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ABSTRACT

Given the overall increase in the availability of computational resources, and the

importance of forecasting the future, it should come as no surprise that prediction

is considered to be one of the most compelling and challenging problems for both

academia and industry in the world of data analytics. But how is prediction done,

what factors make it easier or harder to do, how accurate can we expect the results

to be, and can we harness the available computational resources in meaningful ways?

With efforts ranging from those designed to save lives in the moments before a near

field tsunami to others attempting to predict the performance of Major League Base-

ball players, future generations need to have realistic expectations about prediction

methods and analytics. This thesis takes a broad look at the problem, including

motivation, methodology, accuracy, and infrastructure. In particular, a careful study

involving experiments in regression, the prediction of continuous, numerical values,

and classification, the assignment of a class to each sample, is provided. The results

and conclusions of these experiments cover only the included data sets and the applied

algorithms as implemented by the scikit-learn Python library [1]. The evaluation in-

cludes accuracy and running time of different algorithms across several data sets to

establish tradeoffs between the approaches, and determine the impact of variations

in the size of the data sets involved. As scalability is a key characteristic required to

meet the needs of future prediction problems, a discussion of some of the challenges

associated with parallelization is included.
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Chapter 1

Introduction

According to IBM estimates, we create 2.5 quintillion bytes of new data every day.

They claim “90% of the data in the world today has been created in the last two

years” [7]. With such a massive amount of data comes a need to understand it.

Ironically, the more data we have, the more difficult it is to gain any knowledge

from it. Knowledge is facts or information obtained through experience, education

and understanding [8]. We need to turn data into information—information that is

manageable and understandable. As such, there is an increasingly high demand for

data analysis tools.

Data analysis can be defined as “the process of transforming raw data into usable

information” [9]. The forms of data analysis can be categorized as hindsight, insight

or foresight [10]. Prediction techniques, which are the type of data analysis studied

in this thesis, can be separated into regression and classification. Regression aims

to predict a continuous, numeric value, while classification aims to assign one of two

or more classes. Prediction techniques would most clearly be considered foresight,

although an argument could be made that, in particular, classification algorithms

may also provide usefulness when it comes to insight.

Many open questions remain about what we can expect from prediction tech-

niques, including: how is prediction done, what factors make it easier or harder to

do, how accurate can we expect the results to be, and can we harness the available

computational resources in meaningful ways? This thesis takes a broad look at these

questions in order to consider both the quantitative aspects of speed and accuracy

and the qualitative impact of infrastructure support and ease of framework deploy-

ment. By way of an introduction we first consider a motivating example, along with

some of the open challenges associated with prediction in a real-world context. We
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Figure 1.1: Diagram illustrating the stages of a tsunami [2].

then provide an outline of the contributions of this thesis, and an overview of the

remaining chapters.

1.1 Motivating Example: Near Field Tsunamis

A compelling example of a life and death scenario that relies on fast and accurate pre-

diction is the Parallel Resources for Early Detection of Immediate Causes of Tsunamis

(PREDICT) project [11]. Tsunamis are sets of waves caused by abrupt and strong

disturbances of the sea-surface. A tsunami propagates at high speeds in the deep

ocean, and slows down substantially in shallow water near land. Tsunami waves are

hardly noticeable in deep ocean, however, they quickly transform into a hazard near

land as their waves slow down, compress, and consequently, grow in height. In the

worst cases, it forms a wall of water of several meters in height that rushes onshore

with immense power. Since the mid-nineteenth century, tsunamis have caused the

loss of over 420,000 lives and billions of dollars of damage to coastal structures and

habitats [12].

Tsunamis do not have a season and they do not occur on a regular or frequent

basis, making it very difficult, if not impossible, to accurately predict when and where

the next tsunami will occur. However, once a tsunami is generated, it is possible to

mitigate its damage on life and property by forecasting tsunami arrival and impacts.
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As such, there is a strong need to be able to detect and predict the occurrence of

tsunamis, or at least the effects of them.

Currently, there are a number of efforts being undertaken by a variety of institu-

tions world-wide that specifically address the development, deployment and extension

of tsunami early detection systems. These efforts have mainly focused on captur-

ing disturbances, monitoring propagation and the development of fast and accurate

modelling techniques. While this approach relies on expertise in geophysics and seis-

mology, a more generic approach of applying prediction techniques to the data may

prove to be an effective alternative or supportive aspect to the tsunami modelling

algorithms.

Specific types of tsunamis, called near-field tsunamis, originate from nearby sources

where destructive effects are confined to coasts within 100 km. They are most com-

monly generated by large, shallow-focus earthquakes in marine and coastal regions.

Due to the close range of near-field tsunamis to impact areas, not only is the accuracy

of prediction of great importance, but the time it can be done in as well. As a result,

the work presented in this thesis is focused around measurements of accuracy and

running time.

1.2 The Need for Speed: Parallel Infrastructures

and their Challenges

The Ocean Networks Canada Centre for Enterprise & Engagement (ONCCEE) video

processing toolbox project [13] introduces another perspective on data analysis. While

there is no requirement for prediction, it heavily relies on the ability to process data

in parallel. The purpose of the project is to develop a system for real-time analysis

of video data. The video, which is produced by underwater cameras as a part of

the NEPTUNE and VENUS underwater observatories, often contains large periods

of video with no objects-of-interest or lack of visibility due to poor lighting. One

component of the toolbox is designed to detect events, such as a fish moving into the

field of view, through the use of motion detection. By doing this, observation times

will be reduced, allowing scientists to reach their conclusions quicker as they are able

to eliminate time spent watching video without anything of interest to their research.

With an enormous amount of data, both in terms of hours of video and amount

of information contained in each frame, analysis becomes computationally very ex-
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Figure 1.2: ONCCEE Video Processing Toolbox: Examples of inactive and active
video.

pensive. Therefore, processing must be parallelized in order to keep pace. The IBM

InfoSphere Streams high-performance computing platform was chosen as the sup-

porting architecture for this task [14]. The technique used can be referred to as

course-grain parallelization, which means that the data is separated and stretches of

video are processed concurrently. This is opposed to fine-grain parallelization, which

would involve parallelization at the level of the actual algorithm.

The motivation that stems from this project is the realization of the potential

need for parallelization for data analysis, whether it is video analysis, data prediction

or some other process. This is increasingly true with the era of big data upon us

and unlimited amounts of data at our fingertips. There are a number of tools that

can assist in parallelization. In addition to IBM Streams, other popular platforms are

Apache Hadoop and Storm, which involve different criteria for setup and deployment.

The Apache Hadoop software library is a framework that allows for the distributed

processing of large data sets across clusters of computers using simple programming
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models. It is designed to scale up from single servers to thousands of machines,

each offering local computation and storage [15]. Apache Storm is a distributed

computation system that can reliably process unbounded streams of data, allowing

for real-time, parallel processing [16].

Another approach is to develop a system using the multiprocessing feature of a

chosen programming language. One example of this is “Prism”, a distributed com-

puting framework we have developed in-house and written in Python using the mul-

tiprocessing module and Fabric library to expand the processing power to remote

machines [17]. Prism provides a simple way to deploy programs across multiple

machines for the purposes of parallel execution. Users are able to submit jobs, or

programs, to a queue, which are then executed concurrently across the pool of worker

machines. This is a simple deployment strategy that does not involve any tightly co-

ordinated communication between workers. The source code for Prism can be found

in Appendix A.

Regardless of the approach, parallelization of computation can be extremely ben-

eficial to systems that handle a large amount of data under strict time constraints.

Recognizing the importance of this, some analysis of potential parallelization and

scalability of the prediction algorithms is included in this work.

1.3 Contributions and Thesis Overview

This thesis provides a comprehensive comparison of five regression and eight classifi-

cation algorithms as applied to multiple data sets of different nature and dimensions

with a focus on measuring accuracy and speed through a set of carefully designed

experiments. These experiments provide the following contributions:

• methods for improving regression accuracy

• a comparison of scikit-learn regression algorithm performance when applied to

specific data sets

• methods for improving classification accuracy

• a comparison of scikit-learn classification algorithm performance when applied

to specific data sets

• a discussion of parallelization approaches as applied to prediction
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Figure 1.3: Overview of Prism distributed computing framework.

It is important to note that the experimental evaluations provided by this thesis

are only representative of the scikit-learn Python module implementations of the

algorithms and the data sets to which they are applied [1].

Our results show improvements in the accuracy of regression and classification

algorithms when increasing the number of attributes in the data set and increasing

the size of the training set. They also demonstrate improvements in the accuracy

of classification algorithms when using a lower number of classes. Additionally, they

determine the best-performing algorithm within each use case and give algorithm

recommendations based on the overall results. Finally, the results also lead into a

discussion of parallelization of the prediction process for the purpose of improving

performance.

The rest of this thesis is organized as follows: Chapter 2 provides background

information on prediction, machine learning, the prediction algorithms used in this

thesis, parallelization and visualization and an overview of related work. Chapter 3
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introduces the use cases and corresponding data sets, the details of each experiment

and the methodology used. Chapter 4 provides the results and analysis of each

experiment and includes the discussion on parallelization. Finally, Chapter 5 provides

conclusions and future work.
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Chapter 2

Background and Related Work

In this chapter, we provide background information on prediction, machine learning,

regression and classification algorithms, parallel computing and visualization. We

then take a look at specific work done by others in the fields of machine learning and

parallel computing, particularly related to regression and classification algorithms.

2.1 Background

In this section, we give an overview of the task of prediction and how computing tech-

niques can be used to make predictions. We then introduce the prediction algorithms

that are used in this thesis. Finally, we provide background information of parallel

computing, a technique for improving computational performance, and visualization,

an approach for easier understanding of information through visual representation

such as diagrams or charts.

2.1.1 Prediction

A prediction is a statement about an occurrence or outcome of an event in the fu-

ture [18]. It is typically based on some experience or knowledge about the event,

although that is not a requirement. There is nothing to stop an individual from

making a prediction about something they have never encountered. Some people do

believe in clairvoyance, which involves having an ability to predict events in the future

beyond normal capabilities. Not withstanding the possibility of psychic capabilities,

perhaps it is more fair to say that, in most cases, predictions based on experience or

knowledge of the event tend to be more accurate or reliable.
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One example is predicting the weather. Meteorologists, who are both trained and

experienced in the field of earth science research, use information such as temperature

readings, winds, atmospheric pressure, precipitation patterns, and other variables to

forecast the climate and weather [19]. A person who is not a meteorologist and

does not have access to the same information could also make a guess as to what

the weather will be like. Both cases are predictions, although one would expect the

prediction made by a meteorologist to be more trustworthy.

In situations where there is available information that can indicate future events,

such as the case of weather prediction, expertise can lead to more accurate and

reliable predictions. However, other events, such as flipping a coin, are naturally

unpredictable and no amount of information, education or experience can improve

prediction. The reasoning behind this is that each coin flip is an independent event

in which the previous flips have no influence. So, even with knowing the outcomes of

the previous 100 coin flips, one would be no closer to being able to predict the next

flip than simply guessing heads or tails [20].

In other scenarios, such as the stock market, there is information, trends and

supporting data to be found that can assist in making predictions. Many people,

such as stockbrokers, make a living from successful forecasting. However, with so

many factors impacting the rise and fall of each stock and the high volatility that

exists in the stock market, it can be very difficult to make consistent stock predictions.

To summarize, the potential to accurately make predictions varies with each event.

Information paired with knowledge and expertise can make large impacts on predic-

tion in some scenarios while having no impact in others. This can be attributed to

the nature of the data, meaning that some events are naturally more predictable than

others, such as predicting the weather versus predicting coin flips.

Another challenge in prediction is finding a way to make sense of the information

in order to make predictions. This can be done by mind and hand for simpler events,

but for large data sets and complex events, we must turn to computers and more

specifically machine learning.

2.1.2 Machine Learning

Machine learning is a field of computer science that is focused on the study and

development of software systems that have the ability to learn without being explicitly

programmed [21]. There are different subfields within Machine Learning, typically
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Gender Age Status
Male 18 Healthy
Female 44 Sick
Male 59 Healthy
Female 29 Healthy
Male 26 Sick

Table 2.1: Example of labelled data for patients arriving at a hospital.

Gender Age
Male 18
Female 44
Male 59
Female 29
Male 26

Table 2.2: Example of unlabelled data for patients arriving at a hospital.

broken down according to what is already known in advance about the data available

for the learning process.

Supervised learning is a subfield of machine learning that deals with the task of

inferring a function from labelled training data [22]. A model is trained by some subset

of data, referred to as training data, and then is applied to the remaining data, known

as testing data. Data can be made up of two components: explanatory attributes and

dependent attributes. Explanatory attributes are the group of attributes or features

that describe the dependent attribute. Explanatory attributes are most commonly

written as X, which is a set of each explanatory attribute xi. The dependent attribute,

often written as y, is typically the attribute that you wish to predict.

Labelled data is data that includes an attribute that you would like to predict

or classify. Unlabelled data does not include this desired attribute. For example, a

labelled data set for classifying the health status of patients at a hospital could include

the following attributes: gender, age and status. The label, or desired attribute, in

this case is status. An unlabelled version of the same data set would then only include

the attributes gender and age [23]. Examples of labelled and unlabelled can be found

in Tables 2.1 and 2.2, respectively.

Unsupervised learning is another subfield of machine learning. As opposed to

supervised learning, unsupervised learning uses unlabelled training data. Since the

data is unlabelled, there is no way to measure the error and evaluate a solution when

trying to train a model to perform tasks such as prediction or classification. Therefore,
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unsupervised learning is limited to finding hidden structure in data. An example of

this is clustering, which is the process of grouping similar data [24].

Supervised learning can be separated into two types of tasks: regression and

classification. Regression aims to predict continuous, numeric values. Classification

assigns a class to each sample. An example of regression is predicting the gross

earnings of a film at the box office. An example of classification is predicting whether

a customer is going to purchase a Coca-Cola, Pepsi or neither while at the concession

in the theatre. There are a number of algorithms for regression and classification.

The ones that are used in this thesis are introduced in the following section. This

thesis does not provide an in-depth study of the inner workings of these algorithms,

but instead attempts to compare and contrast their application to specific use cases

and data sets.

2.1.3 Algorithms

The algorithms introduced in this section were chosen for this work based on their

availability in the scikit-learn machine learning Python module [1]. They represent

a group of popular and available regression and classification algorithms. The scikit-

learn API allows for the algorithms to be used in a “plug-and-play”, “black box”

fashion. This means that the experiments in this thesis evaluated these algorithms

in the spirit of requiring little knowledge of their inner workings and without a great

deal of parameter tuning. We believe this is representative of how domain experts

with prediction problems will be approaching these kinds of techniques.

Linear Regression

Linear regression is a regression algorithm that attempts to model the relationship

between attributes by fitting a linear equation to observed data, or training data [25].

While there are a number of techniques for fitting the linear equation, the one used in

this Thesis is the ordinary least squares method. This method minimizes the residual

sum of squares, or sum of squared vertical distances, between the observed data and

the values predicted by the linear equation [3]. Predictions are made by inputting

attribute values of the sample to be predicted (testing data) into the linear equation

and solving for the predicted value. A visual representation of an example of a linear

regression model can be found in Figure 2.1.



