Implications of shallow groundwater and surface water connections for nitrogen movement in typical Boreal Plain landscapes

by

Amy Vallarino B.Sc., University of Guelph, 2009

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Geography

©Amy Vallarino 2014 University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author.

Supervisory Committee

Implications of shallow groundwater and surface water connections for nitrogen movement in typical Boreal Plain landscapes

by

Amy Vallarino B.Sc., University of Guelph, 2009

Supervisory Committee

Dr. John Gibson, Department of Geography Supervisor

Dr. Jean Birks, Department of Geography Co-Supervisor

Abstract

Supervisory Committee

Dr. John Gibson, Department of Geography Supervisor Dr. Jean Birks, Department of Geography Co-Supervisor

This thesis examines both surface water and shallow groundwater connections in boreal watersheds at two study sites in the Athabasca Oil Sands Region using conventional hydrological techniques as well as stable water isotope techniques. Increased emissions due to oil sands development are expected to contribute significantly to acidifying airborne emissions. Specifically, nitrogen is forecasted to be deposited on the surrounding area within approximately 100 km of operations. The purpose of the research is to provide background information for predicting how individual terrain units such as fens, bogs, and uplands will respond to increased nitrogen loads, and to assess whether or not these units will act as sources or sinks of nitrogen under higher nitrogen deposition.

Two study sites situated within 100 km of Fort McMurray, Alberta were instrumented with a total of 30 nested piezometers, 26 water table wells, 4 micro-meteorological stations, and two gauging stations (weirs) at outflow points. Monitoring occurred during the open water season of 2011 and 2012. This study estimates evaporation through a simplified energy balance, documents hydraulic conductivity of shallow aquifers, utilizes stable isotopes of water to assist in mapping seasonal flow patterns, and calculates a vertical water balance for the sites. Bogs and fens were hydrologically connected, as bogs fed fens laterally at shallow depths within the acrotelm during wet years. Upland terrain units were found to have more variable connections. In spring, upland runoff recharged the wetlands at both sites. At JPH groundwater flowed towards the fen, whereas in ML limited connections were observed between the uplands and the fen. Also, no connections were seen to indicate that the wetlands recharged the uplands. A

conceptual model is developed that emphasizes the role of connectivity in the boreal landscape. The main implication for nitrogen cycling is that it is difficult to quantify one landscape as a source or sink for additional nitrogen as its role may vary depending on seasonality and temporal scales. Further work is needed to identify if nitrogen loadings will have adverse affects on geochemistry of water at the sites.

Supervisory Committee	ii
Abstract	iii
Table of Contents	v
List of Tables	vii
List of Figures	viii
List of Appendices	xi
Acknowledgments	xii
1.0: Introduction	1
1.1 Background in region	1
1.2 Objective	3
1.3 Experimental design	4
1.4 Study area	7
1.5 Wetlands	10
1.6 Uplands	13
1.7 Conceptual model of connectivity for uplands-fens-bogs in the Boreal Plains.	15
2.0 Shallow groundwater flow in the mosaic of terrains of the Boreal Plains	20
2.1 Introduction	22
2.2 Study sites	25
2.3 Field methods	27
2.3.1 LiDAR acquisition and DEM interpolation	27
2.3.2 Groundwater methods	28
2.3.3 Water sampling	32
2.4 Results and discussion	33
2.4.1 Surficial flow patterns from the Digital Elevation Model	33
2.4.2 Hydraulic conductivities	38
2.4.3 Groundwater hydraulic gradients	41
2.4.4 Stable Water Isotopes Results	53
2.4.5 Active recharge zone	60
2.5 Implications on groundwater connectivity and nitrogen transport	65
2.6 Terrain unit roles of fen, bog and upland for connectivity	68
2.7 Summary	69
3.0 Examination of surface runoff in the bogs, fens and uplands of the Boreal Pla	i ns . 70
3.1 Introduction	72
3.2 Study site	74
3.3 Field methods	
3.3.1 Groundwater monitoring	
3.3.2 Outflow gauging methods	77
3.3.3 Water sampling for isotopes and geochemistry	77
3.3.4 Micro-meteorological methods	80
3.3.5 Energy balance	82
3.4 Data analysis	83
3.4.1 Vertical water balance	83

Table of Contents

3.4.2 Antecedent precipitation index	85
3.5 Results and discussion	87
3.5.1 Precipitation, Evapotranspiration and Water levels	87
3.5.2 Vertical water balance	89
3.5.3 Statistical analysis of VWB	
3.5.4 Antecedent moisture variations in ML	
3.5.5 Lateral movement of water	
3.5.6 Fill and spill in the Boreal Plains and runoff	
3.5.7 Implications to nitrogen movement in these ecosystems	105
3.6 Summary	106
4.0 Conclusion	
4.1 Significance to the project	
4.2 Limitations	111
4.3 Future research	
References	
Chapter 1	
Chapter 2	122
Chapter 3	127

List of Tables

Table 2. 1 The mean seepage flux for 2011 and 2012 from the average vertical hydraulic	;
gradient (VHG) at nested piezometers at ML. Negative values indicate a recharging flux	ζ
of water. – is no data collected 4	.9
Table 2.2 Average and range of δ^{18} O and δ^{2} H stable isotopes of water at different depths	5
and landscape units for 2011 and 2012	5
Table 3 1 Overview of field measurements methods	21
Table 5. 1 Overview of field measurements methods	1
Table 3. 2 Quantitative framework for classifying antecedent moisture conditions 8	6
Table 3.3 Runoff potential rate for 2011 and 2012. Mariana Lakes site is represented by	
the fen and the bog; JPH is represented by the rich fen	0

List of Figures

Figure 1. 1 The two study sites are situated in Alberta, Canada, in the Boreal Plain region, coinciding with the Athabasca oil sands deposit and the Lower Athabasca Regional Plan (LARP) area. Study sites are: Mariana Lakes to the south and JPH to the north
Figure 2. 1 Study sites are situated in the province of Alberta (left), A is ML and B is JPH
Figure 2. 2 Transects used for flow nets at JPH site, one runs east-west in red transecting the uplands and the fen in red, another follows an upland flowpath southeast –northwest in yellow, and the final transect in green follows the rich fen running southeast to northwest
Figure 2.5 JPH watershed with sub-catchments (A, B and C) and potential surficial flow tracks Black line indicates a watershed divides between the sub-catchments seen in the inset of the area. Sub-catchments are labelled A, B, and C from west to east, respectively. Locations of piezometers are in circles and water table wells in squares
Figure 2.8 Map views showing groundwater flow interpretation at JPH for 2011 using potentiometric contours with flow arrows at 0.5 m for shallow ($\sim < 2$ meters below the surface) and intermediate (~ 4 m below the surface) wells. Seasons represented here are spring (June) summer (August) and fall (October). Vertical hydraulic gradients directions are indicated by (+) for recharging conditions and (-) for discharging conditions

wells. Seasons represented here are spring (June) summer (August) and fall (October). Vertical hydraulic gradients directions are indicated by (+) for recharging conditions (for Figure 2.11 Map views showing groundwater flow interpretation at ML for 2012 using potentiometric contours with flow arrows at 0.05m for surface wells, and at 0.5 m for shallow (~ 2 meters below the surface) and intermediate (~ 2 to 4 m below the surface) wells. Seasons represented here are spring (June) summer (August) and fall (September). Vertical hydraulic gradients directions are indicated by (+) for recharging conditions (for Figure 2. 12 Hydraulic head contours in the uplands and rich fen at JPH (equipotential lines) at 0.5 m intervals with interpreted groundwater flow for a) Aug 24, 2011 with a Figure 2.13 Hydraulic head contours at JPH in the upland transect in left panels and fen transect in right panels (equipotential lines) at 0.5 m intervals with interpreted groundwater flow for a) Aug 24, 2011 with a low water table and b) on Sept 12, 2012..52 Figure 2.14 The isotopic composition of precipitations collected at JPH site for the 2012 field season, with the LMWL defined for Edmonton defined by Rozanski et al. 1993...54 Figure 2. 15 Summary box plots of all isotopes form 2011 and 2012 for δ^{18} O (bottom) panel) and $\delta^2 H$ (top panel), into distinct landscape units at specific depths for both ML and JPH......56 Figure 2.16 Delta delta plots of isotopic composition of waters for both 2011 and 2012 for JPH (on top) and ML (on bottom). Water samples are plotted in vegetation type, bog in red, fen in black and uplands in grey. The GMWL is based on Craig (1961) and the Figure 2.17 Delta-delta plots showing isotopic composition of waters for late spring, and early and late summer at both study sites for 2012. Left panels correspond to JPH and the right to ML. Upper panels show June conditions whereas lower panels show August conditions. Water samples are distributed into surface waters i.e. from water table wells (black circles), shallow piezometers i.e. ~1 to 2 m deep (red circles), intermediate piezometers i.e. ~ 2 to 4 m deep (green triangles), and deep piezometers i.e. ~ 4 to 7 m deep (yellow triangles). The GMWL is based on Craig (1961) and the LMWL is based on observations at Edmonton (Rozanski et al. 1993). The LEL is local evaporation line Figure 2.18 Delta-delta plots showing isotopic composition of waters during early and late summer at both study sites for 2011. Left panels correspond to JPH and the right to ML. Upper panels show June conditions whereas lower panels show August conditions. Water samples are distributed into surface waters i.e. from water table wells (black circles), shallow piezometers i.e. ~1 to 2 m deep (red circles), intermediate piezometers i.e. ~ 2 to 4 m deep (green triangles), and deep piezometers i.e. ~ 4 to 7 m deep (vellow triangles). The GMWL is based on Craig (1961) and the LMWL is based on observations at Edmonton (Rozanski et al. 1993)......59 Figure 2.19 Isotope depth profiles for select piezometer locations for 2011 and 2012 in Figure 2.20 Isotope depth profile with select piezometer locations for 2011 and 2012 in

Figure 3.2 Schematic of d-excess parameter adapted from Froehlich et al 2002 for application to wetlands. The global meteoric water line (GMWL) has a d excess = 10 and a slope of 8, as defined by Craig (1961). The local evaporation line has a slope of less than 8 and a variable d-excess based on moisture conditions. In this figure, a decrease in d-excess represents an evaporative loss of water, while an increased d-excess would Figure 3.3 Summary of water table levels, cumulative evapotranspiration, and Figure 3.4 Vertical water balance for each terrain unit in 2011 on left and 2012 on right. JPH is represented by the rich fen and ML by the fen and bog. Error bars represent range of runoff from all wells within the represented terrain. The dash line at 15 mm indicates the approximate (and assumed) runoff threshold. Hydraulic head of adjacent shallow upland wells (ML (P6, P13), and JPH (P10) are plotted with respective scales, reference Figure 3.5 Mean runoff potential differences for terrain units. Fen and bog are at ML, and JPH represents a rich fen for 2011 and 2012. Results from Tattrie's (2011) findings are Figure 3.6 Examples of water level response for water table wells during 2011 situated in the fens and bogs under low (left), medium (centre) and medium (right) AMC. Stacked graphs are on the same time scale and the water level corresponds with being below an Figure 3.7 Examples of water level responses for water table wells during 2012 situated in the fen and bog under low (left), medium (centre), and high (right) AMC. Stacked graphs are on the same time scale and the negative water level corresponds with being Figure 3.8. D-excess of ML for 2011 and 2012 across different terrain units (bog and fen) along a flowpath with trend line representing surface water table wells. The dotted line represents weighted mean d-excess of Edmonton's local meteoric water line (Rozanski et Figure 3.9 D-excess for ML in 2011 on the left and 2012 on the right representing surface water table wells. The dotted line represents weighted mean d-excess of Edmonton's local meteoric water line (Rozanski et al. 1993).....101 Figure 3.10 D-excess examined with distance along the flowpath with P10 representing zero distance following this flowpath sequence P10, O, S, P19, N, Q, E, P18, P17, and G as the final distance along the flowpath. The top graphs represent shallow wells (~0-2 m depth) and the bottom represents intermediate wells (\sim 2-4 m depth). The dotted line represents weighted mean d-excess of Edmonton's local meteoric water line (Rozanski et Figure 3.11 D-excess for JPH fen, on the left is 2011 and on the right is 2012 representing surface water table wells. The dotted line represents weighted mean d-excess

List of Appendices

Appendix 1 Hydraulic Conductivity	
Appendix 2 Hydraulic Head	
Appendix 3 Stable Water Isotopes	
Appendix 4 Water Level Loggers on a Daily Time Step	
Appendix 5 Meteorological Station	

Acknowledgments

I would like to thank my supervisor, John Gibson, for the patience he has shown with me and his support as well as guidance throughout this entire process. He continued to raise the bar higher for me as a student. I would also like to thank Jean Birks for all the resources she has provided and her effort in this project. She has given a lot of important insight into this thesis that refined it into a more concise piece of literature.

This project would have not been possible without the technical and field support provided by numerous people including: Kevin Tattrie, Caren Kusel, Ed Bryson, Mike Moncur, Yi Yi, and Kent Richardson. I am indebted to my friends and family for their editorial support and suggestions which greatly improved the quality of this manuscript.

I would like to acknowledge CEMA for funding this project, the additional financial support from the Northern Scientific Training Program, and Alberta Innovates Technology Futures for the office space that they provided me for the duration of this study. Finally, I would like to thank the staff of the Geography Department at the University of Victoria.

1.0: Introduction

1.1 Background in region

The Athabasca Oil Sands Region (AOSR) is an industrial area situated in Northern Alberta's Boreal Plains surrounding the city of Fort McMurray (Figure 1.1). This area developed rapidly beginning in the 1970s because of its rich oil deposits, and increasing global demand for oil is expected to continue over the next few decades. Production has risen to approximately 1.8 million barrels of oil per day (Jasechko et al. 2012). Development of bitumen refining and expanding transportation demands in the AOSR has resulted in increased sulphur and nitrogen emissions. These oxides are deposited onto the landscape through wet and dry deposition (Allen 2004; Schlindler et al. 2006) and can vary spatially and temporally (Hazewinkel et al. 2008; Bytnerowicz et al. 2010). Elevated levels of nitrogen species from emissions are reported in the 30 km radius of industry (Proemse et al. 2013). Research suggests deposition of these oxides can contribute to acidification of terrain types and regional areas (Carou et al. 2008). Efforts to understand the impacts on the landscape are being examined, and nitrogen deposition onto the landscape from emissions is a key concern.

The Province of Alberta created a regional multi-stakeholder group known as the Cumulative Environmental Management Association (CEMA) to assess and manage environmental impacts of industry in the region of Fort McMurray. For characterization of acid deposition, CEMA concluded that higher resolution was needed in the AOSR for air, soils and lakes (CEMA 2004). Previous work completed by CEMA through the NO_xSO₂ Management Working Group (NSMWG) has outlined a framework for the management

of nitrogen impacts (CEMA 2013). Management strategies were monitoring and modelling of air, soils, and lakes for regulatory decisions and the assessment of regional acidification risk (CEMA 2004). One of the management strategies used to assess the regional sensitivity to acid deposition was dynamic analyzes of critical loads of acidity that resulted in a variety of management actions (CEMA 2004).

To quantify critical loads of acidity for lakes, previous researchers used acid neutralizing capacity, water yields values on catchments, and base cation concentrations as noted below. This work was completed for lakes in the study region using the model of Steady State Water Chemistry (SSWC) and for forested uplands using the Model of Acidification of Groundwater in Catchments (MAGIC) (Curtis et al. 2010; Gibson et al. 2010a&b; Whitfield et al. 2010). General results revealed critical loads of acidity were not being reached in the region. Estimates were made for lakes and uplands; however, limited work has been completed that represents a more holistic approach that considers the mosaic of the landscape. Whitfield et al. (2010) suggests that understanding the biogeochemistry of components that comprise the landscape (i.e. uplands, bogs, fens, peat-pond complexes) may be important to develop a more complete picture of the effects of nitrogen loads on these individual terrain units and the potential transfer between them.

To further the understanding on the state of knowledge on setting critical loads of acidity to the region, a new multi-disciplinary research project was initiated and funded by CEMA to assess the overall response of two ecosystems consisting of jackpine uplands and wetlands (fens and/or bogs) to nitrogen deposition. The approach combines biogeochemical and ecological characterization of specific terrain units with hydrological assessments to better understand the potential for connectivity of the landscape. This approach uses an integrated watershed framework to examine the impact of nitrogen deposition on the overall ecosystem. The two major components of this project included fertilization experiments conducted at each of the terrain types where nitrogen was added and the plant response was studied in detail, as well as hydrological studies that looked at the movement of water and nutrients between different terrain types. This thesis focuses on the hydrological connectivity between different terrain units typical of boreal catchments in the AOSR. Examining these connections between different terrain units will help identify how the landscape may respond, process, store and/or utilize projected increases in nitrogen deposition.

The hydrological component of the research program commenced in 2011, led by researchers at the University of Victoria, and is organized into two sub-components. One of the sub-components is investigating the geochemistry of the ecosystems. The second sub-component, described herein, is focused on characterizing the hydrological connectivity between different terrain units within the study ecosystems. Understanding the connectivity between different terrain units gives insight into the movement and fate of nitrogen on and within the landscape.

1.2 Objective

The aim of this study is to characterize and quantify the hydrological linkages between uplands, fens, and bogs typical of a mosaic landscape in the AOSR. The results of this study will help to refine the conceptual models of nitrogen fluxes and critical loadings of acidity for the region.

To measure the hydrological linkages between the terrain units of interest, this study combines traditional hydrological and hydrogeological methods with stable isotope tracers. This study has two objectives:

- 1. To identify potential surface and subsurface flowpaths between uplands, fens and bogs (described in Chapter 2). This is primarily accomplished through characterization of hydraulic conductivities, hydraulic gradients, and stable water isotope tracers.
- To identify areas with the greatest potential to generate surface runoff (Chapter
 3). This is completed using vertical water balance calculations combined with stable water isotope tracing.

1.3 Experimental design

This study uses data collected between 2011 and 2012 from two field sites located in the AOSR (Figure 1.1). The field sites were selected based on the presence of nutrient poor jack pine uplands, ombrotrophic bogs, and minerotrophic and nutrient poor fens. A single field site that contained a good representation of all of these units was not found so two sites had to be used. One of the sites, Jack Pine Hill (JPH), is situated north of Fort MacKay (57.12186°N, 111.44363°W) and the second, Mariana Lakes (ML), is situated south of Fort McMurray (55.89859N°, 122.08965°W). Both sites were selected to have minimal background exposure to excess nitrogen. JPH is an upland dominant site with a rich minerotrophic fen. ML is a peatland-dominated site comprised of an ombrotrophic bog and a poor fen. ML also has pockets of upland areas and islands. The study sites are described in more detail in Chapters 2 and 3.

Figure 1. 1 The two study sites are situated in Alberta, Canada, in the Boreal Plain region, coinciding with the Athabasca oil sands deposit and the Lower Athabasca Regional Plan (LARP) area. Study sites are: Mariana Lakes to the south and JPH to the north.

Nitrogen amendment studies were conducted in plots located on each of the terrain units of interest. The hydrological monitoring focused on establishing sampling points for the measurement of hydraulic parameters and obtaining water samples from each of the terrain types, as well as measuring water and solute movement between terrain types. The hydrological monitoring was also established to complement the nitrogen amendment studies underway at plots nearby. The ML and JPH field sites were instrumented in the summer of 2011, and data was collected during the summers of 2011 and 2012. Site instrumentation details are provided in Chapters 2 and 3. Data sources included automated instruments, manual measurements, and water sampling.

1.4 Study area

AOSR is located in the Boreal Plains region consisting of a mosaic of uplands, wetlands, and aquatic ecosystems. This region is characterized as sub-humid, often experiencing more potential evapotranspiration than precipitation (Devito et al. 2005). The long term average annual precipitation recorded during 1971-2000 at the Fort McMurray airport is 445 mm, of which 155 mm fell as snow and 342 mm as rain. The daily average air temperature for July and January were 16.8 °C and -18.8 °C, respectively (Environment Canada 2012).

Climate and geology determine the catchment hydrology of the region (Devito et al. 2005). The only significant topographical features in the area are the Stony Mountains south of Fort McMurray and the Birch Mountains to the west of the city. The Athabasca and Clearwater Rivers are the dominant hydrological features on the landscape and have carved deep river valleys; and are fed by smaller tributaries, such as the Firebag and Muskeg Rivers to the north of Fort McMurray, as well as the Christina, Hangingstone and Horse Rivers to the south.

The geology of the Province of Alberta consists of three main regions: the Canadian Shield (to the north of Fort McMurray), the Rocky Mountains (to the west), and the

Interior Plains making up the majority of the landscape. The Interior Plains bedrock geology consists of Quaternary sediment overlying Cretaceous and Devonian formations consisting of shales, sandstones, and limestones (Barson et al. 2001). The Cretaceous deposit is a relic of marine life and is now bitumen. The McMurray formation, having a large abundance of bitumen, is located in a delta region of the prehistoric lake. This formation has surficial outcrops north of Fort McMurray and can be seen in river valley incisions near where the Clearwater and Athabasca Rivers meet, and increases in depth to the south and west.

The surficial geology from the Quaternary formations is defined by glaciofluvial and glaciolacustrine deposits that can exceed 300 m depth (Andriashek and Atkinson 2007; Fenton et al. 2013). These deposits are a mix of sands, silts, and tills deposited during the Wisconsin Glaciations period by the Laurentian ice sheet during its advances and retreats. As well, during the retreats river channels formed which are now abandoned, buried, and infilled. They are generally linear features defined by sands (Andriashek and Meeks 2001). The depositions of fine grain soils, in combination with the climate, have resulted in the abundant presence of wetlands, bogs and fens in this region. The surficial geology of both study sites is seen below in Figures 1.2 and 1.3.

Figure 1.2 The surficial geology at the JPH site (Alberta Research Council; Alberta Geological Survey; (Bayrock, 2006)).

Figure 1. 3 The surficial geology for ML site (Alberta Geological Survey; (Campbell et al., 2002)). 1.5 Wetlands

Wetlands are extremely important because of the large range of ecological (Schindler and Lee 2010) and hydrological (Turner et al. 2000) services they provide. As well as contributing to the dominant ecosystem type in the AOSR, these landscapes act as large carbon sequestration pools (Gorham 1991), and serve important biogeochemical functions (Bowden 1987; Prepas et al. 2006).

According to the National Wetlands Working Group (1997), wetlands are defined by a long term water presence that encourages hydrophilic plant growth. There are two main classes of wetlands: minerotrophic (lack peat accumulations < 40 cm and both groundwater and precipitation fed) and ombrotrophic (consisting of peat > 40 cm, and only precipitation fed). Further sub-classification of wetlands is defined by plant communities, nutrients, chemistry and water levels (Halsey et al. 2003).

Surficial topographic geology, consisting of poorly drained clay soils (Fenton et al. 2013) along with persistent high water tables, help to drive the accumulation of peat in this region (Zoltai and Vitt 1990). An additional driver is lower temperatures resulting in decreased rates of plant decomposition. Wetlands prevail in low lying areas and account for approximately half of the landscape in the AOSR (Vitt et al. 2001).

Vegetation found in ombrotrophic bogs is dominated by sphagnum mosses (*Sphagnum angustifolium, S. magellanicum, and S. fuscum*), and in nutrient poor fens, mosses (sphagnum and feather), and graminoid species (*Carex*) (Halsey et al. 2003). Common trees in these regions are tamarack (*Larix laricina*) and black spruce (*Picea mariana*). Slightly acidic conditions exist in these wetlands because of the decomposition of sphagnum species that cause organic acid to disassociate in the process (Siegel et al.

2006). Ombrotrophic bogs only receive atmospheric inputs (i.e. wet and dry atmospheric nitrogen), in comparison to fens, which receive inputs through atmosphere, through-flow of surface water, and groundwater (Bowden, 1987).

Numerous biological and hydrological factors influence the overall biogeochemistry of wetland systems. The vegetation and microbial communities can affect the transformation, cycling, and utilization of nutrients, including nitrogen. For example, the location of the water table is essential to the translocation of ammonium from within pore water in the moss mats upwards into sphagnum species (Aldous 2002).

A knowledge gap still exists about the importance of temporal variations in hydrology on the biogeochemistry of wetlands. Work in Europe has indicated that changing water levels in wetlands can result in changes in nutrient concentrations (Bougon et al. 2011). Nitrate concentrations were found to increase under wet hydrological regimes, and decrease during drier periods when water levels are drawn down. Bougon et al. (2011) found that the greater degree of connectivity in wetlands under wetter hydrological regimes resulted in increased fluxes of nitrogen because of increased oxygen from an adjacent stream. During the freshet, hydrological flowpaths have been shown to deliver increased dissolved organic nitrogen species, but not dissolved inorganic nitrogen; however, only a small portion was reported as exported out of the catchment (Petrone et al. 2007). This suggests that retention of nutrients occurred due to biogeochemical responses within the wetland. Two hydrologic functions become important to the cycling of nitrogen in wetlands: 1) variations in water table level and 2) upland connections. The sinusoidal seasonal cycle for water tables in wetlands result in high fluxes of nitrogen species in the spring, followed by lower fluxes during summer in a dry cycle which is important for the overall natural abundance of nitrogen species present on a temporal scale (Cirmo and McDonnell 1997; Inamdar 2007). Fluctuations from high to low levels of the water table create different aerated locations within the wetland, which in turn can affect the biogeochemical processes that can occur. Aerobic conditions result in greater retention and transformation of nitrogen species (Cirmo and McDonald 1997; Pelster et al. 2008). Periodic rain events and the freshet can stimulate connections from the upland via overland flow which can add new sources of nitrogen into wetlands. Quantifying the overall fluxes of nitrogen within the boreal wetlands must consider overland flowpaths, groundwater connections, and site geomorphology (Price et al. 2005).

Along with hydrology, micro-topography and microclimate may also influence the movement and cycling of nutrients. Within peatlands, nitrogen cycling is dependent on the moisture conditions. During wet conditions nutrients accumulate in the hollows; in contrast, high evaporation causes capillary uptake of nutrients into hummocks (Eppinga et al. 2010). As well, spatial distribution of nutrients may be associated with micro-topography because of hydrologic connections (Macrae et al. 2012).

1.6 Uplands

Upland portions of the AOSR are consistent with much of the Boreal forest of North America. Typical forests are dominated by jack pine (*Pinus banksiana*), an early successional species; however, other common trees found in this area are black spruce (*Picea mariana*), white spruce (*Picea glauca*), lodgepole pine (*Pinus contorta*) and birch (*Betulaceae betula*). Although not present at our study sites, aspen (*Populas tremuloides*) is found throughout the area. Fire is a common renewing factor for stands in the AOSR, resulting in monocultures of even aged stands of jack pine (Carroll and Bliss, 1982).

Ground vegetation in these Jack pine upland areas is minimal. The soil has a low moisture holding capacity due to a limited or absent clay content in glacial-fluvial and aeolian sands. In mature stands of jack pine it can be common to find exposed soil with no established vegetation (Carroll and Bliss et al. 1982). In addition, the generally nutrient poor soil of the boreal forest also results in limited forest floor vegetation. Specific to open jack pine stands, vegetation is strongly dominated by lichen (*Cladina*), labrador tea (*Rhododendron tomentosum*), and blueberry (*Vaccinium corymbosum*). The main source of nitrogen inputs onto these landscapes is natural forest fires (Chanasyk et al. 2003). As well, nitrogen is the limiting nutrient in the carbon nitrogen soil ratio, and forest growth in the AOSR is related to nitrogen inputs (Yan et al. 2012).

The capability of nutrient retention in uplands forests and underlying soils is greater than wetlands (Pelster et al. 2008). Common soils of this region are Luvisols, with a greater presence of clays and tills, and Brunisols, dominated by sands (Ecological Stratification Working Group 1996). The sandy substrate typical of the upland areas has a low cation exchange capacity. The increased presence of clays and organic matter within the soil matrix will increase the buffering capacity of uplands for acid disposition (Whitfield et al. 2011). Finally, to maintain the soil's pH, a balance is needed between acid (H^+ and Al^{3+}) and basic (Mg^{3+} and Ca^{2+}) cations.

Given the high hydraulic conductivity of the sandy sediments common in upland areas, flow from the surface of these uplands is largely vertical until either the water table is met or is intercepted by a slower hydraulically conductive substrate (Redding and Devito 2008). In both cases, the eventual result can be lateral flow. Therefore, hydrogeology and hydrology within these upland areas plays an important role in transport of nutrients between uplands areas and the adjacent wetlands.

Previous forestry-related research in the Boreal Plains, and specifically within the AOSR, has focused on the exchange of nutrients and phosphorus from upland areas into adjacent fens and waterways (e.g. Devito et al 2000). Yet, compared to other forested regions of North America, such as the eastern Boreal or western Cordillera, runoff between uplands and wetlands is much smaller in the Boreal Plains (Devito et al. 2005). This is mostly because of the sub-humid climate, limited relief and soil frost. Researchers have also noted that uplands and wetlands sometimes are often weakly connected due to infrequent episodes of runoff (Devito et al. 2012).

1.7 Conceptual model of connectivity for uplands-fens-bogs in the Boreal Plains

Based on what has been reported in the literature, a conceptual model was constructed for the study sites (Figure 1.4), to be used as the framework for the hydrological research component of the CEMA project. It identifies expected connections between uplands, fens and bogs. To identify the connection most likely to exist we have taken into account two prior models that identify connections in peatlands. The first is a surface model that assumes all inputs (such as water) are gained surficially into the system (Reeve 2000). This is based on the assumption of a decreasing hydrological conductivity with depth and minimal to no groundwater input. The second is defined as the dispersion model (Reeve 2001), which allows for mixing of waters at depths within large peatlands.

Figure 1. 4 A Schematic of the conceptual model of our sites is shown. Connections and directions are indicated by arrows. The water table location is depicted by the triangle. Different arrow colors and patterns indicate different source of water for a connection.

The basic assumptions of this conceptual model are that uplands are connected to wetlands through overland flow. This overland flow is dominated by snowmelt, as has been recorded by others (Petrone et al. 2007). As well, uplands may recharge wetlands in the spring in the shallow groundwater and vice versa in the fall (Hayashi et al. 1998).

Bog terrain units are defined as bathtub catchments that receive the only input from precipitation (snow and rain) with high rates of evaporation and continuous or episodic outflow (Gibson et al. 2000). Specifically, bogs have a larger storage capacity based on increase terrain roughness. In the past bogs have been considered to be hydrologically isolated, receiving only inputs from precipitation, but our conceptual model includes the potential outflows from these types of units. Flow away from bogs can occur when the recharge exceeds the storage threshold for water in the acrotelm (the living layer of peat), and may spill into the adjacent fens. We have also included a deeper flowpath of bog surface water into the fen water as was modelled by Reeve (2001).

Fens are characterized by receiving water through precipitation, surface through-flow, groundwater, and from adjacent uplands. Fens can also discharge water to uplands and groundwater via hotspots, which are heterogeneous areas within the peatland that have dissimilarities of thickness, porosity, and hydraulic conductivity allowing for a hydrological connection. *Hotspots* are recognized as exhibiting stronger connections via hydrological and biogeochemical functions (Morris et al. 2011). In addition, fens may undergo fluctuation in hydraulic gradients with upward gradients when evapotranspiration exceeds the precipitation in the summer, and downward hydraulic

gradients when precipitation exceeds the evapotranspiration in the spring (Fraser et al. 2001).

Runoff water is assumed to be a mixture of surface water (water found in the acrotelm) and peat water (water found in the peat that is below the acrotelm). Evapotranspiration will occur across all terrains. The design of the study was to evaluate, and where possible, to quantify the hydrological properties and connectivity identified in this conceptual model, with the goal of understanding the potential transport of nitrogen between these terrain types.

Although not necessarily explicitly identified in the conceptual model, seasonality is an important factor that influences the hydrological connections between uplands, fens, and bogs in Boreal Plains, as it is highly variable and dynamic. To account for this factor the conceptual model identifies two different water table levels, high and low. We hypothesize that in the spring wetlands contribute to the surface flow regimes dominated with snowmelt runoff. As moisture depletes, wetlands play a greater role in subsurface flow as is identified in the low flow scenario. Researchers have found that as storage thresholds in wetlands deplete, the hydrological functions change from discharging to recharging (Ferone and Devito 2004). In addition, depending on the degree of saturation, wetlands may recharge in a dry year and discharge in wet years (van der Kamp and Hayashi 2009). As a result, the magnitude of runoff from catchments is variable in time.

