seen in Section 1.3. Con-

versely, an electric field can affect the spin ordering. This coupling occurs through

spin-orbit interactions. Traditionally, the leading magnetoelectric effect in BFO has

been expressed via the Dzyaloshinskii-Moriya interaction, where the large electric po-

larization of BFO induces the cycloidal ordering in absence of any applied fields. The

Dzyaloshinskii-Moriya interaction is also responsible for the canting in BFO.

Recently, we discovered that there was another linear magnetoelectric effect in

BFO which arises from the dependence of its single-ion anisotropy on the external

electric field. Here we will show that this effect can compete with the Dzyaloshinskii-

Moriya interaction and unwind the cycloid [9].

Since the conditions under which BFO becomes homogeneous under electric field

only have been discovered recently, there has been no study of the corresponding

electric field-magnetic field phase diagram detailing the applied fields where BFO is

cycloidal and where it is homogeneous. Understanding the precise conditions under

which BFO transforms from cycloidal ordering to homogeneous would allow the de-

termination of the optimal way for transforming between the two phases. As we shall

show, the interactions that arise from E and B lead to an interesting competition that

sheds light on the physics of spiral magnetism. Our study will also provide insight as

to how the spin structure would change under other conditions.
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1.5 Claims

In this thesis parts of the electric field-magnetic field phase diagram of bulk BFO

have been mapped via numerical minimization of the Hamiltonian for BFO. We will

show that depending on the relative orientation of E and B fields, the cycloid phase

may or may not persist at lower fields than anticipated. This occurs because the E

and B interactions may either compete or cooperate with each other.

This work will allow for a better understanding of the requirements for destroying

the cycloid of BFO and will help in the decision as to the best approach to take in

switching the cycloid in devices.

1.6 Agenda

Below is a description of the layout of the thesis.

Chapter 1 provides an introduction to the work, its import, what has been achieved

and details on how BFO is transformed. It also describes what will proceed in

the following chapters.

Chapter 2 describes the microscopic model used to model BFO.

Chapter 3 details the computational methods used in our numerical energy mini-

mization.

Chapter 4 examines our numerical results and compares them with our developed

analytical theory.

Chapter 5 provides a discussion of our results and outlines our conclusions.
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Chapter 2

Microscopic Model of BFO

The Hamiltonian used in the model is comprised of a standard Heisenberg Hamil-

tonian interaction with a positive exchange integral, which accounts for the G-type

antiferromagnetism of BFO; two Dzyaloshinskii-Moriya interactions, one which is the

basis for the formation of the cycloid in BFO and the other is responsible for the weak

ferromagnetism; a single-ion anisotropy interaction, which arises from spin-orbit cou-

pling; a Zeeman interaction; and interactions based on the response of BFO to an

electric field.

H =
∑
i

∑
δ

(
JS1,i · S2,i+δ +

[
D

{
Ẑ× (τ + δ)

aRh

}
+D′ Ẑ

]
· [S1,i × S2,i+δ]

)
− A

2

∑
i

∑
η=1,2

(
Sη,i · Ẑ

)2
− gµB

∑
i

∑
η=1,2

(Sη,i ·B)

− ξ

4

∑
i

∑
η=1,2

(
E⊥ ·

[{(
SYη,i
)2 − (SXη,i)2} X̂ + 2SXη,iS

Y
η,iŶ

]
+ 2
√

2E⊥ ·
[
SXη,iX̂ + SYη,iŶ

]
SZη,i

)
. (2.1)

Here, i represents the N/2 (where N is the total number of spins) sites of the first

sublattice, τ is the vector aRh (1, 1, 1) which connects a Fe3+ ion from the first sub-

lattice to its antiferromagnetic pair in the second, aRh is the rhombohedral lattice

constant of BFO, δ is the collection of vectors which when added with τ link a first

sublattice spin with its six nearest neighbours (δ ∈ [aRh (0,−1,−1), aRh (−2,−1,−1),

aRh (−1, 0,−1), aRh (−1,−2,−1), aRh (−1,−1, 0), aRh (−1,−1,−2)]). τ + δ =

±aRh (1, 0, 0) and cyclic permutations.

Sη,i represents the (classical) spin vector, with |Sη,i| = S =
5

2
for BFO. The
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first index, η, designates to which sublattice the spin belongs and the second, i,

describes its position in the material. D and D′ are Dzyaloshinskii-Moriya interaction

coefficients. A is the single-ion anisotropy coefficient. g is the Landé g-factor and µB

is the Bohr magneton. ξ is the coefficient for the coupling of an external electric field

to the spins. B and E⊥ are the applied magnetic and electric fields respectively. The

perpendicular notation of the electric field is indicative that only components of the

applied electric field which are perpendicular to the electric polarization are taken

under consideration in the model. A rhombohedral coordinate system that differs

from the cubic one was used: X̂ =
(−2, 1, 1)√

6
, Ŷ =

(0,−1, 1)√
2

, Ẑ =
(1, 1, 1)√

3
(see

Figure 1.4).

2.1 Heisenberg Interaction

The Heisenberg interaction, represented by the first term in Equation (2.1), is respon-

sible for the fundamental magnetic nature of the material,

HEx = J
∑
i

∑
δ

S1,i · S2,i+δ. (2.2)

The sign of J , the exchange integral, determines whether the material is ferromagnetic

or antiferromagnetic. If J < 0, then it is advantageous for spins to be parallel

and the material is ferromagnetic. If J > 0, then the system has its lowest energy

configuration if spins are antiparallel and the material is antiferromagnetic.

In some systems J takes on different values depending on the direction of coupling

of the spins. For instance there are situations where if S1,i and S2,i+δ are in the same

xy-plane then J is negative, resulting in ferromagnetism in the plane. But if the spins

are not of the same xy-plane then J is positive. The resulting spin structure is still

antiferromagnetic like BFO, but it is of a different type. Wollan and Koehler classified

these different types of antiferromagnetism [30]. A material exhibiting the type of

arrangement described above is classified as an A-type antiferromagnet, whereas BFO

with all nearest neighbours being antiparallel with respect to one another is a G-type

antiferromagnet. See Table 2.1 and Figure 2.1 for more details on the different types

of antiferromagnetism.

Superexchange is the mechanism behind the antiferromagneitc coupling of BFO.

Via oxygen, it couples Fe3+ cations. The O2− ion has a filled 3p orbital which overlaps
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Type Spin Arrangement
A Adjacent layers are antiparallel
C Adjacent columns are antiparallel
G Adjacent spins are antiparallel

Table 2.1: Common types of antiferromagnetism

with 3d orbitals from neighbouring Fe3+ ions. The spin quantum number for Fe3+ is

S =
5

2
. By Hund’s rules, each of the five valence electrons of the Fe3+ ions occupy

a different 3d orbital, with all spins parallel to each other. The overlapping filled

3p orbital of the O2− ion necessarily has antiparallel spins. The bonding between

the O2− and Fe3+ ions is mainly ionic, but can be thought as having some covalent

character. An electron from the 3p O2− orbital can then hop to one of the 3d Fe3+

orbitals to form the covalent bond. Since each 3d Fe3+ orbital is occupied with a

parallel spin, the electron donated from O2− must be of opposite spin to those in the

5 3d Fe3+ orbitals. Spin is preserved during the hopping process. On the other side

of the 3p O2− orbital, the same type of covalent bond can be formed with the next

Fe3+ ion. However, the spin that the now O− ion can donate to Fe3+ is antiparallel

to the one given to the neighbouring Fe3+ ion since they come from the same 3p

orbital and are required to be antiparallel. This means that the five 3d orbitals of

Fe3+ to now receive an electron must contain electron spins which are antiparallel to

the neighbouring Fe3+ ion for covalent bonding to occur. Through this mechanism

neighbouring Fe3+ ions lower their energy by being antiparallel [31].

2.2 Dzyaloshinskii-Moriya Interaction

Adding spin-orbit coupling to the superexchange mechanism gives rise to a term that

is linear in spin-orbit coupling and linear in the superexchange interaction. This is

the so called Dzyaloshinskii-Moriya coupling that favors non-collinear ordering of the

spins. The Dzyaloshinskii-Moriya interaction is what leads to the cycloidal ordering

in BFO, and is also behind its weak ferromagnetism.

In 1958, Dzyaloshinskii argued that the weak ferromagnetism exhibited by some

antiferromagnets was due to their symmetry [32]. Two years later, Moriya extended

the theory of superexchange to include spin-orbit coupling and claimed that this was

the theoretical basis for the weak ferromagnetism in the antiferromagnets [33, 34].
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A-type C-type

G-type

Figure 2.1: Spin ordering in the different types of antiferromagnetism.

Two different Dzyaloshinskii-Moryia interactions are shown in the first line of

Equation (2.1):

HDM =
∑
i

∑
δ

(
D

[
Ẑ× {τ + δ}

aRh

]
+D′ Ẑ

)
· (S1,i × S2,i+δ) . (2.3)

The first, a spin-current interaction [19], leads to the generation of the cycloid in

BFO. The second is responsible for the weak ferromagnetism present in BFO.

The Dzyaloshinskii-Moriya interaction may also be expressed as

HDM = D (RO ×Rij) · (Si × Sj) . (2.4)

RO is the vector from the iron spin i to the oxygen. Rij is the vector connector iron
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spin i to iron spin j. If the oxygen positions are substituted into Equation (2.4) then

the interaction can be written as

HDM =
∑
〈i,j〉

(
P×Rij + αẐ

)
· (Si × Sj) . (2.5)

〈i, j〉 indicates that spins i and j are nearest neighbours. In Equation (2.5), the

electric polarization in the energy indicates that the oxygen ions contribute to the

ferroelectric moment and α is related to the counter rotation of oxygen tetrahedra

adjacent along the polarization direction.

2.3 Single-Ion Anisotropy

Single-ion anisotropy is a correction to the spin energy that is quadratic in spin-orbit

coupling [9].

HSIA = −A
2

∑
i

∑
η=1,2

(
Sη,i · Ẑ

)2
. (2.6)

2.4 Analytical Energy Minimization: Cycloidal ver-

sus Homogeneous

The anisotropy is present even without the application of an electric field and, if A is

large enough, will change the spin structure of BFO from cycloidal to homogeneous.