12

Figure 2.1: An example of a Linear Regression model fit to training data [3].

Nearest Neighbor

The nearest neighbor regression and classification algorithms follow the same ap-

proach of finding the k training samples that are closest in distance to the point to be

predicted and then making a prediction based on these “neighbors” [4]. This method,

known as k-nearest neighbor, uses a user-defined value of k. In the case of nearest

neighbor regression, the predicted value is calculated as the mean of the neighbors.

An example of this can be found in Figure 2.2. In the case of nearest neighbor clas-

sification, the predicted class is assigned based on the highest occurring class within

the group of neighbors.

Support Vector Machine

Support vector machine (SVM) classification attempts to separate observed data into

groups. It does this by constructing a set of hyperplanes that maximize the distance,
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Figure 2.2: An example of a Nearest Neighbor Regression model fit to training
data [4].

Figure 2.3: Examples of SVM Classification using linear, radial basis function and
polynomial kernels [5].

or separation, between the nearest points of each pair of groups. This set of hy-

perplanes defines the model. Testing data samples are classified according to which

group they fall into based on the set of hyperplanes [5]. Support vector machine

regression uses the kernel function to fit a (sometimes non-linear, depending on the

kernel) function to the training data as fast as possible while remaining within some

value ε of every dependent attribute yi [26]. Support vector machine regression and

classification can use any of the following kernel functions: linear, polynomial or Ra-

dial Basis Function (RBF). These kernels define the decision function that determines

how the model is trained. In Figure 2.3, examples are given of support vector machine

classification being fit to a 3-class training set using the three kernels.
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Logistic Regression

Despite its name, logistic regression is actually considered a classification algorithm

and not a regression algorithm. Like every other classification algorithm, it predicts

and assigns a class to each sample. While linear regression aims to minimize the sum

of square residuals, logistic regression looks to fit a model that minimizes a “hit or

miss” cost function. A hit refers to a correctly classified sample, while a miss refers

to an incorrectly classified sample [27].

Decision Tree Classification

Decision tree classification uses a set of if-then-else decision rules to fit a model to

a training set. It builds the “decision tree” by partitioning the data at different

attributes. The more attributes used, the deeper the tree, the more complex the

rules and the fitter the model [28]. Once the model is built, each sample is assigned a

class by traversing the decision tree based on whether attributes of the sample satisfy

the rule at each junction of the tree. Whichever class is associated with the path

through the decision tree is assigned to the sample.

Stochastic Gradient Descent Classification

Stochastic gradient descent is an approach for fitting linear models under convex loss

functions. While various models can be used, in this thesis, the stochastic gradient

descent classification algorithm was used with a linear support vector machine. The

loss function is a measure of the training error, or misfitting of each data point.

Stochastic gradient descent uses a method called gradient descent optimization for

minimizing the loss function, which is a different approach than the maximizing of

separation of hyperplanes used in support vector machine classification. Gradient

descent optimization is an algorithm for finding the local minimum of a function by

iteratively calculating the gradient—the derivative along every dimension of X—of

the function at a given point and stepping the solution in the negative direction of

the gradient until the gradient reaches zero, indicating a local minimum [29]. As

the linear model is still that of a linear support vector machine, the algorithm also

constructs a set of hyperplanes to separate the data into groups and then classifies

testing data samples according to which group they fall into [30].
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Gaussian Naive Bayes

Bayes’ theorem is a formula for determining conditional probability of some event A

given another event B. The Naive Bayes methods are a set of algorithms that are

based on applying Bayes’ theorem under the assumption of independence between

every pair of explanatory attributes. Gaussian Naive Bayes assumes a Gaussian

distribution of each explanatory attribute. It calculates the probability densities of

the explanatory attributes given a class. These equations and resulting values can

then be manipulated to determine the probability of a sample’s class based on its

explanatory attributes [31].

2.1.4 Parallel Computing

Parallel computing is a form of computation in which multiple calculations are exe-

cuted simultaneously on different processing elements [32]. The concept provides an

approach for doing more computation at once, resulting in speed-ups. The ability

to perform concurrent calculations is reliant on the availability of multiple processor

cores, as each core can only execute one instruction at a time. This can be achieved

through the use of a multi-core processor on a single machine, which is referred to as

multiprocessing. It can also be done using a distributed computing approach. The

distributed computing approach involves a network of machines that each handle a

portion of the computation. Parallel computing is especially beneficial in computation

involving large amounts of data.

2.1.5 Visualization

Visualization is a technique for better understanding information by representing it

in a visual manor such as diagrams, charts, figures and illustrations. It is particularly

useful for summarizing large amounts of information and providing perspective for

numerical values [33]. Visualization can be applied to prediction by creating figures

that show accuracy measurements. One example of this is given in Figure 2.4, which

is a single screenshot of an interactive website for the group stage predictions of the

2014 World Cup [6].
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Figure 2.4: One example of an interactive prediction visualization tool for the 2014
World Cup group stage [6].

2.2 Related Work

Predictive models are evaluated based on their accuracy. For classification, the typical

measure is the percentage of misclassified samples. For regression, one measure is the

sum of squared errors, which is a measure of distance between the actual and predicted

values [34]. Baldi et al. confirm this as well as introduce other measures, such as

correlation coefficients, relative entropy and mutual information [35]. The percentage

of misclassified samples was used as one of the metrics in this thesis. The other, mean

absolute error, is a closely-related measure to the sume of squared errors.

There has been a great deal of work done in the evaluation of methods for classifi-

cation and prediction. Savic and Pedrycz evaluated a proposed fuzzy linear regression

model for problems lacking a significant amount of data [36]. Fuzzy linear regression

is a form of linear regression in which either the relationship between variables or the

variables themselves are approximate rather than fixed and exact. It is used to min-

imize the “fuzziness”, or uncertainty, of the prediction model in such situations [37].

Kim and Bishu later provided another evaluation of fuzzy linear regression models by

comparing membership functions [38]. This work shows research related to prediction

of very small data sets, such as two of the data sets included in this thesis.

One component of the work in this thesis is the evaluation of performance as
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the size of training sets varies. Platt provided a similar study along with his intro-

duction of a new approach to training support vector machines: sequential minimal

optimization. The evaluation included the effects on training time between sequential

minimal optimization and the chunking approach as the size of the training set was

increased [39]. Joachims studied the performance of support vector machines when

applied to text categorization. His experimental results showed that support vector

machines outperformed more commonly used approaches for text categorization [40].

Sebastiani also explored the advantages of using machine learning in text catego-

rization, particularly naive bayes, decision trees, linear regression and support vector

machines [41]. Forman’s research focused on feature selection metrics for text cat-

egorization. The evaluation uses support vector machines, but it is noted that the

choice of algorithm is not the object of study [42]. Prediction of text-based data sets

is an exciting area of machine learning research that adds additional challenges to

traditional numeric-based analysis, such as how to represent the data in a form that

can be used by supervised learning algorithms and an increasingly large number of

distinct classes when dealing with text classification [43].

Pearce and Ferrier evaluated the use of logistic regression in developing habitat

models to predict the occurrence and distribution of species in the wild [44] [45]. This

work demonstrates applications of machine learning to environmental studies, similar

to tsunami modelling and prediction.

There are a number of popular and effective algorithms for classification, some

of which have been combined to form hybrid approaches. Panahi et al. formed a

hybrid method for classification using bayesian, nearest neighbor and parzen window

classifiers. The evaluation of their proposed method showed a significant increase

in classification accuracy [46]. Baltes and Park evaluated three machine learning

techniques, most notably nearest neighbor, when applied to robot strategy in the

pursuit and evasion game [47]. Kohavi showed that the accuracy naive bayes does

not scale as well as decision trees on larger data sets, despite being more accurate

on smaller sets. He then proposed a naive bayes and decision tree classifier hybrid,

which outperformed both individual methods [48]. Androutsopoulos et al. evaluated

the use of naive bayes when used to classify and filter spam from email [49].

Wolpert and Macready’s “No Free Lunch” theorem states that any two machine

learning algorithms are equivalent when their performance is averaged across all pos-

sible problems. This indicates the need to exploit problem-specific knowledge in order

to match the right algorithm with the problem’s data set in order to achieve better
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than random accuracy performance [50].

Parallelization and distributed computing is a popular approach to improving per-

formance. Biem et al. demonstrated the use of the IBM InfoSphere Streams platform

for the use of developing a system that gives views of transportation information

for the city of Stockholm. One of the key components to this work is the scalabil-

ity offered by IBM InfoSphere Streams [51]. The Hadoop distributed file system is

another platform that offers great scalability. Shvachko et al. described the architec-

ture of Hadoop and their experience using it to manage enormous sets of data [52].

Zikopoulos and Eaton take a look at Hadoop alongside IBM InfoSphere BigInsights

and IBM InfoSphere Streams [53]. Apache Storm is an alternative to Hadoop’s batch

processing and offers the ability to handle streaming data, similar to IBM InfoSphere

Streams [54].

MapReduce is a programming model and implementation for processing large

data sets in a distributed and parallelized manner [55] [56]. SCOPE (Structured

Computations Optimized for Parallel Execution) is another distributed computing

system aimed at large data sets. The language is designed for ease of use with no

explicit parallelism [57] [58].

CUDA and OpenCL are the two primary interfaces to GPU programming. Both

can be used to utilize the parallel processing power offered by GPUs [59] [60]. A dis-

cussion on parallelization in the thesis includes a report on experiences with OpenCL.

Work has been done in relation to parallelization of prediction algorithms. Zinke-

vich et al. presented the first parallelized version of stochastic gradient descent, com-

plete with detailed analysis and experimental evidence [61]. Mateos et al. presented

algorithms to estimate linear regression coefficients in a distributed manor [62]. Mul-

tiple efforts have been made to parallelize support vector machines. Among those

are Graf et al.’s Cascade SVM, Zhu et al.’s PSVM and Collobert et al.’s mixture

of SVMs [63] [64] [65]. Garcia et al. proposed a CUDA implementation of k-nearest

neighbor search to take advantage of GPU processing power. Their evaluation showed

a speed increase when compared to CPU-based implementations [66]. Chu et al. de-

veloped a map-reduce parallel programming framework that could be applied to many

different algorithms. Their results showed roughly a linear speedup with respect to

the number of processors [67].
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2.3 Summary

In this chapter, we explained that a prediction is a statement about a future event.

Machine learning techniques can be used to assist us in making predictions. Predic-

tion algorithms, which stem from machine learning, can be separated into regression

algorithms and classification algorithms. Regression algorithms are used to predict

continuous, numeric values, while classification algorithms assign a class to each sam-

ple. There are many regression and classification algorithms. The ones used in this

thesis, which were selected based on their popularity and availability, have been out-

lined in Section 2.1.3. Finally, information can be more easily understood through

the use of visualization, which involves the creation of figures, charts and illustrations

to represent the data and communicate results, that may in turn be used to drive

further exploration into predictions.

Parallel computing is a technique that involves simultaneous calculations on mul-

tiple CPUs or cores, overlapping independent portions of computation which can

produce speedups in execution. Parallel computing, which is related to multiprocess-

ing and distributed computing, is a large and growing area of computer science that

has been well published. Only a small portion of related work has been included, par-

ticularly that which is focused on the parallelization of regression and classification

algorithms.

While many members of the research community have evaluated the accuracy and

running time of individual regression and classification algorithms, less have expanded

their analysis to multiple algorithms given the same task. The approach presented in

this thesis of applying multiple algorithms to a number of data sets for the purpose of

evaluating, comparing and studying the algorithms was designed to bridge that gap.
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Chapter 3

Methodology and Experimental

Design

In this chapter, we cover two types of problems: regression and classification. We

identify three use cases for each and introduce a total of 12 associated experiments.

The regression use cases are predicting Major League Baseball player performance,

crime rates in U.S. communities and rocket booster O-ring failure on NASA space

shuttles. The classification use cases are identifying capital letters displayed in im-

ages, classifying human activities and prescribing contact lenses to patients based

on patient information. The Major League Baseball use case was selected based on

popularity and its use in previous work [68][69]. The other five use cases were se-

lected based on the varying dimensions of their data sets and their availability on

the UCI Machine Learning Repository [70]. We believe that, together, they create a

compelling and representative set of results for our study. This chapter is organized

as follows: Section 3.1 introduces the regression use cases and the corresponding ex-

periments. Section 3.2 introduces the classification uses cases and the corresponding

experiments. Section 3.3 summarizes the chapter by reviewing the questions we are

posing in each experiment.

3.1 Regression

The three use cases and the corresponding experiments in this section use regression

algorithms, which predict continuous, numeric values. The dimensions of the three

regression use case data sets in terms of their rows and attributes (or columns) are
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given in Table 3.1.

3.1.1 Regression Use Cases

Three use cases were selected for the regression experiments: predicting Major League

Baseball player performance, crime rates in U.S. communities and rocket booster O-

ring failure on NASA space shuttles. These three use cases were chosen in an effort

to build a set of well-rounded experiments in which the data sets varied in number of

rows, number of attributes and nature of the data.

Major League Baseball Player Performance

The ability to predict performance of current Major League Baseball (MLB) players

is of great interest to both organizations and fans. For organizations, it is the basis

of all roster transactions with the goal of building a successful team. Every roster

transaction is based on what the front office predicts the involved players will con-

tribute in the future. A player’s past production serves only as an indication of future

production.

For fans, player performance prediction provides entertainment. Reading or lis-

tening to predictions of specific players is interesting to some. For others, performance

prediction is the key factor to widely popular fantasy baseball games, in which par-

ticipants select players for their fantasy team and are awarded points based on the

players’ real world production.

While it is impossible to truly predict a player’s performance, it can be very

beneficial to make the effort. Traditionally, organizations rely on the observations

and expertise of coaches, managers and scouts to project how a player will fare.

However, another source for prediction is player statistics.

The purpose of this use case is to predict a player’s hits (H) per at-bat (AB) for

a particular season. Hits per at-bat is also known as batting average (BA). We have

chosen to predict the number of hits per at-bat rather than the number of total hits,

because this better indicates the hitting performance of the player, as it eliminates

the effects of reduced plate appearances due to injuries and coaching decisions and re-

duced at-bats due to walks and hits by pitch, which could be considered “unhittable”

pitching, out of the batter’s control.

The data was provided by Sean Lahman’s 2013 Baseball Database [71]. Its use

was confined to player season totals of ABs and Hs from the Batting table. Only
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data for which the player had a minimum of 75 ABs over the course of a season was

included. Statements such as “players who played at least two seasons” refers to

players that have at least two seasons of data with a minimum of 75 ABs in each.

The data set provided for this use case is particularly interesting for this research

for a number of reasons. The dimensions of this data set make it representative of a

large data set, as it contains 136,237 rows of data. It is the longest data set included

in the regression use cases. The number of attributes ranges from 2 to 19, which

makes it a “narrow” data set at one end and a closer to normal width data set at the

other end. Additionally, the variation of number of attributes allows for interesting

study into the effects of changing the number of attributes in a data set.