This thesis is organized as follows. Based on the conceptual model (Figure 1.4), Chapter 2 examines potential movement of water within shallow groundwater (including peat water) in the bog and fen to the surrounding upland. Connections identified in the conceptual model are examined to assess if they are valid for the study sites. Chapter 3 focuses on surface water movement between terrain units. Both chapters also address the role antecedent moisture condition in water table fluctuations.

Each chapter is designed as a stand alone manuscript, resulting in some repetition in the site descriptions and methods. Overall this thesis contributes to the overarching goal of understanding the potential transport of nitrogen between these terrain types by focusing on characterization and better understanding of hydrological connections among key landscape components.

2.0 Shallow groundwater flow in the mosaic of terrains of the Boreal Plains

Abstract

Surface and groundwater flowpaths may act as conduits for the movement of dissolved nitrogen species in Boreal landscapes in the Athabasca Oil Sands Region (AOSR). This study combines traditional hydrological and hydrogeological methods, as well as stable isotopes of water to identify and characterize surface and groundwater flow. Two sites were instrumented with water table wells and shallow piezometers (< 8 m-depth) in the area of Fort McMurray, Alberta, and monitored during 2011 and 2012, to characterize the surface and subsurface flowpaths and connectivity between bogs, fens, and uplands typical of the Boreal Plains landscape.

Hydraulic conductivity had a large range at both sites, with a general decrease in hydraulic conductivity with depth in fen and bog units (averaging 2.3x 10⁻⁶ ms⁻¹) at both sites. Large vertical hydraulic gradients were found primarily to arise from very low hydraulic conductivity of compact peat at the base of the fens and bogs. Lateral hydraulic gradients showed the potential for groundwater flow from the uplands to the fens, and limited to negligible groundwater flow from the wetlands to the uplands. The connectivities between uplands, fens, and bogs differed between the two sites due to differences in hydraulic connectivity. Stable water isotopes indicate seasonal variations in the sources of water in shallow (<2 m) upper layers of fens and bogs, but below this depth the stable isotopic signature is more stable and representative of long-term weighted averages, especially in bogs. A few exceptions are noted for piezometers in the fen at ML (P17, P18). Spatial and temporal variability in the connectivity of adjacent

terrain units is a major feature of the landscape and makes it difficult to classify terrain units either as potential sources or sinks of nitrogen for the purposes of critical loads assessment.

2.1 Introduction

The Boreal Plain is a region defined by its lack of topographic relief, which can make shallow groundwater flow difficult to characterize. In the absence of strong topographic gradients, many factors become important in defining shallow groundwater flow, including: geology, climate, and soil type (Devito et al. 2005).

The focus of this chapter is to test the potential hydrological connections between uplands, fens and bogs identified in the conceptual model (see Chapter 1) using a combination of hydrogeological and isotopic tools. Previous research examining hydrological connectivity using the combination of shallow groundwater flow and stable isotopes of water is limited in this Athabasca Oil Sands Region (AOSR) for the terrain units of interest. The objectives of this chapter are: 1) define the surficial flow, through a digital elevation model; 2) to define the shallow groundwater flow through traditional groundwater techniques; 3) and, where possible to verify the interactions of both through examination of the stable water isotopes.

Bedrock in the Fort McMurray region consists of Precambrian basement overlain by Devonian carbonates and a thick sequence of Cretaceous clastic rocks (Hackbarth and Natasa 1979). Quaternary sediments, including numerous buried channels up to 300 mdepth, overlie bedrock in the region (Andriashek and Atkinson 2007) and can strongly influence the regional groundwater flow paths. This region is comprised of a heterogeneous landscape of low-lying wetlands, and subtle upland areas. Wetlands consisting of bogs, fens, and peat-pond complexes often derive most of their water storage from precipitation, which is in turn lost to evapotranspiration (Barr et al. 2012) or as drainage into rivers and lakes. Wetlands are found throughout the region with fluctuation in recharge, discharge, flow-through and storing states (van der Kamp and Hayashi 1998) varying based on differences in landscape positions (Winter 2001) and antecedent moisture conditions (Hayashi et al. 1998). Previous work has identified the importance of antecedent moisture conditions in determining the lateral transfers between uplands and the adjacent fens and bogs. Lateral transfer of stored water from uplands to wetlands was shown to be prevalent during wet periods and transfers from wetlands to uplands possible during dry periods (Hayashi et al. 1998; van der Kamp and Hayashi 2009). This is similarly seen outside of the region (Fraser et al. 2000). When the surface depression storage capacity of these terrain units is exceeded groundwater recharge or surface overland flow may occur. However, previous research in the AOSR has not extensively examined fens, bogs, and uplands. Research conducted under slightly different climatic regions such as 'semi-arid' may not have strong representativeness for this area. Therefore, there are still uncertainties about shallow groundwater flow across this mosaic landscape of the Boreal Plains.

Stable isotopes of water (δ^{18} O and δ^{2} H) are particularly useful tracers for identifying different hydrological processes. Systematic variations in the isotopic labelling of precipitation arise because of temperature-dependent isotopic equilibrium fractionation

that occurs during phase changes of water, and distinguishes differing sources of water within the hydrological cycle (Dansgaard 1964). As well, stable isotopes of water give insight to hydrological mechanisms such as seasonal flushing and evaporative losses in lakes and rivers based on isotopic enrichment and relative humidity (Gibson et al. 1993). Seasonal fluctuations in precipitations occur along the meteoric water line (MWL) defined by Craig (1961), with snow and winter processes being relatively depleted of heavier water molecules to lighter water molecules (${}^{2}H^{18}O < {}^{1}H^{2}H^{16}O$) and summer precipitation being relatively enriched in a ratio of heavy water molecules to light (${}^{2}H^{18}O$ > ${}^{1}H^{2}H^{16}O$). In surface waters, evaporative enrichment occurs through both kinetic and equilibrium fractionation, resulting in a systematic offset from the MWL onto a local evaporative line (LEL) and is often seen in lake settings in this region (Bennett et al. 2008). The degree of offset from the MWL can be used to quantify the water balance of lakes (Gibson et al. 2011).

As precipitation recharges through the unsaturated zone to the water table, the seasonal variations in the isotopic composition of precipitation are gradually dampened, so that at depth the isotopic composition of groundwater should be similar to the amount weighted mean of precipitation (Fritz and Clark, 1997). Looking at variations in isotopic labelling of groundwater at depth can be used to identify a surface zone more influenced by seasonal variations (Fritz and Clark, 1997). At greater depth, the variability zone diminishes and a relatively stable background signature is present.
A few recent studies using stable isotopes of water have contributed important knowledge on flowpaths and connectivity of uplands, fens and bogs. In peatlands of northern Alberta, McEachern et al. (2006) found that discharge was dominantly from piston type flow rather than overland runoff, driven by the downward movement of recharging precipitation. A recent isotopic study by Levy et al. (2013) also revealed that seasonal recharge signals in a Minnesota peatland could be traced to depths greater than 3 m, challenging conceptual models that assumed vertical advection of recharge waters occurs only beneath the crest of large raised bogs.

Identifying the impacts of industrially derived atmospheric depositions in the AOSR is a primary goal of the CEMAs NO_xSO₂ management working group. Establishing relevant critical loads of sulphur and nitrogen for uplands, fens and bogs in the AOSR requires understanding of whether there are significant fluxes of these nutrients via hydrological connections. Understanding the potential for these transfers of nitrogen between terrain types requires better basic understanding of surface and groundwater interactions between wetlands and uplands, along with geochemical conditions that may influence the fate and transport of nitrogen and sulphur between these terrain types.

2.2 Study sites

Two study sites that lie within the north-eastern portion of the Boreal Plains of Alberta, coinciding with the AOSR (Figure 2.1) were examined. Sites were selected to be representative of a typical Boreal Plain landscape, and to include key terrains units:

upland, fen, and bog. Both sites were selected to represent natural undistributed hydrological conditions with minimal disturbances.

The first site is located 100 km south of Fort McMurray, near Mariana Lakes (ML) (Figure 2.1A). This site is a 23 km² peatland complex that includes jack pine (*Pinus banksiana*) islands and uplands, bordering a poor fen, and ombrotrophic bogs. *Sphagnum* mosses (*S. angustifolium, S. magellanicum, and S. fuscum*) dominate the peatlands. Other vegetation includes: sundews (*Drosera*), laurel (*Kalmia*), bog rosemary (*Andromeda glaucophylla*), and cranberries (*Vaccinium vitis-idaea*). Trees in the bogs are black spruce (*Picea mariana*), and tamarack (*Larix laricina*).

The second site, Jack Pine Hill (JPH), is located 40 km north of Fort McMurray in an upland dominant area (Figure 2.1B). This site is approximately 7 km², and is dominated by nutrient poor sand soils at the surface. There is a uniform stand of jack pine (*Pinus banksiana*) trees and the forest floor vegetation is comprised of lichen (*Cladina*), labrador tea (*Rhododendron groenlandicum*), and blueberry (*Vaccinium corymbosum*). A rich minertrophic fen runs north through the western side of the site and vegetation includes: alders (*Alnus*), paper birch (*Betula papyrifera*), and sedge species (*Carex*).

The AOSR has a sub-humid climate with an average annual precipitation of 445 mm (measured at Fort McMurray airport, Environmental Canada, 2012) and evapotranspiration often exceeds the precipitation. Daily average temperatures are

-18.8 °C in January and 16.8 °C in July (Environmental Canada, 2012). Quaternary (surficial) geology in this region is a mix of glacial fluvial and lactrustrine deposits

(Andriashek and Atkinson 2007).

Figure 2. 1 Study sites are situated in the province of Alberta (left), A is ML and B is JPH.

2.3 Field methods

2.3.1 LiDAR acquisition and DEM interpolation

LiDAR surveys were flown for ML and JPH (June 22 2011 and June 23 2011 respectively) by DigitalWorld Mapping, Calgary AB. The total area surveyed for ML was 23 km² and 7 km² for JPH. The vertical accuracy of the survey was approximately 0.05 m and the resolution of the pixels was 1 m². Pixels were classified into ASCII files consisting of xyz locations with elevations for bare earth and first return layers interpreted into a digital

elevation model (DEM). The DEM was completed using an algorithm through Arc GIS 10 (ESRI). The locations of potential surface flow paths were identified in the DEM grid as lowest elevation points for each 8 surrounding pixels and eventually linking to the outlet points. While these were not necessarily wet, they represent zones/pathways most likely to be wet during periods of overland flow events.

2.3.2 Groundwater methods

The two field sites were instrumented with nested piezometers (ML: 19 and JPH: 11 nests), water table wells (ML: 19 and JPH: 7 wells), micro-meteorological stations (ML: 2 and JPH: 2), and gauging stations (weirs) at outflow points for each site. Piezometers nests, ranging from 2 to 4 piezometers per nest were installed at depths ranging from approximately 1.5 to 7 m. Each piezometer was constructed from either PVC pipe or black iron pipe, threaded into a stainless steel Solinst™ model 615 drive-point screened piezometer tip. The polyethylene tubing (PET) was placed inside the PVC or steel piping and threaded directly into the piezometer tip. Piezometers were installed using a Pionjar[™] percussion hammer. Water table wells were manually installed into the peat, and augured into the rich fen. They were constructed from slotted PVC pipe of approximately 1 m length, and covered with Nitex mesh to avoid sediment flow into wells. Some of the water table wells were installed alone and others were installed immediately adjacent to piezometer nests. At each piezometer nest, the deepest piezometers were installed into the lower permeability substrate underlying the peat (identified as the point of refusal for the drive point). To avoid fluctuations in water levels that might have been due to changes in elevations in the peat surface, all of the

water table wells were anchored to rebar rods which were installed into underlying low permeable soils. In addition, the distance between the top of the well casing and the ground surface was measured yearly (within ~ 1 cm) to identify whether the surface of the peat had changed significantly. Wooden platforms were built around piezometer nests to try to reduce any peat compression that could occur during sampling or monitoring visits.

Three transects were used to examine the lateral hydraulic gradient at JPH (seen in Figure 2.2. The first transect (shown in red) runs east-west, and contains five wells P-11-2-1-7-10, the second (shown in yellow) runs southeast to northwest and contains five wells P-11-2-3-4-12, and finally, the third (shown in green) runs along the fen P8-9-10-F from southeast to northwest. The east-west transect (shown in red) consists of uplands wells (P11 through P7) and a well (P10) within the rich fen. Elevation is highest at P11, and the lowest at P10. The surface vegetation does not indicate any areas of standing water in the uplands, and the appearance of the fen represents an abrupt change to the landscape. For the southwest-northeast transect (shown in yellow) all wells are located in the uplands. The elevation is highest at P3 and lowest at P12. An increased presence of Labrador Tea and Black Spruce trees indicate a slight change in vegetation close to P12.The final transect (shown in green) runs the length of the studied fen with the highest elevation to the south and the lowest to the north. Note that there is limited direct evidence available on the composition of the shallow surficial deposits, and the only indications of changes in lithology at JPH are based on noticeable differences in properties of soil or refusal during installation of the drive-point piezometers. In general, during installation in the uplands in JPH, drive-point piezometers were installed at a consistent rate until a desired depth was met. This may suggest that the uplands are composed of fairly uniform sediments similar to what was observed at the surface, but it is possible that a lower conductivity layer may be present at depth.

Figure 2. 2 Transects used for flow nets at JPH site, one runs east-west in red transecting the uplands and the fen in red, another follows an upland flowpath southeast –northwest in yellow, and the final transect in green follows the rich fen running southeast to northwest.

V-notch weirs and stilling wells were used to try to monitor the overall outflow of water from the basins at both sites. At JPH a weir was installed at the fen where seasonal surficial flow was observed during the initial site visit (2010). Outflow from ML was more difficult to identify. The fen complex at the ML site appeared to flow towards a culvert that had only periodic surface flow. The fen complex at ML fed a larger fen system that discharged via culvert at highway 63. Attempts to instrument the culvert closest to the main ML site were not successful, so our estimates of outflow are based on water table wells installed near the discharge point at ML and a weir located at the culvert at highway 63. Due to variable flow during the two years, attempts to gauge the outflows at both sites were unsuccessful.

During the open water season monthly to bimonthly measurements of hydraulic head (Fetter 2001 p.116), were made in 2011 and 2012. Elevations were determined from LiDAR surveys, and the pressure heads were recorded from water level readings. Water level measurements in the piezometers and water tables wells were made using a Solinst water level tape or a Heron little-dipper. Pressure head measurements were made at JPH and ML on: June 28 2011, Aug 7 2011, Aug 24 2011, Oct 4 2011, May 25 2012, June 6 2012, July 17 2012, Aug 3 2012, and Sept 8 2012. Potentiometric contour plots were created by kriging hydraulic head measurements using Surfer 8 (Golden Software Ltd). Hydraulic head was used to identify vertical hydraulic gradients and seepage fluxes, the following was applied:

dH/dL = VGH, D = -(K)(VGH)(A)

(1)

Where

dH = difference of hydraulic pressure head of two wells (m)
dL = distance between two wells screens (m)
VHG = vertical hydraulic gradient (unitless)
D = seepage flux (ms⁻¹)
K = hydraulic conductivity (ms⁻¹)

The Hvorslev (1951) method was used to calculate the hydraulic conductivities based on falling head tests conducted at all of the wells at JPH and wetland wells at ML. During the falling head tests, the initial water level of the well was recorded, followed by the removal of a slug of water using a peristaltic pump. An Odyssey Water Level Capacitance[™] probe was used to obtain accurate falling head and time measured (every 5 s) in millimetres. The Hvorslev method accounts for the geometry of the piezometer and was applied as:

$$K = \frac{r^2 \ln(L_e/R)}{2L_e t_{37}}$$
(2)

where

K is the hydraulic conductivity (cms⁻¹) r is the radius of the well casing (cm) R is the radius of the well screen (cm) L_e is the length of the well screen (cm) and t_{37} is the time it takes for the water level to fall to 37 % the initial change (s)

(Fetter 2001:194p)

Falling head tests could not be conducted for the deep wells and uplands wells in ML because the water levels were too low and water was only present in the screened section of well. At JPH, the shallow upland wells also did not have water levels above the well screen. Due to the small diameter of the well screen, the Solinst water level tape did not fit into it nor did the Odyssey Water Level Capacitance[™] probes; therefore no data was collected for these wells (P7, P4, and P1 at the 2 m depth).

2.3.3 Water sampling

Water samples were collected from all water table wells, piezometers, at the outflow points (weirs) and for precipitation (event and bulk). Groundwater samples were collected after purging three well volumes of water from each well. Precipitation samples were collected after individual events and from bulk samples at the end of the field season. Snow samples were collected in 2012 using a Standard Federal snow sample corer and were used to characterize the isotopic composition of winter precipitation. Water samples for stable water isotopes were placed in 30 mL air tight high density polyethylene bottles with no head space to minimize the possibility of isotopic fractionation. Samples were analyzed by AITF Victoria using a Delta V Advantage mass spectrometer. Results were reported in per mil (‰) relative to Vienna Standard Mean Ocean Water (V-SMOW) with an analytical uncertainty of 0.1 ‰ for ¹⁸O, and 1 ‰ for ²H. The oxygen-18 and deuterium composition are reported as delta (δ) calculated using:

$$\delta^{18}\text{O or }\delta^{2}\text{H} = [R_{\text{sample}}/R_{\text{standard}} - 1] * 10^{3} \%, \qquad (3)$$
where $R_{\text{sample}} = {}^{18}\text{O}/{}^{16}\text{O}$ sample and $R_{\text{standard}} = {}^{18}\text{O}/{}^{16}\text{O}$ V-SMOW
$$R_{\text{sample}} = {}^{2}\text{H}/{}^{1}\text{H}$$
 sample and $R_{\text{standard}} = {}^{2}\text{H}/{}^{1}\text{H}$ V-SMOW

2.4 Results and discussion

2.4.1 Surficial flow patterns from the Digital Elevation Model

Elevation data were gathered from the LiDAR survey (seen in Figure 2.3). The elevation range at ML is around 4.0 m, with the highest areas being in upland sections at 703.1 m

(P2), and the lowest area (within the immediate study site) being 698.7 m (MLG) near the culvert at the access road. Elevations were slightly higher in the bog than the fen by about 0.3 m. At JPH, elevation differences are also about 4.0 m. The fen in the northwest is the lowest point with an elevation of 331.2 m (JPHF) and the highest area recorded is 335.2 m (P11).

Figure 2. 3 E Site elevations, A) ML elevations contoured at 1.5 m intervals, and B) JPH elevation contoured at 2m intervals.

The Digital Elevation Model (DEM) developed from the LiDAR survey permits delineation of two sub-catchments in the ML study area. These sub-catchments divide the fen and bog terrain at the ML site and potentially indicates a surface water divide (seen in inset of Figure 2.4). The catchment to the west is 3.32 km² and the catchment to the east is 3.82 km². From the DEM it is evident that the construction of the AltaGas road has altered the natural flowpaths exiting the instrumented site (near MLG), as natural flowpaths have been diverted into three culverts. In addition, in areas of minimal relief, building new infrastructure can dramatically alter the surficial flow through the creation or reduction of hummocks (Lee and Boutin 2006). The some of the surficial flow tracks predicted by the DEM closely resemble the observed water tracks (lighter fen areas) as seen from satellite imagery for this site (see Figure 2.1).

Figure 2. 4 ML watershed with hypothetical surficial flow tracks (blue lines) delineated from LiDAR. Black line indicates a watershed divide between two sub-catchments seen in the inset of the full catchment. Locations of piezometers are in circles and water table wells in squares.

The DEM at the JPH site (Figure 2.5) reveals several sub-catchments as well as many predicted water tracks. The predicted water tracks situated in the fen were the only ones ever observed to be saturated and periodically flowing, whereas the potential water tracks identified in the upland areas were dry throughout the study. Three sub-catchments were delineated at this site: A, to the west (0.82 km²); B, central (0.17 km²); and C, to the east (0.5 km²). All of the sub-catchment water tracks flow northwest. The results of the DEM analysis suggest that surface water flow from the central and east

sub-catchments would not likely be directed towards the fen, and the only potential hydrological connection between these sub-catchments and the fen would be via groundwater flow.

Figure 2.5 JPH watershed with sub-catchments (A, B and C) and potential surficial flow tracks Black line indicates a watershed divides between the sub-catchments seen in the inset of the area. Sub-catchments are labelled A, B, and C from west to east, respectively. Locations of piezometers are in circles and water table wells in squares.

2.4.2 Hydraulic conductivities

The range of hydraulic conductivity estimates vary between sites and years (Figure 2.6). Overall, the hydraulic conductivity estimates at JPH are higher than those at ML with an order of magnitude less variability. The hydraulic conductivities obtained from the JPH site are consistent with sand deposits, similar to the sandy soil observed near the surface. A soil pit was dug near P1 to a depth of 1 m. Sandy soil was uniform throughout the depth of the pit and there were no colour changes to indicate changes in redox conditions. The piezometers installed in the rich fen at JPH show higher hydraulic conductivities in the surface layer of the peat, and lower hydraulic conductivities at depth in the fen (Figure 2.7a), as is expected for peatland soils.

Figure 2. 6 Summary of hydraulic conductivities recorded at ML in 2011 and 2012, and JPH in 2012.

The large overall range of hydraulic conductivities at ML (Figure 2.6) shows the greater variability in hydraulic properties in the sediments present at this site. There were also significant differences in the hydraulic conductivities observed at ML over the two year study period (Figure 2.7b). Differences in values measured for 2011 and 2012 may be due to variation in the method used to conduct the test. In 2011, a slug of water was injected into piezometers (falling head tests), while in 2012 a slug of water was removed (rising head test). The later procedure was adopted in 2012 to avoid introducing foreign water into the subsurface which could damage the isotopic and geochemical composition of groundwater. Surridge et al. (2005) found a slight increase in hydraulic conductivity values with the rising head tests, suggesting it could be related to a well film. In addition, the slug of water that was injected was deionised water, possible

resulting in a flushing of smaller particles away from the well. Baird et al. (2004) noted a similar effect of increased hydraulic conductivity by adding "clean water" to piezometers in peat.

Hydraulic conductivity differences may not be solely due to the methodology used, but they may also reflect interannual differences in the water table position. Large ranges in values of hydraulic conductivity in peat can be associated with water table position resulting in varying pore formation within the structure of peat (Price 2003). Previous workers examining drained peatlands in Europe have noted that desiccation cracks can form after a significant drawdown of the water table (Holden et al. 2004). Peatlands have also been observed displaying hydrophobicitiy closer to the surface, resulting in an increased responsiveness of a deeper groundwater table (Schwäerze et al. 2002). This could possibly lead to increased movement of water in macropores at depth in peat and thus increased hydraulic conductivity. Finally, seasonal changes in gas content of peat have been noted to change the hydraulic conductivity by over two orders of magnitude (Kettridge et al. 2013).

The piezometers located at the edge of the upland (6A and 6B) had the lowest calculated hydraulic conductivities. ML 6A (7.5x 10^{-10} ms⁻¹) and 6B (1.51x 10^{-9} ms⁻¹) values fall within the range of a clay sediment 1x 10^{-10} –1x 10^{-7} ms⁻¹ based on Fetter (2001 p 85). Deeper peat had lower hydraulic conductivities ranging from 1.5x 10^{-9} to 9.4x 10^{-6} ms⁻¹ and averaging 2.3x 10^{-6} ms⁻¹, whereas shallow peat had higher values ranging from 4.6x 10^{-8} to 5.3x 10^{-6} ms⁻¹ and averaging 9.0x 10^{-7} ms⁻¹. These findings for

2012 are consistent with previous studies of peat where hydraulic conductivity was evaluated at several depths (Quinton et al. 2008; Morris et al. 2011).

Figure 2. 7 a) Hydraulic conductivities of JPH with respect to depth for 2012. b) ML hydraulic conductivities with respect to depth for both 2011 and 2012 with terrain units.

2.4.3 Groundwater hydraulic gradients

Potentiometric surface maps were constructed from the hydraulic head data to illustrate lateral and vertical flow direction at surface, shallow and intermediate depths during spring, summer and early fall of both years of study for both sites. These results are described below by site.

Lateral contoured hydraulic head gradients for JPH (Figure 2.8 and 2.9), show groundwater predominantly flowing north and northwest following the surface topography at the site. During spring of 2011 (June 28), for intermediate wells, groundwater moves towards the fen from the uplands, and piezometer P9, located in the fen, displays an upward (discharging) vertical hydraulic gradient. This trend is not seen in 2012. Shallow wells in the fen display the largest vertical flow potential, primarily recharging shallow groundwater, except for a periodic shift to a discharging gradient seen at P8. The shallow wells in the uplands were dry during Oct. 3, 2011 (Figure 2.8) and so hydraulic head was not recorded. At P4, the piezometer with the lowest elevation within the uplands, we find a discharging hydraulic gradient at shallow and intermediate wells at JPH. In the drier year, 2011, the potential flow is generally to the west towards the rich fen; whereas, in 2012 the path was found to be somewhat more northerly.

Figure 2.8 Map views showing groundwater flow interpretation at JPH for 2011 using potentiometric contours with flow arrows at 0.5 m for shallow ($\sim < 2$ meters below the surface) and intermediate (~ 4 m below the surface) wells. Seasons represented here are spring (June) summer (August) and fall (October). Vertical hydraulic gradients directions are indicated by (+) for recharging conditions and (-) for discharging conditions.

Figure 2.9 Map views showing groundwater flow interpretation for 2012 at JPH using potentiometric contours with flow arrows at 0.5 m for shallow ($\sim < 2$ meters below the surface) and intermediate (\sim 4 m below the surface) wells. Seasons represented here are spring (June) summer (August) and fall (September). Vertical hydraulic gradients directions are indicated by (+) for recharging conditions and (-) for discharging conditions.

Lateral hydraulic gradients are contoured for the ML site for 2011 and 2012 in Figure 2.10 and 2.11 for surface, shallow and intermediate depths. Overall, there is large variability in the groundwater flow potential. However, surface water in the peatland always appears to diverge from the bog towards the fen in both years. Surface water follows the water tracks identified in the DEM with a downward (recharging) gradient

present for the majority of the study period. MLA (Aug. 3, 2012) is an exception as the well shows a slight upward (discharging) gradient. Shallow wells illustrate differences in flow potential during 2011 and 2012. In the spring of 2011 (June 28, 2011) shallow groundwater flow was northeast-ward converging with a recharging gradient present at P18. While in the summer (Aug. 7, 2011) and fall (Oct. 4, 2011) flow is northeast-ward as well as northwest-ward towards P13 and P12 (and both reveal a recharging gradient). More variability of shallow groundwater in the fen occurs during 2012 (Figure 2.11). Throughout the spring (June 7, 2012) shallow groundwater converges towards P19 showing a recharging vertical gradient. In the summer (Aug. 3, 2012) lateral flow appears similar to October of the prior year, moving both northwest and northeastward, with recharging gradients present at both P12 and P18. Finally, in the fall (Sept. 9, 2012) shallow groundwater follows the surface water tracks with recharging conditions at both P4 and P18. Changes in groundwater flow potential are most likely due to temporal changes in antecedent moisture conditions. In 2011, the peatlands were the wettest in the spring and flowed towards P18. During 2012, the peatlands were the wettest during the fall and also flowed toward P18 at this time.

In the intermediate wells minimal lateral groundwater flow potential is seen at ML, rather it appears to be localized and differs to that of the shallow wells. These contrasting results for shallow and intermediate groundwater are likely a function of hydraulic conductivity, as variability in hydraulic conductivity can have a strong influence on where water moves laterally (Ferone and Devito 2004; van der Kamp and Hayashi, 2009). During the summer of 2011 (Aug. 7, 2011) vertical hydraulic gradients are mostly

discharging between intermediate and deep wells; this may permit groundwater to transfer water upward near the mineral soil into peat waters of the fen. Then during the fall of 2011 (Oct. 4, 2011) groundwater flow is towards P6 with downward (recharging) gradients occurring throughout the study area. During the following spring (June 7, 2012) groundwater moves towards P18, with the largest lateral gradient. A vertical recharging gradient was mainly occurring during 2012 across the site. In addition, at ML, we found minimal water in the shallow upland piezometers and little to no water in the intermediate upland piezometers (P1, 2, 3, and 14) for the duration of the study. This variability in upland conditions is difficult to interpret, but may suggest that there are areas where lateral recharge to the wetlands could be possible, hydraulic conductivity permitting. This situation would involve a perched water table with much deeper groundwater flowpaths below.

Figure 2.10 Map views showing groundwater flow interpretation at ML for 2011 using potentiometric contours with flow arrows at 0.05m for surface wells, and at 0.5 m for shallow (~ 2 meters below the surface) and intermediate (~ 2 to 4 m below the surface) wells. Seasons represented here are spring (June) summer (August) and fall (October). Vertical hydraulic gradients directions are indicated by (+) for recharging conditions (for $\sim >1$) and (-) for discharging conditions (for $\sim <-1$).

Figure 2.11 Map views showing groundwater flow interpretation at ML for 2012 using potentiometric contours with flow arrows at 0.05m for surface wells, and at 0.5 m for shallow (~ < 2 meters below the surface) and intermediate (~ 2 to 4 m below the surface) wells. Seasons represented here are spring (June) summer (August) and fall (September). Vertical hydraulic gradients directions are indicated by (+) for recharging conditions (for ~ >1) and (-) for discharging conditions (for ~ <-1).

At ML seepage fluxes were averaged for the different wells at differing depths. The well sites ranged from 1.4×10^{1} to -7.5×10^{3} mmyr⁻¹ (Table 2.1), and the overall average including both years was 5.1×10^{2} mmyr⁻¹. All wells within the peatland, including both fen and bog wells, are recharging the deeper groundwater. The greatest movement of groundwater is noticeably close to the surface and diminishes with depth. The seepage flux in the bog well sites is slightly smaller than that of fen sites. A noteworthy contrast, the upland site has the only discharging flux of groundwater (P6), while the largest recharging flux is at P18 at shallow depths.

