
Clearing Contamination in Large Networks

by

Michael Simpson

B.Sc., University of Victoria, 2011

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

c© Michael Simpson, 2014

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Clearing Contamination in Large Networks

by

Michael Simpson

B.Sc., University of Victoria, 2011

Supervisory Committee

Dr. Alex Thomo, Co-Supervisor

(Department of Computer Science)

Dr. Venkatesh Srinivasan, Co-Supervisor

(Department of Computer Science)

iii

Supervisory Committee

Dr. Alex Thomo, Co-Supervisor

(Department of Computer Science)

Dr. Venkatesh Srinivasan, Co-Supervisor

(Department of Computer Science)

ABSTRACT

In this work, we study the problem of clearing contamination spreading through a

large network where we model the problem as a graph searching game. The problem

can be summarized as constructing a search strategy that will leave the graph clear

of any contamination at the end of the searching process in as few steps as possible.

We show that this problem is NP-hard even on directed acyclic graphs and provide

an efficient approximation algorithm. We experimentally observe the performance of

our approximation algorithm in relation to the lower bound on several large online

networks including Slashdot, Epinions and Twitter. The experiments reveal that in

most cases our algorithm performs near optimally.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

Acknowledgements ix

1 Introduction 1

1.1 Related Work . 4

2 Preliminaries 6

2.1 The Graph Searching Game . 6

2.2 Search-Time Lower Bound . 9

3 Hardness 12

3.1 NP-Hardness on DAGs . 12

4 Our Search Algorithm 18

4.1 Searching Digraphs . 18

4.2 Plank Algorithm . 20

v

5 Analysis 23

5.1 Approximation Bounds . 23

5.2 Comparison to Splitting Strategies 30

5.3 Decomposing a DAG . 38

6 Experiments 42

6.1 Online Networks . 43

6.2 Random DAGs . 48

7 Conclusion 50

Bibliography 51

vi

List of Tables

Table 5.1 List of possible merge operations. 39

vii

List of Figures

Figure 2.1 An example search strategy 7

Figure 3.1 An example search strategy with zero loss 13

Figure 5.1 A sample (a) B-section (b) R-section (c) D-section and (d) P -

section . 24

Figure 5.2 The (a) s = 4 case and (b) an example for s = 5. Notice, in

(a) any additional branches in the D-section would not incur a

loss of 2 given 4 searchers. In (b), we have s = 5 and k = 2.

The blue nodes are the initial s nodes which any strategy can

visit without loss in the first step which sets up subsequent steps

incurring a loss of 2. The green nodes are the s − 3 new nodes

visited in each step while the red nodes show how the last step

only requires 2 additional nodes to incur a loss of 2. 27

Figure 6.1 Wiki-Vote strategy lengths. 43

Figure 6.2 Wiki-Vote approximation ratios. 43

Figure 6.3 sign-slashdot dataset strategy lengths. 44

Figure 6.4 sign-slashdot approximation ratios. 44

Figure 6.5 sign-epinions dataset strategy lengths. 44

Figure 6.6 sign-epinions approximation ratios. 44

Figure 6.7 email-EU strategy lengths. 45

viii

Figure 6.8 email-EU approximation ratios. 45

Figure 6.9 higgs-retweet dataset strategy lengths. 45

Figure 6.10 higgs-retweet approximation ratios. 45

Figure 6.11 Wiki-Vote dataset sliding FVS. 47

Figure 6.12 sign-slashdot sliding FVS. 47

Figure 6.13 sign-epinions sliding FVS. 47

Figure 6.14 email-EU sliding FVS. 47

Figure 6.15 higgs-retweet sliding FVS. 47

Figure 6.16 Effect of increasing network size on the approximation ratio. . 48

Figure 6.17 Effect of increasing searchers on the approximation ratio. . . . 48

Figure 6.18 m = m0 = 2. 49

Figure 6.19 m = 2, m0 = 3. 49

Figure 6.20 m = 3, m0 = 6. 49

Figure 6.21 Barabási-Albert DAG plots. 49

ix

ACKNOWLEDGEMENTS

It has been my privilege to work closely with Drs. Venkatesh Srinivasan and Alex

Thomo. I have thoroughly enjoyed the opportunity to learn from their extensive

knowledge and experience; both their excitement for research and our many stimu-

lating conversations have greatly inspired me in my research and in life. Developing a

strong and thriving relationship with two outstanding mentors has been an altogether

enjoyable experience. I am very proud of what we have achieved together: thank you

both.

To my amazing friends who have supported me over the last few years, I am

indebted to you. Your patience and encouragement is greatly appreciated. Finally,

I would like to thank my loving family: Mom, Dad, Jake, Jess, and Terry. Your

unconditional belief in me has provided invaluable motivation that drives me every

day.

Chapter 1

Introduction

Contamination in a network may refer to information propagating through an online

social network, viruses spreading through a water network, sickness spreading though

a population, or a number of other situations. In particular, we are interested in

studying social networks as they allow for the widespread distribution of knowledge

and information in modern society. They are rapidly becoming a place where people

go to hear the news and discuss personal and social topics. In turn, the information

posted can spread quickly through the network eventually reaching a large audience,

especially so for influential users. However, information spread in a social network can

have either positive or negative effects. For example, posting about natural disasters

or warfare can either help or hinder other users depending on whether the information

is accurate or not. In other cases, the information can be strictly detrimental, such as

defamatory statements about private corporations or people and rumours negatively

affecting the financial markets. Thus, since many people today learn of news or

events online it is important to have tools to eliminate, not just minimize, the effects

of disinformation. Previous work has focused on the task of limiting the spread

of misinformation [7, 22, 2, 8] while we study the stronger model of eliminating

2

disinformation, or any kind of contamination, from a general network.

For a contaminated network, we model the problem in the context of graph search-

ing; a classical game on graphs [23, 5, 11]. In the graph searching game we may think

of a network whose edges are contaminated with a gas and the objective is to clean

the network with some number of searchers. However, the gas immediately recon-

taminates cleared edges if its spreading is not blocked by guards at the vertices. The

model does not assume knowledge of the location of the gas, yet guarantees its elim-

ination at the end of the search strategy, and assumes an edge is deterministically

contaminated, as opposed to probabilistically, which represents the case of a powerful

adversary.

In the pioneering work of Brandenburg and Herrmann [6] the dual to the well

studied search number (the minimum number of searchers required to clear a graph),

search time, was introduced as a new cost measure in graph searching. Naturally, we

believe it is more important to clear the network as quickly as possible when dealing

with a contaminant. Furthermore, until now the theory community has mainly fo-

cused on the search number of an undirected graph, but one needs to study the more

general case of directed graphs as many real world networks lend themselves to be

modelled as directed.

We study the problem of minimizing the time required to eliminate the contam-

ination in the network given a budget of searchers. We prove that the search time

problem is NP-complete even for directed acyclic graphs (DAGs) and introduce an

approximation algorithm for clearing DAGs. Furthermore, we propose a method for

clearing a network by first reducing it to a DAG which can be cleared by our approxi-

mation algorithm. Additionally, we investigate the merits of a split and conquer style

strategy and show that our strategy, which instead has searchers staying together as a

group, outperforms the (intuitively appealing) split and conquer strategy on a broad

3

class of DAGs. Along the way we prove lower bounds on the time required to search

a directed graph and introduce a novel DAG decomposition theorem.

We note that the study of search time is intrinsically more difficult than computing

the search number as we can no longer be “strategy oblivious”. By that we mean,

when studying the search number, one is only interested in knowing whether some

search strategy exists to clear a graph with some number of searchers. In this setting,

how that strategy works is irrelevant to the end goal. In contrast, trying to compute

the search time of a graph is closely tied to how the strategy actually plays out.

Our main contributions can be summarized as follows.

1. We are the first to investigate the search time of directed graphs.

2. We prove the search time problem is NP-complete on DAGs.

3. We devise an approximation algorithm for clearing DAGs that also outperforms

split and conquer strategies on a broad class of DAGs.

4. We introduce a novel DAG decomposition theorem which we believe is of inde-

pendent interest.

5. We provide an experimental study of clearing large real and synthetic networks.

We start with an overview of information propagation in social networks and

the graph searching problem in Section 1.1. In Chapter 2 we introduce the necessary

concepts and definitions from graph searching, and present the lower bound for search

time on directed graphs. In Chapter 3 we prove the NP-hardness of the search time

problem on DAGs. We introduce our strategy for clearing general networks and

the Plank algorithm in Chapter 4. Chapter 5 contains our approximation bounds,

comparison to the split and conquer strategy, along with our DAG decomposition

theorem. Finally, in Chapter 6 we provide our experimental results.

4

1.1 Related Work

The task of maximizing the spread of information in a social network is a well studied

problem with many works investigating different aspects of the problem [9, 15, 10, 20].

More recently, the problem of limiting the spread of rumours or misinformation in a

social network has been studied by [7, 2, 8]. In [2, 8] the problem is posed in terms of

competing campaigns while [7] has the misinformation diffusing through a network.

All three works are modelled by the Independent Cascade Model: a randomized

diffusion process on graphs. However, the location of the misinformation is known

and nodes can be inoculated such that once a node takes on the “good” information

it will not subsequently adopt the misinformation. While the goal of these works was

to limit the spread of misinformation, we believe it is important to investigate how to

remove the misinformation from a network in its entirety. Furthermore, the unknown

location of the misinformation and the deterministic spreading of contamination in

our model captures the case of a stronger adversary.

Several variants of the (undirected) graph searching problem with respect to search

number have been studied with varying constraints and adversary behaviour, see e.g.

[11, 4, 5, 17, 14]. In addition, it has been shown that the graph searching problem

is closely related to several other notable graph parameters such as path-width, cut-

width and vertex separation, see e.g. [3, 17, 14]. It was shown by Megiddo et al. [21]

that computing the search number is NP-complete on general undirected graphs, but

can be computed in linear time on undirected trees.

The notion of search time for undirected graphs was introduced by Brandenburg

and Herrmann [6]. They note that the classical goal of the graph searching game where

the minimal search number is computed aims to minimize the number of resources

used and as such corresponds to space complexity. They study the length of a search

strategy which corresponds to the time complexity of searching a graph. They ask,

5

how fast can a team of k searchers clear a graph (if at all), and conversely how many

searchers are needed to search a graph in time t.