To see this consider the energy of the system for a homeogeneous antiferromagnet

(with no applied fields):

S1,i = S Ẑ, (2.7a)

S2,i = −S Ẑ. (2.7b)

Hhomogeneous =
∑
i

∑
δ

(
JS1,i · S2,i+δ +

[
D

{
Ẑ× (τ + δ)

aRh

}
+D′ Ẑ

]
· [S1,i × S2,i+δ]

)
− A

2

∑
i

∑
η=1,2

(
Sη,i · Ẑ

)2
= −6JNS2

2
− NAS2

2
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= −NS2

(
3J +

A

2

)
. (2.8)

Compare the homogeneous energy to the case of a harmonic cycloid:

S1,i = S
(

cos [Q ·R1,i] Ẑ + sin [Q ·R1,i] Q̂
)
, (2.9a)

S2,i = −S
(

cos [Q ·R2,i] Ẑ + sin [Q ·R2,i] Q̂
)
. (2.9b)

Hcycloid =
∑
i

∑
δ

(
JS1,i · S2,i+δ +

[
D

{
Ẑ× (τ + δ)

aRh

}
+D′ Ẑ

]
· [S1,i × S2,i+δ]

)
− A

2

∑
i

∑
η=1,2

(
Sη,i · Ẑ

)2
= S2

∑
i

∑
δ

(−J [cos {Q ·R1,i} cos {Q ·R2,i+δ}

+ sin {Q ·R1,i} sin {Q ·R2,i+δ}]

+ [cos {Q ·R2,i+δ} sin {Q ·R1,i} − cos {Q ·R1,i} sin {Q ·R2,i+δ}]

×
[
D

{
Ẑ× (τ + δ)

aRh

}
+D′ Ẑ

]
·
[
Ẑ× Q̂

])
− AS2

2

∑
i

∑
η=1,2

cos2 (Q ·Rη,i)

= −S2
∑
i

∑
δ

(J cos [Q · {τ + δ}]

+ D sin [Q · {τ + δ}]
[
Ẑ× (τ + δ)

aRh

]
·
[
Ẑ× Q̂

])
− NAS2

4

= −NS
2

2

∑
δ

(J cos [Q · {τ + δ}]

+ D sin [Q · {τ + δ}]
[
Ẑ× (τ + δ)

aRh

]
·
[
Ẑ× Q̂

])
− NAS2

4

= −NS
2

2

(
J
∑
δ

cos [Q · {τ + δ}]

+ D

[
Ẑ×

{∑
δ

sin (Q · [τ + δ])
τ + δ

aRh

}]
·
[
Ẑ× Q̂

]
+
A

2

)
. (2.10)
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Ẑ × Q̂ ⊥ Ẑ, therefore the weak ferromagnetism (D’) term vanishes. If QaRh � 1

then,

Hcycloid ≈ −NS2

(
J

[
3− {QaRh}

2

2

]

+
D

2

[
Ẑ×

{∑
δ

Q · (τ + δ)
τ + δ

aRh

}]
·
[
Ẑ× Q̂

]
+
A

4

)

= −NS2

(
J

[
3− {QaRh}

2

2

]
+DQaRh

[
Ẑ× Q̂

]
·
[
Ẑ× Q̂

]
+
A

4

)

= −NS2

(
J

[
3− {QaRh}

2

2

]
+DQaRh +

A

4

)
. (2.11)

Taking the partial derivative of the energy with respect to Q will then give the value

of Q which minimizes the energy:

∂Hcycloid

∂Q
= NS2

(
JQa2Rh −DaRh

)
= 0 =⇒ QaRh =

D

J
. (2.12)

Taking QaRh =
D

J
,

Hcycloid = −NS2

(
3J − D2

2J
+
D2

J
+
A

4

)
= −NS2

(
3J +

D2

2J
+
A

4

)
. (2.13)

If we compare the energies of the homogeneous and cycloidal arrangements then we

can see under what conditions homogeneous ordering is favoured:

Hhomogeneous < Hcycloid

−NS2

(
3J +

A

2

)
< −NS2

(
3J +

D2

2J
+
A

4

)
A

2
>
D2

2J
+
A

4
A

4
>
D2

2J

A >
2D2

J
.
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When A >
2D2

J
, homogeneous spin ordering is energetically preferable to cycloidal.

2.5 Zeeman Interaction

The magnetic moment of an electron will interact with an external magnetic field.

The Zeeman interaction describes this. g here is the Landé g-factor. µB =
e~

2me

is the

Bohr magneton. e is the elementary charge, ~ is the reduced Planck constant and me

is the electron mass. At high enough fields, the interaction will cause the destruction

of the cycloid in BFO. At high enough magnetic field values, the Zeeman interaction,

HZ = −gµB
∑
i

∑
η=1,2

Sη,i ·B, (2.14)

will dominate and the spins will all align.

2.6 Electric Field Coupled to Spins

From the microscopic theory related to single-ion anisotropy, it was found that there

was coupling between an external electric field perpendicular to the electric polariza-

tion and the spins of the system [9]. The energy,

HE =− ξ

4

∑
i

∑
η=1,2

(
E⊥ ·

[{(
SYη,i
)2 − (SXη,i)2} X̂ + 2SXη,iS

Y
η,iŶ

]
+ 2
√

2E⊥ ·
[
SXη,iX̂ + SYη,iŶ

]
SZη,i

)
, (2.15)

is related to spin-orbit coupling. BFO, due to the presence of bismuth, has very

strong spin-orbit coupling (spin-orbit coupling strength is proportional to Z4 and Z

= 83 for bismuth [35]). This strong spin-orbit coupling was seen in the experiment

where magnon modes were significantly shifted with applied electric fields [17].

HE was originally devolped to explain the shift of magnon modes as an electric

field was applied. The response was 105 times [9] larger than any other ever seen

in magnon spectra in response to the application of an electric field. The terms in

Equation (2.15) are the ones allowed by the R3c symmetry of BFO. That is, allowed

R3c space group operations performed on a BFO crystal will leave Equation (2.15)

unchanged.
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Chapter 3

Approach to Simulations

We developed a computer algorithm that used steepest descent methods to determine

the spin structure of BFO when magnetic and electric fields were applied. The results

of the simulations were then used to construct electric field-magnetic field phase

diagrams of BFO. The simulations used the Hamiltonian described in Chapter 2.

Below is an overview of the methods used in the algorithm and in the analysis of the

resultant data.

3.1 Steepest Descent

To minimize a function F (x) with respect to x, a fraction of ∇F , evaluated at some

initial guess x0, should be subtracted from x0. This process is repeated until some

threshold of accuracy is reached, such as F (xn+1) − F (xn) < ε or ‖∇F (xn)‖ < ε,

where ε is a small positive number (see Figure 3.1). To see that subtracting a fraction

of ∇F from xn will reduce the value of F consider the Taylor series approximation

of F (xn+1) with 0 < ζ < 1:

F (xn+1) = F (xn − ζ∇F [xn])

≈ F (xn)− ζ∇F (xn)T∇F (xn)

= F (xn)− ζ‖∇F (xn)‖2. (3.1)

As ‖∇F (xn)‖2 ≥ 0, F (xn+1) ≤ F (xn) for sufficiently small ζ such that the Taylor

series approximation is valid.

There are many approaches to numerical optimization. The one implemented for
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Fn

Fn+1

Fn+2

F

Figure 3.1: Diagram detailing steepest descent. All points on a line are of equal value
for the function F . Steepest descent makes successive estimates of the value of x
which minimizes F .

this project was the steepest descent line search method. Line search methods start

from a particular point and head in a direction in search of another point which

reduces or, in the case of maximization, increases the value of the target function, F .

Search direction determination distinguishes the various methods. The steepest

descent method chooses the negative of the gradient of the target function, −∇F (xn),

as its search direction.

Other line search methods include Newton’s method which requires the calcula-

tion of the Hessian, the matrix containing the second-order partial derivatives of the

function F . Calculation of the Hessian can be time-consuming and error-ridden. In

Newton’s method the search direction is −
(
∇2F [xn]

)−1∇F (xn) where ∇2F (xn) is

the Hessian. The limited-memory Broyden–Fletcher–Goldfarb–Shanno method (L-
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BFGS) is another well-regarded line search algorithm, but it uses an approximation

of the Hessian and suffers from similar drawbacks as Newton’s method [36].

Steepest descent is an unconstrained optimization method. As the spins are

treated classically with unit length, optimizing the spin Cartesian components is

not possible with this algorithm. Instead, each classical spin is described in spherical

coordiates via two angles, φ, the azimuthal angle and α, the polar angle (see Fig-

ure 3.2). The Hamiltonian is written in terms of these angles and then minimized.

x

y

z

φ

α Sη,i

Figure 3.2: Coordinate system for spin used in simulations. The spin has unit length
and is described solely by its azimuthal, φ, and polar, α, angles.

3.1.1 Adaptive Step Size

In an attempt to reach the energy minimum of the system as quickly as possible, the

Armijo condition,

F (xn + ζnpn) ≤ F (xn) + cζn∇F T
n pn, (3.2)

was implemented. This ensured that sufficient progress was made in each minimiza-

tion step.
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This says that the function evaluated at the new guess for the minimum point

must be less than or equal to the function at the previous guess at the estimation

plus the gradient of the function evaluated at the old guess multiplied by the search

direction and the step size, multiplied by some coefficient c between 0 and 1. It is

used in a backtracking line search where the step size is reduced until the Armijo

condition is met. ζ is reduced until the condition in Equation (3.2) is met. pn is the

search direction (pn = −∇F [xn] for steepest descent). These steps are summarized

in Algorithm 1.

Make initial guess for x; select ε > 0; select ζ, c, r ∈ (0, 1)
while ‖∇F‖2 > ε do

while F (x− ζ∇F ) > F (x)− cζ ‖∇F‖ do
ζ ← rζ

end while
x← x− ζ∇F
F (x)← F (x− ζ∇F )

end while

Algorithm 1: Steepest descent algorithm with Armijo condition

3.1.2 Challenges of Steepest Descent

The advantage steepest descent holds over many other line search methods is the lack

of needing to find the second derivative of the function to be minimized. Of course,

that still leaves the task of finding the first derivative of the function. For a function

such as the Hamiltonian of Chapter 2, the task is not necessarily simple. There are

multiple terms to evaluate and many places for errors to enter.

Additionally, the method is susceptible to becoming stuck in local minima. As the

termination condition is that the gradient become smaller than some predetermined

value, the first instance where this occurs during the running of the program will lead

to the program exitting regardless whether this is the gloabal or a local minimum.

This means that the initial guess for x0 is crucial. A poorly selected starting point

may converge to a point well away from the actual solution.

Knowing characteristics of the final answer, in this case, reasonable and unreason-

able spin arrangements, is advantageous to minimization. It would allow for a reason-

able initial guess at a solution to be made. This would allow for quicker convergence.

Also, knowing characteristics of the final answer would allow for an assessment to be
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made of the appropriateness of any final answer.

3.2 Monte Carlo Simulations

Attempts were also made to perform Monte Carlo simulations. In the simulations,

the same Hamiltonian presented in Chapter 2 was used as the energy. From an initial

state, a single spin state was randomly selected and its orientation was randomly

altered. If the change reduced the energy of the system, it was retained. Otherwise,

the system reverted to the previous state. This continued for a determined number

of iterations.

While this approach was far less challenging to implement than steepest descent,

owing to the fact that no derivatives of the Hamiltonian needed to be calculated, it

proved to be much slower than steepest descent in lowering the energy of the system.

This was somewhat foreseeable due to the stocastic nature of Monte Carlo.

The Monte Carlo results provide means by which to compare results derived from

steepest descent methods. The simplicity of executing Monte Carlo means that it

should be capable of finding the ground state of any system with a known Hamilto-

nian, it just may take many iterations to reach the ground state.

Many additional iterations might need to be performed when nearing the ground

state to have make incremental progress. Since spins are randomly selected, there

is no way to ensure that all spins are visited. Even if all spins are visited, because

the change in the spin is random, there is no manner by which to assure that the

necessary orientation for a certain spin is attained in a suitable timeframe. That is,

many visits to a spin are needed to exhaust all possible orientations.

Figure 3.3 shows the disparity in the approaches. A 20 × 20 × 20 spin structure

starting from a random configuration was minimized using Monte Carlo and steepest

descent methods. The Monte Carlo approach needed one million spin iterations to

just fall short of −3 units of energy per spin for the configuration (D/J = 1.1). It

took less than 20 iterations (with a different randomized spin configuration) for the

steepest descent apporach to better the Monte Carlo one. In all, the Monte Carlo

approach took over eight hours of runtime to minimize the cube of spins inferiorly to

what the steepest descent method did in four minutes.