Table 2. 1 The mean seepage flux for 2011 and 2012 from the average vertical hydraulic gradient (VHG) at nested piezometers at ML. Negative values indicate a recharging flux of water. – is no data collected.

concertai		1					r						
			2011					2012					
			28-	7-	4-			7-	3-	9-			
			Jun	Aug	Oct	Seepage Flux		Jun	Aug	Sep	Seepa	ge Flux	
						Mean	Mean				Mean	Mean	
	ML	Depth (m)	VHG	VHG	VHG	ms⁻¹	mmyr⁻¹	VHG	VHG	VHG	ms⁻¹	mmyr⁻¹	
Fen	P17	0.0-2	-0.08	0.63		-5.1E-08	-1.6E+02	0.09		0.44	-4.9E-08	-1.5E+02	
		>2.0-4.0	0.09	0.96	0.02	-1.5E-09	-4.7E+00	-0.13	0.05	0.13	-6.2E-11	-2.0E-01	
		>4.0-6.0	0.26	0.72	0.28	-2.1E-08	-6.6E+01	0.42	0.29	0.53	-2.1E-08	-6.5E+01	
Bog	P16	0.0-2	0.23	0.85		-2.5E-08	-7.9E+01	0.10	0.09	0.71	-1.4E-08	-4.4E+01	
		>2.0-4.0	-0.09	0.95	0.05	-1.4E-08	-4.4E+01	0.09	0.08	-0.03	-2.1E-09	-6.7E+00	
		>4.0-6.0	1.69	-0.16	1.74	-1.6E-09	-5.2E+00	0.29	1.47	2.79	-2.3E-09	-7.2E+00	
Fen	P18	0.0-2	-0.03	0.91	-0.05	-5.1E-07	-1.6E+03	0.58	0.01	0.60	-7.4E-07	-2.3E+03	
		>2.0-4.0	1.90	0.78	1.18	-2.4E-06	-7.5E+03	-0.65	1.25	2.26	-1.8E-06	-5.5E+03	
		>4.0-6.0		-1.15	1.68	-1.3E-08	-4.2E+01	1.82	1.60		-8.6E-08	-2.7E+02	
Fen	Р5	0.0-2	0.19	0.91		-7.6E-08	-2.4E+02	0.09			-1.2E-08	-3.9E+01	
		>2.0-4.0	-0.07	0.96	0.04	-4.3E-08	-1.4E+02	0.04	0.04	-0.05	-1.1E-09	-3.5E+00	
		>4.0-6.0		-1.42	2.84	-2.6E-09	-8.2E+00	0.56	2.70		-6.0E-09	-1.9E+01	
Fen	P19	0.0-2	0.13	0.81	-0.01	-2.9E-08	-9.1E+01	0.09	0.08	0.83	-3.1E-08	-9.8E+01	
		>2.0-4.0	0.01	0.95	0.04	0.0E+00	0.0E+00	1.10	0.05	0.08	0.0E+00	0.0E+00	
Bog	P10	0.0-2	0.09	0.77	-0.03	-5.1E-08	-1.6E+02	0.14	0.04	0.49	-4.1E-08	-1.3E+02	
		>2.0-4.0	0.14	1.00	-0.01	-7.0E-08	-2.2E+02	0.52	0.01	0.16	-4.2E-08	-1.3E+02	
		>4.0-6.0		-0.33	1.70	-1.7E-08	-5.4E+01	0.33	1.51		-2.3E-08	-7.2E+01	
Upland	P6	0.0-2		1.01	-0.65	-4.5E-09	-1.4E+01	0.10	-0.47		4.5E-09	1.4E+01	
Upland	P13	0.0-2		-0.38	1.34	-1.2E-08	-3.8E+01	0.15	1.73		-2.4E-08	-7.4E+01	

In wetlands, such as ML where peat is present, a common research approach is to represent the system using a two-layer model (acrotelm-catotelm) as hypothesised by Ingram (1978). This model limits activity of water in peat at depth (the catotelm) because of declining hydraulic conductivity gradients and the location of the water table in peat. Yet, the hydraulic gradients observed in at the ML site act as recharge points in the middle of the fen such as P18, P12, and P19. These areas may be moving water vertically through preferential flowpaths, which may occur as pipes comprised of material such as roots with higher rates of decomposition (Holden et al. 2002; Hill 2012) or may move through via piston flow (McEachern et al. 2006).

The dominant flow in shallow groundwater during the open water season at JPH, as seen in the constructed flow nets for all transects, is lateral rather than vertical as shown in Figure 2.12 and 2.13. In transect P11-2-1-7-10 (Figure 2.12) flow is a lateral movement of water from the uplands to the rich fen. When surface water is present in the rich fen (such as on Sept. 12, 2012) the shallow groundwater flow lines tend to emerge closest to the surface. For the upland transect on August 24, 2011 flow lines are parallel to the surface elevation, while flow lines are closer to the surface at P12 when the water table is higher (Figure 2.13b, Upland). Flow along the axis of the fen (Figure 2.13, Fen) shows a large contrast in water tables from 2011 and 2012, and as a result, flow lines differ. On August 24, 2011, flow is parallel to the surface of the fen. In contrast, flow lines on Sept 12, 2012 suggest an area of recharge close to P8 and a flow line that increases with depth along the rich fen. Groundwater flow at the JPH site shows no indication that flow from the fen to the upland occurs.

Figure 2. 12 Hydraulic head contours in the uplands and rich fen at JPH (equipotential lines) at 0.5 m intervals with interpreted groundwater flow for a) Aug 24, 2011 with a low water table and b) on Sept 12, 2012 with a higher water table.

Figure 2.13 Hydraulic head contours at JPH in the upland transect in left panels and fen transect in right panels (equipotential lines) at 0.5 m intervals with interpreted groundwater flow for a) Aug 24, 2011 with a low water table and b) on Sept 12, 2012.

Based on the flownets, connections at JPH appear to be largely influenced by one thing; the overall uniformity of the hydraulic conductivity at this site allows the shallow groundwater to align well with the topography. Thus this site is more topographically driven, and this challenges that all areas within the AOSR follow the framework outlined by Devito et al. (2005). We would anticipate seeing dramatically differing connections due to the noteworthy changes in water levels in the fen. However, the connections did not change. The fen shallow groundwater did not connect to the uplands in neither shallow nor high water levels. Rather this connection appears to be unidirectional, and is in agreement with the findings of the DEM for sub-catchments A and C.

2.4.4 Stable Water Isotopes Results

There are systematic seasonal variations in the isotopic labelling of precipitation at JPH, with winter precipitation being characterized by more negative δ^{18} O and δ^{2} H values and summer precipitation by more positive δ^{18} O and δ^{2} H values (Figure 2.14). Precipitation sampled at JPH falls along a local meteoric water line (LMWL) close to that of Edmonton (Rozanski et al. 1993).

Figure 2.14 The isotopic composition of precipitations collected at JPH site for the 2012 field season, with the LMWL defined for Edmonton defined by Rozanski et al. 1993.

A summary table (Table 2.2), summary box plots (Figure 2.15) and a δ^2 H versus δ^{18} O plots (referred to here as delta-delta plots) (Figures 2.16) are shown for both sites and years, and reveal basic variations in the composition of waters throughout the 2011 and 2012 field seasons. Seasonal shifts are noted in the isotopic compositions of water sampled in piezometers and at the surface. Most variation in surface water and groundwater were also found to occur along the LMWL (Figure 2.16). A tendency towards more depleted and less variable isotopic compositions is generally observed with depth in the piezometers reflecting differences in degree of influence of seasonally recharged waters. Isotopically distinct rain events are also found to be detectable including a large well-labelled rain event that occurred late in the summer of September

2012 (Figure 2.16). Surface waters at JPH and ML have heavier isotopic signatures than shallow groundwaters due to the influences of late summer rains. In addition, surface waters sampled from ML reflect the influence of seasonality as snowmelt signatures are seen in June contrasting shallow groundwater sampled.

	Depth (m)	δ ¹⁸ O‰					δ ^{2H} H ‰				
	,	Ν	Mean	Std	Maximum	Minimum	Mean	Std	Maximum	Minimum	
ML											
All Fen		168.0	-17.3	0.8	-15.0	-18.8	-135.4	5.7	-115.9	-145.0	
	0.0	57.0	-17.0	1.0	-14.8	-18.5	-132.9	8.0	-114.3	-144.8	
	0.0 - 2.0	39.0	-17.4	0.5	-16.7	-18.4	-136.0	2.8	-128.7	-141.9	
	>2.0 - 4.0	34.0	-17.3	0.5	-16.3	-18.5	-136.1	2.9	-132.0	-144.4	
	>4	19.0	-17.1	0.5	-16.3	-17.9	-135.7	3.0	-130.9	-139.4	
All Bog		77.0	-18.0	1.0	-14.9	-19.5	-139.3	7.8	-114.6	-153.5	
	0.0	33.0	-17.3	1.1	-14.9	-18.7	-133.5	9.1	-114.6	-143.8	
	0.0 - 2.0	22.0	-18.2	0.6	-16.7	-18.9	-140.5	4.2	-128.1	-145.5	
	>2.0 - 4.0	19.0	-18.6	0.6	-17.3	-19.4	-143.0	3.2	-137.4	-148.4	
	>4	11.0	-18.5	0.2	-18.1	-18.6	-141.9	0.9	-140.5	-143.5	
All Upland		43.0	-18.0	0.7	-16.7	-20.1	-140.6	5.1	-128.1	-155.1	
	0.0 - 2.0	28.0	-18.0	0.7	-16.7	-19.2	-140.5	5.3	-128.1	-150.0	
	>2.0 - 4.0	17.0	-18.1	0.6	-17.4	-20.1	-140.8	4.5	-135.5	-155.1	
JPH											
All Upland		124.0	-18.8	0.6	-17.6	-20.5	-146.8	4.1	-137.1	-158.0	
	0.0 - 2.0	41.0	-19.2	0.5	-17.6	-20.5	-150.0	3.5	-137.1	-158.0	
	>2.0 - 4.0	40.0	-19.0	0.3	-18.2	-19.7	-147.9	1.6	-143.9	-150.8	
	>4	40.0	-18.2	0.4	-17.6	-19.1	-142.5	2.3	-139.1	-147.3	
All Fen		89.0	-17.8	1.2	-14.7	-20.9	-139.9	9.5	-112.1	-163.8	
	0.0	15.0	-17.5	1.4	-14.7	-20.9	-136.2	11.6	-112.1	-163.8	
	0.0 - 2.0	15.0	-18.3	0.9	-17.0	-19.9	-143.3	6.8	-133.5	-156.3	
	>2.0 - 4.0	15.0	-18.1	0.2	-17.8	-18.5	-141.6	1.0	-140.5	-143.4	
	>4	15.0	-18.6	0.3	-18.3	-19.1	-146.3	1.9	-143.3	-149.2	

Table 2.2 Average and range of δ^{18} O and δ^{2} H stable isotopes of water at different depths and landscape units for 2011 and 2012.

Isotopic waters at different sites, landscape units, and depths (m)

Figure 2. 15 Summary box plots of all isotopes form 2011 and 2012 for δ^{18} O (bottom panel) and δ^{2} H (top panel), into distinct landscape units at specific depths for both ML and JPH.

Figure 2.16 Delta delta plots of isotopic composition of waters for both 2011 and 2012 for JPH (on top) and ML (on bottom). Water samples are plotted in vegetation type, bog in red, fen in black and uplands in grey. The GMWL is based on Craig (1961) and the LMWL is based on observations at Edmonton (Rozanski et al. 1993).

In general, a more depleted (snow-rich) signature is seen in the shallow uplands wells at JPH, specifically in May 2012 (Figure 2.17). Ground waters with more negative delta values characteristic of snowmelt are also evident at the ML bog site (Figure 2.16), and

in upland areas such as P1 intermediate (in June 2011, Figure 2.18), possibly due to deeper snowpacks noted in this area.

Figure 2.17 Delta-delta plots showing isotopic composition of waters for late spring, and early and late summer at both study sites for 2012. Left panels correspond to JPH and the right to ML. Upper panels show June conditions whereas lower panels show August conditions. Water samples are distributed into surface waters i.e. from water table wells (black circles), shallow piezometers i.e. ~1

to 2 m deep (red circles), intermediate piezometers i.e. ~2 to 4 m deep (green triangles), and deep piezometers i.e. ~4 to 7 m deep (yellow triangles). The GMWL is based on Craig (1961) and the LMWL is based on observations at Edmonton (Rozanski et al. 1993). The LEL is local evaporation line based on regression of surface water data.

Figure 2.18 Delta-delta plots showing isotopic composition of waters during early and late summer at both study sites for 2011. Left panels correspond to JPH and the right to ML. Upper panels show June conditions whereas lower panels show August conditions. Water samples are distributed into surface waters i.e. from water table wells (black circles), shallow piezometers i.e. ~1 to 2 m deep (red circles), intermediate piezometers i.e. ~2 to 4 m deep (green triangles), and deep piezometers i.e. ~4 to 7 m deep (yellow triangles). The GMWL is based on Craig (1961) and the LMWL is based on observations at Edmonton (Rozanski et al. 1993).

As noted, surface waters in both ML and JPH show an evaporative enrichment signature, isotopically heavier (less negative), and are characterized by deviation below LMWL (e.g. Gat 1996). The most pronounced evaporatively enriched signatures are noted for JPH in August of 2012 (Figure 2.17), with surface waters plotting along a line with a slope of

about 5 in delta-delta space. Surface waters sampled during May of 2012 at the JPH site had a slightly lower slope of about 6, but also likely reflecting evaporative modification. In ML, the evaporative signal appears in the shallow piezometers as well as in water table wells as is seen during June and July 2012 (Figure 2.17). Interestingly, the surface water samples from September 2012 from both sites have fairly positive δ^{18} O and δ^{2} H signatures, but still plot along the LMWL. 2012 was a particularly wet year, and this isotopic enrichment without a corresponding shift along a LEL indicate that there was sufficient precipitation that the surface waters acquired a more positive isotopic labelling from late summer precipitation without significant evaporative enrichment.

2.4.5 Active recharge zone

Variations in δ^{18} O compositions of groundwater sampled at ML and JPH were used to identify areas with more active groundwater mixing, where there is higher temporal variability in isotopic labelling and a deeper groundwater zone where seasonal variations in isotopic labelling are not evident. The results were separated by terrain unit and sampling date (Figures 2.19 and 2.20).

Figure 2.19 Isotope depth profiles for select piezometer locations for 2011 and 2012 in JPH, upland wells on the left and fen wells on the right.

Figure 2.20 Isotope depth profile with select piezometer locations for 2011 and 2012 in ML. The uplands are on the left, the bog in the centre and the fen on the right.

At the JPH site there were differences in the isotopic labelling of groundwater in the uplands and the fens (Figure 2.19). The uplands had a relatively constant isotopic signature, both with depth and over the different seasons. Shallow groundwater in the

uplands was isotopically lighter (δ values more negative) than groundwater sampled at depth. This may have been due to pulses of summer rain ($\delta^{18}O = -15$ to -19 ‰) mixing with snow (averaging -23 ‰ in $\delta^{18}O$), which resulted in the lighter isotopic signatures seen than that of deeper groundwater, approximately -18 ‰ in $\delta^{18}O$. At most of the upland wells sites, the depth at which the seasonal variations in $\delta^{18}O$ disappeared was about 3 m below the surface. An exception to this was P4 where the July 2012 sample was isotopically lighter than any of the other sampling events, possibly indicating a higher recharge during this month. The limited seasonal variability of $\delta^{18}O$ is reflective of a uniformity observed for the hydraulic conductivity of this site, as well as the location of the water table ~2 m.

In contrast, the isotopic composition of water within the fen at JPH was more enriched in the shallow wells (Figure 2.19). We should note that in the uplands a significant unsaturated zone exists. The water table on average is about 2 m below the ground surface in the uplands, whereas in the fen the water table varies from just above the surface to about 0.5 m below surface. The seasonal fluctuations in δ^{18} O in the fen at JPH are consistent with the very shallow water table and downward vertical hydraulic gradients. The depth at which the seasonal variations are no longer obvious is about 2 m below the ground surface indicating active mixing of recharge and groundwater in this region. The more positive δ^{18} O values in the shallow water tables in the fen are consistent with evaporative enrichment of ponded surface water observed in the field, and is seen when a local evaporation line (LEL) is identified in Figure 2.17. A seasonal trend of evaporative enrichment in the fen is seen in at P10, as enrichment progressed from spring to late summer.

At the ML site the upland, bog and fen all had varying isotopic signatures with depth (Figure 2.20). The bog has the most consistent isotopic depth profile, and the least temporal variability. Most seasonal variations dissipated within 2 m. From sampled precipitation the mean weighted precipitation of δ^{18} O in the ML site is -18.9 ‰, and the bog exhibits similar values at depth within the deeper groundwater. In contrast, the fen and upland show greater variations with depth and between sampling locations. In the uplands, P13 and P6 have limited seasonal variation, and an integrated signature of groundwater is seen close to the surface (<2 m). Whereas at P2, in the uplands, a higher temporal variability is noted possibly indicating a higher recharge area, and a deeper groundwater zone that has not been reached by our instrumentation. In addition, the depleted isotopic signature is observed in May of 2012 at depth, indicating a recharging of snow signatures at depth.

For the ML fen, isotopic signatures approached a fairly uniform composition at depth, ranging from ~ -17 to -16 ‰ in δ^{18} O, as is seen generally in P17 and P4 at depths greater than 2 m. These δ^{18} O signatures are relatively enriched in contrast to the bog and uplands. However, there are isolated incidences during 2011 with variations at depth of both relative depletion (P18) and relative enrichment (P17). Differences in the signatures at depth coincided with hydraulic gradients seen in the potentiometric surfaces (Figure 2.10 and 2.11). P17 was isotopically heavier at depth in June 2011, and

following a recharging vertical gradient. This water could represent recharge of isotopically enriched summer precipitation. P18 showed a lighter isotopic signature at depth for August 2011; this may be an isolated discharging signal of deeper groundwater. These varying results can also be related to differences in snowmelt or frost table in the fen (Gibson et al. 2005). In addition, researchers have indicated piston flow and mixing of surface with shallow groundwater in fen and peatland locations (e.g. McEachern et al. 2006; Kværner and Kløve 2008).

2.5 Implications on groundwater connectivity and nitrogen transport

The fate and transport of dissolved nitrogen between and within upland-fen-bog complexes will depend on the potential surface and groundwater flowpaths and the geochemical conditions along those pathways. There are three main factors that can result in the production or consumption of nitrogen along a flowpath 1) carbon content, 2) available nitrate, and 3) anoxic conditions (Bowden 1987). In peatlands, the largest limiting factor for nitrification is aerobic conditions, therefore limiting the production of nitrate (NO₃⁻), and a build up of available ammonium would be anticipated at depth. If this pool of reduced nitrogen is present at depth there is the potential for it to be converted to nitrate if oxic conditions were introduced. This suggests decreasing the water table in peatlands may result in nitrification occurring at depth. If the water tables are high and anoxic conditions are created then denitrification could occur, reducing nitrates into nitrites (NO₂⁻) and conversely releasing N₂O and N₂ from wetland sites, as has been recorded by researchers in peatland-complexes in the area (Wray and Bayley 2007). In the fen and bog locations, nitrification is expected under drying conditions as

the water table draws down. This nitrification will probably occur within the variable recharge locations (~2 m in both fen and bog) identified through the stable water isotopes, while denitrification in all probability is consistently occurring within depths greater than ~2 m. In addition, we would anticipate the greatest nitrogen flux potential in the JPH minerotrophic fen, followed by the fen at ML specifically in proximity to the main water track and P18, as the greatest hydraulic conductivity was noted at JPH fen followed by the fen in ML. While the smallest flux within the wetland would be at the ombrotrophic bog, as has been shown by others based on general fluctuations of water tables (Regina et al. 1996). Overall, waterlogged soils will limit nitrification from occurring at large quantities.

Since nitrification does not occur readily in waterlogged soils, wetlands are often considered as sinks for nitrogen (e.g. Wray and Bayer 2007). Recharging hydraulic gradients observed in fens at both sites may act to move dissolved oxygen, found within the first 5 cm of a peat column (Thomas et al. 1995), to depths (resulting in nitrification); however, no data was collected for dissolved oxygen for this study. Recharging hydraulic gradients may also move nitrates at the surface downward to anoxic locations were denitrification most likely follows. Or on the other spectrum, discharging hydraulic gradients may move ammonium to the surface, and nitrification would follow. Therefore, areas where vertical hydraulic gradient result in the discharge of water to the surface may be sources of nitrate to the surface. These infrequent upward gradients were only observed in the fen and at one upland well at ML (P6). The hydrological data collected for this study was used to identify recharge and discharge areas in the various terrain units at the study sites. In the region, hydrological connections are strongly dependent on the variations in precipitation (Devito et al. 2005) and consequently, interannual variations in the behaviour of these different terrain units can vary considerably. This study only captured two contrasting hydrological field seasons, and a longer-term evaluation of the hydrological conditions at the site would be required for an equivalent analysis, we offer some basic conclusions on the recharge/discharge conditions in individual terrain units and the resulting hydrological connectivity of the sites.

The initial hypothesis was uplands would be a source of water to wetlands, and that wetlands would recharge uplands. This was found to be partially true at JPH. Adjacent uplands (< 200 m in distance) at the JPH site may be connected to the rich fen as seen in the flow nets. But there was no evidence to support the uplands being fed by the wetlands. Therefore, we would anticipate additional nitrogen that is not readily utilized in upland areas could eventually be transported towards the fen. In locations where the hydraulic conductivities are very low, such as at depth in the fens and bogs at ML, the implications are quite different. The bog is recharged by precipitation and shows a limited change in isotopic signatures temporally and at depth. This suggests that nitrogen species may not be laterally transported via subsurface water from this terrain, nor laterally transferred to this terrain by adjacent units, but rather may move vertically and become utilized or stored. In the fen at the ML site, variations of stable isotopes of water and hydraulic gradients suggest connections of surface water and shallow

groundwater, possibly because of either piston flow or dispersion, despite lower hydraulic conductivities at depth and may therefore, be more important for nitrogen fluxes than the bog. Ultimately, adjacent uplands appear to add surface runoff that acts to recharge the wetland, and possibly will also connect to the wetlands during intense summer precipitation as has been observed at other wetlands (Hayashi et al. 1998).

Finally as was observed by stable isotopes of water, snow and snowmelt contribute a large pulse of water into the system and may consequently deliver nitrogen species deposited during the winter months. This pulse is seen in the bog and the uplands near the surface, while is slightly more mixed and muted in the fens. This pulse of snowmelt is also evident at depth with the peat and may indicate the potential for oxygenated waters to reach areas where pools of reduce nitrogen is present.

2.6 Terrain unit roles of fen, bog and upland for connectivity

In general, our results confirmed most hypothetical connections identified in the conceptual model (see Chapter 1). Results reveal that the bog is mostly an isolated or slowly leaking terrain, and has limited connection to the adjacent fen except near the surface. This was in agreement with our hypothesis. In the fen, connection with the upland appears to be mostly unidirectional, where the uplands mainly feed fens. There were small occurrences of uplands being fed by wetlands, in ML under dry condition; however, this was not a common observation as previous research in the area has noted for outwash plains (Smerdon et al. 2005). Most lateral flow at ML occurred near the surface where the hydraulic conductivity permits it, as is seen in the stable isotopes.

Finally, we found that fens are fed by bogs at the surface, are recharged by uplands in the spring, and infrequently discharging hydraulic gradients can occur under relatively dry conditions, though the lateral and vertical hydraulic gradients were predominately recharging the shallow groundwater.

2.7 Summary

This research builds on the current understanding of surface and shallow groundwater movement in the Boreal Plains region, and confirms that connections between terrain units are temporally variable and dependent on antecedent moisture conditions. This research highlights the significance of hydrological connectivity being affected by hydraulic conductivity on a landscape. The two study sites are both situated within the AOSR, but have differing hydraulic conductivity resulting in contrasting sites. At the JPH site surface and groundwater is influenced by the topography. At the ML site complexities in groundwater flow become evident due to heterogeneity of peat and low hydraulic conductivity. Although lower hydraulic conductivity was recorded at depth in peat, recharging hydraulic gradients coinciding with variations of δ^{18} O at depth suggest episodic connectivity of deep peat waters with the surface or underlying/adjacent groundwater. This research is in agreement with previous conceptual models, confirming the largest flux of water is still lateral within peatlands at shallow depth. 3.0 Examination of surface runoff in the bogs, fens and uplands of the Boreal Plains

Abstract

Determining the impact of additional nitrogen in the Athabasca Oil Sands Region (AOSR) is complex because of the mosaic landscape of terrestrial and aquatic ecosystems in the Boreal Plains. This study aims to strengthen the conceptual model for the potential surface pathways for water and nitrogen within the AOSR by examining vertical water balance and runoff potential of terrain units representative of the Boreal Plains. Two sites were examined surrounding Fort McMurray, Alberta, and field data was collected during 2011 and 2012. We used an unconventional hydrological technique based on vertical water balance, to estimate the surface runoff on this landscape, together with stable water isotopes data, to trace surface flowpaths.

Our results show the vertical water balance for the different peatland terrain types have lower surface runoff potential in the bog when compared to the fen. The results also show the importance of antecedent moisture conditions. When large precipitation events occur under high antecedent moisture conditions, the runoff potential of the bog was found to increase significantly, although this will typically occur only after depression storage thresholds are exceeded. This type of hydrological response can be termed 'fill and spill'. Deuterium excess from stable water isotopes was found to decrease from bog to fen revealing the likely effect of evaporative losses along surface flow pathways (fen water tracks). These findings have significant implications for the movement of nitrogen deposition in the system, as they suggest that in dry years/periods nitrogen will be retained within the system whereas in wet years/periods it may episodically serve as a source of water and nitrogen to adjacent wetlands, lakes and rivers.

3.1 Introduction

Wetlands ecosystems are complex landscapes and need to be investigated in detail because of their important ecological functions. It is known that wetlands help regulate flow (Kimmel and Mander 2010), serve hydrochemical functions (Prepas et al. 2006), act as a carbon sink (Vitt et al. 2001), are important for wildlife habitat (Gorham 1991), and regulate biogeochemical processes for catchments (Bowden 1987). In the Boreal Plains region, wetlands can account for 50% or more of the landscape (Vitt et al. 2001). This region is characterized by minimal relief and runoff mechanisms are driven by precipitation, evaporation and storage changes (Devito et al. 2005). Predicting the routing of runoff in these landscapes is difficult because of the intrinsic physical properties of terrains such as bogs and fens, and the potential connections to adjacent uplands (van der Kamp and Hayashi 2009).

Raised bogs are characterized by limited connectivity to adjacent peatlands. They typically are fed exclusively by precipitation input with negligible groundwater connectivity. They are defined as being more acidic than fens, with greater hummocks and hollows (Zoltai and Vitt 1995). In addition, bogs have a greater depth to the water table than fens. In contrast, fens are characterized by having surface flow-through, may have connections to the groundwater and a water table very close to the surface (Zoltai and Vitt 1995).

Runoff in wetlands varies due to the previously mentioned characteristics. More importantly, runoff can vary based on antecedent moisture conditions (Devito et al.

2005; Redding and Devito 2008), and it is argued that connections of different terrain units are dynamic in both space and time (Spence et al. 2011). Studies capturing both spatial and temporal hydrological variation in wetlands have been limited. Runoff modelled under changing hydrological conditions has revealed connections variable in space (Shook et al. 2011), and runoff in time is largely non-uniform during high flow periods in wetlands (Richardson et al. 2012). The interplay of various terrain types within these systems has yet to be examined in detail.

Where water moves, nitrogen can be expected to do the same; therefore, it is imperative to understand the surface runoff of the typical Boreal plain landscape. Extensive research has gone into wetland runoff in the Canadian Shield (e.g. Oswald et al. 2011; Phillips et al. 2011; Spence et al. 2011) and areas where blanket peat exists (e.g. Kværner and Kløve 2006; Laudon et al. 2007; Kværner and Kløve 2008). Yet, limited research exists on the dynamics of surface runoff in mosaic landscapes. Recent work completed by Devito et al. (2012) has described the dynamics of runoff for the reclamation of wetlands in the Boreal Plains. Understanding surface runoff in the Athabasca Oil Sands Region (AOSR) is crucial for scoping the implications of increased emission by industry and vehicles, as there is concern for acidification of the terrain (Whitfield et al. 2010a) and surface waters (Gibson et al. 2010). Characterization of the mosaic landscape's runoff and geochemical functions, both spatially and temporally, will further our understanding of the behaviour of wetlands and uplands. Consequentially, this will help to distinguish terrain types as sources or sinks for additional nitrogen.

In this study two wetlands were examined over a two year study (2011 and 2012) near Fort McMurray, Alberta. Traditional gauging techniques are difficult to apply in the Boreal Plains because minimal relief results in limited channelized flow. Our attempts to gauge were unsuccessful for this study because variability in flow, ranging from a trickle to extreme, resulted in wash out of equipment and poor quantification of some fluxes, particularly streamflow. As an alternate approach, vertical water balance, a method demonstrated by Tattrie (2011) for wetlands in Fort McMurray area, was used to estimate runoff potential on a daily time step. This study aims to understand the occurrence and strength of hydrological connections that exist within wetlands and uplands in typical watersheds of the AOSR. The objectives of this study are: to estimate runoff potential in an ungauged setting, to assess the responsiveness to rain events, and to determine the degree of hydrological connections that develop between various terrain units during the runoff process.

3.2 Study site

The AOSR is found in northeastern Alberta within the Boreal Plains region (EcoRegions Working Group, 1989). The two sites selected for study are situated near Mariana Lakes (100 km south of Fort McMurray) and Jack Pine Highland (25 km north of Fort MacKay) (Figure 3.1). The Mariana Lakes site (hereafter referred to as ML) is a peatland complex situated within a 23 km² catchment, comprised of nutrient poor jack pine (*Pinus banksiana*) islands and uplands, bordering a poor fen, and ombrotrophic bogs. On the uplands the majority of jack pines are standing burnt timber with a thick floor of saplings. Shrubs are dominated in the uplands by roses (*Rosa arkansana*), labrador tea

(*Rhododendron groenlandicum*), and blueberries (*Vaccinium corymbosum*). Soils in this region are somewhat characteristic of Boreal Plains region, consisting of low hydraulic conductivity silts and clay. Vegetation in peatlands at this site, comprised of a fen and a treed bog, is dominated by *Sphagnum* mosses (*S. angustifolium, S. magellanicum, and S. fuscum*), sundews (*Drosera*), cloudberries (*Rubus chamaemorus*) and cranberries (*Vaccinium vitis-idaea*). Trees in the bogs are black spruce (*Picea mariana*), and tamarack (*Larix laricina*).

Figure 3.1 A and B represent ML and JPH sites with instrumentation locations.

Jack Pine Highland (JPH), a 7 km² catchment, is dominated by jack pine (*Pinus banksiana*) trees averaging 40 years of age in the uplands, and the soil is sandy and nutrient poor. There is a low-lying, rich, minertrophic fen that runs north through the site. Vegetation in the upland portion of this site is dominated by many types of lichen (*Cladina*) found

on both forest floor and as epiphytes on trees and branches, as well as labrador tea (*Rhododendron groenlandicum*), and blueberry (*Vaccinium corymbosum*). The fen is comprised of alders (*Alnus*), paper birch (*Betula papyrifera*) and sedge species (*Carex*). As well, Sphagnum species were present yet sporadic within the fen.

3.3 Field methods

3.3.1 Groundwater monitoring

The sites analyzed were instrumented with piezometers, water table wells and micrometeorological stations (Figure 3.1). Nested piezometers consisting of 2 to 4 wells were installed at depths ranging from 1.5 to 7 m. Each piezometer was constructed out of either PVC pipe or high carbon steel, threaded into a stainless steel Solinst[™] model 615 drive-point screened piezometer tip. To maintain the integrity of the water sampled from wells, polyethylene tubing (PET) was installed inside the pipes. Piezometers were installed using a Pionjar[™] percussion hammer. Water table wells were manually installed into the peat, or in the case of some fen sites, with an auger. Water table wells were constructed from slotted PVC pipe of 0.076 m width by ~1 m length and these were covered with Nitex mesh to avoid sediment flow into wells. The water table wells were instrumented with Water Level Capacitance Loggers (Odyssey[™]) to record the water table level in millimetres. Water levels were measured every 10 minutes during the summer and hourly during the spring, fall and winter. Water table wells were anchored into the substrate using rebar posts to maintain relative elevation and minimize vertical error because of fluctuations in the surface elevation of the peat. The elevations of the water table wells and piezometers were taken from the LiDAR survey

with an accuracy of ~5 cm. Deep piezometers were driven into the substrate and levelled off at the top of the casing for visual confirmation of maintained elevation. In addition, the length from the top of the casing to the ground surface of each well was measured annually with an accuracy of ~1 cm.

3.3.2 Outflow gauging methods

A 45° V-notched weir was installed at both sites. At JPH the weir was constructed in the rich fen. Minimal flow for 2011 resulted in no water flowing over the weir. In 2012 the weir became active in the spring, but sedimentation shortly after resulted again in an inactive weir. There was no channelized flow at the ML site in 2011, so it was difficult to find a suitable location for a weir that could capture the entire outflow from the fen. The peatland in 2011 did not show channelled flow. The ML site eventually flows out to Highway 63. At the highway a weir was constructed and a staging well was actively working for the fall of 2011 until the falling limb of the freshet in the spring of 2012. During the freshet, the weir was washed out below. Discharge was larger in 2012 than in the previous year and the weir could not be repaired.

3.3.3 Water sampling for isotopes and geochemistry

The d-excess is used in this study to identify progressive evaporation along surface flowpaths, and to provide a measure of flushing or connectivity. Whitfield et al. (2011b) similarly used d-excess to identify areas of flow-through and groundwater input in nearby wetlands. Gibson et al. (2000) suggested the use of the d-excess for determining the residence time of a parcel of water in a catchment. The same method is used in this

study to assess if d-excess can be attributed to the distance along the flowpath. In this study, we used the mapped drainage pathways identified from the LiDAR flowpaths derived in Chapter 2 to identify headwater locations in the wetlands. At ML, headwater locations were the start of surface flowpaths which carried water to the drainage outlet of the watershed. The headwaters were situated in proximity to well MLP and various wells were located along the flowpath towards the watershed outlet. At JPH headwater areas corresponded roughly to the location of JPHA and likewise were monitored in a series of wells toward the watershed outlet. See Figure 2.4 and 2.5 for MLP and JPHA for well locations, respectively.