6

Chapter 2

Preliminaries

2.1 The Graph Searching Game

We consider the graph searching game on simple, weakly connected, directed graphs

G = (V,E) with n nodes, a set of vertices V and a set of edges E. We assume

there are no self-loops and no multiple edges. A directed graph is considered weakly

connected if removing the directions on all edges yields an undirected graph which is

connected. For a directed edge (u, v) we refer to u as the start node and v as the end

node. Also, we will use the term “digraph” when referring to directed graphs.

The rules for the graph searching game are as follows: Initially, all edges are

contaminated and in the end all edges must be cleared. In a move at each time

t = 1, 2, . . . searchers (or guards) are first removed from vertices and then placed on

other (and possibly the same) vertices. In a single move some number of searchers

can be placed or removed subject to the searcher budget. An edge is cleared at

time i if both incident nodes have searchers placed on them at the end of time i.

A cleared edge e is instantaneously recontaminated if there is a directed path from

a contaminated edge to e without a searcher on any vertex of that path. A search

7

1

2

4

3

6

7

8

5

9

1

2

4

3

6

7

8

5

9

1

2

4

3

6

7

8

5

9

Figure 2.1: An example search strategy

strategy is a sequence of moves that results in all edges being cleared at the end. Then

the search game is won.

In the following example we show one possible search strategy with four available

searchers for the directed graph shown in Figure 2.1. In the first step, searchers are

placed on nodes 1, 2, 3, and 4 clearing the three blue (double-wide) edges. In the

second step, searchers are removed from nodes 1, 2, and 3 to be placed on nodes 5,

8, and 6. We clear another three edges, and mark cleared edges in green (dotted).

Finally, in a third step, we remove searchers from nodes 4 and 5, and place them on

nodes 7 and 9. We clear the final three edges in the third step leaving the graph with

all its edges cleared.

Our formal definition is similar to that of Brandenburg and Herrmann [6].

Definition 1. A search strategy σ on a (connected) digraph G = (V,E) is a sequence

of pairs σ = ((E0, V0), (E1, V1), . . . , (Et, Vt)) such that:

1. For i = 0, . . . , t, Ei ⊆ E is the set of cleared edges and Vi ⊆ V is the set of

vertices which have searchers placed on them at time i. The edges from E \ Ei

are contaminated.

8

2. (initial state) E0 = ∅ and V0 = ∅. All edges are contaminated.

3. (final state) Et = E and Vt = ∅. All edges are cleared.

4. (remove and place searchers and clear edges) For i = 0, . . . , t − 1 there are

sets of vertices Ri = Vi \ Vi+1 and Pi = Vi+1 \ Vi where searchers are removed

from the vertices from Ri and then placed at Pi. The set of cleared edges is

Ei+1 = {(u, v) ∈ E | u, v ∈ Vi+1; or (u, v) ∈ Ei | there is no unguarded directed

path from the end node of a contaminated edge to u}.

Let width(σ) = max{|Vi| | i = 0, . . . , t} and length(σ) = t − 1 be the number of

searchers and the number of moves of σ respectively. Note that we discard the last

move, which only removes searchers.

While we need the Ei sets above to define how a strategy works, we only need the

Vi sets to fully determine a strategy. Therefore, we will often refer to a strategy by

only listing its Vi sets.

Definition 2. For a connected digraph G with at least two vertices and integers

s and t let search-widthG(t) be the least width(σ) for all search strategies σ with

length(σ) ≤ t and let search-timeG(s) be the least length(σ) for all search strategies

σ with width(σ) ≤ s.

In other words, search-widthG(t) is the least number of searchers that can search

G in time at most t, and search-timeG(s) is the shortest time such that at most s

searchers can search G. Thus, search-widthG(t) = s implies search-timeG(s) ≤ t and

conversely search-timeG(s) = t implies search-widthG(t) ≤ s.

For a given time t, σ is space-optimal if width(σ) = search-widthG(t) with length(σ) =

t. For a given number of searchers s, σ is time-optimal if length(σ) = search-

lengthG(s) with width(σ) = s.

9

2.2 Search-Time Lower Bound

The lower bound for search time on a digraph does not come as easily as the lower

bound for undirected graphs of
⌈
n−s
s−1

⌉
+ 1 shown by Brandenburg and Herrmann [6]

since the reasoning used there does not apply to the directed case. That is, a search

strategy on a digraph can leave a node unguarded without suffering from recontami-

nation unlike in the undirected case. We follow a completely different avenue to the

lower bound.

Given a search strategy σ we can construct a set system S = {S1, . . . , St} where

each set corresponds to the placement of searchers in a single step of σ. Thus, t

represents the number of steps the strategy requires. We have the following conditions

for such a set system to correspond to a valid and complete search strategy.

1. |Si| ≤ s

2. If u, v are adjacent nodes in G then there exists an Si where u, v ∈ Si

The first condition reflects the fact that we have s searchers to work with while

the second condition ensures that every edge in G will be cleared.

As a result we have the following fact about S.

∀i ∃j 6= i such that Si ∩ Sj 6= ∅ (2.1)

Equation 2.1 comes from condition 2 and the fact that G is connected since a set

Si without an intersection with some other set would constitute a separate connected

component violating our assumption of connectedness.

Note, a search strategy will also induce an ordering of S, Ω, which dictates how

the search strategy unfolds. Notice that every search strategy induces a unique set

system while a given set system may correspond to several search strategies depending

10

on the ordering. Next we define the progress of a set which will be utilized in the

lower bound proof.

Definition 3. The progress of a set Si in an ordering Ω is the number of elements

of Si which have not been seen in any previous set in Ω.

The progress of a set corresponds to the number of new nodes visited in that step

of the corresponding search strategy.

Now, we present the search time lower bound on directed graphs which utilizes

the set system notion.

Theorem 1. For every connected digraph G with |G| = n and integer s such that s

is at least the search number of G all search strategies require at least
⌈
n−s
s−1

⌉
+ 1 steps

to clear G.

Proof. Assume we are given an arbitrary search strategy σ for G. First, we construct

the corresponding set system S for σ. Then, we construct a meta-graph on S where

each meta-node represents a set Si ∈ S and there is an undirected edge between two

meta-nodes if their corresponding sets have a non-empty intersection. Call the result-

ing graph GS. Then, notice that equation 2.1 and our assumption of connectedness

implies that GS is connected.

Now, we present a special ordering Ω′ for S by performing a depth-first search

(DFS) of GS initialized on any node of GS. The order in which meta-nodes are

visited in the DFS makes up Ω′. This ordering may differ from that of σ and is

created purely for the proof of bounding the number of sets, t.

Then, we can bound the progress ρ made by this ordering as follows. The first set

visited in Ω′ has a progress bounded above by s from condition (1) and the fact that

there are no previous sets in Ω′. Then, every subsequent set Si in Ω′ has a progress

bounded above by s− 1 since, by the DFS style ordering, there will be a set located

11

earlier in Ω′ which was connected to Si, indicating a non-zero intersection. Thus, if

there are t sets, the total progress is bounded above by s+(t−1)(s−1). Furthermore,

ρ is bounded below by n as it is a necessary condition that every node in G be visited

by a searcher in order to clear all edges of G.

Thus, we have

n ≤ ρ ≤ s+ (t− 1)(s− 1)

n− s ≤ (t− 1)(s− 1)

n− s
s− 1

≤ t− 1

Finally, since t must be an integer we have

t ≥
⌈n− s
s− 1

+ 1
⌉

=
⌈n− s
s− 1

⌉
+ 1

Therefore, we have shown that for an arbitrary search strategy, the corresponding

set system requires at least
⌈
n−s
s−1

⌉
+ 1 sets and thus any search strategy for G must

take at least this number of steps.

In the next chapter we prove the hardness of computing the search time of a DAG.

12

Chapter 3

Hardness

3.1 NP-Hardness on DAGs

In this chapter we prove that computing the search time of a DAG for a given number

of searchers is NP-complete. Consider the GRAPH SEARCHING problem as deter-

mining the minimum number of steps required to clear an input directed graph G on

n nodes with s searchers. The decision version asks if G can be cleared in t steps.

To do this we introduce two concepts required for the hardness proof: B-sections

and the loss function. First, consider a branching node v attached to m directed

paths b1, b2, . . . , bm all beginning at v where |bi| ≥ 1. We refer to such structures as

B-sections and a sample B-section can be seen in Figure 3.1. B-sections will be used

in Chapter 5 for our decomposition theorem. Next, we define our loss function. We

know that an optimal strategy with s searchers visits s new nodes in the first step

and s − 1 new nodes in each subsequent step. All strategies can visit s new nodes

in the first step. Thus, a non-optimal searcher placement is one in which s − 1 new

nodes are not visited in a given step. Note, this excludes the final step where there

may not be enough nodes left to visit s−1 new nodes. For this reason, an alternative

13

Figure 3.1: An example search strategy with zero loss

definition is a placement in which two or more searchers are left stationary.

Definition 4. The loss function associated with a search strategy σ, denoted loss(σ),

is a count of the number of non-optimal searcher placements in σ.

Now, consider the B-section in Figure 3.1 and the search strategy shown which

uses 3 searchers.

The blue nodes represent the searcher placements of the current step while green

nodes represent already visited nodes. The blue edges indicate edges which are being

cleared in the current step while green edges are edges which have been cleared in a

previous step. Notice how the search strategy partially clears each of the branches

before finishing them off in a single step. The ability to avoid loss when moving to a

new branch lay in the strategy’s ability to “set up” the number of nodes left in each

branch, after partially clearing the branches, as a multiple of s−1. This ensured that

the clearance of each branch ended exactly at the leaf nodes and did not spill over

into the next branch.

Now, we can generalize this idea to capture how a strategy would have to behave

to “set up” the branches of a general B-section in a similar fashion in order to achieve

zero loss. Consider a B-section with m branches b1, . . . , bm each of length d1, . . . , dm

where di counts all nodes in bi other than the branching node. The question of whether

or not zero loss can be achieved comes down to whether we can end the clearance

of each branch exactly at the branch’s final node. Therefore, we are asking whether

we can move across the top of the B-section with the s searchers such that after this

14

initial sweep the number of nodes remaining to be cleared in each bi is a multiple of

s − 1. If this is the case, the branches could then be cleared one at a time with all

s searchers with the clearance ending exactly at the last node of each bi ensuring no

loss when moving between branches.

