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ABSTRACT

Given a C*-algebra A endowed with an action α of R and an α-invariant trace τ , there is

a canonical dual trace τ̂ on the crossed product Aoα R. This dual trace induces (as would

any suitable trace) a real-valued homomorphism τ̂∗ : K0(AoαR)→ R on the even K-theory

group. Recall there is a natural isomorphism φiα : Ki(A)→ Ki+1(AoαR), the Connes-Thom

isomorphism. The attraction of describing τ̂∗◦φ1
α directly in terms of the generators of K1(A)

is clear. Indeed, the paper where the isomorphisms {φ0
α, φ

1
α} first appear sees Connes show

that τ̂∗φ
1
α[u] = 1

2πi
τ(δ(u)u∗), where δ = d

dt

∣∣
t=0
αt(·) and u is any appropriate unitary. A

careful proof of the aforementioned result occupies a central place in this thesis. To place

the result in its proper context, the right-hand side is first considered in its own right, i.e., in

isolation from mention of the crossed-product. A study of 1-parameter dynamical systems

and exterior equivalence is undertaken, with several useful technical results being proven.

A connection is drawn between a lemma of Connes on exterior equivalence and projections,

and a quantum-mechanical theorem of Bargmann-Wigner. An introduction to the Connes-

Thom isomorphism is supplied and, in the course of this introduction, a refined version of

suspension isomorphism K1(A) → K0(SA) is formulated and proven. Finally, we embark

on a survey of unbounded traces on C*-algebras; when traces are allowed to be unbounded,

there is inevitably a certain amount of hard, technical work needed to resolve various domain

issues and justify various manipulations.
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Chapter 1

Introduction

Consider a unital C*-algebra A together with a continuous action α of R on A by ∗-

automorphisms. Let τ be a trace on A. It is standard that τ induces a homomorphism

τ∗ : K0(A)→ R such that

τ∗([e]) = τ(e)

for every projection e ∈ A. It is appropriate to think of τ∗ as an analytical index, the point

being that τ acts as a surrogate for the rank function.

If τ is also α-invariant, so that τ ◦ δ = 0 where δ is the derivation associated to the flow

α, then there furthermore arises a homomorphism indτα : K1(A)→ R such that

indτα([u]) =
1

2πi
τ(δ(u)u−1)

for every invertible element u in the domain of δ. One can think of the homotopy invariant

quantity 1
2πi
τ(δ(u)u−1) as a sort of C*-dynamical winding number because of its formal

similarity to the winding number formula 1
2πi

∫ 1

0
γ′(t)
γ(t)

dt. Indeed, this analogy is not idle; the

latter can be realized as a particular case of the former. Considering this connection, it is

appropriate to think of indτα as a topological index.

The conventional wisdom being that traces pair with K0, it would seem to be something
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of a curiosity that, when τ is α-invariant, a sort of “secondary pairing” with K1 appears.

Since one has the suspension isomorphism s1
A : K1(A) → K0(SA) lying around, a natural

question might be:

Question. Is the topological index indτα on K1(A) really a disguised form of the analytical

index on K0(SA) associated to some auxiliary trace on SA?

The answer to this question is a resounding “no”. Although it is easy to see that the trace

τ on A induces a trace s τ on the suspension SA, this construction does not involve the flow,

and there is generally no relationship between indτα and (s τ)∗ ◦ s1
A. In fact, if A, and hence

SA, is commutative, then every trace on SA pairs trivially with K0 (see Proposition B.11),

even though indτα can be nonzero. Already, this occurs when α is the translation flow on

A = C(T) and τ is the Riemann integral.

In spite of the harsh rebuke dealt above, theorems such as the Gohberg-Krein Index Theo-

rem [13], its brethren [22], and its generalizations [26] give credible evidence that it should be

possible to identify indτα with an analytical index of some sort. To be specific, the references

above recover indτα as the index of an associated “Toeplitz operator”. These approaches use

Breuer’s extension of Fredholm theory to the von Neumann algebra setting [4], [5]. The pure

C*-algebra K-theory resolution to this problem comes when one involves the dynamics by

replacing the suspension SA ∼= A⊗C0(R) by the crossed-product AoαR, roughly, a twisted

version of A ⊗ C0(R) that is generally noncommutative even when A is commutative. An

α-invariant trace τ on A still induces a dual trace τ̂ on A oα R by which one stands a rea-

sonable chance to recover indτα. All that is missing is a device for relating the K-theory of

A with that of its crossed-product A oα R. Famously, such a device exists. In [6], Connes

constructed natural isomorphisms φiα : Ki(A) → Ki+1(A oα R), i = 0, 1. Moreover, he

proved that

τ̂∗ ◦ φ1
α = indτα,
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thereby showing that the topological index indτα and the analytical index τ̂∗ are, modulo an

application of his analogue for the Thom map, one and the same.

It is largely accurate to classify this thesis as an exposition of the aforementioned result

of Connes, and surrounding theory. Such an undertaking is desirable since, in spite of the

disarming simplicity the above formula, the technical work needed to achieve a rigorous

formulation and proof is quite substantial. It is to be hoped that our efforts to gather the

details in one place may be of use to persons needing access to some aspect or other of the

theoretical underpinning. We now summarize the organization of topics.

Chapter 2 contains pertinent material on (1-parameter) automorphism groups. To make

a proper study of automorphism groups, we must also study families of unitaries in the

multiplier algebra M(A). We consider both unitary groups, which are the implementors

of inner automorphism groups, and unitary 1-cocycles, which are the mediators of exterior

equivalences between automorphism groups. To a limited extent, we also consider the en-

compassing notion of groups of Banach space isometries, mainly to the end of giving meaning

to the phrase infinitesimal generator in a reasonably general context. A major feature of our

approach is the emphasis we have placed on casting the families encountered as solutions of

differential equations.

In Chapter 3, we make a study of the topological index indτα in its own right. A few

novelties are to be mentioned. In Proposition 3.6 it is shown that a closed, densely defined

derivation δ of a unital Banach algebra must have 1 ∈ dom(δ). This proposition, although

comforting to know, is of rather limited use since as it is difficult to imagine any particular

example of a derivation for which this conclusion is not obvious. We work out the index for

translation flow on R, which yields the classical winding number, for linear flows on tori,

and in particular the Kronecker flow on the 2-torus.

In Chapter 4, we prove a lemma (Theorem 4.22, in our numbering) of Connes to the effect

that, for any C*-dynamical system (A,R, α), for every projection e ∈ A, the projection e
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is fixed by a flow in the same exterior equivalence class as α. This result is crucial to

the construction of Connes-Thom isomorphism. On the way, we precisely characterize, in

Theorem 4.4, the C1-smooth unitary 1-coycles of an arbitrary C*-dynamical system. We

close the section by drawing attention to a particularly nice application of Connes’ lemma:

to showing that every continuous 1-parameter group of ∗-automorphisms of the algebra of

compact operators on separable Hilbert space is unitarily implemented. This is an old result

in the mathematical formalism of quantum mechanics, related to, but distinct from, Stone’s

theorem on 1-parameter unitary groups. As the document [33] attributes a nearby result

to Valentine Bargmann and Eugene Wigner, it seems appropriate to use the designation

“Bargmann-Wigner theorem” for this statement.

In Chapter 5, we discuss the suspension isomorphisms of C*-algebra K-theory, beginning

with mention of their historical antecedent in the commutative setting. Inspired by our

hijinks in the commutative case, we show, in Theorem 5.15, that the suspension isomorphism

K1(A) → K0(SA) admits a more refined statement. Roughly, we show there already exists

a homotopy bijection on generators, prior to making the passage to K-groups. The result

obtained is precisely the C*-analogue of Lemma 1.4.9 in [1]. It is interesting to note that

there is no corresponding result for the (more significant) isomorphism K0(A) → K1(SA),

the Bott map. The latter isomorphism depends vitally on the relations imposed during the

passage to K-groups.

In Chapter 6, we give a rapid introduction to the Connes-Thom isomorphism, first dealing

with axiomatics, and then deriving the explicit formulae for φ0
α and s0 ◦ φ1

α appearing in [6]

from the axioms.

In Chapter 7, we finally return our attention to the formula τ̂∗ ◦ φ1
α = indτα which was

discussed at the outset. The proof of Theorem 7.1 is the culmination of our efforts and is the

focal point of this document. We then apply the theorem in the case of Kronecker flow on the

2-torus along lines of irrational slope. The chapter closes with brief mention of a “severed
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thread”. The original goal of this project was to give an analogue of the above formula

for KMSβ-states. Ultimately, the results obtained in this direction were unsatisfactory, for

reasons we explain here.

The bulk of the appendices is occupied by an introductory account of the theory of un-

bounded traces on C*-algebra, including the dual trace on the crossed-product. We follow

the example of [26] by stubbornly refusing to resort to von Neumann algebra methods when-

ever practical. Most of this material is probably “standard” for those in the know, or for

those already well-versed in the corresponding theory for von Neumann algebra, but it is still

rather difficult to track down references for the C*-algebra case. As mentioned above, most

of the material in this chapter is probably known, but let us draw attention to a few results

which we have not encountered elsewhere. Corollary A.16 shows that, for every C*-algebra

A, x ∼ y ⇔ ∃a ∈ A : x = a∗a, y = aa∗ defines an equivalence relation on the positive cone

of A. Theorem A.27 generalizes the following statement: “If S, T are bounded operators on

a separable Hilbert space such that ST and TS are both trace-class, then tr(ST ) = tr(TS)”

a discussion of which can be found at [16]. Proposition A.25 is a completeness result for

the “Hilbert-Schmidt elements” associated to an unbounded trace. We prescribe Proposi-

tions A.34 and A.37 as remedies for those afflicted with the impression that the dual trace

resists being used in concrete computations. Last of all, a (shorter) appendix contains some

inevitable lemmas with regards to doing K-theory over suitable dense subalgebras.

Notations and conventions

If A is an (associative) algebra over C, then Ã denotes the algebra obtained by adjoining a

unit to A, even if one already exists. The scalar map Ã → C (of which A is the kernel) is

denoted εA, or simply ε when confusion seems unlikely.

If A is a C*-algebra with 1, and e ∈ A is projection, we write e⊥ for the complementary
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projection 1− e.

Given f ∈ Cc(R), its Fourier transform f̂ ∈ C0(R) shall be given as f̂(s) =
∫∞
−∞ f(t)eits dt.

Completing the convolution algebra Cc(R) in the largest C*-norm dominated by ‖·‖1, one ob-

tains the group C*-algebra C∗(R). The Fourier transform extends uniquely to a C*-algebra

isomorphism C∗(R)→ C0(R) which we denote simply by f 7→ f̂ and refer to as the Fourier

isomorphism. For reasons explained later in Theorem 2.15, we sometimes denote the inverse

isomorphism C0(R)→ C∗(R) by g 7→ g(i d
dt

).

Remark 1.1. If A and B are unital C*-algebras, then a unital ∗-homomorphism ϕ : A→ B

obviously restricts to a homomorphism of their unitary groups. If A and B are unital but

ϕ is nonunital1, ϕ still induces a homomorphism on the unitary groups sending a unitary

u ∈ A to the unitary ϕ(u) + ϕ(1A)⊥ = ϕ(u) + 1B − ϕ(1A) ∈ B. It is rather awkward that

this natural mapping from unitaries in A to unitaries in B is not always the restriction of ϕ

to the unitaries.

To mitigate the above awkwardness, when we write U(A) for any C*-algebra A, unital or

nonunital, we shall always mean (often implicitly) the group of unitaries in Ã whose scalar

part equals 1. Similarly, when we write Un(A), we mean U(Mn(A)). In the case where A

is already unital, this makes no difference, since the group of unitaries in A is canonically

isomorphic to U(A). With this convention, if A and B are any C*-algebras (unital or not) and

ϕ : A→ B is any ∗-homomorphism (unital or not) then ϕ induces a mapping U(A)→ U(B)

given by restricting the unitized homomorphism ϕ̃ : Ã → B̃ to U(A). This recovers the

homomorphism discussed in the above remark, and has the advantage of treating all cases

in a homogeneous manner. Analogous comments apply for groups of invertibles i.e. GL(A)

implicitly denotes the group of invertible elements in Ã which have scalar part 1.

1Such homomorphisms are unavoidable in the context of K-theory, for instance, consider the corner
inclusion of Mn(A) into Mk(A) for n < k.
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Chapter 2

One-parameter dynamics

2.1 Isometric flows in Banach spaces

Definition 2.1. A flow Φ on a Banach space X is a strongly-continuous1 action of R on X

by linear isometries.

In general, of course, there is not a compelling reason to restrict to attention to isometric

flows, but such flows will suffice for our purposes. This restriction affords certain conve-

niences. For instance, the following shows the “strong continuity” coincides with the usual

continuity property imposed on a topological group action.

Proposition 2.2. If Φ is a flow on a Banach space X, then the map (t, x) 7→ Φt(x) :

R×X → X is jointly continuous (as opposed to merely when the second component is held

fixed, as strong continuity would seem to dictate).

Proof. Let t, s ∈ R and x, y ∈ X. Note

‖Φt(x)− Φs(y)‖ ≤ ‖Φt(x)− Φs(x)‖+ ‖Φs(x)− Φs(y)‖ = ‖Φt(x)− Φs(x)‖+ ‖x− y‖
1That is t 7→ Φt(x) is a continuous curve for every x ∈ X. By exploitation of the group law, it suffices to

require that limt→0 Φt(x) = x for all x ∈ X.
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and the latter clearly vanishes as t→ s and ‖x− y‖ → 0.

The presence of a flow immediately gives rise to a stratification of elements by the smooth-

ness of their orbits.

Definition 2.3. Let Φ be a flow on a Banach space X. A Ck element for Φ is an element

x ∈ X such that the curve t 7→ Φt(x) is Ck smooth. The infinitesimal generator of Φ is

the partially-defined linear transformation D of X with dom(D) the subspace of C1 elements

and given by D(x) = d
dt

Φt(x)
∣∣
t=0

= limt→0
Φt(x)−x

t
, for all x ∈ dom(D).

Proposition 2.4. Let Φ be a flow on a Banach space X and fix x ∈ X. If t 7→ Φt(x) is

differentiable at t = 0, then Φt(x) is a C1 smooth element for every t ∈ R and

d
dt

Φt(x) = Φt(D(x)) = D(Φt(x)).

Proof. Briefly, apply d
ds

∣∣
s=t

to Φs(x) = Φt(Φs−t(x)) = Φs−t(Φt(x)).

Corollary 2.5. The closed subspace of elements fixed by a Banach space flow equals the

kernel of the infinitesimal generator of the flow.

A routine smoothing argument, given below, shows that C∞ elements always exist in

abundance. Note that, canonically associated to a flow t 7→ Φt : R → Isom(X), there is a

contractive homomorphism f 7→ Φf : Cc(R)→ B(X) given by

Φf (x) =

∫ ∞
−∞

f(t)Φt(x) dt ∀ f ∈ Cc(R), x ∈ X

where Cc(R) is considered as a normed algebra with under convolution and the 1-norm. Note

as well the equivariance condition

Φλtf = ΦtΦf

where (λtf)(s) = f(s− t).
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Proposition 2.6. For any flow Φ on a Banach space X, the C∞ elements are dense.

Proof. Let f ∈ Cc(R) be continuously differentiable. We claim that, for any x ∈ X, the

element Φf (x) is smooth and D(Φfx) = −Φf ′(x). Indeed, since

∥∥∥∥ΦtΦf (x)− Φf (x)

t
+ Φf ′(x)

∥∥∥∥ ≤ ∥∥∥∥λtf − ft
+ f ′

∥∥∥∥
1

‖x‖,

one just needs to know that λtf−f
t
→ −f ′ in the 1-norm. Obviously λtf−f

t
→ −f ′ pointwise.

Assuming |t| ≤ 1 with no harm done, the supports of the λtf−f
t

all lie in a single bounded

interval. Furthermore, noting f(s−t)−f(s)
t

equals the average value of f ′ between s and s− t, it

follows that each function λtf−f
t

is dominated by ‖f ′‖∞ times the characteristic function of

a fixed interval so that
∥∥λtf−f

t
+ f ′

∥∥
1
→ 0 by the dominated convergence theorem, proving

the claim.

Inductively, it follows that, if f ∈ Cc(R) has derivatives of every order, then Φf (x) is a

C∞ element for each x ∈ X and Dn(Φf (x)) = (−1)nΦf (n)(x).

Now, letting fn ≥ 0 be a C∞ bump function with support contained in [0, 1/n] and∫
fn(t) dt = 1, we note that

‖x− Φfn)‖ =

∥∥∥∥∥
∫ 1/n

0

fn(s)(x− Φs(x)) ds

∥∥∥∥∥ ≤ max
0≤s≤1/n

‖x− Φs(x)‖ → 0

as n→∞ by strong continuity, so the C∞ elements are dense as desired.

In particular, the infinitesimal generator of a Banach space flow is densely-defined. With

straightforward adjustments to the proof of the standard, single-variable calculus result on

interchange of limit and derivative, we get as well that the infinitesimal generator is a closed

operator.

Proposition 2.7. If Φ is a flow on a Banach space X, then its infinitesimal generator D

is a closed operator.
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Proof. Suppose xn → x, D(xn)→ y where xn ∈ dom(D) and x, y ∈ X. Consider

Φt(xn) = xn +

∫ t

0

d
ds

Φs(xn) ds = xn +

∫ t

0

Φs(D(xn)) ds

for fixed t, and let n tend to∞. On the LHS we get Φt(x). On the RHS, noting Φs(zn) goes

uniformly in s to Φs(z) when zn → z, we get x +
∫ t

0
Φs(y) ds. Now, let t vary. Applying

d
dt

∣∣
t=0

to both sides of Φt(x) = x+
∫ t

0
Φs(y) ds gives D(x) = y, as desired.

Lastly, we show that a Banach space flow can be recovered from its infinitesimal generator.

Note that, as the generator is generally unbounded, the uniqueness result Theorem 4.2 does

not apply.

Theorem 2.8. Let Φ be a flow on a Banach space X with infinitesimal generator D. Fix

x0 ∈ dom(D). Then, the only C1 curve R→ dom(D) that solves the initial value problem

ẋ(t) = D(x(t)) x(0) = x0

is the orbit map t 7→ Φt(x0).

Proof. Let x be any solution to the above initial value problem. Observe that

d
dt

(Φ−t(x(t))) = −Φ−t(D(x(t)) + Φ−tẋ(t) = 0

which means t 7→ Φ−t(x(t)) is constant. Thus, for all t ∈ R, Φ−tx(t) = Φ0x(0) = x0 which,

after applying Φt to both sides, gives the conclusion.

Remark 2.9. Note the above proof is a direct generalization of the proof from elementary

single-variable calculus that x(t) = x0e
at is the unique solution to ẋ(t) = ax(t), x(0) = x0.

The preceding theorem shows that the generator D of a Banach space flow Φ determines
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Φ uniquely on dom(D). Since D is densely-defined, and since our flows are always assumed

isometric, we get the desired corollary by continuous extension.

Corollary 2.10. A Banach space flow is uniquely determined by its infinitesimal generator.

2.2 Strictly-continuous 1-parameter unitary groups

In this section, we consider strictly-continuous 1-parameter unitary groups in the multiplier

algebra M(A) of a C*-algebra A. Our favoured construction2 of M(A) is as the C*-algebra

of “adjointable operators” on A, as explained in [2], II.7.3. From this point of view, the strict

topology on M(A) equals the ∗-strong topology i.e. a net (Ti) in M(A) converges strictly to

T ∈M(A) if and only if Tia→ Ta and T ∗i a→ T ∗a in norm, for every a ∈ A. In particular,

taking adjoints is a strictly continuous operation.

If U ∈ M(A) is unitary, then ‖Ua − a‖ = ‖a − U∗a‖ for all a ∈ A. Thus, the strict

topology and strong topology coincide on U(M(A)). If H is a Hilbert space and A = K(H),

so that M(A) = B(H) and U(M(A)) = U(H), then these topologies also agree with the

strong operator topology on U(H). Thus, a strictly continuous unitary group is, in every

sense, the same as a strongly continuous unitary group. Nonetheless, we shall only speak of

strictly continuous groups as we feel the latter terminology suggests some Hilbert space is

at hand, which may not be the case. We remark that the multiplication maps

U(M(A))× U(M(A))→ U(M(A)) U(M(A))× A× U(M(A))→ A

are jointly continuous when U(M(A)) has the strict topology and A has the norm topology.

If A is a unital C*-algebra, then M(A) = A and the strict topology equals the norm

topology. In this case, all the strictly continuous 1-parameter unitary groups which can arise

2Briefly, an element of M(A) is a function T : A → A possessing an adjoint T ∗ : A → A that satisfies
(Ta)∗b = a∗(T ∗b), for all a, b ∈ A. Automatically, T ∈ B(A), the bounded linear operators on A.
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are rather trivial by the following proposition, which we adapted from material in [11].

Proposition 2.11. If (Ut) is a norm-continuous 1-parameter unitary group in M(A), then

there is a (unique) self-adjoint element H ∈M(A) such that Ut = eitH for all t ∈ R.

The following simple-minded example is included in hopes of rendering the proof of the

above proposition more transparent.

Example 2.12. It is an elementary fact that every continuous group homomorphism u :

R → T has the form u(t) = eith for some h ∈ R. Consider the problem of determining h

from u, without a priori knowledge of this fact. The obvious approach is differentiation:

ih = d
dt
u(t)

∣∣
t=0

. However, as we began only by assuming u is continuous, this tactic requires

further justification. On the other hand, we could integrate: ih ·
∫ t0

0
u(t) dt = (u(t0) − 1),

for any t0 > 0. Assuming the integral on the left is nonzero (which, by continuity, holds for

sufficiently small t0), we have the formula ih = u(t0)−1∫ t0
0 u(t) dt

which makes sense immediately,

with no recourse to additional regularity properties u.

Proof of Proposition 2.11. Since (Ut) is norm-continuous and U0 = 1, we note that 1
t0

∫ t0
0
Us ds→

1 as t0 → 0. Thus, for t0 > 0 sufficiently small,
∫ t0

0
Us ds is invertible. Fix some such t0 > 0.

Given t 6= 0, write

Ut − 1

t

∫ t0

0

Us ds =
1

t

∫ t0

0

Us+t ds−
1

t

∫ t0

0

Us ds

=
1

t

∫ t0+t

t

Us ds−
1

t

∫ t0

0

Us ds

=
1

t

∫ t0+t

t0

Us ds−
1

t

∫ t

0

Us ds.
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Letting t→ 0, note the above converges in norm to Ut0 − 1. Therefore,

lim
t→0

Ut − 1

t
= (Ut0 − 1)

(∫ t0

0

Us ds

)−1

and we have proved iH := d
dt
Ut
∣∣
t=0
∈ M(A) exists in norm. Exploiting the group law, we

get that (Ut) is differentiable and d
dt
Ut = iH · Ut for all t ∈ R.

Having characterized the norm-continuous unitary groups in M(A), we now consider

their strictly continuous counterparts. In our view, M(A) ⊂ B(A). It also holds that

U(M(A)) ⊂ Isom(A). In particular, a strictly continuous unitary group (Ut) in M(A) is

a special kind of flow on the Banach space A, and so has an infinitesimal generator D by

preceding section’s results. It turns out that our primary interest is in H = 1
i
D.

Definition 2.13. The Hamiltonian H of a strictly continuous unitary group (Ut) in M(A)

is such that iH is the infinitesimal generator of (Ut). That is, dom(H) consists of all x ∈ A

such that t 7→ Utx is C1, and H(x) = 1
i

limt→0
Utx−x
t

, for all x ∈ dom(H).

By the previous section’s work, H is a closed, densely-defined operator uniquely associ-

ated to (Ut). Because we normalized by i in the above definition, it is easy to check that

(Hx)∗y = x∗(Hy) for all x, y ∈ dom(H). Thus, it is correct to think of H as some sort of

self-adjoint (or, at least, symmetric) unbounded multiplier of A.

Remark 2.14. As it happens, we shall never have any direct need for H itself, only its

“functional calculus” f 7→ f(H) which we construct directly below. In other words, should

the reader desire, the role of H in this thesis can even be relegated to that of a formal symbol,

a notational crutch for a map Cb(R)→M(A) associated to the group (Ut).

We state this section’s main theorem. The result is surely standard, but, since a reference

could not be located, we include a proof.
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Theorem 2.15. Let (Ut) be a strictly continuous unitary group in M(A) for some C*-algebra

A, and let H be the Hamiltonian of the group. Then, there is a unique strictly continuous

∗-homomorphism f 7→ f(H) : Cb(R)→M(A) such that eitH = Ut for all t ∈ R.

Remark 2.16. To speak of the strict topology on Cb(R), we implicitly identify the latter

algebra with M(C0(R)). The strict topology on Cb(R) is somewhat finer than the topology

of uniform convergence on bounded intervals. Indeed, a net (fi) in Cb(R) converges to

f ∈ Cb(R) uniformly on every bounded interval if and only if fig → fg uniformly for every

g ∈ Cc(R) ⊂ C0(R). The two topologies are equal on any norm-bounded subset of Cb(R).

For the proof of Theorem 2.15, we use the following lemma.

Lemma 2.17. Let A and B be C*-algebras and let π : A → M(B) be a ∗-homomorphism.

If there exists a bounded approximate unit3 (eλ)λ∈Λ in A such that π(eλ) converges to 1

strictly in M(B), then π extends uniquely to a unital ∗-hmorphism π : M(A) → M(B).

Moreover, π is continuous with respect to the strict topologies on M(A) and M(B).rphism

π : M(A)→M(B). Moreover, π is continuous with respect to the strict topologies on M(A)

and M(B).

Remark 2.18. Lemma 2.17 is standard and we omit its proof. See, for instance, Lemma 1.1

in [20]. We comment that the proof in [20] uses the Cohen factorization theorem. As the

authors point out, this technology can be avoided, to some extent, by using approximate

factorizations instead. For example, the action of π(x), where x ∈ M(A), on the right

ideal π(A)B = span{π(a) · b : a ∈ A, b ∈ B} ⊂ B is obviously determined by the equality

π(x)·π(a)b = π(xa)b. The hypotheses in Lemma 2.17 imply π(A)B is dense in B, and one can

define π(x) : B → B by continuously extending. The drawback to this elementary approach,

however, is that is not clear how to prove that π : M(A) → M(B) is strictly continuous,

3For the present application, this can mean that (eλ) is a net in A such that ‖eλ‖ ≤ 1 and eλ converges
strictly to 1 in M(A).
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the problem being that strictly convergent nets need not be bounded, obstructing attempts

make a simple “ε/3” estimate. All that is clear, using this simpler approach, is that π is

strictly continuous on norm-bounded subsets of M(A). On the other hand, using Cohen

factorization, one sees that in fact B = {π(a1) · b · π(a2) : a1, a2 ∈ A; b ∈ B} making the

strict continuity obvious. As case in point, compare our Lemma 2.17 with Proposition 2.5

in [19].

Proof of Theorem 2.15. Fix some f ∈ Cc(R). Recycling the notation of the previous section,

we let Uf : A → A be defined by Ufa =
∫∞
−∞ f(t)Uta dt, for each a ∈ A. To see that

Uf ∈ M(A), we show its adjoint is Uf∗ , where f ∗ is determined by f ∗(t) = f(−t). Indeed,

for any a, b ∈ A, we have

(Ufa)∗b =

∫ ∞
−∞

f(t)(Uta)∗b dt =

∫ ∞
−∞

f(t)a∗(U−tb) dt =

∫ ∞
−∞

f(−t)a∗(Utb) dt = a∗(Uf∗b).

It is straightforward to show that f 7→ Uf is a ‖ · ‖1-contractive ∗-homomorphism of the

convolution algebra Cc(R) into M(A). By definition of C∗(R) as the completion of Cc(R)

with respect to the largest C∗-norm dominated by ‖·‖1, this homomorphism extends uniquely

to a ∗-homomorphism π : C∗(R) → M(A). Let fn = f ∗n ∈ Cc(R) be a nonnegative function

supported in [−1/n, 1/n] with ‖fn‖1 =
∫∞
−∞ fn(t) dt = 1. Given any x ∈ A, we have

‖x− π(fn)x‖ = ‖
∫
fn(t)(x− Utx) dt‖ ≤

∫
fn(t)‖x− Utx‖ dt.

Since ‖x − Utx‖ → 0 as t → 0 and fn(t) is only supported near to t = 0 as n → ∞, we

see that π(fn)x = π(fn)∗x → x. Thus, π(fn) → 1 strictly and, by Lemma 2.17, π extends

(uniquely) to a strictly continuous, unital ∗-homomorphism π : M(C∗(R))→M(A).

Now, let (λt) be the canonical strictly continuous 1-parameter group of unitary multipliers

of C∗(R) whose action on Cc(R) is determined by (λtf)(s) = f(s − t). It’s straightforward
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to check the equivariance condition π(λtf) = Utπ(f) for all f ∈ Cc(R), t ∈ R. Since Cc(R)

contains an approximate unit and π is strictly continuous, it follows that π(λt) = Ut for

all t ∈ R. The final step of the construction (purely cosmetics, in effect) is to extend the

Fourier transform Cc(R) → C0(R) : f 7→ f̂ with f̂ determined by f̂(s) =
∫∞
−∞ e

itsf(t) dt

to a C*-algebra isomorphism C∗(R) = C0(R). Under this identification, the group (λt)t∈R

becomes the exponential group (s 7→ eits)t∈R, completing the proof of existence.

It remains to see why there is only one strictly continuous ∗-homomorphism f 7→ f(H) :

Cb(R) → M(A) satisfying eitH = Ut for all t ∈ R. The point here is that the span of all

the trigonometric polynomials s 7→ eits, t ∈ R is a ∗-algebra4 in Cb(R) = M(C0(R)) which

is dense in the strict topology. Indeed, suppose f ∈ Cb(R) and take a bounded interval

[−M
2
, M

2
]. The trigonometric monomial z(s) = e

2πis
M separates the points of [−M

2
, M

2
] so, by

Weierstrass approximation, there is a polynomial p(z, z) which closely approximates f on

[−M
2
, M

2
]. Moreover, p has M as a period, so the norm of p does not much exceed that of

f . Since the strict topology and the topology of uniform convergence on compact sets agree

on any norm bounded subset of Cb(R), the trigonometric polynomials are strictly dense in

Cb(R) as claimed.

Remark 2.19. We shall often find it convenient, when declaring a strictly-continuous unitary

group (Ut), to write it as (eitH)t∈R immediately, and leave it implicit that H is the Hamilto-

nian of the group. In light of Corollary 2.10, this practice can never cause ambiguity.