Water samples were collected from all water table wells and piezometers, at the outflow point, and from precipitation collectors (event and bulk). Collection from wells and piezometers occurred after purging three well volumes of water from each well. Geochemical samples were collected for a complementary study by Kusel (2014). Water samples for stable water isotopes were placed in 30 mL air-tight high density polyethylene bottles to minimize potential for isotopic fractionation by evaporation. Samples were analyzed by Alberta Innovates Technology Futures in Victoria using a Delta V Advantage mass spectrometer. Results are reported in per mil (‰) relative to Vienna Standard Mean Ocean Water (V-SMOW) with an analytical uncertainty of 0.01‰ for ¹⁸O and 1 ‰ for ²H. The oxygen-18 and deuterium composition are calculated according to:

$$δ18O or δ2H = [Rsample/Rstandard - 1] * 103 ‰,$$
(1)

where $R_{sample} = {}^{18}O/{}^{16}O$ sample, or ${}^{2}H/{}^{1}H$ sample

$$R_{standard} = {}^{18}O/{}^{16}O V-SMOW, or {}^{2}H/{}^{1}H V-SMOW$$

Deuterium excess (d-excess, d) is expressed according to:

$$d(\%) = \delta^{2} H - 8 \delta^{18} O$$
 (2)

Where δ^2 H and δ^{18} O are deuterium and oxygen-18 compositions of water, respectively. Previous studies for investigating precipitation-climate processes as shown by Froehlich et al. (2002) have used d-excess for labelling of vapour source regions and evaporation effects. Graphically, d-excess represents offset from the global meteoric water line (GMWL) defined by Craig (1961) which has a d-excess equal to 10 as shown in δ^{18} O versus δ^2 H space (seen in Figure 3.2). A negative deviation from the GMWL, i.e. d-excess less than 10 is common for evaporated water bodies undergoing heavy isotope enrichment, whereas a positive d-excess is often associated with evaporated moisture or closed basin precipitation, as in the Mediterranean regions.

Figure 3.2 Schematic of d-excess parameter adapted from Froehlich et al 2002 for application to wetlands. The global meteoric water line (GMWL) has a d excess = 10 and a slope of 8, as defined by Craig (1961). The local evaporation line has a slope of less than 8 and a variable d-excess based on moisture conditions. In this figure, a decrease in d-excess represents an evaporative loss of water, while an increased d-excess would correspond to rain because of an increase in moisture recycling.

When a parcel of water undergoes evaporative enrichment due to kinetic fractionation, the deuterium intercept will decrease in magnitude. The d-excess, which contains information from both δ^2 H and δ^{18} O can therefore be used as a simple metric of offset along the local evaporative line (LEL), as shown in Figure 3.2, and as commonly observed in the AOSR (Gibson et al. 2011). The hypothesis in this study is that water parcels with longer exposure to evaporation will acquire a lower d-excess.

3.3.4 Micro-meteorological methods

Four micro-meteorological stations were installed at the study sites. At ML the stations were situated in the treed bog and the open fen, and at the JPH site stations were situated in the upland forest and the open fen. All stations consisted of sensors mounted onto a 3 m tripod tower which was installed and levelled periodically. All stations collected data from 2011 and 2012 during the open water season (~ June to October). Each station consisted of an array of sensors to record: wind speed (ms⁻¹) and direction (°), precipitation (mm), net radiation (Wm²⁻¹), relative humidity (%), air temperature (°C), soil temperature (°C), and air pressure (kPa). All parameters were recorded on a Campbell Scientific CR 23X Data Logger (Table 3.1). Measurements were made every 30 seconds and averages were recorded at 30 minute intervals. Data for 2011 at JPH was also compiled from the Terrestrial Ecological Effects Monitoring (TEEM) meteorological station located 3 km away. The TEEM meteorological station recorded hourly averages of similar parameters. Owing to lack of an atmospheric pressure record from the TEEM meteorological station for 2011, the ML atmospheric pressure record was used.

Variables		
measured	Height of Measurement (m)	Measurement method
Air temperature (°C)	1.8 above the surface	thermistor in a radiation shield
Net radiation (Wm ²⁻¹)	1.8 above the surface	pyranometer
Relative humidity (%)	1.8 above the surface	thermistor in a radiation shield
Rainfall (mm)	1.8 above the surface	Tipping bucket rain gauge
Soil Temperature (°C)	At 0.1, 0.25 and 0.4 below the surface.	Thermistor
Wind speed (m/s) and direction (°)	2 above the surface	Gill ultrasonic wind sensor (anemometer and vane)

 Table 3. 1 Overview of field measurements methods.

Young barometric air pressure sensor

3.3.5 Energy balance

Evaporation was estimated through a simplified energy balance approach using parameters from each sensor on the micro-meteorological station. The most practical methods for determining evapotranspiration from land surfaces in the region using similar equipment are Priestly Taylor (1972) method, the Penman method and the Penman Combination method (Winters et al. 1995). These methods were found to yield comparable results in a study in the region (Tattrie 2011). The Penman Combination method was selected for this analysis as previous workers have noted it to be slightly better due to the aerodynamic resistance function being nonlinear, resulting in fewer incidences of over-estimation of evaporation (Chow et al. 1988). The micrometeorological data, averaged over a daily time step, is used to compute evaporation using the following formula:

$$E_{p} = \underline{\Delta} E_{r} + \underline{\gamma} E_{a} (mmday^{-1})$$
(3)
$$\Delta + \gamma \qquad \Delta + \gamma$$

where:

 Δ = the slope of the saturated vapour pressure (Pa°C⁻¹) γ = psychrometric constant (Pa°C⁻¹)

and,

$$E_r = \frac{Rn-H-G}{I_v \rho_w}$$

where:

Rn = net radiation H = sensible heat flux G = ground heat flux I_v= latent heat of vaporization ρ_w=water density (4)

For the aerodynamic component, Ea, is the difference in saturated (ea_s) and actual vapour pressure (ea) and is multiplied by the wind speed (w_s), where

 $Ea=(ea_{s}-ea)w_{s}$ (5)

(Chow et al. 1988: 88)

3.4 Data analysis

3.4.1 Vertical water balance

To estimate runoff in an ungauged catchment a method known as the vertical water balance was used. As developed by Tattrie (2011), this method involved estimations of runoff potential for wetland surface based on the precipitation-evapotranspiration deficit, the change in storage observed in the water table wells, and an assumed threshold of surface depression storage. Boudreau and Rouse (1995) utilized similar site specific balances for wetland terrains to estimate runoff values. The vertical water balance (VWB) uses a bucket model approach in this case with an assumed 15 mm depression storage capacity across all of the wetland areas found to be suitable for nearby wetlands by Tattrie (2011). This threshold is also in general agreement with other depressional storage estimates reported in similar wetland studies outside the AOSR but within the Boreal Plains (e.g. Goodbrand 2013). Meteorological data, used for characterizing precipitation and evapotranspiration by the Penman Combination method were combined with water level records from specific sites to estimate runoff potential by the vertical water balance method on a daily time step. The water balance takes into account precipitation (P), evapotranspiration (ET) and storage change (ΔS) according to:

where R is runoff potential (mm), P is precipitation (mm), ET is evapotranspiration (mm) and the change in storage (Δ S) is defined as the water table (WT) change on a daily time step multiplied by the specific yield (S_y) of peat (Boudreau and Rouse 1995). Specific yield values for peat have been shown to vary considerably, ranging from between 0.3 and 0.6 depending the bulk density (Thompson 2012). In this study, to be consistent with Tattrie (2011), we have used Johnston's (1967) estimate of 0.44 for specific yield. Compressibility function in peat (bS_z) exists based on Price and Schlozhauer (1999) study findings, but they state storage can be a function of gravity rather than compressibility. In addition, in this region Petrone et al. (2008) found peat resistant to compressibility. For simplicity purposes of this estimate, this study ignored the compressibility value and assumes storage is affected only by gravity.

In wetlands where slope gradient is minimal, runoff is not typically visible or measureable. Therefore, estimates of runoff potential help to predict the amount of water excess above a fixed depression storage threshold. To estimate the runoff potential, it was assumed that groundwater plays a minimal role in the wetland surface water balance, as underlying tills have low hydraulic conductivities ranging in this region from 10⁻⁸ ms⁻¹ to 10⁻⁹ ms⁻¹ (Hayashi et al. 1998). As well, based on Chapter 2, we found minimal groundwater connections.

(6)

From Chapter 2 the changing hydraulic head of upland piezometers adjacent to the fens (P6 and P13) on a biweekly to monthly time scale are included in this analysis but the VWB was not applied to them as groundwater is known to be important in the upland water balance.

3.4.2 Antecedent precipitation index

Antecedent moisture has been shown to be an important factor in understanding the hydrological response of wetlands. Previous research has shown that memory effects in these systems can change potential flow routing and connections (Creed et al. 2008; Shook et al. 2011). This study applied the antecedent precipitation index (API), to the summer seasons to quantify event antecedent moisture according to:

$$API_{t} = API_{t-1} * C + P_{\Delta t}$$
(7)

(Linsley et al. 1982)

where $P_{\Delta t}$ are precipitation events, API_{t-1} are previous precipitation events on a decaying scale, and C is the decaying constant ranging from 0.9 to 0.7 varying depending on water residence time in the watershed (Linsley et al. 1982; Bousfield 2008). For a peatland with minimal flow potential, a recession coefficient of 0.9 was used on a 0.1 decaying factor for each time step. These choices were adopted because of the small scale of sites and the recorded hydraulic conductivities. The API is evaluated on a daily time step in this study and is applied to better understand the watershed response during and between precipitation events.

The API was used qualitatively to categorize precipitation events based on the antecedent moisture conditions (AMC) to test the hypothesis that there may be different types of hydrological responses within the different terrain types depending on the AMC. This study classified the AMC into low, medium, and high based on the magnitude and duration of each event. A precipitation threshold for lateral flow of 15 mm in magnitude was used (Redding and Devito 2008). While a conservative threshold of 25 mm was used to differentiate the medium and high antecedent moisture conditions regimes. The API index was most relevant to isolate rain events and infiltration capacity, while duration was used again as an identifier between medium and high events. Below is a table (Table 3.2) of the quantitative values used for each AMC class.

AMC Conditions	Duration (hrs)	Magnitude of precipitation	Magnitude of API for
		event (mm)	event (mm)
Low	<10	<25	<19
Medium	<10	<25	>19-49
High	>10	>25	>49

 Table 3. 2 Quantitative framework for classifying antecedent moisture conditions.

Using the AMC, instantaneous unit hydrographs were created for select rain events on a ten minute resolution. Water level data from all wells sampled at the ML site were placed onto one hydrograph. To identify the hydrologic response to a single rain event, the water level was set at the beginning of each event to zero and differences in water level were determined until the peak of each event. The examination of the falling limbs did not occur as it is difficult to determine the terminus of a rain event in peat. By placing all sites on one hydrograph, the overall slopes were compared for the rising limbs. Tradif et al. (2009) used a similar method to determine terrains on a larger scale, based on different responses which were visible between fens and areas flooding in wetlands. This analysis was used to assess if different responses were visible between the bog and fen terrain at the ML site under different precipitation events.

3.5 Results and discussion

3.5.1 Precipitation, Evapotranspiration and Water levels

The time series of precipitation, evapotranspiration and water levels changes are presented in Figure 3.3. Precipitation totals during the study period of 2011 (111 days) and 2012 (96 days) were 229 mm and 335 mm, respectively highlighting the wetter conditions in 2012. In addition, the evapotranspiration was also greater in 2011 in comparison to 2012, by approximately 100 mm.

As shown in Figure 3.3, comparing 2011 and 2012, three larger rainfall events occurred in 2011 of approximately 20 to 30 mm in magnitude, while in 2012 there were three events that exceeded 50 mm and many smaller rainfall events. In 2011 the water table at JPH was never observed at surface in the fen, while in 2012 (around DOY 180) the water table appeared above the fen surface and remained high for the duration of the season. At ML, the wetter conditions in 2012 resulted in saturated ground in many areas of the fen that were not present in 2011.

Figure 3.3 Summary of water table levels, cumulative evapotranspiration, and precipitation for both hydrological years a) is ML and b) is JPH.

The results of the vertical water balance calculations are summarized in Table 3.3 and graphed in Figure 3.4. The range in runoff potential from the VWB analysis is large within each of the terrain units. The average runoff potential for the ML fen for 2011 was negative (-212mmyr⁻¹) and for 2012 was 76 mmyr⁻¹. Negative runoff potential suggests that surface outflow from the site is likely to be negligible, and that storage is likely on the decline. The runoff potential in the ML fen was found to be more uniform and more positive in 2012 under wetter conditions than in 2011. Compared to ML fen, the ML bog was found to have similar but lower runoff potential, with a deficit of 269 mmyr⁻¹ in 2011 and a surplus of 55 mmyr⁻¹ in 2012. In the ML fen, it was hypothesized that the largest runoff would be at sites farthest along the flowpath (MLE or MLG), as these sites would be receiving the largest surface flow through from a proportionately larger drainage area. But, MLU and MLS had the largest runoff in the fen. Both of these wells are situated on the edge of the bog. MLC had largest runoff potential for the bog terrain and is also very close to the edge of the bog. The bog fen transition zone is therefore identified as a potentially important generator of runoff at the ML site.

		2011	2012
Terrain Type	Well Site	Runoff Potential (mm/yr)	Runoff Potential (mm/yr)
	ML A	-245	77
	ML B	n/a	78
	ML D	-164	n/a
	ML E	-169	69
	ML G	-191	n/a
	ML N	-218	74
	ML Q	-267	68
	ML R	-217	75
	ML S	-221	83
ML Fen	ML U	-222	81
	ML F	-286	65
	ML M	-248	43
	ML O	-284	59
	ML P	-290	64
	ML T	-287	26
	ML C	-196	78
ML Bog	ML V	-289	48
	JPH A	-386	286
	JPH B	-392	301
	JPH C	-408	303
	JPH D	-428	303
	JPH E	-391	262
	JPH F	-332	267
JPH Rich Fen	JPH G	-327	174

Table 3.3 Runoff potential rate for 2011 and 2012. Mariana Lakes site is represented by the fen and the bog; JPH is represented by the rich fen.

Similar to the ML sites, at JPH the rich fen was found to have negative runoff potential in 2011 because of the relatively dry conditions. Runoff potential rarely exceeded the 15 mm threshold of depression storage. During 2012, runoff potential was similarly positive although higher at JPH than ML, estimated at 271 mmyr⁻¹. Lateral surface flow was visible at the rich fen in JPH from July to September 2012 throughout the study period. A secondary channel became active only when overland flow is present. This is thought to be why the record of JPHG, shows dramatically less runoff potential than the mean by ~100 mmyr⁻¹.

In the rich fen at JPH for both years, the VWB (Figure 3.4) reflects several large spring runoff events, followed by periods of drying, and finally late summer rains causing significant runoff. Large variances in runoff estimates at sites within the rich fen can most likely be related to the physical width of the fen channel. Some wells are located in reaches of the fen over 45 m wide, resulting in a small water level rise as compared to reaches where the fen narrows to less than 20 m causing a funnelling of water and larger water level rises.

Figure 3.4 Vertical water balance for each terrain unit in 2011 on left and 2012 on right. JPH is represented by the rich fen and ML by the fen and bog. Error bars represent range of runoff from all wells within the represented terrain. The dash line at 15 mm indicates the approximate (and assumed) runoff threshold. Hydraulic head of adjacent shallow upland wells (ML (P6, P13), and JPH (P10) are plotted with respective scales, reference line and dotted trend line.

92

It is important to note that the bog terrain units had minor runoff potential from small scale precipitation events with minimal exceedance of the 15 mm threshold, as opposed to the fen which had two incidents of exceedance in 2011 and three in 2012 seen in Figure 3.4. In 2011, no visible surface flow was observed in the wetlands during precipitation events, whereas in 2012 surface runoff was observed at MLG on Sept. 10 2012 (DOY: 253), following a very large precipitation event. Based on this observation of surface runoff at MLG, we anticipate lateral runoff is likely to occur under similar magnitude precipitation events (> 50 mm); although different hydrologic regimes can result in dramatically contrasting runoff potentials.

A past study that focused on the interaction of wetlands and uplands has shown a cyclical lateral flux of water moving from uplands to wetlands in the winter/spring and opposite in the summer/fall (wetlands recharge uplands) (Hayashi et al. 1998). Based on this previous research, ML would be expected to be maintaining or increasing the hydraulic head of adjacent uplands throughout the open water season. The results from the adjacent uplands and the VWB (Figure 3.4) indicate this trend occurred in some fen locations (P13 and P10 of JPH), whereas it did not occur in others (P6) situated relatively close to the bog. This cyclical lateral flux of water may exist in ML weakly, as hydraulic heads of adjacent uplands increases throughout the open water season. However, it is clear that the largest flux of water is generated laterally near the surface of the fen.

3.5.3 Statistical analysis of VWB

Basic statistical analysis was conducted to compare VWB for ML fen, ML bog and JPH rich fen wells for 2011 and 2012. A box plot illustrates the differences in average runoff potential for the terrain units (Figure 3.5). A t-test was performed and revealed that the median values between the fen and the bog at ML for 2011 and 2012 were statistically different at a significance of p < 0.006 and p < 0.009, respectively. It is reasonable to assume that these differences in runoff responses arise because the bog is a recipient of only precipitation, whereas the fen receives precipitation as well as some groundwater inflow.

Figure 3.5 Mean runoff potential differences for terrain units. Fen and bog are at ML, and JPH represents a rich fen for 2011 and 2012. Results from Tattrie's (2011) findings are plotted for fen and bog terrain in 2005 and 2006.

Similar trends are seen in comparing these findings with previous VWB estimates completed by Tattrie (2011). ML fen has the largest runoff estimates and the lake fen in Tattrie's study does as well. Total precipitation from Tattrie's study in both years (2005 and 2006) was less than observed in 2011 and 2012; thus, accounting for the differences found in runoff potentials. Tattrie observed a decreasing runoff potential as the summer progressed. A similar occurrence was found in this study during 2011, but the trend was not present for 2012. No negative runoff potential was recorded in Tattrie's findings rather the runoff was defined as zero; this accounts for the differences observed in 2011. Overall, differences seen in runoff potentials between this study and Tattrie's may be a function of the characteristics of these distinct study areas.

3.5.4 Antecedent moisture variations in ML

The shapes of the hydrographs (Figure 3.6 and 3.7) revealed differences between the fen and the bog responses in ML depending on the AMC. In circumstances when antecedent moisture was high the bog response was most obvious and typically peaked at higher water levels than that of the fen; whereas when antecedent moisture was low, the response of the bog was muted relative to the fen. In 2011, under relatively low AMC, all bog responses were largely muted in comparison to the fen (see Figure 3.6). The 2011 AMC appear to have minimal difference from low to medium antecedent moisture. In contrast to 2011, in 2012 (see Figure 3.7) there was an evident difference in the hydrologic response to increasing AMC. In low AMC, the water level response in the fen. In medium AMC, the bog responses were similarly to the fen. Finally, for cases when AMC was high,

the bog showed a threshold of responsiveness exceeding the fen. In episodically large

precipitation events the bog may showcase *fill and spill* hydrology (Woo 2012).

Figure 3.6 Examples of water level response for water table wells during 2011 situated in the fens and bogs under low (left), medium (centre) and medium (right) AMC. Stacked graphs are on the same time scale and the water level corresponds with being below an arbitrary defined datum.

Figure 3.7 Examples of water level responses for water table wells during 2012 situated in the fen and bog under low (left), medium (centre), and high (right) AMC. Stacked graphs are on the same time scale and the negative water level corresponds with being above an arbitrary defined datum.

It is probable that differences are because of the changes in surface micro-topography and roughness. Quinton and Roulet (1998) observed this type of response based on
micro-topography creating different storage thresholds. They recorded that three quarters of annual runoff was based on the exceedance of this threshold connecting the wetlands. Bogs tend to have more hummock and hollows prevalent, whereas fens exist as lawns, and surface roughness substantially decreases. So, in events with low to medium AMC, the bog, having deeper hollows and higher porosity than the fen, fills those hollows and a rise in the hydrograph is therefore limited. At a certain threshold, when AMC is high, the empty hollows are full and spillage may occur to surrounding areas. Storage thresholds can influence hydrological connectivity (Spence 2010), and is a key factor that determines if runoff exists or not.

If the storage thresholds are exceeded when the AMC is high and a large precipitation event occurs, spillage can occur over the surface as water tables rise. It is interesting to note that runoff potential based on the VWB was found to be highest in the transition zone between the bog and the fen i.e. at sites MLU, MLS, and MLC. These are the sites where water levels were found to be most responsive during high AMC events, and likely are a significant source of water during high runoff episodes.

The storage capacity of the different terrain units within prairie regions has been shown to be a significant parameter controlling runoff response. In prairie wetlands, runoff from wetland potholes typically occurred when the storage thresholds were exceeded (Su et al. 2000). Conceptually, a bucket model approach was used to describe runoff with slow and fast moving areas depending on antecedent moisture. In the case of ML, a fast moving area would dominate once surface storage capacity is exceeded during large precipitation events and at high AMC. Retention of water appears to be limited in large precipitation events, and these large events may also act to connect the upland areas. After large precipitation events, evidence of surface flow was visible such as matted vegetation and twig transport that suggested overland flow had occurred along open rill channels off the hillslope; therefore, uplands surface runoff to wetlands most likely occurred.

Another factor that may influence the storage threshold in the wetlands is the frost table. Frost tables are often close to the surface at the beginning of the open water season and decline steadily due to melting as the season progresses. Petrone et al. (2007) found that a higher frost table corresponded with a larger lateral movement of water within a peat complex and storage was limited, although that parameter was not measured in this study.

3.5.5 Lateral movement of water

The d-excess was found to decrease systematically from bog to fen along the dominant surface flowpath at ML site. Using data from both 2011 and 2012, the trend in d-excess versus distance from surface water at the ML site produced a linear regression with $R^2 = 0.34$, and a slope of -0.007 (p <0.0001). Largest d-excess values were seen in the bog and values generally decreased along the flowpath towards the fen (Figure 3.8). This negative relationship is in agreement with the hypothesis that water would become progressively enriched along the water track. Transpiration, which does not typically

produce isotopic enrichment, is clearly not the primary mechanism for enrichment of the water, although transpiration may also be occurring in conjunction with evaporation.

Figure 3.8. D-excess of ML for 2011 and 2012 across different terrain units (bog and fen) along a flowpath with trend line representing surface water table wells. The dotted line represents weighted mean d-excess of Edmonton's local meteoric water line (Rozanski et al. 1993).

It is important to note that the secondary bog (MLM) falls along the trend line. This was not hypothesised. Based on the conceptual terrain unit, bogs are primarily atmospherically feed (precipitation), and therefore would fall close to the d-excess of the local meteoric water line. This is suggestive of two things; first that vegetation used to identify a bog does not necessary predict how the hydrology of a terrain unit will act. Secondly, that not all bogs are alike, rather position within a larger peat complex may be more important determinant of bog hydrologic response. In ML there were two bogs identified, one situated south and somewhat central to the larger complex, and the other in close proximity to the main water track. At this site the secondary bog, (MLM and P16) situated close to the main water track, definitely undergo evaporative enrichment suggesting there is a connection from the adjacent fen. This challenges the conceptual notion that bogs are ombrotrophic, but also shows that isotopes may be used to detect non-ombrotrophic responses.

Closer examination of temporal trends in d-excess at different times during 2011 and 2012 (Figure 3.9) shows a similar relationship is recorded at most times during the study; however, no significant relationship was noted for August 2011, and the strongest significant relationship is found in September 2012. This is mostly likely corresponding to the difference in seasonal wetness. During August 2011, the water table and AMC were the lowest, while the opposite was observed during September 2012 (wettest with highest AMC). These results suggest that during wet years when the runoff potential is higher, d-excess can be explained by distance, while when the runoff potential is low and therefore limiting the movement of water d-excess is not explained by distance along the flowpath. In general, the gradient of d-excess versus distance tends to decrease during lower flow periods and increase during higher flow periods.

Figure 3.9 D-excess for ML in 2011 on the left and 2012 on the right representing surface water table wells. The dotted line represents weighted mean d-excess of Edmonton's local meteoric water line (Rozanski et al. 1993).

Further investigation of d-excess along the flowpath, including piezometers from shallow and intermediate depths, are in agreement with a decreasing d-excess trend with distance as was seen at the surface water table wells (Figure 3.10). In general, a stronger relationship of decreasing d-excess with distance is seen in June 2011 and September 2012, again following the highest AMC. The last piezometer along the flowpath, P17, does not follow the observed trend suggesting that locally processes may be more complex.

Current understanding of peatlands suggest minimal mixing of water may occur because of lower hydraulic conductivity of decomposed compact peat (ex. Reeve 2000); therefore, water within peatlands moves along the flowpath at the surface. However, as was discussed in Chapter 2, there may be mixing of surface and subsurface waters particularly under recharging conditions. From the d-excess results, we observe that there is a decreasing d-excess signature at the surface with distance, suggesting a slow movement of surface waters. But we also examined the mixing of surface and subsurface waters along that flowpath. From piezometers on the flowpath (Figure 3.10) we found wells that were further along the flowpath (P18 and 17) had a smaller d-excess signal at depth. A variation of d-excess with depth of 3 m at P18 ranging from - 1.2 to 2.1 ‰ is seen. This is in agreement with research presented by Levy et al. (2013), suggesting a recharging of waters underneath the water track. Research completed by Levy et al. found recharging signature at depth in large (>100 km²) peatlands, and our findings confirm that surface water recharge can be seen in small catchments as well (<4m km²). However, not everywhere has a recharging signal at depth; P19 outside of the bog, appears relatively unchanged with depth, and contrasts Levy et al.'s findings. This may be accounted for due to variations in specific landscape type, and scale.

Figure 3.10 D-excess examined with distance along the flowpath with P10 representing zero distance following this flowpath sequence P10, O, S, P19, N, Q, E, P18, P17, and G as the final distance along

the flowpath. The top graphs represent shallow wells (~0-2 m depth) and the bottom represents intermediate wells (~2-4 m depth). The dotted line represents weighted mean d-excess of Edmonton's local meteoric water line (Rozanski et al. 1993).

For JPH, (Figure 3.11) d-excess had a positive relationship with distance along the flowpath and contrasted results from ML. In general, there was larger variability of d-excess when compared to ML. D-excess was smallest near JPHA in July 2011, coinciding with visible water ponding at surface. This inverse relationship may indicate that further downstream along the flowpath groundwater is recharging the fen during drier years, as was predicted in Chapter 2 (Figure 2.8). However, when runoff within the rich fen was quite pronounced, during wet periods such as in 2012, the d-excess signatures remained relatively consistent with the local meteoric water line and the relationship is limited. This contrast with results from both sites highlights the variability of terrain response within the Boreal Plains.

Figure 3.11 D-excess for JPH fen, on the left is 2011 and on the right is 2012 representing surface water table wells. The dotted line represents weighted mean d-excess of Edmonton's local meteoric water line (Rozanski et al. 1993).

3.5.6 Fill and spill in the Boreal Plains and runoff

In the Boreal Plains, underlying substrate and soil moisture is a large determining factor in whether potential overland flow occurs in the form of lateral flow or vertical recharge. Previous research has found that vertical flow will occur if soil moisture conditions are in a deficit and if underlying substrate permits it (Redding and Devito 2008).

However, vertical water movement is substantially limited in Boreal Plains wetlands with low hydraulic conductivity. In the wetlands observed at ML, differing responses during 2011 and 2012 are evidently related to antecedent moisture conditions. During low AMC, precipitation falling on the wetland is largely taken up into shallow subsurface storage in the acrotelm and little runoff may be observed. During moderate AMC conditions, precipitation is stored either in the shallow subsurface of the acrotelm or in partly filled depressions or hollows on the wetland and surface flow remains limited. During high AMC, precipitation input may exceed the storage capacity of both the acrotelm and surface depressions, and connections begin to form between surface pools which may eventually coalesce to form more extensive water tracks.

Displacement of older water by event precipitation is common in wetlands systems and has been observed through isotopic hydrograph separation techniques (Kværner and Kløve 2008). Lateral flow in peatland complexes can be explained through *fill* and *spill* hydrology as storage thresholds are met and water moves to the edges of the bog. *Fill* and *spill* usually is applied to a meso-scale such as a catchment with a chain of lakes (Woo and Mielko 2007). However, these same basic concepts can be applied to a site specific/small scale hydrology especially when micro-topography is present.

Micro-topography can function as micro-catchments; each smaller area has specific peat characteristics such as specific yield and compressibility, and can alter the storativity threshold of that unit of peat (Price and Schlotzhaucer 1999; Waddington et al. 2010). On a small scale, Oswalt et al. (2011) found that micro-depressions defined as hydrological response units acted as areas of runoff when saturated following precipitation events. At ML, the differences in runoff responses for various terrain units are seen in the runoff estimates. With larger storativity and increased roughness the bogs appear to take longer to saturate. Once saturated, according to observations at ML and in previous studies (e.g. Oswalt et al. 2011), the micro-depressions or hollows will act as runoff areas. Runoff on the small scale becomes a key eco-hydrological link that helps move nutrients around at these nutrient limited sites.

3.5.7 Implications to nitrogen movement in these ecosystems

Based on our analysis of the runoff potential it appears water may be a significant conduit for nitrogen movement in large rain events and in times when the AMC is high. Comparison between the bog and fen shows that the bog will act as a sink for water but has the potential to transform into a source during large precipitation events. As well, during large precipitation events runoff from uplands is expected to occur and may bring new sources of nitrogen into the wetland. During a wet year, nitrogen species may be diluted as more surface flowpaths may connect adjacent hollows within the bog and fen. Yet, during a dry year, such as 2011, a runoff deficit may act to accumulate excess nitrogen species within hollows. Furthermore, in dry years when the storage thresholds are not exceeded, nitrogen is restricted to moving vertically within its unit of peat, and the accumulation of nitrogen is anticipated to follow the vertical hydraulic gradient.

From the d-excess evaluation, we would anticipate if a surplus of nitrogen was present, it would be moved slowly at the surface of the fen and most likely would be utilized along this flowpath, during drier conditions. We would also anticipate excess nitrogen to move into deeper flowpaths, as recharged signals were seen a depths, and may be an important mechanism to move nitrates (at the surface) and transform them to nitrites at depths, resulting in denitrification in anoxic conditions.

3.6 Summary

Based on the working conceptual model of uplands-peatland systems in the region (see Chapter 1) we expect water near the surface of the mosaic Boreal Plains landscape to follow flowpaths from uplands to fens. We also expect that water near the surface of the bogs will flow out to the fens in high water table conditions. We found based on the VWB runoff potential, that the fen generally produced a larger runoff potential and therefore acted as a main conduit for runoff; however, the bog was active and more responsive during large precipitation events when the AMC and the water table were highest. The d-excess provided some supporting evidence of evaporation and evolution of connectivity along the general flowpath of water. However, it is important to note that a weak recharge signal was seen at deeper depths in piezometers along the flowpath. Therefore, the majority of water must exit these systems at the surface, and only a small amount of surface water infiltrate into depth along the flowpath.

The most significant insight resulting from this study relates to the roles within the mosaic, as these roles may transition from recharging to discharging depending on the inputs of the water balance. In wet hydrological years, the bog which for the most part is recharging may discharge water predominately via fill and spill of water in depressions and between hummocks. Transport of nitrogen along these pathways remains to be quantified but is thought to be small. In these nutrient-limited systems, any additional nitrogen is expected to be utilized by the ecosystem, but may be flushed out downstream under wetter conditions as influenced by high antecedent moisture, larger precipitation events, and seasonal frost tables which may limit storage thresholds.