Crime Rate

The purpose of this use case was to predict the rate of violent crimes in a given com-

munity. The communities are all located in the United States of America. The data

set combines “socio-economic data from the 1990 US Census, law enforcement data

from the 1990 US LEMAS survey, and crime data from the 1995 FBI UCR [72] [73].”

The data set consists of 1,994 rows and 123 attributes, related to such things

as population, race, age, income, education, employment, households and families,

immigration and law enforcement. Also included is the attribute to be predicted,

violent crimes per capita. With a length of 1,994 rows, this data set is not particularly

long but respectful in size. However, its 123 attributes make it a very “wide” data

set. It has the most attributes of the three regression use cases.

The data set contains some missing values, and as a result, imputation had to be

applied before proceeding with the prediction process. Imputation is the process of

replacing missing values with the mean value for the particular attribute.

Space Shuttle O-Ring Failure

This data set was made available some time after the Space Shuttle Challenger disaster

on January 28, 1986. Just over a minute into NASA mission STS-51L, the Challenger

space shuttle broke apart, resulting in an explosion that claimed the lives of its seven

crew members. “The cause of explosion was determined to be an o-ring failure in

the right solid rocket booster. Cold weather was determined to be a contributing

factor [74].”

The space shuttle consists of two solid rocket boosters, each with three field joints
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Data Set Rows Attributes
MLB 136237 2 to 19
Crime Rate 1994 123
Space Shuttle O-Ring Failure 23 3

Table 3.1: Dimensions of the regression data sets.

that contain a primary and secondary O-ring. The purpose of this use case is to

predict the number of O-rings that will experience thermal distress for a given flight.

The data set consists of 23 rows and 3 attributes, making it an extremely small

data set in both length and width. This is particularly interesting, as it could prove

to be very difficult to predict based on a shortage of training samples. Each row

represents data from previous shuttle flights. The three attributes are liftoff tem-

parature, field joint leak test pressure and the attribute to be predicted, number of

O-rings experiencing thermal distress [75] [76].

3.1.2 Experiments

All experiments were carried out on a single machine running Ubuntu 14.04. The

machine contains an Intel Core i7-2600 3.40 GHz processor and 4 GB of memory.

The experiments were programmed in Python and the algorithms were provided

by the scikit-learn machine learning Python module [1]. The regression algorithms

were linear regression, nearest neighbor regression and support vector machine regres-

sion using a linear, radial basis function (RBF) and polynomial kernel. For nearest

neighbor regression, the process was done for varying values of k. Each evaluation

only includes results for the most accurate value of k. That value of k is specified in

the results. For support vector machine regression, the RBF and polynomial kernels

had degree = 3.

Accuracy was measured by calculating the Mean Absolute Error (MAE). The

formula for MAE is given by:

MAE =
1

n

n∑
i=1

| predictedi − actuali | (3.1)

MAE is a reliable measure for comparing accuracy between algorithms on the

same data set. However, it cannot be used to compare accuracy between different

data sets, as it is dependent on the scale of the predicted attribute which often differs

between data sets.
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The mean actual value of each data set was also recorded. It was used in the

percent error calculation, which is given by:

Percent error =
MAE

Mean actual
× 100 (3.2)

Percent error gives a measure of accuracy expressed as a percentage of the mean

value of the data set. This provides a way to compare accuracy measures between

different data sets, as all percent errors are of the same scale – a percentage.

In some experiments, accuracy measures were obtained through the use of 10-

fold cross validation. 10-fold cross validation is a form of k-fold cross validation. It

involves dividing the data set into 10 equal size subsets and repeating the prediction

process 10 times, where each time one of the subsets is used as the testing set and

the other 9 subsets are combined and used as the training set. Each subset is used as

the testing set exactly once [77]. The accuracy measures were taken as mean values

for all 10 iterations of 10-fold cross validation. The purpose of using 10-fold cross

validation in these experiments was to effectively expand the number of predictions

in an effort to “smooth out” and obtain more reliable results.

In cases where 10-fold cross validation was used, running time was measured on

a separate trial using only one iteration, or fold, of cross validation. This mirrors the

approach of experiments that did not use cross validation, which is to divide the data

set into a training set and a testing set, train the model and make the predictions. Any

experiments that used 10-fold cross validation were specified as such in the ensuing

descriptions of the experiments.

The running time of each trial was measured using the Linux time command.

The real time was the value recorded, which is a measure of the elapsed real time

between invocation and termination of the program [78]. Each experiment was ran a

minimum of three times to ensure a consistent value was recorded. This approach to

profiling is admittedly more casual than some, but serves the purpose of providing a

relative “feel” to the running time of each algorithm.

An overview of the research questions for the regression experiments is given in

Table 3.4. More details about the rationale and methodology for each experiment is

provided below.
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Experiment 1: MLB

The research question being asked in this experiment was, what is the baseline accu-

racy and running time for each regression algorithm when applied to the MLB data

set? As previously noted, the MLB data set represents a large data set with a varying

number of attributes.

This experiment was more complex than other experiments due to the data set

containing players with a varying number of seasons played. The goal was to predict

hits per at-bat (H/AB) for the 2013 season for each player. Because players have

varying years of experience, the process had to be broken up based on how many

seasons of historical data each player has.

The prediction process was applied iteratively, starting with players entering their

second season in 2013 and ending with players entering their 19th season in 2013.

At each step, making predictions for players entering their nth season, a new model

was trained using data from all players that played at least one season between 1871

and 2012 and played at least n seasons total. The model was trained on sets of n

sequential seasons, where the first n− 1 seasons were used as the set of explanatory

attributes and the last season was used as the dependent attribute, or the attribute

to be predicted. For players that had played more than n seasons, every set of n

sequential seasons was included as a training sample. The motivation behind this

approach was to predict a player’s nth season based on historical data of all other

n-season sequences by other players.

The MAE was measured as an overall value for every iteration of the prediction

process. In other words, the MAE, and as a result, the percent error, represent a

measure of accuracy for all predictions made using models trained for players entering

their second season up to models trained for players entering their 19th season. The

running time was a measure of the entire prediction process, including every iteration.

Experiment 2: MLB Varying Training Data Sizes

The research questions being asked in this experiment was, what effects does changing

the size of the training data set have on accuracy and running time for each regression

algorithm, particularly when applied to the MLB data set?

In Experiment 1, the training data set included data from the 1871-2012 seasons

and the testing set contained data from the 2013 season. In this experiment, several

training data sets of varying sizes were used: 1871-2012, 1901-2012, 1945-2012, 1973-
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Training Data Set Rows
1871-2012 136237
1901-2012 125945
1945-2012 93663
1973-2012 71135
1988-2012 49014
2005-2012 21255
2012-2012 7518

Table 3.2: Experiment 2: Length of the training data sets.

2012, 1988-2012, 2005-2012 and 2012-2012. The testing data set remained the 2013

season for all trials. The starting years of the training sets were chosen based on the

major eras of Major League Baseball [79]. It’s difficult to anticipate the impact that

separating at major eras would have, but at the very least it provided data sets of

varying sizes as required.

The same approach as Experiment 1 was taken when measuring MAE, percent

error and running time.

Experiment 3: Crime Rate

Similar to Experiment 1, the research question of this experiment was, what is the

baseline accuracy and running time for each regression algorithm when applied to the

Crime Rate data set? As previously noted, the Crime Rate data set represents a very

wide data set, containing 123 attributes.

As opposed to the complex, iterative prediction process of Experiment 1 needed

to account for a varying number of attributes, this experiment involved the standard

approach of training a single model and making all predictions from it.

The evaluation was done using 10-fold cross validation. The MAE was measured

as an overall value for all 10 folds. The running time was measured in separate trials

that included only a single fold. The reasoning behind these decisions was to utilize

cross validation to provide a more reliable measure of accuracy but still measure

the running time of a more realistic approach of training the model and making

predictions only once.
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Experiment 4: Space Shuttle O-Ring Failure

Similar to Experiments 1 and 3, the research question of this experiment was, what

is the baseline accuracy and running time for each regression algorithm when applied

to the Space Shuttle O-Ring Failure data set? As previously noted, the Space Shuttle

O-Ring Failure data set represents an extremely small data set in both dimensions,

containing only 23 rows and 3 attributes.

This experiment also involved the standard approach of training a single model

and making all predictions from it. The evaluation was done using 10-fold cross

validation. The MAE was measured as an overall value for all 10 folds. The running

time was measured in separate trials that included only a single fold.

Experiment 5: Aggregation

The research question of this experiment was, what is the mean accuracy and running

time for each regression algorithm as taken from Experiments 1, 3 and 4? The ob-

jective is to combine the results from the three experiments in an effort to summarize

and more easily understand the performance of the regression algorithms.

Experiment 6: Comparing data sets of same length

The research question of this experiment was, if all three data sets were the same

length, how would the accuracy and running time of each regression algorithm compare

across all three data sets? By doing this, it eliminates one major difference between

the data sets, leaving only differences in number of attributes and nature of the data.

This concept was also taken a step further by separating the MLB data set into

three individual data sets: a set consisting of two attributes (consecutive seasons)

for predicting players’ 2nd season, a set consisting of five attributes for predicting

players’ 5th season and a set consisting of ten attributes for predicting players’ 10th

season. In this case, the three MLB data sets come from the same source and differ

only in number of attributes. In Experiment 1, the training set consisted of all data

from the 1871 to 2012 seasons and the testing set contained only data from the 2013

season. For this experiment, data from the 1871 season to 2013 season was included

in each data set, which were shuffled and allowed to be partitioned into training and

testing sets as needed. In other words, the training sets may have likely contained

data from the 2013 season and the testing sets may have likely contained data from

any other season.
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The first iteration of this experiment involved measuring the accuracy and running

time for data sets of length 23, broken into a training set of length 21 and a testing

set of length 2. This 1:10 ratio mirrors that of the previous 10-fold cross validation

experiments. Since the Space Shuttle O-Ring Failure data set is only 23 rows in

length, the results could be taken from Experiment 4. For the three MLB data sets

and the one Crime Rate data set, they were randomized and broken into subsets of

length 23 (with training sets of length 21 and testing sets of length 2). The accuracy

measurements were taken on each subset and the mean was calculated for all subsets.

The running time measurements were taken on a single subset.

The second iteration of this experiment followed the same approach, but with

subsets of length 1000, split into training sets of length 900 and testing sets of length

100. Due to the insufficient size of the Space Shuttle O-Ring Failure data set, it was

omitted from this iteration.

3.2 Classification

The three use cases and the corresponding experiments in this section use classification

algorithms. Classification makes predictions by assigning a class to each sample. The

dimensions of the three classification use case data sets are given in Table 3.3.

3.2.1 Classification Use Cases

Three use cases were selected for the classification experiments: identifying capital

letters displayed in images, classifying human activities, such as walking or laying

down, from data collected from a waist-mounted smartphone and prescribing contact

lenses to patients based on patient information. These three use cases were chosen

in an effort to build a set of well-rounded experiments in which the data sets varied

in number of rows, number of attributes, number of classes and nature of the data.

They are introduced in this section.

Letter Recognition

The purpose of this use case is to predict which of the 26 capital letters is displayed

in an image. The data set contains numeric attributes, such as statistical moments

and edge counts, which describe the image. The data set contains 20,000 rows, 17

attributes and has 26 classes [80] [81]. This data set is particularly interesting because
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Data Set Rows Attributes Classes
Letter Recognition 20000 17 26
Human Activity Recognition 7352 562 6
Contact Lenses 24 5 3

Table 3.3: Dimensions of the classification data sets.

it represents an extremely large data set with a moderate number of attributes and

a high number of classes.

Human Activity Recognition

This data set provides the data gathered from the sensors of a Samsung Galaxy SII

smartphone that was worn on the waist of 30 volunteers while they performed six

activities: walking, walking upstairs, walking downstairs, sitting, standing and laying

down. The purpose of this use case is to use the sensor data to predict which activity

the person was performing. The data set is 7352 rows in length and includes 562

attributes [82] [83]. The extremely wide dimension makes this data set particularly

interesting. Its length and number of classes should be considered moderate.

Contact Lenses Recommendation

This is a highly simplified approach to prescribing contact lenses to a patient. The

purpose of this use case is to predict whether a patient should be fitted with hard

contact lenses, fitted with soft contact lenses, or not fitted with contact lenses. The

data set contains 24 rows and 5 attributes. The 5 attributes are the age of the patient,

spectacle prescription, whether they are astigmatic, tear production rate and the class

to be predicted, the contact lenses prescription [84] [85]. This data set is extremely

small in length and includes less attributes and classes than the other two use cases.

3.2.2 Experiments

The classification algorithms were logistic regression, nearest neighbor classification,

support vector machine classification using a linear, radial basis function (RBF) and

polynomial kernel, decision tree classification, stochastic gradient descent classifica-

tion and gaussian naive bayes. Accuracy was measured by calculating the correct-

classification rate. The formula for this is given by:
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correct− classification rate =
number of samples correctly classified

total number of samples
(3.3)

The correct-classification rate is purposely left as a decimal value rather than a

percentage in this document in order to avoid confusion between it and percent error,

which is one of the measures of accuracy used in the regression experiments.

An overview of the research questions for the classification experiments is given

in Table 3.4 with more details on rationale and methodology provided below.

Experiment 7: Letter Recognition

The research question being asked in this experiment was, what is the baseline ac-

curacy and running time for each classification algorithm when applied to the Letter

Recognition data set? As previously noted, the Letter Recognition data set represents

an extremely large data set with a moderate number of attributes and a high number

of classes.

The data set, which is 20,000 rows in length, was split into a training set of size

18,000 and a testing set of size 2,000. This mirrors the 1:10 ratio of testing set size to

training set size produced by 10-fold cross validation in other experiments. Accuracy

was measured by calculating the correct-classification rate and the running time was

recorded.

Experiment 8: Human Activity Recognition

Similar to Experiment 7, the research question being asked in this experiment was,

what is the baseline accuracy and running time for each classification algorithm when

applied to the Human Activity Recognition data set? As previously noted, the Human

Activity Recognition data set represents an extremely wide data set.

The data set, which is 10,300 rows in length, was split into a training set of size

9,270 and a testing set of 1,030. Again, this is a 1:10 ratio of testing set size to training

set size. Accuracy was measured by calculating the correct-classification rate and the

running time was recorded.
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Experiment 9: Contact Lenses

Similar to Experiments 7 and 8, the research question being asked in this experiment

was, what is the baseline accuracy and running time for each classification algorithm

when applied to the Contact Lenses data set? As previously noted, the Contact Lenses

data set is extremely small and includes less attributes and classes than the other two

use cases.

The evaluation was done using 10-fold cross validation. The correct-classification

rate was measured as an overall value for all 10 folds. The running time was measured

in separate trials that included only a single fold.

Experiment 10: Aggregation

The research question of this experiment was, what is the mean accuracy and running

time for each classification algorithm as taken from Experiments 7, 8 and 9? The ob-

jective is to combine the results from the three experiments in an effort to summarize

and more easily understand the performance of the classification algorithms.