2.3 C*-dynamical systems

When a Banach space possesses some extra structure, one naturally has a heightened interest

in the flows which respect that structure. For instance, in the preceding, section we could

be said to have been studying the flows on a C*-algebra A which preserved its right Hilbert

4The norm-closure of this ∗-algebra is the C*-algebra of so-called almost-periodic functions
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A-module structure. So, when we speak of a “Banach algebra flow”, it shall be assumed

to act by (isometric) Banach algebra automorphisms. For a “Banach ∗-algebra flow” the

automorphisms will be taken to be ∗-preserving. One easily gets that, in such situations,

the infinitesimal generator of the flow reflects the extra structure.

Proposition 2.20. If δ is the infinitesimal generator of a Banach algebra flow, then dom(δ)

is subalgebra and δ is a derivation in the sense that δ(xy) = δ(x)y + xδ(y) for all x, y ∈

dom(δ). For a Banach ∗-algebra flow, dom(δ) is a ∗-subalgebra and δ is also ∗-preserving.

Our chief concern is the C*-algebra case.

Definition 2.21. A C*-dynamical system is a triple (A,R, α) where A is a C*-algebra,

and α is strongly continuous action of R on A by ∗-automorphisms.

The reason for the (apparently redundant) inclusion of R in this triple is that the term

“C*-dynamical system” typically refers to the more general situation wherein any, e.g.,

locally compact group is allowed to act.

Definition 2.22. If (Ut) is a strictly continuous unitary group in the multiplier algebra

M(A) of a C*-algebra A, as considered in the preceding section, then αt = Ad(Ut) defines a

C*-algebra flow α on A.

Obviously not all flows are inner (implemented by a unitary group); only the trivial flow

is inner when A is commutative.

Example 2.23. Suppose X is a locally compact Hausdorff space and α is C*-algebra flow

on C0(X) with infinitesimal generator δ. Then, there is a continuous action φ of R on X

by homeomorphisms such that αt(f) = f ◦ φt for all f ∈ C0(R), t ∈ R. If f ∈ C0(X) is

a C1 element for α, then t 7→ f(φt(x)) is continuously differentiable for each x ∈ X and

(δ(f))(x) = d
dt
f(φt(x))

∣∣
t=0

. If, furthermore, X = M is a smooth, compact manifold, V is a

smooth vector field on M , and φ is the flow on M associated to V , then dom(δ) contains

C∞(M) and δ(f) = V f for all f ∈ C∞(M).
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The preceding example gives some indication of why strong continuity is the correct

continuity condition for C*-algebra flows. Indeed, suppose we asked for continuity with

respect to the relative norm-topology on automorphisms. Then, we would get no nonontrivial

flows on commutative C*-algebras whatsoever by the following proposition.

Proposition 2.24. If A = C0(X) where X is a locally compact Hausdorff space and Aut∗(A)

is its group of ∗-automorphisms, then the relative norm topology on Aut∗(A) inherited from

B(A) is discrete.

Proof. Indeed, let α, β ∈ Aut∗(A) be the ∗-automorphisms defined by precompostion with

distinct g, h ∈ Homeo(X). Fix x ∈ X with g(x) 6= h(x). From Urysohn’s lemma follows the

existence of an f ∈ A with f(x) = ‖f‖ = 1 such that α(f) and β(f) have disjoint supports.

Then ‖α(f)− β(f)‖ = 1, witnessing ‖α− β‖ ≥ 1, whence Aut∗(A) is norm-discrete.

We now list some important commutative flows. We shall return to these examples

intermittently.

Example 2.25 (The translation flow on R). Defining (αtf)(s) = f(s + t) for all f ∈ C0(R);

s, t ∈ R, one obtains a C*-algebra flow α on C0(R). The infinitesimal generator δ of α is given

by δ(f) = f ′ for all f ∈ C1
0(R) such that f ′ ∈ C0(R). The Riemann integral is a densely-

defined, lower semicontinuous, α-invariant trace on C0(R), in the sense of Section A.3.

Example 2.26 (Linear flows on Tori). Fix a vector ~θ = (θ1, . . . , θd) ∈ Rd and view it as a

vector field on the d-dimensional torus, Td = Rd/Zd. Identify C(Td) with the C*-algebra

of Zd-periodic functions on Rd. The linear flow α on C(Td) associated to ~θ is given by

(αtf)(x1, . . . , xd) = (x1 + tθ1, . . . , xd + tθd). The infinitesimal generator δ of α has dom(δ ⊂

C1(Td) and is given by δ(f) = ∇f · ~θ. In particular, if fj ∈ C(Td) is the jth coordinate

projection fj(x1, . . . , xn) = e2πixj , then δ(fj) = 2πiθj · fj.

Example 2.27 (The Kronecker flow on T2). Specializing to the case d = 2 above and taking
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~θ = (1, θ) for some irrational number θ, we arrive at the Kronecker flow α on T2 given by

αtf)(x, y) = f(x+ t, y + θt).

Finally, we discuss C*-algebra flows and multiplier algebras. Since each ∗-automorphism

θ of a C*-algebra A extends uniquely5 to a ∗-automorphism of M(A), denoted simply by

θ, one might be tempted to guess that applying this extension principle along a C*-algebra

flow on A ought to yield a C*-algebra flow on M(A). Unfortunately, things aren’t so simple.

The action so obtained is generally discontinuous.

Example 2.28. Let A = C0(R) and let α be translation flow. Then, M(A) = Cb(R) and the

extension of α to Cb(R) is still given by translation in the variable. However, t 7→ αt(f) is

not norm-continuous for all f ∈ Cb(R). To see the continuity fail, consider the translates of

any function with sufficiently bad oscillatory behavior at ∞.

It is sometimes interesting to ask which multipliers do evolve continuously under the

extended flow. For instance, in the above example, one sees the translates of any almost-

periodic function vary continuously.

Definition 2.29. Let (A,R, α) be a C*-dynamical system, let x ∈ M(A), and let k be a

nonnegative integer. We say that x is a Ck multiplier for α if t 7→ αt(x) is a Ck curve with

respect to the C*-algebra norm of M(A).

If (A,R, α) is a C*-dynamical system, then the C0 multipliers for α constitute an α-

invariant C*-subalgebra of M(A) the restriction of α to which is a C*-algebra flow. The

basic reason for having bothered with the above definition is the following example.

Example 2.30. Every C*-dynamical system (A,R, α) has a crossed-product A oα R. There

is a canonical strictly continuous unitary group (eitH) in M(A oα R) and a canonical em-

bedding a 7→ a : A → M(A oα R) such that eitHae−itH = αt(a). If β denotes the flow on

5Indeed, A being an essential ideal in M(A), any ∗-homomorphism out of M(A) is determined by its
restriction to A.
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A oα R unitarily implemented by (eitH), then the extension of β to a 1-parameter group

of automorphisms of M(A oα R) is still conjugation by the group (eitH). Thus, A sits in

M(Aoα R) as C0 multipliers for β.

It’s easy to see that no such difficulties arise if one is only passing to the unitization.

Every C*-dynamical system can be “unitized” in a unique way.

2.4 Unitary 1-cocycles

Definition 2.31. A unitary 1-cocycle u of a C*-dynamical system (A,R, α) is a strictly

continuous family (ut)t∈R of unitaries in M(A) obeying the cocycle law :

us+t = usαs(ut) ∀s, t ∈ R.

It is easy to check that, if α is a C*-algebra flow, and u is a unitary 1-cocycle of α, then

Ad(u)α given by t 7→ utαt(·)u−1
t is another C*-algebra flow.

Definition 2.32. If α is a C*-algebra flow, and u is a unitary 1-cocycle of α, then we refer to

Ad(u)α as the perturbation of α by u. We call two C*-algebra flows exterior equivalent

whenever one is a perturbation of the other.

One can check that:

- If u is a unitary 1-cocycle of α, then u−1 is a unitary 1-cocycle of Ad(u)α.

- If u is a unitary 1-cocycle of α, and v is a unitary 1-cocycle of Ad(u)α, then vu is a

unitary 1-cocycle of α.

and it follows that exterior equivalence is an equivalence relation on C*-algebra flows.

Example 2.33. Let (Ut) and (Vt) be two strictly continuous unitary groups in M(A) and let α

and β be the corresponding unitarily implemented flows. Then ut = VtU
−1
t defines a unitary



21

cocycle of α, and the perturbation of α by u is β. Conversely, if u is any unitary cocycle

of α, then (utUt) is a strictly continuous unitary group in M(A). Thus, the set of unitarily

implemented flows on A precisely equals the exterior equivalence class of the trivial flow. In

particular the property of being unitarily implemented is preserved by exterior equivalence.

Definition 2.34. If, above, H is the Hamiltonian of (Ut), then we denote the Hamiltonian of

(utUt) by Hu and call Hu the perturbation of H by u. Thus, by definition, ute
itH = eitHu

for all t ∈ R.

It is no great shock that cocycles can be pushed forward through equivariant homomor-

phisms. The following simple result in this direction shall suffice for our purposes.

Proposition 2.35. Let (A,R, α) and (B,R, β) be unital6 C*-dynamical systems and let

ϕ : A → B be a unital equivariant homomorphism. If u is a unitary 1-cocycle of α, then

ϕ(u) is a unitary 1-cocycle for β.

We end this section with a sufficient condition for two flows to be exterior equivalence

Definition 2.36. Two C*-algebra flows α and β on A are conjugate if there is a ∗-

automorphism θ of A such that βt = θαtθ
−1 for all t ∈ R. If the latter can be accomplished

with θ = Ad(U) for some unitary U ∈M(A), then we say α and β are unitarily conjugate.

Proposition 2.37. If α is a C*-algebra flow on A and U is a unitary in M(A), then

ut = Uαt(U
∗) defines a unitary 1-cocycle u of α and Ad(u)α = Ad(U)αAd(U)−1. Thus, for

C*-algebra flows, “unitarily conjugate” implies “exterior equivalent”.

Proof. Writing αt(U
∗)a = αt(U

∗α−t(x)), where a ∈ A is arbitrary, shows that t 7→ αt(U
∗) is

strictly continuous. Thus, t 7→ ut is strictly continuous. The rest is algebra.

6Thus, M(A) = A, and the strict topology is the norm topology
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Remark 2.38. Note that, if α in the above proposition is unitarily implemented by a strictly

continuous group (eitH), then ute
itH = UeitHU∗e−itHeitH = UeitHU∗ for all t ∈ R. Thus, in

this case, the perturbation of the Hamiltonian H by u is Ad(U) ◦H.

2.5 Crossed Products by R

Associated to each C*-dynamical system (A,R, α) is a C*-algebra A oα R, the crossed-

product of the system. For our purposes, the following picture of Aoα R is convenient:

(C1) There is a canonical strictly continuous unitary group (eitH) in M(Aoα R).

(C2) There is a canonical embedding a 7→ a of A in M(Aoα R).

(C3) (eitH) implements α in the sense that eitHae−itH = αt(a) for all a ∈ A, r ∈ R.

(C4) Aoα R is generated by “elementary products” a · f(H) where a ∈ A, f ∈ C0(R).

We shall refer to the Hamiltonian H above as the Hamiltonian of the crossed-product.

One may think of Aoα R as a twisted analogue of A⊗C0(R), the latter being generated by

commuting products a · f where a ∈ A, f ∈ C0(R). Indeed, A oα R ∼= A ⊗ C0(R) when α

is trivial. A typical construction of Aoα R begins with the normed ∗-algebra Cc(R, A) with

product, involution, and norm given by

(xy)(s) =

∫ ∞
−∞

x(t)αt(y(−t+ s)) dt

x∗(t) = αt(x(−t)∗)

‖x‖1 =

∫ ∞
−∞
‖x(t)‖ dt
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and then completes it with respect to the largest C*-norm that is dominated by ‖ · ‖1. The

group (eitH) in M(Aoα R) of (C1) is determined by

(eitH · x)(s) = αt(x(−t+ s)) (x · eitH)(s) = x(s− t) ∀x ∈ Cc(R, A).

The embedding of A in M(Aoα R) of (C2) is determined by

(a · x)(t) = ax(t) (x · a)(t) = x(t)αt(a) ∀a ∈ A, x ∈ Cc(R, A)

One can check that (eitH) implements α in the sense of (C3). Indeed, one way to think of

the crossed-product construction is as an enlarging procedure by which an arbitrary flow can

be implemented by a group of unitaries in a weak sense7 – perhaps not by a group in M(A),

but certainly by a group in M(Aoα R). The criterion (C4) follows from

Proposition 2.39. Let (A,R, α) be a C*-dynamical system, and H the Hamiltonian of the

crossed-product. If a ∈ A and f = ĝ where g ∈ Cc(R), then a · f(H) belongs to Cc(R, A) ⊂

Aoα R and is given by t 7→ g(t)a.

Proof. Let f = ĝ where g ∈ Cc(R). First we note that, if x ∈ Cc(R, A), then f(H) ·x belongs

to Cc(R, A) and is given by s 7→
∫∞
−∞ g(t)αt(x(s − t)) dt. Indeed, recalling the definitions

f(H) ·x =
∫∞
−∞ g(t)eitHx dt, and (eitHx)(s) = αt(x(s− t)), it is straightforward to verify that

the approximants to the integral
∫∞
−∞ g(t)eitHx dt converge in L1, and hence in the C∗-norm,

to s 7→
∫∞
−∞ g(t)αt(x(s − t)) dt. If a ∈ A, we have also a · f(H) · x belonging to Cc(R, A)

and given by s 7→ a
∫∞
−∞ g(t)αt(x(s − t)) dt =

∫∞
−∞ g(t)aαt(x(s − t)). Since, a · f(H) and

s 7→ g(t)a give the same multiplier of Cc(R, A), they are equal as claimed.

7This is directly analogous to a corresponding point of view on the construction of the group theoretic
semidirect product. Given an action θ of a group G on a second group H by automorphisms, one constructs
the semidirect product H oθ G as an ambient group containing both H and G, H normally so, in such a
way that the action θ is realized as the conjugation action of G on H inside H oθ G.



24

Example 2.40. The crossed-product of C (by the trivial flow) is the same thing as the group

C*-algebra C∗(R) of R. The canonical strictly continuous group in M(C∗(R)) is the group

(λt) given by (λtf)(s) = f(s − t) when f ∈ Cc(R). The Hamiltonian of (λt) is just i d
dt

.

The map f 7→ f(i d
dt

) is the inverse of the Fourier isomorphism f 7→ f̂ : C∗(R) → C0(R)

determined on Cc(R) ⊂ C∗(R) by f̂(s) =
∫∞
−∞ f(t)eits dt.

We revisit two of the systems from Section 2.3 and identify the crossed-products.

Example 2.41 (The translation flow on R). If α is the translation flow on C0(R) determined

by (αtf)(x) = f(x+ t), as considered in Example 2.25, then

C0(R) oα R ∼= K(H)

whereH = L2(R). To see why, identify each integral kernel k ∈ Cc(R2) with its corresponding

Hilbert-Schmidt operator, given on ξ ∈ H by (kξ)(x) =
∫∞
−∞ k(x, y)ξ(y) dy, ξ ∈ L2(R), so

that Cc(R2) ⊂ K(L2(R)). A reasonably canonical choice of isomorphism K(H)→ C0(R) oα

R sends k ∈ Cc(R2) to f ∈ Cc(R,C0(R)) given by f(x, y) = k(y, x + y). Making the

identifications M(C0(R) oα R)) = M(K(H)) = B(H), the canonical strictly continuous

group (eitH) of the crossed-product is given on ξ ∈ H by (eitHξ)(x) = ξ(x + t). Thus,

one may think of the Hamiltonian H of the crossed-product as the momentum operator

1
i
d
dx

: H → H, in this case. The embedding of C0(R) in M(C0(R) oα R)) is just the usual

embedding of C0(R) into B(H) as multiplication operators.

Example 2.42 (The Kronecker flow on T2). Identify C(T2) with the C*-algebra of Z2-periodic

functions on R2. Fix an irrational number θ and let α be the Kronecker flow on C(T2)

determined by (αtf)(x, y) = f(x+ t, y + θt). In this case,

C(T2) oα R ∼= K(L2(T))⊗ Aθ
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where Aθ is the irrational rotation algebra. The existence of an isomorphism follows from

the much more general Corollary 2.8 in [14], but let us sketch an elementary approach. Our

strategy is to embed both algebras as operators on H = L2(T2) = L2(T)⊗ L2(T), and then

show the embedded algebras are conjugate by a unitary transformation W of H.

Recall that Aθ can be defined as the sub-C*-algebra of B(L2(T)) generated by the copy

of C(T) (embedded as multiplication operators) and the unitary transformation Rθ given by

(Rθξ)(x) = ξ(x+θ). Since, obviously, K(L2(T)) ⊂ B(L2(T)) as well, it is manifestly the case

that K(L2(T))⊗ Aθ is faithfully represented on H = L2(T)⊗ L2(T).

Define a covariant representation, (µ, U) of (C(T2),R, α) on H = L2(T2) by

(µ(f)ξ)(x, y) = f(x, y)ξ(x, y) (Utξ)(x, y) = ξ(x+ t, y + θt).

One can check that the integrated form (see [34] for more information) of this covariant

representation

(π(F )ξ)(x, y) =

∫ ∞
−∞

F (t, x, y)ξ(x+ t, y + θt) dt ∀F ∈ Cc(R, C(T2)), ξ ∈ H

is a faithful representation of C(T2) oα R on H. Now, define W : H → H by

(Wξ)(x, y) = ξ(x, y + {x}θ)

where {r} ∈ [0, 1) denotes the fractional part of a real number r. To be sure, (x, y) 7→ (x, y+

{x}θ) is a discontinuous map of T2. Nonetheless, as the mapping is measure-preserving, W

is a unitary transformation, and so π̃ = Wπ(·)W−1 is a another faithful representation of

C(T2) oα R on H. With some care, one checks that

(π̃(F )ξ)(x, y) =

∫ ∞
−∞

F (t− x, x, y + xθ)ξ(t, y + btcθ) dt ∀F ∈ Cc(R, C(T2)), ξ ∈ H (2.1)
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where brc denotes the greatest integer not exceeding a real number r, and it is assumed that

0 ≤ x < 1 for simplicity’s sake. The constraint on x is not essential, since x really represents

a point on T, but the formula (2.1) is cleaner this way.

Fixing an element a = f · Rn
θ ∈ Aθ, where f ∈ C(T), n ∈ Z, and an integral kernel

k ∈ C(T2) ⊂ K(L2(T)), we define Fk,a : R× T2 → C by

Fk,a(t, x, y) =


k(x, x+ t) · f(y − {x}θ) if n ≤ x+ t < n+ 1

0 otherwise

.

Although Fk,a does not belong to Cc(R, C(T2)), if one uses it in equation (2.1), one gets

(π̃(Fa,k)ξ)(x, y) = f(y)

∫ 1

0

k(x, t)ξ(t, y + nθ) dt ∀ξ ∈ H

which says exactly that

π̃(Fk,a) = k ⊗ a ∈ K(L2(T))⊗ Aθ.

One can show that, when F ∈ Cc(R, C(T2)) is a good approximation of Fa,k, then π̃(F )

approximates π̃(Fk,a) = k ⊗ a in operator norm and it follows that K(L2(T)) ⊗ Aθ ⊂

π̃(C(T2) oα R). The reverse inclusion follows from similarly unattractive arguments, so

π̃ is an isomorphism of C(T2) oα R onto K(L2(T))⊗ Aθ ⊂ B(H).

The most important maps between crossed-products are induced from the underlying

dynamical systems. We consider two such classes of: those arising from equivariant homo-

morphisms, and those arising from exterior equivalences.

Definition 2.43. If (A,R, α) and (B,R, β) are two R-dynamical systems and ϕ : A →

B is an equivariant ∗-homomorphism, then the dual homomorphism is the unique ∗-

homomorphism ϕ̂ : Aoα R→ B oβ R satisfying ϕ̂(x) = ϕ ◦ x for all x ∈ Cc(R, A).
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In fact, as one can easily check, the crossed-product construction is a functor from the

category of C*-dynamical systems and equivariant ∗-homomorphisms to the category of C*-

algebras and ∗-homomorphisms. Given our preferred picture of the crossed-product, it is

worthwhile to make note of the dual map’s behavior on elementary elements.

Proposition 2.44. Let (A,R, α) and (B,R, β) and let ϕ : A → B be an equivariant ∗-

homomorphism. Then, the dual homomorphism ϕ̂ is determined by

ϕ̂(a · f(H)) = ϕ(a) · f(K) ∀a ∈ A, f ∈ C0(R).

Here, H is the Hamiltonian of Aoα R and K is the Hamiltonian of B oβ R.

Proof. When f = ĝ for g ∈ Cc(R), this follows from Proposition 2.39 and the definition of

ϕ̂. The general statement follows by continuity.

Example 2.45. If (A,R, α) is a C*-dynamical system, and e ∈ A is an α-invariant projection,

then ϕe : C→ A determined by ϕe(1) = e is an equivariant8 ∗-homomorphism (nonunital if

e 6= 1). The dual homomorphism ϕ̂e : C∗(R)→ Aoα R is such that

ϕ̂e
(
f
(
i d
dt

))
= ϕ̂e

(
1 · f

(
i d
dt

))
= ϕe(1) · f(H) = e · f(H) ∀f ∈ C0(R)

where i d
dt

is Hamiltonian of C∗(R) and H is the Hamiltonian of Aoα R.

Exterior equivalent flows, on the other hand, give canonically isomorphic crossed-products.

Proposition 2.46. Let (A,R, α) be a C*-dynamical system, u a unitary 1-cocycle for α, and

α′ = Ad(u)α the adjusted flow. Then, there is unique ∗-isomorphism ιu : Aoα′ R→ AoαR

given by (ιu(x))(t) = x(t)ut for all x ∈ Cc(R, A), t ∈ R.

8With respect to the trivial dynamics on C, which are the only dynamics that C supports.
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Proof. The point is that ιu is already a ‖ · ‖1-isometric ∗-isomorphism from Cc(R, A) with

∗-algebra structure coming from α′ to Cc(R, A) with ∗-algebra structure coming from α.

Indeed, given x, y ∈ Cc(R, A), s ∈ R, we have the following.

‖ιux‖1 =

∫
‖x(t)ut‖ dt =

∫
‖x(t)‖ dt = ‖x‖1

(ιux)∗(s) = αs(x(−s)u−s)∗ = (u∗sα
′
s(x(−s))usαs(u−s))∗ = (u∗sα

′(x(−s)))∗ = ιu(x
∗)(s)

(ιux)(ιuy)(s) =

∫
x(t)utαt(y(s− t)us−t) dt

=

∫
x(t)α′t(y(s− t))utαt(us−t) dt

=

∫
x(t)α′t(y(s− t))us dt

= ιu(xy)(s)

It is clear how to construct the inverse map.

Just as for ϕ̂, we would like to know the behavior of ιu on our elementary elements. That

is, we want the analogue of Proposition 2.44. First, we check

Lemma 2.47. For any C*-dynamical system (A,R, α), the embedding of A into M(AoαR)

extends uniquely to embedding of M(A) into M(Aoα R). Moreover, the extension is unital,

faithful, and continuous with respect to the strict topologies.

Proof. To show the extension exists, is unique and is continuous for the strict topologies, we

apply Lemma 2.17. Let (eλ) be a net in A such that ‖eλ‖ ≤ 1 and eλ → 1 strictly in M(A).

Suppose that x ∈ Cc(R, A) and fix ε > 0. Find a finite set {t1, . . . , tn} ⊂ R such that, for

every t ∈ R, there is an i (depending on t) such that ‖x(t) − x(ti)‖ < ε/3. Now, find λ0 so
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that λ ≥ λ0 implies ‖eλx(ti)− x(ti)‖ ≤ ε/3 for i = 1, . . . , n. Then, for every t ∈ R,

‖eλx(t)− x(t)‖ ≤ ‖eλx(t)− eλx(ti)‖+ ‖eλx(ti)− x(ti)‖+ ‖x(ti)− x(t)‖ < ε

Thus, eλx→ x uniformly over R and so, noting x and eλx have the same compact support,

‖eλx − x‖1 → 0 as well. From a trivial ε/3 argument, we get eλx → x for all x ∈ A oα R.

Similarly, xeλ → x for all x ∈ AoαR so that ei → 1 strictly in M(AoαR) and Lemma 2.17

applies as desired. Since A is an essential ideal in A, the faithfulness of the extension

M(A)→M(Aoα R) follows from its faithfulness on A.

The strict continuity of the containment M(A) → M(A oα R) permits the following

observation.

Corollary 2.48. Let (A,R, α) be a C*-dynamical system, and H the Hamiltonian of AoαR.

If u is a unitary 1-cocycle of α, then u is also a unitary 1-cocycle for the flow on A oα R

implemented by (eitH).

We now describe the isomorphism ιu of Proposition 2.46 in terms of elementary elements.

Proposition 2.49. Let (A,R, α) be a C*-dynamical system, u a unitary 1-cocycle of α, and

α′ = Ad(u)α the perturbation of α by u. Then, the isomorphism ιu : A oα′ R → A oα R is

determined by

ιu(a · f(H ′)) = a · f(Hu) ∀a ∈ A, f ∈ C0(R)

where H is the Hamiltonian of A oα R, H ′ is the Hamiltonian of A oα′ R, and Hu is the

perturbation of H by u.

Proof. We shall in fact show that ιu(a) = a and ιu(f(H ′)) = f(Hu) for all a ∈ A, f ∈ C0(R)

where we have implicitly extended ιu to an isomorphism between the multiplier algebras.
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It’s easy to see a · ιu(x) = ιu(a · x) for all x ∈ Cc(R, A), and it follows that ιu(a) = a.

Similarly, the calculation (ιu(x) · ut · eitH)(s) = (ιu(x) · ut)(s − t) = x(s − t)us−tαs−t(ut) =

x(s− t)us = ιu(xe
itH′)(s) shows ιu(x) · eitHu = ιu(xe

itH′) for all x ∈ Cc(R, A), and it follows

that ιu(e
itH′) = eitHu . From the uniqueness in Theorem 2.15, we get ιu(f(H ′)) = f(Hu) for

all f ∈ C0(R), and we are finished.

The above proposition shows one has an perturbed picture of A oα R as the algebra

generated by elementary products a ·f(Hu), a ∈ A, f ∈ C0(R), whenever u is a fixed unitary

cocycle of α. Referring to Proposition 2.39, and using the definition of ιu on Cc(R, A), we

also have

Corollary 2.50. Let (A,R, α) be a C*-dynamical system, u a unitary 1-cocycle of α, H

the Hamiltonian A oα R, and Hu the perturbation of H by u. If a ∈ A and f = ĝ where

g ∈ Cc(R), then a · f(Hu) belongs to Cc(R, A) ⊂ Aoα R and is given by t 7→ g(t)aut.

Using the above Corollary, the definition of ϕ̂ on Cc(R, A) and referring to Proposi-

tion 2.35, we get the following version of Proposition 2.44 to account for the perturbed

picture of the crossed-product.

Corollary 2.51. Let (A,R, α) and (B,R, β) be unital9 C*-dynamical systems, let u be a

unitary 1-cocycle of α, and let ϕ : A→ B be a unital equivariant homomorphism. Then, the

dual homomorphism ϕ̂ is determined by

ϕ̂(a · f(Hu)) = ϕ(a) · f(Kϕ(u)) ∀a ∈ A, f ∈ C0(R).

Here, H is the Hamiltonian of A oα R and Hu is the perturbation of H by u. Likewise, K

is the Hamiltonian of B oβ R and Kϕ(u) is its perturbation by ϕ(u).

9Thus, M(A) = A, and the strict topology is the norm topology
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Chapter 3

Winding number-type invariants in op-

erator algebras

3.1 Paradigm

Let Γ be the group of all smooth loops γ in the punctured plane C \ {0}, based so that

γ(0) = γ(1) = 1, and with group law given by pointwise multiplication. Recall, from

elementary complex analysis that

ind(γ) :=
1

2πi

∫ 1

0

γ′(t)

γ(t)
dt

is the winding number of a loop γ ∈ Γ. In particular, ind is a homotopy-invariant group

homomorphism Γ → Z. Interestingly, many properties of ind can be deduced using noth-

ing beyond this integral formula, elementary calculus, and a bit of algebraic trickery. For

example, the Leibniz rule for products shows

(γ1γ2)′

γ1γ2

=
γ′1γ2 + γ1γ

′
2

γ1γ2

=
γ′1
γ1

+
γ′2
γ2
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which implies ind is a homomorphism. Now, suppose (s, t) 7→ γ(s, t) is a smooth homotopy

of loops in Γ, that is, a smooth map such that γ(s, 0) = γ(s, 1) = 1 for all s ∈ [0, 1]. For any

holomorphic function f on C \ {0}, we have

∂

∂s

(
∂γ

∂t
· f(γ(s, t))

)
=

∂2γ

∂s∂t
· f(γ(s, t)) +

∂γ

∂s
· ∂γ
∂t
· f ′(γ(s, t)) =

∂

∂t

(
∂γ

∂s
· f(γ(s, t))

)

and differentiating under the integral sign then shows

d

ds

∫ 1

0

∂γ

∂t
· f(γ(s, t)) dt =

∫ 1

0

∂

∂t

(
∂γ

∂s
· f(γ(s, t))

)
dt =

[
∂γ

∂s
· f(γ(s, t))

]t=1

t=0

= 0

where the right-hand side vanishes because γ(s, t) is constant in s when t = 0, 1. In other

particular, putting γs = γ(s, ·) and using f(z) = 1
z
, we get that ind(γs) is independent of the

homotopy parameter s ∈ [0, 1].

The decidedly formal character of the computations above suggests it may be possible to

abstract them in order to obtain homotopy invariant homomorphisms in different settings.

In this thesis, we are specifically interested in generalizations for operator algebras, and C*-

algebras in particular. In order to illustrate the paradigm, we prove here a simple theorem

of this type assuming unrealistically strong hypotheses so as to keep technical clutter to a

minimum.

Definition 3.1. Let B be a Banach algebra. A bounded derivation of B is bounded

linear map δ : B → B satisfying δ(xy) = δ(x)y + yδ(x) for all x, y ∈ B. A bounded trace

on B is a bounded linear functional τ : B → C such that τ(xy) = τ(yx) for all x, y ∈ B.