Characterizing runoff potential for a catchment provides insight regarding where water is moving throughout the wetland at a fine scale. However, it does not provide much understanding of runoff of the catchment as a whole. Future work should also look at comparing a VWB with a gauged site and assess the differences in runoff from the VWB and discharge. The implications of this surficial vertical water balance, leaves much unknown below the surface. When runoff does not appear laterally, it must move below into the peat substrate and possibly recharge into shallow groundwater. In addition, the use of d-excess with more intensive transects would give more robust results on the connectivity and dynamics of the wetlands.

4.0 Conclusion

This research examined groundwater and surface water movement. The results recorded a mixing of shallow waters, seen through isotopes, which occurred mostly at the surface of the fen and were limited in the bog. This was in agreement with runoff within the acrotelm layer of the wetland. Mixing of shallow groundwater was also seen at JPH. However, lateral movement was difficult to quantify and runoff along the flowpath with isotopic signatures did not reveal strong quantitative results. Runoff in the bog was muted, until storage thresholds were met, then more dynamic fill and spill runoff channels developed joining depressions between peat hummocks and allowing substantial overland flow.

Groundwater recharge was minimal based on hydraulic conductivity, but hydrological regimes proved to be important, as dissimilar results were shown from wet years and dry years (ML: P6 discharging). As well, seasonal trends in water movement were difficult to see in ML. Shallow groundwater tended to flow towards the outflow (P17) or P13. At JPH a seasonal trend was vaguely visible with increased flow towards the rich fen from the uplands in early summer. Groundwater flow at JPH predominately followed the topography of this site, flowing northwest.

Based on the conceptual model from Chapter 1 the results confirmed some of the connections that were found in the literature. A revised conceptual model is shown below (Figure 4.1) with only the connections that were confirmed. In Chapter 2, the focus was on shallow groundwater. The results illustrate that in the fen deeper

groundwater connections exist (ML: P17, P18), but were sporadic based on seasonality and hydrological regime (wet and dry) (Figure 4.1a). Our results suggest that surface water in the fen recharges subsurface water and potential groundwater in very small amounts due to low hydraulic conductivities at both sites (Figure 4.1a and b). Isotope depth profiles showed a mixing of shallow waters (Figure 4.1b) with an integrated signature around 2 to 3 m at both sites. Chapter 3 examined the surface of the fens and their connection to the bogs. Results indicated lateral movement of water from the bog to the fen in high antecedent moisture conditions (Figure 4.1c).

The d-excess shows active recharge of surface water in the fen at ML (Figure 4.1 b), and is in agreement with recharging vertical hydraulic gradients. And finally, adjacent uplands feed the wetlands in the spring and during wet years (seen at ML: P6) (Figure 4.1d). The results were unable to identify a recharging effect underneath the bog and any connection of fens feeding uplands. These results are constrained by the instrumentation of this study. Although a connection may not have been confirmed during the course of two years, it does not mean the connection does not exist.

Figure 4.1 Revised conceptual model of study sites. Arrows indicated the connections and directions of water flow. The wetland is comprised of the fen (in white) the bog (circle in blue) and the uplands and similar substrate are in brown.

New studies are providing more comprehensive understanding of hydrological and biogeochemical processes occurring in the Boreal Plains region. Most studies have examined the movement of water within the landscape units of peat-pond complexes and uplands. Most studies have also focused on landscapes with the presence of aspen and outwashed plains. This study examined two landscapes where both aspen and a peat-pond complex were absent, rather focusing on landscapes units of uplands, fens, and bogs. Our research is in agreement with most of the previous findings in the area. This research builds more evidence that the largest lateral transfer of water within wetlands is near the surface. However, stable isotopes of water identified relatively enriched waters at depth within areas of the wetland indicating a downward movement of surface waters. New findings from our research suggest that wetlands do not necessarily feed uplands. We found minimal evidence that this could be a common occurrence in our study sites. Finally, this study highlights the importance of hydraulic conductivity of substrate within the Boreal Plains region, as an indicator for topographical driven shallow groundwater flow.

4.1 Significance to the project

The common theme of sources and sinks for atmospheric nitrogen with respect to water was present in both previous chapters. Although we are unable to definitively state which terrain units will act as sources and sinks under different antecedent moisture conditions, it appears based on only flowpaths the bog may generally act as a sink for nitrogen. Unchanging isotopic signatures and consistent downward vertical hydraulic gradients show that the bog will retain its role as a sink for additional nitrogen even through changing wet and dry hydrological regimes. The fill and spill mechanism, a surface-focused process, may aid in the cycling of nutrients and nitrogen between different hummocks and hollows across the wetland.

4.2 Limitations

The findings from the work pertain mainly to the study sites examined. Limited work has been done to test whether relationships noted at specific sites are applicable to wider areas or on a regional basis. Although a key factor in the selection of the study sites was representativeness of the terrain in the overall Athabasca Oil Sands Region, the results of the study are associated with the specific properties of the site, such as land position, geology, and soil characteristics.

Due to budgetary, time limitations, and technical challenges, this research did not extensively examine the role of upland soils and geology at the ML site. This remains to be carried out. Notably, hydraulic conductivity of the ML's upland soil and the peat substrate need further analysis. This will identify where the zone of oxidation is, where the water table fluctuations occur, and if there is uniformity of upland substrate.

A large limitation of this study was the inability to properly gauge the two sites. Gauging sites was unsuccessful due to large variability's in runoff; 2011 was a dry year and 2012

was a wet year. Gauging small scale catchments in the Boreal plains area still is a large challenge. Future work should look at attempts to establish a more permanent weir.

4.3 Future research

One of the main findings of this research was the relative disconnection of terrain units at ML, specifically the uplands and the fen. Future work should examine why such a disconnection exists. The analysis should focus on the interface between the terrain units. Some of the recommendations for study of this interface would be the installation of lysimeters as well as seepage meters. The examination of lithology would greatly aid in filling this knowledge gap.

Runoff potentials from Chapter 3 are approximations that may be subject to measurement and human sampling error. In order to make these estimates more robust, it is recommended to set up a permanent heavy duty outflow gauge where discharge could be quantified, if such a location can be found. In addition, the implementation of a surface elevation meter would remove an error term from the runoff estimates from changes in the depth of the top of casing to the surface. Price (2003) highlighted that peat is highly compressive and effective stress may cause an increase in the depth of the top of the casing to the surface. The subsidence recorded by Price ranged between 2.5 to 7.2 cm. Changes in the surface elevation will be important in the understanding of lateral movement of water in the acrotelm.

In conclusion, this research attempts to give clarity to the movement of water within a typical Boreal Plains region. Water was found to move laterally in fens near the surface, experienced a storage threshold in bogs, and had limited connections to the uplands. Hydrological regimes of wet and dry in this region will be critical as to when wetlands terrains act as sources or sinks for additional nitrogen. In the scope of the AOSR, wetlands which comprised up to 75 % of the landscape are hydrologically important determinant as to how increased nitrogen loads will be utilized.

Continued development in the AOSR increases pressure on these terrains to absorb additional nitrogen. In an area dominated by nitrogen limited plant species, this seems feasible. Yet, when the landscape is saturated, the downstream lakes will likely be affected. It should be noted that in this area, some lakes may already be sensitive to acidification. Therefore, it is critical to continue examining the effects of development to understand the role of wetlands in absorbing and/or periodically transferring acidic inputs. Development, however, is just one factor affecting this region; the larger issue of climate change also poses many uncertainties to wetland hydrology and sustainability. Chapter 1

Aldous, A.R. 2002. Nitrogen translocation in *Sphagnum* mosses: effects of atmospheric nitrogen deposition. *New Phytologist*, 156: 241-253.

Allen, E. 2004. Effects of nitrogen deposition on forest and peatlands: A literature review and discussion of the potential impacts of nitrogen deposition in the Alberta Oil Sands Region. Wood Buffalo Environmental Association, Fort McMurray, AB.
 http://www.wbea.org/library/terrestrial-monitoring>. [accessed: Nov. 23, 2011].

Andriashek, L.D. and Meeks, J. 2001. Bedrock Topography, Drift Thickness and Buried Channels, Northeast Alberta. Geo 2000-01. Alberta Geological Survey. < http://www.ags.gov.ab.ca/publications/abstracts/GEO_2000_01.html> [accessed Apr. 17, 2013].

 Andriashek, L.D. and Atkinson, N. 2007. Buried Channels and Glacial-Drift Aquifers in the Fort McMurray Region, Northeast Alberta. Earth Sciences Report 2007-01
 Alberta Geological Survey.
 http://www.ags.gov.ab.ca/publications/abstracts/ESR_2007_01.html
 [accessed Apr. 17, 2013].

Barson, D., Bachu, S. and Esslinger, P. 2001. Flow systems in the Mannville group in the east-Central Athabasca area and implications for steam-assisted gravity drainage (SAGD) operations for in situ bitumen production. *Bulletin of Canadian Petroleum Geology*, 49: 376–392.

Bayrock, L.A. 2006. Surficial geology of the Bitumount area, Alberta. NTS 74E (GIS data,

polygon features). Digital Data 2006-0046; Alberta Geological Survey. < http://www.ags.gov.ab.ca/publications/abstracts/DIG_2006_0046.html> [accessed: May 4, 2014].

- Bougon, N., Auterives, C., Aquilina, L., Marmonier, P., Derrider, J. and Vanderkoornhuyse.
 P. 2011. Nitrate and sulphate dynamics in peat subjected to different hydrological conditions: batch experiments and field comparison. *Journal of Hydrology*, 411: 12-24.
- Bowden, W.B. 1987. The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry, 4: 313-348.
- Bytnerowicz, A., Fraczek, W., Schilling, S., and Alexander, D. 2010. Spatial and temporal distribution of ambient nitric acid and ammonia in the Athabasca Oil Sands Region, Alberta. *Journal of Limnology*, 69: 11-21.
- Carou, S., Dennis, I., Aherne, J., Ouimet, R., Arp, P.A., Watmough, S.A., DeMerchant,
 I., Shaw, M., Vet, B., Bouchet, V., and Moran, M. 2008. *A national picture of acid deposition critical loads for forest soils in Canada*. Canadian Council of Ministers of the Environment 2008. ISBN 978-1-896997-82http://www.ccme.ca/assets/pdf/national_picture_acid_deposition_pn1412.pdf
 > [accessed: Nov. 19, 2011].
- Carroll, S.B. and Bliss, L.C. 1982. Jack pine lichen woodland on sandy soils in northern Saskatchewan and northeastern Alberta. *Canadian Journal of Botany*, 60: 2270-2282.
- CEMA. 2013. Air Quality Working Group. < http://cemaonline.ca/index.php/workinggroups/awg > [accessed: Apr. 15, 2013].

- CEMA. 2004. Acid Deposition Management Framework Recommendations. Recommendations for the Acid Deposition Management Framework for the Oil Sands Region of North-Eastern Alberta. http://cemaonline.ca/index.php/administration/cat_view/2-communications/39-admf> [accessed:Sept. 27, 2013].
- Chanasyk, D.S., Whitson, I.R., Mapfumo, E., Burke, J.M. and Prepas, E.E. 2003. The impact of forest harvest and wildfire on soils and hydrology in temperate forests:
 A baseline to develop hypotheses for the Boreal Plains. *Journal of Environmental Engineering and Sciences*, 2: S51-S62.
- Cirmo, C.P. and McDonnell, J.J. 1997. Linking the hydrologic and biogeochemical controls of nitrogen transport in near-stream zones of temperate- forested catchments: a review. *Journal of Hydrology*, 199: 88-120.
- Curtis, C.J., Flower, R., Rose, N. Shilland, J., Simpson, G.I., Turner, S., Yang, H., and Pla, S. 2010. Paleolimnological assessment of lake acidification and environmental change in the Athabasca Oil Sands Region, Alberta. *Journal of Limnology*, 69: 92-104.
- Devito, K.J., Creed, I.F., Rothwell, R.L., Prepas, E.E. 2000. Landscape controls on phosphorus loading to boreal lakes: implications for the potential impacts of forest harvesting. *Canadian Journal of Fisheries and Aquatic Sciences*, 57: 1977-1984.
- Devito, K., Creed, I., Gan, T., Mendoza, C., Petrone, R., Silins, U., and Smerdon, B.
 2005. A framework for broad-scale classification of hydrologic response units on the Boreal Plain: is topography the last thing to consider? *Hydrological Processes*, 19: 1705-1714.

Devito, K. Mendoza, C., Qualizza, C. 2012. Conceptualizing Water Movement in the Boreal Plains. *Implications for watershed reconstruction*. Synthesis report prepared for the Canadian Oil Sands Network for Research and Development, Environmental and Reclamation Research Group. 164 pp.

Ecological Stratification Working Group. 1996. A national ecological framework for Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-food Canada, Ottawa, Ont.

Environment Canada. 2012. Canadian Normals and Averages 1971-2000; Fort McMurray Airport, Alberta. National Climate Data and Information Archive. ">http://www.climate.weatheroffice.gc.ca/climate_normals>">http://www.climate.weatheroffice.gc.ca/climate_normals> [accessed: Feb 21, 2012].

- Eppinga, M.B., Rietkerk, M., Borren, W., Lapshina, E.D., Bleuten, W. and Wassen, M. J.
 2008. Regular surface patterning of peatlands: confronting theory with field data.
 Ecosystems, 11: 520-536.
- Fenton, M.M., Waters, E.J., Pawley, S.M., Atkinson, N., Utting, D.J. and McKay, K. 2013. Surficial Geology of Alberta. Map: 601. Alberta Geological Survey. http://www.ags.gov.ab.ca/publications/abstracts/Map_601.html [assessed: Arp. 17, 2013].
- Ferone, J.M. and Devito, K.J. 2004. Shallow groundwater-surface water interactions in pond-peatland complexes along a Boreal Plain topographic gradient. *Journal of Hydrology*, 292: 75-95.
- Fraser, C.J.D., Roulet, N.T. and Lafleur, M. 2001. Groundwater flow patterns in a large peatland. *Journal of Hydrology*, 246: 142-154.

Gibson, J.J., Price, J.S., Aravena, R. Fitzgerald, D.F. and Maloney, D. 2000. Runoff

generation in a hypermaritime bog- forest upland. *Hydrological Processes*, 14: 2711-2730.

- Gibson, J.J., Birks, S.J., Jeffries, D.S., Kumar, S., Scott, K.A., Aherne, J. and Shaw, D.P.
 2010. Site-specific estimates of water yield applied in regional acid sensitivity surveys across western Canada. *Journal of Limnology*, 69: 67-76. (a)
- Gibson, J.J. Birks, J.S., Kumar, S., McEachern P.M., and Hazewinkel, R. 2010. Interannual variations in water yield to lakes in northeastern Alberta: implications for estimating critical loads of acidity. *Journal of Limnology*, 69: 126-134. (b)
- Gorham, E., 1991. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming *.Ecological Applications*, 1: 182-512.
- Halsey, L.A., Vitt, D.H., Beilman, D., Crow, S., Mehelcic, S. and Wells, R. 2003. Alberta
 Wetland Inventory Classification System Version 2.0. Alberta Sustain able
 Resource Development.
- Hayashi, M., van der Kamp, G., Rudolph, D.L. 1998. Water solute transfer between a prairie wetland and adjacent uplands, 1. Water balance. *Journal of Hydrology*, 207: 42-55.
- Hazewinkel, R.R.O., Wolfe, A.P., Pla, S., Curtis, C. and Hadley, K. 2008. Have atmospheric emissions from the Athabasca Oil Sands impacted lakes in northeastern Alberta, Canada? *Canadian Journal of Fisheries and Aquatic Sciences*, 65: 1554-1567.
- Inamdar, S. 2007. Exports of dissolved ammonium (NH4+) during storm events across multiple catchments in a glaciated forested watershed. *Environmental Monitoring and Assessment*, 133: 347-363.

- Jasechko, S., Gibson, J.J., Birks, S.J., and Yi.Y. 2012. Quantifying saline groundwater seepage to surface waters in the Athabasca oil sands region. *Applied Geochemistry*, 27: 2068-2076.
- Macrae, M.L., Devito, K.J., Strack, M. and Waddington, J.M. 2012. Effect of water table drawdown on peatland nutrient dynamics: implications for climate change. *Biogeochemistry*, DOI 10.1007/s10533-012-9730-3
- Morris P.L., Belyea L.R., and Baird A.J. 2011. Ecohydrological feedbacks in peatland development: a theoretical modelling study. *Journal of Ecology*, 99:1190-1201.
- National Wetlands Working Group 1997. The Canadian Wetland Classification System: A Revision of the Wetlands of Canada. Edited by Barry G. Warner and Clayton D.A. Rubec. Wetlands Research Centre, University of Waterloo, ON.
- Pawley, S.M. 2013. Surficial Geology of the Wabasca Area. NTS 84A/SW. (GIS data, polygon features) Digital Data 2013-0007; Alberta Geological Survey. http://www.ags.gov.ab.ca/publications/abstracts/DIG_2013_0007.html [accessed: May 3, 2014].
- Pelster, D., Burke, J.M., Couling, K., Luke, S.H., Smith, D.W. and Prepas, E.E. 2008.
 Water and nutrient inputs, outputs, and storage in Canadian boreal forest wetlands: a review. *Journal of Environmental Engineering Sciences*, 7: S35-S50.
- Petrone, K., Buffam, I. and Laudon, H. 2007. Hydrologic and biotic control of nitrogen export during snowmelt: A combined conservation and reactive tracer approach. *Water Resources Research*, 43: W06420, doi:10.1029/2006/WR005286.

Prepas, E.E., Burke, J.M., Whitson, I.R., Putz, G. and Smith, D.W. 2006. Associations

between watershed characteristics, runoff, and stream water quality: hypothesis development for watershed disturbance experiments and modelling in the Forest Watershed and Riparian Disturbance (FORWARD) project. *Journal of Environmental Engineering Science*, 5: S27-S37.

- Price, J.S., Branfireun, B.A., Waddington, J.M. and Devito, K.J. 2005. Advances in Canadian wetland hydrology, 1999-2003. *Hydrological Processes*, 19: 201- 214.
- Proemse, B.C., Mayer, B., Fenn, M.E. and Ross, C.S. 2013. A multi-isotope approach for estimating industrial contributions to atmospheric nitrogen deposition in the Athabasca oil sands region in Alberta, Canada. *Environmental Pollution*, 182: 80-91.
- Redding, T.E. and Devito, K.J. 2008. Lateral flow thresholds for aspen forested hillslopes on the Western Boreal Plans, Alberta, Canada. *Hydrological Processes*, 24:4287-4300.
- Reeve, A.S., Siegel, D.I. and Glaser, P.H. 2000. Simulating vertical flow in large peatlands. *Journal of Hydrology*, 227: 207-217.
- Reeve, A.S., Siegel, D.I. and Glaser, P.H. 2001. Simulating dispersive mixing in large peatlands. *Journal of Hydrology*, 242: 103-114.
- Schindler, D.W., Dillon, P.J., and Schreier, H. 2006. A review of anthropogenic source of nitrogen and their effects on Canadian aquatic ecosystems. *Biogeochemistry*, 79: 25-44.
- Schindler, D.W., and Lee, P.G. 2010. Comprehensive conservation planning to protect biodiversity and ecosystem services in Canadian boreal regions under a warming climate and increasing exploitation. *Biological Conservation*, 143: 1571-1586.

- Siegel, D.I., Glaser, P.H. and Janecky, D.R. 2006. The dynamic balance between organic acids and circumneutral groundwater in a large boreal peat basin. *Journal of Hydrology*, 320: 421-431.
- Turner, R.K., van der Bergh, J.C.J.M., Soderqvust, T., Barendregtm A., van der Straaten, J., Maltby, E. and van Ierland, E.C. 2000. Ecological-economic analysis of wetlands: scientific integration for management and policy. *Ecological Economic*, 35:7-23.
- van der Kamp, G. and Hayashi, M. 2009. Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. *Hydrogeology Journal*, 17: 203-214.
- Vitt, D.H., Halsey, L.A., Campbell, C., Bayley, S.E. and Thormann, M.N. 2001. Spatial patterning of net primary production in wetlands of continental western Canada. *Ecoscience*, 8: 499-505.
- Whitfield, C.J. Aherne, J., Cosby, B.J. and Watmough, S.A. 2010. boreal lake
 catchment response to anthropogenic acid deposition. *Journal of Limnology*, 69: 135-146.
- Whitfield, C.J., Watmough, S.A. and Aherne, J. 2011. Evaluation of elemental depletion weathering rate estimation methods on acid-sensitive soils of north-eastern Alberta, Canada. *Geoderma*, 166: 189-197.
- Yan, E., Hu, Y., Salifu, F., Yan, X., Chen. Z.C., Chang, S. 2012. Effectiveness of soil N availability indices in predicting site productivity in the oil sands region of Alberta.
 Plant Soil. 359:215-231.

Zoltai, S.C. and Vitt, D.H. 1990. Holocene climatic change and the distribution of peatlands in western interior Canada. *Quaternary Research*, 33: 231-240.

Chapter 2

- Andriashek, L.D. and Atkinson, N. 2007. Buried Channels and Glacial-Drift Aquifers in the Fort McMurray Region, Northeast Alberta. Earth Sciences Report 2007-01 Alberta Geological Survey.
 http://www.ags.gov.ab.ca/publications/abstracts/ESR_2007_01.html [accessed Apr. 17, 2013].
- Baird, A.J., Surridge, B.W.J., Money, R.P. 2004. An assessment of the piezometer method for measuring the hydraulic conductivity of a *Cladium mariscus – Phragmites australis* root mat. *Hydrological Processes*, 18: 275-291.
- Barr, A.G., van der Kamp, G., Black, T.A., McCaughey, J.H. and Nesic, Z. 2012.
 Energy balance closure at the BERM flux towers in relation to the water balance of the White Gull Creek watershed 1999-2009. *Agricultural and Forest Meteorology*, 153: 3-13.
- Bennett, K.E., Gibson. J.J. and McEachern, P.M. 2008. Water-yield estimates for critical loadings assessment: comparison of gauging methods versus an isotopic approach. *Canadian Journal of Fisheries Aquatic Sciences*, 65: 83-99.
- Bowden, W.B. 1987. The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry, 4: 313-348.

Clark, I., and Fritz, P. 1997. Environmental isotopes in hydrology.

Craig, H. 1961. Isotopic variations in meteoric waters. *Science*, 133: 1702-1703.

Dansgaard, W. 1964. Stable isotopes in precipitation. *Tellus*, 16: 436- 468.

- Devito, K., Creed, I., Gan, T., Mendoza, C., Petrone, R., Silins, U., and Smerdon, B.
 2005. A framework for broad-scale classification of hydrologic response units on the Boreal Plains: is topography the last thing to consider? *Hydrological Processes*, 19: 1705-1714.
- Environment Canada. 2012. Canadian Normals and Averages 1971-2000; Fort McMurray Airport, Alberta. *National Climate Data and Information Archive*. <htp://www.climate.weatheroffice.gc.ca/climate_normals> [accessed: Feb 21, 2012].

Fetter, C.W. 2001. Applied Hydrogeology 4th ed. Prentice Hall, New Jersey. 124pp.

Fraser, C.J.D., Roulet, N.T. and Lafleur, M. 2001. Groundwater flow patterns in a large peatland. *Journal of Hydrology*, 246: 142-154.

Freeze, R.A. and Cherry J.S. 1979. Groundwater. Prentice Hall, Toronto.

- Gat. J.R. 1996. Oxygen and hydrogen isotopes in the hydrological cycle. *Annual Review* of Earth and Planetary Sciences. 24:225-262.
- Gibson, J.J., Edwards, T.W.D., Bursey, G.G. and Prowse, T.D. 1993 Estimating evaporation using stable isotopes: quantitative results and sensitivity analysis for two catchments in northern Canada. *Nordic Hydrology*, 24:79-94.
- Gibson, J.J., Edwards, T.W.D., Birks, S.J., St. Amour, N.A., Buhay, W.M., McEachern, P.,
 Wolfe, B.B. and Peters, D.L. 2005. Progress in isotopic tracer hydrology in Canada.
 Hydrological Processes, 19: 303-327.

- Gibson, J.J., Birks, S.J., Jeffries, D.S., Kumar, S., Scott, K.A., Aherne, J., and Shaw, P.D.
 2011. Site-specific estimates of water yield applied in regional acid sensitivity surveys across western Canada. *Journal of limnology*, 69: 67-76.
- Hackbarth, D.A. and N. Nastasa, 1979. *The Hydrogeology of the Athabasca Oil Sands Area, Alberta*. Alberta Research Council, Bulletin 38, Edmonton, Alberta.
- Hayashi, M., van der Kamp, G., Rudolph, D.L. 1998. Water solute transfer between a prairie wetland and adjacent uplands, 1. Water balance. *Journal of Hydrology*, 207: 42-55.
- Hill, A.R. 2012. The impact of pipe flow in riparian peat deposits on nitrate transport and removal. *Hydrological Processes*, 26: 3135- 3146.
- Holden, J., Burt, T. P., and Vilas, M. 2002. Application of ground-penetrating radar to the identification of subsurface piping in blanket peat. *Earth Surface Processes and Landforms*, 27: 235-249.
- Holden, J., Chapman, P.J. and Labadz, J.C. 2004. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. *Progress in Physical Geography*, 28: 95-123.
- Hvorslev, M.J. 1951. Time lag and soil permeability in groundwater observations.
 Waterways Experimental Station Bulletin 36, United States Army Corps of Engineers, Mississippi.
- Ingram, H.A.P., 1978. Soil layers in mires: function and terminology. *Journal of Soil Sciences*, 29: 224–227.

Kettridge, N., Kellner, E., Price, J.S. and Waddington, J.M. 2013. Peat deformation and

biogenic gas bubbles control seasonal variations in peat hydraulic conductivity. *Hydrological Processes*, 27: 3208-3216.

- Kværner, J. and Kløve, B. 2008. Generation and regulation of summer runoff in a boreal flat fen. *Journal of Hydrology*, 360: 15-30.
- Lee, P. and Boutin, S. 2006. Persistence and developmental transition of wide seismic lines in the western Boreal Plains of Canada. *Journal of Environmental Management*, 78: 240- 250.
- Levy, Z.F., Siegel, D.L., Dasgupta, S.S., Glaser, P.H., Welker, J.M. 2013. Stable isotopes of water show deep seasonal recharge in northern bogs and fens. *Hydrological Processes*, DOI:10.1002/hyp.9983.
- McEachern, P., Prepas, E.E. and Chanasyk, D.S. 2006. Landscape control of water chemistry in northern boreal streams of Alberta. *Journal of Hydrology*, 323: 303-324.
- Morris, P.J., Waddington, J.M., Benscoter, B.W. and Turetsky, M.R. 2011. Conceptual frameworks in peatland ecohydrology: looking beyond the two-layered (acrotelm-catotelm) model. *Ecohydrology*. 4: 1-11.
- Petrone, K., Buffam, I. and Laudon, H. 2007. Hydrologic and biotic control of nitrogen export during snowmelt: A combined conservation and reactive tracer approach. *Water Resources Research*, 43: W06420, doi:10.1029/2006/WR005286.
- Price, J. 2003. The role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands. *Water Resources Research*, 39: 1241, doi:10.1029/2002WR001302.

- Quinton, W.L., Hayashi, M. and Carey, S.K. 2008. Peat hydraulic conductivity in cold regions and its relation to pore size and geometry. *Hydrological Processes*, 22: 2829-2837.
- Regina, K., Nykänen, H., Silvola, J. and Martikainen, P. J. 1996. Fluxes of nitrous oxides from boreal peatlands as affected by peatland type, water table level and nitrification capacity. *Biogeochemistry*, 35: 401-418.
- Rozanski, R., Araguas-Araguas, L. and Gonfiantini, R. 1993. Isotopic Patterns in Modern Global
 Precipitation. In *Climate Change in Continental Isotopic Records*, Swart, P.K., Lohwan,
 K.L., McKenzie, J.A., Savin, S. (Ed.) *Geophysical Monograph*, 78:1-37. Washington DC,
 American Geophysical Union.
- Schwärzel, K., Renger, M., Sauerbrey, R. Wessolek, G. 2002. Soil physical characteristics of peat soils. *Journal of Plant and Nutritional Soil Science*, 165: 479-486.
- Smerdon, B.D., Devito, K.J., and Mendoza, C.A. 2005 Interactions of groundwater and shallow lakes on outwash sediments in the sub-humid Boreal Plains of Canada. *Journal of Hydrology*, 314: 246-262.
- Surfer 8. Golden Software, Inc, 1993-2002.
- Surridge, B.W.J., baird, A.J. and Heathwaite, A.L. 2005. Evaluating the quality of hydraulic conductivity estimates from piezometer slug tests in peat. *Hydrological Processes*, 19: 1227-1244.
- Thomas, K.L., Price, D. and Lloyd, D. 1995. A comparison of different methods for the measurement of dissolved gas gradients in waterlogged peat cores. *Journal of Microbiological Methods*, 24:191-198.

van der Kamp, G. and Hayashi, M. 1998. The groundwater recharge function of small

wetlands in the semi-arid northern prairies. Great Plains Research, 8: 39-56.

- van der Kamp, G. and Hayashi, M. 2009. Groundwater- wetland ecosystem interaction in the semiarid glaciated plains of North America. *Hydrogeology Journal*, 17: 203-214.
- Winter, T.C. 2001. The concept of hydrological landscapes. *Journal of the American Water Resources Association*, 37: 335-349.
- Wray, H.E. and Bayley, S.E. 2007. Denitrification rates in marsh fringes and fens in two boreal peatlands in Alberta, Canada. *Wetlands*, 27: 1036-1045.

Chapter 3

- Boudreau, L.D. and Rouse, W.R. 1995. The role of individual terrain units in the water balance of wetland tundra. *Climate Research*, 5: 31-47.
- Bousfield, G. 2008. *Peakflow prediction using an antecedent precipitation index in small forested watersheds of the northern California coast range*. Humboldt State University. Masters of Sciences Thesis. 67pp.
- Bowden, W.B. 1987. The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry, 4: 313-348.
- Brown, S.M., Petrone, R.M., Mendoza, C. and Devito, K.J. 2010. Surface vegetation controls on evapotranspiration from a sub-humid Western Boreal wetland. *Hydrological Processes*, 24: 1072-1085.
- Chow, V.T., Maidment, D.R., and Mays, L.W. 1988. Applied Hydrology. McGraw-Hill Book Company, Toronto. 572 pp.

Craig, H. 1961. Isotopic variations in meteoric waters. *Science*, 133: 1702-1703.

- Creed, I.F., Sass, G.Z., Wolniewicz, M.B. and Devito, K.J. 2008. Incorporating hydrologic dynamics into buffer strip design on the sub-humid Boreal Plains of Alberta. *Forest Ecology and Management*, 256: 1984-1994.
- Devito, K., Creed,I., Gan, T., Mendoza, C., Petrone, R., Silins, U., and Smerdon, B.
 2005. A framework for broad-scale classification of hydrologic response units on the Boreal Plain: is topography the last thing to consider? *Hydrological Processes*, 19: 1705-1714.
- Devito, K., Mendoza, C., Qualizza, C. 2012. *Conceptualizing water movement in the Boreal Plains. Implications for watershed reconstruction.* Synthesis report prepared for the Canadian Oil Sands Network for Research and Development, Environmental and Reclamation Research Group. 164 pp.
- EcoRegion Working Group. 1989. Ecoclimatic Regions of Canada, First Approximation
 Ecological Land Classification Series, No. 23, Environment Canada, Ottawa 119p.
 Wiken, E.B. 1986. Terrestrial EcoZones of Canada, Ecological Land Classification
 Series No. 19. Lands Directorate, Environment Canada. 26p and map.
- Environment Canada. 2012. Canadian Normals and Averages 1971-2000; Fort McMurray Airport, Alberta. National Climate Data and Information Archive. ">http://www.climate.weatheroffice.gc.ca/climate_normals>">http://www.climate.weatheroffice.gc.ca/climate_normals> [accessed: Feb 21, 2012].
- Froehlich, K., Gibson, J.J., and Aggarwal, P., 2002. Deuterium excess in precipitation and its climatological significance. *Study of environmental change using isotope techniques*, C&S Papers Series 13/P, pp. 54-65, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-116402-5.