Experiment 11: Comparing data sets of the same size

Similar to Experiment 6, the research question of this experiment was, if all three

data sets were the same length, how would the accuracy and running time of each

classification algorithm compare across all three data sets? By doing this, it eliminates

one major difference between the data sets, leaving only differences in number of

attributes, number of classes and nature of the data.

The first iteration of this experiment involved measuring the accuracy and running

time for data sets of length 24, broken into a training set of length 22 and a testing

set of length 2. This 1:10 ratio mirrors that of the previous 10-fold cross validation

experiments. Since the Contact Lenses data set is only 24 rows in length, the results

could be taken from Experiment 9. The Letter Recognition and Human Activity

Recognition data sets were randomized and broken into subsets of length 24 (with

training sets of length 22 and testing sets of length 2). The accuracy measurements

were taken on each subset and the mean was calculated for all subsets. The running

time measurements were taken on a single subset.

The second iteration of this experiment followed the same approach, but with

subsets of length 1000, split into training sets of length 900 and testing sets of length
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100. Due to the insufficient size of the Contact Lenses data set, it was omitted from

this iteration.

3.2.3 Experiment 12: Measuring the running time of train-

ing vs. testing

The research question of this experiment was, how does the time it takes to train

the model compare to the time it takes to test or make predictions? The motivation

behind this was to establish which part of the prediction process is most computa-

tionally expensive in an effort to support discussion regarding the parallelization of

the prediction process.

The data set chosen for this experiment was the Letter Recognition data set.

It was chosen because, based on its dimensions, it seemed most representative of a

“normal” data set amongst the three data sets.

The data set was split into a training set of size 18,000 and a testing set of size

2,000. The elapsed time of both training the model using the training set and making

predictions using the testing set were measured using the python time module.

3.3 Summary

In this chapter, we introduced six use cases: Major League Baseball Player Per-

formance, Crime Rate, Space Shuttle O-Ring Failure, Letter Recognition, Human

Activity Recognition and Contact Lenses Recommendation. The first three use cases

required regression algorithms for prediction. The next three required classification

algorithms. We also introduce a total of 12 experiments and gave the details of their

design, methodology and purpose. Experiments 1 through 6 were associated with

the regression use cases. Experiments 7 through 12 were associated with the classi-

fication use cases. The use cases were selected based on their data sets in order to

apply the algorithms to data sets with varying dimensions. The experiments were

designed according to the research questions that we believe to be representative of

the typical prediction tasks. The next chapter provides the results and analysis of

these experiments in addition to a discussion of the potential for parallelization to

assist with aspects of the computation involved.
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Purpose Data Set
1 What is the baseline accuracy and running time for

each regression algorithm?
MLB Player
Performance

2 What effects does changing the size of the training
set have on accuracy and running time?

MLB Player
Performance

3 What is the baseline accuracy and running time for
each regression algorithm?

Crime Rate

4 What is the baseline accuracy and running time for
each regression algorithm?

Space Shuttle O-Ring
Failure

5 What is the mean accuracy and running time for
each regression algorithm for Experiments 1, 3 and
4?

MLB Player
Performance, Crime
Rate, Space Shuttle
O-Ring Failure

6 If all three data sets were the same length, how
would the accuracy and running time of each
regression algorithm compare across all three data
sets?

MLB Player
Performance, Crime
Rate, Space Shuttle
O-Ring Failure

7 What is the baseline accuracy and running time for
each classification algorithm?

Letter Recognition

8 What is the baseline accuracy and running time for
each classification algorithm?

Human Activity
Recognition

9 What is the baseline accuracy and running time for
each classification algorithm?

Contact Lenses

10 What is the mean accuracy and running time for
each classification algorithm for Experiments 7, 8
and 9?

Letter Recognition,
Human Activity
Recognition, Contact
Lenses

11 If all three data sets were the same length, how
would the accuracy and running time of each
classification algorithm compare across all three
data sets?

Letter Recognition,
Human Activity
Recognition, Contact
Lenses

12 How does the time it takes to train the model
compare to the time it takes to test or make
predictions?

Letter Recognition

Table 3.4: A summary of the research questions and data sets associated with each
experiment.



34

Chapter 4

Experimental Results and Analysis

This chapter presents the results and offers analysis of the experiments. One of the

limitations of this work is the small number of experiments that contribute to general-

ized conclusions, such as determining the best performing regression or classification

algorithm. The outcomes presented in this chapter are true for the experiments from

which they were derived, but it does not necessarily mean that they are valid when

it comes to all prediction use cases. This chapter is organized as follows: Section 4.1

gives the results and analysis of the experiments. Section 4.2 provides a discussion

on parallelization. Section 4.3 gives a summary of the results.

4.1 Results and Analysis

In this section, we outline the results of the 12 experiments—as explained in detail

in Chapter 3—performed on the data, as well as an analysis of the collected results

regarding each of the methods.

4.1.1 Experiment 1: MLB

The objective of this experiment was to establish the baseline measurements of accu-

racy and running time for the regression algorithms when applied to the MLB data

set. The MLB data set provides great length and uniqueness in a variable amount of

attributes and the need to train multiple models.

The ratio of testing set size to training set size (1:347) is much smaller than the

other use cases, which were selected to be 1:10. This was a result of the motivating
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Algorithm MAE Mean Actual Percent Error Time
SVM (Linear kernel) 0.0266 0.2509 10.59 24.268s
Linear Regression 0.0267 0.2509 10.64 25.696s
SVM (RBF kernel) 0.0269 0.2509 10.74 25.202s
Nearest Neighbor (k=30) 0.0271 0.2509 10.81 23.290s
SVM (Poly kernel) 0.0282 0.2509 11.25 24.866s

Table 4.1: Experiment 1: MLB accuracy and running time.

use case, which is to make predictions for an upcoming season (2013) based on all

available historical data (1871-2012 seasons).

The results in Table 4.1 show similar measures of accuracy for all algorithms,

with the most accurate being support vector machine (SVM) regression using a linear

kernel. The least accurate was SVM regression using a polynomial kernel. The most

accurate and least accurate algorithms were separated by merely 0.66 percent error.

The running times of each algorithm were also very close to one another.

4.1.2 Experiment 2: MLB Varying Training Data Sizes

The objective of this experiment was to explore the effects on accuracy and running

time while applying regression algorithms to data sets of varying sizes from the same

data source. By selecting training sets of different sizes from the same data source,

it eliminates possible influence on accuracy caused by the nature of different data

sources. In other words, if one data source is more easily predicted than another,

then the results could be skewed when trying to evaluate only the effect on training

set size.

The accuracy results, which are shown as a measure of percent error in Figure 4.1,

indicate that as the size of the training set increases, the prediction accuracy tends

to improve for all of the algorithms. The accuracy improves at a diminishing rate

and begins to converge. The results also show some irregular spikes in accuracy,

particularly for SVM regression (polynomial kernel) at a training set size of 21,255

rows and for SVM regression (linear kernel) at training set sizes of 93,663 and 125,945

rows.

The running time results in Figure 4.2 show a very-close-to-linear relationship

between running time and training set size. It is possible that given a larger data

set, the running time vs. training set size function may prove to be convex rather

than linear, which would indicate that training a model becomes more complex as
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Training Set Training Size MAE Mean Actual Percent Error Time
1871-2012 136237 0.0267 0.2509 10.64 25.696s
1901-2012 125945 0.0267 0.2509 10.65 21.877s
1945-2012 93663 0.0266 0.2509 10.61 14.966s
1973-2012 71135 0.0268 0.2509 10.67 11.093s
1988-2012 49014 0.0269 0.2509 10.72 7.794s
2005-2012 21255 0.0270 0.2509 10.78 4.448s
2012-2012 7518 0.0276 0.2509 11.01 2.356s

Table 4.2: Experiment 2: MLB accuracy and running time for Linear Regression,
varying training set sizes.

Training Set Training Size MAE Mean Actual Percent Error Time
1871-2012 136237 0.0271 0.2509 10.81 23.290s
1901-2012 125945 0.0272 0.2509 10.83 21.000s
1945-2012 93663 0.0275 0.2509 10.96 15.734s
1973-2012 71135 0.0278 0.2509 11.08 11.013s
1988-2012 49014 0.0278 0.2509 11.07 8.086s
2005-2012 21255 0.0280 0.2509 11.16 4.646s
2012-2012 7518 0.0280 0.2509 11.14 2.520s

Table 4.3: Experiment 2: MLB accuracy and running time for Nearest Neighbor
(k=30), varying training set sizes.

the training set size increases, resulting in an increasing amount of time per data set

size. However, it is difficult to be certain of this based on these results.

The numeric values of the accuracy and running time results for each algorithm

are given in Tables 4.2 to 4.6.

4.1.3 Experiment 3: Crime Rate

The objective of this experiment was to establish the baseline measurements of accu-

racy and running time for the regression algorithms when applied to the Crime Rate

data set. The Crime Rate data set is 1,994 rows in length and contains 123 attributes.

Compared to the MLB hits per at-bat data set (136,237 rows and between 2 and 19

attributes), this data set is significantly shorter and wider.

The results, which are given in Table 4.7, show similar results for all algorithms,

although with less overall accuracy than Experiment 1. In Experiment 1, the most

accurate and least accurate algorithms were separated by 0.66 percent error. In this

experiment, the most accurate and least accurate algorithms were separated by 6.41
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Training Set Training Size MAE Mean Actual Percent Error Time
1871-2012 136237 0.0266 0.2509 10.59 24.268s
1901-2012 125945 0.0269 0.2509 10.73 21.744s
1945-2012 93663 0.0269 0.2509 10.73 15.407s
1973-2012 71135 0.0267 0.2509 10.63 11.052s
1988-2012 49014 0.0271 0.2509 10.81 8.056s
2005-2012 21255 0.0284 0.2509 11.30 4.365s
2012-2012 7518 0.0288 0.2509 11.47 2.375s

Table 4.4: Experiment 2: MLB accuracy and running time for SVM (linear kernel),
varying training set sizes.

Training Set Training Size MAE Mean Actual Percent Error Time
1871-2012 136237 0.0282 0.2509 11.25 24.866s
1901-2012 125945 0.0283 0.2509 11.27 21.749s
1945-2012 93663 0.0285 0.2509 11.36 15.633s
1973-2012 71135 0.0287 0.2509 11.44 11.207s
1988-2012 49014 0.0296 0.2509 11.81 7.932s
2005-2012 21255 0.0311 0.2509 12.40 4.389s
2012-2012 7518 0.0302 0.2509 12.03 2.386s

Table 4.5: Experiment 2: MLB accuracy and running time for SVM (polynomial
kernel), varying training set sizes.

Training Set Training Size MAE Mean Actual Percent Error Time
1871-2012 136237 0.0269 0.2509 10.74 25.202s
1901-2012 125945 0.0270 0.2509 10.78 22.068s
1945-2012 93663 0.0272 0.2509 10.84 15.792s
1973-2012 71135 0.0271 0.2509 10.80 11.223s
1988-2012 49014 0.0277 0.2509 11.05 8.373s
2005-2012 21255 0.0287 0.2509 11.45 4.360s
2012-2012 7518 0.0289 0.2509 11.50 2.392s

Table 4.6: Experiment 2: MLB accuracy and running time for SVM (RBF kernel),
varying training set sizes.
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Figure 4.1: Experiment 2: MLB Percent Error vs. Training Set Size.

Algorithm MAE Mean Actual Percent Error Time
SVM (RBF kernel) 0.0945 0.2383 39.67 0.583s
SVM (Linear kernel) 0.0966 0.2383 40.53 0.907s
Nearest Neighbor (k=15) 0.0987 0.2383 41.43 0.456s
Linear Regression 0.1074 0.2383 45.09 0.421s
SVM (Poly kernel) 0.1098 0.2383 46.08 0.577s

Table 4.7: Experiment 3: Crime Rate accuracy and running time.

percent error. Additionally, the least accurate algorithm in Experiment 1 had a

percent error of 11.25. In this experiment, the percent error ranges from 39.67 to

46.08. The most accurate algorithm was support vector machine (SVM) regression

using a RBF kernel. The least accurate algorithm was support vector machine (SVM)

regression using a polynomial kernel. The running times of all of the algorithms were

all between 0.421 and 0.907 seconds.

4.1.4 Experiment 4: Space Shuttle O-Ring Failure

The Space Shuttle O-Ring Failure use case provides an extremely small data set, in

both length and width. The data set contains 23 rows and 3 attributes. Similar

to Experiments 1 and 3, the objective of this experiment was to establish the base-

line measurements of accuracy and running time for the regression algorithms when

applied to the Space Shuttle O-Ring Failure data set.
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Figure 4.2: Experiment 2: MLB Running Time vs. Training Set Size.

Algorithm MAE Mean Actual Percent Error Time
SVM (Linear kernel) 0.3754 0.4500 83.42 0.210s
Linear Regression 0.4307 0.4500 95.71 0.225s
Nearest Neighbor (k=8) 0.4813 0.4500 106.94 0.207s
SVM (RBF kernel) 0.5305 0.4500 117.89 0.216s
SVM (Poly kernel) 304675.7625 0.4500 67705725.01 3.451s

Table 4.8: Experiment 4: Space Shuttle O-Rings accuracy and running time.

The results in Table 4.8 show rather poor performance in accuracy, with percent

error values ranging from 83.42 up to 117.89. Additionally, SVM regression using a

polynomial kernel proved to be unable to be effectively fit to the data, resulting in a

percent error measurement of more than 67 million. The results of this experiment

indicate a data set that is difficult to accurately predict, either due to its small size or

the nature of the data. The running times were very similar for all algorithms apart

from SVM regression using a polynomial kernel.

4.1.5 Experiment 5: Aggregation

This experiment combined the results from Experiments 1, 3 and 4 to determine the

mean accuracy and running time of each regression algorithm. The purpose of finding

the mean results from the three use cases is to summarize and more easily understand

the performance of the regression algorithms.
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Algorithm Mean Percent Error Standard Deviation Mean Time
SVM (Linear kernel) 44.85 36.61 8.462s
Nearest Neighbor 49.31 49.11 7.990s
Linear Regression 50.48 42.79 8.781s
SVM (RBF kernel) 56.10 55.43 8.667s
SVM (Poly kernel) 22568594.11 39089902.01 9.631s

Table 4.9: Experiment 5: Mean and standard deviation accuracy and mean running
time for Experiments 1, 3 and 4.

These results in Table 4.9 show the mean percent error, standard deviation of

percent error and running time of the three previously mentioned experiments. The

most accurate algorithm across the three experiments was SVM regression using a

linear kernel. The least accurate was SVM regression using a polynomial kernel.

Although the accuracy values of SVM regression using a polynomial kernel were

extremely inflated due to the results of Experiment 4, it also performed the worst

in Experiments 1 and 3. The standard deviation values indicate that in addition to

being the most accurate algorithm, SVM regression using a linear kernel was also

the most consistent. The fastest algorithm was nearest neighbor regression, but all

algorithms had similar running times.