The problem of the initial sweep across the top of the B-section can be phrased

as an instance of a BIN PACKING variant. First, notice that there is a single value

0 ≤ xi ≤ s − 2 for each branch that makes the number of nodes remaining in bi a

multiple of s− 1. Thus, we wish to know if we can pack the xi into bins of size s− 1

such that each bin is exactly full. The solution to this problem tells us if the B-section

can be cleared with zero loss. However, we know that not all B-sections can be cleared

with zero loss and we actually want to know the minimum loss achievable. This leads

to a variant of the optimization version of BIN PACKING which we wish to solve. In

the standard BIN PACKING problem we wish to minimize the number of bins used.

Our problem is asking to minimize the number of partially full bins. That is, we

want to maximize the number of exactly full bins as each partially full bin represents

a loss. We refer to this as the EXACT BIN PACKING problem and in the decision

version denote the number of allowable partially filled bins by the parameter p. First,

we show that the EXACT BIN PACKING problem remains strongly NP-hard even

when p is fixed to 0.

Lemma 1. The EXACT BIN PACKING problem with p = 0 is strongly NP-complete.

Proof. Consider an instance of the decision version of BIN PACKING with items

X = {x1, . . . , xn}, bin size V , and b available bins. Then, let r = V b −
∑
xi. Here,

r is the total remaining bin space (regardless of packing) for the BIN PACKING

instance.

Now, we construct an instance of the decision version of the EXACT BIN PACK-

15

ING problem with items X ′ = X ∪ 1r where 1n is a set containing n 1’s, bin size V ,

and p = 0. Then, the EXACT BIN PACKING instance has a solution iff there is a

solution to the instance of BIN PACKING.

If the BIN PACKING instance can be packed with b bins then in the EXACT

BIN PACKING instance we have exactly the required number of 1’s to fill in the rest

of the space leaving all exactly full bins, i.e.
∑
xi + r = V b. However, if the BIN

PACKING instance requires more than b bins then there will not be sufficient 1’s to

fill in the space of additional bins and therefore there will be at least one partially

filled bin, i.e.
∑
xi + r = V b < V (b+ k) for some k > 0.

Then, it follows from the above result that the general version of EXACT BIN

PACKING with arbitrary p is also strongly NP-hard.

Corollary 1. The EXACT BIN PACKING problem is strongly NP-complete.

Now, we formally show the hardness of the graph searching problem on B-sections

using the above result. First, we show that the GRAPH SEARCHING problem

remains hard even for fixed t =
⌈
n−s
s−1

⌉
+ 1 and restricted G.

Before we present the proof we will introduce some facts about the GRAPH

SEARCHING problem. First, the search time of a strategy can be computed from

the loss as t =
⌈
n−s+loss

s−1

⌉
+1. Also, recall that the lower bound for clearing a graph is

tmin =
⌈
n−s
s−1

⌉
+ 1. Then, notice that tmin can be achieved with a range of losses which

depends on the values of n and s. Namely, tmin will be achieved by any strategy with

0 ≤ loss ≤
[⌈

n−s
s−1

⌉
− n−s

s−1

]
(s− 1). We refer to the upper bound by lossmax.

Lemma 2. The GRAPH SEARCHING problem on B-sections with t = tmin is NP-

complete.

Proof. Consider an instance of the decision version of EXACT BIN PACKING with

items X = {x1, . . . , xm}, bin size V , and p = 1. We construct an instance of GRAPH

16

SEARCHING by transforming the xi into paths ρi of length xi and attaching each

ρi to a distinguished branching node β. Additionally, we attach a path b of length⌈∑
i xi−V
V

⌉
V − (

∑
i xi − V) to β. Call the resulting graph G and notice that G is

a B-section. Let the GRAPH SEARCHING instance have s = V + 1 and t =⌈ |b|+∑
xi−V

V

⌉
+ 1. Then, the GRAPH SEARCHING instance has a solution iff there

is a solution to the instance of EXACT BIN PACKING.

Notice that we have chosen the length of b such that lossmax = 0, therefore

|b|+
∑
xi−V is a multiple of V . Also, the chosen t = tmin. Thus, if the EXACT BIN

PACKING problem has a solution then G can be cleared by first placing a searcher

at β and on every ρi of a bin in a sweep across the top of G. The clearance of b is

included in the final step of the strategy. This search strategy has loss = 0 and will

be able to clear the graph in tmin steps.

In the other direction, given that G can be cleared in t = tmin steps we show how to

obtain a solution to the EXACT BIN PACKING instance by progressively restricting

how such a strategy must behave. Again, the structure of G is such that lossmax = 0

so the strategy clearing G cannot incur any loss. Thus, we can immediately rule

out strategies which split into multiple groups; that is, any strategy in which the

subgraph induced from searcher placements in a step does not form a connected

component (ignoring the directions on edges) as such a step incurs a minimum loss of

one. Then, to clear every branch we must leave a guard on β as it is required to clear

the first edge in each branch. Thus, since we cannot incur any loss, no node other

than β can be revisited in any step else the strategy would not visit s− 1 new nodes.

Therefore, we cannot partially clear any branch. Then, since each ρi has length less

than V , the strategy will fully clear some number of branches in every step of the

strategy. Now, observe that we have restricted the allowable strategies such that they

can only differ from the one described above by a re-ordering of steps. Thus, the ρi

17

cleared in each step are placed in a bin and the resulting bins make up the packing.

Note, if b had non-zero length we do not include it in the packing and thus get at

most one partially full bin.

From this we get our main result.

Theorem 2. The GRAPH SEARCHING problem on B-sections is NP-complete.

Furthermore, hardness on B-sections implies hardness on all its superclasses in

the directed setting which includes directed trees, DAGs and all their directed super-

classes. Therefore, we see an interesting comparison to computing the search number

on undirected graphs where the problem becomes efficiently solvable when we move

from general graphs to trees. However, computing the search time does not become

efficiently solvable even when restricting the input graph to a B-section. In the fol-

lowing chapter, despite the hardness of the search time problem, we will introduce an

efficient approximation algorithm for searching general digraphs.

18

Chapter 4

Our Search Algorithm

4.1 Searching Digraphs

Since the graph searching problem is NP-hard even on B-sections, the task of clear-

ing networks, which are general digraphs, is also NP-hard. We present a method for

clearing a general digraph which works in two phases. We first compute a feedback

vertex set (FVS) for the network and place permanent guards at these nodes. For-

mally, an FVS is a set of nodes whose removal leaves a graph without cycles. Thus,

by doing so, we are left with a DAG which can be cleared by our Plank algorithm

given in the next section. The procedure for searching general digraphs is outlined in

Algorithm 1.

Algorithm 1 Search Digraph

Input: The input digraph G
Output: A search strategy σ = (V1, . . . , Vt)

Compute an FVS for G
Place permanent guards, p, on source nodes of FVS to create a DAG G′ that needs
to be cleared
Run Plank algorithm on G′ to compute a search strategy σ = (V1, . . . , Vt)
return σ = (V1 ∪ p, . . . , Vt ∪ p)

Now, while the focus of our work is the search time, we can make some opti-

19

mizations with respect to the FVS required to search a digraph in order to reduce

the number of searchers used to clear G. First, we utilize a sliding FVS which only

places searchers on FVS nodes for as long as they are required. We say an FVS node

is required when one of its neighbouring nodes is visited for the first time and is

no longer required when all its neighbouring edges have been cleared. Thus, as the

search strategy moves across the graph we have FVS nodes come online and then go

offline when they are no longer required which reduces the total number of searchers

used to clear the graph since at any time only a subset of the FVS will be active.

Furthermore, in the special case of social networks, we can leverage knowledge of

the structure of the network to our advantage. Finding the minimal FVS is an NP-

hard problem and thus we resort to using heuristic algorithms for the task. However,

as most real world social networks exhibit a power-law degree distribution we know

that the hub nodes will often be required in the FVS. This idea was utilized in [16]

to find communities in real world networks and we take a similar approach when

considering social networks. In [16] the k-hubset on undirected graphs is defined as

the set of nodes with the top k highest degrees. For our optimization, we compute

the k-hubset of G and take its union with the computed FVS to arrive at the set of

permanent guards to be used for the sliding FVS. In the directed setting we use both

the in and out-degree of a node to determine its degree. The mentality behind adding

the k-hubset to the FVS is that any nodes in the k-hubset that are not included in

the FVS will be visited many times during the clearance of G due to their high

connectivity and thus removing them preemptively will reduce the search time. Of

course, there remain the questions of what value to choose for k and how the size of

the final FVS will be affected which we explore in our experiments. In the following

section we present our Plank algorithm for searching a DAG.

20

4.2 Plank Algorithm

Our Plank algorithm works in a depth-first manner with some modifications specific

to the graph searching problem. The name comes from a description of how searchers

are placed in subsequent steps. Imagine a long plank of wood lying on the ground.

We can move this plank by picking up one end until the plank is upright and then

letting it drop in the direction we wish to travel. By repeatedly moving in this way

we move the plank a distance equal to its length each time. Then, we can think

of the plank as s searchers placed adjacently on a graph so that moving the plank

corresponds to visiting s− 1 new nodes.

The Plank is a two-phase algorithm for computing its search strategy for a DAG,

G. In a pre-processing step the algorithm computes an edge ordering for G, Ψ, and

in the second pre-processing step it compiles a search strategy from Ψ. In Algorithm

2 below, mDFS refers to a modified depth-first search designed specifically for the

Plank algorithm. Our mDFS operates similarly to the DFS algorithm, but with

a special stopping condition: we backtrack if the current vertex has an unexplored

incoming edge. This ensures we do not allow any recontamination from uncleared

incoming edges as our strategy does not leave stationary guards at vertices. The

Plank’s high level execution proceeds as follows:

1. Run mDFS on G to produce an edge ordering Ψ

2. Convert Ψ into a search strategy using s searchers

Now we present the Plank’s subalgorithms. First, we have the pseudocode for the

mDFS algorithm in Algorithm 2. We assume all nodes in G are initially labelled as

unvisited and all edges as unexplored.