If δ is a bounded derivation of a unital Banach algebra B, then some simple algebraic

manipulations give the expected identities

δ(1) = 0 δ(x−1) = −x−1δ(x)x−1 ∀x ∈ GL(B).
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Theorem 3.2. Suppose B is a unital Banach algebra with bounded derivation δ and bounded

trace τ . Then, x 7→ τ(δ(x)x−1) is a group homomorphism GL(B) → C. Furthermore, if

τ ◦ δ = 0, then the homomorphism is constant on connected-components.

Proof. The group law comes from an easy manipulation using the defining properties of δ

and τ :

τ(δ(xy)y−1x−1) = τ(δ(x)yy−1x−1) + τ(xδ(y)y−1x−1).

For the second part, it is useful to first record the expected identities

δ(1) = 0 δ(x−1) = −x−1δ(x)x−1 ∀x ∈ GL(B).

whose verifications are simple algebraic manipulations. Adding the assumption τ ◦ δ = 0 we

get, from δ(xy) = δ(x)y + xδ(y), the additional identity

τ(δ(x)y) + τ(δ(y)x) = 0 ∀x ∈ B.

Now let t 7→ xt : [0, 1]→ GL(B) be a smooth path. We have

d
dt
τ
(
(δ(xt)x

−1
t )
)

= τ(δ(ẋt)x
−1
t )− τ(δ(xt)x

−1
t ẋtx

−1
t )

= τ(δ(ẋt)x
−1
t )− τ(x−1

t δ(xt)x
−1
t ẋt)

= τ(δ(ẋt)x
−1
t ) + τ(δ(x−1

t )ẋt)

= 0

where, for convenience, Newton’s dot notation has been employed to indicate differentiation

with respect to the parameter. We conclude that τ(δ(xt)x
−1
t ) does not depend on t.

Thus far, we have only shown the values of the homomorphism coincide at the endpoints

of any smooth path. However, as GL(B) is open in B, two points in the same connected-
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component of B are joined by a piecewise linear path.

Given a unital Banach algebra B, we always assume ‖1‖ = 1 which implies that the

left regular representation of B on itself is isometric. The matrix algebra Mn(B) acts on

Bn, and can be given the operator norm corresponding to this action. Thus, the Mn(B)

are Banach algebras, and the corner embeddings x 7→ ( x 0
0 0 ) : Mn(B) → Mn+1(B) are

isometric. A bounded trace τ on B extends to bounded trace τn on each matrix algebra

by application down the diagonal followed by summation. A bounded derivation δ of B

extends to a bounded derivation δn of each Mn(B) by entry-wise application. It’s easy to

see that, if n < k and x, y ∈ Mn(B) ⊂ Mk(B), then τn(δn(x)y) = τk(δk(x)y). If B is

nonunital, then we can first make the minimal unitization B̃ a Banach algebra using the

norm ‖(x, λ)‖1 = ‖x‖+ |λ|, and extend τ and δ by δ(x, λ) := δ(x), τ(x, λ) := τ(x) to obtain

equivalent data on B̃. By this discussion, we get a mild improvement of Theorem 3.2 by

allowing the algebra to be nonunital, and prolonging the homomorphism to K-theory.

Corollary 3.3. Suppose B is a Banach algebra with a bounded derivation δ and a bounded

trace τ satisfying τ ◦ δ = 0. Then, there is a homomorphism K1(B) → C sending the class

of x ∈ GLn(B) to the number τn(δn(x)x−1).

Expressions of the form τ(δ(x)x−1) and their properties have a long history. The earliest

instance which I was able to locate occurs in the proof Theorem 2.1 from [27]. The authors

attribute the relevant portion of the argument to Huzihiro Araki.

The boundedness assumptions in this section are rather unreasonable since the opera-

tions being modeled, differentiation and integration, are, themselves, not bounded in many

contexts. We expend some effort in weakening these assumptions to obtain more substantial

versions of Theorem 3.2. See, in this vein, Theorem 3.8, Theorem 3.11 and Theorem B.9.
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3.2 Unbounded derivations

In this section, we prove a simple extension of Theorem 3.2. Precisely, we relax the bound-

edness assumption on the derivation δ.

Definition 3.4. A closed, densely-defined derivation of a Banach algebra B is a closed,

densely-defined linear transformation δ : B → B such that dom(δ) is an algebra and δ(xy) =

δ(x)y + xδ(y) is satisfied for all x, y ∈ dom(δ).

Example 3.5. If α is a continuous action of R on a Banach algebra B by isometric auto-

morphisms, then the infinitesimal generator δ = d
dt

(·)
∣∣
t=0

of α is a closed, densely-defined

derivation of B. In this case, a bounded trace τ on B satisfies τ ◦ δ = 0 if and only if τ is

α-invariant. Many examples of closed densely-defined derivations are of this form, but not

all. Consider the commutative C*-algebra C([0, 1]) and let δ be differentiation with dom(δ)

consisting of all continuously differentiable f ∈ C([0, 1]). Then, δ is a (self-adjoint) closed,

densely-defined derivation of C([0, 1]), but does not generate an automorphism group.

Note that, when the B in Definition 3.4 is unital, we did not assume that 1 ∈ dom(δ).

However, this turns out to follow automatically, as we now show. Moreover, in this case,

dom(δ) is also closed under taking inverses.

Proposition 3.6. Let δ be a closed, densely-defined derivation of a unital Banach algebra

B. Then the following hold:

1. The unit belongs to dom(δ). Moreover, δ(1) = 0.

2. If x ∈ dom(δ) ∈ GL(B), then x−1 ∈ dom(δ). Moreover, δ(x−1) = −x−1δ(x)x−1.

Proof. Obviously, if 1 ∈ dom(δ), then δ(1) = δ(1 · 1) = δ(1) + δ(1) so that δ(1) = 0. Thus,

we just need to show that 1, or any nonzero scalar for that matter, belongs to dom(δ). Use
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density of dom(δ) to produce an x ∈ dom(δ) such that ‖x+ 1‖ < 1. Note that

(x+ 1)n − 1 =
n∑
k=1

(
n

k

)
xk

belongs to dom(δ) and (x + 1)n − 1 → −1 as n → ∞. We claim that δ((x + 1)n − 1) → 0

as n → ∞ so that, by closedness of δ, −1 ∈ dom(δ) and (1) will be proved. We prove

δ((x+ 1)n − 1)→ 0, by establishing the identity

δ((x+ 1)n+1 − 1) = δ(x)(x+ 1)n + (x+ 1)δ(x)(x+ 1)n−1 + . . .+ (x+ 1)nδ(x). (3.1)

Note (3.1) is trivially obtained if 1 ∈ dom(δ), but the latter is what we are trying to prove.

Once (3.1) is established, we shall have the estimate

‖δ((x+ 1)n+1 − 1)‖ ≤ (n+ 1)‖δ(x)‖‖x+ 1‖n

which implies δ((x + 1)n − 1) → 0, as desired. To establish (3.1), we first expand out the

left-hand side

δ((x+1)n+1−1) =
n∑
k=1

(
n+ 1

k

)
δ(xk) =

n∑
k=1

(
n+ 1

k

)(
δ(x)xk−1 + xδ(x)xk−2 + . . .+ xk−1δ(x)

)

The coefficient of xpδ(x)xq above, where 0 ≤ p+ q ≤ n, is
(
n+1
p+q+1

)
. Meanwhile the coefficient

of xpδ(x)xq on the right-hand side of (3.1) is
∑n−q

i=p

(
i
p

)(
n−i
q

)
. So, we are reduced to proving

the binomial identity

∑
i+j=n

(
i

p

)(
j

q

)
=

(
n+ 1

p+ q + 1

)
0 ≤ p+ q ≤ n (3.2)

which can be done by recognizing the right-hand side as counting the number of (p+ q+ 1)-
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element subsets S of an (n+1)-element set according to the position of the (p+1)st element

of S. The proof of (1) is now complete. As an aside, we remark that (3.2) is formally similar

to, but distinct from, the Vandermonde convolution formula

∑
i+j=n

(
p

i

)(
q

j

)
=

(
p+ q

n

)
0 ≤ n ≤ p+ q.

Towards (2), suppose that x ∈ dom(δ) ∩ GL(B). If we already have x−1 ∈ dom(δ), then

it’s easy to see 0 = δ(xx−1) = δ(x)x−1 + xδ(x−1) and therefore that δ(x−1) = −x−1δ(x)x−1.

Thus, we just need to show that x−1 ∈ dom(δ) is a necessity.

Case 1: First, assume in addition that ‖x − 1‖ < 1 so that x−1 is given by the norm-

convergent series
∑∞

n=0(1 − x)n where (1 − x)n ∈ dom(δ) for all n ≥ 0. Moreover, for each

n, we have the easily obtained estimate

‖δ((1− x)n)‖ ≤ ‖δ(x)‖‖1− x‖n−1

which shows δ
(∑N

n=0(1− x)n
)

converges in norm as N → ∞. Since, δ is closed, it follows

that x−1 ∈ dom(δ) and, indeed, that δ(x−1) =
∑∞

n=1 δ((1− x)n).

Case 2: Now let x ∈ dom(δ) ∩ GL(B) be arbitrary. Since δ is densely-defined, we can

find y ∈ dom(δ) very close to x−1. Since GL(B) is open and x−1 ∈ GL(B), we may also

suppose that y ∈ GL(B) ∩ dom(δ). But now, xy ∈ GL(B) ∩ dom(δ) and we may suppose

‖xy−1‖ < 1 (since y is close to x−1) so, by Case 1 above, (xy)−1 = y−1x−1 ∈ dom(δ). Thus,

x−1 = yy−1x−1 ∈ dom(δ) as desired.

By the above proposition and Lemma B.10, we have the corollary

Corollary 3.7. If δ is a closed, densely-defined derivation of a unital Banach algebra B,

then the inclusion GL(dom(δ)) ↪→ GL(B) is a π0-equivalence1.

1That is, induces a bijection on path components
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It is easy to check that, if δ is a closed, densely-defined derivation, then the graph norm

‖ · ‖ + ‖δ(·)‖ is submultiplicative. Thus, dom(δ) is a Banach algebra in its own right, to

which Theorem 3.2 can be applied, and we get the following incremental improvement.

Theorem 3.8. Let δ be a closed, densely-defined derivation of a unital Banach algebra B,

let τ be a bounded trace on B, and suppose that τ ◦ δ = 0. Then there is a unique group

homomorphism GL(B) → C sending x to τ(δ(x)x−1) whenever x ∈ GL(dom(δ)). This

homomorphism is constant on connected components of GL(B).

Example 3.9. Consider the C*-algebra C(T) of Z-periodic functions on R. Let δ be given

by ordinary differentiation on the continuously differentiable functions in C(T). Let τ =∫ 1

0
(·) dt : C(T) → C. Then, δ is a closed, densely-defined derivation, τ is a bounded trace,

and τ ◦ δ = 0. In this case, a loop γ ∈ GL(C(T)) is a loop in the punctured plane C \ {0}

and, if γ ∈ dom(δ) as well, one has τ(δ(γ)γ−1) =
∫ 1

0
γ′(t)
γ(t)

dt i.e. the homomorphism of

Theorem 3.8 is just 2πi times the winding number in this example.

We can extend a closed, densely-defined derivation δ of a Banach algebra B to a closed

densely-defined derivation δn of each matrix algebra Mn(B) by putting dom(δn) = Mn(dom(δ))

and applying δ entrywise. One also has an extension to the unitzation which vanishes on the

scalars. By a similar discussion to that which followed Theorem 3.2, we have the following

upgrade of Corollary 3.3.

Corollary 3.10. Suppose B is a Banach algebra with a closed, densely-defined derivation

δ and a bounded trace τ satisfying τ ◦ δ = 0. Then, there is a homomorphism K1(B) → C

sending the class of x ∈ GLn(dom(δ)) to the number τn(δn(x)x−1).

We have improved on the results of previous section by allowing unbounded derivations,

provided they are closed and densely-defined. We desire a further improvement which will

allow unbounded traces as well. Conspicuously, however, we must decide what continuity
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property of τ will replace the boundedness2. One route to resolving this difficulty is to

involve positivity. Thus, one is naturally led to the C*-algebraic setting.

3.3 The C*-dynamical winding number

In this section, we construct the homomorphism indτα : K1(A)→ R that was discussed in the

introductory chapter, and discuss examples. As the unital case is effectively subsumed by

the last section’s results, we only consider a nonunital C*-algebra A and a densely-defined,

lower semicontinuous trace τ : A+ → [0,∞], as discussed in Appendix A. For convenience,

let us gather a few key facts:

1. Aτ1 = {x ∈ A : τ(|x|) < ∞} = span{x ∈ A+ : τ(x) < ∞} is a dense, ∗-invariant ideal

in A, meanwhile a Banach ∗-algebra for the norm ‖x‖τ = ‖x‖+ τ(|x|).

2. τ extends uniquely to a self-adjoint functional τ : Aτ1 → C. Moreover, |τ(x)| ≤ τ(|x|)

whenever x ∈ Aτ1, so τ belongs to the continuous dual of Aτ1.

3. τ(xy) = τ(yx) holds when x, y ∈ A are such that both xy and yx belong to Aτ1, so τ

is a bounded trace on the Banach algebra Aτ1.

If, furthermore, (A,R, α) is a C*-dynamical system, with δ the infinitesimal generator of α,

and τ is α-invariant:

4. α restricts to a continuous action ατ on the Banach ∗-algebra Aτ1 by isometric ∗-

automorphisms.

5. dom(δτ ) = {x ∈ Aτ1 ∩ dom(δ) : δ(x) ∈ Aτ1}, where δτ is the generator of ατ .

See Proposition A.18, Theorem A.27, Proposition A.31 and Corollary A.32 and for details.

Our goal is the following result.

2Note that a densely-defined, closed linear functional on a Banach space is automatically bounded.
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Theorem 3.11. If (A,R, α) is a C*-dynamical system, and τ is a densely-defined, lower

semicontinuous, α-invariant trace on A, then there is a unique group homomorphism indτα :

K1(A)→ R given by

indτα([x]) =
1

2πi
τn(δn(x)x−1)

for all x ∈ GLn(Aτ1) with δn(x) ∈ Mn(Aτ1).

By Example 3.5 and Corollary 3.10, we have already a homomorphism K1(Aτ1) → C

sending [x] 7→ τn(δn(x)x−1) for every x ∈ GLn(dom(δτ )). Thus, to prove, Theorem 3.11

above, we just need to see why Aτ1 carries all the K-theory of A, and why τn(δn(x)x−1) is

pure imaginary. To these ends, we supply the following lemmas.

Lemma 3.12. If I is an ideal in an associative algebra A, and n is a positive integer, then

Mn(Ĩ) is inverse-closed in Mn(Ã).

Proof. Suppose x ∈ I and x + 1 is invertible in Ã. Write (x + 1)−1 = y + 1 where y ∈ A.

Since xy + x+ y = 0 and I is an ideal in A, we see y ∈ I.

Now suppose that x+λ is invertible in Mn(Ã) where x ∈ Mn(I) and λ ∈ GL(n). Observe

(x+λ)−1−λ−1 = (λ−1x+1n)−1λ−1−λ−1 = ((λ−1x+1n)−1−1n)λ−1. Since λ−1x ∈ Mn(I) and

Mn(I) is an ideal in Mn(A), the preceding paragraph implies (λ−1x + 1n)−1 − 1n ∈ Mn(I),

whence (x+ λ)−1 ∈ Mn(Ĩ).

Lemma 3.13. If A is a unital C*-algebra, and x ∈ GL(A), then x∗ is path-equivalent to x−1

in GL(A).

Proof. Since x∗x is positive and invertible, it is path-equivalent to 1 by spectral theory. Thus

x∗ = x∗x · x−1 is path-equivalent to x−1 = 1 · x−1.

Proof of Theorem 3.11. Since Aτ1 is a dense ideal in A, Lemmas 3.12 and B.10 show the

inclusion Aτ1 ↪→ A induces an isomorphism on K1.
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Now suppose x ∈ GLn(Aτ1) and δn(x) ∈ Mn(Aτ1). By Lemma 3.12, x−1 ∈ GLn(Aτ1). Since

Aτ1 is a ∗-algebra, x∗ ∈ GLn(Aτ1). By the calculation

τn(δn(x)x−1) = τn((x∗)−1δn(x∗)) since τ and δ are ∗-preserving

= τn(δn(x∗)(x∗)−1) tracial property

= τn(δn(x−1)x) [x∗] = [x−1] in K-theory

= −τ(δn(x)x−1), group law

τn(δn(x)x−1) is pure-imaginary, so the index indτα is real.

Remark 3.14. An alternative approach to the index indτα is to define K1(A) using the stabi-

lization KA. See Theorem 1.8 and Corollary 3.10 in [26] for more information.

3.4 Applications

In this section, we assess the performance of the homomorphism indτα : K1(A) → R when

the base algebra is commutative, i.e. A = C(X), and the trace is bounded, i.e. τ is a

probability measure. We shall conclude that indτα can, at best, detect the cohomology group

H1(X) ⊂ K1(X). We shall also see that this end is achieved for well-chosen flows on the

d-dimensional torus Td. Let X = (X, p) be a compact Hausdorff space with basepoint. In

the ensuing discussion, we only work with basepoint-preserving maps. Thus, for example,

C(X) denotes the C*-algebra of continuous maps on X which vanish at p,

C(X,U(n)) denotes the group of continuous based maps X → U(n),

[X,U(n)] denotes group of homotopy classes of continuous based maps X → U(n),
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and so on. Identify Un(C(X)) = C(X,U(n)) so that

K1(X) = K1(C(X)) = lim−→ [X,U(n)].

Recall that the 1st C̆ech cohomology group H1(X) = H1(X,Z) is isomorphic3 to [X,T].

In fact, since we do not need the higher-order cohomology groups, let us view this as the

definition of H1(X). As U(1) = T, we certainly have a map

H1(X) −→ K1(X).

Moreover, it is not difficult to see that the determinant mappings det : U(n) → T induce a

homomorphism

det∗ : K1(X)→ H1(X) [u] 7→ [det ◦u]

which is a right inverse for the above map. In particular, we can consider H1(X) as a

subgroup of K1(X).

Now, a C*-algebra flow α on C(X) is necessarily of the form αt(f)(x) = f(σt(x)) where

σ is a continuous (basepoint-preserving) action of R on X. A state ω on X is necessarily

given by ω(f) =
∫
X
f dµ for some (regular, Borel) probability measure µ on X. The state ω

is α-invariant if and only if µ is an invariant measure for σ in the usual sense. If f ∈ C(X)

is a C1 element for α, then f ◦ σ : R→ C is a C1 curve and the derivation δ associated to α

is given by δ(f)(x) = d
dt
f(σt(x))

∣∣
t=0

. In this context, we write indµσ instead of indτα for the

homomorphism K1(X)→ R constructed in Theorem 3.11 by indµσ to make the dependence

on the commutative data more explicit.

3More generally, for a group G and a positive integer n, [17] shows the Čech cohomology group Hn(X,G)
is in natural bijection with [X,K(G,n)], where K(G,n) denotes an Eilenberg-Maclane space.
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Example 3.15. If, above, X is a smooth manifold, V is a smooth vector field on X, and σ is

the flow on X associated to V , then the derivation δ of C(X) associated to the flow is given

by differentiation along V , that is to say δ(f) = V f , on smooth functions f .

Proposition 3.16. Let X = (X, p) be a pointed compact Hausdorff space, σ a continuous,

basepoint-preserving action of R on X, and µ a σ-invariant (regular, Borel) probability mea-

sure on X. Then, the index indµσ : K1(X)→ R assumes all its values on H1(X) ⊂ K1(X).

Indeed,

indµσ = indµσ ◦ det∗

where det∗ is the retraction K1(X) → H1(X) induced by the determinant, so indµσ is com-

pletely determined by its restriction to H1(X).

Proof. Let τ be the tracial state on C(X) associated to µ. The canonical extension of τ to

trace on Mn(C(X)) = C(X,Mn(C)), which shall be denoted simply by µ, is given by

τ(f) =

∫
X

tr(f(x)) dµ ∀f ∈ C(X,Mn(C))

where tr is the canonical trace on Mn(C). Now, if at is a C1 path in GL(n), it is elementary

to see that

d
dt

det(at) = det(at) tr(a−1
t

d
dt
at).

Thus, if u ∈ C(X,U(n)) is a C1 element for α, we see

τ(δ(u)u−1) =

∫
X

tr( d
dt
u(σt(x))

∣∣
t=0
u(x)−1) dµ

=

∫
X

d
dt

det(u(σt(x)))
∣∣
t=0

det(u(x))
dµ

= τ(δ(det ◦u)(det ◦u)−1)

in other words, indµσ([u]) = indµσ(det∗([u])).
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By the above, to determine indµσ, one just needs to calculate it on H1(X) ⊂ K1(X).

Shortly, we shall do just that for linear flows on X = Td, but let us first show that H1(Td) ∼=

Zd with d commuting generators given by the d coordinate projections Td → T.

Lemma 3.17. Let X1, . . . , Xn be a compact Hausdorff spaces with basepoint. Then, we

have a split exact sequence of abelian groups

0 −−−→ H1(
∧
iXi)

q∗−−−→ H1(
∏

iXi)
ι∗−−−→

⊕
iH

1(Xi) −−−→ 0

where q∗ is induced by the map q :
∏
Xi →

∧
iXi from the cartesian product to the smash

product which collapses the wedge sum
∨
iXi, and ι∗ is induced, factor-wise, by the inclusion

of Xi into
∏

iXi.

Proof. As q ◦ ιi is constant, we have ι∗i ◦ q∗ = (q ◦ ιi)∗ = 0 showing ran(q∗) ⊂ ker(ι∗). Define

a homomorphism d :
⊕

iH
1(Xi) → H1(

∏
iXi) by sending the element represented by an

n-tuple of circle-valued maps (f1, . . . , fn) to the map (x1, . . . , xn) 7→ f1(x1) · · · fn(xn). It’s

easy to check ι∗ ◦ d = id. Thus, ι∗ is surjective, and we have a right split. It’s also easy

to check γ · d(ι∗(γ))−1 ∈ ran(q∗) for all γ ∈ H1(
∏

iXi) and, from this observation, the

exactness in the middle follows. It remains to see why q∗ is injective. To see this, suppose

that f :
∏
Xi → T is identically 1 on

∨
iXi, and that ft is a null-homotopy of f through

based maps
∏

iXi → T. Let gt :
∏

iXi be given by gt(x1, . . . , xn) = f(ι1(x1)) · · · f(ιn(xn)).

Then, ftg
−1
t is a null-homotopy of f through maps which are identically 1 on

∨
iXi.

Corollary 3.18. If, in the above set-up,
∧
iXi is locally-path connected, and simply con-

nected, then H1(
∏

iXi) ∼=
⊕

iH
1(Xi).

Proof. We just need to show that H1(
∏

iXi) = 0. The point here is that, if f :
∧
iXi → T,

then the hypotheses above imply f lifts through the cover of T by R. Thus, f is null-

homotopic because R is contractible.
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Corollary 3.19. For each d, H1(Td) ∼= Zd with generators the d different projections fj :

Td → T.

Fix a vector of real parameters θ = (θ1, . . . , θd) ∈ Rd and consider the constant vector

field Vθ on Rd. The linear flow σ on Rd associated to Vθ is such that

σt(s1, . . . , sd) = (s1 + tθ1, . . . , sd + tθd)

Since this just a translation flow, it descends to the quotient Td = Rd/Zd. Given a smooth

function f ∈ C(Td), viewed as a Zd-periodic function on Rd, the derivation δ associated to

σ is given simply by

δ(f) = ∇f · θ.

In particular, if f is the jth coordinate projection fj(s1, . . . , sn) = e2πisj , we get simply

δ(fj) = 2πiθj · fj. Thus, if µ is the d-dimensional Lebesgue measure on Td, then

indµσ([fj]) =
1

2πi

∫
Td

2πifjf
−1
j dµ = θj.

Thus, identifying H1(Td) = Zd, we see that indµθ is just the homomorphism

(n1, . . . , nd) 7→
d∑
i=1

niθi.

If the θ1, . . . , θd ∈ R are linearly independent over Q, then this map has trivial kernel. So, it

is possible for indµθ : H1(X)→ R to be an isomorphism onto its range.

One can specialize to d = 2, and consider the Kronecker flow on T2 along lines of irrational

slope. That is, for some fixed irrational number θ, consider the flow σ on T2 given by

σt((x, y)) = (x+ t, y + θt) ∀t ∈ R, (x, y) ∈ T2.



46

By the above discussion, indµσ : K1(T2)→ R has range Z + θZ in this case.

Remark 3.20. In this section, we have confined ourselves to the stance that indµσ : H1(X,Z)→

R is a map out of the first Čech cohomology group. If X is a compact manifold, then such a

functional is just an element of H1(X,R). A concise geometric description of a representing

cycle exists: the asymptotic cycle Cµ
σ introduced in [32].

Remark 3.21. In spite of our efforts to maintain a high level of generality, allowing for both

noncommutative A and unbounded τ , we have not included any calculations of the index

indτα when the algebra A is noncommutative. In the interest of space, let us simply assert

that the index indτα is nontrivial, for example, for some invariant flows on the irrational

rotation algebra Aθ (with its unique tracial state).
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Chapter 4

Smooth perturbations

4.1 An ODE uniqueness theorem

By a (time-dependent) uniformly Lipschitz vector field on a Banach space X, we mean

a continuous mapping V : R × X → X such that, for some constant K > 0, the bound

‖V (t, x)−V (t, y)‖ ≤ K‖x−y‖ holds for all t ∈ R and x, y ∈ X. In this section, we establish

that the integral curves of such a vector field are unique when they exist. This shall follow

as a corollary of the following elementary lemma. ent) uniformly Lipschitz vector field

on a Banach space X, we mean a continuous mapping V : R×X → X such that, for some

constant K > 0, the bound ‖V (t, x)−V (t, y)‖ ≤ K‖x− y‖ holds for all t ∈ R and x, y ∈ X.

In this section, we establish that the integral curves of such a vector field are unique when

they exist. This shall follow as a corollary of the following elementary lemma.

Lemma 4.1. Let f : [0,∞)→ [0,∞) be a continuously differentiable function. If

f ′ ≤ Kf f(0) = 0

is satisfied for some K ≥ 0, then f is identically zero.

Proof. Differentiating e−Ktf(t) yields e−Kt(f ′(t)−Kf(t)) which, by assumption, is nonpos-



48

itive. Thus, t 7→ e−Ktf(t) is nonincreasing. The conclusion follows.

Roughly speaking, the above lemma asserts that, in the instant where a function first

becomes positive, the growth is faster than exponential. The same conclusion is a simple

consequence of Gronwall’s inequality.

Theorem 4.2. Let V : R×X → X be a uniformly Lipschitz vector field on a Banach space

X, and let x0 ∈ X. Then, the initial value problem

ẋ(t) = V (t, x(t)) x(0) = x0 (4.1)

has at most one solution x : R→ X.

Proof. Suppose that x and y both solve the IVP. We shall prove uniqueness for forward time

only. On the face of it, our solutions need only be differentiable, but from (4.1), we can see

they are actually C1. In particular, the fundamental theorem of calculus applies and so

x(t)− y(t) =

(
x0 +

∫ t

0

ẋ(s) ds

)
−
(
x0 +

∫ t

0

ẏ(s) ds

)
=

∫ t

0

(V (s, x(s))− V (s, y(s))) ds.

From here follows (for some K > 0) the bound

‖x(t)− y(t)‖ ≤
∫ t

0

‖V (s, x(s))− V (s, y(s))‖ dt ≤ K

∫ t

0

‖x(s)− y(s)‖ ds.

The rest follows from Lemma 4.1 applied to the function f(t) =
∫ t

0
‖x(s)− y(s)‖ ds.

4.2 C1 unitary 1-cocycles

We saw in Theorem 2.11 that there is a bijective correspondence between the norm-continuous

unitary groups (Ut) inM(A) and the self-adjoint elementsH ∈M(A). Each norm-continuous
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group (Ut) is already C∞ and has the form Ut = eitH for a unique self-adjoint element

H ∈ M(A). In this section, we derive an analogous result for the unitary 1-cocycles of

a C*-dynamical system. Unfortunately, it is not the case that a norm-continuous unitary

1-cocycle is automatically smooth, as the following example shows.

Example 4.3. Let (A,R, α) be a C*-dynamical system with A unital. Recall from Exam-

ple 2.37 that, for any unitary U ∈ A, ut = Uαt(U
∗) defines a unitary 1-cocycle u of α. This

cocycle is always norm-continuous, but only C1 when U is C1 for α.

Given a C*-dynamical system (A,R, α), recall (Definition 2.29) that a C0-multiplier is

an element x ∈M(A) such that t 7→ αt(x) is norm-continuous for the unique extension of α

to an action of R on M(A) by ∗-automorphisms.

Theorem 4.4. For every C*-dynamical system (A,R, α), there is a bijective correspondence

between the self-adjoint C0 multipliers of α, and the the C1 unitary 1-cocycles of α. The

bijection pairs each C0 multiplier P ∈M(A) with the unique cocycle uP satisfying

d
dt
uPt
∣∣
t=0

= iP.

Remark 4.5. Note that, already if u is a norm-continuous unitary 1-cocycle for (A,R, α)

then, from us+t = usαs(ut), one sees that, for all t ∈ R, ut belongs to the unital C*-algebra

B ⊂ M(A) of C0 multipliers. Thus, u is also a cocycle of the unital C*-dynamical system

(B,R, α). The effect is that, in order to prove Theorem 4.4 above, one need only consider

the case where A is unital so that M(A) = A and the strict-topology coincides with the

norm topology.

Remark 4.6. Since the unitary 1-cocycle uP above depends, not just on the self-adjoint

P ∈ A, but also on the flow α, it would be more correct to denote it by uP,α. This more

extravagant notation is usually unnecessary since there tends to be a distinguished flow α.



50

On the rare occasions where we use a unitary 1-cocycle of some auxiliary flow, we do use

the extra adornment. This is done in Proposition 4.16, to follow.

The idea behind Theorem 4.4 is to uncover uP as the unique solution to the initial value

problem

ẋ(t) = ix(t)αt(P ) x(0) = 1. (4.2)

Since, V (t, x) = ixαt(P ) is a uniformly Lipschitz vector field in the sense of Theorem 4.2,

we know (4.2) has at most one solution. Existence is got explicitly from a “Duhamel series”.

See [12] for more information on this terminology.

Proposition 4.7. If u is a C1 unitary 1-cocycle for a unital C*-dynamical system (A,R, α),

then d
dt
ut
∣∣
t=0

is anti-self-adjoint and ut solves (4.2) for the self-adjoint P = 1
i
d
dt
ut
∣∣
t=0

.