4.1.6 Experiment 6: Comparing data sets of the same size

The objective of this experiment was to observe the effects on accuracy and running

time for each regression algorithm when applied to all three data sets that had been

adjusted to the same length. By limiting each data set to the same length, it elimi-

nates one major difference between the data sets, leaving only differences in number

of attributes and nature of the data.

As opposed to previous uses of the MLB data set, for this experiment it was

separated into three individual data sets: one containing 2 attributes, one containing

5 attributes and one containing 10 attributes.

In the first step of this experiment, the focus was on the accuracy measurements

of the three MLB data sets. All three data sets were divided into subsets of size

23, the same length as the Space Shuttle O-Ring Failure data set. Each subset was

then divided into a training set of size 21 and a testing set of size 2. To measure the

prediction accuracy, the regression algorithms were applied to every size-23 subset

and the mean value was calculated for all subsets. Figure 4.3 illustrates the results.
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The three MLB data sets all came from the same source and had the same length,

meaning that they only differed in the number of attributes: 2, 5 and 10. The chart

indicates that the overall accuracy of the regression algorithms slightly improves as

the number of attributes in the data set is increased. The mean percent error for the

five algorithms for the 2-attribute data set was 12.93. The 5-attribute data set was

11.71 and the 10-attribute data set was 11.54. Based on these results, it would be

fair to say that prediction accuracy can be improved by providing more attributes in

a data set.

In the second step of this experiment, the accuracy measurements of the Crime

Rate and Space Shuttle O-Ring Failure data sets were compared when both sets were

reduced to a length of 23. Since the Space Shuttle O-Ring Failure data set already had

a length of 23, it was not possible or required to be broken into subsets of length 23.

Alternatively, the measurements were gathered using 10-fold cross validation in order

to ensure reliable results. These results are the same results presented in Experiment

4. In the same manor as the first step of this experiment, the Crime Rate data set

was shuffled and broken into subsets of size 23. The mean percent error values were

calculated for all subsets. The training set size was 21 and the testing set size was 2.

Figure 4.4 illustrates the results.

The results for this step of the experiment show significantly better overall ac-

curacy for the Crime Rate data set when both data sets have a length of 23. The

Crime Rate data set includes 123 attributes, while the Space Shuttle O-Ring Failure

data set contains 3 attributes. As the two data sets originate from different sources,

this difference in accuracy may be caused by either the difference in number of at-

tributes or the nature of the data or a combination of both. In the previous step of

the experiment, it was established that an increase in number of attributes lead to

an improvement in accuracy. This statement still holds true in this step, as the data

set with the most attributes also provides the better accuracy.

In the third step of this experiment, the results from the first two steps were

combined. The chart shows the results for the three MLB data sets, the Crime Rate

data set and the Space Shuttle O-Ring Failure data set when all five data sets have

been reduced to a length of 23. The results, which are illustrated in Figure 4.5, show

that the three MLB data sets provide the most accuracy, with the 10-attribute data

set being the most accurate of the three by a slight margin. The Crime Rate data

set provides the next highest accuracy, which is significantly worse than the three

MLB data sets. Finally, the Space Shuttle O-Ring Failure data set provides the worst
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accuracy.

Since the three MLB data sets, with 2, 5 and 10 attributes, proved to be more

accurately predicted than the Crime Rate data set, which contains 123 attributes,

it can no longer be stated that a higher number of attributes necessarily results in

higher accuracy. Based on these results, it appears that the most significant impact

on prediction accuracy is the nature of the data set, or in other words, how complex

or difficult it is to predict. The number of attributes can also influence accuracy, but

this seems to much less impactful, as the differences in accuracy between the three

MLB data sets are minor compared to the differences between the MLB, Crime Rate

and Space Shuttle O-Ring Failure data sets.

The fourth step of this experiment begins the evaluations of data sets of size 1000,

split into training sets of size 900 and testing sets of 100. This step measures the

accuracy of only the three MLB data sets with 2, 5 and 10 attributes. The purpose

of this is to further confirm the findings of the first step. The results, illustrated

in Figure 4.6, again show improvements in accuracy as the number of attributes is

increased. The mean percent error for the five algorithms for the 2-attribute data set

was 11.42. The 5-attribute data set was 9.98 and the 10-attribute data set was 9.85.

The fifth and final step of this experiment includes the Crime Rate data set with

the three MLB data sets, where all four data sets have been reduced to size 1000.

Due to the Space Shuttle O-Ring Failure data set having a length of 23, it had to be

omitted from this step of the experiment. The results, illustrated in Figure 4.7, show

that the Crime Rate data set provides significantly worse accuracy than the three

MLB data sets. This further confirms the findings of the third step, which were that

a higher number of attributes doesn’t necessarily results in higher accuracy. It may

also serve as further indication that the nature of a data set has more of an impact

on prediction accuracy.

The numeric values of the results for the MLB and Crime Rate data sets are given

in Tables 4.10 to 4.13. The numeric values for the Space Shuttle O-Ring Failure data

set were taken from Table 4.8.

4.1.7 Experiment 7: Letter Recognition

The objective of this experiment was to establish the baseline measurements of ac-

curacy and running time for the classification algorithms when applied to the Letter

Recognition data set. The Letter Recognition data set represents an extremely large



43

Training Set Size Algorithm MAE Mean Percent Error Time
Linear Regression 0.0301 0.2642 11.38 0.255s
Nearest Neighbor (k=8) 0.0307 0.2642 11.62 0.250s

23 SVM (RBF kernel) 0.0366 0.2642 13.83 0.263s
SVM (Linear kernel) 0.0367 0.2642 13.87 0.269s
SVM (Poly kernel) 0.0369 0.2642 13.97 0.260s
Linear Regression 0.0277 0.2650 10.47 0.256s
Nearest Neighbor (k=8) 0.0294 0.2650 11.10 0.267s

1000 SVM (RBF kernel) 0.0298 0.2650 11.24 0.265s
SVM (Linear kernel) 0.0302 0.2650 11.40 0.265s
SVM (Poly kernel) 0.0341 0.2650 12.88 0.260s

Table 4.10: Experiment 6: MLB 2-attribute data set, partitioned into subsets of size
23 and 1000.

Training Set Size Algorithm MAE Mean Percent Error Time
Nearest Neighbor (k=8) 0.0277 0.2689 10.29 0.257s
Linear Regression 0.0284 0.2689 10.56 0.268s

23 SVM (Linear kernel) 0.0337 0.2689 12.53 0.271s
SVM (RBF kernel) 0.0337 0.2689 12.54 0.263s
SVM (Poly kernel) 0.0340 0.2689 12.64 0.268s
Linear Regression 0.0243 0.2710 8.95 0.265s
Nearest Neighbor (k=8) 0.0261 0.2710 9.64 0.274s

1000 SVM (Linear kernel) 0.0264 0.2710 9.74 0.271s
SVM (RBF kernel) 0.0271 0.2710 9.99 0.265s
SVM (Poly kernel) 0.0314 0.2710 11.58 0.268s

Table 4.11: Experiment 6: MLB 5-attribute data set, partitioned into subsets of size
23 and 1000.

Training Set Size Algorithm MAE Mean Percent Error Time
Nearest Neighbor (k=8) 0.0269 0.2709 9.94 0.238s
Linear Regression 0.0319 0.2709 11.79 0.247s

23 SVM (Linear kernel) 0.0324 0.2709 11.94 0.245s
SVM (RBF kernel) 0.0325 0.2709 12.00 0.249s
SVM (Poly kernel) 0.0326 0.2709 12.02 0.244s
Linear Regression 0.0234 0.2732 8.57 0.248s
Nearest Neighbor (k=8) 0.0253 0.2732 9.27 0.249s

1000 SVM (Linear kernel) 0.0267 0.2732 9.76 0.251s
SVM (RBF kernel) 0.0280 0.2732 10.26 0.252s
SVM (Poly kernel) 0.0311 0.2732 11.37 0.248s

Table 4.12: Experiment 6: MLB 10-attribute data set, partitioned into subsets of size
23 and 1000.
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Training Set Size Algorithm MAE Mean Percent Error Time
Nearest Neighbor (k=4) 0.1153 0.2149 53.66 0.400s
SVM (RBF kernel) 0.1302 0.2149 60.56 0.399s

23 SVM (Linear kernel) 0.1363 0.2149 63.43 0.405s
SVM (Poly kernel) 0.1526 0.2149 71.01 0.418s
Linear Regression 0.1543 0.2149 71.77 0.408s
SVM (RBF kernel) 0.0878 0.2307 38.05 0.417s
SVM (Linear kernel) 0.0986 0.2307 42.74 0.562s

1000 Nearest Neighbor (k=4) 0.0996 0.2307 43.16 0.385s
Linear Regression 0.1001 0.2307 43.37 0.441s
SVM (Poly kernel) 0.1168 0.2307 50.64 0.445s

Table 4.13: Experiment 6: Crime Rate partitioned into subsets of size 23 and 1000.
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Figure 4.3: Experiment 6: Percent Error for MLB data sets of size 23.

Algorithm Correct-Classification Rate Time
SVM (rbf) 0.9775 13.722s
Nearest Neighbor (k=3) 0.9550 0.672s
SVM (poly) 0.9535 6.853s
Decision Tree 0.8755 0.661s
SVM (linear) 0.8580 6.304s
Logistic Regression 0.7090 4.686s
Gaussian Naive Bayes 0.6460 0.454s
Stochastic Gradient 0.4920 0.495s

Table 4.14: Experiment 7: Letter Recognition accuracy and running time.

data set with a moderate number of attributes and a high number of classes.

The results, which are given in Table 4.14, show accuracy measurements ranging

from 49.20% to 97.75%, with the most accurate algorithm being SVM classification

using an RBF kernel and the least accurate being stochastic gradient descent clas-

sification. The running times were varied. All three SVM algorithms and logistic

regression took longer than 4 seconds, while the rest of the algorithms completed in

less than 1 second.
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Figure 4.4: Experiment 6: Percent Error for Crime Rate and Space Shuttle O-Ring
Failure data sets of size 23. Note: The SVM (Poly kernel) accuracy measure for Space
Shuttle O-Ring Failure is only show to a maximum of 150 percent error, but actually
has a value of 6+ million.

4.1.8 Experiment 8: Human Activity Recognition

The objective of this experiment was to establish the baseline measurements of accu-

racy and running time for the classification algorithms when applied to the Human

Activity Recognition data set. With 562 attributes, the Human Activity Recognition

data set is by far the widest of the three use cases but is roughly half the length of

the Letter Recognition data set.

The results, which are given in Table 4.15, show accuracy measurements ranging

from 80.00% to 96.80%, with the most accurate algorithm being SVM classification

using a linear kernel and the least accurate being gaussian naive bayes. There is a

significant separation of algorithms: all three SVM algorithms, logistic regression and

nearest-neighbor form the top tier with accuracy measurements of more than 93%.

The second tier includes stochastic gradient descent, decision tree classification and

gaussian naive bayes, all of which fall below 84%. The running times range from

2.010 to 18.123 seconds.

When comparing the results to Experiment 7, there are a couple of generalizations

that can be made. The SVM results tend to be amongst the top, although the order

of the kernels vary with the RBF kernel performing the best in Experiment 7 and the
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Figure 4.5: Experiment 6: Percent Error for MLB, Crime Rate and Space Shuttle
O-Ring Failure data sets of size 23. Note: The SVM (Poly kernel) accuracy measure
for Space Shuttle O-Ring Failure is only show to a maximum of 150 percent error,
but actually has a value of 6+ million.

linear kernel performing the best in Experiment 8. Stochastic Gradient Descent and

Gaussian Naive Bayes were amongst the worst performing algorithms.

4.1.9 Experiment 9: Contact Lenses

The objective of this experiment was to establish the baseline measurements of accu-

racy and running time for the classification algorithms when applied to the Contact

Lenses data set. The Contact Lenses data set is 24 rows in length and contains 5

Algorithm Correct-Classification Rate Time
SVM (linear) 0.9680 4.776s
Logistic Regression 0.9592 8.398s
SVM (rbf) 0.9447 13.592s
SVM (poly) 0.9320 18.123s
Nearest Neighbor (k=8) 0.9301 7.917s
Stochastic Gradient 0.8330 2.138s
Decision Tree 0.8282 10.603s
Gaussian Naive Bayes 0.8000 2.010s

Table 4.15: Experiment 8: Human Activity Recognition accuracy and running time.



48

Figure 4.6: Experiment 6: Percent Error for MLB data sets of size 1000.

attributes, making it by far the smallest data set.

The results, which are given in Table 4.16, show accuracy measurements ranging

from 65.00% to 85.00% and running times all slightly above 0.200 seconds. The most

accurate algorithm was gaussian naive bayes. The least accurate algorithm was SVM

classification using an RBF kernel.

Adding to the conclusions of Experiment 8, we find that the SVM results were

amongst the worst performance in Experiment 9, as opposed to the best in Experi-

ments 7 and 8. Gaussian Naive Bayes, which had performed poorly in the previous

experiments, actually had the highest accuracy of this experiment. All of this leads

us to the conclusion that there doesn’t appear to be a great deal of consistency re-

garding how any particular algorithm performs in terms of accuracy relative to the

others. Probably the closest generalization that can be made is that stochastic gra-

dient descent was amongst the worst performing algorithms in all three experiments.

4.1.10 Experiment 10: Aggregation

The objective of this experiment was to combine the results from Experiments 7, 8 and

9 to determine the mean accuracy and running time of each classification algorithm.
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Algorithm Correct-Classification Rate Time
Gaussian Naive Bayes 0.8500 0.202s
Nearest Neighbor (k=5) 0.8000 0.202s
Decision Tree 0.8000 0.207s
SVM (poly) 0.8000 0.212s
Stochastic Gradient 0.7500 0.214s
SVM (linear) 0.7500 0.218s
Logistic Regression 0.7000 0.211s
SVM (rbf) 0.6500 0.212s

Table 4.16: Experiment 9: Contact Lenses accuracy and running time.
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Figure 4.7: Experiment 6: Percent Error for MLB and Crime Rate data sets of size
1000.

The purpose finding the mean results from the three use cases is to summarize and

more easily understand the performance of the classification algorithms.

These results, which are given in Table 4.17, show the mean and standard devi-

ation of the accuracy as well as the running time of the three previously mentioned

experiments. The most accurate algorithm was SVM classification using a polyno-

mial kernel. Stochastic gradient descent was the least accurate and also had one of

the highest standard deviations, meaning it was also very inconsistent. Also highly

inconsistent was SVM using a RBF kernel and logistic regression. Decision Tree clas-

sification was by far the most consistent algorithm and produced a middle-of-the-pack

accuracy. Although they were the two least accurate algorithms, stochastic gradient

descent and gaussian naive bayes were by far the fastest. The SVM algorithms were

amongst the slowest.