Note, in the case that every node in G is not visited in a call to mDFS, we

continue re-calling the algorithm passing in an unexplored node until there are no

21

Algorithm 2 mDFS

Input: Input DAG G and the current node v
Output: An edge ordering Ψ

Ψ← []
if v has no unexplored incoming edges then

Label v as visited
for all edges e in G.outEdges(v) do

if edge e is unexplored then
Ψ.append(e)
Label e as explored
w ← G.adjacentV ertex(v, e)
Ψ.append(mDFS(G,w))

end if
end for

end if
return Ψ

more unexplored nodes in G. If there are multiple edge labelings, they are appended

together to make a master edge labelling.

Next, we show how to convert the resulting edge labelling, Ψ, into a search strategy

for G using s searchers (Algorithm 3). In summary, Ψ is traversed adding nodes to

the current step in the search strategy until a step has reached s placements. After Ψ

has been traversed we will have all the steps which make up the Plank search strategy

σ. This procedure is captured in the pseudocode of Algorithm 3 where Vc represents

the nodes present in the current step.

As it turns out, the strategy presented in Figure 2.1 is an example of a strategy

produced by the Plank algorithm. For the mDFS algorithm initialized at node

1 we get Ψ = [(1,2),(2,4),(3,4),(4,5),(5,8),(4,6),(6,7),(7,8),(7,9)]. Then, the search

strategy construction algorithm produces σ = [(1, 2, 4, 3), (4, 5, 8, 6), (6, 7, 8, 9)]. Note,

we can see that the strategy does not move passed node 4 while there are uncleared

incoming edges. Similarly, if there were additional nodes below node 8, they would

not be visited until the edge from node 7 to node 8 had been cleared.

22

Algorithm 3 Construct Strategy

Input: Sequence Ψ and the number of searchers s
Output: a search strategy σ = (V1, . . . , Vt)
σ, Vc, cleared← ∅
for all edges e in Ψ do

if e not in cleared then
if nodes(e) not in Vc then

Vc ← Vc ∪ nodes(e)
cleared← cleared ∪ e

end if
end if
if current step contains s placements then

update cleared with the edges cleared in the
current step
σ.append(Vc)
Vc = ∅

end if
end for
return σ = (V1, . . . , Vt)

23

Chapter 5

Analysis

5.1 Approximation Bounds

In this section we will show that the Plank strategy is a (2 + fo)-approximation

algorithm for searching DAGs, where fo is an instance determined parameter, and

motivate its performance on typical DAGs.

First we introduce some definitions to be used in the following proofs. We define

four types of DAGs referred to as sections. We have already seen the definition of

B-sections in Chapter 3 (Fig. 5.1(a)). Second are sections that resemble B-sections,

except that the direction of each edge is reversed. That is, the structure is the same as

a B-section, but with all branches directed towards a distinguished root which we refer

to as R-sections (Fig. 5.1(b)). Next, we have sections which look like diamonds, or

D-sections (Fig. 5.1(c)). These sections have a start node, two or more node disjoint

branches, and an end node with branches originating at the start node and ending

at the end node. Finally, we have simple directed paths, or P-sections (Fig. 5.1(d)).

Note, the blue and red nodes mark the top and bottom nodes of a section respectively.

We prove in Section 5.3 that any DAG can be decomposed into sections of the

24

(a) (b)

(c)

(d)

Figure 5.1: A sample (a) B-section (b) R-section (c) D-section and (d) P -section

above four types and assume this holds for the remainder of the analysis.

To begin, we first prove an approximation bound for zero-overlap DAGs and then

modify the bound to include the full range of DAGs. We define the overlap of a node

v by

overlap(v) =

r if v is a top/bottom node in ≥ 3 sections

0 else

where r is the total number of sections for which v is a top or bottom node.

Then, the overlap of a DAG G, denoted Ω, is defined as Ω =
∑

u∈V overlap(u).

A DAG is said to be a zero-overlap DAG if Ω = 0 and indicates a DAG in which

each section overlaps with at most one other section. The following analysis assumes

a zero-overlap DAG.

We bound the number of steps required by the Plank strategy by bounding the

loss measure we introduced in Chapter 3. To that end, we consider the loss the Plank

strategy can achieve when taking an arbitrary step in its clearance. We have three

cases for how the strategy moves between steps: (1) the strategy remains within a

single section, (2) the strategy finishes clearing a section and moves onto previously

25

unvisited sections, or (3) the strategy finishes clearing a section and returns to a

partially cleared section. We investigate these cases in three claims below.

Claim 1. A step taken by the Plank strategy described by Case 1 can incur a loss of

no more than 2.

Proof. Recall that the Plank strategy will move across branches of a section one at a

time. Thus, when moving between branches in a B/R-section the strategy will revisit

the top/bottom node of the section. Thus, the strategy will incur a loss if the previous

branch was not cleared in a single step. On the other hand, when moving between

branches of a D-section the Plank strategy will revisit both the top and bottom nodes

incurring a loss of two if the previous branch was only partially cleared. Finally, a

P -section trivially cannot incur a loss.

Claim 2. A step taken by the Plank strategy described by Case 2 can incur a loss of

no more than 2.

Proof. When moving to a new section, besides the nodes connecting sections, every

node is being visited for the first time. Thus, we again have a worst case loss of 2, in

the situation where we finish clearing a D-section θ and move onto clearing a section

which overlaps with the top node of θ. In contrast, moving to a downstream section

can only incur a worst case loss of 1, when the bottom node of θ is revisited, as every

other node is visited for the first time.

Claim 3. A step taken by the Plank strategy described by Case 3 can incur a loss of

no more than d s
2
− 1e.

Proof. When returning to a B-section θB, we incur a loss of 1 by returning to the

branching node. Then, consider the case where θB is entirely cleared with the available

searchers and the strategy must again move to a new section or return to another B-

section. Here, moving to a new section would incur no extra loss as the new section

26

would be downstream from θB. However, the strategy could continue clearing B-

sections and returning up to more partially cleared B-sections incurring a loss each

time this occurs. The number of times the strategy could return to a B-section is

bounded by the number of searchers available, s, and the minimum size of the portion

of the B-section left to be cleared, 2. Thus, the Plank strategy could take a single

step which incurs a loss of d s
2
− 1e as the sections which are revisited must have at

least one node other than the branching node not yet visited. An analogous situation

occurs when returning to an R-section. Note, D-sections cannot be partially cleared

and thus do not come up in Case 3 steps.

Now, we can divide an arbitrary Plank strategy into steps adhering to Case 1, 2,

or 3. Thus, w.l.g. we can investigate the approximation ratios for steps of each type

to arrive at an overall approximation ratio. We group Case 1 and 2 steps together as

Type 1 steps while Case 3 steps are referred to as Type 2 steps.

Lemma 3. The Type 1 steps have an approximation ratio of no more than 2.

Proof. Given s searchers, consider k steps incurring a loss of 2. Then, the total number

of nodes from Type 1 steps, n, is at least k(s+1) for s = 4 and (k−1)(s−3)+s+2 for

s ≥ 5. The expression for s = 4 comes from the fact that a D-section being cleared

with 4 searchers cannot enter into a pattern which incurs a loss of 2 for multiple

branches, instead they can only incur a loss of 2 when clearing the second branch of a

D-section. The case of s = 4 is captured in Fig. 5.2 (a). For the s ≥ 5 expression, we

visit s−3 new nodes in each step except the last step where we may run out of nodes

left to visit in which case 2 additional nodes is a minimum. Notice, the additional

s comes from the fact that all strategies visit s nodes in the first step and incur no

loss. A simple example for s = 5 is presented in Fig. 5.2 (b).

Then, the loss is bounded by 2k or 2n
5

for s = 4 and 2(n−5)
s−3 for s ≥ 5. Now, we

27

(a) (b)

Figure 5.2: The (a) s = 4 case and (b) an example for s = 5. Notice, in (a) any
additional branches in the D-section would not incur a loss of 2 given 4 searchers.
In (b), we have s = 5 and k = 2. The blue nodes are the initial s nodes which
any strategy can visit without loss in the first step which sets up subsequent steps
incurring a loss of 2. The green nodes are the s − 3 new nodes visited in each step
while the red nodes show how the last step only requires 2 additional nodes to incur
a loss of 2.

can compute an approximation ratio by comparing the lower bound dn−s
s−1 e+ 1 to the

expression dn−s+loss
s−1 e+ 1. First, in the case for s = 4 we have,

⌈n− s+ 2n
5

s− 1

⌉
+ 1 ≤

n− s+ 2n
5

s− 1
+ 2 =

7n+ 5s− 10

5(s− 1)
(5.1)

And

⌈n− s
s− 1

⌉
+ 1 ≥ n− s

s− 1
+ 1 =

n− 1

s− 1
(5.2)

Then

⌈n−s+ 2n
5

s−1

⌉
+ 1⌈

n−s
s−1

⌉
+ 1

≤
7n+5s−10
5(s−1)
n−1
s−1

=
7n+ 5s− 10

5(n− 1)
(5.3)

Where (5.3) is bounded above by 2 for n ≥ 7. Then, it is easy to verify by hand

that for all DAGs with 5 or 6 nodes the Plank strategy requires no more than 3 steps

while the lower bound requires 2 steps.

Second, in the case for s ≥ 5 we have,

28

⌈n− s+ 2(n−5)
s−3

s− 1

⌉
+ 1 ≤ ns− n+ s2 − 5s− 4

(s− 3)(s− 1)
(5.4)

Then

⌈n−s+ 2(n−5)
s−3

s−1

⌉
+ 1⌈

n−s
s−1

⌉
+ 1

≤
ns−n+s2−5s−4

(s−3)(s−1)
n−1
s−1

=
ns− n+ s2 − 5s− 4

(n− 1)(s− 3)
(5.5)

Where (5.5) is bounded above by 2 for s ≤ n+3
2

. Note, we only consider the case

where s ≤ n+3
2

since when s > n+3
2

all n nodes will be cleared in 2 steps as no more

than 3 nodes will remain stationary between steps.

Therefore, an arbitrary number of Type 1 steps has an approximation ratio of no

more than 2.