- Gibson, J.J., Price, J.S., Aravena, R., Fitzgerald, D.F. and Maloney, D. 2000. Runoff generation in a hypermaritime bog-forest upland. *Hydrological Processes*, 14: 2711-2730.
- Gibson, J.J., Birks, S.J., Kumar, S., McEachern, P.M., Hazewinkel, R. 2010. Inter-annual variations in water yield to lakes in northeastern Alberta: implications for estimating critical loads of acidity. *Journal of Limnology*, 69: 126-134.
- Gorham, E. 1991. Northern peatlands: Role in the carbon cycle and probable response to climatic warming. *Ecological Applications*, 1: 182-512.
- Hayashi, M., Quinton, W. and Gibson, J. 1998. Hydrologic functions of wetlands in a discontinuous permafrost basin indicated by isotopic and chemical signatures.
 Journal of Hydrology, 296: 81-97
- Johnson A I, 1967. Specific yield Compilation of specific yields for various materials. US Geological Survey Water Supply Paper 1662-D. 74pp.
- Kimmel, K. and Mander, U. 2010. Ecosystem services of peatlands: implications for restoration. *Progress in Physical Geography*, 34: 491- 514.
- Kusel, C. 2014. Baseline hydrogeochemistry and connectivity among landscape units of two wetland-rich Boreal sites in the Alberta oil sands region, Canada. Masters Thesis.
- Kværner, J. and Kløve, B. 2006. Tracing sources of summer streamflow in boreal headwaters using isotopic signatures and water geochemical components. *Journal of Hydrology*, 331: 186-204.

Kværner, J. and Kløve, B. 2008. Generation and regulation of summer runoff in a boreal

- Laudon, H., Sjöblon, V., Buffam, I., Seibert, J. and Mörth, M. 2007. The role of catchment scale and landscape characteristics for runoff generation of boreal streams. *Journal of Hydrology*, 344:198-209.
- Linsley, R.K., Kohler, M.A. and Paulhus, J.L.H. 1982. Hydrology for Engineers. McGraw Hill Book Company Inc. New York.
- McEachern, P., Prepas, E.E. and Chanasyk, D.S. 2006. Landscape control of water chemistry in northern boreal streams of Alberta. *Journal of Hydrology*, 323: 303-324.
- Oswald, C.J., Richardson, M. C. and Bransfireun, B.A. 2011. Water storage dynamics and runoff response of boreal shield headwater catchment. *Hydrological Processes*, 25: 3042- 3060.
- Petrone, R.M., Devito, K.J., Silins, U., Mendoza, C., Brown, S.C., Kaufman, S.C. and Price, J.S. 2008. Transient peat properties in two pond-peatland complexes in the sub-humid Western Boreal Plains, Canada. *Mires and Peat*, 3: article 5: 1-13.
- Petrone, K., Buffam, I. and Laudon, H. 2007. Hydrologic and biotic control of nitrogen export during snowmelt: A combined conservation and reactive tracer approach. *Water Resources Research*, 43: W06420, doi:10.1029/2006/WR005286.
- Phillip, R.W., Spence, C. and Pomeroy, J.W. 2011. Connectivity and runoff dynamics in heterogeneous basins. *Hydrological Processes*, 25: 3061-3075.
- Price, J.S. and Schlotzhauer, S.M. 1999. Importance of shrinking and compression in

determining water storage changes in peat: the case of a mined peatland. *Hydrological Processes*, 13: 2591- 2601.

- Price, J.S. 2003. Role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands. Water Resources Research, 39: 1241-1251.
- Prepas, E.E., Burke, J.M., Whitson, I.R., Putz, G. and Smith, D.W. Associations between watershed characteristics, runoff, and stream water quality: hypothesis development for watershed disturbance experiments and modelling on the Forest Watershed and Riperain Disturbance (FORWARD) project. *Journal of Environmental Engineering and Sciences*, 5: S27- S37.
- Priestley-Taylor CHB, Taylor RJ, 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. *Monthly Weather Review*, 100: 81-92.
- Quinton, W.L. and Roulet, N.T. 1998. Spring and summer runoff hydrology of a subarctic patterned wetland. *Arctic and Alpine Research*, 30: 285-294.
- Quinton, W.L., Hayashi, M. and Carey, S.K. 2008. Peat hydraulic conductivity in cold regions and its relation to pore size and geometry. *Hydrological Processes*, 22: 2829- 2837.
- Redding, T.E. and Devito, K.J. 2008. Lateral flow thresholds for aspen forested hillslopes on the Western Boreal Plans, Alberta, Canada. *Hydrological Processes*, 24:4287-4300.
- Richardson, M., Ketchesopn. S., Whittington. P. and Price, J. 2012. Influence of catchment geomorphology and scale on runoff generation in northern peatland complex. *Hydrological Processes*, 26: 1805-1817.

- Shook, K.R. and Pomeroy, J.W. 2011. Memory effects of depression storage in Northern Prairie hydrology. *Hydrological Processes*, 25: 3890-3898.
- Spence, C. A. 2010. Paradigm shift in hydrology: storage thresholds across scales influence catchment runoff generation. *Geography Compass*, 4: 819-833.
- Spence, C., Guan, X.J. and Phillips, R. 2011. The hydrological functions of a boreal wetlands-dominated basin. *Journal of Hydrology*, 319:15-35.
- Su, W., Stolte, W.J., van der Kamp, G. 2000. Modelling Canadian prairie wetland hydrology using a semi-distributed streamflow model. *Hydrological Processes*, 14: 2405-2422.
- Tardif, S. St-Hilaire, A., Roy, R., Bernier, M., Payette, S. 2009. Statistical properties of hydrographs in minertrophic fens and small lakes in mid-latitude Quebec, Canada. *Canadian Water Resources Journal*, 34: 365-380.
- Tattrie, K. 2011. *Groundwater surface water interactions in a wetlands rich, low relief Boreal environment*. University of Victoria. Masters Thesis. .80pp.
- van der Kamp, G. and Hayashi, M. 2009. Groundwater- wetland ecosystem interaction in the semiarid glaciated plains of North America. *Hydrogeology Journal*, 17: 203-214.
- Vitt, D.H., Halsey, L.A., Campbell, C., Bayley, S.E. and Thormann, M.N. 2001. Spatial patterning of net primary production in wetlands of continental western Canada. *Ecoscience*, 8: 499-505.

Waddington, M., Kellner, E., Strack, M. and Price, J.S. 2010. Differential peat
deformation, compressibility, and water storage between peatland microforms: implications for ecosystem function and development. *Water Resources Research*, 46: W07538, doi:10.1029/2009WR008802.

- Whitfield, C.J., Aherne, J., Watmough, S.A. and McDonald, M. 2010a. Estimating the sensitivity of forest soils to acid depositions in the Athabasca Oil Sands Region, Alberta. *Journal of Limnology*, 69: 201-208.
- Whitfield, C.J., Aherne, J., Gibson, J.J., Seabert, T.A. and Watmough, S.A. 2010b. The controls on boreal peatland surface water chemistry in Northern Alberta, Canada. *Hydrological Processes*, 24: 2143-2155.
- Winter T.C., Rosenberry, D.O., and Sturrock A.M. 1995. Evaluation of 11 equations for determining evaporation for a small lake in north central United States. Water Resource Research, 31: 983-993.
- Woo, M.K. 2012. Chapter 8 Northern Wetlands *in Permafrost Hydrology*. Springer-Verlag Berlin Heidelberg, DOI 10.1007/978-3-642-23462-0_8.
- Woo, M.K., Mielko, C. 2007. An integrated framework of lakes-stream connectivity for a semi-arid subarctic environment. *Hydrological Processes*, 21: 2668-2674.
- Zoltai, S.C. and Vitt, D.H. 1995. Canadian wetlands: Environmental gradients and classification. *Vegetatio*, 118: 131-137.

Appendix 1 Hydraulic Conductivity

JPH 2012

			OD	I	ID	Screen Interval			
well site	well type	t37	R	r		Le	К	К	
		S	m	m		m	m/s	m/d	cm/s
JPH 1A	steel	38.7861	0.02863		0.012	0.085	2.37654E-05	0.205332818	2.38E-03
JPH 1B	steel	11.58802	0.02863		0.012	0.085	7.95447E-05	0.687266521	7.95E-03
JPH 2A	steel	20.29086	0.02863		0.012	0.085	4.54276E-05	0.392494866	4.54E-03
JPH 2B	steel	44.5853	0.02863		0.012	0.085	2.06742E-05	0.178625215	2.07E-03
JPH 4B	steel	22.05388	0.02863		0.012	0.085	4.17961E-05	0.361118289	4.18E-03
JPH7A	steel	12.79604	0.02863		0.012	0.085	7.20353E-05	0.622384716	7.20E-03
JPH7B	steel	43.39329	0.02863		0.012	0.085	2.12421E-05	0.183532041	2.12E-03
JPH8A	steel	102.5002	0.02863		0.012	0.085	8.99282E-06	0.077697963	8.99E-04
JPH8B	steel		0.02863		0.012	0.15	#DIV/0!	#DIV/0!	#DIV/0!
JPH8C	steel	43.60756	0.04216	(0.03505	0.11	0.000122804	1.061030333	1.23E-02
JPH9A	steel	110.4725	0.02863		0.012	0.085	8.34385E-06	0.072090894	8.34E-04
JPH9B	steel	397.7009	0.02667		0.012	0.15	2.0845E-06	0.018010048	2.08E-04
JPH9C	steel	44.5853	0.04216	(0.03505	0.11	0.000120111	1.037762124	1.20E-02
JPH10A	steel		0.02863		0.012	0.085	#DIV/0!	#DIV/0!	#DIV/0!
JPH10B	steel	93.79738	0.02667		0.012	0.15	8.83826E-06	0.076362602	8.84E-04
JPH10C	steel	50.46966	0.02667		0.012	0.15	1.64258E-05	0.141919172	1.64E-03
				Sc	reen				-
	Piezometer Tip	OD	ID	Inte	erval	OD	ID	Screen Interval	
		mm	mm	n	nm	m	m	m	
	1-1/4-inch PVC Jumbo Tip	42.16	32.46	1	10	0.04216	0.03246	0.11	-
	3/4-inch PVC Tip	26.67	18.85	1	50	0.02667	0.01885	0.15	
	3/4-inch SS Tip	28.63	21	8	85	0.02863	0.021	0.085	
	5/8x1/2-inch PE Liner 1-1/4-inch PVC Schd 40 Stand	16	12		-	0.016	0.012		
	Pipe	42.16	35.05		-	0.04216	0.03505		_

ML 2011

			OD	ID	screen int	erval	
wells	well type	t37	R	r	Le	K	К
		S	m	m	m	m/s	m/d
ML4B	pvc	1242815.34	0.04216	0.03246	0.11	3.69564E-09	3.19304E-05
ML4C	pvc	99425.23	0.04216	0.03246	0.11	4.61956E-08	0.00039913
ML10B	steel	3314.17	0.02667	0.012	0.15	2.5014E-07	0.002161208
ML10C	pvc	4971.26	0.04216	0.03246	0.11	9.23911E-07	0.007982592
ML16B	steel	659367.47	0.02667	0.012	0.15	1.25727E-09	1.08629E-05
ML16C	pvc	165708.71	0.04216	0.03246	0.11	2.77173E-08	0.000239478
ML17B	steel	4971.261	0.02667	0.012	0.15	1.6676E-07	0.001440804
ML17C	pvc	165708.71	0.04216	0.03246	0.11	2.77173E-08	0.000239478
ML18B	steel	16570.87	0.02667	0.012	0.15	5.00279E-08	0.000432241
ML18C	pvc	142036	0.04216	0.03246	0.11	3.23369E-08	0.000279391
ML19A	steel	142036.04	0.02667	0.012	0.15	5.83659E-09	5.04281E-05
ML19B	pvc	12428.15	0.04216	0.03246	0.11	3.69565E-07	0.003193038
	Piezometer Tip	OD	ID	Screen Interval	OD	ID	Screen Interval
		mm	mm	mm	m	m	m
	1-1/4-inch PVC Jumbo Tip	42.16	32.46	110	0.04216	0.03246	0.11
	3/4-inch PVC Tip	26.67	18.85	150	0.02667	0.01885	0.15
	3/4-inch SS Tip	28.63	21	85	0.02863	0.021	0.085
	·						
	5/8x1/2-inch PE Liner	16	12	-	0.016	0.012	
		10.10					
	1-1/4-inch PVC Schd 40 Stand Pipe	42.16	35.05	-	0.04216	0.03505	

ML 2012

			OD		ID		screen ir	nterval		
wells	well type	t37	R		r		Le	К	К	К
		S	m		m		m	m/s	m/d	cm/s
ML4B	pvc	1242815.34		0.04216		0.03246	0.11	3.69564E-09	3.19304E-05	3.69564E-07
ML4C	pvc	33141.74		0.04216		0.03246	0.11	1.38587E-07	0.001197389	1.38587E-05
ML6A	steel	1.10E+06		0.02667		0.012	0.15	7.54365E-10	6.51771E-06	7.54365E-08
ML6B	steel	5.49E+05		0.02667		0.012	0.15	1.50873E-09	1.30354E-05	1.50873E-07
ML10B	steel	33141.74		0.02667		0.012	0.15	2.5014E-08	0.000216121	2.5014E-06
ML10C	pvc	24856.31		0.04216		0.03246	0.11	1.84782E-07	0.001596518	1.84782E-05
ML16B	steel	549472.89		0.02667		0.012	0.15	1.50873E-09	1.30354E-05	1.50873E-07
ML16C	pvc	99425.23		0.04216		0.03246	0.11	4.61956E-08	0.00039913	4.61956E-06
ML17B	steel	198850.45		0.02667		0.012	0.15	4.16899E-09	3.60201E-05	4.16899E-07
ML17C	pvc	24856.31		0.04216		0.03246	0.11	1.84782E-07	0.001596518	1.84782E-05
ML18B	steel	16570.87		0.02667		0.012	0.15	5.00279E-08	0.000432241	5.00279E-06
ML18C	pvc	2485.6307		0.04216		0.03246	0.11	1.84782E-06	0.015965184	0.000184782
ML19A	steel	110472.47		0.02667		0.012	0.15	7.50419E-09	6.48362E-05	7.50419E-07
ML19B	рус	49712.614		0.04216		0.03246	0.11	9.23911E-08	0.000798259	9.23911E-06
					5	Screen			Screen	-
	Piezometer Tip	OD		ID	I	nterval	OD	ID	Interval	
		mm		mm		mm	m	m	m	
	1-1/4-inch PVC Jumbo Tip	42.16	;	32.46		110	0.0422	0.03246	0.11	
	3/4-inch PVC Tip	26.67		18.85		150	0.0267	0.01885	0.15	
	3/4-inch SS Tip	28.63		21		85	0.0286	0.021	0.085	
	5/8x1/2-inch PE Liner 1-1/4-inch PVC Schd 40	16		12		-	0.016	0.012		
	Stand Pipe	42.16		35.05		-	0.0422	0.03505		_

JPH Hydraulic Head (m)

		Water Table Wells								
Date	JPH A	JPH B	JPH C	JPH D	JPH E	JPH F	JPH G			
July-01-11	333.63	332.60	331.38	332.78	331.20	329.87	327.47			
August-07-11	331.89	330.59	329.09	330.43	329.33	328.77	326.13			
August-24-11	330.31	329.74	328.18	329.36	328.55	328.21	327.08			
October-04-11	330.29	329.72	328.04	328.95	328.23	328.21	326.39			
May-25-12	330.44	330.01	329.49	330.49	330.03	328.67	328.53			
June-06-12	330.41	329.74	328.71	329.61	329.32	328.41	327.85			
July-17-12	334.58	334.36	332.68	333.88	332.76	331.67	330.84			
August-03-12	334.60	334.29	332.82	333.98	332.90	332.18				
September-02-12	332.70	332.73	331.44	332.58	331.54	330.43				
September-12-12	335.10	334.85	333.19	334.06	332.76	332.58				

		Shallow wells ~ 2 m										
Date	P1C	P2C	P3C	P4C	P5C	P6C	P7C	P8C	P9C	P10C	P11C	P12C
July-01-11	333.03	333.04	335.71	332.23	334.35	332.28	334.37	332.70	332.63	331.61	333.42	
August-07-11	333.10	333.01	-	332.39	-	332.31	-	332.70	332.62	331.89	-	
August-24-11	333.04	332.91	332.61	332.36	332.02	332.28	332.55	333.19	332.48	331.80	333.47	
October-04-11	-	-	-	332.21	-	-	-	333.12	332.43	331.74	-	
May-25-12	332.97	332.91	332.81	332.48	331.81	332.39	332.57	333.36	332.62	331.92	333.46	
June-06-12	333.12	333.00	332.76	332.46	332.29	332.42	332.57	333.25	332.53	331.85	333.56	
July-17-12	333.15	333.04	332.67	332.55	331.99	332.40	332.66	333.63	332.90	332.06	333.56	
August-03-12	-	333.06	-	332.55	-	332.40	332.41	333.65	332.98	332.22	333.29	331.63
September-02-12	332.98	332.91	332.71	332.35	332.01	332.30	332.48	333.62	333.01	332.16	333.36	331.57
September-12-12	332.98	333.18	332.71	332.56	332.01	332.49	332.41	333.70	333.11	332.27	333.56	331.69

					Interm	ediate wel	ls ~ 4 m				
Date	P1B	P2B	P3B	P4B	P5B	P6B	P7B	P8B	P9B	P10B	P11B
July-01-11	334.66	334.54	335.71	335.18	334.32	332.28	332.64	333.23	331.84	331.58	333.35
August-07-11	-	-	-	335.40	-	332.33	332.59	333.17	331.84	331.86	333.57
August-24-11	333.05	332.99	332.67	332.42	332.04	332.28	332.54	333.06	332.52	331.82	333.53
October-04-11	332.88	332.86	332.57	332.27	331.88	332.12	332.37	332.91	332.37	331.66	333.43
May-25-12	333.00	333.94	332.65	332.27	333.01		332.48	333.11	332.63	331.83	333.50
June-06-12	333.03	333.00	332.67	332.27	332.03	332.39	332.46	334.02	332.51	331.84	333.51
July-17-12	333.14	333.08	332.82	332.44	332.19	332.42	332.68	333.27	332.76	332.05	333.63
August-03-12	-	-	-	332.46	-	332.40	332.66	333.27	332.78	332.07	333.63
September-02-12	332.98	332.87	332.60	332.32	332.04	332.22	332.51	333.34	332.80	331.96	333.51
September-12-12	333.28	333.11	332.73	332.46	332.15	332.51	332.82	333.53	332.97	332.17	333.75

		Deep wells ~ 6 m									
Date	P1A	P2A	P3A	P4A	P5A	P6A	P7A	P8A	P9A	P10A	P11A
July-01-11	333.06	332.94	335.71	332.16	332.11	332.23	332.63	333.23	330.46	331.60	333.33
August-07-11	333.12	332.95	-	332.35	332.03	332.26	332.57	333.12	332.62	331.87	333.55
August-24-11	333.05	332.90	332.64	332.32	331.73	332.24	332.53	333.01	332.52	331.80	333.53
October-04-11	332.94	332.81	332.51	332.24	331.92	332.09	332.36	332.91	332.43	331.71	333.43
May-25-12	332.99	332.84	332.63	332.15	331.96	332.32	332.48	333.05	332.66	331.84	333.48
June-06-12	332.97	332.84	332.60	332.10	331.94	332.19	332.44	332.87	332.50	331.79	333.47
July-17-12	333.16	333.02	332.76	332.01	332.17	332.38	332.67	333.22	332.71	332.04	333.63
August-03-12	333.15	333.01	332.76	332.46	332.13	332.37	332.65	333.21	332.78	332.06	333.62
September-02-12	333.00	332.87	332.63	332.05	332.00	332.22	332.50	333.29	332.79	331.95	333.50
September-12-12	333.30	333.12	332.77	332.05	332.21	332.48	332.80	333.48	332.98	332.16	333.74

			screen		
	Lidar		elevation	water table	Lidar
well	elevation (m)	Depth BGL (m)	(m)	wells	elevation (m)
MLP01A	701.00	2.12	698.88	MLA	698.94
MLP01B	701.00	0.80	700.20	MLB	698.98
MLP02A	703.06	4.17	698.89	MLC	699.12
MLP02B	703.06	1.35	701.71	MLD	699.03
MLP03A	699.45	2.82	696.63	MLE	698.94
MLP03B	699.45	1.13	698.32	MLF	699.25
MLP04A	699.08	4.70	694.38	MLH	699.12
MLP04B	699.08	2.79	696.29	MLG	698.71
MLP04C	699.08	1.59	697.49	MLM	698.90
MLP05A	699.13	6.89	692.24	MLN	699.07
MLP05B	699.13	4.56	694.57	MLO	699.28
MLP05C	699.13	3.02	696.11	MLP	699.33
MLP05D	699.13	1.61	697.52	MLQ	699.01
MLP06A	699.10	2.22	696.88	MLR	699.04
MLP06B	699.10	1.45	697.65	MLS	699.15
MLP07A	701.21	4.44	696.77	MLT	699.14
MLP07B	701.21	1.40	699.81	MLU	699.11
MLP08A	699.25	2.95	696.30	MLV	699.42
MLP08B	699.25	1.50	697.75		
MLP09A	699.13	3.02	696.11		
MLP09B	699.13	1.39	697.74		
MLP10A	699.29	7.61	691.68		
MLP10B	699.29	3.23	696.06		
MLP10C	699.29	1.70	697.59		
MLP11A	699.09	7.76	691.33		
MLP11B	699.09	4.74	694.35		
MLP11C	699.09	1.83	697.26		
MLP12A	699.04	3.10	695.94		
MLP12B	699.04	1.86	697.18		
MLP13A	699.28	2.95	696.33		
MLP13B	699.28	1.28	698.00		

MLP14	A 700.78	3 2.17	698.61
MLP14	B 700.78	3 0.92	699.86
MLP15	A 698.97	7.64	691.33
MLP15	B 698.97	3.68	695.29
MLP15	C 698.97	' 1.44	697.53
MLP16	A 698.78	6.74	692.04
MLP16	B 698.78	3 2.91	695.87
MLP16	C 698.78	3 1.60	697.18
MLP17	A 698.79	9 4.55	694.24
MLP17	B 698.79	2.50	696.29
MLP17	C 698.79) 1.16	697.63
MLP18	A 698.96	5.04	693.92
MLP18	B 698.96	3.00	695.96
MLP18	C 698.96	i 1.75	697.21
MLP19	A 699.08	3.68	695.40
MLP19	B 699.08	3 1.44	697.64

ML Hydraulic Head (m)

				Wa	ater Table V	Vells			
Date	MLA	MLB	MLC	MLD	MLE	MLF	MLG	MLH	MLM
July-01-11	698.87	698.84	698.98	698.95	698.85	699.09	698.65	699.03	698.81
August-07-11	698.89	698.82	698.96	698.96	698.85	699.05	698.67	699.08	698.78
August-28-11	699.06		698.87	698.91	698.81	699.02	698.81		698.73
October-04-11			698.83	698.86	698.76				
June-07-12		698.98	699.12	698.97	698.88	699.09	698.88	699.12	698.78
July-17-12	699.01	698.89	699.04	698.95	698.86	699.09	698.91	699.02	698.76
August-04-12	699.08	698.96	699.10	699.01	698.93	699.15			698.82

September-08-12	699.12	699.01	699.15		698.97	699.22	698.77		698.89
				Wa	ater Table V	Vells			
Date	MLN	MLO	MLP	MLQ	MLR	MLS	MLT	MLU	MLV
July-01-11	698.95	699.12	699.19	698.93	698.98	699.04	699.13	698.99	699.23
August-07-11	698.93	699.09	699.14	698.92	698.96	699.01	699.11	698.96	699.20
August-28-11	698.87	699.05	699.10	698.74	698.90	698.95	699.06	698.90	699.15
October-04-11	698.81	699.01	699.05	698.68	698.85	698.89	699.01	698.86	699.09
June-07-12	698.94	698.99	699.15	698.93	698.95	699.01	699.21	698.98	699.20
July-17-12	698.93	699.12	699.14		698.95	699.00	699.14	698.96	699.20
August-04-12	699.01	699.17	699.22		699.02	699.07	699.21	699.03	699.26
September-08-12	699.05	699.23	699.28	699.01	699.07	699.14	699.23	699.07	699.32

					Shallow	wells ~ 2 m				
Date	P1B	P2B	P3B	P4C	P5C	P5D	P6B	P7B	P8B	P9B
July-01-11	700.45	702.32		698.81	699.01	698.72			699.00	698.90
August-07-11	700.43	702.84	699.21	697.63	696.23	697.61	697.68		697.96	697.87
August-28-11	700.77	701.93	698.56	698.94	699.01	699.04	699.07		699.04	699.00
October-04-11	700.73	701.82	698.37	698.93	698.98	699.02	698.22		699.04	698.98
June-07-12	700.81	702.00	698.80	698.89	698.95	698.98	699.10	699.81	699.15	698.94
July-17-12	700.78	702.00	698.52	698.91	698.68	698.69	699.06		699.02	698.99
August-04-12	700.77	702.24	698.37	698.95	699.02	699.04	697.91		699.07	699.04
September-08-12	699.10	701.19		697.70	698.49	698.21			698.33	698.17

					Shallow	wells ~ 2 m				
Date	P10C	P11C	P12B	P13B	P14B	P15C	P16C	P17C	P18C	P19B
Julv-01-11	698.97	698.97	698.95	698.19	=	698.75	698.45	698.77	698.90	698.84
· · ·) ·	697.80	697.35	697.26	698.10	700.73	697.62	697.31	697.69	697.28	697.79
August-28-11	699.08	699.00	698.96	699.18	699.91	698.88	698.65	698.73	698.89	698.93
October-04-11	699.06	698.98	698.94	698.49		698.86	698.63	698.71	698.86	698.90
June-07-12	698.76	698.99	698.94	699.21		698.82	698.61	698.74	697.87	698.87
July-17-12	699.04	698.98	698.94	699.15		698.82	698.62	698.68	698.82	698.89
August-04-12	699.10	699.02	698.98	699.93		698.89	698.67	698.78	698.91	698.94
September-08-12	698.41	698.03	697.96	696.94		697.89	697.66	698.09	697.94	697.88
					Intermediat	e wells ~ 4	m			
Date	P1A	P2A	P3A	P4B	P5B	P6A	P7A	P8A	P9A	P10B
July-01-11				697.40	698.92	697.59		699.06	698.76	698.76
August-07-11		702.91		696.44	694.77	696.90		696.48	696.45	696.27
August-28-11		699.04		698.93	698.93	699.08		699.07	698.79	699.08
October-04-11				698.80	698.91	698.72		699.07	698.79	699.07
June-07-12			696.63	698.88	698.86	699.02		698.99	699.02	697.97
July-17-12	699.05			698.88	698.87	699.06		699.04	698.76	699.07
August-04-12				698.72	698.93	698.27		699.08	698.80	699.09
September-08-12				696.28	698.37	697.23		698.36	697.78	698.17
				Intern	nediate wel	ls ~ 4 m				
Date	P11B	P12A	P13A	P14A	P15B	P16B	P17B	P18B	P19A	
July-01-11	698.95				698.83	698.57	698.65	696.53	698.81	
August-07-11	694.49	696.00	698.74		695.42	696.07	696.40	696.31	695.66	
August-28-11	698.95	698.98	696.87		698.84	698.58	698.68	698.61	698.82	
October-04-11	698.93	696.50	696.25		698.85	698.57	698.68	697.38	698.82	
June-07-12	698.91	698.46	698.96		698.60	698.49	698.92	698.68	696.41	
July-17-12	698.92	698.22	698.45		698.81	698.54	698.66	698.41	698.77	
August-04-12	698.96	696.25	697.04		698.78	698.57	698.71	697.35	698.82	
September-08-12	697.94				697.93	697.70	697.92	695.12	697.71	

				Deep w	ells ~ 6 m			
Date	P4A	P5A	P10A	P11A	P15A	P16A	P17A	P18A
July-01-11						692.09	698.12	
August-07-11	698.80	698.09	697.73	697.14	695.26	696.67	694.92	698.65
August-28-11	694.66	693.28	693.24	693.28	695.04	694.15	698.11	694.23
October-04-11		692.30	691.63		691.62	691.89	698.11	693.95
June-07-12		697.55	696.54	696.82	698.27	697.37	698.06	694.96
July-17-12	695.16	693.11	694.19	692.80	695.18	694.00	698.07	694.09
August-04-12		692.64	692.48	691.78	693.23	692.95	698.12	694.08
September-08-12						687.03	696.83	

ML 2011	Isotopes d180		Isoton	as d2H	ML 2012	ler	otopes d18	80	la	cotones d2	ч	Terrain
Site	Jun-11	Aug-11	.lun-11	Δυσ-11	Site	May-12	.lul-12	Sen-12	May-12	Jul-12	Sen-12	
	-20.1	Y Y	-155 14	Y Y		-18.48	-18 52	-18 51	-143 55	-145 01	-143 73	Unland
MI P02B	-17.05	-10.23	-132.09	-150.02	MLP02B	-18 16	-17 52	-17.09	-140 39	-137 20	-134.8	Linland
	-17.00 v	-17 55	-102.00 v	-138 17		-18 89	-18.24	-17 72	-1/15 27	-1/13 80	-138.03	Unland
	×	17.00	×	137 13		-16.66	16 75	-16.02	_132 /1	133 71	-13/ 51	Eon
	×	-17.45 v	×	-157.15 v		-17 57	17.61	-17.72	-138 56	136.07	-137.24	Fon
	×	19.66	×	× 147.00		-12 20	-17.01	-12 17	-130.50	140 74	-137.24	Lipland
	X	-10.00	X	-147.99		-10.29	-10.14	-10.17	-141.90	-140.74	-140.90	Upland
	X 10.0	-10.9	X 104.04	-135.01		-17.97	X 10.01	-10.5 10.0F	-145.54 145 F	X 140 7	-144.25	Opiano
	-16.9	-10.71	-134.31	-135.19		-18.81	-18.81	-18.85	-145.5	-143.7	-144.99	Bog
MLP09B	-16.88	-16.92	-133.82	-136.42	MLP09B	-18.48	-18.45	-18.45	-142.37	-141.8	-142.16	Bog
MLP10C	Х	-17.65	Х	-137.76	MLP10C	-18.24	-18.54	-18.54	-142.19	-141.16	-142.01	Bog
MLP11C	-17.77	-17.6	-138.31	-138.45	MLP11C	-18.39	-18.31	-18.19	-141.86	-140.45	-141.56	Bog
MLP12B	-17.83	-17.62	-139.32	-137.93	MLP12B	-17.16	-16.72	-16.79	-135.58	-133.08	-134.74	Fen
MLP13B	-17.87	-17.54	-139.37	-137.87	MLP13B	-17.42	-17.44	-17.41	-136.24	-136.11	-137.32	Upland
MLP14B	х	-18.1	х	-141.46	MLP14B	-17.02	-17.73	-18.58	-133.93	-138.19	-144.75	Upland
MLP15C	х	-18.04	х	-139.96	MLP15C	-17.84	-17.21	-17.31	-139.36	-134.77	-135.37	Fen
MLP16C	х	-17.92	х	-139.87	MLP16C	-17.46	-17.35	-17.12	-138.65	-135.51	-135.89	Bog
MLP17C	х	-18	х	-141.53	MLP17C	-18.4	-17.36	-16.99	-141.9	-136.16	-130.72	Fen
MLP18C	-19.45	-19.02	-148.72	-146.53	MLP18C	-17.17	-16.8	-17.04	-135.22	-132.91	-134.22	Fen
MLP19B	-19.27	-18.61	-148.5	-144	MLP19B	-18.16	-17.95	-17.92	-139.86	-138.45	-138.93	Fen
MLP01A	-19.24	-19.06	-146.91	-146.16	MLP01A	-19.14	х	х	-149.36	х	х	Upland
MLP02A	-18.88	-18.28	-144.3	-142.27	MLP02A	-18.99	-17.66	х	-144.86	-139.02	х	Upland
MLP03A	х	-18.56	x	-141.2	MLP03A	-18.67	х	х	-146.2	х	х	Upland
MLP04B	-18.73	-18.49	-142.27	-141.24	MLP04B	-16.77	-16.76	-16.65	-134.07	-132.84	-133.7	Fen
MLP05C	-18.78	-18.28	-143.37	-140.65	MLP05C	-17.67	-17.74	-17.81	-138.81	-138.77	-136.97	Fen