Proof. In fact, if wt is any C1 path of unitaries, with w0 = 1, then ẇ0 is anti-self-adjoint1,

as follows from differentiating 1 = w∗twt and evaluating at t = 0.

For any s, t ∈ R, we have us+t = usαs(ut). Differentiating this expression in t gives

u̇s+t = usαs(u̇t). Taking t = 0 gives u̇s = usαs(u̇0) = iusαs(P ), as desired.

Proposition 4.8. Let (A,R, α) be a unital C*-dynamical system. Suppose that (4.2) has a

(necessarily unique) solution u for some self-adjoint P ∈ A. Then, u is a C1 cocycle for α.

Proof. First we verify the cocycle law: us+t = usαs(ut). Notice that

d
dt
us+t = ius+tαs+t(P )

and also that

d
dt
usαs(ut) = iusαs(utαt(P ) = i(usαs(ut))αs+t(P )

1Compare this observation with the one following Corollary 4.20.
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so that both x(t) = us+t and x(t) = usαs(ut) satisfy the initial value problem

ẋ(t) = ix(t)αs+t(P ) x(0) = us.

The desired cocycle law follows from Theorem 4.2. It remains to show each ut is unitary.

First, note each ut is at least invertible with inverse αt(u−t).

utαt(u−t) = u0 = 1 αt(u−t)ut = αt(u−tα−t(ut)) = u0 = 1

Now we just need to show, e.g., that utu
∗
t = 1. We have

d
dt

(utu
∗
t ) = iutαt(P )u∗t + ut(iutαt(P ))∗ = iutαt(P )u∗t − iutαt(P )u∗t = 0

and so, since u0u
∗
0 = 1, we get utu

∗
t = 1 for all t.

Proposition 4.9. For every unital C*-dynamical system (A,R, α), for every self-adjoint

P ∈ A, the initial value problem (4.2) has a (unique) solution.

Proof. We recursively define a sequence of C1 paths IPn : R→ A, n ≥ 0:

IP0 ≡ 1 IPn+1(t) =

∫ t

0

IPn (s)αs(P ) ds.

By design, d
dt
IPn+1(t) = IPn (t)αt(P ). We have also the direct formula

IPn (t) =

∫
· · ·
∫

0≤s1≤...≤sn≤t

αs1(P ) · · ·αsn(P ) ds1 · · · dsn (4.3)

for n > 0. Strictly speaking, the above formula only makes good sense when t ≥ 0. It would
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be more correct to change variables and use

IPn (t) = tn
∫
· · ·
∫

0≤s1≤...≤sn≤1

αts1(P ) · · ·αts1(P ) ds1 · · · dsn

which makes sense for all t ∈ R, but we ignore this detail. Since the volume of the simplex

0 ≤ s1 . . . ≤ sn ≤ t is tn/n! (a good way to see this is to note this simplex is, up to

measure zero, a fundamental domain for the symmetric group action on the cube [0, t]n

which permutes coordinates), and since ‖αs1(P ) · · ·αsn(P )‖ ≤ ‖P‖n, we have the estimate

‖IPn (t)‖ ≤ (|t|‖P‖)n

n!
. (4.4)

Thus, we can, and do, define uP by the absolutely convergent series

uPt =
∞∑
n=0

inIPn (t). (4.5)

Notice uP0 = 1, i.e. the initial condition is correct. Since the convergence is uniform for t in

bounded subsets of R, we may differentiate the series (4.5) term-by-term to obtain

u̇Pt =
∞∑
n=0

in d
dt
IPn (t) =

∞∑
n=1

inIPn−1(t)αt(P ) = i

(
∞∑
n=1

in−1IPn−1(t)

)
αt(P ) = iuPt αt(P ),

and we have our solution to (4.2).

Combining Propositions 4.7, 4.8 and 4.9 and referring to Remark 4.5, we see that Theo-

rem 4.4 is proved.

It is occasionally possible to describe the cocycle of Theorem 4.4 more explicitly. In

Example 2.37, we noted that unitarily conjugate flows are exterior equivalent. We show

that, if the conjugating unitary is C1 for the flow, then the mediating cocycle is also C1.
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Proposition 4.10. If (A,R, α) is a C*-dynamical system and U ∈ M(A) is a C1 unitary

multiplier for α, then P = iδ(U)U∗ is a self-adjoint C0 multiplier for α. The C1 cocycle uP is

given by uPt = Uαt(U
∗) for all t ∈ R. The adjusted flow Ad(uP )α is simply Ad(U)αAd(U)−1.

Proof. We already know ut = Uαt(U
∗) defines a unitary 1-cocycle u of α such that Ad(u)u =

Ad(U)αAd(U)−1. Clearly u is C1 and

d
dt

[Uαt(U
∗)]t=0 = Uδ(U∗) = −UU∗δ(U)U∗ = iP

so u = uP by Theorem 4.4.

Corollary 4.11. Let (A,R, α) be a C*-dynamical system, U ∈ M(A) a C1 unitary multi-

plier, and put P = iδ(U)U∗. If x ∈ A is fixed by α, then Ad(U)x is fixed by Ad(uP )α.

It is worthwhile to keep track of how the infinitesimal data changes when one adjusts by

a C1 unitary 1-cocycle. The next two propositions are in this vein.

Proposition 4.12. If A is a C*-algebra, (eitH) is a strictly-continuous group in M(A), and

uP is a C1 cocycle for the flow implemented by (eitH), the the perturbation of H by uP is

H + P . That is, uPt e
itH = eit(H+P ) for all t ∈ R.

Proof. Apply d
dt

∣∣
t=0

to uPt e
itHa when a ∈ dom(H).

Proposition 4.13. Let (A,R, α) be C*-dynamical system and let uP be a C1 cocycle for α.

Then, the infinitesimal generator of αP = Ad(uP )α is δ+ i[P, ·], where δ is the infinitesimal

generator of α. In particular, α and αP have the same smooth elements.

Proof. Apply d
dt

∣∣
t=0

to uPt αt(a)(uPt )∗ when a ∈ dom(δ).

A simple, but importance, consequence of Proposition 4.13 is the following.
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Corollary 4.14. Let (A,R, α) be C*-dynamical system, let δ be the infinitesimal generator

of α, and let x ∈ dom(δ). Then, Ad(uP )α fixes x if and only if the self-adjoint C0 multiplier

P satisfies i[P, x] = −δ(x). Meanwhile, as soon as one such P0 is found, the rest are given

by P = P0 +Q as Q ranges over self-adjoint C0 multipliers commuting with x.

Proof. Consider the linear mapping P 7→ i[P, x], defined on the real vector space of self-

adjoint C0 multipliers. Combining the preceding proposition with Proposition 2.5, we see

that P does the job if and only if i[P, x] = −δ(x). Meanwhile, the kernel of P 7→ i[P, x] is

the commutant of x, so the second claim follows.

Our C1 cocycles t 7→ uPt are so-called because they are C1 in the variable t. The next

proposition tells us a sense in which they also vary smoothly in P .

Proposition 4.15. Fix a self-adjoint C0 multiplier P ∈ M(A). For fixed t ∈ R, the map

λ 7→ uλPt : R→M(A) is C1. In fact, for t confined to a bounded interval,

∥∥∥∥∥uµPt − uλPtµ− λ
− d

dλ
uλPt

∥∥∥∥∥→ 0 (4.6)

uniformly in t as µ→ λ. At λ = 0, we have the simple formula

d

dλ
uλPt

∣∣∣∣
λ=0

= i

∫ t

0

αs(P ) ds. (4.7)

Proof. Without loss of generality, ‖P‖ = 1, since otherwise we may absorb ‖P‖ into the

parameter λ. Using the notation from the proof of Proposition 4.9, notice

IλPn (t) =

∫
· · ·
∫

0≤s1≤...≤sn≤t

αs1(λP ) · · ·αsn(λP ) ds1 · · · dsn = λnIPn (λ).
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Thus,

uλPt =
∞∑
n=0

inλnIPn (t). (4.8)

If it is further assumed that |t| ≤M for some fixed M > 0, then the estimate (4.4) gives the

bound

‖IPn (t)‖ ≤ (|t|‖P‖)n

n!
≤ Mn

n!
.

So, differentiability and the uniform convergence in (4.6) follows from standard “power

series”-type analysis. The formula (4.7) is clear from (4.8).

Given two perturbations P,Q, one can either adjust a flow by P +Q all in one go, or one

can first adjust by P and then adjust the resulting flow by Q; the end result is the same.

Proposition 4.16. Let (A,R, α) be a C*-dynamical system and let P,Q ∈ M(A) be self-

adjoint C0 multipliers. Then

uQ,α
P

uP,α = uP+Q,α,

where αP = Ad(uP,α)α, and the cocycle notation is explained in Remark 4.6.

Proof. One knows already knows that the C1 family of unitaries uQ,α
P
uP,α is a unitary

1-cocycle for α from the general principle for strictly continuous cocycles. Since

d
dt

[
uQ,α

P

t uP,αt

]
t=0

=
[(

d
dt
uQ,α

P

t

)
uP,αt + uQ,α

P

t

(
d
dt
uP,αt

)]
t=0

= i(P +Q),

we have uQ,α
P
uP,α = uP+Q,α by Theorem 4.4.

We end this section with the analogues of Proposition 2.35 and Corollary 2.51 for C1

cocycles.

Proposition 4.17. Let (A,R, α) and (B,R, β) be C*-dynamical systems with A and B
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unital2, ϕ : A → B be a unital, equivariant homomorphism, and let P ∈ A be self-adjoint.

Then, ϕ(uP,α) = uϕ(P ),β, with notation as in Remark 4.6.

Proof. One already knows the C1 family ϕ(uP,α) is a β cocycle from Proposition 2.35. Since

d
dt
ϕ(uP,α)

∣∣
t=0

= ϕ
(
d
dt
uP,α

∣∣
t=0

)
= iϕ(P ), Theorem 4.4 implies ϕ(uP,α) = uϕ(P ),β.

Proposition 4.18. Let (A,R, α) and (B,R, β) be unital3 C*-dynamical systems, let P ∈ A

be self-adjoint, and let ϕ : A → B be a unital equivariant homomorphism. Then, the dual

homomorphism ϕ̂ : Aoα R→ B oα R is determined by

ϕ̂(a · f(H + P )) = ϕ(a) · f(K + ϕ(P )) ∀a ∈ A, f ∈ C0(R).

Here, H is the Hamiltonian of Aoα R and K is the Hamiltonian of B oβ R.

Proof. Combine the above proposition with Corollary 2.51 and Proposition 4.12.

4.3 Connes’ projection lemma

In this section, (A,R, α) denotes a C*-dynamical R-dynamical system with A unital. We

derive a lemma of Connes to the effect that every projection in A is fixed by a flow in the

same exterior equivalence class as α. This lemma is crucially important for the construction

of Connes’ Thom isomorphism, see Chapter 6. We give another interesting application of

this lemma in Chapter 4.5.

Given some projection e ∈ A, recall that A is (topologically, but not as a C*-algebra)

the direct sum of the closed subspaces eAe, eAe⊥, e⊥Aa, e⊥Ae⊥ where e⊥ := 1 − e. The

unique representation of any x ∈ A is x = x11 + x12 + x21 + x22 where x11 = exe, x12 =

exe⊥, x21 = e⊥xe, x22 = e⊥xe⊥. This is the so-called Pierce decomposition of x with respect

2Thus, M(A) = A, and the strict topology is the norm topology
3Thus, M(A) = A, and the strict topology is the norm topology
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to e. One tends to write x = ( x11 x12x21 x22 ) in this situation because, through this representation,

the expected operations on these matrices agree with the operations on the C*-algebra A. If

a, b ∈ A, we use the notation {a, b} = ab+ ba for the anticommutator of a and b. We record

three simple identities regarding the formation of commutators and anticommutators with

projections.

Fact 4.19. Let e, x ∈ A with e a projection. Then,

[x, e] = e⊥xe− exe⊥ [[x, e], e] = e⊥xe+ exe⊥ {e, x} = 2exe+ exe⊥ + e⊥xe.

Each identity above is trivially obtained from the Pierce decomposition. For example, the

first identity is essentially the matrix formula
(
x11 0
x21 0

)
− ( x11 x120 0 ) =

(
0 −x12
x21 0

)
and the second

is really just the observation that applying the matrix operation ( x11 x12x21 x22 ) 7→
(

0 −x12
x21 0

)
twice

yields
(

0 x12
x21 0

)
.

From the first identity, one reads off the well-known fact that an element x is “diagonal”

with respect to a projection e if and only if [x, e] = 0. Similarly, each of the latter two

identities leads to its own characterization of “off-diagonality”, which we gather below.

Corollary 4.20. Let e, x ∈ A with e a projection. Then, the following are equivalent:

1. exe = e⊥xe⊥ = 0.4

2. x = [[x, e], e].

3. x = {x, e}.

These basic observations about matrix arithmetic have an interesting geometric conse-

quence. Suppose that t 7→ et is a C1 path of projections in A. From

0 = d
dt

(
et − e2

t

)
= ėt − ėtet − etėt = ėt − {ėt, et}

4That is, the diagonal of the Pierce decomposition of x with respect to e is zero.
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we see that the equivalent hypotheses above are satisfied with x = ėt, e = et. That is, for

all t, ėt = {ėt, et} = [[ėt, et], et] and ėt has zeros on the diagonal of its Pierce decomposition

with respect to et. In other words, to remain inside the set of projections, one is forced to

move “off diagonal” with respect to the present projection.5 Since the set of projections in

A is α-invariant, so that t 7→ αt(e) is a path of projections, we get

Corollary 4.21. If e ∈ A is a C1 projection for α, then δ(e) = [[δ(e), e], e].

We now state and prove Connes’ lemma.

Theorem 4.22. Let (A,R, α) be an R-dynamical system with A unital. Let e ∈ A be a C1

projection for α. Then, P = i[δ(e), e] is self-adjoint6 and the adjusted flow Ad(uP )α fixes e.

Though the proof of this theorem is a simple verification, we first pause to motivate the

choice of P . If α is implemented by a group (eitH), then, at least formally, δ = i[H, ·] and

x ∈ A will be α-invariant if it commutes with H. In this case, α′ = Ad(uP )α is unitarily

implemented by (eitH
′
) where H ′ = H + P (Proposition 4.12). We want P such that

1. H ′ = H + P commutes with e.

2. The definition of P makes no direct reference to H.

The first criterion ensures Ad(uP )α will fix e, and the second is there to facilitate a straight-

forward generalization to the case where α is not unitarily implemented. We take

P = −eHe⊥ − e⊥He
5A nice application of this idea is to showing that central projections are always fixed or, in other words,

that, if A = B ⊕ C, then α is the direct sum of a flow on B and a flow on C.
6One can check the Pierce decomposition of i[δ(e), e] with respect to e is P =

(
0 −ieδ(e)

iδ(e)e 0

)
. Since the

generic self-adjoint in the commutant of e looks like ( a 0
0 b ), we see from Proposition 4.14 that all perturbations

P such that Ad(uP )α fixes e look like
(

a −ieδ(e)
iδ(e)e b

)
. Thus, Connes’ choice of P is reasonably canonical.
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so that H ′ = H + P = eHe + e⊥He⊥. Obviously the first criterion is satisfied. To see that

the second criterion is also satisfied, use the second identity in Fact 4.20 to write

−eHe⊥ − e⊥He = −[[H, e], e] = i[i[H, e], e] = i[δ(e), e]

Armed with a candidate P whose definition only depends on the flow, we proceed to the

Proof of Theorem 4.22. Since e and δ(e) are self-adjoint, and since a commutator of two self-

adjoints is anti-self-adjoint, P = i[δ(e), e] is self-adjoint. To see e is fixed by Ad(uP )α, observe

i[P, e] = −[[δ(e), e], e] = −δ(e) by Corollary 4.21, and then apply by Corollary 4.14.

Remark 4.23. The standing assumption that A was unital throughout this section was not

critical. Indeed, suppose (B,R, β) is an R-dynamical system and B is nonunital. Let e ∈ B

be a C1 projection. Then, e is still C1 for the unitized system (B̃,R, β̃) which has a C1 unitary

1-cocycle t 7→ uPt : R→ B̃ for which the adjusted dynamics fix P . Noting B̃ ⊂ M(B), it is

easy to check uPt is also a cocycle for the original, nonunital system.

Remark 4.24. Theorem 4.22 says that every smooth projection is fixed by a flow in the same

smooth exterior equivalence class. As observed in [29], it is actually true that every projection

is fixed by a flow in the same norm-continuous exterior equivalence class. The point is that

arbitrary projections are approximated by smooth ones, and that nearby projections are

unitarily conjugate. Thus, the cocycle in Example 2.37 can be combined with the one in

Theorem 4.22 to deal with the general case.
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4.4 The function (s + i)−1

Recall our convention that, for f ∈ L1(R), the Fourier transform f̂ ∈ C0(R) is given by

f̂(s) =
∫∞
−∞ f(t)eits dt. With this choice, it holds that

f̂(s) =
i

s+ i
when f(t) =


e−t t > 0

0 t < 0

. (4.9)

The functional calculus of (s + i)−1 has some convenient properties which we shall rely at

two points in this thesis.

Theorem 4.25. Let A be a C*-algebra, and let (eitH) be a strictly continuous 1-parameter

group in M(A). Then, there holds

i[(H + i)−1, x] = −(H + i)−1δ(x)(H + i)−1

whenever x ∈M(A) is a C1 multiplier for the associated flow αt = Ad(eitH).

Formally, speaking the explanation for this identity is that

i[(H + i)−1, x] = i(H + i)−1(x(H + i)− (H + i)x)(H + i)−1

= −(H + i)−1i[H, x](H + i)−1

= −(H + i)−1δ(x)(H + i)−1.

However, as have been working with the functional calculus of H, rather than directly with

H, writing, 1 = (H + i)(H + i)−1, for example, is not wholly justified. Fortunately, we can

obtain the result by direct integration.

Proof of Theorem 4.25. Let f be as in Equation (4.9). The desired identity follows from the
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following computation.

−(H + i)−1δ(x)(H + i)−1 = f̂(H)δ(x)f̂(H)

=

∫ ∞
0

e−seisH ds δ(x)

∫ ∞
0

e−teitH dt

=

∫ ∞
0

eisH
∫ ∞

0

e−(s+t)δ(x)eitH dtds

=

∫ ∞
0

eisH
∫ ∞
s

e−tδ(x)e−isHeitH dt ds (replacing t by −s+ t)

=

∫ ∞
0

e−t
∫ t

0

αs(δ(x)) ds eitH dt

=

∫ ∞
0

e−t
∫ t

0

d
ds
αs(x) ds eitH dt

=

∫ ∞
0

e−t(αt(x)− x)eitH dt

=

∫ ∞
0

e−t(eitHx− xeitH) dt

=

∫ ∞
0

e−teitH dtx− x
∫ ∞

0

e−teitH dt

= [f̂(H), x]

= i[(H + i)−1, x].

Here, if g ∈ L1(R) and h is a strictly continuous, norm-bounded function R→ M(A), then

the integral
∫∞
−∞ g(t)h(t) dt ∈M(A) is defined so that

∫∞
−∞ g(t)h(t) dt · a =

∫∞
−∞ g(t)h(t)a dt

for all a ∈ A.

The importance of the above result rests with the following corollary, which we shall need

later when dealing with dual traces on Aoα R.

Corollary 4.26. Let (A,R, α) be a C*-dynamical system, let a ∈ A be C1 for α. Then, we

have the following identity in which all three terms belong to Aoα R

ia(H + i)−1 = i(H + i)−1a+ (H + i)−1δ(a)(H + i)−1.
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Here δ is the infinitesimal generator of α, and H is the Hamiltonian of Aoα R.

Recall we have been picturing A oα R as generated by “elementary products” a · f(H)

where a ∈ A, f ∈ C0(R). This description of AoαR in terms of generators is not particularly

compelling unless we also have relations on those generators. To be sure, we have already

discussed the relations

eitHae−itH = αt(a) i[H, a]“ = ”δ(a),

(the second of these, we have only been using formally), but these are somewhat unsatisfying

since s 7→ eits and s 7→ s do not belong to C0(R). The relation in Corollary 4.26 is more

compatible with our picture. Moreover, since s 7→ (s + i)−1 is injective, it generates C0(R)

by the Weierstrass theorem, so one is led to suspect the relation in Corollary 4.26 actually

determines the crossed-product.

Question. Can one construct the crossed product AoαR as the universal C*-algebra gener-

ated by A and C0(R) subject to the relation [g, a] = gδ(a)g where g(s) = i
s+i

and a ∈ dom(δ),

the domain of the infinitesimal generator of α? Indeed, given any closed, self-adjoint deriva-

tion δ of A, can one construct a “crossed-product” Aoδ R in this way?

As it happens, the integral trickery in the proof of Theorem 4.25 above shall serve us

rather well; we use the same maneuvers to prove the following.

Theorem 4.27. Let A be a C*-algebra, and let (eitH) be a strictly continuous 1-parameter

group in M(A). Then, there holds

d

dλ
(H + λP + i)−1 = −(H + λP + i)−1P (H + λP + i)−1 (λ a real parameter)

whenever P ∈ M(A) is a C0 multiplier for the associated action αt = Ad(eitH). The differ-

entiation is intended in the sense of norm-convergent difference quotients.
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Again, formally this obvious when (H+λP+i)−1 is thought of as the inverse of H+λP+i,

rather than as the image of s 7→ 1
s+i

under the ∗-homomorphism C0(R)→M(A) associated

to the group (eit(H+λP )). The rigorous justification is as follows.

Proof. It suffices to prove the identity when λ = 0, since one may replace H with H + λ0P .

As before, we use a special function and its Fourier transform.

f(t) =


e−t t > 0

0 t < 0

f̂(s) =
i

s+ i
. (4.10)

The desired identity follows from the calculation

−(H + i)−1P (H + i)−1 = f̂(H)P f̂(H)

=

∫ ∞
0

e−seisH ds P

∫ ∞
0

e−teitH dt

=

∫ ∞
0

eisH
∫ ∞

0

e−(s+t)PeitH dtds

=

∫ ∞
0

eisH
∫ ∞
s

e−tPe−isHeitH dt ds (replacing t by −s+ t)

= −i
∫ ∞

0

e−t
(
i

∫ t

0

αs(P ) ds

)
eitH dt

= −i
∫ ∞

0

e−t
(
d

dλ
uλPt

∣∣∣∣
λ=0

)
eitH dt (Proposition 4.15)

= −i d
dλ

∫ ∞
0

e−tuλPt eitH dt
∣∣
λ=0

= −i d
dλ

∫ ∞
0

e−teit(H+λP ) dt
∣∣
λ=0

= −i d
dλ
f̂(H + λP )

∣∣
λ=0

=
d

dλ
(H + λP + i)−1

∣∣
λ=0

.
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4.5 The Bargmann-Wigner theorem

A famous theorem of Marshall Stone assigns an infinitesimal generator to every strongly-

continuous 1-parameter group of unitary operators on a separable Hilbert space.

Theorem 4.28 (Stone, 1930). To each strongly-continuous 1-parameter group (Ut)t∈R of

unitary operators on a Hilbert space H, there corresponds exactly one self-adjoint operator7

H : H → H such that Ut = eitH for all t ∈ R. Conversely, each self-adjoint operator H :

H → H determines a strongly continuous 1-parameter group of unitaries by exponentiation.

In addition to being a useful theoretical tool, Stone’s result is historically important

because of its role in the mathematical formulation of quantum mechanics. Specifically, it

links the classical formulation of the canonical commutation relations8 to the Weyl formu-

lation9. With this accomplished, the way is paved for the Stone-von Neumann Theorem

which shows the canonical commutation relations arise in only one way, up to a suitable

notion of unitary equivalence. This has the highly desirable consequence that analysis of

the corresponding physical system does not depend on a particular choice of representation

(e.g. position or momentum representation). A somewhat less famous, but closely related,

theorem of Bargmann and Wigner is as follows.

Theorem 4.29 (Bargmann-Wigner, 1960s). For any strongly continuous action α of R on

K(H) by ∗-automorphism, there is a strongly continuous 1-parameter group of unitaries10

(Ut) such that αt = Ad(Ut) for all t ∈ R.

Thus, an application of Stone’s theorem immediately shows all C*-algebra flows on K(H)

have the form t 7→ Ad(eitH) for some self-adjoint operator H : H → H (with H unique up

7H can be unbounded. In fact, boundedness of H is equivalent to norm-continuity of (Ut) is equivalent
to smoothness of (Ut).

8Self-adjoint operators x and P on a separable Hilbert space satisfy the commutation law [x, P ] = i.
9Strongly continuous 1-parameter unitary groups U and V acting jointly irreducibly on a separable Hilbert

space satisfy the braiding relation VsUt = eistUsVt.
10Unique up to multiplication by a character R→ T.
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to an additive real constant). We give a conceptually simple proof of the Bargmann-Wigner

Theorem by applying Connes’ projection lemma (Theorem 4.22, in our numbering system).

Since the Bargmann-Wigner theorem predates Connes’ lemma by twenty some odd years,

this approach may well be new. The first thing to realize is that, with the introduction of a

single extra hypothesis:

“There exists an α-invariant rank-1 projection e ∈ K(H)”.

the proof of Theorem 4.29 reduces to a computation. This is an old trick due to Kaplansky

(cf. [18]).

Proof of Theorem 4.29: special case. Choose a unit vector ξ in the range of e so that e =

ξ ⊗ ξ. Define Ut : H → H by

Ut(η) = αt(η ⊗ ξ)ξ

Obviously Ut is a linear map H → H. An easy computation shows each Ut is an isometry

〈Ut(ϕ), Ut(ψ)〉 = 〈αt(ϕ⊗ ξ)ξ, αt(ψ ⊗ ξ)ξ〉

= 〈ξ, αt(ξ ⊗ ϕ)αt(ψ ⊗ ξ)ξ〉

= 〈ξ, αt(ξ ⊗ ϕ · ψ ⊗ ξ)ξ〉

= 〈ξ, αt(〈ϕ, ψ〉e)ξ〉

= 〈ϕ, ψ〉〈ξ, αt(e)ξ〉

= 〈ϕ, ψ〉〈ξ, eξ〉

= 〈ϕ, ψ〉〈ξ, ξ〉

= 〈ϕ, ψ〉
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Another easy computation gives the group law for the Ut:

Ut+s(η) = αt+s(η ⊗ ξ)ξ

= αt+s(η ⊗ ξ)αt(e)ξ

= αt(αs(η ⊗ ξ) · ξ⊗ξ)ξ

= αt((αs(η ⊗ ξ)ξ)⊗ ξ)ξ

= Ut(Us(η))

Since U0 = idH clearly holds, it follows from the group law that the isometries Ut are

invertible, so (Ut) is a 1-parameter group of unitaries. From the definition

Ut(η) = αt(η ⊗ ξ)ξ

and from strong continuity of αt, it is clear that t 7→ Ut is strongly continuous. The final

thing is to check that the Ut implement the dynamics. Indeed, if a ∈ A and if η ∈ H we

have

(Uta)η = αt((aη)⊗ ξ)ξ = αt(a · η ⊗ ξ)ξ = αt(a)αt(η ⊗ ξ)ξ = αt(a)Utη

so UtaU
∗
t = αt(a) and we are finished.

The above does argument is insufficient to prove Theorem 4.29, as there does not always

exist an α-invariant rank-1 projection.

Example 4.30. Let H ∈ B(H) be a self-adjoint operator, and let α be the flow on K(H)

unitarily implemented by the 1-parameter unitary group (eitH). A rank-1 projection ξ ⊗ ξ

is fixed by α if and only if ξ is an eigenvalue of H. So, if H has empty point spectrum, then

α doesn’t fix any rank-1 projection.

We now ask ourselves what can be done to recover the general case. The basic observation,
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which should immediately make us think to use Connes’ projection lemma, is that the

relation of exterior equivalence preserves the flows which are unitarily implemented. See

Example 2.33.

Proof of Theorem 4.29: general case. First of all, there exists a rank-1 projection e which

is α-C1. Indeed, the domain dom(δ) of the infinitesimal generator of α is closed under

holomorphic functional calculus so, by Lemma B.1, any rank-1 projection e0 is Murray-

von Neumman equivalent to a (necessarily rank-1) projection e ∈ dom(δ). Next, Connes’

projection lemma (Theorem 4.22 in our numbering) implies (see Remark 4.23) that α is

exterior equivalent to a flow α′ on K(H) which fixes e. By the preceding proof, α′ is unitarily

implemented. Thus, the original flow α is unitarily implemented as well.

We conclude the section by reproving Theorem 4.29 in finite dimension, where eas-

ier methods suffice. Let (αt) be a 1-parameter group of automorphisms of Mn(C). By

the Bargmann-Wigner theorem, we know there is a self-adjoint H ∈ Mn(C) such that

αt = Ad(eitH). By the finite-dimensional spectral theorem, H diagonalizes over an or-

thonormal basis of eigenvectors ξ1, . . . , ξn with corresponding eigenvalues λ1, . . . , λn. Then

eitH diagonalizes over the same basis, but with corresponding eigenvalues eitλ1 , . . . , eitλn . In

particular, eitH commutes with each of the rank-1 projections ξj ⊗ ξj, whence (αt) fixes a

whole orthonormal system of rank-1 projections. We are encouraged, then, to prove the

existence of a fixed rank-1 projection directly, which suffices to prove the Bargmann-Wigner

theorem in finite dimension.

Proposition 4.31. Every C*-algebra flow on Mn(C) fixes a rank-1 projection.

Proof. Let (αt) be a flow on Mn(C). Considering that, for each t ∈ R, the particular

automorphism αt is unitarily implemented and that unitaries are orthogonally diagonalizable,

it is at least clear that each particular automorphism fixes a rank-1 projection. For n =

1, 2, . . ., let en be a rank-1 projection fixed by α1/2n . From the group law for the flow, we
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see that α1/2n actually fixes all of en, en+1, en+2, . . .. Since the space of rank-1 projections in

Mn(C) is (norm) compact, the sequence e1, e2, . . . accumulates at some rank-1 projection e.

By continuity, e is fixed by α1/2n for n = 1, 2, . . .. It follows that e is fixed by αt whenever t

is a dyadic rational. By continuity, the whole flow fixes e and we are finished.
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Chapter 5

The suspension isomorphisms

The cone and suspension of a C*-algebra A are the (necessarily nonunital) C*-algebras:

CA := {x ∈ C ([0, 1], A) : x(0) = 0} SA := {x ∈ C ([0, 1], A) : x(0) = x(1) = 0}.