Lemma 4. The Type 2 steps have an approximation ratio of no more than 2.

Proof. Given s searchers, consider k steps incurring a loss of d s
2
− 1e. Then, notice

that the upper bound on the number of steps required by a strategy on zero-overlap

DAGs is n− s+ 1 as we visit at least one new node in each step. Thus, k ≤ n− s+ 1

giving a loss bounded above by kd s
2
− 1e ≤ ns−s2+s

2
since d s

2
− 1e ≤ s

2
. Now, notice

that ns−s2+s
2

≤ n
2

for s ≤ n which holds for all search strategies. Therefore, we can

compute the approximation ratio as,

⌈n− s+ n
2

s− 1

⌉
+ 1 ≤

n− s+ n
2

s− 1
+ 2 =

3n+ 2s− 4

2(s− 1)
(5.6)

Then

⌈n−s+n
2

s−1

⌉
+ 1⌈

n−s
s−1

⌉
+ 1

≤
3n+2s−4
2(s−1)
n−1
s−1

=
3n+ 2s− 4

2(n− 1)
(5.7)

Where (5.7) is bounded above by 2 for s ≤ n−1
2

. Note, we only consider the case

where s ≤ n−1
2

since when s > n−1
2

the number of nodes remaining after the first step

29

is less than n
2

and therefore the loss cannot exceed this value.

Therefore, an arbitrary number of Type 2 steps has an approximation ratio of no

more than 2.

Thus, we get the following approximation bounds for the Plank strategy on zero-

overlap DAGs.

Lemma 5. The Plank algorithm is a 2-approximation algorithm for computing the

search time of a zero-overlap DAG.

Proof. We consider an arbitrary instance of a Plank strategy. The steps of the strategy

are all of Type 1 or 2. Then, the proof follows directly from Lemma’s 3 and 4.

In practice, the number of searchers will often be much less than the size of

the DAG, s � n, in which case (5.3) ≈ 7
5

+ O(s
n
), (5.5) ≈ 1 + O(2

s
) + O(s

n
), and

(5.7) ≈ 3
2

+ O(s
n
). Furthermore, the structure of a DAG required to produce an

approximation ratio for (5.7) of 3
2

+ O(s
n
) is extremely artificial and would not show

up in a large fraction of DAGs and (5.3) only applies when s = 4. In general, we

expect the approximation ratio to closely resemble 1 +O(s
n
). Therefore, proving the

usefulness of the Plank algorithm for typical zero-overlap DAGs.

Now, we must modify the bound for DAGs with nonzero overlap. The overlap

of a DAG can be viewed as a rough estimation of the density of the digraph. As

such, DAGs move progressively towards resembling directed complete bipartite graphs

(with all edges directed from one partition to the other) as the overlap increases. We

take a conservative route and add to the bound of 2 for zero-overlap DAGs an overlap

factor, fo. The fo factor upper bounds the number of steps required to clear the

number of possible edges incident on the overlapping nodes. It is defined as,

30

fo =
(Ω

n− 1

)
(5.8)

and can often be approximated by m
n

. Thus, combining the possible loss in zero-

overlap DAGs and the potential loss in DAGs with overlap yields an approximation

ratio that holds for all DAGs of 2 + fo.

Theorem 3. The Plank algorithm is a (2+fo)-approximation algorithm for computing

the search time of a DAG.

Note, as we provide a lower bound on the length of a search strategy that is

independent of the structure of the input DAG, our fo factor may take on large

values for highly overlapping DAGs when the length of the Plank strategy, in reality,

may not be far off the instance-optimal solution.

5.2 Comparison to Splitting Strategies

Another natural candidate for graph searching would be a BFS style strategy which

we investigate next. We show that the DFS style strategy, our Plank algorithm,

outperforms the BFS style strategies on a broad class of DAGs. We refer to BFS

style strategies as splitting strategies and define them as follows.

Definition 5. A splitting strategy is a search strategy which sends at least two searchers

down as many branches of a section as possible.

The way in which a splitting strategy distributes the searchers over the branches

is arbitrary, but the key point is that such a strategy tries to split as much as possi-

ble, mimicking a BFS. As with the Plank algorithm, splitting strategies do not move

passed nodes with unexplored incoming edges to avoid recontamination. Alterna-

tively, we can think of splitting strategies as split and conquer style strategies.

31

Lemma 6. The Plank strategy outperforms all splitting strategies in clearing a B-

sections with any number of searchers.

Proof. First, notice that if there are enough searchers available to clear a branch in

a single step then both strategies are identical. This would only occur if the splitting

strategy had enough searchers to clear an entire branch as it allocates strictly less

searchers per branch compared to the Plank strategy. Thus, we can restrict our

attention to branch sets where every branch requires two or more steps to clear for

all searcher distributions.

We consider the loss incurred on aB-section. A splitting strategy which distributes

the available searchers among the m branches will incur a loss of m− 1 for each step

it takes to clear the branches since m searchers remain stationary. Then, by our

assumption that each branch takes at least two steps to clear we see that a splitting

strategy incurs a loss greater than or equal to m−1. Conversely, even if every branch

required more than two steps to clear, the Plank strategy will never incur a loss

greater than m − 1. This follows from the fact that once a leaf node is reached the

strategy will return to the branching node during a step that will possibly only visit

s − 2 new nodes incurring a loss of 1. If, however, the step ends exactly at the leaf

node there will be no loss incurred. Since there are m branches we will encounter this

”(s − 2)-visiting step” a maximum of m − 1 times giving a total loss of no greater

than m− 1.

Furthermore, the proof for R-sections unfolds exactly as the proof for B-sections

does with the worst case loss being less that or equal to the best case performance of

any splitting strategy.

Lemma 7. The Plank strategy outperforms all splitting strategies in clearing R-

sections with any number of searchers.

32

Next, we prove that the Plank strategy is optimal for D-sections. We refer to the

start node by ns and the end node by ne. Furthermore, we consider D-sections to

have m branches b1, . . . , bm which each have endpoints ns and ne and no other nodes

in common.

Lemma 8. The Plank strategy outperforms all splitting strategies in clearing D-

sections with any number of searchers.

Proof. As before, we will be considering splitting strategies with an arbitrary searcher

distribution over branches, but will ignore branches which would be cleared in a single

step in the splitting strategy as this would be mimicked exactly by the Plank strategy,

i.e. these splitting strategies are indistinguishable from the Plank strategy.

Now, as we saw in Lemma 6, the worst case behaviour of the Plank strategy on

B-sections had a loss of m − 1. For D-sections, the Plank strategy has a worst case

loss of 2(m− 1) because in addition to the top node we also revisit the bottom node

ne when clearing each branch. Thus, both the bottom and top nodes are revisited

when clearing subsequent branches adding 2 to the loss function each time. So, in

a similar fashion to the proof for B-sections, a best case splitting strategy which

requires 3 steps to clear each branch will require greater than or equal to the number

of steps required by a Plank strategy. It remains to be shown that splitting strategies

in which some number of branches require 2 steps to clear are no better than the

Plank strategy. We investigate them each separately next.

We define the following three cases for splitting strategies: (1) each branch re-

quires 2 steps to clear, (2) branches require 2 or 3 steps to clear, and (3) there exists

a branch which requires greater than 3 steps to clear. We define the cases in this way

because we will see that case 3 can be reduced to case 2.

33

Case 1. Branches each require 2 steps to clear.

Here, the splitting strategy sends si searchers down bi and the total number of

searchers is s =
∑m

i=1 si. Again, considering a best case scenario for the splitting

strategy, the clearance will require exactly two steps which leads to 2si − 1 nodes in

each branch. Now, the Plank strategy will send all s searchers down some bi and

then move onto the remaining branches. Sending all s searchers down bi leads to two

possible behaviours. If 2si − 1 > s then the Plank strategy cannot clear the entire bi

branch in a single step and will have some nodes from bi left over to clear after step

one. On the other hand, if 2si− 1 ≤ s then the Plank strategy will clear all of bi in a

single step and have excess searchers available to start clearing other branches in the

first step. Without loss of generality, we will assume ns and ne are a part of the first

branch cleared in all subsequent cases.

First, in the case where 2si − 1 < s we partially clear bi and the number of nodes

left to clear in bi after the first step is given by,

2si − 1− s = 2si − (s1 + · · ·+ si + · · ·+ sm)− 1

= si − (s1 + · · ·+ si−1 + si+1 + · · ·+ sm)− 1

Then, in the second step we must clear all remaining branches as well as leave two

searchers stationary. One searcher must be left at ns and the other at the furthest

node reached in the partial clearance of bi. The number of nodes left to clear is given

by
∑

j 6=i(2sj − 1) + 2 + si −
∑

j 6=i sj − 1 = si +
∑

j 6=i sj + 2−m = s+ 2−m. Then,

since m ≥ 2, we have s or fewer nodes left to clear in the second step with our s

available searchers.

Second, in the case where 2si−1 ≤ s we clear bi in step one and clear an additional

34

number of nodes with the excess searchers given by

s− (2si − 1) = (s1 + · · ·+ si + · · ·+ sm)− 2si + 1

= (s1 + · · ·+ si−1 + si+1 + · · ·+ sm)− si + 1

These excess searchers can clear any other branches since both ns and ne are

guarded. Notice that some branch br will be partially cleared at the end of step one

using the excess searchers. Then, in the second step we must clear all remaining

branches as well as leave three searchers stationary. One searcher must be left at ns,

one at ne and the other at the furthest node reached in the partial clearance of br. The

number of nodes left to clear is given by
∑

j 6=i(2sj−1)−(
∑

j 6=i sj−si+1)+3 = s+3−m.

Here we have enough searchers for m ≥ 3, but must investigate m = 2 individually.

In the case of m = 2 where we only have b1 and b2 we are only required to leave 2

searchers stationary, namely one at ne and the other at the furthest node reached

in the partial clearance of b2. Thus, the number of nodes left to clear in step two is

indeed s+ 2−m which is achievable with the s available searchers.

This shows that the Plank strategy matches the best case splitting strategy for

case 1.

Case 2. Branches each require 2 or 3 steps to clear.