Appendix 3 Stable Water Isotopes

MLP06A	х	-18.13	x	-140.46	MLP06A	-18.44	-18.11	-18.18	-141.36	-140.66	-140.4	Upland
MLP07A	-18.34	-18.26	-141.31	-139.82	MLP07A	-18.18	х	х	-142.76	х	х	Upland
MLP08A	-18.78	-18.36	-144.19	-139.96	MLP08A	-19.32	-19.43	-19.42	-148.36	-147.31	-146.95	Bog
MLP09A	-18.46	-17.38	-144.42	-136.89	MLP09A	-19.16	-19.18	-19.15	-146.7	-145.68	-147.19	Bog
MLP10B	-17.04	-17.08	-133.98	-135.75	MLP10B	-18.33	-18.68	-18.63	-141.34	-141.6	-142.36	Bog
MLP11B	х	-17.78	х	-138.2	MLP11B	-18.41	-18.24	-18.26	-141.27	-139.94	-141.51	Bog
MLP12A	-16.73	-17.51	-128.07	-136.46	MLP12A	-17.29	-17.23	-17.13	-137.38	-135.91	-136.43	Fen
MLP13A	х	х	х	х	MLP13A	-17.75	-17.56	-17.59	-137.05	-136.59	-137.75	Upland
MLP14A	х	х	х	х	MLP14A	х	х	-17.37	х	х	-135.51	Upland
MLP15B	-17.11	-17.51	-134.75	-138.84	MLP15B	-17.33	-17.28	-17.32	-136.64	-135.4	-136.09	Fen
MLP16B	-17.19	-17.28	-136.29	-135.52	MLP16B	-18.2	-18.21	-17.98	-140.85	-140.6	-141.14	Bog
MLP17B	-16.65	-17.31	-128.68	-133.88	MLP17B	-16.92	-16.97	-16.86	-132.8	-133.18	-133.55	Fen
MLP18B	х	-18.64	х	-141.92	MLP18B	-16.65	-16.35	-16.83	-132.3	-132.01	-132.43	Fen
MLP19A	-17.96	-18.18	-140.08	-140.09	MLP19A	-18.14	-18.1	-18.12	-140.23	-139.4	-140.04	Fen
MLP04A	-17.2	-17.48	-134.62	-135.58	MLP04A	-16.33	-16.49	-16.47	-132.47	-130.89	-133.39	Fen
MLP05A	-16.08	-17.15	-123.91	-132.99	MLP05A	-17.71	-17.87	-17.17	-138.51	-139.42	-133.54	Fen
MLP05B	-17.06	-17.32	-133.38	-134.08	MLP05B	-17.75	-17.78	-17.83	-138.76	-138.83	-138.25	Fen
MLP10A	-17.23	-17.63	-136.2	-136.78	MLP10A	-18.52	-18.59	-18.51	-142.45	-142.66	-141.83	Bog
MLP11A	х	-17.85	х	-139.41	MLP11A	-18.44	-18.27	-18.19	-141.48	-140.94	-142.21	Bog
MLP15A	-17	-16.71	-135.19	-133.62	MLP15A	-17.65	-17.51	-17.59	-139.33	-139.27	-138.67	Fen
MLP16A	-16.84	-17.1	-132.68	-134.98	MLP16A	-18.59	-18.71	-18.59	-143.47	-143.14	-142.67	Bog
MLP17A	-18.2	-17.92	-140.91	-138.57	MLP17A	-16.95	-17.03	-16.84	-133.84	-134.43	-133.87	Fen
MLP18A	-18.21	-17.89	-140.38	-137.31	MLP18A	-16.46	-16.31	х	-132.83	-133.09	х	Fen
MLA	-17.51	-17.06	-137.57	-132.85	MLA	-18.03	-16.96	-15.01	-140.08	-133.87	-115.94	Fen
MLB	-17.72	-17.76	-139.05	-138.45	MLB	-17.64	-16.51	-15.27	-137.9	-128.26	-118.96	Fen
MLC	-18.7	-18.15	-145.03	-139.64	MLC	-18.08	-18.19	-15.65	-140.61	-139.89	-120.05	Bog
MLD	-17.48	-17.1	-135.99	-130.95	MLD	-16.38	-16.99	-15.29	-127.76	-132.55	-118.55	Fen

MLE	-16.92	-16.92	-134.32	-131.98	MLE	-16.62	-16.33	-16.74	-132.29	-130.18	-132.99	Fen
MLF	-17.99	-17.89	-139.59	-136.18	MLF	-17.79	-17.77	-15.67	-137.93	-135.84	-118.84	Bog
MLG	-17.94	-16.31	-140.78	-125.85	MLG	-17.63	-17.25	-15.86	-136.11	-135.54	-124.17	Fen
MLH	-17.86	-17.25	-140.47	-133.11	MLH	-17.41	-15.37	-15.67	-136.85	-119.9	-121.2	Fen
MLM	-17.23	-17.13	-134.4	-133.11	MLM	-17.37	-17.17	-14.86	-137.11	-134.99	-116.89	Bog
MLN	-18.29	-17.05	-143.62	-132.78	MLN	-17.37	-16.98	-15.52	-136.75	-135.16	-120.24	Fen
MLO	-18.39	-18.1	-142.66	-137.91	MLO	-18.04	-18.21	-15.16	-139.51	-139.74	-114.56	Bog
MLP	-18.21	-17.68	-141.6	-136.78	MLP	-18.11	-17.44	-15.07	-140.09	-133.72	-115.11	Bog
MLQ	-17.17	-17.01	-136.49	-133.08	MLQ	-17.48	-16.96	-16.42	-137.93	-134.84	-128.03	Fen
MLR	-17.99	-17.95	-141.33	-137.36	MLR	-17.92	-18.28	-15.38	-139.73	-138.1	-117.03	Fen
MLS	-18.55	-18.37	-144.19	-144.83	MLS	-18.15	-18.13	-15.87	-140.22	-140.22	-121.75	Fen
MLT	-18.24	-18.03	-142.04	-136.51	MLT	-18.17	-16.68	-15.77	-140.7	-127.95	-122.41	Bog
MLU	-17.92	-17.91	-138.77	-144.67	MLU	-18.21	-18.34	-18.12	-140.2	-138.46	-138.72	Fen
MLV	-18.7	-18.03	-143.8	-153.53	MLV	-18.25	-16.87	-15.19	-140.8	-130.73	-115.08	Bog

JPH												Terrain
2011	Isotope	es d180	Isotope	s d2H	JPH 2012	Iso	topes d18	80	ls	otopes d2	Н	unit
Site	Jun-11	Aug-11	Jun-11	Aug-11	Site	May-12	Jul-12	Sep-12	May-12	Jul-12	Sep-12	
JPHP01A	-18.01	-17.93	-141.84	-139.67	JPHP01A	-17.89	-18.51	-18.01	-140.3	-139.54	-139.07	Upland
JPHP01B	-19.2	-19.16	-150.45	-148.47	JPHP01B	-18.79	-18.79	-18.95	-146.94	-147.13	-147.1	Upland
JPHP01C	-19.38	-18.95	-152.74	-148.22	JPHP01C	-19.31	-18.96	-19.56	-151.15	-149.49	-152.45	Upland
JPHP02A	-18.17	-18.04	-142.45	-141.17	JPHP02A	-17.93	-18.58	-17.97	-148.88	-140.66	-140.4	Upland
JPHP02B	-19.01	-19	-148.83	-149.2	JPHP02B	-19.1	-19.62	-19.07	-140.62	-149.04	-148.02	Upland
JPHP02C	-18.9	-18.96	-147.07	-149.42	JPHP02C	-19.17	-19.8	-19.06	-149.32	-151.29	-149.24	Upland
JPHP03A	-18.65	-18.63	-147.27	-147.27	JPHP03A	-18.6	-18.67	-18.57	-145.98	-146.93	-145.48	Upland
JPHP03B	-19.25	-19.18	-149.56	-149.25	JPHP03B	-19.2	-19.66	-18.91	-149.07	-149.6	-147.59	Upland
JPHP03C	-19.02	-18.82	-148.07	-147.75	JPHP03C	-19.76	-20.52	-19.65	-154.31	-155.73	-154.38	Upland
JPHP04A	-18.09	-18.17	-141.39	-141.58	JPHP04A	-18.06	-18.13	-17.91	-140.94	-140.62	-140.2	Upland
JPHP04B	-18.99	-18.96	-147.7	-148.47	JPHP04B	-19.08	-19.26	-19.27	-149.51	-150.4	-150.84	Upland

		-				-			-			-
JPHP04C	-19.22	-18.76	-150.41	-146.52	JPHP04C	-19.48	-19.73	-20.05	-152.97	-154.31	-155.67	Upland
JPHP05A	-18.31	-18.33	-143.85	-142.68	JPHP05A	-18.22	-18.89	-18.27	-143.18	-143.82	-142.54	Upland
JPHP05B	-19.11	-19.01	-149.76	-147.98	JPHP05B	-19.19	-19.55	-19.04	-149.09	-148.03	-147.8	Upland
JPHP05C	-19.15	-18.73	-151.63	-147.4	JPHP05C	-19.54	-19.94	-19.49	-152.55	-151.06	-151.54	Upland
JPHP06A	-18.4	-18.37	-144.43	-145.42	JPHP06A	-18.51	-19.06	-18.47	-144.14	-144.48	-144.55	Upland
JPHP06B	-18.7	-18.67	-147.1	-147.68	JPHP06B	-18.86	-19.38	-18.72	-147.28	-147.59	-146.97	Upland
JPHP06C	-18.81	-18.94	-147.94	-148.95	JPHP06C	-19.45	-19.74	-19.23	-149.87	-151.23	-150.41	Upland
JPHP07A	-18.26	-18.21	-143.84	-143.01	JPHP07A	-18.27	-18.21	-18.2	-143.48	-142.84	-142.25	Upland
JPHP07B	-18.9	-18.95	-147.97	-148.45	JPHP07B	-18.83	-18.67	-18.6	-146.73	-146.56	-145.9	Upland
JPHP07C	-18.81	-18.76	-147.89	-148.2	JPHP07C	-20.3	-19.24	-19.26	-158.01	-151.96	-149.57	Upland
JPHP08A	-19.08	-18.94	-148.25	-149.15	JPHP08A	-19.1	-18.51	-18.99	-148.41	-148.25	-148.14	Fen
JPHP08B	-18.2	-18.11	-142.31	-141.57	JPHP08B	-18.43	-17.91	-18.46	-143.43	-143.25	-142.57	Fen
JPHP08C	-17.14	-18.34	-135.11	-143.8	JPHP08C	-19.85	-17.33	-18.54	-156.33	-139.5	-143.79	Fen
JPHP09A	-18.82	-18.54	-147.27	-146.49	JPHP09A	-18.53	-18.62	-18.49	-146.2	-146.29	-145.65	Fen
JPHP09B	-17.93	-17.82	-141.16	-140.63	JPHP09B	-18.01	-18.14	-17.99	-140.51	-141.03	-140.6	Fen
JPHP09C	-19.95	-18.48	-155.23	-146.27	JPHP09C	-17.82	-17.93	-17.24	-140.2	-140.45	-134.37	Fen
JPHP10A	-18.43	-18.38	-144.4	-144.84	JPHP10A	-18.33	-18.49	-18.37	-144.64	-143.88	-143.31	Fen
JPHP10B	-17.91	-17.98	-140.83	-142.35	JPHP10B	-17.89	-18.24	-18.07	-141.73	-141.32	-140.66	Fen
JPHP10C	-19.05	-18.68	-150.03	-145.76	JPHP10C	-18.39	-18.1	-17.05	-143.74	-141.49	-133.5	Fen
JPHP11A	-17.91	-17.96	-140.53	-140.58	JPHP11A	-18.02	-17.63	-18.02	-141.65	-141.4	-139.58	Upland
JPHP11B	-18.37	-18.47	-144.99	-145.38	JPHP11B	-18.24	-18.26	-18.39	-144.98	-145	-143.94	Upland
JPHP11C	-18.78	-18.87	-146.69	-148.53	JPHP11C	-19	-18.57	-18.61	-149.8	-150.14	-146.18	Upland
					JPHP12		-17.61	-18.76		-137.12	-145.59	Fen
JPHA	-16.33	-17.39	-128.46	-137.75	JPHA	-20.91	-16.77	-14.96	-163.81	-134.09	-113.32	Fen
JPHB	-18.46	-17.93	-143.96	-140.93	JPHB	-17.85	-17.53	-15.38	-140.29	-135.8	-117.39	Fen
JPHC	-18.78	-17.47	-146.21	-139.32	JPHC	-18.95		-17.03	-148.4		-133.72	Fen
JPHD	-17.74	-18.01	-137.32	-142.86	JPHD	-17.15	-17.62	-15.24	-135.48	-136.7	-117.46	Fen
JPHE	-18.76	-18.55	-145.91	-144.79	JPHE	-17.64	-17.22	-15.26	-137.64	-135.36	-116.1	Fen

JPHF	-19.94	-18.98	-153.88	-148.05	JPHF	-18.66	-17.16	-14.7	-147.2	-134.2	-112.13	Fen
JPHG	-17.28	-17.5	-136.15	-137.94	JPHG	-18.18	-16.98	-15.26	-143.51	-132.02	-118.7	Fen
					JPH weir JPH open water rain	-19.4 -15.89	-17.44 -17	-17.01 -15.5	-153.2 -135.04	-135.24 -135.63	-131.19 -117.6	Fen Fen
					collector	-19.76	-18.71	-15.78	-153.49	-143.73	-119.35	

Appendix 4 Water Level Loggers on a Daily Time Step

2011																		
ML	Water	Table L	.oggers	Depth	Below S	Surface	(mm)											
DOY	MLA							MLB	MLC	MLD	MLE	MLF	MLG	MLH	MLM	MLN	MLO	MLP
169	78	168	163	121	111		72						MLQ	MLR	MLS	MLT	MLU	MLV
170	75	166	161	118	109		76											
171	74	157	152	109	100		78											
172	73	162	156	107	104		83											
173	76	170	163	114	112		91											
174	78	166	162	113	109		97											
175	73	146	142	101	96		100											
176	72	139	132	86	86		93											
177	73	138	132	78	82		74											
178	72	136	129	74	79	158	48											
179	71	141	132	80	85	166	53											
180	79	153	137	90	90	172	57	97	96	117	159	138						
181	72	163	145	91	103	177	59	111	110	129	166	150	76	64	112	8	120	189
182	72	169	150	96	108	184	56	115	117	141	172	159	87	76	121	15	135	200
183	72	173	154	100	112	189	50	117	124	145	177	166	98	84	126	18	140	202
184	76	175	156	102	116	194	53	118	128	147	181	172	102	89	130	23	145	207
185	88	182	161	108	124	191	58	123	135	155	187	180	104	91	133	26	148	211
186	92	186	165	113	129	174	61	126	142	160	192	187	111	100	142	33	155	218
187	94	189	169	115	131	140	64	127	146	164	194	193	116	106	147	39	160	224
188	88	179	162	106	122	140	67	118	141	154	190	189	120	111	151	44	163	229

189	78	159	144	92	105	143	71	96	119	131	175	171	111	101	144	37	154	224
190	71	133	116	61	79	146	72	57	80	99	147	132	89	81	125	18	134	207
191	68	142	124	54	81	143	65	63	86	108	148	127	62	46	91	-14	101	173
192	67	147	130	53	88	131	62	68	92	114	151	132	72	52	96	-11	107	173
193	66	149	132	53	89	135	60	69	97	116	153	136	79	58	101	-7	113	178
194	65	144	128	55	83	141	64	60	95	109	148	134	82	60	103	-5	116	182
195	65	133	117	53	72	147	58	44	81	98	138	120	76	55	97	-9	112	178
196	65	138	123	51	78	152	43	50	88	105	142	126	65	44	84	-22	99	166
197	64	142	128	51	83	160	41	54	95	111	148	134	70	50	90	-16	105	172
198	63	146	133	51	88	167	41	58	102	115	152	141	75	56	96	-10	112	179
199	62	149	136	52	90	170	42	58	106	117	157	147	80	61	101	-4	118	185
200	62	154	141	52	94	170	41	62	110	122	164	155	82	63	104	1	121	190
201	61	158	146	59	95	165	44	64	117	127	171	162	88	70	111	5	127	196
202	60	159	149	67	98	160	45	66	119	129	172	167	92	75	116	11	133	202
203	60	152	144	73	89	169	47	56	113	117	168	166	93	78	119	15	136	207
204	59	147	139	62	80	166	49	47	104	112	165	161	81	68	113	10	128	204
205	58	143	136	63	77	150	49	40	93	110	163	156	74	63	108	6	124	199
206	57	151	144	64	86	153	43	50	103	119	171	164	72	59	104	3	120	195
207	57	148	142	59	86	157	45	45	101	115	167	162	82	69	114	12	130	203
208	57	134	127	56	72	162	52	24	83	101	152	144	78	66	111	9	126	201
209	56	139	133	52	72	167	56	29	89	107	159	147	63	50	94	-7	108	184
210	55	142	137	51	77	172	61	32	94	111	163	151	68	55	99	-2	115	188
211	54	147	142	50	82	177	66	37	101	115	167	157	72	59	103	1	119	191
212	54	149	145	50	85	180	45	37	105	117	169	161	79	64	109	6	124	197
213	53	154	149	51	88	184	46	42	110	124	174	166	81	67	112	10	128	200
214	52	160	153	52	90	185	35	46	115	128	177	172	86	73	118	15	135	205
215	51	164	157	55	92	190	40	48	118	131	180	177	90	78	123	20	140	210
216	50	168	161	57	95	190	47	51	123	137	184	181	92	83	127	23	145	214
217	51	169	163	58	98	193	50	54	127	138	181	185	97	87	133	28	150	219
218	52	165	161	60	91	199	51	50	125	132	186	187	97	90	135	30	151	222
219	52	166	161	64	90	202	40	49	126	135	187	188	90	85	133	29	147	222
220	55	172	166	65	97	189		54	131	142	189	192	91	87	133	31	149	223
221	63	175	170	68	101	183	-193	59	135	147	195	196	98	94	141	35	156	227

222	63	181	169	86	108	185	-238	80	140	150	211	204	102	98	146	38	158	231
223	49	151	144	80	104	179	-241	52	143	156	184	200	105	101	158	44	165	239
224	41	138	139	68	86	185	-225	22		146	176	195	114	117	160	44	173	240
225	43	141	141	72	88	189	-34	24		148	180	195	99	94	150	36	161	232
226	34	130	136	61	77	193	-285	13		139	176	189	98	95	152	39	161	234
227	41	135	141	69	84	194	-276	20		148	183	193	89	87	144	31	153	227
228	48	141	145	76	89	193	-214	25		155	188	198	95	95	151	38	158	231
229	48	140	147	78	90	199	-220	25		157	190	202	101	102	157	44	163	237
230	45	137	145	86	94	198	-191	26		161	190	202	101	105	160	46	165	239
231		132	143	73	84	202	-240	14		153	187	201	106	109	159	45	164	241
232		146	157	77	84	214	-210	17		157	194	213	99	100	155	42	162	239
233		154	153	84	89	218	-223	22		162	196	207	101	105	165	44	179	251
234		157	156	89	92	220	-216	26		167	201	211	105	111	164	49	181	246
235		159	162	94	95	223	-194	29	153	171	205	215	109	117	169	54	187	250
236			235	100	95	227	-147		154	180	209	218	112	122	174	66	192	256
237	-347		239	105	153	230	-169		159	184	213	222	111	128	180	66	200	257
238	-246		242	108	116	234	-144		162	187	215	225	219	134	185	70	205	261
239	-134		245	113	120	237	-108		167	192	219	229	187	137	189	74	208	264
240	-112		246	113	123	239	-101		170	193	220	231	269	141	194	79	214	269
241	-98		248	117	125	242	-23		173	195	222	234	270	142	195	82	216	272
242	-130		251	123	128	246	-93		177	200	226	238	271	146	200	84	219	274
243	-90		254	126	131	251	-109		180	203	229	241	277	151	204	88	225	278
244	-110		256	130	133	254	-89		196	207	231	244	280	155	208	90	229	281
245	-93		259	135	134	258	-40		219	211	234	247	283	158	211	92	233	284
246	-78		262	135	133	263	23		216	214	235	249	285	162	215	95	238	287
247	-68		266	142	137	264	-85		216	219	239	252	286	163	218	98	241	290
248	-62		271	149	145	265	-118		218	226	243	256	289	167	222	104	248	294
249	-60		276	155	152	269	-140		223	232	248	259	295	172	229	108	255	299
250	-54		281	161	163	271	-121		200	238	252	263	300	177	234	114	263	303
251	-61		285	166	169	272	-63		219	243	256	266	309	187	242	120	269	308
252	-56		290	173	174	266	-59		186	249	260	269	315	192	249	124	275	312
253	-59		284	167	171	235	-37		185	246	258	270	316	196	254	129	281	316
254	-98		288	173	175	236	-103		190	250	261	274	313	195	250	126	270	317

255	-65	201	178	180	240	-30	103	255	264	277	322	198	255	128	274	318
200	-05	201	170	100	240	-00	195	200	207	277	022	130	200	120	217	000
256	-55	295	179	183	243	-36	194	257	266	279	328	205	261	133	282	323
257	-88	298	181	184	246	-46	198	260	268	279	336	207	264	133	284	325
258	-69	283	164	169	251	-45	203	245	259	275	339	207	266	138	286	326
259	-73	250	123	136	254	-70	207	215	227	247	322	190	248	124	259	319
260	-89	255	133	145	258	-12	210	220	229	246	284	152	208	92	205	287
261	-111	261	141	153	261	-36	215	225	235	249	288	160	215	96	217	287
262	-77	264	145	159	265	86	219	229	238	252	295	167	222	102	228	292
263	-36	269	149	162	269	71	224	232	241	254	299	173	227	105	235	295
264	-50	275	155	165	272	43	228	239	246	257	304	175	231	108	240	298
265	-82	279	160	170	274	25	229	243	250	261	307	179	237	113	250	303
266	-18	283	164	174	276		233	248	253	264	312	186	244	119	255	307
267	-63	287	169	175	279		233	251	257	266	316	192	248	123	262	311
268	-50	291	176	178	280		234	258	261	270	326	195	253	127	265	314
269	-29	295	178	183	281		230	262	265	273	327	199	260	131	274	319
270	-34	297	182	187	278		224	266	267	276	332	206	265	136	278	322
271	-18	299	187	189	272			269	269	281	335	210	269	139	284	325
272	-29	301	188	189				270	270	281	337	215	272	143	285	329
273	-13	304	190	194				274	272	285	339	214	273	143	285	330
274	-12	304	190	194				275	273	285	344	285	285	315	435	255
275	-19	304	189	191				275	273	286	345	220	277	147	291	334
276		296	182	183				266	270	284	345	219	277	146	287	334
277		285	170	173				255	264	282	338	209	267	140	271	332
217		200	110	170				200	207	202	000	200	201	140	211	002

2012 ML	Wate	r Table L	oggers	Depth	Below S	Surface	(mm)											
DOY	MLA	MLB	MLC	MLD	MLE	MLF	MLG	MLH	MLM	MLN	MLO	MLP	MLQ	MLR	MLS	MLT	MLU	MLV
100)			17	0 18	6 258	60	D	189	9 209	453	304	229	205	5 249	95	187	332
101				16	7 15	2 243	5 78	3	186	6 186	6 418	294	181	203	3 225	64	169	309
102	2			16	5 12	6 221	92	2	180) 149	348	273	99	201	179	35	142	278
103	3			15	9 10	5 208	46	5	161	142	346	251	62	. 171	139	26	125	263

153	107	202	-1	151	151	350	236	67	171	133	34	156	253
152	114	208	-49	149	161	269	236	79	186	141	40	168	254
151	123	210	-19	146	170	249	236	86	187	145	42	170	255
150	128	212	-28	143	180	243	236	93	187	149	46	177	255
154	140	210	15	139	200	241	233	99	187	153	45	182	254
153	140	198	3	132	202	222	224	93	179	143	33	171	242
148	117	184	47	125	174	192	206	64	155	122	18	146	223
143	83	168	-53	117	126	168	183	39	119	96	0	121	192
131	36	157	-144	104	104	149	156	34	90	79	-32	97	183
66	15	142	-71	44	94	129	132	33	89	72	-46	80	170
0	5	115	-94	1	75	108	77	24	85	67	-53	63	159
-1	13	99	-108	4	79	106	27	29	85	69	-10	57	156
-20	7	45	-74	-4	76	78	-10	14	68	50	-9	56	133
-55	-12	11	-83	-10	59	35	-27	17	37	24	-22	55	133
-52	-24	-6	-179	-6	42	27	-29	11	38	10	-39	53	128
-50	-25	-10	-274	3	29	13	-22	5	15	0	-41	52	114
-46	-28	-9	-308	4	23	13	-12	0	-1	0	-44	52	98
-35	-24	-3	-305	10	27	14	-1	1	-4	5	-47	52	88
-27	-16	3	-315	17	35	15	10	3	-3	12	-51	51	90
-20	-9	10	-289	26	44	18	20	9	0	18	-53	51	98
-16	-2	16	-191	33	45	31	29	15	2	23	-54	51	99
-14	5	23	-282	39	44	41	37	20	8	27	-55	51	103
-9	7	31	-300	47	51	50	47	27	14	34	-57	50	110
-6	12	40	-293	55	58	59	57	34	21	41	-59	50	119
-2	21	49	-216	61	65	69	67	40	27	47	-61	51	126
2	28	60	-210	68	71	80	77	45	33	53	-61	55	134
8	36	71	-269	76	78	91	89	50	40	61	-60	64	143
13	38	81	-262	83	83	101	98	55	46	68	-57	72	150

-56

-51

-47

 -264

-252

-220

135				34	45	119	-144		106	105	134	133	78	66	98	-44	101	179
136				38	45	126	-246		109	108	142	140	82	69	102	-40	105	184
137				45	48	133	-236		114	113	148	147	87	75	109	-35	112	191
138				47	49	140	-207		117	115	152	153	88	78	113	-33	114	195
139				43	44	140	-247		114	111	153	154	82	76	110	-36	112	195
140				47	47	145	-250		115	117	157	158	86	82	116	-30	118	200
141				53	52	149	-169		119	121	172	163	90	86	121	-29	123	205
142				56	55	155	-104		122	123	295	168	91	90	126	-25	126	209
143				48	49	154	-177		117	121	292	167	84	86	122	-30	122	207
144				56	54	161	-209		123	127	297	173	90	94	130	-24	128	213
145				60	59	165	-212		127	131	300	178	92	98	135	-23	129	217
146				65	64	169	-224		131	135	303	183	95	104	140	-22	132	222
147				70	68	174	-220		135	139	306	188	97	109	147	-21	137	227
148				74	72	177	-191		142	143	309	194	102	115	153	-23	142	232
149				80	77	180	-200		148	147	311	199	106	120	160	-25	149	237
150				90	83	184	-187		154	150	313	206	110	126	167	-27	155	243
151				97	88	189	-177		159	152	314	212	113	133	173	-23	157	249
152				104	95	196	-139		165	162	317	218	121	141	181	-20	178	254
153				106	96	202	-120		169	164	318	223	124	144	184	-21	183	258
154				66	54	174	-174		138	130	296	193	84	105	149	-58	138	226
155				51	42	161	-181		121	122	287	178	72	89	136	-75	124	213
156				51	51	164	-149		122	125	288	181	75	91	138	-70	127	215
157				53	57	167	-170		124	128	290	184	80	94	142	-71	131	217
158				59	62	171	-246		129	132	292	188	85	100	147	-65	136	222
160	-75			71	69	181	-238		140	141	175	198		112	155	-52	143	233
161	-54			76	73	184	-229		144	144	204	212		117	162	12	147	247
162	-52			79	76	190	-213		147	146	190	204		121	167	4	150	242
163	-49			84	83	192	-216		162	157	193	208		137	172	11	172	246
164	-57		_	79	70	190	-222		152	145	187	208		119	168	7	162	245
165	-63	88	87	73	64	188	-228	142	148	141	182	205		113	163	4	157	241
166	-65	90	86	73	64	186	-228	108	145	140	180	203		113	162	6	157	240

167	-59	98	93	81	71	192	-219	115	151	148	188	209	121	171	16	167	247
168	-56	102	98	85	75	196	-212	118	154	151	192	212	123	174	20	171	252
169	-63	95	94	79	68	194	-218	114	151	144	187	211	117	170	16	164	250
170	-69	90	89	73	62	190	-226	108	145	140	181	207	111	164	12	159	245
171	-76	85	83	68	57	188	-233	105	141	137	176	204	107	160	8	155	240
172	-75	87	83	71	60	186	-231	106	140	141	178	202	110	163	10	159	241
173	-65	97	91	80	71	192	-218	115	147	150	187	208	119	173	21	172	249
174	-58	104	98	86	78	197	-206	122	153	155	193	213	125	181	28	182	255
175	-53	110	103	94	85	203	-195	128	157	161	195	218	131	187	34	191	260
176	-49	114	108	99	90	207	-188	132	160	164	196	222	136	192	38	195	265
177	-50	118	110	102	92	209	-187	135	164	166	197	225	135	194	41	199	268
178	-41	124	116	108	98	213	-177	141	168	170	201	229	140	200	46	207	273
179	-34	129	122	111	105	218	-165	146	171	175	205	234	148	206	53	211	278
180	-27	135	126	116	109	222	-156	151	175	178	210	238	153	212	58	217	281
181	-21	142	131	121	117	227	-147	157	180	187	215	243	160	219	65	225	286
182	-18	146	135	127	121	230	-140	161	185	190	219	247	164	223	67	228	290
183	-41	121	116	103	95	215	-170	143	168	169	202	232	141	201	45	194	273
184	-58	107	98	91	82	199	-194	131	151	159	191	215	126	186	31	176	256
185	-73	93	86	75	65	188	-216	117	137	145	177	203	112	171	17	159	243
186	-130	40	30	6	8	126	-289	57	79	94	125	133	49	106	-45	89	179
187	-124	48	33	6	20	108	-294	59	80	96	117	109	52	101	-50	92	164
188	-117	55	35	13	25	99	-293	62	79	97	110	103	57	100	-55	96	161
189	-113	56	33	17	25	96	-289	62	84	96	105	104	59	99	-61	97	161
190	-104	61	35	26	31	101	-280	67	93	100	110	114	63	105	-59	103	168
191	-97	64	38	35	36	111	-272	71	101	103	117	125	66	110	-53	111	176
192	-91	68	42	44	42	120	-262	76	108	107	124	136	69	116	-46	117	184
193	-85	72	49	52	49	130	-249	83	118	113	131	147	74	123	-35	126	192
194	-79	77	56	60	55	139	-243	89	125	118	136	156	80	131	-26	132	200
195	-75	83	62	68	62	148	-232	96	134	124	146	167	88	139	-15	140	209
196	-73	86	68	74	67	155	-224	100	139	127	148	174	91	145	-9	146	215
197	-72	87	71	74	69	158	-219	102	142	129	151	181	93	148	-5	149	219