These constructions are functorial, with a ∗-homomorphism ϕ : A→ B inducing ∗-homomorphisms

Cϕ : CA → CB and Sϕ : SA → SB by composition. Meanwhile, for fixed A, we have an

exact sequence

SA ↪→ CA� A

where the first map is inclusion and the second is evaluation at 1. It is helpful to have CA as

a sort of mediator between A and SA because CA is contractible in the sense that there is a

strongly continuous 1-parameter family of ∗-endomorphism (ϕt) of CA such that ϕ0 ≡ 0 and

ϕ1 = id corresponding to the existence of a homotopy from the collapsing map [0, 1]→ {0}

to the identity map [0, 1]→ [0, 1] through basepoint-preserving self-maps of [0, 1].

It is a deep topological fact that the K-theory of a suspension agrees with the K-theory

of the original algebra – up to dimension shift. More precisely, for each C*-algebra A,

there are a pair isomorphisms siA : Ki(A) → Ki+1(SA), natural in A. The isomorphism

K1(A) → K0(SA) stems from an operator-algebraic generalization of a clutching construc-
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tion for vector bundles. The isomorphism K0(A) → K1(SA) is one manifestation of Bott’s

periodicity theorem. Since the suspension isomorphisms are intimately linked with Connes’

Thom isomorphism and the latter plays an important role in this thesis, we feel it is worth-

while to take a moment to describe the maps and meditate briefly on their geometric signif-

icance.

5.1 Clutching

The notions of suspension and cone for C*-algebras come from the corresponding notions

for spaces. Let X = (X, x0) be a pointed compact Hausdorff space. The suspension SX

and cone CX of X are the (necessarily connected) pointed compact Hausdorff spaces

CX =
X × [0, 1]

(X × {0}) ∪ ({x0} × [0, 1])
SX =

X × [0, 1]

(X × {0, 1}) ∪ ({x0} × [0, 1])

with basepoints equal to the collapsed subspaces. There is a canonical pointed embedding

of X into CX, roughly as X × {1}, and the quotient (CX)/X by this subspace identifies

with SX. In other words, there is an “exact sequence” of spaces

X ↪→ CX � SX.

These are the sensible definitions to make if one desires compatibility with the duality

between compact pointed spaces and commutative C*-algebras:

X = (X, x0) −→ C0(X) := {f ∈ C(X) : f(x0) = 0}.

That is to say, these definitions lead to natural isomorphisms SC0(X) ∼= C0(SX), CC0(X) ∼=

C0(CX), and so forth.
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Example 5.1. If X = S1, then CX ∼= D2 with basepoint on the boundary, and SX ∼= S2. If

X = S1, plus an isolated basepoint, then CX ∼= D2 with basepoint in the interior, and SX

is S2 with two identified points.

Figure 5.1: The case X = S1, with basepoint on the circle.

Figure 5.2: The case X = S1, with a disjoint basepoint.

As already mentioned, the K-theory isomorphism K1(A) → K0(SA) is the operator

theoretic manifestation of a highly geometric construction from homotopy theory which we

outline here for general culture.
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Problem 5.2. Given a pointed compact Hausdorff space X, describe the isomorphism classes

of complex vector bundles over the suspension SX.

When X is a pointed sphere, SX is the pointed sphere of one higher dimension, so this

problem is of obvious interest in connection with the study of complex vector bundles on

spheres.

The idea is that, since SX is obtained from CX by collapsing X into the basepoint,

the bundles over SX should similarly arise as quotients of bundles on CX. Since CX is

contractible, every bundle over CX is trivial. Thus, it would seem we just need to decide

which are the ways to collapse the fibres over X of the trivial bundle Cn ×CX into a single

fibre, and thus obtain a bundle over SX. The precise gluing data needed is a family of

coordinate-change functions dictating how each fibre over X is identifies with the fibre over

the basepoint; in other words, a map X → Un(C). This train of thought leads to a solution,

as it were, to Problem 5.2.

Fact 5.3. For every pointed compact Hausdorff X, for every positive integer n, there is a

1-1 correspondence between:

1. Homotopy classes of maps X → Un(C).

2. Isomorphism classes of n-dimensional (complex) vector bundles over SX.

There is little sense improving the rather scanty formulation of the above fact since we

shall obtain a more general result in the following section. See §1.4 of [1] for a treatment of

the classical case.

5.2 C*-algebraic clutching

In this section we show that, for every C*-algebra A, for every positive integer n, there is

a 1-1 correspondence between the path components in Un(A) and the path components in
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Vecn(SA). This homotopy bijection is the instigator of a K-theoretic isomorphism K1(A)→

K0(SA).

Let A be a C*-algebra. When k ≤ `, regard Mk(A) as a subalgebra of M`(A) via the

(necessarily nonunital) corner inclusion a 7→ ( a 0
0 0 ). One can regard the union M∞(A) :=⋃∞

k=1 Mk(A) as the ∗-algebra of infinite matrices with finitely many nonzero entries in A.

We do not bother completing M∞(A) (which would give the stabilization of A), or even

topologizing it. Instead, by a path in M∞(A), we shall always understand a path in one of

the C*-algebras Mk(A) where k is arbitrarily large, but finite. A similar discussion applies

to the union U∞(A) =
⋃∞
k=1 Uk(A) i.e. the group of unitaries of the form 1 + a where

a ∈ M∞(A).

Definition 5.4. For a C*-algebra A and a positive integer n, we write Vecn(A) for the set

of all projections e ∈ M∞(Ã) with scalar part s(e) = 1n. That is, all projections of the form

1n + a where a ∈ M∞(A).

Example 5.5. . Let X = (X, x0) be a pointed compact Hausdorff space, and let A = {f ∈

C(X) : f(x0) = 0}. Then, an element of Uk(A) is a map u : X → U(k) such that u(x0) = 1.

In other words, u continuously selects a coordinate system in each fibre of the trivial bundle

X × Ck, choosing the standard basis in the fibre over x0. An element e ∈ Vecn(A) is a

projection-valued map e : X → Mk(C), for some k, satisfying e(x0) = 1n. In other words, e

is a subbundle of the trivial bundle X × Ck such that the fibre over x0 is Cn × {0}.

The following technical lemma is a mild generalization of Proposition 5.2.6 in [23].

Lemma 5.6. Fix a projection p in a unital C*-algebra B. Let X be the set of projections

q ∈ B with ‖p−q‖ < 1. Then, there is a continuous, unitary-valued map q 7→ uq : X → U(B)

such that u1 = 1 and uqpu
∗
q = q for all q ∈ X. Additionally, if ϕ : B → C is a unital C*-

algebra homomorphism, then ϕ(uq) = 1 whenever q ∈ X has ϕ(q) = ϕ(p).
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Proof. For each projection q ∈ B, vq := q− q⊥ = 2q− 1 is a self-adjoint involution (roughly,

reflection though q) from which q is recovered by q = vq+1

2
. For each q ∈ X, put zq = vqvp+1

2
.

Clearly zp = 1. Additionally, if ϕ(q) = ϕ(p), then ϕ(zq) = ϕ
(
z2p+1

2

)
= ϕ(1) = 1. Since

‖zq − 1‖ =

∥∥∥∥vpvq − 1

2

∥∥∥∥ =
v2p=1

∥∥∥∥vq − vp2

∥∥∥∥ = ‖p− q‖ < 1,

each zq is invertible. Moreover,

zqp =
vqvpp+ p

2
=

vpp=p

vq + 1

2
· p = qp qzp =

qvqvp + q

2
=

qvq+q
q · vp + 1

2
= qp

so zqpz
−1
q = q. Noting that p commutes with z∗qzq, it follows that p commutes with |zq|−1

and therefore that the unitary uq := zq|zq|−1 satisfies uqpu
∗
q = q. Additionally, if q ∈ X has

ϕ(q) = ϕ(p), then ϕ(uq) = ϕ(zq)|ϕ(zq)|−1 = 1

By a straightforward subdivision argument, one gets the following path-lifting result.

Corollary 5.7. If ϕ : B → C is a unital C*-algebra homomorphism and et is a path of

projections in B such that ϕ(et) is constant, then there exists a path of unitaries ut in B

with u0 = 1 and et = ute0u
∗
t such that, in addition, ϕ(ut) ≡ 1.

We apply this corollary to show that homotopy equivalence in Vecn(A) is exactly orbit

equivalence under the action of the identity component in U∞(A).

Proposition 5.8. Suppose A is a C*-algebra and n is a positive integer. If et is a path of

projections in Vecn(A), then there exists a path of unitaries ut ∈ U∞(A) such that u0 = 1

and ute0u
∗
t = et for all t.

Proof. Let k be large enough that the path et stays inside Mk(A) + 1n. In the preceding

corollary, take B = Mk(Ã), C = Mk(C) and ϕ to be the homomorphism Mk(Ã) → Mk(C)

which reads off the scalar part of each entry.
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Example 5.9. If X = (X, x0) is a pointed compact Hausdorff space, and A = {f ∈ C(X) :

f(x0) = 0}, then the preceding theorem says that any homotopy of subbundles of X×Ck such

that the fibre over x0 is always Cn can be realized by continuously changing the coordinate

system in each fibre, all the while leaving coordinates of Ck over x0 unchanged.

Definition 5.10. We call a continuous map f : X → Y a strong π0-equivalence in the

event the following conditions are met.

1. Path-lifting: For every path yt in Y , there is a path xt in X such that f(xt) = yt

2. Connected fibres: For every y ∈ Y , the “fibre” f−1(y) is path connected.

Obviously a strong π0-equivalence is a π0-equivalence, that is, induces a bijection on

path-components.

Example 5.11. Suppose a group G acts continuously on a space X and x ∈ X. If

1. For every path xt in X with x0 = x, there is a path gt ∈ G with g0 = 1, gtx = xt (in

particular, the path-component of x is contained in its orbit under G).

2. The stabilizer subgroup Stab(x) is connected.

then it is easy to see that g 7→ gx : G→ Orb(x) is a strong π0-equivalence.

Strong π0-equivalences are more robust than ordinary π0-equivalences in that they can

be “restricted” in the following sense.

Proposition 5.12. Let f : X → Y be a strong π0-equivalence. If Y0 ⊂ Y is some subspace,

then the restricted mapping f : f−1(Y0)→ Y0 is also a strong π0 equivalence.

The above need not hold for ordinary π0-equivalence, as the following example shows.

Example 5.13. Projection onto the real axis is a π0-equivalence S1 → [−1, 1] (both spaces are

path-connected). However, the restricted mapping S1 \{±1} → (−1, 1) is not. The problem

here is that the fibres over the points in the interior of the interval are not connected.
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Theorem 5.14. Let A be a C*-algebra, n a positive integer. Put

G = {U ∈ U∞(CA) : U(1) ∈ Un(A)× U∞(A)}

That is, G consists of all U ∈ U∞(CA) for which U(1) has the form ( u 0
0 ∗ ) where u ∈ Un(A).

Then, the maps

G→ Vecn(SA) : U 7→ U1nU
∗ G→ Un(A) : U → 1nU(1)1n

are both strong π0-equivalences.

Proof. First we attend to the mapping G → Vecn(SA). Consider the action of U∞(CA)

on Vecn(CA) by conjugation. Given any path et ∈ Vecn(CA) with e0 = 1n, Theorem 5.8

guarantees a path Ut ∈ U∞(CA) such that U0 = 1, Ut1nU
∗
t = et. Meanwhile, the stabilizer of

1n is exactly Un(CA)×U∞(CA) which is, not only path-path connected, but deformation re-

tracts (by a strongly-continuous 1-parameter family of ∗-endomorphisms) onto U(n)×U(∞),

which is path-connected. Thus, we are in the situation of Example 5.11 and U 7→ U1nU
∗ is

a strong π0 equivalence from U∞(CA) to the orbit of 1n ∈ Vecn(CA) under this conjugation

action which contains the path component of 1n. However, Vecn(CA) deformation retracts

onto {1n}, so is path-connected whence U 7→ U1nU
∗ : U∞(CA) → Vecn(A) is a strong π0-

equivalence (of two path-connected spaces). Meanwhile, we recognize G as exactly the stabi-

lizer of Vecn(SA) ⊂ Vecn(CA) of this action. So, the mapping G→ Vecn(SA) : U 7→ U1nU
∗

is also a strong π0-equivalence by Proposition 5.12.

Next, we examine the map G → Un(A). Since this is actually a group homrphism, we

can consider it as a group action where Un(A) acts on itself by left multiplication. Now,

fixing the point 1 ∈ Un(A), suppose there is some path ut in Un(A) with u0 = 1. Then,

define Ut ∈ Un(CA) ⊂ G by Ut(s) = uts so that U0 ≡ 1 and Ut(1) = 1nUt(1)1n = ut. So,
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this action has path-lifting over 1 ∈ Un(A). morphism, we can consider it as a group action

where Un(A) acts on itself by left multiplication. Now, fixing the point 1 ∈ Un(A), suppose

there is some path ut in Un(A) with u0 = 1. Then, define Ut ∈ Un(CA) ⊂ G by Ut(s) = uts

so that U0 ≡ 1 and Ut(1) = 1nUt(1)1n = ut. So, this action has path-lifting over 1 ∈ Un(A).

The crux, then, is to show that the stabilizer of 1 ∈ Un(A) is connected. That is, we

are looking at the subgroup H ⊂ G consisting of all U ∈ G such that U(1) has the form

( 1n 0
0 v ). Take some U ∈ H. Now, it is at least clear that U is homotopic to 1 in U∞(CA)

(which deformation retracts onto the path-connected U(∞)). It follows that U is homotopic

to ( U 0
0 U∗ ) in H. Now, there is a V ∈ U∞(CA) such that V (1) =

(
v∗ 0 0
0 1n 0
0 0 v

)
and this V is

homotopic to 1 in U∞(CA). Thus, ( 1n 0
0 V ) is homotopic to 1 in G. Thus, U is homotopic

in H to W = ( U 0
0 U∗ ) ( 1n 0

0 V ) which satisfies W (1) = 1. In other words, W ∈ U∞(SA) ⊂ G.

Meanwhile, W is homotopic to 1 in U∞(CA), so W is homotopic to (W 0
0 W ∗ ) in H. Finally,

the latter is homotopic to 1 in U∞(SA) ⊂ H.

As a quick corollary to the above, we have the desired homotopy bijection.

Theorem 5.15. For every C*-algebra A, for every positive integer n, there is bijection

between the path components of Un(A) and the path components of Vecn(SA) sending the

class of u ∈ Un(A) to the class of U1nU
∗ ∈ Vecn(A) where U ∈ U∞(CA) is chosen arbitrarily

subject to U(1) = ( u 0
0 ∗ ).

5.3 Bott Periodicity

In C*-algebra K-theory, Bott’s periodicity theorem manifests as a natural isomorphism

s0
A : K0(A) → K1(SA) for every C*-algebra A. When A is unital, s0

A is such that the class

of a projection e in Mn(A) is sent to the class of the unitary loop1 z 7→ ze + e⊥ in Un(SA).

If A is nonunital, s0
A is got from the naturality. A proof in the case where A is commutative

1In this section, we switch conventions and use SA = {x ∈ C(S1, A) : x(1) = 0}.
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appears in [1] and adapts readily to the C*-algebraic setting (see, for instance, [31]). The

crux is to establish surjectivity of s0
A; in essence, the following claim.

Theorem 5.16 (Bott periodicity). For every unital C*-algebra A, the K-group K1(SA) is

generated by classes of elementary loops z 7→ ze+ e⊥ for e a projection in Mn(A).

For a C*-algebra A, let us agree, at least in this section, that

K1(A) = lim−→ π0(GLn(A)).

For suspensions, we have GLn(SA) = Ω GLn(A), the space of based loops2 u : S1 → GLn(A),

u(1) = 1n. Thus, π0(GLn(SA)) = π1(GLn(A)) so that K1(SA) can also be viewed as follows:

K1(SA) = lim−→ π1(GLn(A)).

We shall prove Theorem 5.16 in the special case A = C. Admittedly, the exercise is

somewhat idle since, as shown in the following section, a stronger claim can be proved by

easier methods. However, even in this very simple case, the main ideas of the general case

are brought to the forefront, so the expenditure of effort seems worthwhile. The claim to be

proven is:

Theorem 5.17. The direct limit of homotopy groups lim−→ π1(GL(n)) is generated by classes

of elementary loops z 7→ ze+ e⊥ where e is a projection in Mn(C).

We divide the proof into three lemmas, beginning with the following approximation

lemma.

Lemma 5.18. For each n, the component group of GLn(C(S1)) = C(S1,GL(n)) is generated

by homotopy classes of polynomial loops of the form z 7→ a0+a1z+. . . akz
k where ai ∈ Mn(C).

2We needn’t be particularly mindful of basepoints. Recall K1(A) ∼= K1(Ã) for every C*-algebra A.
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Proof. Fix a loop u : S1 → GL(n). We want to show u is homotopic to a product of

polynomial loops and their inverses. Each entry of u belongs to C(S1) so, by Weierstrass

approximation, u can be uniformly approximated by a loop u′ whose entries are polynomials

in z and z = z−1. Concisely, u′ is a “Laurent loop” of the form z 7→
∑k

i=−` z
iai, ai ∈ Mn(C).

Moreover, once the approximation is good enough, u and u′ are homotopic elements of

GLn(C(S1)). Since u′ factors as the product of the loops

z 7→ (z`1n)−1 z 7→ a−` + za−`+1 + . . .+ zk+`ak,

the claim is proved.

The inspired step in the proof is to combine the polynomial approximation above with

the following linearization lemma. It is worthy of note that the size of the linearized matrix L

below depends on the degree of the polynomial p. Since there is no telling how high a degree

polynomial may be needed at the approximation stage of the argument, there is therefore no

telling how large the matrices involved may become. Note as well that the construction of

the matrix L below is modeled on the procedure by which the order of an ODE is reduced

at the cost of increasing the dimension of the system.

Lemma 5.19 (Higmann linearization). Let A be a unital C*-algebra. Let z and a0, a1, . . . , ak

be elements of A. Suppose that p := a0 + a1z + . . . akz
k ∈ GL(A). Then,

L :=



a0 a1 a2 · · · ak

−z 1 0 · · · 0

0 −z 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


is in GLk+1(A) and belongs to the same path component as p⊕ 1k.
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Proof. We have the factorization



a0 a1 a2 · · · ak

−z 1 0 · · · 0

0 −z 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


︸ ︷︷ ︸

L

=



1 p1 p2 · · · pk

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1





p 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


︸ ︷︷ ︸

p⊕1k



1 0 0 · · · 0

−z 1 0 · · · 0

0 −z 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1



where

p1 = a1 + a2z + . . . akz
k−1

p2 = a2 + a3z + . . . akz
k−2

...

pk−1 = ak−1 + akz

pk = ak.

Since the three matrices on the right are obviously invertible, L is too. In fact, the first and

third factors on the right belong to the identity component of GLk+1(A), just continuously

decay the off-diagonal entries to zero. Thus, L is homotopic to p⊕ 1k as desired.

Our third lemma is concerned with non-normal perturbations of projections. Prior to this

point, our proofs have possessed more or less straightforward generalizations for C*-algebras

different from C. In the next proof, we rely on special facts about A = C. To contend with

more general cases, the holomorphic functional calculus should be used.

Lemma 5.20. For a ∈ Mn(C), the following are equivalent:

1. No eigenvalue of a has real part 1/2.
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2. For every z ∈ S1, za+ (1− a) is invertible.

Moreover, letting X denote the set of all such matrices a ∈ Mn(A), every path-component of

X contains precisely one of the projections 1k, k = 0, 1, . . . , n.

Proof. Note statement (2) holds vacuously for z = 1. If z ∈ S1 is different from 1, then

za+ (1− a) is noninvertible ⇐⇒ 0 is an eigenvalue of za+ (1− a) = 1− (1− z)a

⇐⇒ 1

1− z
is an eigenvalue of a.

The equivalence of (1) and (2) now follows because z 7→ 1
1−z sends S1 to the line with real

part 1/2. To see this last fact quickly, note z 7→ 1
z−1

is a fractional linear transformation,

and it sends 1 7→ ∞, so the image of the circle S1 is a line. Since −1 7→ 1
2
, the image is a

line through 1
2
. Finally, 1

1−z = 1
1−z , so the image is symmetric across the real axis.

Since similar matrices have identical spectra, and since similarity is precisely orbit equiv-

alence under the conjugation action of the path-connected group GL(n), we see that every

matrix is connected to, say, its Jordan normal form by a path along which the spectrum

remains constant. Since the spectrum of an upper-triangular matrix is its set of diagonal

entries, we see that each upper-triangular matrix is connected to its diagonal matrix by a

path along which the spectrum remains constant (just decay the off-diagonal entries to zero).

Putting these two observations together, we conclude that each matrix in X is connected,

by a path in X, to a diagonal matrix. Obviously any diagonal matrix in X is connected

to one of the matrices 1k by moving each eigenvalue λ along a straight line path to 0 or 1

according to the side of the line Re(z) = 1/2 that λ falls on. We do not actually need the

converse statement that 1k is not connected to 1` in X when k 6= `, though this is a rather

simple consequence of continuity of the spectrum (with multiplicity).

Having gathered our forces we are now able to give
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Proof of Theorem 5.17. Fix a loop u : S1 → GL(n). Combining Lemmas 5.18 and 5.19, we

get that, for some k, u ⊕ 1k : S1 → GL(n + k) is homotopic in C(S1,GL(n + k)) to a loop

L of the form z 7→ b + zc where b, c ∈ Mn+k(C). Since b + c is invertible (take z = 1) and

GL(n + k) is path connected, we have that L is homotopic to L′ = (b + c)−1L. Putting

a := (b + c)−1b, we get L′(z) = za + (1− a). Applying Lemma 5.20 above, L′ is homotopic

to z 7→ z1r + 1⊥r for some r. This proves the theorem, modulo some easy basepoint issues

(technically, the loops in π1(GL(n)) are based).

5.4 Computation of π1(U(n))

In the previous section, we admitted that our restriction to the the case A = C was a bit

frivolous. Indeed, Theorem 5.17 can be proven by easier methods, as we now show.

Proposition 5.21. For every integer n ≥ 2, U(n) is a U(n− 1)-bundle over S2n−1.

Example 5.22. Note U(n) ∼= SU(n)×S1 for all n. Since S3 ∼= SU(2) by (z, w) 7→ ( z −ww z ), we

have in fact U(2) ∼= S3 × S1 ∼= S3 × U(1), so U(2) is a trivial U(1)-bundle over S3.

Proof. View S2n−1 as the unit sphere in Cn. Our bundle map p : U(n) → S2n−1 is induced

by the action of U(n) on S2n−1. Take p(u) = uen where en = (0, . . . , 0, 1). Notice p−1(en) =

U(n − 1) where we identify U(n − 1) with the upper left corner of U(n). It suffices to

produce a local trivialization at en ∈ S2n−1 since then a local trivialization exists at ven for

each v ∈ U(n) by conjugation. We trivialize over the neighbourhood W = {(z1, . . . , zn) ∈

S2n−1 : zn 6= 0} of en. Note that it suffices to construct a section s : W → p−1(W ) of

p : p−1(W ) → W since then Φ : W × U(n − 1) → p−1(W ) given by Φ(x, v) = s(x)v will

give the desired trivialization. For these purposes, let Γ : GL(n) → U(n) be the map given

by applying the Gramm-Schmidt algorithm to the columns of a ∈ GL(n) in reverse order

(right to left). Let ι : p−1(W ) → GL(n) be the map which sends x to the matrix obtained
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by replacing the rightmost column of the n×n identity matrix with with x (this is invertible

because it is upper-triangular with nonvanishing diagonal). Then, Γ ◦ ι : W → p−1(W ) is

our section.

Since fibre bundles have homotopy lifting (see [15], Proposition 4.48), we have the fol-

lowing corollary.

Corollary 5.23. Suppose ft is a homotopy of pointed maps X → S2n−1 and that g : X →

U(n) is a lift of f0 through the bundle projection p : U(n)→ S2n−1 (consider 1 ∈ U(n) to be

the basepoint). Then, the whole homotopy lifts to a homotopy f̃t of maps X → U(n) with

f̃0 = g.

Proposition 5.24. For every integer n ≥ 2, the inclusion u 7→ ( u 0
0 1 ) : U(n − 1) → U(n)

induces an isomorphism on fundamental groups3.

Proof. We check separately injectivity and surjectivity.

Surjectivity: We should take a based map ϕ : S1 → U(n) and show it can be homotoped

to one with range contained in U(n − 1). The composite ψ := p ◦ ϕ : S1 → S2n−1 is

null-homotopic since 2n − 1 ≥ 3 so there is a homotopy ψt of maps S1 → S2n−1 such

that ψ0 = ψ and ψ1 ≡ en. Lifting, we obtain a homotopy ϕt of maps S1 → U(n) such

that ϕ0 = ϕ and ϕ1 has range contained in U(n− 1), as desired.

Injectivity: Suppose some based map ϕ : S1 → U(n− 1) ⊂ U(n) is null-homotopic as

a map S1 → U(n). We need to show the null-homotopy can occur inside U(n − 1).

Since ϕ is null-homotopic in U(n), there is a map Φ : D2 → U(n) whose restriction

to the boundary ∂D2 = S1 is ϕ. The composition Ψ := p ◦ Φ : D2 → S2n−1 collapses

S1 to the basepoint en, so Ψ is, in essence, a map S2 → S2n−1. As 2n − 1 ≥ 3,

any map S2 → S2n− 1 is null-homotopic. In other words, there is a null-homotopy

3Assume all loops are based at the identity matrix
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Ψt : D2 → S2n−1 with Ψ0 = Ψ, Ψ1 ≡ en such that Ψt maps S1 to en for every t ∈ [0, 1].

Lifting, we get a homotopy of maps Φt : D2 → S2n−1 with Φ0 = Φ, (Φ1) ⊂ U(n − 1)

such that Φt maps S1 into U(n− 1) for all t ∈ [0, 1]. Then, the restrictions ϕt := Φt

∣∣
S1

are a homotopy between ϕ and ϕ1 through maps S1 → U(n− 1). Moreover, ϕ1 is null-

homotopic as a map S1 → U(n− 1), because it has the extension Φ1 : D2 → U(n− 1).

As corollary, we get π1(U(n)) ∼= Z for all n.

Corollary 5.25. For every positive integer n, the determinant det : U(n) → S1 and the

inclusion z 7→
(
z 0
0 1n−1

)
: S1 → U(n) induce inverse isomorphisms between π1(U(n)) and

π1(S1).

Proof. We have the sequence of pointed maps

S1 ↪→ U(2) ↪→ U(3) ↪→ · · · ↪→ U(n)
det→ S1

whose full composite is the identity. Applying π1 and using functoriality, the result follows

from Proposition 5.24 above.

Theorem 5.17 follows trivially from the above corollary, so we have an the alternative,

more elementary, proof as alluded to before.
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Chapter 6

The Connes-Thom Isomorphism

The Connes-Thom isomorphism is really a pair of isomorphisms which together show the

K-theory of a 1-parameter crossed-product is naturally isomorphic to the K-theory of the

original algebra, with a dimension shift.

Ki(AoR) ∼=α Ki+1(A) i = 0, 1

In particular, the K-theory of the crossed-product doesn’t depend on the action α. In the

case where the action is trivial, so that Ao R ∼= A⊗ C∗(R) ∼= A⊗ C0(R), one recovers the

suspension isomorphism on K-theory.

By now, there are several proofs of Connes’ theorem (see, for instance, [10], [29]). For the

purposes of this thesis, it is important to cast the isomorphisms in a relatively explicit form.

With this goal in mind, the best resource is still probably the original work of Connes [6].

The present chapter is adapted from Connes’ paper.
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6.1 Overview and axiomatics

Definition 6.1. A Thom map is a selection, for each C*-dynamical system (A,R, α), of a

pair of group homomorphisms

φ0
α : K0(A)→ K1(Aoα R) φ1

α : K1(A)→ K0(Aoα R)

such that the following axioms are satisfied:

1. Orientation: If A = C, then φ0
id : K0(C) → K1(C∗(R)) is such that the image of

φ0
id([1]) ∈ K1(C∗(R)) by the Fourier isomorphism1 C∗(R) → C0(R) is the class in

K1(C0(R)) = K1(R) represented by a loop of winding number 1.

2. Naturality : If (A,R, α) and (B,R, β) are C*-dynamical systems, and ϕ : A→ B is an

equivariant ∗-homomorphism, then the following square commutes.

Ki(A)
φiα−−−→ Ki+1(Aoα R)

ϕ∗

y y(ϕ̂)∗

Ki(B) −−−→
φiβ

Ki+1(B oβ R)

i ∈ 0, 1

3. Suspension: Let A = (A,R, α) be a C*-dynamical system. Then, diagram

Ki(A)
φiα−−−→ Ki+1(Aoα R)

siA

y ysi+1
AoαR

Ki+1(SA) −−−→
φi+1
Sα

Ki+1(S(Aoα R))

i ∈ 0, 1

is commutative. Here, SA = (SA,R, Sα) is the suspended system and we are conflating

S(Aoα R) with (SA) oSα R by way of the obvious C*-algebra isomorphism.

1We take f 7→ f̂ : C∗(R)→ C0(R) to be determined on Cc(R) by f̂(s) =
∫∞
−∞ f(t)eits dt.
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These three axioms also imply that a Thom map must respect, in an appropriate sense,

the operations of unitization, and tensor product with Mn(C). Significantly, exterior equiv-

alence must be respected as well in the following sense (Proposition II.3 in [6]).

Lemma 6.2. If (A,R, α) is a C*-dynamical system, u a unitary 1-cocycle of α, and α′ =

Ad(u)α the adjusted flow, then the isomorphism ιu : Aoα′ R→ Aoα R of Proposition 2.49

is such that

(ιu)∗ ◦ φiα′ = φiα i = 0, 1

for any Thom map, {φ0
· , φ

1
· }.

Using the above axioms and their consequences, it is shown in [6] that

Theorem 6.3 (Connes). A Thom map exists, is unique, and each map φiα is an isomorphism.

In this thesis, we assume the isomorphisms φiα exist and content ourselves with deducing

their form from the axioms.