Without loss of generality we let b1 be a branch requiring two steps to clear, b2 be a

branch requiring three steps to clear and every other branch requiring two or three

steps to clear. Thus, b1 has 2s1−1 nodes, b2 has 3s2−2 nodes, and every other branch

has no more than 3si − 2 nodes for i 6= 1, 2. Also w.l.g. we choose to clear s1 first in

the Plank strategy. As in case 1, we consider the two scenarios where 2s1 − 1 > s or

35

2s1 − 1 ≤ s.

First, in the case where 2s1− 1 > s we partially clear b1 and the number of nodes

left to clear in b1 after the first step is given by,

2s1 − 1− s = 2s1 − (s1 + · · ·+ si + · · ·+ sm)− 1

= s1 − (s2 + · · ·+ sm)− 1

The rest of b1 is cleared in step two with the number of excess searchers available

after clearing b1 given by s− (s1−
∑

j 6=1 sj−1)−1 = (s1 + · · ·+ sm)− s1 +
∑

j 6=1 sj =

2
∑

j 6=1 sj. Then, these excess searchers are used to partially clear the remaining

branches. Note that |bi| ≤ 3si − 2 and so we analyze a worst case scenario for the

Plank strategy where each bi has all 3si−2 nodes. The number of remaining nodes to

be cleared in step three is given by
∑

j 6=1(3sj−2)+1−2
∑

j 6=1 sj =
∑

j 6=1 sj−2m+3.

Then, between steps two and three we must leave three searchers stationary. Thus,

the number of nodes left to clear in step three is
∑

j 6=1 sj − 2m + 6. We know that

s1 ≥ 2 and m ≥ 2 thus we have that
∑

j 6=1 sj − 2m + 6 is less than or equal to s

allowing the Plank strategy to successfully complete the clearance in three steps.

Second, in the case where 2si−1 ≤ s we clear b1 in step one and clear an additional

number of nodes with the excess searchers given by

s− (2s1 − 1) = (s1 + · · ·+ sm)− (2s1 − 1)

= (s2 + · · ·+ sm)− s1 + 1

These excess searchers can clear any other branches since both ns and ne are

guarded. We again analyze a worst case scenario for the Plank strategy where each

36

bi has all 3si − 2 nodes. The number of nodes remaining after step one is given by∑
j 6=1(3sj−2)−(

∑
j 6=1 sj−s1 +1) = 2

∑
j 6=1 sj−2m+1+s1. Here, between steps one

and two we must leave searchers at ns, ne, and the last node reached in the partial

clearance of some branch bi. The number of nodes left to clear after step two is given

by 2
∑

j 6=1 sj−2m+1+s1+3−s =
∑

j 6=1 sj +4−2m. Again, we know that m ≥ 2 and

thus
∑

j 6=1 sj + 4− 2m ≤
∑

j 6=1 sj < s. Therefore, the Plank strategy can successfully

finish the clearance in three steps.

This shows that the Plank strategy matches the best case splitting strategy for

case 2.

Case 3. There exists a branch which requires greater than 3 steps to clear.

The final case can be shown to reduce to Case 2. Consider m branches which each

require ti steps to clear where each ti ≥ 2. Now, as we have seen, if some branch bi

requires ti steps to clear and some other branch bj requires ti + 1 steps to clear, then

excess searchers available from bi in step ti + 1 will be inconsequential as bj already

had enough searchers to clear bj by step ti + 1. However, if instead, bj required ti + 2

or greater steps to clear, the excess searchers from bi can actually have an impact on

the number of steps required to clear bj. In the best case, the excess searchers from bi

allow bj to be cleared in only one additional step. However, since we know that each

branch requires greater than or equal to two steps to clear, the best case for splitting

strategies is to reduce branches for which tj ≥ 4 to requiring three steps leaving us in

a situation resembling case 2. Note that this best case may not even be achievable

given the structure of the D-section in question.

Thus, we have shown that the Plank strategy matches or outperforms all possible

splitting strategies on an arbitrary D-section.

37

Now, we have that the Plank strategy outperforms all splitting strategies on each

of the sections individually. Then, the fact that any DAG can be decomposed into

sections of our four types, which we prove in the next section, allows us to observe that

the loss due to the Plank algorithm will be the same in its clearance of decomposed

sections within a DAG as if they were being cleared in isolation conditioned on the

length of the section’s branches. For R-sections and D-sections the Plank algorithm

will not move passed the bottom branching node and will thus return to one of the

top nodes of the section (possibly after clearing sections above the current one) and

ultimately clear the section with the same loss as if it was isolated. For B-sections the

Plank strategy may clear downstream sections before returning to the branching node

at the top of the section. Therefore, in order to be able to make a piecewise analysis

of the DAG we require that the B, R, and D-sections contain branches of length

s or greater. While the analysis does not require this size restriction for individual

sections, when analyzing a DAG without these “large” sections there exist instances

where a splitting strategy will incur no loss in some section where the Plank strategy

does incur some loss due to the DFS nature of the Plank strategy. Thus we have the

following result.

Theorem 4. The Plank strategy outperforms all splitting strategies in clearing DAGs

with “large” B, R, and D-sections with any number of searchers.

Proof. Two arbitrary sections in G, θ1 & θ2 may be connected in three ways: (1) a

bottom node of θ1 overlaps with a top node of θ2, (2) a bottom node of θ1 overlaps

with a bottom node of θ2, or (3) a top node of θ1 overlaps with a top node of θ2.

In (1), the loss attributed to the overlapping node is divided between the sections.

While θ1 is being cleared the loss is associated with θ1. Then, once θ1 becomes cleared

and a strategy moves on to θ2, the loss will become associated with θ2. Thus, we see

that the first step in which nodes from θ2 are cleared will not incur any loss, as is the

38

case when clearing isolated sections.

In (2) we say θ2 is lateral to θ1 and vice versa. In the Plank strategy, the overlap-

ping node will be visited for the first time in the clearance of one of the sections. Then,

when the node is reached in clearing the other section there will be a loss incurred.

However, notice that this loss will also be incurred for splitting strategies. First, it

is possible the splitting strategy reaches the overlapping node at the same time if θ1

and θ2 are being cleared simultaneously. However, in this case, the splitting strategy

will incur a loss from all but one branch between both θ1 and θ2 since they are being

cleared simultaneously and thus the extra loss incurred by the Plank strategy will

also be incurred in the splitting strategy. On the other hand, if the splitting strategy

does not reach the overlapping node in the same step, it too will incur an extra loss

when the overlapping node is reached for the second time.

Finally, (3) mirrors the situations which arise in (2) and we see that the extra loss

incurred by the Plank strategy is also incurred by the splitting strategy.

Then, the proof follows directly from Lemma’s 6, 7, and 8 and the fact that we

can decompose any DAG into B, R, D, and P -sections.

5.3 Decomposing a DAG

We claim that a DAG can be decomposed into sections of our four types. Formally,

we define a valid decomposition as follows.

Definition 6. Given a DAG G a decomposition ∆ is valid if and only if it consists

of sections θi = (Vi, Ei) of type B, R, D, or P such that
⋃

i Vi = V ,
⋃

iEi = E and

Ei ∩ Ej = ∅ for all i, j. Additionally, sections may only overlap on top and bottom

nodes.

39

Components Possible Merge Outcome
P B, R, D, P
B B
R R
D D

P , B B
P , R R
P , D D
B, R D

P , B, R D

Table 5.1: List of possible merge operations.

Next, we define an ordering among valid decompositions.

Definition 7. We say ∆1 < ∆2 if ∆1,∆2 are valid decompositions and ∆1 can be

obtained from ∆2 by some number of merge operations.

A merge operation takes two valid sections and combines them to form a new valid

section. Formally, given two sections θ1 = (V1, E1) and θ2 = (V2, E2), merge(θ1, θ2) =

(V1 ∪ V2, E1 ∪ E2). We outline the possible merge operations in Table 5.1.

Then, we can define a minimality property for decompositions.

Definition 8. A decomposition ∆ is minimal if ¬∃∆′ such that ∆′ < ∆.

Finally, we show how to compute a minimal decomposition for any DAG. Consider

the following procedure on a topological ordering Γ of a DAG G. In the first phase

we will move through Γ one node at a time. Starting at the current node v we will

traverse Γ for each outgoing edge of v until we reach a node with multiple incoming

edges or zero or multiple outgoing edges. This sequence of nodes will be appended to

a list η. Phase one is presented in the pseudocode of Algorithm 4.

After this phase, each edge will be in a unique sequence in η. In a second phase,

for each sequence λ in our list we will combine λ with other sequences located after λ

40

Algorithm 4 Phase one of the minimal decomposition algorithm

Input: the topological ordering Γ
Output: the list η
η ← ∅
for all nodes v ∈ Γ do

for all outgoing edges e of v do
u← e.destination
seq ← {v, u}
while u has exactly one outgoing edge eo do

u← eo.destination
append u to seq

end while
append seq to η

end for
end for

in η which have not already been designated to a section to create a section of one of

the four types. Once η has been traversed each edge of G will be in a unique section.

The way in which we combine sequences is as follows. Consider two sequences

λ1, λ2 made up of nodes u1, . . . , um1 and v1, . . . , vm2 respectively. We proceed through

a series of possible scenarios. First, if u1 = v1 and um1 = vm2 we combine λ1 and

λ2 into a D-section. Second, if u1 = v1 we combine λ1 and λ2 into a B-section.

Third, if um1 = vm2 we combine λ1 and λ2 into a R-section. Finally, if the previous

three scenarios fail to be met, we leave λ1 as a P -section. Phase two is captured in

the pseudocode of Algorithm 5. Note that we refer to the first and last nodes in a

sequence λ by λs and λe respectively.

Theorem 5. For any DAG G, Algorithm 4 and Algorithm 5 produce a minimal

decomposition ∆.