It was evident from such case studies that Monte Carlo methods were not the

best approach for the intended project. It would be more appropriate to use Monte

Carlo methods if the system was thermalized or if spins were restricted to being up
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Figure 3.3: Energy per spin versus number of iterations.
D

J
= 1.1, D′ = A = 0 and no

applied fields. Comparison of speed of Monte Carlo methods versus steepest descent.
Starting from a random spin configuration and the same Hamiltonian, a 20× 20× 20
spin structure was minimized. It took over eight hours to produce the data from the
Monte Carlo methods. The data from the steepest descent method were produced in
four minutes.

or down.

3.3 Algorithm for Finding Ground State of BFO

The algorithm for finding the spin configuration of BFO with applied fields was writ-

ten in Fortran. The Hamiltonian developed in Chapter 2 was used as the function to

minimize via the method of steepest descent (as described in Section 3.1). Each spin

was considered to have unit length and its orientation was described by two angles:

φ, the azimuthal and α, the polar.

An initial spin configuration guess was made to initiate the steepest descent al-

gorithm. Then the gradient of the Hamiltonian with respect to the 2N variables of
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the system, the angles, was calculated. The square of the modulus of the gradient of

the Hamiltonian was compared to a determined threshold value. If it was above the

threshold, then the system would iterate with φη,i and αη,i changed per Section 3.1

until the threshold value for gradient of the Hamiltonian was met.

When the system is described in terms of the angles of the spins in terms of the

BFO rhombohedral coordinates, then the spins may be represented as

Sη,i = cosφη,i sinαη,iX̂ + sinφη,i sinαη,iŶ + cosαη,iẐ. (3.3)

Substitution into Equation (2.1) leads to

H =
∑
i

∑
δ

(
JS1,i · S2,i+δ +

[
D

{
Ẑ× (τ + δ)

aRh

}
+D′ Ẑ

]
· [S1,i × S2,i+δ]

)
− A

2

∑
i

∑
η=1,2

(
Sη,i · Ẑ

)2
− gµB

∑
i

∑
η=1,2

(Sη,i ·B)

− ξ

4

∑
i

∑
η=1,2

(
E⊥ ·

[{(
SYη,i
)2 − (SXη,i)2} X̂ + 2SXη,iS

Y
η,iŶ

]
+ 2
√

2E⊥ ·
[
SXη,iX̂ + SYη,iŶ

]
SZη,i

)
=
∑
i

∑
δ

(J [{cosφ1,i cosφ2,i+δ + sinφ1,i sinφ2,i+δ} sinα1,i sinα2,i+δ

+ cosα1,i cosα2,i+δ] +

[
D

{
Ẑ× (τ + δ)

aRh

}
+D′ Ẑ

]
·
[
{sinφ1,i sinα1,i cosα2,i+δ − cosα1,i sinφ2,i+δ sinα2,i+δ} X̂

+ {cosα1,i cosφ2,i+δ sinα2,i+δ − cosφ1,i sinα1,i cosα2,i+δ} Ŷ

+ {cosφ1,i sinφ2,i+δ − sinφ1,i cosφ2,i+δ} sinα1,i sinα2,i+δẐ
]

− A

2

∑
i

∑
η=1,2

cos2 αη,i

− gµB
∑
i

∑
η=1,2

([
BX cosφη,i +BY sinφη,i

]
sinαη,i +BZ cosαη,i

)
− ξ

4

∑
i

∑
η=1,2

(
E⊥ ·

[{
sin2 φη,i − cos2 φη,i

}
sin2 αη,iX̂

+ 2 sinφη,i cosφη,i sin
2 αη,iŶ

]
+ 2
√

2E⊥ ·
[
cosφη,iX̂ + sinφη,iŶ

]
sinαη,i cosαη,i

)
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=
∑
i

∑
δ

(J [cos {φ1,i − φ2,i+δ} sinα1,i sinα2,i+δ + cosα1,i cosα2,i+δ]

+D

[
Ẑ× {τ + δ}

aRh

]
·
[
{sinφ1,i sinα1,i cosα2,i+δ − cosα1,i sinφ2,i+δ sinα2,i+δ} X̂

+ {cosα1,i cosφ2,i+δ sinα2,i+δ − cosφ1,i sinα1,i cosα2,i+δ} Ŷ
]

+ D′ sin [φ2,i+δ − φ1,i] sinα1,i sinα2,i+δ)

− A

2

∑
i

∑
η=1,2

cos2 αη,i

− gµB
∑
i

∑
η=1,2

([
BX cosφη,i +BY sinφη,i

]
sinαη,i +BZ cosαη,i

)
− ξ

4

∑
i

∑
η=1,2

(
E⊥ ·

[
sin 2φη,iŶ − cos 2φη,iX̂

]
sin2 αη,i

+
√

2E⊥ ·
[
cosφη,iX̂ + sinφη,iŶ

]
sin 2αη,i

)
. (3.4)

The derivatives with respect to the angles are

∂H

∂φη,i
=
∑
δ

(−J sin [φη,i − φρ,i+δ] sinαη,i sinαρ,i+δ

+D

[
Ẑ× {τ + δ}

aRh

]
·
[
cosφη,i sinαη,i cosαρ,i+δX̂

+ sinφη,i sinαη,i cosαρ,i+δŶ
]
−D′ cos [φρ,i+δ − φη,i] sinαη,i sinαρ,i+δ

)
+ gµB

(
BX sinφη,i −BY cosφη,i

)
sinαη,i

− ξ

4

(
2E⊥ ·

[
sin 2φη,iX̂ + cos 2φη,iŶ

]
sin2 αη,i

+
√

2E⊥ ·
[
cosφη,iŶ − sinφη,iX̂

]
sin 2αη,i

)
(3.5)

and

∂H

∂αη,i
=
∑
δ

(J [cos {φη,i − φρ,i+δ} cosαη,i sinαρ,i+δ − sinαη,i cosαρ,i+δ]

+D

[
Ẑ× {τ + δ}

aRh

]
·
[
{sinφη,i cosαη,i cosαρ,i+δ + sinαη,i sinφρ,i+δ sinαρ,i+δ} X̂

− {sinαη,i cosφρ,i+δ sinαρ,i+δ + cosφη,i cosαη,i cosαρ,i+δ} Ŷ
]
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+D′ sin [φρ,i+δ − φη,i] cosαη,i sinαρ,i+δ)

+
A

2
sin 2αη,i − gµB

([
BX cosφη,i +BY sinφη,i

]
cosαη,i −BZ sinαη,i

)
− ξ

4

(
E⊥ ·

[
sin 2φη,iŶ − cos 2φη,iX̂

]
+ 2
√

2E⊥ ·
[
cosφη,iX̂ + sinφη,iŶ

])
sin 2αη,i. (3.6)

ρ represents the other sublattice: if η = 1 then ρ = 2 and vice versa. For each spin

site, the iterative value of the two angles was updated using the derivatives of the

Hamiltonian:

φη,i;n+1 = φη,i;n − ζn
∂H

∂φη,i;n
(3.7)

and

αη,i;n+1 = αη,i;n − ζn
∂H

∂αη,i;n
. (3.8)

The iterative process continued until the threshold value of ‖H‖2 was obtained. At

that point the state was analyzed to determine whether it was cycloidal or homoge-

neous.

Due to the potential for steepest descent to be trapped in local minima, the

programs used multiple initial configurations and simultaneous runs to try to attain

the global minimum for the system for the inputted parameters. Initial starting points

generally included the planar-harmonic cycloids with propagation vectors along the

three conventional directions
[
110
]
,
[
101
]

and
[
011
]

and homogeneous ordering.

Once all of the the minimizations (starting from different initial conditions) were

performed, a program was executed to determine which set of results produced the

lowest energy. This configuration was taken to be the ground state spin arrangement

for the given parameters. Fourier analysis was then performed on the results.

3.4 Analysis of Algorithm Results

Fourier analysis was employed to make distinctions between the two states, cycloidal

and homogeneous. Fast Fourier transforms (FFTs) were performed on the data pro-

duced from the simulations. A harmonic cycloid would have two peaks equidistant

from the origin in its Fourier profile. A homogeneous cycloid would have a single

peak at the origin. Due to the discrete nature of the data, there will be broadening

of peaks. Windowing and zero padding were introduced in an attempt to reduce this.
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3.4.1 Zero Padding

Zero padding is the addition of null results to data before performing a Fourier trans-

form. The intent is to refine the resulting transform so as to get more accurate results.

Spins with values of zero were added to the cube of non-zero simulated spins.

3.4.2 Windowing

Windowing is used to counteract the effects of a periodic signal which abruptly ceases.

This is the case with the simulated cube of spins. There is a periodic nature to the

spin arrangement and then it stops. Left untreated, the FFTs would have peaks in

unanticipated places due to the abrupt cessation of the pattern. These artifacts are

undesirable and, as such, a window function was applied to the data. Specifically, the

Hann window was used. Effectively, the window weighted spins in the centre of the

cube where there is a periodic patterns surrounding them more heavily than spins

near the edges of the cube which does not have as many spins maintaining the pattern

surrounding them. The one-dimensional Hann function is

w (ni) =
1

2

(
1− cos

[
2πni
Ni − 1

])
. (3.9)

The three-dimensional function has the form

w (nx, ny, nz) =
1

8

(
1− cos

[
2πnx
Nx − 1

])(
1− cos

[
2πny
Ny − 1

])
×
(

1− cos

[
2πnz
Nz − 1

])
. (3.10)

Equation (3.10) displays the weighting for the spins. In this notation, ni ∈
[0, Ni − 1]. The values of the spins were multiplied by Equation (3.10) before the

FFT was performed.

3.4.3 Fast Fourier Transform

The software FFTW (Fastest Fourier Transform in the West) was used to produce

the FFTs. Analysis of the resultant FFTs allowed for value of the average value

of the modulus of Q, 〈‖Q‖〉, which should be non-zero for a cycloid and zero for

homogeneous ordering.
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The Fourier transform of the spin takes the following form:

S̃η,k =
1√
M

∑
R

eık·RSη,R. (3.11)

Its inverse has the form

Sη,R =
1√
M

∑
k

e−ık·RS̃η,k, (3.12)

where M is the number of spin sites in the Fourier transform. This number is different

than the number of spins in the simulation due to the zero padding. k is the wave

vector and R is the position of the spin:

R = aRh (nxx̂ + nyŷ + nzẑ)

= aRh (n1 [ŷ + ẑ] + n2 [x̂ + ẑ] + n3 [x̂ + ŷ]) . (3.13)

R = R1,i was used for both sublattices so that an accurate comparison could be made

between transforms of different sublattices. nm ∈
[
−Nm

2
+ 1,

Nm

2

]
where Nm is the

number of spins along the coordinate m. Due to how spins are assigned values in the

program, it is necessary to take the FFT of the spin configuration in terms of n1, n2

and n3 and then convert to nx, ny and nz. From Equation (3.13),

nx = n2 + n3, (3.14a)

ny = n1 + n3, (3.14b)

nz = n1 + n2. (3.14c)

And written in terms of nx, ny and nz,

n1 =
ny + nz − nx

2
, (3.15a)

n2 =
nx + nz − ny

2
, (3.15b)

n3 =
nx + ny − nz

2
. (3.15c)

The Fourier transform can then be re-written in terms of n1, n2 and n3:

S̃η,k =
1√
M

∑
R

eık·RSη,R
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=
1√
M

∑
nx,ny ,nz

eıaRh(kxnx+kyny+kznz)Sη;nx,ny ,nz

=
1√
M

∑
n1,n2,n3

eıaRh(kx[n2+n3]+ky [n1+n3]+kz [n1+n2])Sη;n1,n2,n3

=
1√
M

∑
n1,n2,n3

eıaRh(k1n1+k2n2+k3n3)Sη;n1,n2,n3 . (3.16)

From Equation (3.16), k1, k2 and k3 can be defined:

k1 = ky + kz, (3.17a)

k2 = kx + kz, (3.17b)

k3 = kx + ky. (3.17c)

In terms of k1, k2 and k3,

kx =
k2 + k3 − k1

2
, (3.18a)

ky =
k1 + k3 − k2

2
, (3.18b)

kz =
k1 + k2 − k3

2
. (3.18c)

The FFT output of the program is of k1, k2 and k3 and from Equation (3.18), this

can be used to find kx, ky and kz.