4.1.11 Experiment 11: Comparing data sets of the same size

The objective of this experiment was to observe the effects on accuracy and running

time for each classification algorithm when applied to all three data sets that had

been adjusted to the same length. By limiting each data set to the same length,
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Algorithm Mean C.-C. Rate Standard Deviation Mean Time
SVM (poly) 0.8952 0.0831 8.396s
Nearest Neighbor 0.8950 0.0832 2.930s
SVM (linear) 0.8587 0.1090 3.766s
SVM (rbf) 0.8574 0.1804 9.175s
Decision Tree 0.8346 0.0382 3.824s
Logistic Regression 0.7894 0.1471 4.432s
Gaussian Naive Bayes 0.7653 0.1063 0.889s
Stochastic Gradient 0.6917 0.1778 0.949s

Table 4.17: Experiment 10: Mean and standard deviation accuracy and mean running
time for Experiments 7, 8 and 9.
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it eliminates one major difference between the data sets, leaving only differences in

number of attributes, number of classes and nature of the data.

In the first step of this experiment shows the results when all three data sets have

been reduced to a length of 24 rows. Since the Contact Lenses data set already has

a size of 24, no reduction was necessary and the results from Experiment 9 could be

used. The other two data sets, Letter Recognition and Human Activity Recognition,

were randomized and split into subsets of size 24. The classification algorithms were

applied to every subset and the accuracy measurements shown in the results are a

mean accuracy for all subsets. Figure 4.8 illustrates the results.

The results show an overall better accuracy provided by the Contact Lenses data

set, followed by the Human Activity Recognition data set and finally the Letter

Recognition data set. The Contact Lenses data set contains 5 attributes and has 3

classes. The Human Activity Recognition data set has 562 attributes and 6 classes.

The Letter Recognition data set has 17 attributes and 26 classes. Based on these

results, a lower number of classes seems to correspond to a higher accuracy. This

makes sense when considering the Letter Recognition data set, which has 26 classes

and a training set of size 22. Many of the classes would not have a single entry in

the training set, especially since the randomization of the data set may cause some

classes to have more than one. Therefore, it cannot be expected to be able to predict

a class using a model that has not been trained for it at all.

The second step of this experiment extends the length of the data sets to 1000

rows. Since the Contact Lenses data set only has 24 rows, it had to be omitted from

this step of the experiment. The results, which are illustrated in Figure 4.9, show

an overall improvement in accuracy for both Human Activity Recognition and Letter

Recognition data sets. Although Human Activity Recognition still produces better

accuracy, the Letter Recognition has come closer to matching the accuracy of Human

Activity Recognition compared to the first step of the experiment. This may indicate

that the Letter Recognition data set, with its 26 classes, has begun to “catch up”

to the 6-class Human Activity Recognition data set now that it can properly train a

model using all of its classes.

The third step of this experiment shows the results when all three data sets have

reached their maximum size. In this case, the data sets are 20,000, 10,300 and 24

rows in length. These are the same as the results taken in Experiments 7, 8 and 9.

They are illustrated in Figure 4.10. The purpose of this step is simply to show the

maximum data set size and corresponding accuracy.
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Training Set Size Algorithm Correct-Classification Rate
Logistic Regression 0.2047
SVM (linear) 0.1951
SVM (poly) 0.1795

24 Decision Tree 0.1399
Nearest Neighbor (k=3) 0.1140
Stochastic Gradient 0.0906
SVM (rbf) 0.0858
Gaussian Naive Bayes 0.0828
SVM (poly) 0.7940
SVM (rbf) 0.7665
SVM (linear) 0.7595

1000 Nearest Neighbor (k=3) 0.6800
Logistic Regression 0.6575
Decision Tree 0.6400
Gaussian Naive Bayes 0.5960
Stochastic Gradient 0.3580

Table 4.18: Experiment 11: Letter Recognition partitioned into subsets of size 24 and
1000.

It is difficult to draw any conclusions regarding the number of attributes in this

experiment, as the results appear to be heavily influenced by the number of classes.

It’s possible that, similar to the regression results, an increased number of attributes

may lead to higher accuracy. However, in order to confirm this statement, an addi-

tional experiment in which the data sets were from the same source, the same number

of classes and a varying number of attributes would be needed. This is left to Future

Work.

The numeric values of the results for the Letter Recognition and Human Activity

Recognition data sets adjusted to size 23 and 1000 are given in Tables 4.18 and 4.19,

respectively. The numeric values of the results for the Letter Recognition and Human

Activity Recognition data sets at their maximum size were taken from Tables 4.14

and 4.15. The numeric values for the Contact Lenses data set were taken from Table

4.16.
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Training Set Size Algorithm Correct-Classification Rate
SVM (linear) 0.7133
Logistic Regression 0.6900
Decision Tree 0.4802

24 Nearest Neighbor (k=8) 0.4732
Stochastic Gradient 0.4709
Gaussian Naive Bayes 0.4266
SVM (rbf) 0.3671
SVM (poly) 0.2797
SVM (linear) 0.9590
Logistic Regression 0.9580
Nearest Neighbor (k=8) 0.9020

1000 SVM (rbf) 0.8950
Stochastic Gradient 0.8630
Decision Tree 0.8480
Gaussian Naive Bayes 0.7090
SVM (poly) 0.7080

Table 4.19: Experiment 11: Human Activity Recognition partitioned into subsets of
size 24 and 1000.
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Figure 4.8: Experiment 11: Correct-Classification Rate for data sets of size 24.

4.1.12 Experiment 12: Measuring the Running Time of Train-

ing vs. Testing.

The objective of this experiment was to establish the amount of time spent training

and the amount of time spent testing for each classification algorithm when applied

to the Letter Recognition data set. The purpose of this was to support discussion

about the parallelization of the prediction process.

The results of this experiment, which are given in Table 4.20 and illustrated in

Figure 4.11, indicate that a small portion of time is spent on testing, or making

predictions, compared to the amount of time spent on training the model, particularly

for the algorithms that take the most time to run. As such, attempting to speed up

the training process would likely be more beneficial than attempting to speed up the

testing process. Further discussion of parallelization is given in Section 4.2.

One counterintuitive area of these results is that less time is spent testing for

nearest neighbor classification than all three versions of SVM classification. Based

on how the algorithm works, one would expect SVM to spend less time in the testing

phase, as once the model is trained, prediction involves simply inputting the values

of the sample into the model. Opposingly, most of the work for nearest neighbor is

expected to be done during the testing phase, as the selection and counting of the

neighbors must wait for the sample to be inputted. It’s possible that these results

are influenced by the implementation.
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Figure 4.9: Experiment 11: Correct-Classification Rate for data sets of size 1000.

An important aspect to account for when looking at these results is how and

where the training and testing stages will occur. Selecting an algorithm that takes

a large portion of time to train may be a good choice if the model needs to only

be trained once and can be done on high performance hardware before being ported

to low performance hardware for the testing phase, such as in the case of the Xbox

Kinect system [86]. Conversly, a problem that requires the model to be consistently

retrained may be better suited for an algorithm that spends less time in the training

process. It’s important to identify the tradeoffs and select an algorithm that best

suits the problem.

4.2 Discussion: Parallelization

This section presents a discussion on parallelization for the purpose of improving

performance, which involves reporting on previous experiences and using that infor-

mation to drive the discussion of parallelizing the prediction process.
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Algorithm Training Time Testing Time
SVM (rbf) 12.059s 1.140s
SVM (poly) 6.005s 0.374s
SVM (linear) 5.269s 0.535s
Logistic Regression 4.520s 0.004s
Decision Tree 0.281s 0.004s
Stochastic Gradient 0.100s 0.004s
Nearest Neighbor (k=3) 0.061s 0.237s
Gaussian Naive Bayes 0.039s 0.043s

Table 4.20: Experiment 12: Letter Recognition Training Time vs. Testing Time.
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Figure 4.10: Experiment 11: Correct-Classification Rate for data sets at their maxi-
mum size.

4.2.1 IBM InfoSphere Streams

As mentioned in Section 1.2, the Ocean Networks Canada Centre for Enterprise & En-

gagement (ONCCEE) video processing toolbox project is centered around the devel-

opment of a system for real-time analysis of video data as provided by the underwater

cameras of the NEPTUNE and VENUS observatories. Due to the massive amount

of video data that needs processing, there is a strong demand for parallelization in

order to handle the workload.

The first prototype of the system was implemented on top of the IBM InfoSphere

Streams high-performance computing platform [14]. The IBM Streams platform pro-

vides an environment for applications which process information in data streams,

allowing for continuous and parallelized analysis of massive amounts of data. The

objective of using IBM Streams for this project was to utilize all four CPU cores on

a single, quad-core CPU machine rather than just a single core like most standard

applications.

IBM Streams applications, which are written in their own Streams Processing

Language (SPL), consist of two main components: streams and operators. A stream

is a sequence of data items called tuples, while an operator is a reusable stream trans-

former and can be compared to function in other programming languages. Data flows

between operators via streams and is filtered or modified by the operators. Operators



59

Figure 4.11: Experiment 12: Letter Recognition Training Time vs. Testing Time.

are completely independent of each other, which makes it ideal for designing parallel

computing applications, as one of the major challenges implementing parallelism into

applications is having functions that are dependent on other functions. If one func-

tion is dependent on another, it may have to wait on the other, making it impossible

for both to be executed concurrently.

Streams automatically allocates all available resources (particularly CPU cores) to

the applications, meaning that multiple operators can be processed by multiple CPU

cores at the same time without the developer having to manually create threads. In

order to achieve data parallelism in a Streams application, its as simple as implement-

ing an application that has two or more streams delivering tuples at the same time to

two or more independent operators. As long as the host machine has multiple CPU

cores available, the Streams platform will automatically allocate the resources so that

multiple operators are processing the data at the same time. Figure 4.12 gives an

overview of the IBM Streams implementation of the video processing toolbox system.

Each box represents an independent operator that runs concurrently to every other

operator, resulting in parallel execution and full utilization of a multicore processor.

As expected, performance testing of the system showed speedups of close to four

times that of the original video processing algorithm. The results in Figure 4.13 show
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Figure 4.12: Overview of IBM InfoSphere Streams implementation of the ONCCEE
video processing toolbox.

the time it took to process four identical videos using the original implementation of

one of the video processing algorithms versus the IBM Streams implementation for

both a single stream, which only utilized a single CPU core and processed videos one

after the other, and four streams, which allowed all four videos to be processed at the

same time, each using one of the four available CPU cores.

The experience using IBM InfoSphere Streams for this project had both posi-

tive and negative points. It did provide a high-performance computing platform

that could be used to effectively improve the performance of the application through

parallelization as expected. The automatic utilization of the multicore CPU made

programming parallelism through multiple operators feel easier than manually cre-

ating threads. The streaming data structure of an IBM Streams application fit the

video processing problem quite well, as opposed to the more traditional style of pro-

gramming where control moves from function to function. The IBM Streams platform

also provided a graphical editor for building applications, which was helpful at times

for visualizing the structure of the application.

One of the primary downsides to using IBM Streams for this project was that it

was not a widely used tool at the time, which made it quite difficult to find support
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Figure 4.13: Time to process four identical videos using the IBM InfoSphere Streams
implementation versus the original algorithm.

and solutions to problems outside of contacting IBM directly. The other downside,

which is somewhat related, is that IBM Streams uses its own programming language,

SPL. This means that the developer must learn a new language in order to use the

platform and will not be able to find much, if any, language support from other

developers. For this application, we also had to integrate C++ and Java code in

order to implement the video processing algorithms, as this could not be done in

SPL. Integrating code in other languages adds complexity to the application and

makes the SPL code seem like an unnecessary extra layer below the “working” C++

or Java code.

4.2.2 OpenCL

OpenCL is a framework that allows for cross-platform, parallel programming of mod-

ern processors found in personal computers, servers and handheld/embedded devices

and can greatly improve speed and responsiveness for a wide spectrum of applica-

tions [87]. OpenCL programs are able to execute on CPUs, GPUs and other proces-

sors.

As a continuation of the ONCCEE video processing toolbox project, the same

video analysis algorithms were implemented using OpenCL in an effort to compare
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the performance between it and IBM InfoSphere Streams.

In OpenCL, parallel computing is achieved by the use of multiple work-groups

and work-items. A work-item is an instance of an OpenCL program that runs on the

device in this case, the GPU. Work-items are contained within a work-group and

there can be multiple work-groups. All work-items in a work-group run in parallel.

Work-groups may or may not, but often do, run in parallel as well. Therefore, by

using multiple work-groups and work-items, instances of an OpenCL program can

run co-currently, resulting in an increase in performance.

While the IBM InfoSphere Streams implementation relied on a coarse-grained

approach of processing multiple videos at once, the OpenCL implemntation focused

processing multiple groups of pixels, or tiles, of an individual video frame at once –

a much finer-grained approach. The other major difference is that the IBM Streams

implementation utilized a multicore CPU while the OpenCL implementation utilized

the GPU.

By creating multiple work-groups and work-items and assigning tiles to each work-

item, sections of the same frame could be processed at the same time, resulting

in performance improvements. This can be seen in Figure 4.14, which shows the

improvement on the time it takes to process a single video as the number of work-

groups and work-items is increased. It is important to note that benefits of multiple

work-groups and multiple work-items are not independent. The results show that as

the number of work-groups increases, the increase of number of work-items has less

of an effect on performance, and vice-versa.

However, when comparing the time to process four identical videos using both the

IBM Streams and OpenCL implementations, the results show that the performance

of the IBM Streams implementation was nearly four times greater than that of the

OpenCL implementation. These results are shown in Figure 4.15.

Developing the application using OpenCL was at times an unpleasant task. Al-

though it is programmed in C++, there is a significant amount of OpenCL-specific

operations that need to be included which makes it similar to having to learn a new

language. Tasks that can be written in a few lines in a standard C++ program

require many more in an OpenCL program. The developer must also manage an

OpenCL-specific memory model in which variables must be explicitly moved between

the different memory levels. Debugging is particularly difficult, as warnings and errors

can be unclear or missing altogether. While there is great documentation and a de-

cent amount of support from other developers, developing an application in OpenCL
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Figure 4.14: Time to process a single video using the OpenCL with a varying number
of work-groups and work-items.

can be a tedious, low-level programming experience.

4.2.3 PREDICT Project

The PREDICT project, which was introduced in Section 1.1, is a project set on the

research and development of a system for the detection and modelling of near-field

tsunamis. Data is gathered from many devices and sensors that lie along the shore and

ocean and used by tsunami modelling algorithms to detect and project the effects of

oncoming tsunamis. There is a strong requirement for the processing to be completed

as quickly as possible. As a result, a main focus of the project is on infrastructure

and the use of parallel resources to improve performance.

The proposed computational framework for the project is designed to collect data

from the monitoring mechanism, simultaneously execute multiple modelling algo-

rithms on the available hardware, and access an internal database management system

to assess the possibility of generating warnings quicker than the model computations.

The framework consists of a job delegation/dispatch unit, a set of worker units, and

a storage unit. The main responsibility of the job delegation unit is to receive alerts

from the detection and monitoring systems, and to queue and dispatch these alerts

to the worker nodes with additional information such as the modelling algorithm to

run and the necessary input parameters. The worker units are responsible for serving
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Figure 4.15: Time to process four identical videos using the IBM InfoSphere Streams
and OpenCL implementations. The videos used here are different than those used in
the previous IBM Streams testing.

the requests sent by the job delegation unit.