Proof. Suppose there exists a decomposition ∆′ < ∆. Thus, there exists two or more

sections in ∆ which can be merged. Without loss of generality, suppose there are

only two sections θ1, θ2 which can be merged. Consider the sequences λ1, . . . , λn and

µ1, . . . , µn that were combined to make θ1 and θ2 respectively. Then, it is easy to see

41

Algorithm 5 Phase two of the minimal decomposition algorithm

Input: the list η
Output: a collection of sections of type B, R, D, and D

for all sequences λ ∈ η do
collect all unclaimed sequences α ∈ η such that
λs = αs in a list L1

if L1 6= ∅ then
collect all unclaimed sequences β ∈ L1

such that λe = βe in a list L2

if L2 6= ∅ then
create a D-section from L2 and λ
mark L2 and λ as claimed

else
create a B-section from L1 and λ
mark L1 and λ as claimed

end if
continue

end if
collect all unclaimed sequences γ ∈ η such that λe = γe
in a list L3

if L3 6= ∅ then
create a R-section from L3 and λ
mark L3 and λ as claimed
continue

end if
create a P -section from λ
mark λ as claimed

end for

that regardless of which λi or µi appeared first in η, Algorithm 5 would have created

a section with all the λi and µi in the same iteration. Thus, there cannot be two or

more sections which can be merged and therefore there is no ∆′ < ∆.

42

Chapter 6

Experiments

In this section, we present the results of our experiments, which have the following

goals:

• Observe the performance of the Plank strategy in various types of networks.

• Observe how the Plank strategy performs as the number of searchers available

increases.

• Observe how the Plank strategy performs as the size of the network grows.

• Observe how the Plank strategy performs as we vary the size of the k-hubset.

• Study how the Plank strategy performs as we vary size, number of searchers,

and network structure on random DAGs.

For the task of computing an FVS, we employ a heuristic introduced in [13] for

computing a feedback arc set. We take the resulting edge set and place a permanent

guard on the source node of each edge. However, if the end node of an edge already

has a permanent guard we do not need to place an additional permanent guard on

its source node.

43

Finally, we note that for the majority of our datasets the direction of the edges

represents a following/trust relation which we reverse to move to an influence relation.

6.1 Online Networks

For each of our networks we run the Plank algorithm on the obtained DAG with

s ranging from 0.5 − 3% of the size of the network increasing in 0.25% increments.

Additionally, we test three k-hubset sizes removing 1%, 3%, and 5% of the number

of nodes in the network. Then, we plot the number of steps in the resulting search

strategy and the ratio of the length of the strategy to the lower bound. In each plot,

the blue line represents no k-hubset was removed while purple, yellow, and green lines

represent k-hubsets of size 1%, 3%, and 5% respectively.

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ æ

à

à

à

à

à

à
à

à
à

à à

ì

ì

ì

ì

ì
ì

ì
ì ì ì ì

ò

ò

ò

ò

ò
ò

ò
ò

ò ò ò

0.5 1.0 1.5 2.0 2.5 3.0

100

200

300

400

500

600

700

s

st
ep

s

Figure 6.1: Wiki-Vote strategy
lengths.

æ

æ

æ

æ

æ
æ

æ æ

æ

æ æ

à

à

à
à

à

à

à

à
à à

à

ì

ì

ì

ì
ì

ì
ì

ì ì
ì

ì

ò

ò

ò
ò

ò
ò

ò
ò

ò ò ò

0.5 1.0 1.5 2.0 2.5 3.0

2.5

3.0

3.5

4.0

s

ra
ti

o

Figure 6.2: Wiki-Vote approximation
ratios.

Wiki-Vote: First, we look at the Wiki-Vote dataset from [18]. An edge in this

network from user A to B indicates that A voted for B to become an administrator.

The wiki-vote dataset contains 7,116 nodes and 103,689 edges. The FVS computed

contained 11.78% of the network’s nodes.

Figure 6.1 shows the number of steps in the resulting search strategy with in-

creasing number of searchers. Figure 6.2 plots the approximation ratio versus the

44

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

à

à

à

à

à

à
à

à
à

à à

ì

ì

ì

ì

ì
ì

ì
ì

ì ì ì

ò

ò

ò

ò

ò
ò

ò
ò ò ò ò

0.5 1.0 1.5 2.0 2.5 3.0

50

100

150

200

250

s

st
ep

s

Figure 6.3: sign-slashdot dataset
strategy lengths.

æ
æ

æ
æ æ

æ

æ æ

æ æ

æ

à

à à
à à

à à
à

à à
à

ì ì ì ì ì ì
ì ì ì

ì
ì

ò ò ò
ò ò ò

ò ò
ò

ò
ò

0.5 1.0 1.5 2.0 2.5 3.0

1.2

1.3

1.4

1.5

1.6

1.7

1.8

s

ra
ti

o

Figure 6.4: sign-slashdot approxima-
tion ratios.

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

à

à

à

à

à

à

à
à

à
à à

ì

ì

ì

ì

ì

ì
ì

ì
ì ì

ì

ò

ò

ò

ò

ò

ò
ò

ò
ò

ò ò

0.5 1.0 1.5 2.0 2.5 3.0

40

60

80

100

120

140

160

s

st
ep

s

Figure 6.5: sign-epinions dataset
strategy lengths.

æ

æ
æ

æ
æ æ

æ

æ
æ

æ

æ

à à à

à

à

à

à
à

à à àì
ì ì

ì

ì ì ì ì ì ì

ì

ò ò ò
ò

ò

ò ò ò ò

ò

ò

0.5 1.0 1.5 2.0 2.5 3.0
0.95

1.00

1.05

1.10

1.15

1.20

s

ra
ti

o

Figure 6.6: sign-epinions approxima-
tion ratios.

number of searchers. The approximation ratio drops steadily in each case with larger

k-hubsets performing better.

Signed Slashdot: Next, we look at the signed Slashdot dataset from [18]. An

edge in this network from user A to B indicates that B is a friend of A’s. The

signed Slashdot dataset contains 77.350 nodes and 516,575 edges. The FVS computed

contained 16.46% of the network’s nodes.

Figure 6.3 shows the number of steps in the resulting search strategy with increas-

ing number of searchers. Figure 6.4 plots the approximation ratio versus the number

of searchers. Again, we see that larger k-hubsets produce better approximation ratios.

Signed Epinions: The signed Epinions trust network from [18] contains an edge

from user A to B if A trusts B on the Epinions review site. The signed Epinions

45

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

à

à

à

à

à

à

à
à

à
à

à

ì

ì

ì

ì

ì

ì
ì

ì
ì

ì ì

ò

ò

ò

ò

ò

ò
ò

ò
ò ò ò

0.5 1.0 1.5 2.0 2.5 3.0

50

100

150

200

s

st
ep

s

Figure 6.7: email-EU strategy
lengths.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

à
à

à

à
à

à à à

à

à à

ì
ì

ì

ì

ì

ì

ì

ì ì ì

ì

ò
ò

ò
ò

ò ò

ò

ò ò ò ò

0.5 1.0 1.5 2.0 2.5 3.0
0.98

1.00

1.02

1.04

1.06

1.08

s

ra
ti

o

Figure 6.8: email-EU approximation
ratios.

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

à

à

à

à

à

à
à

à
à à à

0.5 1.0 1.5 2.0 2.5 3.0

50

100

150

200

250

s

st
ep

s

Figure 6.9: higgs-retweet dataset
strategy lengths.

æ
æ æ

æ

æ

æ æ

æ

æ æ æ

à à à à
à à à à

à

à à

0.5 1.0 1.5 2.0 2.5 3.0

1.0

1.1

1.2

1.3

s

ra
ti

o

Figure 6.10: higgs-retweet approxi-
mation ratios.

dataset contains 131,828 nodes and 841,372 edges. The FVS computed contained

16.04% of the network’s nodes.

Figures 6.5 and 6.6 show the number of steps in the resulting search strategy and

approximation ratio respectively with increasing number of searchers. Here we see

that as a near optimal approximation ratio is approached the larger k-hubsets lose

their effect.

Email Communication Network: The email-EU network from [19] was generated

using email data from a large European research institution. The network contains

an edge from user A to B if A emailed B. The network contains 265,214 nodes and

420,045 edges. The FVS computed contained only 2.45% of the network’s nodes

indicating a very DAG-like structure.

46

The number of steps required by the search strategy and approximation ratio are

shown in figures 6.7 and 6.8 respectively. For this dataset the k-hubset cases all hover

near an optimal approximation ratio while the case with no k-hubset sits slightly

above.

Twitter Retweet Network: The higgs-retweet network from [12] maps the retweets

by users of Twitter during the announcement of the discovery of the Higgs Boson.

The network contains an edge from user A to B if A retweeted B. The network

contains 425,008 nodes and 733,647 edges. The FVS computed contained 1.13% of

the network’s nodes also indicating a very DAG-like structure.

Figure 6.9 shows the number of steps in the resulting search strategy with in-

creasing number of searchers and Figure 6.10 plots the approximation ratio versus

the number of searchers. Here we only include the 1% k-hubset case since, as we saw

with the email-EU dataset, larger k-hubsets don’t provide any improvement once we

near an optimal approximation ratio.

Next, we plot how well the sliding FVS saves searchers compared to the size of

the FVS computed for each dataset. The Wiki-Vote dataset did not benefit from

the sliding FVS most likely due to its high density compared to the other networks.

Then, as we see in Figure 6.11, the removal of each k-hubset only increases the size

of the FVS with increasing k-hubset size. Figure 6.12 shows searcher savings in all

cases for the signed Slashdot network, and interestingly, the 1% k-hubset produces

the minimum sliding FVS. Then, Figure 6.13 shows that the searcher savings increase

with increasing k-hubset size in the signed Epinions network. Similar to the signed

Slashdot network, Figure 6.14 shows an optimal sliding FVS when using the 1% k-

hubset for the email-EU network. Figure 6.15 shows a sliding FVS increasing in size

with a larger k-hubset for the higgs-retweet network. The sliding FVS results for

47

the higgs-retweet network can be fairly easily predicted from the fact that the FVS

computed was already very small and thus any permanent guards enforced by the

k-hubset exceed this value.

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ì

ò ò ò ò ò ò ò ò ò ò ò

0.5 1.0 1.5 2.0 2.5 3.0

12.0

12.5

13.0

13.5

s

fv
s

Figure 6.11: Wiki-Vote dataset slid-
ing FVS.

æ

æ æ æ
æ

æ
æ

æ
æ

æ æ
à

à
à

à
à

à à
à à

à
à

ì

ì ì
ì

ì
ì

ì
ì

ì
ì

ì

ò

ò
ò

ò

ò
ò

ò
ò

ò
ò

ò

0.5 1.0 1.5 2.0 2.5 3.0

12.6

12.8

13.0

13.2

13.4

13.6

13.8

s

fv
s

Figure 6.12: sign-slashdot sliding
FVS.