To find the average of the modulus of Q, the Fourier components at all k-points

are evaluated along with the value of k:

〈‖Qη‖〉 =

√∑
k

S̃2
η,kk

2. (3.19)

L̃k and M̃k can also be defined:

L̃k = S̃1,k − S̃2,k (3.20)

and

M̃k = S̃1,k + S̃2,k. (3.21)

These functions indicate at which points in reciprocal space there is antiferromagnetic
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(
L̃k

)
or ferromagnetic

(
M̃k

)
character. For a harmonic cycloid, peaks would be ex-

pected at k = ±Q for L̃k and M̃k = 0 for all k. For a homogeneous antiferromagnet,

there should be a peak at k = 0 for L̃k and M̃k = 0 for all k. Figures 3.4 and 3.5

depict the results of FFTs of the ground states for
D

J
=

2π

5
,
D′

J
= 0.60,

A

J
= 0,

ξ

J
= 5.77× 10−5 cm V−1 with an applied electric field

(
E⊥ = −4.0× 104 V cm−1X̂

)
and without. In Figure 3.4, there are no applied fields, and the ground state appears

to be a planar cycloid with 〈‖Q‖〉 = 1.35 and two distinct off-centre peaks are visible.

The FFT is symmetric about k = 0 with two peaks as required by the condition that

the spin state is a real vector. In Figure 3.5, there is a central peak and 〈‖Q‖〉 = 0.33.

It would be expected that in a homogeneous system, there would be a central peak

as, ideally, 〈‖Q‖〉 would be equal to zero.
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Figure 3.4: FFT along
[
011
]

direction. 〈‖Q‖〉 is 1.35.

In order to interpret this result, consider the harmonic and planar cycloid:

Sη,R = (−1)η+1
(

cos [Q ·R] Ẑ + sin [Q ·R] Q̂
)
. (3.22)
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Figure 3.5: FFT along
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direction. 〈‖Q‖〉 is 0.33.

This can be placed into Equation (3.11) to find the dependence of Q on the FFT:

S̃η,k =
1√
M

∑
R

eık·RSη,R

=
(−1)η+1

√
M

2

(
δk,−Q

[
Ẑ− ıQ̂

]
+ δk,Q

[
Ẑ + ıQ̂

])
(3.23)

For a cycloid with propagation vector Q, the Fourier transform is a pair of delta

functions at k = ±Q with a real component in the Ẑ direction and an imaginary one

in the Q̂. From here, the modulus squared can be found:

‖S̃η,k‖2 = S̃η,kS̃
∗
η,k

=
M

4

(
δk,−Q

[
Ẑ− ıQ̂

]
+ δk,Q

[
Ẑ + ıQ̂

])(
δk,−Q

[
Ẑ + ıQ̂

]
+ δk,Q

[
Ẑ− ıQ̂

])
=
M

4

(
δk,−Qδk,−Q

[
Ẑ− ıQ̂

] [
Ẑ + ıQ̂

]
+ δk,−Qδk,Q

[
Ẑ− ıQ̂

] [
Ẑ− ıQ̂

]
+ δk,Qδk,−Q

[
Ẑ + ıQ̂

] [
Ẑ + ıQ̂

]
+ δk,Qδk,Q

[
Ẑ + ıQ̂

] [
Ẑ− ıQ̂

])
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=
M

2
(δk,−Q + δk,Q) (3.24)

Thus, a plot of the modulus of the Fourier transform should have peaks at k = ±Q.

When the cycloidal order transitions to homogeneous, there should be a single peak

at k = ±Q = 0. This is what is seen in Figures 3.4 and 3.5 which leads to the

characterization of the system in Figure 3.4 as cycloidal and the system of Figure 3.5

as homogeneous.

As described above, two distinct symmetric, off-centre peaks qualitatively indicate

cycloidal ordering and a lone central peak is qualitatively indicative of homogeneous

ordering. There is the general issue of how to quanitatively distinguish between

cycloidal and homogeneous ordering. Ideally, a transition to homogeneous ordering

should be signified by 〈‖Q‖〉 → 0. As can be seen in Figure 3.5, 〈‖Q‖〉 6= 0, yet

its peak is centred at zero. The disparity comes from the fact that the numerical

simulations and their FFTs were performed on systems of finite size. The simulations

were performed with 20×20×20 systems. The reciprocal space values were separated

by
2π

20
= 0.31.

The value of 0.31 would appear be a reasonable estimate for the threshold value

since it would mean that the majority of the transform was within the smallest division

away from zero. However in simulations, the value of 〈‖Q‖〉 settled at 0.33 when fields

were applied. Directly examining the lattice of spins, it was evident that a transition

to homogeneous ordering had taken place. The choice was made to use 〈‖Q‖〉 = 0.40,

somewhat above the 0.33, as the threshold value. Anything at or above this value

was deemed to be cycloidal and anything below homogeneous.
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Chapter 4

Results

Below are the results of the computer simulations using the algorithm described in

Chapter 3 using the Hamiltonian from Chapter 2. They are compared with analytical

results derived from the same Hamiltonian.

Simulations were run using two different configurations. One was with the polar-

ization parallel the [001] direction. This is not a direction along which the polarization

can point in BFO, but it was done to have the numerous cycloids in the 20× 20× 20

cell all of the same length: Q̂ ⊥ Ẑ. Thus, the cycloid propagates along either X̂

or Ŷ, which are now the major axes and are 20 spins long. In this configuration,
δ + τ

aRh
= ±X̂; ±Ŷ; or± Ẑ.

The other configuration had the polarization along the conventional [111] direc-

tion. Here,
δ + τ

aRh
= ±x̂; ±ŷ; or ± ẑ. With the polarization along [111], the cycloid

is along
[
110
]
,
[
101
]
, or
[
011
]
. Throughout different parts of the supercell, there are

different numbers of spins along these directions. The number of spins in the cycloids

of the simulated supercell varies throughout the supercell.

The calculations presented in this chapter assume the polarization is along the

[001] direction. Appendix A works out the calculations for P ‖ [111]. Additional

results that did not find room in this chapter are presented in Appendix B.

4.1 Initial Results

All of the simulations presented in this work were performed on a 20× 20× 20 cube

of spins. It is quite reasonable to wonder if the results are dependent of the size of

the system. One approach would be to run simulations on arrays of varying sizes.
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However, this would be quite time-consuming. Another approach, and what was done

in this project, is to compare the energy per spin for the simulations to that of exact

analytical results. If the 20 × 20 × 20 system can approximate the same energy per

spin as that of the analytical system, then there would be a basis to claim that the

results have little dependence on system size.

Also, these initial tests help to show that the simulations were, in fact, approxi-

mating analytical solutions. Using simple systems with just the exchange and spin-

current interactions present, the simulations were able to approximate the analytical

solutions for both polarization orientations. This helps to prove the validity of the

approach.

Consider the case where there is an applied magnetic field in the X̂ direction, but

no applied electric field, with single-ion anisotropy set to zero:

B = B X̂, A = E = 0.

The spins of the two sublattices are expected to have minimum energy for a conical

cycloid as the spins form a cycloid, but are also all canted with a component aligned

with the magnetic field:

S1,i = S
(

sin θ X̂ + cos θ
[
sin {Q ·R1,i} Ŷ + cos {Q ·R1,i} Ẑ

])
, (4.1)

S2,i = S
(

sin θ X̂− cos θ
[
sin {Q ·R2,i} Ŷ + cos {Q ·R2,i} Ẑ

])
. (4.2)

The angle θ represents the angle between the spin vectors and the YZ-plane. If there

is no magnetic field then θ = 0 and the spins are entirely confined within the YZ-

plane. Beyond some threshold magnetic field value to be determined, all spins point

along the X̂ axis and thus θ =
π

2
. This solution can be placed into the Hamiltonian

and simplified:

Hcc =
∑
i

∑
δ

(
JS1,i · S2,i+δ +

[
D

{
Ẑ× (τ + δ)

aRh

}
+D′ Ẑ

]
· [S1,i × S2,i+δ]

)
− SgµB

∑
i

∑
η=1,2

(Sη,i ·B)

=
NS2

2

(
J

[
6 sin2 θ − cos2 θ

∑
δ

cos {Q · (τ + δ)}

]
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− D cos2 θ

aRh
Ŷ ·

∑
δ

[τ + δ] sin [Q · {τ + δ}]

)
−NSgµBB sin θ. (4.3)

Q = Q Ŷ minimizes the energy as it allows the Dzyaloshinksii-Moriya interaction to

further reduce the energy.

Hcc =
NS2

2

(
J
[
6 sin2 θ − cos2 θ {4 + 2 cos (QaRh)}

]
− 2D cos2 θ sin [QaRh]

)
−NSgµBB sin θ

= NS2

(
3J sin2 θ − cos2 θ [2J + J cos {QaRh}+D sin {QaRh}]−

gµBB sin θ

S

)
.

(4.4)

From here, Q can be optimized:

∂Hcc

∂Q
= −NS2 cos2 θaRh (D cos [QaRh]− J sin [QaRh]) = 0 =⇒ tan (QaRh) =

D

J
.

(4.5)

Equation (4.5) can be used to define sin (QaRh) and cos (QaRh):

sin (QaRh) =
D√

D2 + J2
, (4.6)

cos (QaRh) =
J√

D2 + J2
. (4.7)

These can then be replaced in the Hamiltonian,

Hcc = NS2

(
3J sin2 θ − cos2 θ

[
2J +

J2

√
D2 + J2

+
D2

√
D2 + J2

]
− gµBB sin θ

S

)
= NS2

(
3J sin2 θ − cos2 θ

[
2J +

√
D2 + J2

]
− gµBB sin θ

S

)
. (4.8)

The derivative of Hcc with respect to θ can then be taken to minimize the energy:

∂Hcc

∂θ
= NS2 cos θ

(
sin θ

[
6J + 4J + 2

√
D2 + J2

]
− gµBB

S

)
= 0

=⇒ sin θ =
gµBB

2S
(
5J +

√
D2 + J2

) . (4.9)
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This is then substituted into the energy term:

Hcc = NS2

3J

[
gµBB

2S
{

5J +
√
D2 + J2

}]2

−

1−

{
gµBB

2S
(
5J +

√
D2 + J2

)}2
[2J +

√
D2 + J2

]
(4.10)

− [gµBB]2

2S2
[
5J +

√
D2 + J2

])
= NS2

(
−
[
2J +

√
D2 + J2

]
+
[
5J +

√
D2 + J2

] [ gµBB

2S
{

5J +
√
D2 + J2

}]2 − [gµBB]2

2S2
[
5J +

√
D2 + J2

]


= −NS2

(
2J +

√
D2 + J2 +

[gµBB]2

4S2
[
5J +

√
D2 + J2

]) . (4.11)

The energy per spin is

Hcc

JNS2
= −

2 +

√[
D

J

]2
+ 1 +

[
gµBB

2JS

]2
1

5 +
√[

D
J

]2
+ 1

 . (4.12)

If there is no magnetic field then the energy per spin is

Hcc

JNS2
= −

2 +

√[
D

J

]2
+ 1

 . (4.13)

This is the energy that was compared with the numerical results for P ‖ [001]. Two

different approaches were taken with the simulations. In one the system had open

boundary conditions: spins at the end of the cube only had local nearest neighbours.