The worker nodes form a distributed environment where each node exists on a

separate machine, resulting in a network of hardware. Parallelism is introduced into

the system by running multiple instances of modelling algorithms concurrently across

the multiple worker nodes. An evaluation of the proposed initial framework was

carried out on an implementation using the OMNET++ discrete-event simulation

platform and the INET framework. Figure 4.16 outlines the change in the ratio

between response time (the total time that a job remains in the system) and service

time (the time it takes to process a job) as the number of cores in the infrastructure

is increased. It is seen that the response time gets closer to the service time as the

number of cores is increased, where the convergence slows down in time. Naturally,

the benefit of adding more cores will diminish as the response time reaches service

time. Figures 4.17 and 4.18 outline the improvement in response time and queuing

time (the length of time a job remains in the queue before being processed) as the

number of cores increase in the system. Once again, in both measurements the value

of improvement should converge to a single value as the number of cores increase.

However, the results do not show such convergence, as they do not extend to a

sufficient number of cores to produce it. If the results could be extended as such, the
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Figure 4.16: PREDICT project framework: effects on response time:service time ratio
by increased number of cores.

two figures would show a concave extension of the charts resulting in convergence.

The convex plot that is shown represents a “slow start” to improving performance due

to “overwhelming” a small number of cores, meaning that the overhead of the system

outweighs the benefits of multiple cores. Perhaps the most important information

outlined by the evaluation is the fact that proposed framework and the queuing

system it implements can result in very accurate estimations of the number of cores,

nodes, and chassis necessary to produce scenarios within certain time limits.

In addition to evaluating the proposed framework through the use of the OM-

NET++ simulation platform, a proof-of-concept framework called Prism was also

developed. Prism, which was introduced in Section 1.2, follows the same design of

having a main node that delegates jobs to worker nodes spread across a distributed

system. In the initial testing, a program for determining all prime numbers up ten

million was used to compare the impact on running time of using Prism to parallelize

the application across five machines, each with an 8-core CPU. The results in Fig-

ure 4.19 show a speed up of approximately 11 times that of the standalone program.

One of the benefits of implementing an in-house distributed computing framework

such as Prism is that it can be designed to fit the needs of the project. In this case,

it was designed as a job scheduler system with a continuous workflow that somewhat
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Figure 4.17: PREDICT project framework: effects on response time by increased
number of cores.

mirrored that of the IBM Streams platform. Choosing Python as the programming

language created an easy development experience, both with the framework itself

and the applications that make use of it. The major downside to this approach is

simply the extra work that is involved in developing a new system rather than using

a pre-existing platform. Prism is also in its infant stages, making it largely untested

and having no presence outside of the project, meaning that one must rely entirely

on in-house support.

4.2.4 Parallelizing the Prediction Process

There are a number of potential approaches to parallelizing the prediction process.

One option is to parallelize the testing portion of the process. A single model could

be trained and then distributed, allowing for multiple samples from the testing set to

be predicted concurrently. However, the results of this experiment, which are given

in Table 4.20 and illustrated in Figure 4.11, indicate that a small portion of time is

spent on testing, or making predictions, compared to the amount of time spent on

training the model, particularly for the algorithms that take the most time to run.

As such, there may be limited benefit to speeding up this portion of the process. The

benefit could be improved by drastically increasing the size of the testing set.
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Figure 4.18: PREDICT project framework: effects on queue time by increased number
of cores.

Due to the fact the majority of the time is spent training the model, a logical

option is to target the training portion of the prediction process for parallelization.

The concept behind this involves distributing the training set and consuming multiple

samples from it concurrently to train the model. However, the difficulty or even the

possibility of this is entirely dependent on the algorithm. As it often the case with

parallelizing algorithms, this could prove to be very challenging and would require

expertise and reimplementation of the algorithm. As mentioned in the related work

section, some members of the research community have begun to tackle this problem

for specific algorithms.

These first two options are fine-grained approaches, meaning that the paralleliza-

tion occurs at a low level – the parallelization of consumption of individual data

samples at either the testing or training stage. A more course-grained approach

would be to split the entire data set into multiple portions and train and test on

separate models. For example, rather than train and test on a single model using

a data set of length 20,000, one could train and test on four separate models, each

using a data set of 5,000. The potential drawback of this approach is that, based

on previous experiments, a reduction in training set size could decrease the accuracy.

Depending on the accuracy requirements and size of the data set, this may not be a
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Figure 4.19: Running time of program using Prism framework versus standalone
implementation.

issue, as the tradeoff in speedup may make up for the decrease in accuracy.

When it comes to selecting a platform, the best choice of the three previous

options would be to use the Prism framework or develop another custom framework.

The ideas presented here follow a batch processing approach, which does not fit the

streaming data approach offered by IBM InfoSphere Streams very well. OpenCL is

designed for batch processing, but the overall experience is too troublesome unless

one has sufficient expertise already in-house. There are also other platforms and tools

for parallel processing available which could prove to be better than any of the three

methods offered in this section but we believe this discussion has identified how they

may be evaluated for the task of prediction.

4.3 Summary

A summary of the experiments is provided in Table 4.21. In Experiments 1, 3 and

4, the accuracy and running time of each regression algorithm was measured for

the MLB, Crime Rate and Space Shuttle O-ring Failure data sets. Support vector

machine regression using a polynomial kernel was the worst performing algorithm in

terms of accuracy for all three experiments, which included an inability to fit the
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model to the data in Experiment 4.

In Experiment 5, the results of Experiments 1, 3 and 4 were aggregated to deter-

mine the mean and standard deviation of the accuracy and the mean running time

for each regression algorithm. Support vector machine regression using a linear kernel

proved to be the most accurate regression algorithm.

In Experiment 2, accuracy and running time measurements were taken for regres-

sion algorithms applied to training sets of varying sizes taken from the MLB data

set. The results indicated that as the size of the training set increased, so did the

accuracy improve, although at a diminishing rate. The results also showed a linear

relationship between the size of the training set and the running time.

Experiment 6 showed the accuracy and running time of each regression algorithm

was measured when applied to data sets of the same size, but different sources and

a different number of attributes. It was found that the nature of the data set has

the largest impact on accuracy, but increasing the number of attributes could also

improve accuracy.

The evaluation of classification algorithms began in Experiments 7, 8 and 9. Here,

the measurements on the Letter Recognition, Human Activity Recognition and Con-

tact Lenses data sets showed a mostly inconsistent ordering of accuracy between the

classification algorithms across the three data sets. The best generalization that could

be made was that stochastic gradient descent was amongst the least accurate.

In Experiment 10, the results of Experiments 7, 8 and 9 were aggregated to deter-

mine the mean and standard deviation of the accuracy and the mean running time for

each classification algorithm. The most accurate algorithm was support vector ma-

chine classification using a polynomial kernel. Decision tree classification was around

the middle in terms of accuracy, but was by far the most consistent as measured by

standard deviation.

Experiment 11 revealed that the accuracy and running time of each classification

algorithm was measured when applied to data sets of the same size, but different

sources and a different number of attributes and classes. The accuracy was largely

impacted by both the nature of the data set and the number of classes. A lower

number of classes corresponded to a higher accuracy.

Finally, Experiment 12 showed that approximately 90% of the running time is

spent training the model and 10% is spent making predictions for classification al-

gorithms. This information was used in a discussion of potential approaches to the

parallelization of the prediction process in an effort to improve running time.
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Based on the results of the experiments, we can make generalizations in regards

to the best approaches to making predictions in both regression and classification

problems. For regression problems, it is best to use as many attributes as provided

by the data set and to include as many samples in the training set as possible.

When it comes to choosing an algorithm, linear support vector machine regression

is the overall best choice, as it outperformed the others in accuracy across the three

data sets in addition to having the lowest standard deviation and second best mean

running time. However, linear regression performed particularly well on the MLB

player performance data set when reduced in both training set size and number of

attributes. This may indicate that linear regression is the best choice for data sets

of smaller dimensions, despite slightly worse performance than linear SVM regression

on the extremely small Space Shuttle O-Ring Failure data set.

For classification problems, maximizing the size of the training set is again an effec-

tive approach to improving accuracy. Additionally, if possible, reducing the number

of classes in the data set can greatly improve accuracy. The two standout classifica-

tion algorithms are polynomial SVM and nearest neighbor classification. However,

nearest neighbor classification is by far faster than polynomial SVM classification,

making it the optimal choice.
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Findings Data Set
1 All algorithms were close in accuracy with the best

being Linear SVM.
MLB Player
Performance

2 An increase in size of the training set resulted in
better accuracy.

MLB Player
Performance

3 RBF SVM was the most accurate, closely followed
by Linear SVM and Nearest Neighbor.

Crime Rate

4 Linear SVM was the most accurate. Polynomial
SVM was unable to fit a model to the data, resulting
in extremely poor accuracy.

Space Shuttle O-Ring
Failure

5 Linear SVM was the most accurate and consistent
across the three use cases.

MLB Player
Performance, Crime
Rate, Space Shuttle
O-Ring Failure

6 The nature of the data set had largest impact on
accuracy. A larger number of attributes also lead to
better accuracy.

MLB Player
Performance, Crime
Rate, Space Shuttle
O-Ring Failure

7 RBF SVM was the most accurate, followed closely
by Nearest Neighbor and Polynomial SVM. Nearest
Neighbor was much faster than SVM.

Letter Recognition

8 Linear SVM was the most accurate in the top tier of
algorithms that also included Logistic Regression,
RBF SVM, Polynomial SVM and Nearest Neighbor.

Human Activity
Recognition

9 Gaussian Naive Bayes was the most accurate,
although only one or two misclassifed samples
separated each algorithm due to the size of the data
set.

Contact Lenses

10 Polynomial SVM and Nearest Neighbor were the
most accurate across the three use cases. Nearest
Neighbor was much faster than Polynomial SVM.
Decision Tree Classification has mediocre accuracy
but was by far the most consistent.

Letter Recognition,
Human Activity
Recognition, Contact
Lenses

11 Accuracy was most significantly impacted by the
nature of the data set and the number of classes. A
lower number of classes resulted in better accuracy.

Letter Recognition,
Human Activity
Recognition, Contact
Lenses

12 Approximately 90% of the running time is spent
training the model and 10% is spent making
predictions for classification algorithms.

Letter Recognition

Table 4.21: Summary of Experimental Results.
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Chapter 5

Conclusions and Future Work

The contributions of this thesis fall into the following categories:

• methods for improving regression accuracy

• a comparison of scikit-learn regression algorithm performance when applied to

specific data sets

• methods for improving classification accuracy

• a comparison of scikit-learn classification algorithm performance when applied

to specific data sets

• a discussion of parallelization approaches as applied to prediction

The conclusions given here are based only on the data sets included in the exper-

iments and the scikit-learn Python module implementations of the algorithms.

For regression algorithms, the nature of the data set was shown to have the most

significant impact on prediction accuracy. Some data sets are simply more difficult to

predict than others based on the source of the data, how well the data describes the

actual event and how predictable the event is. An increase in the number of attributes

can also improve accuracy, although its impact is largely overshadowed. Additionally,

prediction accuracy can be improved by increasing the size of the training set.

The best performing regression algorithm was linear support vector machine re-

gression. It provided the best accuracy, lowest standard deviation in accuracy and

second best mean running time across the three regression use cases.

For classification algorithms, the largest impact on prediction accuracy is either

the nature of the data set or the number of classes. A lower number of classes
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corresponded to a higher accuracy. However, each data set differed in both number

of classes and data source, so it was difficult to determine which had the larger impact.

The impact of the number of classes was drastically larger when the training set size

was small. As the size of the training set was increased, data sets with a higher

number of classes tended to “catch up” in accuracy to the data sets with a lower

number of classes.

The best performing classification algorithm was nearest neighbor regression.

Both it and polynomial support vector machine classification had significantly higher

accuracy measurements across the three classification use cases. However, nearest

neighbor was a number of times faster than polynomial SVM.

In regards to running time, there appears to be a linear relationship between

running time and the size of the training set based on the regression algorithms

results. For classification algorithms, approximately 90% of the running time is spent

training the model and 10% is spent making predictions. As a result, targeting the

training step of the prediction process for parallelization is likely the best approach

to improving performance.

There are a number of areas where this work could be expanded upon. In Experi-

ment 2, when plotting the relationship between training set size and running time, it

appears mostly linear with a slight upward curve at the end. It is possible that this

relationship is convex rather than linear, but there was not enough data to continue

exploring the relationship as the training set grew larger. A future experiment might

involve a larger data set and repeating the same process of measuring the running

time for subsets of the training set of different sizes. It may also be useful to use

a data set with more attributes, as this may increase the complexity of training the

model, which could result in an increase in growth rate of the running time. It would

be particularly interesting to repeat this experiment with three very large data sets,

each with a varying number of attributes—say, roughly, 2 attributes, 50 attributes

and 500 attributes.

The purposes of Experiments 5 and 10 were to combine the accuracy and running

time results from the other experiments in order to calculate the means and possibly

draw conclusions related to which algorithms perform the best. These experiments

served their purpose for this work, which was to summarize the results of the other

experiments. However, to truly be able to say which algorithms perform the best

in accuracy and running time in general, these two experiments (one for regression

and one for classification) need to be expanded to include many more use cases. It’s
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difficult to determine what the “correct” number of use cases would be, but a starting

point may be ten for each experiment. These use cases should all come from different

data sources with a wide variety of sizes, number of attributes and in the case of

classification, number of classes in order to broaden the scope of the results.

As part of Experiment 6, the MLB data set was separated into three data sets with

2, 5 and 10 attributes. One of the takeaways from the Experiment 6 results was that,

for the three MLB data sets that came from the same source, the prediction accuracy

improved as the number of attributes increased. The MLB data set was naturally

split into these sets of a varying number of attributes due to the fact that it contained

players of a varying number of years of experience. It would be interesting to extend

this experiment to other, more traditional data sets to see if the findings remain the

same regarding the relationship between accuracy and number of attributes within the

same data set. A possible approach for this would be to take a data set and randomly

select a set number of attributes to be used for training and testing, eliminating

the remaining attributes. This process should be repeated for a varying number

of attributes and each stage should likely be repeated multiple times to “smooth

out” the effects of the randomly selected attributes, as some attributes are likely to

contribute to better to prediction accuracy than others. This experiment would be

particularly useful in providing more findings related to the effect on accuracy due to

a varying number of attributes for classification algorithms, as noted in the results of

Experiment 11.

Experiment 12 measured and compared training and testing time for classification

algorithms on one data set. This experiment was based on the presumption and

observations that typically a larger portion of time was spent training versus testing

and was used as confirmation. This experiment could be extended to more data sets

for classification as well as to multiple data sets for regression. By doing this, it would

build a more complete foundation for the argument that in general, training is more

computationally expensive than testing.

The algorithms used in the experiments were largely applied with the default

parameters set by the scikit-learn library. The purpose of this was to base the results

of the work on an “out-of-the-box” approach. Every experiment could be extended to

any number of additional trials by tuning parameters of each algorithm, which may

result in wide range of accuracy and running time measurements.