6.2 The isomorphism K0(A)→ K1(AoR)

Let A be a unital C*-algebra and let the suspended C*-algebra be SA = A⊗ C0(R). Thus,

SA is generated by commuting products a · f where a ∈ A, f ∈ C0(R). The suspension

isomorphism susp0
A : K0(A)→ K1(SA) is such that, for any projection e ∈ A,

s0
A([e]) = [e · b+ e⊥],

where b ∈ GL(C0(R)) is a loop2 of winding number 1. Since the crossed-product Aoα R is

generated by (generally noncommuting) products a · f(H) where a ∈ A, f ∈ C0(R)} and

2The Cayley transform b(t) = t−i
t+i is one such loop.
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H is the Hamiltonian of A oα R, one expects φ0
α will be defined in similar manner to s0

A.

One knows, however, that some extra ingredient is needed since, if e does not commute with

b(H), then there is no reason why e · b(H) + e⊥ should be invertible.

Theorem 6.4. Let (A,R, α) be a C*-dynamical system with A unital and let e be a projection

in dom(δ), where δ is the infinitesimal generator of α. If P is a self-adjoint element of A

such that i[P, e] = −δ(e), then e · b(H + P ) + e⊥ ∈ GL(Aoα R) and

φ0
α([e]) = [e · b(H + P ) + e⊥].

Here, H is the Hamiltonian of the crossed-product and b = 1 + ` ∈ GL(C0(R)) is a loop of

winding number 1, ` ∈ C0(R).

Proof. We can drop the smoothness hypothesis on e and prove something stronger: φ0
α([e]) =

[e · b(Hu) + e⊥] when u is a unitary cocycle of α such that Ad(u)α fixes e, and Hu is the

perturbation of H by u. By Proposition 4.12 and Corollary 4.14, this is more general than the

desired theorem. Put α′ = Ad(u)α. Since e is fixed by α′, the ∗-homomorphism ϕe : C→ A

sending 1 7→ e is equivariant with respect to α′ (and the trivial dynamics on C). Thus, by

the naturality axiom, the square

K0(C)
ϕe−−−→ K0(A)

φ0id

y φ0
α′

y
K1(C∗(R))

ϕ̂e−−−→ K1(Aoα′ R)

is commutative. We chase [1] ∈ K0(C) both ways around the diagram. Going clockwise, one

gets to φ0
α′([e]) ∈ K1(Aoα′ R). Recall (Example 2.40) that i d

dt
is the Hamiltonian of C∗(R)

and its functional calculus f 7→ f(i d
dt

) inverts the Fourier isomorphism C∗(R) → C0(R).

Thus, by the orientation axiom, φ0
id([1]) is represented by b(i d

dt
) = `(i d

dt
) + 1, where we write

b = `+ 1 so that ` ∈ C0(R). As in Example 2.45, one has ϕ̂e(`(i
d
dt

)) = ϕ̂e(1 · `(i ddt)) = ϕe(1) ·
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`(H ′) = e·`(H ′) where H ′ denotes the Hamiltonian of Aoα′R. Thus, going counterclockwise,

we get to the class of e · `(H ′) + 1 = e · b(H ′) + e⊥ ∈ GL(Aoα′ R) proving

φ0
α′([e]) = [e · b(H ′) + e⊥].

By Lemma 6.2, one has φ0
α = (ιu)∗ ◦ φ0

α′ . Applying Proposition 2.49, we get

ιu([e · b(H ′) + e⊥) = e · b(Hu) + e⊥,

which completes the proof.

By exploiting the compatibility of the Thom map with unitization and tensor product

by Mn(C), one sees how to calculate φ0
α on general K-theory classes.

Theorem 6.5. Let (A,R, α) be a C*-dynamical system (possibly nonunital), let e be a pro-

jection in Mn(Ã), and let e0 = ε(e) be the scalar part of e so that [e]− [e0] ∈ K0(A) ⊂ K0(Ã).

If e ∈ dom(δ), where δ is the infinitesimal generator of the flow β = α̃ ⊗ id on Mn(Ã) =

Ã⊗Mn(C), and P ∈Mn(A) is a self-adjoint element3 such that i[P, e] = −δ(e), then

(
e · b(H + P ) + e⊥

) (
e0 · b(H) + e⊥0

)−1 ∈ GLn(Aoα R) ⊂ GLn(Ãoα̃ R)

and this element represents φ0
α([e]) ∈ K1(A oα R). Here, H denotes the Hamiltonian of

Mn(Ã) oβ R = Mn(Aoα̃ R) and b = `+ 1 ∈ GL(C0(R)) is a loop of winding number 1.

Sketch of proof. We know from the preceding theorem that

ϕ0
β([e]) = [e · b(H + P ) + e⊥] ϕ0

β([e0]) = [e0 · b(H) + e⊥0 ]

3By Connes’ projection lemma, the particular choice P = i[δ(e), e] always does the job.
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in K1(Mn(Ã))oβR). The compatibility of the Thom map with inflation to matrices (Propo-

sition II.2 in [6]) implies that, indeed,

ϕ0
α̃([e]) = [e · b(H + P ) + e⊥] ϕ0

α̃([e0]) = [e0 · b(H) + e⊥0 ]

in K1(ÃoαR). The compatibility of the Thom map with unitization (Proposition II.1 in [6])

then implies that
(
e · b(H + P ) + e⊥

) (
e0 · b(H) + e⊥0

)−1
represents the image of φ1

α([e]) by

ι̂∗ : K1(A oα R) → K1(A oα̃ R). Thus, it only remains to see this representative already

belongs to the image of ι̂ : GLn(AoαR)→ GLn(Ãoα̃R). Using the Takesaki-Takai duality

theorem, it can be shown (Lemma I.1 in [6]) that the exactness of the equivariant sequence

0 −−−→ Mn(A)
ι−−−→ Mn(Ã)

ε−−−→ Mn(C) −−−→ 0

implies the exactness of the dual sequence

0 −−−→ Mn(A) oα⊗id R
ι̂−−−→ Mn(Ã) oβ R

ε̂−−−→ Mn(C) oid R −−−→ 0∥∥∥ ∥∥∥ ∥∥∥
0 −−−→ Mn(Aoα R)

ι̂−−−→ Mn(Ãoα̃ R)
ε̂−−−→ Mn(C∗(R)) −−−→ 0.

Thus, we just need to see e ·b(H+P )+e⊥ = e ·`(H+P )+1 and e0 ·b(H)+e⊥0 = e0 ·`(H)+1

have the same image under ε̂ : GLn(Aoα̃ R)→ GLn(C∗(R)). Since ε(P ) = 0 and ε(e) = e0,

this follows from Proposition 2.51.
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6.3 The isomorphism K1(A)→ K0(Aoα R)

It turns out that, in general, the odd Thom map φ1
α : K1(A) → K0(A oα R) is difficult to

describe. The composition

K1(A)
φ1α−→ K0(Aoα R)

s0AoαR−→ K1(S(Aoα R)),

however, does admit a satisfactory description in terms of the generators of the K-groups.

The following is Proposition III.1 in [6] together with a mild variation of its proof.

Theorem 6.6. Let (A,R, α) be a C*-dynamical system, and let u ∈ U(A) be a C1 unitary.

Then, the image of φ1
α([u]) ∈ K0(A oα R) by the suspension isomorphism K0(A oα R) →

K1(S(A oα R)) is represented by the loop C ∈ GL2(S(A oα R)) given as the concatenate of

the two paths:

C1(λ) =

b(H + λP )b(H)−1 0

0 1

 λ ∈ [0, 1]

C2(t) = W (t)

b(H) 0

0 1

W (t)−1

b(H)−1 0

0 1

 t ∈ [0, 1]

where:

H is the Hamiltonian of Aoα R,

b ∈ GL(C0(R)) is a loop with winding number 1,

P = iδ(u∗)u, δ the infinitesimal generator of A,

W = R ( u
∗ 0

0 1 )R∗ for R : [0, 1]→ U(2) a smooth path from ( 1 0
0 1 ) to ( 0 −1

1 0 ).
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Note that P = iδ(u∗)u in the statement is a perturbation implementing an exterior

equivalence from α to Ad(u∗)αAd(u).

Proof. By the suspension axiom for the Thom map, the square

K1(A)
φ1α−−−→ K0(Aoα R)

s1A

y ys0AoαR

K0(SA) −−−→
φ0Sα

K1(S(Aoα R))

is commutative. Thus, the problem is reduced to calculating the composition of the two

maps s1
A and φ0

Sα. By definition, s1
A([u]) = [e] − [e0] ∈ K0(SA) ⊂ K0(S̃A) where e0 = ( 1 0

0 0 ),

e = Ue0U
∗ ∈ M2(S̃A) and U ∈ U2(C̃A) has U(0) = ( 1 0

0 1 ), U(1) = ( u 0
0 u∗ ). Since ( u

∗ 0
0 1 )

commutes with e0, one also has e = We0W
∗ where W = U ( u

∗ 0
0 1 ) has W (0) = ( u

∗ 0
0 1 ),

W (1) = ( 1 0
0 u∗ ). We assume the projection loop e is “lazy” at the start and end of its

journey. To be more clear about this, we henceforth subdivide all loops in this proof into

three segments so that, for instance, an element of x ∈ SA is the concatenate of three paths

λ 7→ x1(λ) t 7→ x2(t) µ 7→ x3(µ) [0, 1]→ A

satisfying x1(0) = 0, x1(1) = x2(0), x2(1) = x3(0), x3(1) = 0. We choose e so that

e1(λ) = e0, ∀λ ∈ [0, 1] e2(t) = W (t)e0W (t), ∀t ∈ [0, 1] e3(µ) = e0, ∀µ ∈ [0, 1].

We now calculate φ0
Sα([e] − [e0]) using Theorem 6.5. Let β be the natural dynamics on

M2(S̃A). We need to produce a self-adjoint Q = Q1 ∪Q2 ∪Q3 ∈ M2(SB) such that i[Q, e] =
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−∆(e), where ∆ is the infinitesimal generator of β. In other words, we need to choose Q so

i[Q1(λ), e0] = 0 ∀λ ∈ [0, 1]

i[Q2(t), e2(t)] = −δ(e2(t)) ∀t ∈ [0, 1]

i[Q3(µ), e0)] = 0 ∀µ ∈ [0, 1]

Since e2(t) = W (t)e0W (t)∗ where e0 is α-invariant, we follow Corollary 4.11 and take

Q2(t) = iδ(W (t))W (t)∗ ∀t ∈ [0, 1].

In particular, we have Q2(0) = ( P 0
0 0 ) and Q2(1) = ( 0 0

0 P ) where P = iδ(u∗)u. The simplest

choices for Q1 and Q3 are then

Q1(λ) =

λP 0

0 0

 Q3(µ) =

0 0

0 (1− µ)P

 ∀λ, µ ∈ [0, 1]

Now, we can find the image of [e] − [e0] in K1(SA oSα R) using Theorem 6.5. We need to
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compute b(H ′ +Q) where H ′ is the Hamiltonian of M2(S̃AoSα R). We get

b(H + λP ) 0

0 b(H)

 ∀λ ∈ [0, 1]

W (t)

b(H) 0

0 b(H)

W (t)∗ ∀t ∈ [0, 1]

b(H) 0

0 b (H + (1− µ)P )

 ∀µ ∈ [0, 1]

so that eb(H ′ +Q) + e⊥ is equal to

b(H + λP ) 0

0 1

 ∀λ ∈ [0, 1]

W (t)

b(H) 0

0 1

W (t)∗ ∀t ∈ [0, 1]

b(H) 0

0 1

 ∀µ ∈ [0, 1]

and, finally, s0
AoαR(φ1

α([u])) is represented by C = (e · b(H ′ + Q) + e⊥)(e0 · b(H ′) + e⊥0 )−1
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where (e0 · b(H ′) + e⊥0 ) ≡
(
b(H) 0

0 1

)
so that C is the path

C1(λ) =

b(H + λP )b(H))−1 0

0 1

 ∀λ ∈ [0, 1]

C2(t) = W (t)

b(H) 0

0 1

W (t)∗

b(H)−1 0

0 1

 ∀t ∈ [0, 1]

C3(µ) =

1 0

0 1

 ∀µ ∈ [0, 1].

Obviously, we can homotope the constant third portion of the path away without changing

the K-theory class of [C ], so we get the stated result.

Since the suspension isomorphism s0 is generally difficult to invert, the above the Theorem

gives little indication how one might go about computing φ1 itself. In Section 7.2, we consider

a few simple cases where the calculation can be made.
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Chapter 7

Conne’s trace formula

7.1 The formula τ̂∗ ◦ φ1
α = indτα

We now prove the formula of Connes which was discussed in the introductory chapter and

which has motivated much of the work done in this document.

Theorem 7.1 ([6], Theorem 3). Let (A,R, α) be a C*-dynamical system, and let τ be an

α-invariant, densely-defined, lower semicontinuous trace on A. If u = z + 1 is a unitary in

Ã, where z ∈ A is a C1 element for α such that z and δ(z) are in Aτ1, then

τ̂∗(φ
1
α([u])) =

1

2πi
τ(δ(u)u∗)

where τ̂ denotes the dual trace on Aoα R.

There are not substantial differences between the proof appearing below and the original

proof in [6], although we do work harder to deal with the domain issues which crop up when

unbounded traces are allowed onto the field. Potentially, this is because we use “lower semi-

continuous, densely-defined traces”, whereas “semi-continuous, semi-finite traces” are used

in [6]. It is presumed that, to speak of a semi-finite trace on a C*-algebra, one implicitly as-

sumes the trace extends to the enveloping von Neumann algebra. However, the author of this
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thesis is mostly ignorant of von Neumann algebra theory, and feels unqualified to comment

as to whether the distinction has mathematical significance, or is purely terminological.

Proof. We organize the proof into three parts.

1. Preliminaries.

For brevity, write B = A oα R. We aim to calculate τ̂∗(φ
1
α([u])) by an application of

Theorem B.9. From Theorem 6.6, we have

s0
B(φ1

α([u])) = [C ] ∈ K1(SB)

where C ∈ GL2(SB) equals the concatenate of the two paths:

C1(λ) =

b(H + λP )b(H)−1 0

0 1

 λ ∈ [0, 1]

C2(t) = W (t)

b(H) 0

0 1

W (t)−1

b(H)−1 0

0 1

 t ∈ [0, 1],

b = 1 + ` ∈ GL(C0(R)) is a loop of winding number 1,

P = iδ(u∗)u (note P ∈ Aτ1, since δ(u∗) = δ(z)∗ ∈ Aτ1),

W = R ( u
∗ 0

0 1 )R∗,

R : [0, 1]→ U(2) is smooth path from ( 1 0
0 1 ) to ( 0 −1

1 0 ).

A careful choice of ` is needed to ensure C1 and C2 are C1 with respect to the trace-class

norm, and to make the integrals tractable. Of course, b = 1 + ` must be a loop of winding

number 1, but we also impose the following constraints.
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1. ` has the form s 7→
∑n

i=1
λi
s−pi where λi, pi ∈ C, and the pi are non-real.

2. s 7→ s · `(s) is in C0(R) ∩ L2(R). In particular, ` ∈ C0(R) ∩ L1(R).

Fortunately, these two constraints are compatible. To satisfy (1), the natural choice would

seem to be `(s) = −2i
s+i

so that b(s) = 1 + `(s) = s−i
s+i

is the Cayley transform which winds

R around the circle, but this ` is not in L1(R), so (2) fails. On the other hand, we could

use `(s) = 2
(s+i)2

, which parametrizes the cardioid with polar equation r = 1− cos(θ). This

Figure 7.1: The cardioid `(s) = 2
(s+i)2

.

Figure 7.2: The “cardioidoid” `(t) = 2
(t+i)(t+(1.1)i)

.

time, (2) holds, but, because of the double pole at −i, the partial fraction decomposition of

`(t) is not into linear factors, so (1) fails. However, one can simply perturb one pole a small

amount and use

`(s) =
2

(s+ i)(s− p)

for some p ∈ C sufficiently close to −i to get a loop satisfying both (1) and (2).
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For the rest of the proof, we occupy ourselves by showing, for i = 1, 2, that Ci values in

GL2(B τ̂
1 ) and is C1 with respect to the trace class norm, and calculating that

∫ 1

0

τ̂

(
dC1

dλ
C1(λ)−1

)
dλ = τ(δ(u)u∗)

∫ 1

0

τ̂

(
dC2

dt
C2(t)−1

)
dt = 0.

Once this is achieved, Theorem B.9 implies 1
2πi
τ(δ(u)u∗) = τ̂∗(φ

1
α([u])), as desired.

2. Calculation of
∫ 1

0
τ̂
(
dC1

dλ
C1(λ)−1

)
dλ.

First, we must check that λ 7→ b(H+λP )b(H)−1 values in GL(B τ̂
1 ) and is C1 with respect

to the trace-class norm. As λ = 0 maps to 1 ∈ GL(B τ̂
1 ), it suffices to check:

1. λ 7→ b(H + λP ) is C1 with respect to the C*-algebra norm.

2. d
dλ
b(H + λP ) values in B τ̂

1 and is continuous with respect to the trace class norm.

By the choice of `, we have b(H + λP ) = 1 +
∑n

i=1 λi(H + λP − pi)−1. By Theorem 4.27,

λ 7→ b(H + λP ) is C1 for the norm of Ãoα̃ R, proving (1), and, moreover,

d

dλ
b(H + λP ) = −

n∑
i=1

λi(H + λP − pi)−1P (H + λP − pi)−1.

Since s 7→ 1
s−pi is the Fourier transform of a function in L1(R) ∩ L2(R), and P ∈ Aτ1,

Proposition A.39 implies that λ 7→ (H+λP −pi)−1P (H+λP −pi)−1 : R→ B τ̂
1 is continuous

with respect to the trace class norm for each i, proving (2).

Next, we show τ̂
(
d
dλ
b(H + λP )

∣∣
λ
b(H + P )−1)

)
= τ(δ(u)u∗), irrespective of λ. Applying

Corollary A.35 and Remark A.38, we get for every i that

τ̂
(
(H − pi)−1P (H − pi)−1b(H)−1

)
= τ(P ) · 1

2π

∫ ∞
−∞

1

(s− pi)2

1

b(s)
ds.
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As b′(s) =
∑n

i=1
−λi

(s−pi)2 and P = iτ(δ(u∗)u), summing over i gives

τ̂

(
d

dλ
b(H + λP )

∣∣∣∣
λ=0

b(H)−1

)
= τ(P ) · 1

2π

∫ ∞
−∞

b′(s)

b(s)
ds

= −τ(δ(u∗)u) · (winding number of b)

= τ(δ(u)u∗).

3. Calculation of
∫ 1

0
τ̂
(
dC2

dt
C2(t)−1

)
dt.

First, let us see why C2 = W
(
b(H) 0

0 1

)
W ∗ ( b(H)−1 0

0 1

)
has values in GL(B τ̂

1 ) and is C1 with

respect to the trace-class norm. Put Z = R ( z 0
0 0 )R∗ so that W = 1 + Z∗. Observe,

W
(
b(H) 0

0 1

)
W ∗ = 1 +W

(
`(H) 0

0 0

)
W ∗

=
(
b(H) 0

0 1

)
+W

(
`(H) 0

0 0

)
W ∗ −

(
`(H) 0

0 0

)
=
(
b(H) 0

0 1

)
+ (1 + Z∗)

(
`(H) 0

0 0

)
(1 + Z)−

(
`(H) 0

0 0

)
=
(
b(H) 0

0 1

)
+

[
Z∗
(
`(H) 0

0 0

)
+
(
`(H) 0

0 0

)
Z + Z∗

(
`(H) 0

0 0

)
Z

]
.

Since z, δ(z) ∈ Aτ1 and ` is such that s 7→ s · `(s) is in C0(R)∩L2(R), Proposition A.37 shows

the bracketed term above is a curve in M2(B τ̂
1 ). Thus,

C2 = 1 +

[
Z∗
(
`(H) 0

0 0

)
+
(
`(H) 0

0 0

)
Z + Z∗

(
`(H) 0

0 0

)
Z

] (
b(H)−1 0

0 1

)
has values in GL2(B τ̂

1 ). Moreover, as the only dependence on the parameter t is in the

smoothly varying scalar matrix R, C2 is clearly C1 with respect to the trace class norm.
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Another simple calculation shows that

dC2

dt
C −1

2 =

[
dW

dt

(
b(H) 0

0 1

)
W ∗ −W

(
b(H) 0

0 1

)
W ∗dW

dt
W ∗
]
W
(
b(H)−1 0

0 1

)
W ∗

= W

[
W ∗dW

dt
−
(
b(H) 0

0 1

)
W ∗dW

dt

(
b(H)−1 0

0 1

) ]
W ∗

= −W
[ (

b(H) 0
0 1

)
X
(
b(H)−1 0

0 1

)
−X

]
W ∗

where X := W ∗ dW
dt

has entries which are scalar multiplies of products of z and z∗. Put

k = − `
1+`

so that b−1 = 1 + k. and observe that s 7→ s · k(s) is in C0(R) ∩ L2(R) as well.

Then, the bracketed term above becomes

(
`(H) 0

0 0

)
X +X

(
k(H) 0

0 0

)
+
(
`(H) 0

0 0

)
X
(
k(H) 0

0 0

)
which, again by Proposition A.37, has values in M2(B τ̂

1 ). Thus, we get

τ̂

(
dC2

dt
C −1

2

)
= −τ̂

((
`(H) 0

0 0

)
X +X

(
k(H) 0

0 0

)
+
(
`(H) 0

0 0

)
X
(
k(H) 0

0 0

))
= −τ̂

((
`(H) 0

0 0

)
X +

(
k(H) 0

0 0

)
X +

(
k(H) 0

0 0

) (
`(H) 0

0 0

)
X
)

= 0

where we used 1 = bb−1 = (1 + `)(1 + k).

By exploiting the compatibility of the Connes-Thom isomorphism with tensor product

by Mn(C), one obtains from Theorem 7.1 the formula

τ̂∗ ◦ φ1
α = indτα

which was discussed in the introduction, where indτα is as in Theorem 3.11.
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7.2 Applications

Recall that, when (A,R, α) is a C*-dynamical system, we generally do not have an explicit

description of the Connes-Thom isomorphism φ1
α : K1(A) → K0(A oα R); Theorem 6.6

only describes the composite s0
AoαR ◦ φ

1
α : K1(A) → K1(SA oα R). However, if τ is a

densely-defined, lower semicontinuous α-invariant trace on A, and the the homomorphism

indτα : K1(A) → R happens to be injective, then τ̂∗ : K0(A oα R) → R is injective too and

the equality τ̂∗ ◦φ1
α = indτα uniquely determines φ1

α. Thus, in certain cases, the results of the

preceding section enable us to calculate φ1
α. We carry out this paradigm for two examples.

Example 7.2. Let α be the translation flow on C0(R) determined by (αtf)(s) = f(s + t).

In this case, C0(R) oα R ∼= K(L2(R)), the C*-algebra of compact operators on L2(R). The

Riemann integral is a densely-defined, lower semicontinous, α-invariant trace τ on C0(R).

The associated homomorphism indτα is just the classical winding number, and carries K1(R)

isomorphically onto Z ⊂ R. It is not difficult to see that, up to nonnegative scalar multiple,

the only densely-defined, lower semicontinuous trace on K(L2(R)) is the standard one. By

the equality indτα = τ̂∗ ◦ φ1
α, the range of τ̂∗ is Z, so the dual trace τ̂ must be the standard

trace with the standard normalization. It follows that φ1
α([b]) = [e] where b ∈ GL(C0(R)) is

a loop of winding number 1, and e ∈ K(L2(R)) is a rank-1 projection, and this determines

the Connes-Thom isomorphism φ1
α : K1(R)→ K0(K(L2(R)) completely.

Example 7.3. Fix an irrational number θ and consider the Kronecker flow α on the C*-algebra

C(T2) of Z2-periodic functions on R2 determined by (αtf)(x, y) = f(x+ t, y + θt). Observe

that the 2-dimensional Riemann integral is an α-invariant tracial state τ on C(T2). It was

shown in Section 3.4 that the associated homomorphism indτα carries K1(T2) = H1(T2)

isomorphically onto Z + θZ ⊂ R, sending [f1] 7→ 1 and [f2] 7→ θ where f1, f2 : T2 → T are

the two coordinate projections. In Example 2.27, we sketched the construction of an explicit

isomorphism between Aθ ⊗ K(L2(T)) and C(T2) oα R, where Aθ is the irrational rotation
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algebra. It is not difficult to show that, up to nonnegative scalar multiple, the only densely-

defined, lower semicontinuous trace on Aθ ⊗ K(L2(T)) is the stabilization of the unique

(see [28]) tracial state τθ on Aθ. In particular, the dual trace τ̂ is one of these multiples. By

the equality indτα = τ̂∗ ◦ φ1
α, the range of τ̂∗ is Z + θZ, but this does not suffice to determine

the normalization of τ̂ . For instance, notice that 1
ϕ
·(Z+ϕZ) = Z+ϕZ when ϕ is the Golden

ratio. Recall however that, a least formally, the isomorphism Aθ ⊗K(L2(T))→ C(T2)oα R

sketched in Example 2.27 sends 1 ⊗ e0 7→ F , where e0 is the rank-1 projection onto the

constant function 1 ∈ L2(T) and F ∈ C(T2) oα R “is” the function

F (t, x, y) =


1 if 0 ≤ {x} − t < 1

0 otherwise

.

Morally, τ̂(F ) = τ(F (0)) =
∫
T2 1 dxdy = 1. By writing F = F ∗F and using some ap-

proximation arguments, this can be made rigorous. Having determined the normalization,

we now know τ̂ is just the stabilization of τθ, as expected. If we assume for convenience

that 0 < θ < 1, then we can completely determine the Connes-Thom isomorphism φ1
α from

K1(C(T2)) = K1(T2) to K0(C(T2) oα R) = K0(Aθ ⊗ K) = K0(Aθ) as the map sending

[f1] 7→ [1] and [f2] 7→ [p] where fi : T2 → T is the ith coordinate projection and p ∈ Aθ is a

Powers-Rieffel projection [30] such that τθ(p) = θ.
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Chapter 8

Conclusion

Conclusion

This thesis investigated the relationship of 1-parameter flows and traces to the K-theory of

a C*-algebra A. The overarching goal was to give a detailed and accessible account of the

formula:

1
2πi
τ(δ(u)u−1) = τ̂∗(φ

1
α([u])) (8.1)

appearing in Theorem 3 of Connes’ paper [6], Theorem 7.1 in our numbering. Above, δ

is the derivation of A associated to a 1-parameter flow α, u is an appropriately chosen

unitary, φ1
α is the Connes-Thom isomorphism K1(A) → K0(A oα R), and τ̂ is the dual

trace on A oα R induced from an α-invariant trace τ on A. The left hand side of (8.1),

as explained in Chapter 3, is topological in nature, whereas the right hand side is analytic,

resembling a Fredholm index. Connes’ result was subsequently generalized in [10] to the

pairing between K-theory and cyclic cohomology. In a sense, (8.1) is the the starting point

of cyclic cohomology.

Realizing the above goal presented an interesting challenge. The arguments and con-
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structions (indeed, even the definitions) underpinning (8.1) occasionally proved difficult to

track down, leaving little recourse but to prove things from scratch. For example, a subtle

domain issue in the proof of Theorem 7.1 stymied the author for months until the relation

in Theorem 4.25 was found and used as a means to the technical result Proposition A.37. It

is hoped that the considerable effort expended gathering the relevant details and definitions

may be useful to other researchers. In addition, our investigations of (8.1) led to a number

of interesting diversions, for example:

- In the course of setting up the machinery needed for Connes’ Thom isomorphism,

we classified all smooth unitary 1-cocycles of a given flow α using only differential

equations methods (Theorem 4.4).

- We showed that Proposition 4 of [6] leads to a “modern” proof of a quantum mechanical

theorem of Bargmann-Wigner (Theorem 4.29).

- Our discussion of the K-theoretic suspension isomorphisms led us to Theorem 5.15, a

more refined form of the isomorphism K1(A)→ K0(SA), roughly speaking, an isomor-

phism at the semigroup level.

Questions

Finally, we gather a few questions whose answers the author would like to know.

- Let δ be a closed, densely-defined derivation of a C*-algebra A, not1 of the form

d
dt
αt(·)

∣∣
t=0

for any C*-algebra flow α. Can one construct a sensible “crossed product”

A oδ R as the universal C*-algebra generated by A and C0(R) subject to the single

relation [f, a] = fδ(a)f where f(s) = i
s+i

and a ∈ dom(δ)? See Section 4.4.

1Consider, for example, differentiation of C1 functions in C([0, 1]). For a set of necessary and sufficient
conditions under which a derivation is a generator, see Theorem 3.2.50 in [3].
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- Let τ be a densely-defined, lower semicontinuous trace on a nonunital C*-algebra

A. If x, y ∈ M(A) are such that both products xy and yx belong to Aτ1, does then

τ(xy) = τ(yx)? See Theorem A.27.

- For the construction of the dual trace τ̂ associated to an invariant trace τ , we deferred

to [9] and [26]. As the appeal to [9] represents the sole point where von Neumann

algebra methods are relied upon in this thesis, it is natural to ask exactly how much

von Neumann algebra theory, if any, is needed to construct τ̂? See Section A.3.

- Suppose α is a C*-algebra flow on A and τ is an α-invariant densely-defined, lower

semicontinuous trace on A. Let H be the Hamiltonian of the crossed-product Aoα R.

If f ∈ C0(R) ∩ L1(R) and a ∈ Aτ1, does it follow that a · f(H) ∈ (Aoα R)τ̂1, where τ̂ is

the dual trace? See Proposition A.37.



107

Chapter A

Unbounded Traces on C*-algebras

In this appendix, we develop the theory of unbounded traces on C*-algebras. Much of what

appears is cobbled together from the three sources [25], [24] and [26], though there is some

independent work as well. An effort has been made to expunge usage of von Neumann

algebra techniques, wherever possible.

A.1 Hereditary cones

A hereditary cone in a C*-algebra A is a nonempty subset P of the positive cone A+

that is closed under the algebraic operations of addition and multiplication by nonnegative

scalars, as well as closed downward in the order-theoretic sense. That is, whenever x ∈ P

and 0 ≤ y ≤ x, then y ∈ P as well. We associate to P the two collections

AP1 = span(P ), the (not necessarily closed) C-linear span of P ,

AP2 = {x ∈ A : x∗x ∈ P}.

It is useful to keep some simple commutative example in mind, such as:

A = C0(R) P = C0(R)+ ∩ L1(R) AP1 = C0(R) ∩ L1(R) AP2 = C0(R) ∩ L2(R).
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Proposition A.1. For any hereditary cone P ⊂ A+, the following hold.