Spins on the other side of the cube were not considered to be neighbours. That is

SN
2
+1 6= S−N

2
. There was concern that have periodic boundary conditions would

affect the value of Q.

The second approach was with periodic boundary conditions where SN
2
+1 = S−N

2
.

As seen in Figure 4.1, this resulted in lower energies than the open boundary con-

ditions. For special values of D where
D

J
=

2nπ

20
, where n ∈ N, the simulated
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Figure 4.1: Energy per spin versus
D

J
with no applied fields or anisotropy.

results agreed with the analytical ones which have periodic boundary conditions. For

QaRh � 1, QaRh =
D

J
. The simulation takes aRh = 1. Therefore,

Q =
D

J
=

2nπ

20
=

2π

λ
=⇒ λ =

20

n
. (4.14)

Our numerical calculation agreed with the analytical solution (for the infinite sys-

tem) only when the cycloid fits exactly inside our finite system. When the cycloid Q

was not one of these special values, the simulations were of markedly higher energy

than the analytical results, giving a measure of finite size effects. The disagreement

between analytical and numerical results increased as
D

J
increased. This could pos-

sibly be due to the increased size of the cycloid which, with the periodic boundary

conditions, meant that the program had increasing difficulty in resolving the necessity

of satisfying the boundary conditions while honouring the requirement of the size of

the cycloid.
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Using one of the special values of
D

J
appeared to allow for the dismissal of concerns

about the dependence of simulated results on system size. The results, using periodic

boundary conditions, agreed with analytical ones for the polarization along [001]. As

long as an integer number of periods of the cycloid (with no fields) were completed

in the supercell, the numerical method was reliable in finding the ground state.

In regards to the polarization along [111], the simulated results appear to have

some oscillatory nature not found when the polarization is along [001]. Because the

length of the cycloids in the [111] configuration is not uniform, there are no special

values of
D

J
where there are an integer number of periods of the cycloid completed

within the supercell. Thus, there are no values which reliably agree with the analytical

results (see Equation (A.11)).

4.2 Competition Between Conical Cycloidal and

Homogeneous Ordering

The goal of the project was to understand under which conditions, the spin state

transitioned from cycloidal to homogeneous. When only a magnetic field is applied,

if the state is cycloidal, then the conical cycloid can represent the solution as it

has a component canted along the direction of the magnetic field whilst also having

a cycloid. The energy from this state was evaluated in Section 4.1. Below, the

homogeneous case is considered and then the two states are compared.

Consider the situation of B = B X̂ with no applied electric field or anisotropy:

B = B X̂, A = E = 0.

For homogeneous ordering, there is the antiferromagnetic component and a compo-

nent which point along the magnetic field direction:

S1,i = S
(

sin θ X̂ + cos θẐ
)
, (4.15)

S2,i = S
(

sin θ X̂− cos θẐ
)
. (4.16)

These spins are then evaluated in the standard Hamiltonian of Chapter 2.

Hhomogeneous =
∑
i

∑
δ

(
JS1,i · S2,i+δ +

[
D

{
Ẑ× (τ + δ)

aRh

}
+D′ Ẑ

]
· [S1,i × S2,i+δ]

)
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− gµB
∑
i

∑
η=1,2

(Sη,i ·B)

=
NS2

2

(
−6J cos 2θ +D sin 2θ

[
Ŷ × Ẑ

]
·
∑
δ

[τ + δ]

)
−NSgµBB sin θ

= −NS (3JS cos 2θ + gµBB sin θ) . (4.17)

The derivative of the energy with respect to θ is then taken to find the value of θ

which minimizes the energy.

∂Hhomogeneous

∂θ
= −NS (−6JS sin 2θ + gµBB cos θ)

= −NS cos θ (−12JS sin θ + gµBB) = 0 =⇒ sin θ =
gµBB

12JS
. (4.18)

Equation (4.18) is then substituted into Equation (4.17):

Ehomogeneous = −NS

(
3JS

[
1− 2

{
gµBB

12JS

}2
]

+
[gµBB]2

12JS

)

= −NJS2

(
3 +

1

24

[
gµBB

JS

]2)
. (4.19)

In Equation (4.12) the energy of a conical cycloid ground state was evaluated. Setting

D = 0 in this expression produces the same result as Equation (4.19). Hence, with no

Dzyaloshinskii-Moriya interaction, the cycloidal and the homogeneous cases produce

the same energy as one would expect.

Evaluating the conical cycloid case with non-zero D, a comparison of the energy

between the two states can be made to ascertain at what magnetic field value the

homogeneous energy is lower than that of the conical cycloid:

Ecc > Ehomogeneous

−NS2

(
2J +

√
D2 + J2 +

[gµBB]2

4S2
[
5J +

√
D2 + J2

]) > −NJS2

(
3 +

1

24

[
gµBB

JS

]2)
(
gµBB

2S

)2(
1

5J +
√
D2 + J2

− 1

6J

)
< J −

√
D2 + J2(

gµBB

2S

)2
6J − 5J −

√
D2 + J2

6J
(
5J +

√
D2 + J2

) < J −
√
D2 + J2
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Figure 4.2: Simulation results of energy per spin versus magnetic field (B ‖ X̂ and B ‖
Ŷ) compared with analytical conical cycloid and homogeneous cases for P ‖ [001].
D

J
=

2π

5
,
D′

J
= 0.60,

gµB
JS

= 0.317 T−1 and A = E = 0.

B2 > 6J
(

5J +
√
D2 + J2

)( 2S

gµB

)2

B2 > 24

5 +

√[
D

J

]2
+ 1

( JS

gµB

)2

(
B2
)
c

= 24

5 +

√[
D

J

]2
+ 1

( JS

gµB

)2

. (4.20)

With
D

J
=

2π

5
and

gµB
JS

= 0.318 T−1, as used in the simulations, the critical magnetic

field is

(
B2
)
c

= 24

5 +

√[
D

J

]2
+ 1

( JS

gµB

)2
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Figure 4.3: Simulation results of energy per spin versus magnetic field (B ‖ X̂ and B ‖
Ŷ) compared with analytical conical cycloid and homogeneous cases for P ‖ [111].
D

J
=

2π

5
,
D′

J
= 0.60,

gµB
JS

= 0.317 T−1 and A = E = 0.

=

24

(
5 +

√[
2π
5

]2
+ 1

)
(0.318 T−1)2

= 1.57× 103 T2.

Bc = 39.6 T.

Up until approximately 40 T, the conical cycloid is the lower energy state com-

pared to the homogeneous state with these values. Figure 4.2 shows the results of the

simulations for P ‖ [001]. The simulation results agreed with the analytical results.

Through 38 T, the conical cycloidal state was of lower energy for B ‖ X̂. For B ‖ Ŷ,

which should have the same magnetic response as B ‖ X̂, the conical cycloid was

favoured through 40 T. It should also be noted that at such high field values, the

homogeneous state is actually ferromagnetic, not antiferromagnetic. As to why there

was a descrepancy between B ‖ X̂ and B ‖ Ŷ, it may be a case that the energies of
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the states were quite close and the program in one instance was able to distinguish

the correct ground state and could not in the other.

In Figure 4.3 the simulated results for P ‖ [111] do not match the analytical one

(Equation (A.10)) as well as the ones for P ‖ [001] in Figure 4.2. They are still mostly

below the analytical energy for homogeneous ordering, suggesting that the state is

some type of modified conical cycloid.

4.3 Electric Field-Induced Anisotropy

As noted in Section 2.6, an applied electric field in an appropriate direction and of

sufficient strength will transform a cycloidal state into a homogeneous one. To see

how this works, several examples have been worked out below. From Reference [9],

for E = E⊥

(
cosψ X̂ + sinψ Ŷ

)
,

HE =
ξE⊥

2

∑
i

∑
η=1,2

(
cosψ S2

x;η,i + cos

[
ψ − 2π

3

]
S2
y;η,i + cos

[
ψ − 4π

3

]
S2
z;η,i

)
.

(4.21)

In Sm;η,i the index m = x, y, z refers to the Cartesian coordinates, not the rhombo-

hedral. From here, examples can be evaluated for electric fields in certain directions.

For E = E⊥X̂, ψ = 0:

HE =
ξE⊥

2

∑
i

∑
η=1,2

(
cos [0]S2

x;η,i + cos

[
−2π

3

]
S2
y;η,i + cos

[
−4π

3

]
S2
z;η,i

)

=
ξE⊥

2

∑
i

∑
η=1,2

(
S2
x;η,i −

S2
y;η,i + S2

z;η,i

2

)
. (4.22)

It is energetically unfavourable to have spins having an x-component when the electric

field is applied in the X̂ direction. It is favourable to have spins having y- and z-

components, but as illustrated in Reference [9], a cycloid in the y-z plane can both

reduce the electric field anisotropy and the Dzyaloshinskii-Moriya interaction, so no

transition to homogeneous ordering occurs.

For E = −E⊥X̂, ψ = π:

HE =
ξE⊥

2

∑
i

∑
η=1,2

(
cos [π]S2

x;η,i + cos
[π

3

]
S2
y;η,i + cos

[
−π

3

]
S2
z;η,i

)
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=
ξE⊥

2

∑
i

∑
η=1,2

(
−S2

x;η,i +
S2
y;η,i + S2

z;η,i

2

)
. (4.23)

Spins will form in a homogeneous antiferromagnetic configuration with spins parallel

to x̂ when E⊥ = −E⊥X̂. This is the electric field direction that all simulations used.

For E = E⊥Ŷ, ψ =
π

2
:

HE =
ξE⊥

2

∑
i

∑
η=1,2

(
cos
[π

2

]
S2
x;η,i + cos

[
−π

6

]
S2
y;η,i + cos

[
−5π

6

]
S2
z;η,i

)

=

√
3ξE⊥
4

∑
i

∑
η=1,2

(
S2
y;η,i − S2

z;η,i

)
. (4.24)

The anisotropy here, compels the system into a homogeneous antiferromagnet with

spins pointing along the ẑ direction for a sufficient field strength.

For E = −E⊥Ŷ, ψ =
3π

2
:

HE =
ξE⊥

2

∑
i

∑
η=1,2

(
cos

[
3π

2

]
S2
x;η,i + cos

[
7π

6

]
S2
y;η,i + cos

[
5π

6

]
S2
z;η,i

)

=

√
3ξE⊥
4

∑
i

∑
η=1,2

(
S2
z;η,i − S2

y;η,i

)
. (4.25)

The spins want to align along the ŷ direction to form a homogeneous antiferromagnet

for adequate electric field strength. Figure 4.4 displays the entire electric field phase

diagram calculated using continuum field theory [9].