The data was not scaled for any experiment. This is a recommended approach

when using support vector machines in order to improve results [5]. When data is not
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evenly scaled, attributes on a larger scale are given a greater weight when training

a support vector machine [88]. While different from tuning the parameters of an

algorithm, this approach could be considered another form of “tweaking”, which may

improve accuracy.

In summary, most of the future work involves extending the current experiments

to include more data sets of different dimensions in an effort to expand and improve

the reliability of the results. There is also a great deal of tuning that could be done

in an effort to improve the accuracy for each algorithm, particularly because there is

a seemingly endless number of combinations and values for the parameters of each

algorithm. Providing a set of guidelines to domain experts would prove very beneficial

for the task of tuning these algorithms.
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Appendix A

Prism source code

# prism

# Written by : Josh Erickson , June 2013

# Updated : Sept 2013

#

# Creates a number o f p r o c e s s e s − one f o r each hos t − and

a l l o w s user to submit j o b s to

# queue . Whenever a hos t i s f ree , i t s proces s w i l l grab the

next j o b in the queue and

# e x e c u t e i t on the the hos t . ’ Jobs ’ are d e f i n e d by user−
g iven program name , f u n c t i o n

# name and arguments . R e s u l t s ( re turned v a l u e from f u n c t i o n )

are s t o r e d in a r e s u l t s

# queue .

#

# Typica l work f l o w : import prism , c r e a t e prism i n s t a n c e and

s e t hos ts , then making c a l l s

# s t a r t ( ) , s u b m i t j o b ( program , funct ion , arguments ) as many

t imes as needed , s top ( ) , r e s u l t s ( )

#

# S e t t i n g s : l i s t o f hos ts , user and password . User and

password do not need to be s e t

# and w i l l be prompted f o r at runtime in t h a t case .
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from f a b r i c . ap i import ∗
from f a b r i c . network import d i s c o n n e c t a l l

from impor t l i b import import module

import mul t i p ro c e s s i ng as mp

import getpass , sys , os

class prism :

in s tance runn ing = None # True i f i n s t a n c e has

been s t a r t e d , Fa l se i f i t has been s topped

job queue = None

r e s u l t s q u e u e = None

r e s u l t s l i s t = None

r e s u l t s p r o c e s s = None

worke r p roc e s s e s = None

execution mode = None # Options : ’Command ’ or ’

PFA’

hos t s = None # L i s t o f worker nodes

r e su l t s mode = None # Options : ’ s t o r e ’ to

s t o r e r e s u l t s in a l i s t , ’ queue ’ to l e a v e in queue

# Assigns any s e t t i n g s t h a t are g iven at i n i t i a l i z a t i o n

def i n i t ( s e l f , hos t s=None , execution mode=’Command ’ ,

r e su l t s mode=’ Store ’ , use r=None , password=None) :

i f hos t s != None :

s e l f . s e t h o s t s ( hos t s )

s e l f . s e t execut ion mode ( execution mode )

s e l f . s e t r e s u l t s m o d e ( re su l t s mode )

i f user != None and password != None :

s e l f . s e t u s e r a n d p a s s ( user , password )

else :
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env . user = None

env . password = None

# One launcher i n s t a n c e i s c r e a t e d f o r each hos t . Takes

j o b s from queue and e x e c u t e s

# them on the hos t ( i . e . remote machine )

def l auncher ( s e l f , q , r , host ) :

i f s e l f . execution mode == ’command ’ :

while ( True ) :

# Get next item in j o b queue

q item = q . get ( )

# I f i t i s SIG PRISM END , i n d i c a t i n g the end

o f jobs , p l a c e SIG PRISM END

# back in queue f o r o ther worker p r o c e s s e s

and re turn from t h i s proces s

i f q item == ’SIG PRISM END ’ :

q . put ( ’SIG PRISM END ’ )

d i s c o n n e c t a l l ( ) # Disconnect

Fabric connec t ions f o r t h i s proces s

return

# P u l l the command to be execu ted from the

queue item

command = q item [ 0 ]

# I f hos t i s l o c a l h o s t , must use ’ l o c a l ’ to

be a b l e to e x e c u t e the command

i f host == ’ l o c a l h o s t ’ :

r e tu rn va lu e = l o c a l (command , capture=

True )

r . put ({ ’ host ’ : host , ’command ’ : command , ’

output ’ : r e tu r n va lu e })
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# Else , we use ’ run ’ to e x e c u t e the command

on a remote hos t

else :

with s e t t i n g s ( h o s t s t r i n g=host ) :

r e tu rn va lu e = run (command)

r . put ({ ’ host ’ : host , ’command ’ : command

, ’ output ’ : r e tu rn va lu e })

e l i f s e l f . execution mode == ’ pfa ’ :

while ( True ) :

# Get next item in j o b queue

q item = q . get ( )

# I f i t i s SIG PRISM END , i n d i c a t i n g the end

o f jobs , p l a c e SIG PRISM END

# back in queue f o r o ther worker p r o c e s s e s

and re turn from t h i s proces s

i f q item == ’SIG PRISM END ’ :

q . put ( ’SIG PRISM END ’ )

d i s c o n n e c t a l l ( ) # Disconnect

Fabric connec t ions f o r t h i s proces s

return

# P u l l the f o l l o w i n g from the queue item .

arguments w i l l be a t u p l e .

program name , function name , funct ion ,

arguments = q item

# Execute the j o b

r e tu rn va lu e = execute ( funct ion , ∗arguments ,

hos t s =[ host ] )

r . put ({ ’ host ’ : host , ’ program ’ : program name , ’

f unc t i on ’ : function name , ’ input ’ : arguments

, ’ output ’ : r e tu rn v a lu e [ host ] } )
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else :

print ( ’ prism . launcher ( ) Error : i n v a l i d

execution mode . ’ )

# Prompt user f o r the password to use on h o s t s

def prompt for pas s ( s e l f ) :

password = getpas s . ge tpas s ( ” Please ente r password f o r

remote hos t s : ” )

return password

# Prompt user f o r the username to use on h o s t s

def prompt fo r use r ( s e l f ) :

user = raw input ( ” Please ente r user f o r remote hos t s :

” )

return user

# Returns a l i s t o f r e s u l t s . This l i s t w i l l on ly e x i s t i f

r e s u l t s m o d e was s e t to ’ s t o r e ’ .

def r e s u l t s ( s e l f ) :

i f s e l f . r e s u l t s l i s t != None :

return s e l f . r e s u l t s l i s t

else :

print ( ’ prism . r e s u l t s ( ) Error : no r e s u l t s l i s t

found , p o s s i b l y because re su l t s mode was not

s e t to \ ’ s t o r e \ ’ . ’ )

# Reads from r e s u l t s queue and puts r e s u l t s i n t o l i s t .

This method shou ld p r o b a b l y never

# be c a l l e d by a user , as i t i s des i gned to be c a l l e d v i a

s t a r t ( ) when i t c r e a t e s a new

# r e s u l t s proces s to handle t h i s .

def r e s u l t s r e a d a n d s t o r e ( s e l f , r e s u l t s l i s t c o p y ) :

while ( True ) :

r = s e l f . r e s u l t s q u e u e . get ( )

i f r [ ’ output ’ ] == ’SIG PRISM END ’ :
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return

r e s u l t s l i s t c o p y . append ( r )

# Set e x e c u t i o n mode

def se t execut ion mode ( s e l f , mode) :

i f s e l f . i n s tance runn ing == True :

print ( ’ prism . se t execut ion mode ( ) Error : cannot

s e t execut ion mode whi l e prism in s t ance

running . ’ )

return

i f mode . lower ( ) == ”command” :

s e l f . execution mode = ”command”

e l i f mode . lower ( ) == ” pfa ” :

s e l f . execution mode = ” pfa ”

else :

print ( ’ prism . se t execut ion mode ( ) Error : i n v a l i d

opt ion . Must be \ ’Command\ ’ or \ ’PFA\ ’ (

Program−Function−Arguments ) ’ )

# Set h o s t s

def s e t h o s t s ( s e l f , hos t s ) :

i f s e l f . i n s tance runn ing == True :

print ( ’ prism . s e t h o s t s ( ) Error : cannot s e t hos t s

whi l e prism in s t ance running . ’ )

return

s e l f . hos t s = host s

# Set the c o n s o l e output l e v e l

def s e t output ( s e l f , l e v e l ) :

i f l e v e l . lower ( ) == ’ none ’ :

output . s t a tu s = False

output . running = False
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# Set r e s u l t s m o d e

def s e t r e s u l t s m o d e ( s e l f , s e t t i n g ) :

i f s e l f . i n s tance runn ing == True :

print ( ’ prism . s e t r e s u l t s m o d e ( ) Error : cannot s e t

r e s u l t s mode whi le prism in s t ance running . ’ )

return

i f s e t t i n g . lower ( ) == ’ s t o r e ’ :

s e l f . r e su l t s mode = ’ s t o r e ’

e l i f s e t t i n g . lower ( ) == ’ queue ’ :

s e l f . r e su l t s mode = ’ queue ’

else :

print ( ’ prism . s e t r e s u l t s m o d e ( ) Error : i n v a l i d

opt ion . Must be \ ’ Store \ ’ or \ ’ Queue \ ’ . ’ )

# Set user and password f o r remote h o s t s

def s e t u s e r a n d p a s s ( s e l f , user , password ) :

i f s e l f . i n s tance runn ing == True :

print ( ’ prism . s e t u s e r a n d p a s s ( ) Error : cannot

s e t user and password whi le prism in s t ance

running . ’ )

return

env . user = user

env . password = password

# Check f o r r e q u i r e d s e t t i n g s , then c r e a t e queues and

worker p r o c e s s e s . Once s t a r t ( ) has been

# c a l l e d , user i s ready to submit j o b s v i a s u b m i t j o b ( )

def s t a r t ( s e l f ) :

# Check i f i n s t a n c e has a l r e a d y been s t a r t e d

i f s e l f . i n s tance runn ing == True :

print ( ’ prism . s t a r t ( ) Error : prism in s t ance

a l r eady running . ’ )

return
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# Check i f h o s t s have been s e t

i f s e l f . hos t s == None :

print ( ’ prism . s t a r t ( ) Error : no hos t s provided . ’ )

return

# I f user and/ or password i s not se t , prompt f o r them

i f env . user == None :

env . user = s e l f . p rompt fo r use r ( )

i f env . password == None :

env . password = s e l f . p rompt for pas s ( )

# Create queues and l i s t to t r a c k p r o c e s s e s

s e l f . job queue = mp. Queue ( )

s e l f . r e s u l t s q u e u e = mp. Queue ( )

s e l f . wo rke r p roc e s s e s = l i s t ( )

# I f r e s u l t s m o d e i s s e t to ’ s t o r e ’ , c r e a t e proces s

to read and s t o r e r e s u l t s to l i s t

i f s e l f . r e su l t s mode == ’ s t o r e ’ :

manager = mp. Manager ( )

s e l f . r e s u l t s l i s t = manager . l i s t ( )

s e l f . r e s u l t s p r o c e s s = mp. Process ( t a r g e t=s e l f .

r e s u l t s r e a d a n d s t o r e , a rgs=( s e l f .

r e s u l t s l i s t , ) )

s e l f . r e s u l t s p r o c e s s . s t a r t ( )

# S t a r t worker p r o c e s s e s

for worker in s e l f . hos t s :

p = mp. Process ( t a r g e t=s e l f . launcher , a rgs=( s e l f .

job queue , s e l f . r e su l t s queue , worker ) )

p . s t a r t ( )

s e l f . wo rke r p roce s s e s . append (p)

s e l f . i n s tance runn ing = True
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# Send SIG PRISM END to s i g n a l p r o c e s s e s to s top

execut ion , then wai t f o r p r o c e s s e s to f i n i s h

def stop ( s e l f ) :

i f s e l f . i n s tance runn ing == False :

print ( ’ prism . stop ( ) Error : prism in s t ance not

running . ’ )

return

# S i g n a l p r o c e s s e s to s top e x e c u t i o n

s e l f . job queue . put ( ’SIG PRISM END ’ )

# Wait f o r a l l p r o c e s s e s to f i n i s h

for p in s e l f . wo rke r p roce s s e s :

p . j o i n ( )

# Empty queue by removing SIG PRISM END

s e l f . job queue . get ( )

# S i g n a l end o f r e s u l t s by p u t t i n g SIG PRISM END in

r e s u l t s queue

s e l f . r e s u l t s q u e u e . put ({ ’ host ’ : None , ’ program ’ : None ,

’ f unc t i on ’ : None , ’ input ’ : None , ’ output ’ : ’

SIG PRISM END ’ })

# I f r e s u l t s m o d e i s s e t to True , wai t on r e s u l t s

proces s to f i n i s h read ing and s t o r i n g r e s u l t s to

l i s t

i f s e l f . r e su l t s mode == ’ s t o r e ’ :

s e l f . r e s u l t s p r o c e s s . j o i n ( )

s e l f . i n s tance runn ing = False

# Submit j o b to queue

def submit job ( s e l f , ∗ args ) :
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i f s e l f . i n s tance runn ing == False :

print ( ’ prism . submit job ( ) Error : prism in s t ance

not running . ’ )

return

i f s e l f . execution mode == ’command ’ :

i f l en ( args ) != 1 :

print ( ’ prism . submit job ( ) Error : i n c o r r e c t

number o f arguments . Execution mode \ ’

Command\ ’ r e q u i r e s one argument . ’ )

return

# P u l l the command to be execu ted

command = args [ 0 ]

s e l f . job queue . put ( [ command , ] )

e l i f s e l f . execution mode == ’ pfa ’ :

i f l en ( args ) != 3 :

print ( ’ prism . submit job ( ) Error : i n c o r r e c t

number o f arguments . Execution mode \ ’PFA

\ ’ r e q u i r e s three arguments : program name ,

function name , job arguments . ’ )

return

# P u l l the program name , f u n c t i o n name , and

arguments f o r the j o b

program name = args [ 0 ]

funct ion name = args [ 1 ]

j o b a r g s = args [ 2 ]

# I f j o b a r g s i s a s i n g l e o b j e c t , put i t in a

t u p l e so t h a t i t can be used p r o p e r l y f u r t h e r

on .

i f not hasa t t r ( j ob args , ” i t e r ” ) :

j o b a r g s = ( job args , )
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# Steps f o r g e t t i n g the a c t u a l f u n c t i o n ”

r e f e r e n c e ”

program = os . path . s p l i t e x t ( program name ) [ 0 ]

program = import module ( program name )

func t i on = g e t a t t r ( program , funct ion name )

# program name and function name are i n c l u d e d f o r

the purpose o f i d e n t i f y i n g r e s u l t s .

# f u n c t i o n i s the a c t u a l r e f e r e n c e to the

f u n c t i o n to be run and args are the

# arguments to be passed to t h a t f u n c t i o n when i t

i s execu ted .

s e l f . job queue . put ( [ program name , function name ,

funct ion , j o b a r g s ] )

else :

print ( ’ prism . submit job ( ) Error : i n v a l i d

execution mode . ’ )
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