1. AP2 is a left-ideal in A.

2. P ⊂ AP1 ⊂ AP2 .

3. span{x∗y : x, y ∈ AP2 } = AP1

4. AP1 is a ∗-subalgebra of A.

5. (AP1 )+ = P .

In particular, notice from (3) and (5) that P can be recovered from either AP1 or AP2 .

Proof.

1. For any x, y ∈ AP2 and λ, µ ∈ C, we have

|λx+ µy|2 ≤ |λx+ µy|2 + |λx− µy|2 = 2|λ|2|x|2 + 2|µ|2|y|2 ∈ P

whence |λx+µy|2 ∈ P by heredity proving that AP2 is a linear subspace of A. Further-

more, if x ∈ A, y ∈ AP2 , we have

(xy)∗(xy) = y∗(x∗x)y ≤ ‖x‖2y∗y ∈ P

which shows AP2 is a left-ideal.

2. If x ∈ P , then x2 ∈ P (consider, with no harm done, the case where x ≤ 1 so that

x2 ≤ x by spectral theory). So, P ⊂ AP2 . Then AP1 ⊂ AP2 too since AP1 is the smallest

linear space containing P .

3. Since for any x ∈ P we have x
1
2 ∈ AP2 , we have P ⊂ {x∗y : x, y ∈ AP2 } whence

AP1 ⊂ span{x∗y : x, y ∈ AP2 }. In the other direction, suppose that x, y ∈ AP2 . Then
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x∗y = 1
4

∑3
k=0 i

k|ikx+ y|2 where |ikx+ y|2 ≤ |ikx+ y|2 + |ikx− y|2 = 2|x|2 + 2|y|2 ∈ P

so that |ikx+ y|2 ∈ P by heredity. So, x∗y ∈ AP1 = span(P ) and we are finished.

4. Since the elements of P are positive, it is evident that AP1 = span(P ) is a ∗-invariant

subspace of A. Closure under multiplication follows from (2) and (3): AP1 · AP1 =

(AP1 )∗ · AP1 ⊂ (AP2 )∗ · AP2 ⊂ AP1 .

5. Obviously P ⊂ (AP1 )+. In the other direction, if x =
∑
λixi ∈ (AP1 )+ with the xi ∈ P ,

then x = x+x∗

2
=
∑

Re(λi)xi ≤
∑
|λi|xi ∈ P so that x ∈ P by heredity.

We shall say that a hereditary cone P ⊂ A is unitarily invariant if uPu∗ ⊂ P for every

unitary u ∈ Ã. Some equivalent characterizations are given below.

Proposition A.2. For a hereditary cone P ⊂ A+, the following are equivalent.

1. a∗Pa ⊂ P for every a ∈ Ã.

2. u∗Pu ⊂ P for every unitary u ∈ Ã (P is unitarily invariant)

3. AP1 is a 2-sided ideal in A.

Moreover, when these conditions hold, AP2 is a 2-sided ideal in A as well1.

Proof. Obviously (1) ⇒ (2).

(2) ⇒ (3): Since AP1 is ∗-invariant, it is enough to check that AP1 is a, say, left ideal. In

fact, it is enough to show that u∗a ∈ AP1 whenever u ∈ Ã is unitary and a ∈ AP1 (because

every element in Ã is a sum of unitaries). By polarizing the sesquilinear map (x, y) 7→ x∗ay,

we establish

u∗a = u∗a1 =
1

4

4∑
k=0

(iku+ 1)∗a(iku+ 1).

1Possibly, AP2 being a 2-sided ideal also belongs on this list of equivalent conditions as well, but I did not
pursue this question.
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But now,

(iku+ 1)∗a(iku+ 1) ≤ (iku+ 1)∗a(iku+ 1) + (iku− 1)∗a(iku− 1)

= 2(iku)∗a(iku) + 2 · 1∗a1

= 2u∗au+ 2a ∈ P

and, applying heredity, it follows that u∗a ∈ AP1 as desired.

(3) ⇒ (1): Suppose a ∈ Ã, x ∈ P . Since P ⊂ AP1 , we get a∗xa ∈ AP1 by assumption that

AP1 is an ideal. But, a∗xa is also positive and P = (AP1 )+, so a∗xa ∈ P .

For the “moreover” statement, we just need to check AP2 is a right ideal (since it is always

a left ideal). Suppose that x ∈ AP2 and y ∈ A. Since x ∈ AP2 , by definition x∗x ∈ P . Then,

by (3), (xy)∗(xy) = y∗(x∗x)y is in P as well i.e. xy ∈ AP2 .

The next proposition can be viewed as a supplement to Proposition 5.2.2 in [24] (misnum-

bered in my copy as Proposition 5.5.2) in that it justifies the existence of the approximate

unit appearing in the author’s proof.

Proposition A.3. If hereditary cone P is unitarily invariant, and dense in A+, then:

1. For all a ∈ A+ and all nonnegative functions f with compact support contained in

(0,∞), one has f(a) ∈ P .

2. P contains an approximate unit. That is, there is an increasing net (uλ)λ∈Λ in P such

that 0 ≤ uλ ≤ 1 and such that uλx→ x for all x ∈ A.

Proof. Let a, f be as in (1). Find g ∈ Cc(0,∞)+ such that g = 1 on the support of f . Choose

ε > 0 small (any ε < 1 will do) and find y ∈ P such that ‖y − g(a)‖ ≤ ε. Then,

f(a) = f(a)1/2(g(a)− y)f(a)1/2 + f(a)1/2yf(a)1/2 ≤ ε · f(a) + f(a)1/2yf(a)1/2
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so that f(a) ≤ 1
1−ε · f(a)1/2yf(a)1/2 ∈ P , whence f(a) ∈ P by heredity.

Before proceeding to the proof of (2), recall the operation of quasi-inversion:

x 7→ xqi := 1− (1− x)−1 = x(x− 1)−1.

which is an involution of the x ∈ A with 1 /∈ spec(x). By basic spectral considerations,

quasi-inversion furthermore exchanges {x ∈ A : 0 ≤ x < 1} with {x ∈ A : −∞ < x ≤ 0} in

an order-reversing manner.2

We take Λ = {u ∈ P : ‖u‖ < 1} so the net is its own index set. In particular, the

net is vacuously increasing. To see Λ is directed we use the fact that AP1 is closed under

quasi-inversion which follows from the formula for xqi and the fact that AP1 is an ideal in

Ã. Suppose u, v ∈ Λ. Since 0 ≤ u, v < 1, we have −∞ < uqi + vqi ≤ uqi, vqi ≤ 0 whence

0 ≤ u, v ≤ (uqi + vqi)qi < 1.

Now, in checking that limu∈Λ ux = x, it suffices to consider x ∈ A+, since such x span A.

One has

0 ≤ (x− ux)∗(x− ux) = x(1− u)2x ≤ x(1− u)x

so it suffices to show x(1 − u)x approaches 0 as u increases. The latter expression has the

virtue of being decreasing in u (recall that squaring does not generally preserve the order on

A+). So it suffices to show there exist choices of u ∈ Λ ⊂ P which make x(1 − u)x small.

One just finds f ∈ Cc(0,∞)+ so that |f | < 1 and t2(1 − f(t)) is uniformly small over the

spectrum of x. Then u = f(x) ∈ Λ does the job.

2Some trivia: the map x 7→ x(x− 1)−1 is also the one which produces the “dual exponent” in the context
of Lp spaces. It interchanges the conditions 1 < x ≤ 2 and 2 ≤ x < +∞.
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A.2 Unbounded traces

Definition A.4. A weight on a C*-algebra A is a map φ : A+ → [0,∞] such that φ(x+y) =

φ(x) + φ(y) and φ(λx) = λφ(x) for all x, y ∈ A+ and λ ∈ [0,∞).

Observe that a weight is necessarily increasing: if 0 ≤ x ≤ y then φ(x) ≤ φ(x)+φ(y−x) =

φ(y). Notice that {x ∈ A+ : φ(x) <∞} is a hereditary cone3 in A naturally associated to φ.

Mimicking the notation of the previous section, we associate the following “domains” to φ.

(Aφ1)+ = {x ∈ A+ : φ(x) <∞} Aφ1 = span((Aφ1)+) Aφ2 = {x ∈ A : φ(x∗x) <∞}

The introduction of (Aφ1)+ before Aφ1 may seem rather “cart before the horse” notationally

speaking but, considering Proposition A.1 part (5), the designation makes good sense. It

is not difficult to see that φ extends4 uniquely to a linear functional on Aφ1 . We frequently

conflate φ with this extension so that Aφ1 is also a natural domain of φ. On the other hand,

φ need not be defined on Aφ2 . Rather, one should view Aφ2 as a semi-inner product space

with positive sesquilinear form (x, y) 7→ φ(x∗y).

Definition A.5. A weight φ is lower semi-continuous if {a ∈ A+ : φ(a) ≤ t} is closed

in A+ for every t ∈ [0,∞). A weight φ is called densely-defined if Aφ1 is dense in A (or,

equivalently, if (Aφ1)+ is dense in A+).

Lower semicontinuous, densely-defined weights are a, rather coarse, noncommutative ana-

logue for the Radon measures of locally compact measure theory, as the following examples

make clear.

3Trivially, every hereditary cone P ⊂ A+ arises this way; the function which is 0 on P and ∞ on the rest
of A+ is a weight.

4It is perhaps cleanest to first extend φ to a real linear functional on (Aφ1 )sa
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Example A.6. If X is a locally compact Hausdorff space and µ is a regular, Borel measure5

on X, then φµ(f) =
∫
X
f dµ, ∀f ∈ C0(X)+, defines a lower-semicontinuous, densely-defined

weight on C0(X). Every lower semicontinuous, densely-defined weight on C0(X) is uniquely

of this form.

Example A.7. Define φ : C0(R)+ → [0,∞] by

φ(f) =


∫∞
−∞ f(s) ds if f has compact support

∞ otherwise

This is a densely-defined weight on C0(R), but not a lower semicontinuous one. Given f ∈

C0(R)+∩L1(R) not compactly supported, it is easy to give a sequence fn ∈ Cc(R)+ converging

uniformly to f from below. And yet, one has φ(f) =∞ >
∫∞
∞ f(s) ds = limn→∞ τ(fn).

Lower semicontinuous weights can be thought of as the weights such that Fatou’s lemma

holds.

Proposition A.8 (Fatou’s lemma). For a weight φ on a C*-algebra A, the following condi-

tions are equivalent:

1. φ is lower semi-continuous.

2. For every norm convergent net xλ → x in A+, one has φ(x) ≤ lim infλ φ(xλ) where, by

definition, lim infλ φ(xλ) = supλ∈Λ infα≥λ φ(xα).

3. For every norm convergent sequence xn → x in A+, one has φ(x) ≤ lim infn φ(xn).

Proof. Suppose (1) holds and xλ → x, with an eye towards proving (2). With no harm done,

φ(x) <∞. By (1), Uε = {y ∈ A+ : φ(y) > φ(x)− ε} is an open neighbourhood of x for every

5That is, a positive measure µ defined on the Borel σ-algebra of X such that (1) µ(K) < ∞ when K is
compact, (2) µ(E) = supK⊂E µ(K), K compact, when E is Borel and µ(E) < ∞ (3) µ(E) = infU⊃E µ(U),
U open, when E is Borel.
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ε > 0. Since xλ → x, Uε captures every tail of the net and it follows that lim inf xλ ≥ φ(x)−ε.

Taking ε → 0 establishes (2). Clearly (2) implies (3). Finally, suppose (3) holds and fix

t ∈ [0,∞). Let x be a point in the norm closure of {a ∈ A+ : φ(a) ≤ t}. Then, there is a

sequence xn converging to x with φ(xn) ≤ t for all n. By (3), φ(x) ≤ lim inf φ(xn) ≤ t and

(1) is established.

As a corollary, lower semi-continuous weights satisfy a Beppo Levi-type result.

Corollary A.9 (Beppo Levi’s theorem). If φ : A+ → [0,∞] is a lower semi-continuous

weight, and xλ → x is a norm-convergent net in A+ satisfying xλ ≤ x for all λ (in particular,

there is the case of an increasing net), then φ(xλ)→ φ(x).

Proof. For all λ, φ(xλ) ≤ φ(x), so lim supφ(xλ) ≤ φ(x) ≤ lim inf φ(xλ).

Our interest in weights is only incidental. We now specialize to traces6.

Definition A.10. A trace τ on a C*-algebra A is a weight such that τ(u∗xu) = τ(x) for

every x ∈ A+ and every unitary u ∈ Ã.

This is the definition used in [26]. The next proposition shows this definition is at least

as permissive as another conventional one, see 6.1.1 in [8].

Proposition A.11. If τ is a weight such that τ(a∗a) = τ(aa∗) for all a ∈ A, then τ(w∗xw) =

τ(x) for all unitary multipliers w and all x ∈ A+. In particular, τ is a trace.

Proof. Let τ be as above. Take x a positive element in A and w a unitary element in M(A).

Then, writing x = a∗a, for some a ∈ A, we get

τ(w∗xw) = τ((aw)∗(aw)) = τ(aw(aw)∗) = τ(aa∗) = τ(a∗a) = τ(x)

as desired.
6For commutative C*-algebras, there is no difference i.e. one still has “densely-defined, lower semicontin-

uous trace” ↔ “Radon measure”.
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For densely-defined, lower semicontinuous traces, which are the only pedigree of any

interest in this thesis, the two competing definitions agree.

Lemma A.12. Let τ be a densely-defined, lower semicontinuous trace, viewed as linear

functional on the dense, self-adjoint ideal Aτ1 (see Propositions A.1, A.2). Then, for any

x ∈ Aτ1, y ∈ A, one has τ(xy) = τ(yx).

Proof. Since unitaries span Ã, it suffices to check the claim when y = u is a unitary in Ã.

Then, τ(ux) = τ(u∗(ux)u) = τ(xu).

In fact, the above Lemma can generalized slightly so as to allow y ∈M(A). The point is

that x can be factored as x = x1x2 where x1 ∈ Aτ1 and x2 ∈ A. To see this, apply the Cohen

factorization theorem to the action of A on Aτ1. This argument uses Proposition A.19.

Proposition A.13. Let τ : A+ → [0,∞] be a densely-defined, lower semicontinuous weight

on A. Then, the following are equivalent:

1. τ(a∗a) = τ(aa∗) for all a ∈ A.

2. τ(wxw∗) = τ(a) for all a ∈ A+, and all unitaries w ∈M(A).

3. τ is a trace.

Proof. We have seen that (1) implies (2) implies (3), even for general weights. Hence, we

assume (3) holds and show τ(aa∗) ≤ τ(a∗a), which suffices to prove (1). By Proposition A.3,

there is an approximate unit uλ for A whose terms are in (Aτ1)+. We have

τ(aa∗) ≤ lim inf τ(uλa(uλa)∗) = lim inf τ(a∗u2
λa)

where the inequality follows from lower semicontinuity and the equality follows from Lemma A.12.

As a∗u2
λa ≤ a for all λ, Corollary A.9 says τ(a∗u2

λa)→ τ(a∗a), so we are finished.
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If Lemma A.12 is an assertion about “trace-class” elements, then the following is the

corresponding assertion about “Hilbert-Schmidt” elements.

Corollary A.14. Let τ be a densely-defined, lower semicontinuous trace. Then, for all x, y

in the dense, self-adjoint ideal Aτ2 (see Propositions A.1, A.2), one has τ(xy) = τ(yx).

Proof. Essentially, we want to show that two positive sesquilinear forms

(x, y) 7→ τ(x∗y) (x, y) 7→ τ(yx∗) Aτ2 × Aτ2 → C

are equal. By polarization, one need only show the corresponding quadratic forms

x 7→ τ(x∗x) x 7→ τ(xx∗) Aτ2 → [0,∞)

agree, but this follows from Proposition A.13 above.

We use the following observation from [26], the proof of which is a simple polynomial

approximation argument. If a ∈ A where A is a C*-algebra embedded in B(H) for some

Hilbert space H, and a = w|a| is the polar decomposition of a in B(H), then wf(|a|) ∈ A

for any f ∈ C0(0,∞). The reason for the fuss, of course, is that w may well not belong to

A. This observation leads us to the following factoring lemma.

Lemma A.15. For every C*-algebra A, for every a ∈ A, there is a factorization a = a1|a|1/2

where a1 ∈ A is such that a∗1a1 = |a| and a1a
∗
1 = |a∗|.

Proof. By the Gelfand-Naimark theorem, we may assume A sits in B(H) for some Hilbert

space. Polar decompose a as a = w|a| where w ∈ B(H) a uniquely determined partial

isometry mapping the closed range of |a| isometrically onto the closed range of a. Note

a1 = w|a|1/2 ∈ A. By design, a = a1|a|1/2. Moreover, a∗1a1 = |a|1/2(w∗w)|a|1/2 = |a| and

(a1a
∗
1)2 = a1|a|a∗1 = w|a||a|w∗ = aa∗ so that a1a

∗
1 = |a∗|.
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Let us digress to point out a cute corollary. Note the obviousness of the claim for C*-

algebras that are closed under polar decomposition.

Corollary A.16. For every C*-algebra A, the relation ∼ on A+ defined by x ∼ y if and

only if there exists a ∈ A such that x = a∗a and y = aa∗ is an equivalence relation.

Proof. Symmetry and reflexivity follow trivially replacing a by a∗ and using the existence of

positive square roots. The subtle point is transitivity. Suppose that x ∼ y and y ∼ z. That

is, there are a, b ∈ A with

x = a∗a aa∗ = y = b∗b z = bb∗.

Using the preceding proposition, factor a, b as a = a1|a|1/2, b = b1|b|1/2 where

x1/2 = a∗1a1 a1a
∗
1 = y1/2 = b∗1b1 z1/2 = b1b

∗
1.

Put c = b1a1 and observe

c∗c = (b1a1)∗(b1a1) = a∗1(b∗1b1)a1 = a∗1(a1a
∗
1)a1 = x1/2x1/2 = x

cc∗ = (b1a1)(b1a1)∗ = b1(a1a
∗
1)b∗1 = b1(b∗1b1)b∗1 = z1/2z1/2 = z

so that x ∼ z.

The equivalence relation just introduced is an extension of Murray-von Neumann equiv-

alence from the projections, to the whole of the positive cone. Note the resemblance to

Cuntz-Pedersen equivalence, set down in [7]. A nice application is to the following corollary.

Corollary A.17. If τ is a densely-defined, lower semicontinuous trace on A, and a ∈ A,

then τ(|a|) = τ(|a∗|).
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Proof. By Proposition A.13, the densely-defined, lower semicontinuous weights which are

traces are exactly the ones which factor through the equivalence ∼. By Lemma A.15, one

has |a| ∼ |a∗|, so we are done.

The below proposition is, by and large, a reproduction of Proposition A1 in [26] and its

sneaky proof.

Proposition A.18. Let τ be a densely-defined, lower semicontinuous trace.

1. If a ∈ Aτ1, then |τ(x)| ≤ τ(|x|).

2. ‖a‖1 := τ(|a|) defines a seminorm on Aτ1.

3. {a ∈ A : τ(|a|) < ∞} = {xy : x, y ∈ Aτ2} = Aτ1 (Recall that, by definition, Aτ1 equals

the linear span of all a ∈ A+ with τ(a) <∞).

Proof. We first prove the bound in (1) holds for a ∈ A with τ(|a|) < ∞. Thus, (1) as it is

stated will follow when (3) is established. Observe that, if a ∈ A has τ(|a|) < ∞, then the

factorization a = a1|a|1/2 of Lemma A.15 is into elements of Aτ2 (since a∗1a1 = |a|). Thus

|τ(a)| = |τ(a1|a|1/2)| ≤ τ(a1a
∗
1)1/2τ(|a|)1/2 = τ(a∗1a1)1/2τ(|a|) = τ(|a|)

where the inequality is an application of the Cauchy-Schwartz inequality for the positive,

sesquilinear form (x, y) 7→ τ(xy∗) : Aτ2 × Aτ2 → C.

The positive homogeneity needed for (2) is clear. That this seminorm is finite will

follow from (3). So, to prove (2) we just need to take x, y ∈ Aτ1 and establish the triangle

inequality. With no harm done, suppose τ(|x|), τ(|y|) < ∞ and as well that ‖x + y‖ ≤ 1.

Polar decompose x + y in some ambient operator algebra as x + y = w|x + y| (and so also
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|x+ y| = w∗(x+ y)). Now, for any ε > 0, write

|x+ y|1+ε = |x+ y|εw∗(x+ y) = (w|x+ y|ε)∗︸ ︷︷ ︸
zε

(x+ y) = zεx+ zεy

where zε ∈ A (so also zεx, zεy ∈ Aτ1) and ‖zε‖ ≤ 1. Note that |zεx|2 ≤ ‖zε‖2|x|2 ≤ |x|2 and

so, by operator monotonicity of square root, |zεx| ≤ |x|. Similarly, |zεy| ≤ |y|. So, one gets

the estimate

τ(|x+ y|1+ε) = |τ(zεx) + τ(zεy)| ≤ |τ(zεx)|+ |τ(zεy)| ≤ τ(|zεx|) + τ(|zεy|) ≤ τ(|x|) + τ(|y|).

Taking ε→ 0 and applying upper semicontinuity of τ establishes the desired bound.

Finally, we prove (3). The containment {x ∈ A : τ(|x|) < ∞} ⊂ {xy : x, y ∈ Aτ2} is

immediate from Lemma A.15. The containment {xy : x, y ∈ Aτ2} ⊂ Aτ1 holds because, for

x, y in the ∗-algebra Aτ2, one may apply polarization to x∗y. The bulk of our effort, then,

is concentrated in showing that Aτ1 ⊂ {x ∈ A : τ(|x|) < ∞}. Luckily, since Aτ1 = span{x ∈

A+ : τ(x) <∞} by definition, every a ∈ Aτ1 is trivially a sum of x ∈ Aτ1 with τ(|x|) <∞ so

triangle inequality in the preceding paragraph gives the result that τ(|a|) <∞.

It is easy to see that, if τ is a densely-defined, lower semicontinuous trace, then Aτ1 is

a normed ∗-algebra in the norm ‖a‖τ := ‖a‖ + τ(|a|), with Corollary A.17 showing the

involution is isometric. In fact, completeness also holds. This is exactly Proposition A4

in [26]. As we have nothing to add to the authors’ proof, we simply quote this result.

Proposition A.19. Let τ be a densely-defined, lower semicontinuous trace on a C*-algebra

A. Then Aτ1 is a Banach ∗-algebra in the norm ‖x‖τ := ‖x‖+ τ(|x|).

Remark A.20. Lest the trivial go overlooked, we hasten to point out that, by Proposition A.18

(1), if τ is a densely-defined, lower semicontinuous trace, then τ belongs to the continuous

dual of the Banach ∗-algebra Aτ1.
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We now record a useful analogue of Lebesgue’s dominated convergence theorem. To be

sure, a version of this could have been stated and proved for lower semicontinuous weights

and put with its brethren Proposition A.8 (Fatou’s lemma) and Corollary A.9 (Beppo Levi’s

theorem). We chose, however, not to do this.

Proposition A.21 (Lebesgue dominated convergence). Let τ be a densely-defined, lower

semicontinuous trace on a C*-algebra A. Let xλ → x be a norm-convergent net in A. If

there exists b ∈ Aτ1 such that x∗λxλ ≤ b∗b for all λ, then x and all the xλ belong to Aτ1, and

xλ → x in the norm of Aτ1. In particular, τ(xλ)→ τ(x).

Proof. Of course, x∗x ≤ b∗b too by continuity. By operator monotonicity of the square root

|x|, |xλ| ≤ |b|, proving x, xλ ∈ Aτ1. Observe

(x− xλ)∗(x− xλ) ≤ (x− xλ)∗(x− xλ) + (x+ xλ)
∗(x+ xλ) = 2x∗λxλ + 2x∗x ≤ 4b∗b

so that |x−xλ| ≤ 2|b|. Thus, 0 ≤ 2|b|− |x−xλ| ≤ 2|b|. Applying Corollary A.9, we get that

2τ(|b|)− τ(|x− xλ|) = τ(2|b| − |x− xλ|)→ 2τ(|b|) so that τ(|x− xλ|)→ 0.

An application is part (1) of the following proposition.

Proposition A.22. Let τ be a densely-defined, lower semicontinuous trace on a C*-algebra

A, and let (eλ)λ∈Λ be an approximate unit7 in A.

1. If x ∈ Aτ1, then ‖x− eλx‖1 → 0 where ‖y‖1 := τ(|y|).

2. If x ∈ Aτ2, then ‖x− eλx‖2 → 0 where ‖y‖2 :=
√
τ(y∗y).

Proof. 1. Since (eλx)∗(eλx) = x∗e2
λx ≤ x∗x and x ∈ Aτ1, we are done by Proposition A.21.

2. One has |x− eλx|2 = x∗(1− eλ)2x ≤ x∗(1− eλ)x = x∗x−x∗eλx so that τ(|x− eλx|2) ≤

τ(x∗x)− τ(x∗eλx). By Corollary A.9, τ(x∗eλx)→ τ(x∗x).

7That is, an increasing net in A+ with 0 ≤ eλ ≤ 1 such that eλx→ x in norm for every x ∈ A.
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Since the ideal Aτ1 contains an approximate unit by Proposition A.1, we get

Corollary A.23. If τ is a densely-defined, lower semicontinuous trace on a C*-algebra A,

then Aτ1 ⊂ Aτ2 densely with respect to the norm ‖ · ‖+ ‖ · ‖2 of Aτ2.

If τ is a densely-defined, lower semicontinuous trace, we write Hτ for the Hilbert space

completion of the semi-inner product space Aτ2. We denote by x 7→ ξx the dense mapping

(injective, if τ is faithful) Aτ2 → Hτ . It is easy to see that A has a GNS representation

πτ on Hτ determined by πτ (a)ξx = ξax for all a ∈ A, x ∈ Aτ2. As a quick corollary to

Proposition A.22 above, we have

Lemma A.24. The GNS representation corresponding to a densely-defined, lower semicon-

tinuous trace is nondegenerate.

We use the above corollary to prove the analogue for Aτ2 of Proposition A.19. Almost

surely, Proposition A.25 is known, but, since a reference could not be located, a proof is

given just the same.

Proposition A.25. Let τ be a densely-defined, lower semicontinuous trace on A. Then, Aτ2

is complete in the norm x 7→ ‖x‖ + (τ(x∗x))1/2. In different words, x 7→ ξx : Aτ2 → Hτ is a

closed transformation.

Proof. We first prove x 7→ ξx is closable, and then prove it equals its closure. To see it is

closable, assume xn is a sequence in Aτ2 such that ‖xn‖ → 0 and such that ξxn converges

to some vector ξ ∈ Hτ . We should show that, necessarily, ξ = 0. The GNS representation

being nondegenerate, we just need to check πτ (A) · ξ = 0. Indeed, as Aτ2 is dense in A (it

contains Aτ1), we just need to check πτ (y)ξ = 0 for arbitrary y ∈ Aτ2. We have ‖πτ (y)ξ‖2 =

limn→∞ ‖πτ (y)ξxn‖2 where

‖πτ (y)ξxn‖2
2 = τ((yxn)∗yxn) = τ(yxn(yxn)∗) ≤ ‖xn‖2τ(yy∗)→ 0
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and so ξ = 0 and x 7→ ξx is indeed closable.

Next, we show the domain of the closure is no larger. Indeed, suppose that x is in the

domain of the closure. Thus, there are xn ∈ Aτ2 such that xn → x in A while the ξxn converge

to ξ ∈ Hτ . But then, x∗nxn → x∗x so that, by the lower semicontinuity,

τ(x∗x) ≤ lim τ(x∗nxn) = lim ‖ξxn‖2
2 = ‖ξ‖2

2 <∞

whence x ∈ Aτ2.

The above proposition gives a means of proving particular elements of A belong to Aτ2.

Typically, one is only certain of some elementary elements in Aτ2, but, using Proposition A.25,

one can recover more via limits. In combination with the factorization Aτ1 = Aτ2 · Aτ2, one

can also produce elements of Aτ1.

At this point, we are essentially finished with the technical development of the theory

of densely-defined, lower semicontinuous traces. As a sort of “survey result” we prove such

traces extend over matrices in precisely the manner one would expect.

Proposition A.26. Let τ be a densely-defined, lower semicontinuous trace on A. Then,

there is a densely-defined, lower semicontinuous trace τn on Mn(A) satisfying

τn(x) =
n∑
i=1

τ(xii) ∀x ∈ Mn(A)+

Mn(A)τn1 = Mn(Aτ1) Mn(A)τn2 = Mn(Aτ2)

Proof. If x ∈ Mn(A)+, then the diagonal entries of x are positive (use, for instance, that

x = y∗y for some y ∈Mn(A)), so its easy to see that τn is a weight. Lower semicontinuity of

τn follows from lower semicontinuity of τ and fact that norm convergence in Mn(A) coincides
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with entrywise norm convergence in A. Given x ∈Mn(A), we have

τn(x∗x) =
∑
ij

τ(x∗ijxij) (A.1)

and so x∗x ∈ (Mn(A)τn1 )+ ⇔
∑

ij x
∗
ijxij ∈ (Aτ1)+ ⇔ xij ∈ (Aτ1)+∀i, j. Thus, Mn(A)τn2 =

Mn(Aτ2). Now, since Aτ2 is dense in A we have Mn(A)τn2 dense in M2(A) so that Mn(A)τ1 =

span{x∗y : x, y ∈ Mn(A)τn2 } (see Proposition A.1 (3)) is dense, which proves τn is densely-

defined. Now, using Equation A.1 above, we see that τn(x∗x) = τn(xx∗) for all x ∈ Mn(A)

so that, by Proposition A.13, τn is a densely-defined, lower semicontinuous trace.

It remains only to check Mn(A)τn1 = Mn(Aτ1). One the one hand, we have

Mn(A)τn1 = Mn(A)τn2 ·Mn(A)τn2 = Mn(Aτ2) ·Mn(Aτ2) ⊂ Mn(Aτ1),

using Proposition A.18 (3) and the fact that Mn(A)τn2 = Mn(Aτ2). In the other direction, fix

some a ∈ Aτ1 and some index ij. We show that the matrix x ∈ Mn(A) with an a in the ij

and zeros elsewhere is in Mn(A)τn1 , which completes the proof. Indeed, |x| has |a| in the jj

spot and zeros elsewhere, so we are finished by A.18 part (3).

We have shown, thus far, that the following identities are satisfied by a densely-defined,

lower semicontinuous trace τ on a C*-algebra A.