As with the magnetic field, the cycloidal and homogeneous cases can be analyzed

and the critical electric field can be determined. Consider the case with no magnetic

field and no single-ion anisotropy. The homogeneous state will be assessed first:

A = B = 0,E⊥ = −E⊥ X̂

S1,i = S

(
− 2√

6
X̂ +

1√
3
Ẑ

)
(4.26)

S2,i = S

(
2√
6
X̂− 1√

3
Ẑ

)
. (4.27)
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Figure 4.4: Electric field phase diagram. From Reference [9].

The spins can then be placed into the Hamiltonian:

Hhomogeneous =
∑
i

∑
δ

(
JS1,i · S2,i+δ +

[
D

{
Ẑ× (τ + δ)

aRh

}
+D′ Ẑ

]
· [S1,i × S2,i+δ]

)
− ξ

4

∑
i

∑
η=1,2

(
E⊥ ·

[{(
SYη,i
)2 − (SXη,i)2} X̂ + 2SXη,iS

Y
η,iŶ

]
+ 2
√

2E⊥ ·
[
SXη,iX̂ + SYη,iŶ

]
SZη,i

)
=− 3JNS2 − ξE⊥S

2

4

∑
i

∑
η=1,2

2 + 4

3

=−NS2

(
3J +

ξE⊥
2

)
. (4.28)

Moving on to the cycloidal case, the spin states are

S1,i = S
(

sin [Q ·R1,i] X̂ + cos [Q ·R1,i] Ẑ
)
, (4.29)

S2,i = −S
(

sin [Q ·R2,i] X̂ + cos [Q ·R2,i] Ẑ
)
. (4.30)
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This can then be once again placed into the Hamiltonian,

Hcycloid =
∑
i

∑
δ

(
JS1,i · S2,i+δ +

[
D

{
Ẑ× (τ + δ)

aRh

}
+D′ Ẑ

]
· [S1,i × S2,i+δ]

)
− ξ

4

∑
i

∑
η=1,2

(
E⊥ ·

[{(
SYη,i
)2 − (SXη,i)2} X̂ + 2SXη,iS

Y
η,iŶ

]
+ 2
√

2E⊥ ·
[
SXη,iX̂ + SYη,iŶ

]
SZη,i

)
=
NS2

2

(
−J
∑
δ

cos [Q · {τ + δ}]

+
D

aRh

[
Ŷ × Ẑ

]
·
∑
δ

[τ + δ] sin [Q · {τ + δ}]− ξE⊥
4

)

=
NS2

2

(
−J
∑
δ

cos [Q · {τ + δ}] +
D

aRh
X̂ ·
∑
δ

[τ + δ] sin [Q · {τ + δ}]

− ξE⊥
4

)
=−NS2

(
J [2 + cos {QaRh}] +D sin [QaRh] +

ξE⊥
8

)
. (4.31)

Q = −Q X̂ gives the lowest energy. The derivative with respect to Q can be taken of

the Hamiltonian to find the value of Q which minimizes the energy.

∂Hcycloid

∂Q
= −NS2aRh (−J sin [QaRh] +D cos [QaRh]) = 0 =⇒ tan (QaRh) =

D

J
.

(4.32)

This leads to

sin (QaRh) =
D√

D2 + J2
, (4.33)

cos (QaRh) =
J√

D2 + J2
. (4.34)

These expressions can be inserted into the Hamiltonian:

Ecycloid =−NS2

(
J

[
2 +

J√
D2 + J2

]
+

D2

√
D2 + J2

+
ξE⊥

8

)
=−NS2

(
2J +

√
D2 + J2 +

ξE⊥
8

)
. (4.35)
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Now, the energies of the cycloidal and homogeneous states can be analyzed to see at

what value of electric field it is preferable for the spins to align homogeneously:

Ecycloid > Ehomogeneous

−NS2

(
2J +

√
D2 + J2 +

ξE⊥
8

)
> −NS2

(
3J +

ξE⊥
2

)
3ξE⊥

8
>
√
D2 + J2 − J

E⊥ >
8
(√

D2 + J2 − J
)

3ξ

E⊥ >

8

(√[
D
J

]2
+ 1− 1

)
3ξ
J

(E⊥)c =

8

(√[
D
J

]2
+ 1− 1

)
3ξ
J

. (4.36)

With
D

J
=

2π

5
and

ξ

J
= 5.77× 10−5 cm V−1,

(E⊥)c =

8

(√[
2π
5

]2
+ 1− 1

)
3 (5.77× 10−5 cm V−1)

=2.78× 104 V cm−1.

This value for the critical field is consistent with what was found during simu-

lations as can be seen in Figure 4.5. The transition occurs between 2.5 and 3.0 ×
104 V cm−1 when 〈‖Q‖〉 falls below 0.4. Figure 4.6 shows the transition for the po-

larization along [111]. Here, the transition occurs between 3.5 and 4.0× 104 V cm−1,

although the calculations carried out in Appendix A suggest that the transition should

happen at lower fields. Part of the discrepancy may be due to the varying cycloid

length throughout the supercell.

It should be noted that the analytical calculation of Ecycloid presented here is

the simplest possibe approximation. In reality, the cycloid ground state will become

anharmonic as a function of the electric field and the Q of the cycloid will depend on

the electric field. This effect gives a higher critical field, as shown in the numerical
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Figure 4.5: 〈‖Q‖〉 versus E ‖ −X̂. A = 0,
D

J
=

2π

5
,
D′

J
= 0.60,

ξ

J
= 5.77 × 10−5 V

cm−1 and no magnetic field with P ‖ [001].

simulations.

4.4 Magnetic Field-Induced Homogeneity

It was seen in Section 4.2 that the application of a magnetic field along B ‖ X̂ or

B ‖ Ŷ in the absence of an electric field did not force the system into a homogeneous

configuration until the magnetic field strength was near 40 T.

The magnetization per spin and its modulus were measured in the simulations.

They were defined as,

〈M〉 =
1

N

∑
i

∑
η=1,2

Sη,i, (4.37)

‖〈M〉‖ =
√
M2. (4.38)

The magnetization was evaluated with spins of unit value (S = 1). The modulus,

thus had a range of zero to one. As the magnetic field increased, the magnetization

increased, as expected. The progress of the magnetization as the field strength in-
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Figure 4.6: 〈‖Q‖〉 versus E ‖ −X̂. A = 0,
D

J
=

2π

5
,
D′

J
= 0.60,

ξ

J
= 5.77 × 10−5 V

cm−1 and no magnetic field with P ‖ [111].

creased also served, along with 〈‖Q‖〉, as a proxy to determine the transition from

cycloidal to homogeneous ordering. At the transition the magnetization (and 〈‖Q‖〉)
had a sudden increase (decrease) in value. This is seen in Figures 4.11 where as BZ

is increased the magnetization has a linear-like increase and 〈‖Q‖〉 for most points is

constant. However, at BZ = 15 T there is a jump in the magnetization and 〈‖Q‖〉
falls below 0.4, the threshold value for transitions from cycloidal to homogeneous or-

dering. This is with the polarization along [001]. With the polarization along [111],

Figure 4.12, a similar picture emerges, although the transition occurs at BZ = 12 T.

The phase transition from cycloidal to homogeneous ordering appears here to be

discontinuous and thus, first order. However, the finite system size and the gap be-

tween data makes it difficult to say for certain. Perhaps 〈‖Q‖〉 is continuous through

the transition and the small system size is merely incapable of capturing that. Also,

we have no theory for how the cycloid is arranged when the magnetic field is parallel

to the polarization and thus cannot say whether the cycloid form permits 〈‖Q‖〉 to

take continuously decreasing values as 〈‖Q‖〉 → 0.

The Zeeman energy details how the application of a magnetic field affects the spin

configuration. It allows one to see what the favoured direction of alignment for the
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Figure 4.7: 〈‖Q‖〉 and magnetization modulus versus BX . A = 0,
D

J
=

2π

5
,
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JS

= 0.318 T−1 and no electric field (P ‖ [001]).

spins is. For B ‖ X̂,

HZ =− gµB
∑
i

∑
η=1,2

Sη,i ·B

=− gµBB
∑
i

∑
η=1,2

SXη,i. (4.39)

Obviously, B ‖ X̂, favors the canting of S ‖ X̂, so that the SY and SZ components

can form a cycloid. Such a canted cycloid state is quite stable up to B ≈ 40 T.

Figures 4.9 and 4.10 show similar results for B ‖ Ŷ as Figures 4.7 and 4.8 show for

B ‖ X̂. In practise, this means that such a transition would be very hard to observe

in the laboratory.

With B ‖ Ẑ the Zeeman interaction wants spins pointing along the positive Ẑ

direction. This is incompatible with the cycloid as the cycloid must have a component

along Ẑ. For the simulations (Figures 4.11 and 4.12), the system was able to transition

at approximately 15 T when P ‖ [001] and 12 T when P ‖ [111].
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Figure 4.8: 〈‖Q‖〉 and magnetization modulus versus BX . A = 0,
D

J
=

2π

5
,
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J
=
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gµB
JS

= 0.318 T−1 and no electric field (P ‖ [111]).

4.5 Electric Field-Magnetic Field Phase Diagrams

Presented here are the electric field-magnetic field phase diagrams for E ‖ −X̂ and

B along one of the rhombohedral directions which indicate whether for the given

applied fields, the simulated BFO sample had cycloidal or homogeneous spin ordering.

The parameters for all of the simulations were A = 0,
D

J
=

2π

5
,
D′

J
= 0.60 and

ξ

J
= 5.77× 10−5 cm V−1.

It was earlier stated that for B = 0, the field strength required to have the BFO

sample be homogeneous for E ‖ −X̂ was E⊥ = (2.5–3.0)×104 V cm−1 when P ‖ [001].

For E⊥ = 0, the magnetic field needed to induce homogeneous ordering for B ‖ X̂ or

B ‖ Ŷ was B ≈ 40 T. For B ‖ Ẑ, the transition was much lower in the range of 15 T.

When P ‖ [111], the magnetic field need to transform the supercell to homoge-

neous ordering, with no electric field applied, was 12 T. With no magnetic field, the

electric field needed to transform the system to homogeneous ordering was EX =

−4.0× 104 V cm−1.

When electric and magnetic fields were simultaneously applied to the system,

there was interplay which in some instances inhibited the transition to homogeneous
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Figure 4.9: 〈‖Q‖〉 and magnetization modulus versus BY . A = 0,
D
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=
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5
,
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JS

= 0.318 T−1 and no electric field (P ‖ [001]).

ordering and in others facilitated it.

For the EX−BX phase diagram with P ‖ [001], applying a magnetic field inhibited

the transition to homogeneous ordering. In Figure 4.13 at strong electric and weak

magnetic field (upper left of diagram) values the system is homogeneous. Along a

constant electric field, as the magnetic field strength is increased the system returns to

cycloidal. With increasing electric field, larger magnetic field strengths are needed to

compel the system to return to cycloidal ordering, but for all field strengths explored,

it did eventually return. With P ‖ [111], Figure 4.14, the magnetic field competes

against homogeneous ordering as well.

With the EX − BY phase diagram with the polarization along [001], the homo-

geneous ordering appears to be mainly independent of the magnetic field (see Fig-

ure 4.15). At EX
⊥ = −3.0 × 104 V cm−1 there is altering between homogeneous and

cycloidal ordering, but these may have been difficult cases for the computer programs

with the homogeneous and cycloidal energies being rather close. At stronger electric

fields, the system is always homogeneous. When the polarization is changed to along

[111], the fields no longer seem independent of each other. The magnetic field al-

ternates between supporting and suppressing the homogeneous ordering. For certain
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field combinations, the magnetic field aids the transition to homogeneous ordering

only to work against it as the strength of the field is increased.