We note that the regularity in each of the plots showing the length of a strategy

indicates that the potential loss between steps when there is a leftover searcher unable

to clear an additional edge does not have a large effect on the number of steps required

to clear the network. Furthermore, near optimal approximation ratios indicate the

DAG remaining after the removal of the FVS had a small overlap value. Finally,

the Wiki-Vote dataset is the only network in which the overlap factor drove the

approximation ratio above 2. However, we see a good decrease ranging from 17.99 -

22.34% in the approximation ratio.

æ æ æ æ æ æ æ
æ æ æ æ

à à à à à
à

à
à à

à à

ì
ì ì ì

ì ì
ì

ì
ì

ì
ì

ò

ò
ò ò

ò
ò ò

ò
ò

ò
ò

0.5 1.0 1.5 2.0 2.5 3.0

11.0

11.5

12.0

12.5

s

fv
s

Figure 6.13: sign-
epinions sliding FVS.

æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ì

ò ò ò ò ò ò ò ò ò ò ò

0.5 1.0 1.5 2.0 2.5 3.0

1

2

3

4

5

s

fv
s

Figure 6.14: email-EU
sliding FVS.

æ

æ æ æ æ æ æ
æ æ æ

æ

à

à
à

à
à

à
à

à
à à

à

0.5 1.0 1.5 2.0 2.5 3.0

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

s

fv
s

Figure 6.15: higgs-
retweet sliding FVS.

48

6.2 Random DAGs

Next, we consider the individual parameters of the system and investigate how the

approximation ratio is affected as they are varied. For these tests, we generate random

DAGs similar to the Erdös-Rényi model except we predetermine an ordering of the

nodes, (1 . . . n), in the DAG and then randomly add edges from node i to j with

probability p provided i comes before j in the ordering. We generate five random

DAGs for each data point and average the results.

First, we study how the approximation ratio behaves as the size of the network

is increased. We fix p = 1
n

and run the tests for s = 10, 25, 50. Figure 6.16 shows

the resulting approximation ratios as the network size increases from 1,000 to 20,000

nodes. We observe the ratios remain nearly constant as the network size is increased.

Next, we look at how the approximation ratio behaves as the number of searchers

is increased. We fix p = 1
n

and run the tests for n = 5,000, n = 10,000, and n = 20,000.

Figure 6.17 shows the resulting approximation ratios as the number of searchers in-

creases from 0.2% to 2% of the network size. We see that the approximation ratio

decreases as the number of searchers increases.

æ æ
æ

æ
æ

æ

æ æ

à

à

à

à

à
à à

à

ì

ì

ì ì ì ì ì ì

5000 10 000 15 000 20 000
1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

n

ra
ti

o

ì 50

à 25

æ 10

Figure 6.16: Effect of increasing net-
work size on the approximation ratio.

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

à

à

à

à

à

à

à à

à

à

ì

ì

ì

ì
ì

ì
ì ì

ì

ì

0.5 1.0 1.5 2.0

1.10

1.12

1.14

1.16

s

ra
ti

o

ì 20000

à 10000

æ 5000

Figure 6.17: Effect of increasing
searchers on the approximation ratio.

Futhermore, we produce random DAGs according to the

Barabási-Albert model [1] to replicate the power law structure exhibited in many on-

49

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

0.5 1.0 1.5 2.0 2.5 3.0
1.94

1.96

1.98

2.00

2.02

s

ra
ti

o

Figure 6.18: m = m0 =
2.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.5 1.0 1.5 2.0 2.5 3.0

1.94

1.96

1.98

2.00

2.02

s

ra
ti

o

Figure 6.19: m = 2,
m0 = 3.

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.5 1.0 1.5 2.0 2.5 3.0

2.85

2.90

2.95

3.00

s

ra
ti

o

Figure 6.20: m = 3,
m0 = 6.

Figure 6.21: Barabási-Albert DAG plots.

line social networks. The Barabási-Albert model takes three parameters n, m, and

m0. The graph begins with m0 isolated nodes. New nodes are added to the graph

one at a time until we have a graph with n nodes. Each new node is connected to

m ≤ m0 existing nodes with a probability that is proportional to the number of edges

that the existing nodes already have. We direct new edges from existing nodes to

new nodes to maintain a DAG structure. We run the Plank algorithm on each DAG

with n = 20,000 and s ranging from 0.5− 3% of the size of the network increasing in

0.25% increments.

In Figure 6.18 we have m = m0 = 2 and see a steady decrease in approximation

ratio. Then, in Figure 6.19 we investigate the effects of adding an additional pref-

erential node where we observe a similar decrease in approximation ratio. Finally,

in Figure 6.20 we look at a Barabási-Albert DAG in which there are 6 preferential

nodes and 3 links are added with each new node in which a decreasing approximation

ratio is also observed as the number of searchers (modestly) increases. In each case

we observe good approximation ratios.

50

Chapter 7

Conclusion

In this work we perform an extensive study of the problem of eliminating contamina-

tion spreading through a network. Specifically, we study the related graph searching

problem which we prove is NP-hard even on DAGs and therefore an exact algorithm

is infeasible for large networks. Consequently, we introduce a novel approximation al-

gorithm for clearing DAGs which we incorporate into a procedure for clearing general

digraphs. We experimentally test our algorithm on several large online networks and

observe good performance in relation to the lower bound. Furthermore, we explore

various parameters of the graph searching problem on random DAGs and discover

the search time is unaffected by network size, yet significantly decreases with modest

increases in searcher allocation.

51

Bibliography

[1] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random net-

works. Science, 286(5439):509–512, 1999.

[2] Shishir Bharathi, David Kempe, and Mahyar Salek. Competitive influence maxi-

mization in social networks. In Proceedings of the 3rd international conference on

Internet and network economics, WINE’07, pages 306–311, Berlin, Heidelberg,

2007. Springer-Verlag.

[3] D. Bienstock. Graph searching, path-width, tree-width and related problems.

DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science, 5:33–

49, 1991.

[4] Lélia Blin, Pierre Fraigniaud, Nicolas Nisse, and Sandrine Vial. Distributed

chasing of network intruders. Theor. Comput. Sci., 399(1-2):12–37, June 2008.

[5] Richard Borie, Craig Tovey, and Sven Koenig. Algorithms and complexity results

for graph-based pursuit evasion. Auton. Robots, 31(4):317–332, November 2011.

[6] Franz J. Brandenburg and Stephanie Herrmann. Graph searching and search

time. In SOFSEM 2006: Theory and Practice of Computer Science, volume

3831 of Lecture Notes in Computer Science, pages 197–206. 2006.

52

[7] C. Budak, D. Agrawal, and A. El Abbadi. Limiting the spread of misinformation

in social networks. In Proceedings of the 20th international conference on World

wide web, pages 665–674. ACM, 2011.

[8] Tim Carnes, Chandrashekhar Nagarajan, Stefan M. Wild, and Anke van Zuylen.

Maximizing influence in a competitive social network: a follower’s perspective. In

Proceedings of the ninth international conference on Electronic commerce, ICEC

’07, pages 351–360, New York, NY, USA, 2007. ACM.

[9] Wei Chen, Laks V. S. Lakshmanan, and Carlos Castillo. Information and Influ-

ence Propagation in Social Networks. Synthesis Lectures on Data Management.

Morgan & Claypool Publishers, 2013.

[10] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social

networks under the linear threshold model. In Proceedings of the 2010 IEEE

International Conference on Data Mining, ICDM ’10, pages 88–97, Washington,

DC, USA, 2010. IEEE Computer Society.

[11] Nick D. Dendris, Lefteris M. Kirousis, and Dimitrios M. Thilikos. Fugitive-search

games on graphs and related parameters. In Proceedings of the 20th International

Workshop on Graph-Theoretic Concepts in Computer Science, WG ’94, pages

331–342, London, UK, UK, 1995. Springer-Verlag.

[12] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. The anatomy of a

scientific rumor. Scientific Reports, 3, 01 2013.

[13] Peter Eades, Xuemin Lin, and W. F. Smyth. A fast and effective heuristic for

the feedback arc set problem. Inf. Process. Lett., 47(6):319–323, October 1993.

[14] J. A. Ellis, I. H. Sudborough, and J. S. Turner. The vertex separation and search

number of a graph. Inf. Comput., 113(1):50–79, August 1994.

53

[15] Amit Goyal, Francesco Bonchi, Laks V. S. Lakshmanan, and Suresh Venkatasub-

ramanian. On minimizing budget and time in influence propagation over social

networks. Social Netw. Analys. Mining, 3(2):179–192, 2013.

[16] U. Kang and Christos Faloutsos. Beyond ’caveman communities’: Hubs and

spokes for graph compression and mining. In Proceedings of the 2011 IEEE 11th

International Conference on Data Mining, ICDM ’11, pages 300–309, Washing-

ton, DC, USA, 2011. IEEE Computer Society.

[17] M Kirousis and C H Papadimitriou. Searching and pebbling. Theor. Comput.

Sci., 47(2):205–218, November 1986.

[18] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and

negative links in online social networks. In Proceedings of the 19th International

Conference on World Wide Web, WWW ’10, pages 641–650, New York, NY,

USA, 2010. ACM.

[19] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: densifi-

cation and shrinking diameters. ACM Trans. Knowl. Discov. Data, 1(1), March

2007.

[20] Bo Liu, Gao Cong, Dong Xu, and Yifeng Zeng. Time constrained influence

maximization in social networks. In ICDM, pages 439–448, 2012.

[21] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou.

The complexity of searching a graph. J. ACM, 35(1):18–44, January 1988.

[22] Dominic Meier, Yvonne Anne Oswald, Stefan Schmid, and Roger Wattenhofer.

On the windfall of friendship: inoculation strategies on social networks. In Pro-

ceedings of the 9th ACM Conference on Electronic Commerce, EC ’08, pages

294–301, New York, NY, USA, 2008. ACM.

54

[23] Y. Alavi Parsons, T.D. and D. Lick. Pursuit-evasion in a graph. Theory and

Applications of Graphs, pages 426–441, 1976.