Property: Domain assumptions:

τ(xx∗) = τ(x∗x) x ∈ A
τ(|x|) = τ(|x∗|) x ∈ A
τ(xy) = τ(yx) x ∈ Aτ1, y ∈M(A)
τ(xy) = τ(yx) x, y ∈ Aτ2

Table A.1: Catalogue of tracial identities.

We conclude this section by proving one further result in this direction.
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Theorem A.27. Let τ be a densely-defined, lower semicontinuous trace on a C*-algebra A.

If a, b ∈ A are such that both products ab and ba ∈ A are in Aτ1, then τ(ab) = τ(ba) holds.

The above result settles many questions about unbounded traces and their values on

cyclic shifts, but we do leave the following question.

Question. Let τ be a densely-defined, lower semicontinuous trace on a C*-algebra A. If

multipliers x, y ∈ M(A) are such that xy and yx belong to Aτ1, is it true that τ(xy) = τ(yx)?

The case A = K(H) is known. See [21]. We divide the proof of Theorem A.27 into a

series of lemmas.

Lemma A.28. Let τ be a densely-defined, lower semicontinuous trace on A. Let a, b ∈ A

with a ≥ 0. If ab ∈ Aτ1 and ba ∈ Aτ1, then τ(ab) = τ(ba).

Proof. Let fn ≥ 0 be the “cut-off function” with fn = 0 on [0, 1
n
], fn = 1 on [ 2

n
,∞), and

linear interpolation on the interface. Noting that

|fn(a)ab|2 ≤ (ab)∗fn(a)2(ab) ≤ (ab)∗(ab) = |ab|2

and that fn(a)ab→ ab in norm, we can apply Theorem A.21 and conclude that fn(a)ab→ ab

in the Banach ∗-algebra norm of Aτ1. Since ab∗ = (ba)∗ ∈ Aτ1, we get that fn(a)ab∗ → ab∗ in

Aτ1 by the same argument. Taking the adjoint of the preceding limit, we get that bafn(a)→ ba

in Aτ1 as well. On the other hand, fn(a) ∈ Aτ1 by Proposition A.3, so that

τ(fn(a)a︸ ︷︷ ︸
Aτ1

b) = τ(bfn(a)a) = τ(bafn(a))

using tracial property (2) from our catalogue, and the fact that a and f(a) commute. Since

τ is a continuous functional on Aτ1, we get τ(ab) = τ(ba) by taking n→∞.

An easy polynomial approximation argument gives the following.
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Lemma A.29. If a is an element of a C*-algebra A, and f is a continuous function on R,

then f(aa∗)a = af(a∗a). In particular, |a∗|pa = a|a|p for every exponent p > 0.

Lemma A.30. Let τ be a densely-defined, lower semicontinuous trace on a C*-algebra A.

If a, b ∈ A are such that both products ab and ba belong to Aτ1 then, for every ε > 0,

τ(|a∗|εab) = τ(ba|a|ε).

Proof. Embed A into B(H) for some Hilbert space H. Let a = w|a| be the polar decom-

position of a there. Recall that w|a|ε belongs to A. Thus, |a|1+εb = (w|a|ε)∗ab ∈ Aτ1 and

c := bw|a|ε ∈ A. By the preceding lemma, |a∗|2εab = a|a|2ε = w|a|ε|a|1+εb so, using tracial

property (2) from our catalogue, we get

τ(|a∗|2εab) = τ(w|a|ε|a|1+εb) = τ(|a|1+εbw|a|ε) = τ(|a|1+εc).

Meanwhile, ba|a|2ε = bw|a|ε|a|1+ε = c|a|1+ε. The equality τ(c|a|ε+1) = τ(|a|ε+1c) follows from

Lemma A.28 above so, replacing 2ε by ε, we are done.

Finally, we are able to give

Proof of Theorem A.27. Suppose a, b ∈ A and ab, ba ∈ Aτ1. Since |a∗|εab → ab in norm as

ε→ 0 and since

(|a∗|εab)∗(|a∗|εab) = (ab)∗|a∗|2ε(ab) ≤ constant · |ab|2,

Theorem A.21 applies and shows that τ(|a∗|εab)→ τ(ab) as ε→ 0. Similarly, one concludes

that τ(ba|a|ε)→ τ(ba) as ε→ 0, so we are done by the preceding lemma.
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A.3 The dual trace

If (A,R, α) is a C*-dynamical system, and τ is an α-invariant, densely-defined, lower semi-

continuous trace on A, then the crossed product A oα R supports a trace τ̂ , the dual trace

of τ . In this section, we outline the construction of τ̂ and prove various technical results.

First, note the flow α restricts sensibly to the domain of definition of τ .

Proposition A.31. If (A,R, α) is a C*-dynamical system, and τ is an α-invariant, densely-

defined, lower semicontinuous trace on a A, then α restricts to a continuous action ατ of R

on Aτ1 by isometric ∗-automorphisms.

The above is Lemma 1.1 in [26]. We have nothing to add to the proof, but we do pause

to derive a corollary.

Corollary A.32. Let x ∈ Aτ be C1 for the flow on A and δ(x) ∈ Aτ , then x is also C1 for

the induced flow on Aτ . In particular, τ(δ(x)) = 0.

Proof. Suppose that x is as above. Write

αt(x)− x
t

=
1

t

∫ t

0

d

ds
αs(x) ds =

1

t

∫ t

0

αs(δ(x)) ds

where, by the above proposition, the integrand is continuous for the norm of Aτ1. We have

then

‖αt(x)− x
t

− δ(x)‖τ =
1

t
‖
∫ t

0

(αs(δ(x))− δ(x)) ds‖τ

≤ 1

t

∫ t

0

‖αs(δ(x))− δ(x)‖τ ds.

The RHS goes to 0 as t→ 0 by the preceding proposition. For the second statement, since

(1/t)(αt(x)− x)→ δ(x) in the norm of Aτ1, and τ belongs to the continuous dual of Aτ1, we
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get τ(δ(x)) = limt→0 τ((1/t)(αt(x)− x)) = 0.

We do not construct the dual trace in this thesis. Instead, we take as our starting point

the construction in [26] using the theory of Hilbert algebras, as laid out in [9].

Let (A,R, α) be a C*-dynamical system, and let τ be an α-invariant, densely-defined,

lower semicontinuous trace on A. Then, the dual trace, denoted τ̂ , on the crossed

product Aoα R exists and is such that Cc(R, Aτ1) is dense in (Aoα R)τ̂2 and

τ̂(x∗y) =

∫ ∞
−∞

τ(x(t)∗y(t)) dt. ∀x, y ∈ Cc(R, Aτ1) (A.2)

From a theoretical point of view (i.e. one would like to show the dual trace exists, is

densely-defined, lower semicontinuous, and so on) the above approach is quite convenient.

The major drawback is that it is not clear how to go about proving some specific element

x belongs to (A oα R)τ̂1 or calculate τ̂(x), unless a specific factorization of x can be found.

Nonetheless, some things are still easy to see. For instance, the following proposition follows

directly from the definitions.

Proposition A.33. Let (A,R, α) be a C*-dynamical system, and let τ be an α-invariant,

densely-defined, lower semicontinuous trace on A. Let u be a unitary cocycle of the system,

and let β = Ad(u)α be the exterior equivalent flow. Then, τ is also β-invariant and

τ̂α(ιu(x)) = τ̂β(x) ∀x ∈ (Aoβ R)+

where τα and τβ are the dual traces on A oα R and A oβ R, and ιu is the isomorphism

A oβ R → A oα R of Proposition 2.49. In particular, ιu induces an isomorphism on the

Banach algebras (Aoα R)τ̂α1 and (Aoα R)
τ̂β
1 .
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Our preferred point of view is that AoαR is a twisted version of A⊗C0(R), generated by

“elementary products” a·f(H) where a ∈ A, f ∈ C0(R). Naturally, we want to know how the

dual trace interacts with these products. We give two results in this vein: Propositions A.34

and A.37.

Proposition A.34. Let (A,R, α) be a C*-dynamical system, and let (eitH) be the canonical

unitary group in M(A oα R) implementing α. Let τ be an α-invariant densely-defined,

lower semicontinuous trace on A. If fi ∈ C0(R) ∩ L2(R) and ai ∈ Aτ2, i = 1, 2, then

xi = ai · fi(H) ∈ (Aoα R)τ̂2 for i = 1, 2, and

τ̂(x∗1x2) = τ(a∗1a2) · 1

2π

∫ ∞
−∞

f1(s)f2(s) ds.

Proof. First, suppose that, in fact, fi = ĝi, where gi ∈ Cc(R), and ai ∈ Aτ1 ⊂ Aτ2. Then, xi

belongs to Cc(R, Aτ1) and is given by xi(t) = gi(t)ai. In this case, it is easy to see, using the

defining equation (A.2), that

τ̂(x∗1x2) = τ(a∗1a2) ·
∫ ∞
−∞

g1(t)g2(t) dt = τ(a∗1a2) · 1

2π

∫ ∞
−∞

f1(s)f2(s) ds,

as desired. So, we are just looking to extend the range of applicability of this formula a

small amount. This, we shall achieve using the completeness of Aτ2 in the norm ‖ · ‖+ ‖ · ‖2

(Proposition A.25).

Choose now a ∈ Aτ2, f ∈ C0(R) ∩ L2(R) and put x = a · f(H). By Corollary A.23, there

is a sequence an ∈ Aτ1 such that ‖an − a‖ + ‖an − a‖1 → 0. By Lemma A.36 below, there

is a sequence gn ∈ Cc(R) such that ‖ĝn − f‖+ ‖ĝn − f‖2 → 0. Putting xn = an · ĝn(H), we

obviously have ‖xn − x‖ → 0. By the above paragraph, we get

‖xm − xm‖2
2 = τ(a∗mam) · 1

2π

∫
|fm|2 − 2 Re

(
τ(a∗man) · 1

2π

∫
fmfn

)
+ τ(a∗nan) · 1

2π

∫
|fn|2
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which vanishes as m,n → ∞. It follows from the completeness of Proposition A.25 that

x ∈ Aτ2. Using similar argumentation, one deduces the desired trace formula on the general

elements by continuity.

Corollary A.35. Let A, α, H and τ be as above.

1. If a, b ∈ Aτ2 and f ∈ C0(R) ∩ L1(R), then a · f(H) · b ∈ (Aoα R)τ̂1 and

τ̂ (a · f(H) · b) = τ(ab) · 1

2π

∫ ∞
−∞

f(s) ds.

2. If a ∈ Aτ1 and f, g ∈ C0(R) ∩ L2(R), then f(H) · a · g(H) ∈ (Aoα R)τ̂1 and

τ̂ (f(H) · a · g(H)) = τ(a) · 1

2π

∫ ∞
−∞

f(s)g(s) ds.

In the course of proving Proposition A.34, we appealed to a simple fact from Fourier

analysis, which we now prove.

Lemma A.36. The image of Cc(R) under the Fourier transform is dense in C0(R)∩L2(R)

for the norm ‖ · ‖+ ‖ · ‖2.

Proof. Any f ∈ C0(R)∩L2(R) can be approximated by a C∞ bump function g in the norm

‖ · ‖+ ‖ · ‖2. The bump function can be written as g = ĥ where h ∈ L1(R)∩C0(R). Now, by

truncation, h can be approximated by k ∈ Cc(R) in the norm ‖ · ‖1 + ‖ · ‖2. As the Fourier

transform is ‖ · ‖1 → ‖ · ‖ contractive, and ‖ · ‖2 → ‖ · ‖2 isometric, k̂ closely approximates

the original f in ‖ · ‖+ ‖ · ‖2.

We now consider the analogue of Proposition A.34 for (A oα R)τ̂1. Unfortunately, this

involves some side hypotheses which we have, so far, been unable to remove.

Proposition A.37. Let (A,R, α) be a C*-dynamical system, and let (eitH) be the canonical

unitary group in M(AoαR). Let τ be an α-invariant, densely-defined, lower semicontinuous
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trace on A. If a ∈ Aτ1 and f ∈ C0(R) ∩ L1(R), then a · f(H) and f(H) · a are in (Aoα R)τ̂1

and

τ̂ (a · f(H)) = τ̂ (f(H) · a) = τ(a) · 1

2π

∫ ∞
−∞

f(s) ds

provided we also assume that:

1. The element a is C1 for α and δ(a) ∈ Aτ1.

2. The function f is such that s 7→ sf(s) is in C0(R) ∩ L2(R).

Proof. The hypothesis (2) says exactly that f factors like f(s) = (s + i)−1g(s) where g ∈

C0(R) ∩ L2(R). We want to show a · f(H) = a · (H + i)−1g(H) is in (A oα R)τ̂1. Using

Corollary 4.26 we have

a · f(H) = (H + i)−1 · a · g(H)− i(H + i)−1 · δ(a) · f(H),

and the right hand side is in (Aoα R)τ̂1 by Corollary A.35 (2). With domain issue resolved,

it is straightforward to apply the formula of Corollary A.35 (2) and show τ̂(a · f(H)) =

τ(a) · 1
2π

∫∞
−∞ f(s) ds, recalling that τ(δ(a)) = 0 by CorollaryA.32. Since τ̂ , τ and

∫
are

∗-preserving, one gets the same value for τ̂ (f(H) · a).

Recall that, in the proof of Proposition A.34, we began with extra regularity hypotheses

on the generators, but were able to remove them by a continuity argument. Thus, it is

natural to wonder the following.

Question. Can the technical hypotheses at the end of Proposition A.37 above be removed?

Or else, to what extent can they be relaxed?

Remark A.38. Applying Proposition A.33, one sees Propositions A.34 and A.37 still hold

true if H is replaced by Hu where u is a unitary 1-cocycle in M(A), and Hu generates the

unitary group (ute
itH) in M(Aoα R).
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In light of the above remark, one can then ask in what sense does an elementary element

a · f(Hu) vary continuously with respect to u? The final result of this section answers two

such questions.

Proposition A.39. Let (A,R, α) be a C*-dynamical system, (eitH) the canonical unitary

group in M(A oα R), τ an α-invariant, densely-defined, lower semicontinuous trace on A,

and P a self-adjoint element of A.

1. If f ∈ L1(R) ∩ L2(R),8 and a ∈ Aτ2, then

λ 7→ a · f̂(H + λP ) : R→ (Aoα R)τ̂2

is continuous with respect to the norm of (Aoα R)τ̂2.

2. If f, g ∈ L1(R) ∩ L2(R), and a ∈ Aτ1, then

λ 7→ f̂(H + λP ) · a · ĝ(H + λP ) : R→ (Aoα R)τ̂1

is continuous with respect to the norm of (Aoα R)τ̂1.

Proof. By Proposition A.33, we only need to check the continuity at λ = 0. Observe that

xλ = a · f̂(H + λP )− a · f̂(H) ∈ L1(R, A) is given by t 7→ f(t)(uλPt − 1)a so

τ̂(x∗λxλ) =

∫ ∞
−∞

τ(‖f(t)‖2a∗(uλPt − 1)∗(uλPt − 1)a) dt ≤ τ(a∗a) ·
∫ ∞
−∞
|f(t)|2‖uλPt − 1‖2 dt

The right hand side vanishes as λ → 0 since limλ→0 ‖uλPt − 1‖ = 0 for all t and, obviously,

‖uλPt − 1‖ ≤ 2, so the first assertion is proved. The second assertion follows from the

first by factoring a as a = bc where b, c ∈ Aτ2 and using the continuity of the product

(Aoα R)τ̂2 × (Aoα R)τ̂2 → (Aoα R)τ̂1.

8Which, in particular, implies that f̂ ∈ C0(R) ∩ L2(R).
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Chapter B

K-theory and dense subalgebras

B.1 Spectral embeddings

It is well-known that closedness under holomorphic functional calculus is a convenient prop-

erty in the context of K-theory. The following elaboration of Lemma 4 in [6] is case in

point.

Lemma B.1. Let A be a norm-dense ∗-subalgebra of a unital C*-algebra A such that A is

closed under the holomorphic functional calculus1 of A. Then,

1. Any projection e ∈ A is Murray-von Neumann equivalent to a projection e′ ∈ A .

2. If projections e, e′ ∈ A are Murray-von Neumann equivalent in A, then the equivalence

can be mediated by a partial isometry in A .

3. Any invertible x ∈ A is path-equivalent to a unitary u′ ∈ A .

4. If invertibles x, x′ ∈ A are path-equivalent in GL(A), then they are path-equivalent in

GL(A ).

1In particular A is a unital subalgebra of A that is closed under inversion
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Proof. 1. Find x ∈ A as close as desired to e. Then, x∗ ∈ A is also close to e = e∗.

So, replacing x by (1/2)(x + x∗), we may suppose that x is self-adjoint. Provided x

is sufficiently near to e, its spectrum (in A) will be concentrated near {0, 1}. Then,

with f(z) = 1 for Re(z) > 1/2, f(z) = 0 for Re(z) < 1/2, we have e′ = f(x) a

projection as close as we want to e. By the assumption of closedness by holomorphic

functional calculus, we have e′ ∈ A . In a C*-algebra, sufficiently close projection are

even unitarily equivalent, so (1) follows.

2. We know there is a v ∈ A such that v∗v = e and vv∗ = e′. Find x ∈ A as close

as desired to v. Then e′xe ∈ A is also close to v = e′ve. So, we may suppose that

x ∈ e′Ae. Since x∗x is in eAe and close to e, it will be invertible in eAe. Similarly, xx∗

will be invertible in e′Ae′. Let y = (x∗x)−1/2 ∈ eAe, using the functional calculus of the

corner eAe. We can also write y = (x∗x + e⊥)−1/2 − e⊥, using the functional calculus

of A. Since x∗x+ e⊥ is close to 1 ∈ A, its spectrum is concentrated near 1 ∈ C where

z 7→ z−1/2 is holomorphic, so the latter formula for y shows that y ∈ A . We claim the

element w = xy of A mediates a Murray-von Neumann equivalence from e to e′, which

will prove (2). Indeed, we have w∗w = (x∗x)−1/2x∗x(x∗x)−1/2 = (x∗x)0 = e, using the

functional calculus of the corner eAe. Meanwhile, we have ww∗xx∗ = x(x∗x)−1x∗xx∗ =

xex∗ = xx∗, using the functional calculus of the corner eAe. Multiplying the latter

equality on the right by the inverse of xx∗ in e′Ae′ shows that ww∗ = e′.

3. Take a ball centred on x and contained in GL(A). Select an element y of A in that

ball. Obviously x is connected to y, the straight line path does just fine. Meanwhile, y

is connected to the unitary u′ = y|y|−1. But, y∗y ∈ A , since y is a ∗-algebra. Without

loss of generality, spec(y∗y) ⊂ (0, 1), or else continuously scale y down a bit. Thus,

|y|−1 = (y∗y)−1/2 ∈ A by closedness under holomorphic functional calculus, since

spec(y∗y) is contained in the disk of convergence of the relevant binomial series.
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4. Immediate from Lemma B.10.

Corollary B.2. If A is a norm-dense ∗-subalgebra of a unital C*-algebra A such that, for

every n, Mn(A ) is closed under the holomorphic functional calculus of Mn(A), then the

inclusion A ↪→ A induces isomorphisms on both K-groups.

In view of the above results, it shall obviously be useful to know of practical situations

where closedness under holomophic functional calculus holds.

Definition B.3. Let A be unital C*-algebra, and A a unital Banach ∗-algebra. By a

spectral embedding of A into A, we mean a unital embedding A ⊂ A such that

GLn(A ) = GLn(A) ∩Mn(A ) for every n.

It is well known that, if one only assumes GL(A ) = GL(A) ∩ A above, then the same

conclusion for all n > 1 follows automatically. We don’t bother optimizing the definition in

this way since, for all examples of interest, it shall be clear that GLn(A ) = GL(A)∩Mn(A )

for all n. In case that nonunital algebras are afoot, note the following.

Lemma B.4. Let B be a subalgebra of a nonunital algebra B. If M̃n(B) is inverse-closed

in M̃n(B), then Mn(B̃) is inverse closed in Mn(B̃).

Proof. Take x = b+ λ ∈ Mn(B̃) where b ∈ Mn(B), λ ∈ Mn(C). If x is invertible, then

x−1 = λ−1(bλ−1 + 1n)−1 = λ−1(y + 1n) = λ−1y + λ−1

for y ∈ Mn(B). Thus, x−1 ∈ Mn(B̃), as desired.

Most of our interest in spectral embeddings derives from the following lemma.

Lemma B.5. If A ⊂ A is a spectral embedding of a Banach ∗-algebra A into a C*-algebra

A, then Mn(A ) is closed under the holomorphic functional calculus of Mn(A) for every n.
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Proof. Endow Mn(A ) with a Banach ∗-algebra norm, for instance by making it act on

A ⊕ . . . ⊕A . By basic spectral considerations, ∗-homomorphisms from Banach ∗-algebras

to C*-algebras are automatically norm-decreasing, so the embedding Mn(A ) ⊂ Mn(A) is

norm-decreasing when Mn(A) is made a C*-algebra in the unique way. It follows that f(x)

is unambiguously defined when x ∈ Mn(A ) and f is holomorphic on a neighbourhood of

specA (x) ⊃ specA(x). But, since specA(x) = specA (x) by assumption, the result follows.

Combining Lemma B.1 with Corollary B.2, one sees that a dense spectral embedding

carries all the K-theory of the ambient C*-algebra. Two especially pertinent examples of

dense, spectral embeddings are given below.

Example B.6. Let δ : A→ A be a closed, densely-defined, self-adjoint derivation of a unital

C*-algebra A. Then dom(δ) ⊂ A is a dense, spectral embedding. Indeed, noting

‖xy‖+ ‖δ(xy)‖ ≤ ‖x‖‖y‖+ ‖δ(x)‖‖y‖+ ‖x‖‖δ(y)‖ ≤ (‖x‖+ ‖δ(x)‖)(‖y‖+ ‖δ(y)‖)

one sees that dom(δ) is Banach ∗-algebra for the graph norm ‖x‖δ = ‖x‖ + ‖δ(x)‖. To see

that GLn(dom(δ)) = GLn(A)∩Mn(dom(δ)) for each n, note that δ extends to closed, densely-

defined, self-adjoint derivation of each matrix algebra Mn(A) with domain Mn(dom(δ)) by

entry-wise application. Then, apply Proposition 3.6.

Example B.7. Let τ be a (lower semicontinuous, densely-defined) tracial weight of a nonunital

C*-algebra B. Let B = Bτ
1 ⊂ B be the ideal of definition of τ . Then, B̃ ⊂ B̃ is a dense,

spectral embedding. Indeed, by Proposition A4 in [26], B is a Banach ∗-algebra for the

norm ‖x‖τ = ‖x‖ + τ(|x|). Thus the unitization B̃ is also a Banach ∗-algebra. Certainly,

B̃ is densely embedded in B̃, so it just remains to check, for every x ∈ Mn(B̃) invertible

in Mn(B̃), that x−1 ∈ Mn(B̃). Indeed, write x = y + λ where y ∈ Mn(B) and λ ∈ Mn(C).

Observe (y+ λ)−1− λ−1 = (y+ λ−1)(1n− (y+ λ)λ−1) = −(y+ λ−1)yλ−1 belongs to Mn(B),

the latter being a 2-sided ideal in Mn(B̃). So, x−1 = y′ + λ−1 where y′ ∈ Mn(B) and
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λ−1 ∈ Mn(C) i.e. x−1 ∈ Mn(B̃).

B.2 Relevance to traces

By a bounded trace on a Banach algebra A we mean a bounded linear functional τ : A →

C such that τ(xy) = τ(yx) for all x, y ∈ A . If A is a Banach ∗-algebra and τ(x∗) = τ(x)

for all x ∈ A , then τ is self-adjoint. Trivially, τ extends to every matrix algebra Mn(A )

by applying τ down the diagonal and summing. Moreover, the extension is self-adjoint if τ

is. As a corollary to Lemmas B.5 and B.1 above, we have

Corollary B.8. Let A ⊂ A be a dense, spectral embedding of a unital Banach ∗-algebra A

into a unital C*-algebra A. Let τ be a bounded, self-adjoint trace on A . Then, there is a

homomorphism τ∗ : K0(A)→ R such that τ∗([e]) = τ(e) for every projection e ∈ Mn(A ).

Bott periodicity amounts to an isomorphism K0(A) ∼= K1(SA) for every C*-algebra A.

Thus, if A ⊂ A is a dense, spectral embedding of a unital Banach ∗-algebra A into a

unital C*-algebra A, then a bounded, self-adjoint trace τ on A induces homomorphism on

K1(SA) as well. It stands to reason that τ∗ should admit a direct description in terms of the

generators of K1(SA), essentially, invertible loops in GLn(A). Indeed, we have the following,

based on Lemma 5 in [6].

Theorem B.9. Let A ⊂ A be a dense, spectral embedding of a unital Banach ∗-algebra A

into a unital C*-algebra A. Let τ be a bounded, self-adjoint trace on A . Suppose x ∈ K0(A)

has s0
A(x) = [C ], where s0

A is the suspension isomorphism K0(A) → K1(SA) and C is a

piecewise-C1 (for the norm of A ) loop [0, 1]→ GLn(A ) with C (0) = C (1). Then,

τ∗(x) =
1

2πi

∫ 1

0

τ

(
dC

dt
C −1(t)

)
dt.
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Before proceeding to the proof of the above proposition, we set down a simple technical

lemma, a particular case of Lemma A9 on pp. 167 of [1].

Lemma B.10. Let X be a Banach space, D a dense subspace of X, and U a nonempty open

subset of X. Then, the inclusion D ∩ U ↪→ U is a π0-equivalence.

Proof. Since U is locally path-connected, its path components are open, hence each contains

an element of D. If x, y ∈ D ∩ U are connected by a path in U , then, by a straightforward

compactness argument, the path can be chosen to be polygonal and to have vertices in D.

Since D is linearly closed, this curve actually stays in D ∩ U .

Proof of Theorem B.9. For the purposes of this proof, K1(SA) is taken to be a quotient of

GL∞(SA) =
⋃∞
n=1 GLn(SA). Let Γn ⊂ GLn(SA) be the subgroup of piecewise-C1 loops

C : [0, 1] → GLn(A ) with C (0) = C (1) = 1 and put Γ∞ =
⋃∞
n=1 Γn ⊂ GL∞(SA). As a

consequence2 of Lemma B.10 above, we get that every path component in GLn(SA) intersects

Γn. Therefore, K1(SA) can also be viewed as a quotient of Γ∞ where C0,C1 ∈ Γ∞ are put

equivalent when they are homotopic in GLn(SA) for some n.

Using the tracial property of τ , it’s easy to see that I(C ) = 1
2πi

∫ 1

0
τ
(
dC
dt

C −1
)
dt defines

a group homomorphism I : Γ∞ → C. We claim that I descends to a map I : K1(SA)→ C.

Indeed, suppose that C0,C1 ∈ Γ∞ are homotopic in GLn(SA) for some n, with an eye to

showing I(C1) = I(C2). Again, as a consequence of Lemma B.10, we may assume they are

joined by a homotopy which remains in Γn. With the latter observation, we are reduced

to the case where C0 and C1 are very close as elements of GLn(SA). In this case, we may

assume the straight-line homotopy Cs(t) = (1− s)C0(t) + sC1(t) stays inside GLn(SA), and

2Since, technically GLn(SA) ⊂ 1 + Mn(SA) ⊂ Mn(S̃A), this needs a small fiddle. One simply translates
the problem and uses X = Mn(SA), the Banach space of loops [0, 1] → Mn(A) based at 0, D ⊂ X the
dense subspace of piecewise-C1 loops [0, 1] → Mn(A ), and U ⊂ X the open subset of loops which value in
QIn(A) = 1n −GLn(A).
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therefore in Γn as well. But, then

d

ds

∫ 1

0

τ

(
C −1
s

∂Cs

∂t

)
dt =

∫ 1

0

τ

(
C −1
s

∂2Cs

∂s∂t
− C −1

s

∂Cs

∂s
C −1
s

∂Cs

∂t

)
dt

=

∫ 1

0

τ

(
C −1
s

∂2Cs

∂t∂s
− C −1

s

∂Cs

∂t
C −1
s

∂Cs

∂s

)
dt

=

∫ 1

0

∂

∂t
τ

(
C −1
s

∂Cs

∂s

)
dt

= τ

(
C −1
s

∂Cs

∂s

) ∣∣∣∣t=1

t=0

which vanishes since ∂Cs
∂s
≡ 0 at t = 0, 1. Thus, the quantity I(Cs) does not depend on the

homotopy parameter s and I(C0) = I(C1), as desired.

At this point, we have two homomorphisms K0(A)→ C at our disposal. Namely, τ∗ and

the composite of s0
A : K0(A)→ K1(SA) with I : K1(SA)→ C. It remains to show these two

homomorphisms are the same. In view of Lemma B.1, we just need to check they agree on

[e] ∈ K0(A) where e is a projection in Mn(A ). In this case, τ∗([e]) = τn(e). On the other

hand, the suspension isomorphism K0(A) → K1(SA) sends [e] 7→ [C ] where C ∈ GLn(SA)

is the unitary loop t 7→ exp(2πit)e+ e⊥. As it happens, this C belongs to Γn and so

I([C ]) = I(C ) =
1

2πi

∫ 1

0

τ
(
2πi · exp(2πit)e · (exp(−2πit)e+ e⊥)

)
dt = τ(e)

completing the proof.

For a densely-defined lower semicontinuous trace τ = τµ (see Proposition A.6) on a

nonunital, commutative C*-algebra, the map τ∗ is always trivial.

Proposition B.11. Let X be a locally compact Hausdorff space, and let τ = τµ be a lower

semicontinuous, densely-defined trace on A = C0(R). If X is noncompact and connected,

then the map τ∗ : K0(A)→ R is trivial. In particular, τ∗ is trivial if X is the suspension of

another locally compact Hausdorff space.
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Proof. Consider a generator [e] ∈ K0(Ã) where e = e0 + a ∈ Mn(Ã) is a projection, e0 ∈

Mn(C), a ∈ Mn(A) = C0(X,Mn(C)). We claim that tr(a(x)) = 0 for all x ∈ X. Indeed, since

X is connected, {e(x) : x ∈ X} ⊂ Mn(C) is connected. Thus, all the e(x) are equivalent

projections. In fact they are all equivalent to e0 since e(x) → e0 as x escapes to infinity.

Thus tr(e(x)) = tr(a(x)) + tr(e0) = tr(e0) for all x ∈ X so that tr(a(x)) = 0. Now, by

definition of τ∗, τ∗([e]) = τ̃(e) = τ(a) =
∫
X

tr ◦a dµ = 0 as desired.
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