In some regards, EX − BZ phase diagram for P ‖ [001] is the opposite case to

the EX −BX phase diagram with P ‖ [001]. Looking at Figure 4.17, the application

of a magnetic field helped to facilitate the transition to homogeneous ordering. At

EX
⊥ = 0, it required a BZ = 15 T field for the system to transition from cycloidal

to homogeneous. At EX
⊥ = −1.0 × 104 V cm−1, a 13 T field was able to perform the

task. As the electric field strength increased, the magnetic field needed to induce a

transition decreased. With the polarization along [111], Figure 4.18, the transition

to homogeneous ordering is also aided by the combination of electric and magnetic

fields. With just a magnetic field applied, the transition occurs at 12 T. Used alone,

a stronger electric field is necessary for the system to be homogeneous than when

P ‖ [001] (EX = −4.0× 104 V cm−1). This results in the homogeneous region of the

[111] phase diagram being taller and narrower than that of the [001] diagram.
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Figure 4.13: EX −BX phase diagram. E ‖ −X̂ and B ‖ X̂. (P ‖ [001]).
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Figure 4.14: EX −BX phase diagram. E ‖ −X̂ and B ‖ X̂ (P ‖ [111]).
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Figure 4.15: EX −BY phase diagram. E ‖ −X̂ and B ‖ Ŷ (P ‖ [001]).
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Figure 4.16: EX −BY phase diagram. E ‖ −X̂ and B ‖ Ŷ (P ‖ [111]).
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Figure 4.17: EX −BZ phase diagram. E ‖ −X̂ and B ‖ Ẑ (P ‖ [001]).
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Chapter 5

Analysis and Conclusions

The work reported here details how transformations between cycloidal and homoge-

neous ordering in BFO occurs when electric and magnetic fields are applied. It should

be emphasized that large effective magnetic fields can be achieved by growing a fer-

romagnet on top of BFO, as done in Reference [37]. Thus, our work provides insight

in composite structures as well. It was shown that in some instances the fields work

cooperatively to destroy the cycloid, such as in Figures 4.17 and 4.18, the EX − BZ

phase diagrams. In other cases, such as the EX − BX phase diagrams (Figures 4.13

and 4.14), the fields interfere and prevent homogeneous ordering from being achieved.

A goal of this work, was to understand how to best switch the BFO spin structure

from cycloidal to homogeneous. Obviously, situations where the application of fields,

magnetic and electric, complement one another is the best scenario for destroying the

cycloid. The EX −BZ phase diagrams, Figures 4.17 and 4.18, show a combination of

electric and magnetic field where this occurs. Equation (4.23) showed that an electric

field in the -X̂ direction favours spins aligned along the ±x̂ directions. The Zeeman

energy in that case,

HZ =− gµB
∑
i

∑
η=1,2

Sη,i ·B

=− gµBB
∑
i

∑
η=1,2

SZη,i

=− gµBB√
3

∑
i

∑
η=1,2

(Sx;η,i + Sy;η,i + Sz;η,i) , (5.1)

showed that a magnetic field along the Ẑ direction favours spins along the positive x̂,
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ŷ or ẑ directions. When combined, both the electric field and Zeeman interactions can

be partially satisfied. Homogeneous, antiferromagnetic ordering along the x̂ direction

will allow the electric field term to lower the energy of the system. Canting in the

ŷ + ẑ direction will also allow the Zeeman interaction to further reduce the system’s

energy.

This happy, cooperative situation does not arise when an electric field in the -X̂

direction is combined with a magnetic field in the X̂ or Ŷ direction. As seen in

Equations (4.20) and (A.12), for the given parameters the magnetic field will not

induce a transition to homogeneous ordering until near 40 T. For B ‖ X̂, it is seen

in Figures 4.13 and 4.14 that larger magnetic field values pushed the system from

homogeneous ordering to cycloidal. A magnetic field in the X̂ direction favours spins

aligned along the positive ŷ or ẑ or along the negative x̂ direction:

HZ =− gµB
∑
i

∑
η=1,2

Sη,i ·B

=− gµBB
∑
i

∑
η=1,2

SXη,i

=
gµBB√

6

∑
i

∑
η=1,2

(2Sx;η,i − Sy;η,i − Sz;η,i) . (5.2)

The electric field compelled spins to align along the x̂ direction in an antiparallel

fashion, but B ‖ X̂ wants spins aligned along the positive x̂ direction, moreso than

B ‖ Ẑ did. This heightened competiton between the electric and magnetic field for

domain over the alignment of spins in the x̂ would appear to lead systems that at

high E⊥ and low B were homogeneous to become cycloidal. The magnetic field is not

strong enough to induce a spin flop, but sufficient that the cycloid is energetically

preferable.

With B ‖ Ŷ, the Zeeman energy is

HZ =− gµB
∑
i

∑
η=1,2

Sη,i ·B

=− gµBB
∑
i

∑
η=1,2

SYη,i

=
gµBB√

2

∑
i

∑
η=1,2

(Sy;η,i − Sz;η,i) . (5.3)

The magnetic field would like the spins along the positive ẑ direction or the negative
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ŷ direction. With E ‖ −X̂, the electric field wants spins along the ±x̂ directions. It

also does not want spins along the positive ẑ direction or the negative ŷ direction.

B ‖ Ŷ does not interact with the x-component of the spins, so it does not mind spins

in the ±x̂ directions. Figure 4.15 suggests that the two fields are nearly independent

when P ‖ [001]. The magnetic field, which with no electric field, behaves like B ‖ X̂,

is too weak below 40 T to induce homogeneity. The electric field induces homogeneity

at strength somewhat above 2.5× 104 V cm−1. The magnetic field applied above the

critical field does not aid its ability to induce homogeneity, but, also, does not hinder

it to a great enough extent that there is a reversion to cycloidal ordering.

It should be noted that the simulations presented here were all performed with

no single-ion anisotropy. With single-ion anisotropy included, the situation is dif-

ferent [29]. There would be transitions to homogeneous ordering at lower levels of

magnetic field as there is already an interaction working towards that goal in the

energy. The choice to run simulations without the presence of anisotropy was made

in an attempt to witness the outcome of the most simplistic case when magnetic and

electric fields were both present.

The multiferroic nature of BFO is not dependent on the presence of the cycloid.

The Fe3+ ion is responsible for the antiferromagnetism found in the material and

the Bi3+ ion is primarily responsible for the ferroelectricity. The ferroelectricity and

antiferromagnetism persist even when the system is in the homogeneous configuration.

The spin-current interaction, responsible for the cycloid, which, with no field present,

induces the cycloid, loses the competition with other interactions when the electric

and magnetic fields reach critical values and the crystal undergoes a transformation

to homogeneous ordering. This does not destroy the polarization responsible for the

spin-current interaction. Merely, other interactions at the critical field values have a

greater influence on the composition of the system.

Whilst the transformation from cycloidal to homogeneous ordering is necessary to

read out the ferromagnetism found in BFO, the spin-current interaction, responsible

for the ability to electrically switch the direction of the cycloid, no longer dominates.

Another type of magnetoelectric coupling is found in its place. The electric field-

spin coupling allows for the direction of the ferromagnetism to be switched. How the

cycloid is unwound affects the crystal’s spin structure. As seen in Figure 4.4, E⊥ ‖ −X̂
will bring about homogeneous ordering with canted spins along x̂. E⊥ ‖ −Ŷ will cause

spins to align along ŷ and E⊥ ‖ Ŷ will cause spins to align along ẑ. The three different

spin orientations will induce weak ferromagnetism in three different directions. Thus,



61

changing the electric field direction will change the direction of the non-zero weak

ferromagnetism.

These phase diagrams and the work done to compose them provide insight into

the interaction of magnetic and electric fields in terms of controlling the spin structure

of BFO. While there has been work done to assess the role of the magnetic field [29,

23, 26, 8, 27] and the electric field [9] play in determining the spin structure of BFO,

the two effects have not been studied together before. Analytical results were also

derived from the model Hamiltonian and agreed with the numerical ones.

This work was intended to produce electric field-magnetic field phase diagrams

which denoted when the spin structure of BFO was cycloidal and when it was homo-

geneous. These diagrams were presented in Chapter 4 in the form of Figures 4.13,

4.14, 4.15, 4.16, 4.17 and 4.18. They showed that with an electric field in the −X̂ di-

rection and a magnetic field in the X̂ direction, the magnetic field opposed the electric

field in transforming cycloidally ordered systmes into homogeneously ordered ones.

With the magnetic field in the Ŷ direction, the fields were seemingly independent of

each other when P ‖ [001] and when P ‖ [111], the magnetic field worked towards

or against homogeneous ordering depending on the field value combinations. For a

magnetic field in the Ẑ direction, the combination of fields reduced the field strength

needed to transform the field from cycloidal to homogeneous.

To produce the phase diagrams, a model Hamiltonian was developed which in-

cluded an interaction which coupled the spins of the system to an external magnetic

field (the Zeeman interaction) and a term which coupled an external electric field

to the spins due to spin-orbit coupling. A computer algorithm, based on steepest

descent methods, was constructed to numerically calculate the energy of a system

of size 20 × 20 × 20 spins. Fast Fourier Transforms were created from the data to

determine whether the system was cycloidal or homogeneous for the given applied

magnetic and electric fields. These results were compared with analytical ones and

general agreement was found between them.

The 20 × 20 × 20 system used here is miniscule relative to that of an actual

BFO crystal. The period of the cycloid in BFO is 620 Å and a lattice parameter of

nearly 4 Å [12]. That means that a single period of the cycloid runs over many more

cells than those of the simulations presented here. To try and replicate the physics

happening in such a large system is challenging. Using systems of sizes larger than

the one employed here and comparing simulated results is an approach that could

be used in the future to verify that the results presented here carry forward with



62

increasing size.

All of the simulations presented here were done at 0 K with no consideration given

to thermal fluctuations. Considering that the interest in BFO is partially driven by it

been not only a multiferroic, but a room temperature multiferroic, it would be helpful

to conduct simulations at finite temperatures to see how results change when under

more practical conditions.

The results presented in this report provide insight into how magnetic fields and

electric fields, including the ones coming from heterostructures (such as the ferro-

magnet CoFe grown on top of BFO [37]), interact in regards to transforming the spin

ordering of a BFO system. They highlight what ways are optimal in transforming

BFO into a homogeneously-ordered system with order parameter M that does not

average out over short distances. The goal to exploit the weak ferromagnetism of

room temperature multiferroic bismuth ferrite in some sort of memory element may

well be alive.
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Appendix A

Energy for Polarization along [111]

Presented here are the calculations for the energy with different spin configurations

when the polarization is along [111]. In some instances they differ from the energy

when P ‖ [001] due to Q̂ and δ + τ no longer being either perpendicular or parallel

to each other as is the case when P ‖ [001].

Returning to the conical cycloid with the conditions as in Section 4.1:

B = B X̂, A = E = 0.

Again, the two sublattices are:

S1,i = S
(

sin θ X̂ + cos θ
[
sin {Q ·R1,i} Ŷ + cos {Q ·R1,i} Ẑ

])
, (A.1)

S2,i = S
(

sin θ X̂− cos θ
[
sin {Q ·R2,i} Ŷ + cos {Q ·R2,i} Ẑ

])
. (A.2)

The angle θ is the angle between the spin vectors and the YZ-plane. This solution is

put into the Hamiltonian and simplified. Taking Q = Q Ŷ to minimize the energy,

Hcc =
NS2

2

(
J

[
6 sin2 θ − cos2 θ

∑
δ

cos {Q · (τ + δ)}

]

− D cos2 θ

aRh
Ŷ ·

∑
δ

[τ + δ] sin [Q · {τ + δ}]

)
−NSgµBB sin θ

=
NS2

2

(
J

[
6 sin2 θ − cos2 θ

{
2 + 4 cos

(
QaRh√

2

)}]
− 4√

2
D cos2 θ sin

[
QaRh√

2

])
−NSgµBB sin θ
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= NS2

(
3J sin2 θ − cos2 θ

[
J + 2J cos

{
QaRh√

2

}
+
√

2D sin

{
QaRh√

2

}]
− gµBB sin θ

S

)
. (A.3)

Q can be optimized:

∂Hcc

∂Q
= −NS

2 cos2 θaRh√
2

(√
2D cos

[
QaRh√

2

]
− 2J sin

[
QaRh√

2

])
= 0

=⇒ tan

(
QaRh√

2

)
=

D√
2J
. (A.4)

Equation (A.4) can be used to define sin

(
QaRh√

2

)
and cos

(
QaRh√

2

)
:

sin

(
QaRh√

2

)
=

D√
D2 + 2J2

, (A.5)

cos

(
QaRh√

2

)
=

2J√
2D2 + 4J2

. (A.6)

These can then be replaced in the Hamiltonian,

Hcc = NS2

(
3J sin2 θ − cos2 θ

[
J +

4J2

√
2D2 + 4J2

+
2D2

√
2D2 + 4J2

]
− gµBB sin θ

S

)
= NS2

(
3J sin2 θ − cos2 θ

[
J +
√

2D2 + 4J2
]
− gµBB sin θ

S

)
= NS2

(
−J −

√
2D2 + 4J2 + sin2 θ

[
4J +

√
2D2 + 4J2

]
− gµBB sin θ

S

)
(A.7)

The derivative of Hcc with respect to θ can then be taken to minimize the energy:

∂Hcc

∂θ
= NS2 cos θ

(
2 sin θ

[
4J +

√
D2 + J2

]
− gµBB

S

)
= 0

=⇒ sin θ =
gµBB

2S
(
4J +

√
2D2 + 4J2

) . (A.8)

This is then substituted into the energy term:

Hcc = NS2

−J −√2D2 + 4J2 +

[
gµBB

2S
{

4J +
√

2D2 + 4J2
}]2 [4J +

√
2D2 + 4J2

]
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− [gµBB]2

2S2
[
4J +

√
2D2 + 4J2

])

= −NS2

(
J +
√

2D2 + 4J2 +
[gµBB]2

4S2
[
4J +

√
2D2 + 4J2

]) . (A.9)

The energy per spin is

Hcc

JNS2
= −

1 + 2

√
1 +

1

2

[
D

J

]2
+

[
gµBB

2JS

]2
1

4 + 2
√

1 + 1
2

[
D
J

]2
 . (A.10)

If there is no magnetic field then the energy per spin is

Hcc

JNS2
= −

1 + 2

√
1 +

1

2

[
D

J

]2 . (A.11)

This is the lower line plotted in Figure 4.1. It is lower in energy than when the

polarization is along [001] because four spin-current interaction terms contribute to

it versus the two in the P ‖ [001] case.

The energy is the same irrespective of polarization direction when the spin are in

a homogeneous configuration as the Dzyaloshinskii-Moriya interaction is zero when

spins are antiparallel. A comparison can be made between the conical cycloid and the

homogeneous energies to see when the transition to homogeneous ordering occurs.

Ecc > Ehomogeneous

−NS2

(
J +
√

2D2 + 4J2 +
[gµBB]2

4S2
[
4J +

√
2D2 + 4J2

]) > −NJS2

(
3 +

1

24

[
gµBB

JS

]2)
(
gµBB

2S

)2(
1

4J +
√

2D2 + 4J2
− 1

6J

)
< 2J −

√
2D2 + 4J2(

gµBB

2S

)2
6J − 4J −

√
2D2 + 4J2

6J
(
4J +

√
2D2 + 4J2

) < 2J −
√

2D2 + 4J2

B2 > 6J
(

4J +
√

2D2 + 4J2
)( 2S

gµB

)2

B2 > 48

2 +

√
1 +

1

2

[
D

J

]2( JS

gµB

)2
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(
B2
)
c

= 48

2 +

√
1 +

1

2

[
D

J

]2( JS

gµB

)2

. (A.12)

With
D

J
=

2π

5
and

gµB
JS

= 0.318 T−1, as used in the simulations, the critical magnetic

field is

(
B2
)
c

= 48

2 +

√
1 +

1

2

[
D

J

]2( JS

gµB

)2

= 48

2 +

√
1 +

1

2

[
2π

5

]2(0.318 T−1
)−2

= 1.58× 103 T2.

Bc = 39.8 T.

The critical magnetic field is 39.8 T which is slightly higher than what it is in the

[001] configuration.

The cycloidal case for an applied electric field can also be investigated:

S1,i = S
(

sin [Q ·R1,i] Ŷ + cos [Q ·R1,i] Ẑ
)
, (A.13)

S2,i = −S
(

sin [Q ·R2,i] Ŷ + cos [Q ·R2,i] Ẑ
)
. (A.14)

Once more, this is put into the Hamiltonian,

Hcycloid =
NS2

2

(
−J
∑
δ

cos [Q · {τ + δ}]

+
D

aRh

[
X̂× Ẑ

]
·
∑
δ

[τ + δ] sin [Q · {τ + δ}] +
ξE⊥

4

)

=
NS2

2

(
−J
∑
δ

cos [Q · {τ + δ}] +
D

aRh
Ŷ ·

∑
δ

[τ + δ] sin [Q · {τ + δ}]

+
ξE⊥

4

)
= −NS2

(
J

[
1 + 2 cos

{
QaRh√

2

}]
+
√

2D sin

[
QaRh√

2

]
− ξE⊥

8

)
. (A.15)

Q = Q Ŷ gives the lowest energy. The derivative with respect to Q can be taken of
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the Hamiltonian to find the value of Q which minimizes the energy.

∂Hcycloid

∂Q
= −NS

2aRh√
2

(√
2D cos

[
QaRh√

2

]
− 2J sin

[
QaRh√

2

])
= 0

=⇒ tan

(
QaRh√

2

)
=

D√
2J
. (A.16)

From this,

sin

(
QaRh√

2

)
=

D√
D2 + 2J2

, (A.17)

cos

(
QaRh√

2

)
=

2J√
2D2 + 4J2

. (A.18)

Placing these terms in the Hamiltonian,

Ecycloid = −NS2

(
J

[
1 +

4J√
2D2 + 4J2

]
+

2D2

√
2D2 + 4J2

− ξE⊥
8

)
= −NS2

(
J +
√

2D2 + 4J2 − ξE⊥
8

)
. (A.19)

The homogeneous energy is unchanged from Equation (4.28) as the Dzyaloshinskii-

Moriya interaction does not contribute as the spins are antiparallel. Now, the energies

of the cycloidal and homogeneous states can be analyzed to see at what value of

electric field it is preferable for the spins to align homogeneously:

Ecycloid > Ehomogeneous

−NS2

(
J +
√

2D2 + 4J2 − ξE⊥
8

)
> −NS2

(
3J +

ξE⊥
2

)
√

2D2 + 4J2 < 2J +
5ξE⊥

8

E⊥ >
8
(√

2D2 + 4J2 − 2J
)

5ξ

E⊥ >

16

(√
1 + 1

2

[
D
J

]2 − 1

)
5ξ
J

(E⊥)c =

16

(√
1 + 1

2

[
D
J

]2 − 1

)
5ξ
J

. (A.20)
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With
D

J
=

2π

5
and

ξ

J
= 5.77× 10−5 cm V−1,

(E⊥)c =

16

(√
1 + 1

2

[
2π
5

]2 − 1

)
5 (5.77× 10−5 cm V−1)

= 1.87× 104 V cm−1.

The critical electric field is 1.87× 104 V cm−1.
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Appendix B

Additional Results

Additional results which were omitted from the main body of the thesis have been

included in this appendix. These results are with the polarization along the [001]

direction.

Figure B.1 shows a collection of projections of the spins from two simulations.

One simulation was with BZ = 10 T and the other with BZ = 20 T. There were no

other applied fields for these simulations. Other parameters for the simulations were:

A = 0;
D

J
=

2π

5
; and

D′

J
= 0.60. With the transition from cycloidal to homogeneous

ordering at 15 T, these simulations show the system in both configurations. In the

projections, all spins start at the origin.

At BZ = 10 T, for all three projections (in the XY-, XZ- and YZ-planes) the

spins are distributed around the plane. It should be noted that the images are the

projections of 8000 spins onto a plane. A random collection of spins would have be

evenly spread out around the plane. These spins notably only take a few positions,

indicative of a repeating structure which, in this case, is the cycloid.

At BZ = 20 T, the cycloid is clearly eliminated. All spins belonging to the same

sublattice are found in the same position. The spins also have a net moment in the

positive Ẑ direction as one would anticipate with a magentic field applied in the Ẑ

direction.

Figure B.2 shows the FFT of one sublattice along the k̂Y direction as well as∥∥∥M̃k

∥∥∥ and
∥∥∥L̃k

∥∥∥ versus kY . Again, this is for BZ = 10 T and BZ = 20 T. The other

simulation parameters were A = E = 0;
D

J
=

2π

5
; and

D′

J
= 0.60.

When the system was at BZ = 10 T, there were two symmetric off-centre peaks

in the FFT. This, as shown in Chapter 3, is indicative of a cycloid. At BZ = 20 T,
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there is a large central peak, suggestive that the system transitioned to homogeneous

ordering. On the
∥∥∥M̃k

∥∥∥ versus kY and
∥∥∥L̃k

∥∥∥ versus kY plots, there are similar trends

with off-centre peaks at BZ = 10 T and a large central peak at BZ = 20 T. Peaks of∥∥∥L̃k

∥∥∥ are higher than that of
∥∥∥M̃k

∥∥∥ at both BZ = 10 T and BZ = 20 T, indicating

that at both values of magnetic field, the system has more antiferromagnetic character

than ferromagnetic.

Figure B.3 shows the projection of the spins in the XY-, XZ- and YZ-planes when

no fields are applied. The conventional parameters were used in the simulation. There

is significant overlap of the spins of the two sublattices as in the projections the spins

of sublattice one cannot be seen as they are all covered by the spins of sublattice two.

The X-component of the spins is nearly negligible, which, along with the projections

in the other planes which have spins spread throughout, suggests that this is a cycloid

with Q = Ŷ.
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Figure B.1: A comparison of spin projections with BZ = 10 T and BZ = 20 T.

Projections are in the XY-, XZ- and YZ-planes. A = BX = BY = E = 0;
D

J
=

2π

5
;
D′

J
= 0.60.
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Figure B.2: FFT,
∥∥∥M̃k

∥∥∥ and
∥∥∥L̃k

∥∥∥ versus kY for BZ = 10 T and BZ = 20 T.

A = BX = BY = E = 0;
D

J
=

2π

5
;
D′

J
= 0.60.
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Figure B.3: Spin projections with no applied fields. Projections are in the XY-, XZ-
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D
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=
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5
;
D′

J
= 0.60.
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