198	-67	90	75	77	73	165	-208	106	147	132	157	187		97	152	1	154	224
199	-62	93	79	82	76	169	-200	109	150	137	163	193		100	157	6	160	229
200	-83	75	63	61	54	158	-127	99	134	130	148	179		93	139	-14	149	216
201	-102	69	57	55	44	152			118	113	147	170		74	131	-17	129	208
202	-97	76	64	63	50	158			124	119	154	177		81	139	-10	137	215
203	-94	79	69	66	54	161			127	123	156	183		84	142	-8	139	219
204	-91	83	73	71	58	165			131	126	161	188		89	147	-2	143	224
205	-87	87	78	76	64	170			136	131	168	193		93	152	5	147	229
206	-116	60	53	45	38	141			121	103	142	169		66	126	-23	120	205
207	-157	22	11	-9	-2	93			64	63	99	108		20	77	-70	70	153
208	-151	30	16	-7	9	84			65	66	94	93		25	85	-74	73	144
209	-148	32	16	-3	11	113			64	66	109	101		26	75	-64	74	157
210	-149	30	12	14	8	75			67	62	100	89		24	73	-84	72	140
211	-155	22	5	5	4	76			66	56	90	85		18	65	-91	65	136
212	-121	46	36	13	10	83			73	62	96	101		24	73	-84	73	144
213	-133	35	18	21	16	93			79	68	103	106		29	80	-75	80	153
214	-128	40	24	28	21	101			89	72	110	115		34	87	-66	87	161
215	-133	35	22	21	14	97			85	65	108	117		29	83	-67	84	160
216	-141	29	16	15	6	99			77	60	104	114		23	76	-73	79	157
217	-134	36	24		8	102	-23		83	68	110	121	44	30	86	-67	87	163
218	-126	43	31		12	109	-18		92	75	116	128	51	38	93	-55	95	170
219	-120	48	37		16	114	-11		100	80	120	135	53	43	99	-51	101	176
220	-115	53	42		19	118	-5		104	84	127	141	57	48	104	-48	107	182
221	-110	58	48		22	127	-3		110	89	132	148	59	54	111	-40	112	188
222	-149	22	12		-9	93	-26		67	53	99	113	29	20	74	-76	72	152
223	-144	31	20		-1	96	-29		71	62	106	113	38	23	79	-68	80	156
224	-137	39	27		5	102	-27		78	69	112	119	46	30	86	-60	87	162
225	-132	43	32		9	107	-24		86	73	116	125	47	35	90	-56	93	167
226	-132	43	33		7	108	-24		88	72	117	127	46	35	90	-58	92	169
227	-148	28	19		-8	94	-32		70	57	103	113	33	20	75	-72	77	154
228	-146	31	22		-3	95	-31		72	62	105	112	37	24	77	-69	82	156

229	-139	38	28	3	99	-29	79	67	110	117	42	30	82	-64	87	162
230	-133	42	32	8	104	-24	84	72	115	124	47	34	87	-60	92	167
231	-127	47	37	11	111	-17	91	77	120	130	49	40	93	-55	98	172
232	-121	51	41	14	116	-10	95	81	124	136	50	45	99	-51	103	177
233	-116	55	46	18	120	-9	99	86	127	142	58	50	104	-45	108	183
234	-114	56	47	17	121	-7	101	87	128	145	60	52	105	-43	109	185
235	-137	36	28	-3	108	-20	80	66	113	129	38	37	83	-62	86	167
236	-138	37	29	0	109	-28	74	67	115	128	39	27	83	-61	87	167
237	-132	44	35	6	115	-27	80	75	122	133	46	35	92	-52	95	174
238	-131	45	39	7	117	-27	83	76	125	136	47	36	93	-50	97	176
239	-129	47	42	7	120	-24	85	79	126	138	48	38	95	-48	99	178
240	-124	51	46	9	122	-20	89	83	129	141	49	42	99	-45	103	182
241	-120	54	49	10	124	-15	93	87	132	145	55	46	103	-41	108	186
242	-119	54	50	11	124	-11	94	88	133	148	57	49	105	-39	110	188
243	-116	58	54	12	128	-10	100	93	139	152	62	52	110	-32	113	192
244	-114	62	58	12	130	-7	103	95	143	154	64	56	113	-29	117	196
245	-117	57	56	7	128	-11	100	92	140	155	57	53	110	-33	146	196
246	-172	0	-1	-52	75	-48	40	37	82	94	3	11	51	-87	60	135
247	-190	-25	-20	-60	31	-68	4	12	42	35	-16	-26	17	-101	44	89
248	-188	-37	-21	-63	8	-80	-18	-2	12	11	-26	-39	0	-102	44	69
249	-186	-36	-22	-53	4	-74	-13	0	5	12	-19	-38	-3	-103	45	67
250	-184	-33	-23	-46	10	-67	-1	7	12	22	-10	-35	2	-105	44	74
251	-180	-26	-28	-39	36	-60	13	15	44	52	-2	-29	9	-92	44	101
252	-180	-3	-10	-32	27	-55	26	22	34	46	5	-20	17	-107	44	94
253	-181	-16	-29	-29	36	-35	42	27	43	57	10	-14	25	-107	43	103
254	-186	-18	-22	-7	41	-49	52	52	47	62	28	10	24	-106	44	105
255	-198	-32	-21	-34	37	-56	44	22	39	53	-1	-14	14	-104	44	97
256	-196	-22	-23	-32	43	-50	51	28	49	61	7	-3	21	-103	44	105

1	5	7
1	J	/

		Water	Table Lo	oggers D	epth Be	low Sur	face	JPH		Water	Table L	oggers [Depth Be	elow Su	rface
JPH 2	011	(mm)						2012		(mm)					
DOV		JPH	JPH	JPH	JPH	JPH	JPH	DOV	JPH	JPH	JPH	JPH	JPH	JPH	JPH
100	~	В	0	0	<u> </u>		0	100	~	В	/12	54	<u> </u>	313	631
100								100			262	-04 10	415	313	625
101								101			260	-40 52	401	308	600
102								102			200	-52	-00	303	562
103								103			203	-55	-30	303	502
104								104			202	-50	-30	303	520
105								105			204	- 4 5 42	-54	303	520
100								100			203	- 4 2 12	-33	303	5/8
107								107			284	-42	-33	304	551
100								100			266	-42	-33	303	542
103								110			200	-43		303	486
111								111			180	_40	-61	303	386
112								112			136	-58	-60	302	266
112								112			144	-60	-63	302	169
114								114			143	-59	-55	302	229
115								115			146	-56	-52	302	291
116								116			160	-51	-43	302	292
117								117			172	-49	-32	301	284
118								118			162	-46	-40	299	287
119								119			164	-40	-35	298	328
120								120			178	-33	-29	298	365
121								121			194	-24	-25	297	392
122								122			209	-14	0	297	409
123								123			220	-5	4	297	421
124								124			223	8	11	295	429
125								125			222	21	14	294	435
126								126			225	41	21	293	440
127								127			234	63	28	290	453
128								128			234	79	35	287	457
129								129			205	71	29	276	439
130								130			231	90	44	278	466
131								131			245	114	66	277	478
132								132			254	133	82	275	487
133								133			264	153	101	275	496
134								134			269	172	119	273	504
135								135			278	190	136	272	512
136								136			278	202	143	268	517
137								137			209	150	89	253	472
138								138			232	176	111	252	497
139								139			113	69	26	211	359
140								140			86	12	10	218	373
141								141			137	59	40	233	423
142								142			183	109	68	239	443
143								143			222	153	100	243	462
144								144			252	187	131	247	479
145								145	245	220	269	207	101	250	489
145								145	345	33U 224	292	230	101	25U	507 E10
140								140	347	331	311	∠4ŏ	1/ D	203	010

147								147	348	346	333	271	196	263	523
148								148	348	354	353	291	218	268	535
149								149	348	356	371	309	238	273	547
150								150	348	357	390	329	260	280	561
151								151	349	357	405	345	278	285	573
152								152	353	357	417	358	294	288	584
153								153	357	358	425	368	307	291	595
154								154	345	324	351	299	253	257	552
155								155	342	328	255	203	155	243	514
156								156	348	356	323	277	208	264	555
157								157	348	357	370	324	252	276	576
158								158	353	357	416	372	300	288	599
159								159	357	357	436	398	334	294	617
160								160	357	357	438	406	348	296	631
161								161	357	358	438	408	352	297	644
162								162	357	358	439	415	366	298	658
163								163	352	357	387	332	287	290	607
164								164	357	357	431	388	331	297	649
165								165	357	357	437	403	346	297	666
166								166	357	359	430	400	364	207	680
167								167	357	362	438	415	376	200	690
169								168	3/3	325	254	185	168	253	516
160								160	231	221	113	66	58	102	113
103								103	267	248	151	110	72	220	130
170								170	207	240	221	201	12	220	439
171	33	20	62	30	24	02	260	171	347	330	200	201	127	200	506
172	35	20	02 92	-30	24	92 109	200 534	172	247	353	364	212	256	212	500
173	35	4 I 01	02	-21	55	100	554	173	247	257	304 404	246	200	207	555
174	45	10	F7	2	57 24	125	505 607	174	340	307 257	404	340	30Z	290	501
175	7	19	57	-24	24 40	76	401	1/5	352	357	424	305	333	298	584 547
170	-7	-5 20	41	-45	13	90	431	1/0	345	329	310	249	237	280	517
177	25	20	10	-33	39	115	400	1//	349	300	401	339	310	297	569
178	37	44	105	-18	60 70	122	536	1/8	342	327	3/1	309	293	279	560
179	32	67	128	0	78 101	132	5/3	1/9	343	336	307	241	223	287	526
180	44	113	170	33	104	146	610	180	347	357	398	337	306	298	574
181	40	89	138	33	90	119	6/5	181	352	357	428	379	350	298	606
182	26	/1	103	(63	130	595	182	352	356	393	331	309	296	598
183	25	105	138	35	86	138	614	183	351	356	400	350	316	298	606
184	9	83	108	17	67	131	635	184	347	334	394	344	324	285	607
185	12	142	165	59	91	153	614	185	89	25	55	-17	1	52	99
186	27	184	221	113	131	167	701	186	62	(45	-26	-1	16	185
187	39	183	221	128	142	164	739	187	38	42	75	-5	21	76	271
188	25	95	136	62	94	122	743	188	40	90	104	12	38	113	313
189	1	33	70	-3	48	107	596	189	-44	-17	139	-9	58	128	347
190	-16	-3	61	-23	36	120	526	190	-56	-97	-19	-95	-24	96	371
191	-21	-28	125	9	74	158	524	191	-58	-97	-24	-91	-103	-58	278
192	-17	-26	186	59	115	173	630	192	-75	-110	-36	-91	-106	-76	174
193	-9	2	231	105	149	179	697	193	-75	-108	-32	-96	-105	-70	13
194	3	62	248	133	165	181	733	194	-74	-105	-28	-100	-103	-66	-52
195	15	119	261	152	176	187	745	195	-74	-106	-27	-100	-103	-63	37
196	36	171	279	177	191	194	746	196	-74	-103	-25	-100	-101	-57	176
197	63	202	294	195	203	200	747	197	-75	-106	-26	-100	-97	-53	248
198	94	216	304	210	215	204	748	198	-69	-105	-28	-103	-93	-50	277

199	127	230	316	223	223	209	747	199	-79	-116	-33	-114	-102	-63
200	143	221	295	210	209	200	747	200	-96	-132	-45	-116	-103	-99
201	65	62	109	41	84	127	734	201	-102	-133	-54	-118	-101	-100
202	72	63	112	24	75	155	578	202	-104	-133	-55	-118	-102	-99
203	79	104	151	53	102	172	642	203	-109	-134	-58	-118	-101	-101
204	95	136	188	85	127	188	672	204	-113	-137	-62	-118	-102	-104
205	121	174	236	131	163	204	715	205	-115	-136	-62	-118	-102	-104
206	151	209	281	178	201	214	743	206	-119	-136	-62	-118	-103	-103
207	140	174	231	149	176	187	747	207	-122	-133	-63	-118	-103	-100
208	136	153	170	92	126	185	709	208	-123	-136	-69	-118	-103	-101
209	122	120	157	83	123	180	723	209	-120	-149	-76	-119	-104	-102
210	115	55	100	10	95	195	619	210	-113	-151	-86	-119	-104	-103
211	138	109	157	47	135	205	635	211	-104	-140	-88	-120	-105	-104
212	152	137	188	74	157	210	691	212	-93	-119	-72	-120	-105	-104
213	175	172	226	111	184	218	722	213	-88	-106	-58	-120	-106	-100
214	184	189	234	131	193	214	743	214	-77	-100	-53	-121	-106	-103
215	193	203	239	141	190	217	743	215	-72	-98	-41	-113	-106	-101
216	197	233	288	186	226	229	747	216	-59	-99	-37	-116	-108	-102
217	197	250	314	217	242	234	748	217	-49	-90	-28	-108	-108	-101
218	197	251	311	221	236	232	748	218	-44	-78	-14	-98	-108	-90
219	200	272	331	242	251	240	748	219	-41	-73	3	-84	-110	-68
220	202	286	335	251	259	243	748	220	-27	-55	30	-65	-110	-45
221	206	306	345	265	264	247	749	221	-27	-57	33	-64	-111	-35
222	206	318	355	277	272	252	751	222	-11	-45	54	-51	-75	-14
223	206	329	366	288	280	257	753	223	0	-13	83	-26	-37	25
224	200	289	313	227	236	254	759	224	2	41	111	-5	-20	60
225	195	316	345	253	253	254	686	225	18	79	121	12	-3	74
226	331	291	309	214	229	270	564	226	42	110	131	24	2	84
227	347	335	369	276	269	275	542	227	66	155	168	58	19	106
228	347	347	385	299	288	275	579	228	89	186	201	96	36	123
229	346	351	376	298	286	273	589	229	113	207	227	130	58	135
230	346	348	367	291	279	276	593	230	146	235	260	168	90	151
231	346	352	374	298	283	283	592	231	1/8	258	292	201	121	165
232	346	355	395	316	302	288	598	232	208	276	312	223	147	174
233	351	350	406	327	312	291	604	233	222	276	303	219	150	172
234	357	300	414	330	319	292	621	234	1/2	102	∠ 122	137	98	120
230	307 257	357	409	240	312	290	627	230	140	100	102	23 117	37	123
230	307 257	357	422	349	329	290	625	230	210	202	202	162	100	159
231	257	257	423	250	227	297	640	201	210	200	240	200	109	100
230 220	357	357	421	368	337	297	640 646	230	242	207	200	200	142	102
239	345	212	40Z 220	242	240	200	653	239	2/0	290	342	250	102	109
240	346	327	271	243	105	204	572	240	328	316	346	207	200	108
241	346	354	271	276	254	203	5/2	241	344	327	353	268	200	203
242	353	357	372	210	234	295	582	242	344	320	364	200	203	203
243	357	357	305	330	203	205	610	243	345	330	358	200	217	203
244	358	358	<i>4</i> 12	348	322	200	630	244	118	58	96	27 -	210	74
246	357	357	<u>−</u> 1∠ 407	367	330	204	646	246	14	-42	30 4	_72	_50	_28
240	357	357	435	380	353	295	655	240	-30	_70	_1Q	_94	-68	-34
248	357	357	435	384	356	294	663	248	-45	-95	-27	-101	-98	-66
249	357	357	437	393	365	294	672	249	-56	-104	-41	-114	-98	-84
250	357	357	437	397	367	294	681	250	-60	-104	-44	-120	-98	-88
			· - •							· - ·				

160	

251	357	357	437	402	372	295	689	251	-56	-102	-43	-119	-97	-87	
252	357	357	438	408	378	294	697	252	-52	-97	-43	-117	-97	-84	
253	358	359	438	410	380	294	706	253	-56	-100	-46	-118	-97	-87	
254	358	362	436	392	358	294	714	254	-106	-145	-59	-122	-95	-128	
255	359	360	437	393	352	294	712	255	-122	-154	-79	-121	-93	-141	
256	359	366	437	402	358	294	720	256	-123	-157	-83	-121	-92	-143	
257	359	367	438	409	366	294	724								
258	358	363	416	370	329	259	728								
259	349	322	228	159	165	239	702								
260	328	269	162	108	111	274	537								
261	347	319	252	210	179	290	470								
262	347	345	304	253	234	293	519								
263	347	354	338	278	270	294	544								
264	349	357	364	298	297	294	564								
265	358	358	379	310	313	295	584								
266	358	358	392	323	325	295	601								
267	358	358	403	333	334	295	617								
268	358	358	413	344	343	295	634								
269	359	358	420	353	349	295	650								
270	359	358	427	359	351	295	666								
271	359	358	431	364	352	295	681								
272	359	358	433	371	355	296	692								
273	359	359	436	383	361	296	700								
274	359	359	437	389	362	295	712								
275	359	359	437	390	360	295	722								

Appendix 5 Meteorological Station

ML Fe	en 2011	Ground/Water temperature											
	Wind		Air	Relative		~10 cm	~20 cm	∼40 cm	Net	Air			
	Speed	Wind	Temp.	Humidity	Precip	below	below	below	Radiation	Pressure			
	(ms ⁻ ')	Direction	(°C)	(%)	(mm)	(°C)	(°C)	(°C)	$W(m^{2})^{-1}$	(Kpa)			
DOV	Daily	(°) Daily	Daily	Daily	Daily	daily	daily	daily	Daily	Daily			
DOY	Mean	Mean	Mean	Mean	lotal	Average	Average	Average	Mean	Mean			
159	0.20	70.37	14.15	50.52	0.00	13.49	15.16	15.08	48.54	93.72			
160	0.20	92.84	15.62	50.76	0.00	13.77	17.28	1/.1/	149.01	93.35			
161	0.20	119.46	16.95	48.64	1.02	14.60	17.85	17.34	71.22	92.97			
162	1.15	136.60	13.75	57.53	2.03	11.09	14.68	13.89	183.04	92.86			
163	1.46	225.30	13.14	53.41	0.00	5.92	8.80	8.26	96.85	92.76			
164	1.11	181.18	14.92	54.38	0.00	6.06	8.91	8.13	108.28	92.69			
165	1.46	161.67	13.93	72.16	11.94	6.23	9.45	8.27	53.58	92.87			
166	2.92	247.77	12.55	90.22	14.48	6.46	9.82	8.70	12.88	92.75			
167	3.80	258.29	12.75	88.95	10.92	6.68	9.82	8.98	32.10	92.77			
168	3.44	298.90	13.03	83.66	1.52	6.86	9.96	9.24	74.39	93.10			
169	3.95	259.13	13.02	88.94	3.30	7.02	10.12	9.45	9.48	92.64			
170	4.12	276.47	14.07	81.42	2.79	7.17	10.03	9.60	51.60	92.79			
171	3.88	302.80	14.11	86.53	1.02	7.30	10.29	9.69	28.13	92.97			
172	1.99	176.92	15.72	75.51	7.37	7.43	10.57	9.88	79.43	93.06			
173	1.84	200.63	16.34	53.33	0.00	7.58	10.77	10.20	146.00	93.22			
174	2.71	131.94	20.28	42.99	0.00	7.73	11.05	10.34	176.43	92.81			
175	2.84	150.22	15.28	76.33	6.60	7.90	11.35	10.67	16.33	92.43			
176	2.59	234.67	10.37	92.65	18.29	8.10	11.16	10.81	16.00	92.34			
177	2.98	146.98	11.52	71.94	1.02	8.23	10.89	10.57	101.23	92.98			
178	2.81	113.24	8.75	78.79	6.35	8.29	10.58	10.49	54.01	93.19			
179	2.30	168.80	14.14	74.56	0.00	8.32	10.60	10.30	148.15	92.30			
180	3.15	248.65	17.69	64.19	2.29	8.35	11.25	10.86	153.57	91.58			
181	4.10	274.54	14.89	57.38	0.00	8.48	11.68	11.39	172.46	92.11			
182	4.36	251.64	12.84	55.06	0.00	8.65	11.53	11.44	162.80	92.80			
183	3.83	247.18	15.76	45.32	0.00	8.77	11.33	11.20	141.26	93.06			
184	3.08	194.11	16.10	62.04	1.02	8.85	11.42	11.15	86.08	92.70			
185	5.32	273.52	14.62	49.56	0.00	8.92	11.41	11.18	174.90	93.16			
186	4.35	272.61	16.65	44.95	0.00	8.98	11.27	11.14	121.48	93.54			
187	2.28	262.06	17.68	50.73	0.00	9.03	11.37	11.13	176.87	93.65			
188	1.84	139.45	16.70	68.56	0.00	9.09	11.85	11.37	100.08	93.25			
189	4.41	124.74	16.28	68.86	8.13	9.22	12.22	11.68	94.89	91.76			
190	3.25	134.30	13.45	88.66	27.69	9.38	12.21	11.90	11.35	91.89			
191	3.34	70.44	14.29	77.32	0.76	9.51	12.24	11.84	84.25	93.12			
192	1.99	141.95	14.95	57.92	0.00	9.58	12.21	11.85	166.92	93.92			
193	2.24	151.66	13.76	66.66	0.00	9.65	12.26	11.97	95.48	93.75			
194	1.04	125.49	16.51	71.14	0.00	9.71	12.29	11.95	72.51	93.07			
195	2.08	145.34	16.71	82.47	9.91	9.78	12.68	12.24	66.07	92.32			
196	2.65	251.01	15.85	70.58	0.25	9.90	13.09	12.50	111.45	91.91			
197	1.53	200.51	15.80	73.64	0.00	10.03	13.20	12.76	95.87	92.63			
198	1.96	145.66	18.50	62.39	0.00	10.17	13.38	13.01	176.42	93.32			
199	2.68	186.30	19.41	69.69	1.78	10.31	13.77	13.42	112.80	92.88			
200	3.42	261.27	17.59	61.78	0.00	10.48	14.04	13.71	166.28	92.47			
201	3.51	283.90	15.06	64.27	0.00	10.66	13.91	13.76	84.57	92.37			

202	2.51	197.86	14.41	71.05	0.00	10.78	13.64	13.51	125.65	92.67
203	3.52	127.03	13.50	86.67	2.29	10.85	13.61	13.46	52.56	93.15
204	2.95	160.31	12.41	87.56	5.59	10.92	13.38	13.35	52.08	93.12
205	2.15	232.07	13.97	84.85	6.10	10.94	13.43	13.21	80.50	93.25
206	3.63	254.60	18.58	57.78	0.00	10.97	13.58	13.28	155.00	92.93
207	2.77	274.51	18.32	57.69	0.00	11.02	13.65	13.45	154.38	92.47
208	2.85	271.80	13.80	83.28	17.53	11.09	13.71	13.57	44.13	92.63
209	3.52	263.80	14.55	69.37	0.25	11.18	13.60	13.42	87.30	93.12
210	3.07	249.35	13.81	69.66	1.02	11.21	13.37	13.26	47.59	92.96
211	2.71	239.36	15.09	62.98	0.00	11.22	13.20	13.09	138.40	93.19
212	2.56	217.18	15.74	69.28	1.27	11.20	13.27	13.11	89.33	92.86
213	4.37	266.81	13.96	66.37	0.00	11.22	13.33	13.25	84.21	92.90
214	3.55	267.75	15.68	56.16	0.00	11.24	13.16	13.07	134.11	93.03
215	2.55	273.29	14.24	67.45	0.51	11.24	13.08	12.97	122.80	93.10
216	1.97	246.93	15.79	62.66	0.00	11.24	13.04	12.91	136.85	93.39
217	2.12	148.28	16.79	60.85	0.00	11.24	13.25	12.97	131.32	93.28
218	2.41	185.79	13.86	83.73	1.52	11.28	13.42	13.11	6.13	93.01
219	2.39	288.30	11.84	88.70	2.29	11.34	12.99	13.07	28.74	92.98
220	1.64	250.85	16.62	68.72	0.00	11.32	12.88	12.82	143.68	93.33
221	1.80	180.14	16.76	67.26	0.00	11.29	13.31	12.85	119.36	93.11
222	1.90	228.88	14.49	68.42	0.00	11.33	13.34	13.05	117.58	93.01
223	1.54	98.87	14.78	64.22	0.00	11.38	13.15	13.05	113.33	93.27
224	2.35	203.35	17.03	65.22	2.29	11.41	13.16	12.95	100.90	93.47
225	2.00	131.99	16.33	73.71	4.57	11.43	13.40	12.97	85.51	93.27
226	2.60	153.50	17.66	74.79	2.29	11.48	13.64	13.10	120.70	92.81
227	3.33	276.82	13.48	71.78	4.32	11.56	13.91	13.32	77.30	92.77
228	3.99	269.22	12.81	64.68	0.00	11.65	13.44	13.25	119.83	92.97
229	3.78	273.40	12.64	65.16	0.00	11.66	13.09	12.98	118.69	92.99
230	2.58	282.02	9.64	83.10	2.03	11.61	12.82	12.76	52.91	93.27
231	2.21	236.89	10.84	76.98	2.54	11.55	12.50	12.55	67.68	93.46
232	1.89	195.20	12.47	71.31	0.00	11.46	12.33	12.35	66.98	93.27
233	2.88	193.25	18.66	62.25	0.00	11.38	12.53	12.23	105.03	92.50
234	2.72	252.55	19.47	54.95	0.00	11.34	12.95	12.33	95.63	92.17
235	4.66	275.51	15.19	63.75	0.25	11.38	12.99	12.60	74.58	92.45
236	3.30	236.75	14.76	57.08	0.00	11.42	12.61	12.56	73.63	92.94
237	4.15	279.22	12.35	60.53	0.00	11.40	12.34	12.46	86.18	93.23
238	1.96	229.08	13.49	63.36	0.00	11.34	11.95	12.08	81.24	93.81
239	2.30	235.82	16.80	56.47	0.00	11.24	12.05	11.91	86.37	93.35
240	2.14	249.65	14.71	59.48	0.00	11.19	12.16	11.96	112.28	93.49
241	2.61	215.79	15.49	70.94	0.00	11.16	12.28	12.00	26.10	92.73
242	3.56	274.98	11.97	73.53	0.00	11.17	12.22	11.99	79.81	92.70
243	3.50	284.19	9.18	72.83	0.00	11.16	11.95	11.76	70.87	93.18
244	1.67	237.26	9.71	65.06	0.00	11.11	11.47	11.46	86.36	93.08
245	1.82	168.42	9.20	70.19	0.00	11.00	11.27	11.26	80.84	93.27
246	2.32	206.14	8.99	73.00	0.00	10.89	11.01	11.12	78.71	93.95
247	4.00	218.27	16.12	54.56	0.00	10.78	11.04	10.99	83.39	93.01
248	3.35	254.39	16.76	53.31	0.00	10.71	11.29	11.06	88.22	92.80
249	3.50	249.56	18.53	50.75	0.00	10.69	11.46	11.28	87.96	93.46
250	2.89	235.61	20.57	45.92	0.00	10.71	11.70	11.37	92.22	93.89
251	1.75	224.51	19.68	54.56	0.00	10.75	11.88	11.55	100.64	94.11
252	2.79	228.36	20.45	52.35	0.00	10.80	12.06	11.60	93.29	93.84
253	2.24	247.44	15.70	51.03	0.00	10.87	12.16	11.70	82.12	93.74

254	1.89	232.50	10.38	73.36	1.52	10.93	11.86	11.56	14.23	93.68
255	3.12	223.43	8.27	75.35	0.25	10.92	11.27	11.32	55.46	93.94
256	1.34	123.28	2.73	63.44	0.25	10.83	10.69	10.77	61.63	94.77
257	3.37	163.66	6.00	49.81	0.00	10.67	10.00	10.25	66.47	94.05
258	2.45	163.51	10.74	51.50	0.00	10.45	9.60	10.13	55.64	92.73
259	3.41	195.62	9.32	88.49	9.65	10.25	9.90	10.11	-4.53	91.79
260	5.42	276.44	8.99	84.04	7.37	10.14	10.01	10.05	27.35	92.27
261	2.95	264.42	8.96	76.22	0.00	10.08	10.03	9.92	55.05	92.77
262	2.47	263.77	8.08	74.17	1.02	10.02	9.94	9.85	55.30	93.12
263	2.01	226.30	9.29	73.27	0.00	9.95	9.63	9.79	58.27	93.83
264	4.11	174.45	13.16	51.53	0.00	9.86	9.51	9.68	46.76	92.98
265	3.41	244.15	13.85	45.88	0.00	9.78	9.69	9.75	41.05	92.65
266	2.95	200.34	15.48	57.73	0.00	9.73	9.70	9.75	29.55	92.47
267	1.79	228.26	12.67	58.28	0.00	9.71	9.95	9.77	56.61	92.98
268	4.09	161.16	18.51	51.27	0.00	9.70	9.93	9.74	44.86	92.13
269	3.73	248.07	12.11	51.20	0.00	9.71	10.21	9.82	41.91	92.28
270	2.99	242.01	11.46	47.94	0.00	9.73	9.82	9.71	37.34	92.24
271	3.56	287.93	7.87	68.68	0.00	9.70	9.45	9.52	8.17	93.54
272	3.10	183.31	6.97	69.67	0.00	9.62	9.04	9.27	34.71	93.97
273	3.82	226.25	10.55	49.32	0.00	9.49	8.80	9.18	29.29	92.49
274	2.29	232.60	7.21	51.23	0.00	9.37	8.79	9.08	35.52	93.41
275	2.65	123.96	5.47	77.30	0.00	9.26	8.60	8.79	-3.90	93.81
276	3.83	128.89	4.89	90.62	0.25	9.16	8.42	8.73	10.40	93.52

ML Bo	og 2011	Ground/Water temperature											
	Wind		Air	Relative		~10 cm	~20 cm	~40 cm	Net	Air			
	Speed	Wind	Temp.	Humidity	Precip	below	below	below	Radiation	Pressure			
	(ms⁻')	Direction	(°C)	(%)	(mm)	(°C)	(°C)	(°C)	$W(m^{2})^{-1}$	(Kpa)			
	Daily	(°) Daily	Daily	Daily	Daily	daily	daily	daily	Daily	Daily			
DOY	Mean	Mean	Mean	Mean	Total	Average	Average	Average	Mean	Mean			
159	0.20	125.32	13.92	51.76	0.25	6.66	10.99	5.95	113.29	93.75			
160	0.20	108.34	16.24	48.64	0.00	5.63	10.20	4.57	176.99	93.33			
161	0.20	159.87	16.61	51.84	0.76	5.98	11.74	4.82	85.83	92.97			
162	0.99	162.71	13.46	56.79	2.54	6.37	11.93	5.12	211.47	92.88			
163	1.05	169.29	13.48	52.72	0.00	6.72	11.61	5.37	112.95	92.76			
164	0.89	191.39	15.22	54.97	0.00	6.90	11.92	5.51	133.50	92.71			
165	1.09	194.09	13.76	75.16	13.97	7.11	12.86	5.73	68.44	92.89			
166	2.08	291.90	12.46	92.16	16.00	7.34	12.96	6.07	28.83	92.76			
167	2.60	283.83	12.66	90.74	10.41	7.47	12.83	6.27	37.92	92.80			
168	2.15	177.42	13.21	84.69	2.29	7.49	12.59	6.43	89.63	93.12			
169	2.70	305.50	12.97	90.09	3.30	7.50	12.04	6.59	17.29	92.64			
170	2.70	253.95	14.21	82.53	2.79	7.47	11.58	6.71	59.10	92.82			
171	2.37	148.17	14.14	87.60	1.52	7.44	12.14	6.77	37.81	92.99			
172	1.24	141.56	15.37	75.78	9.65	7.49	12.10	6.88	90.25	93.09			
173	1.29	187.53	16.61	52.90	0.00	7.51	11.57	7.05	169.87	93.23			
174	1.88	108.08	20.84	42.06	0.00	7.50	13.22	7.12	203.26	92.79			
175	1.76	138.20	14.79	80.29	8.64	7.60	12.64	7.23	24.50	92.45			
176	1.77	208.43	10.24	94.28	15.24	7.69	10.34	7.37	28.30	92.33			
177	2.50	205.25	11.61	70.65	1.02	7.65	10.00	7.37	115.33	93.06			
178	1.80	94.22	8.78	81.41	7.87	7.59	8.93	7.39	65.91	93.16			
179	1.54	149.71	14.97	72.86	0.00	7.47	10.33	7.34	171.37	92.24			

180	2.02	222.79	17.71	64.65	1.52	7.44	11.10	7.43	185.32	91.61
181	2.91	246.07	15.00	54.84	0.00	7.52	11.23	7.61	197.90	92.18
182	2.93	229.30	12.98	54.26	0.00	7.64	10.57	7.69	188.90	92.85
183	2.44	214.85	16.08	44.85	0.00	7.70	10.71	7.64	168.67	93.07
184	2.37	195.68	16.09	63.74	1.27	7.73	10.86	7.59	99.49	92.70
185	3.57	242.32	14.84	47.04	0.00	7.78	11.70	7.56	207.03	93.22
186	2.97	245.08	17.03	44.37	0.00	7.86	11.71	7.57	148.88	93.57
187	1.64	229.16	18.00	50.37	0.00	7.94	13.26	7.56	200.90	93.65
188	1.46	129.27	16.96	69.44	0.00	8.08	14.15	7.65	115.10	93.20
189	2.82	102.42	16.11	70.02	10.67	8.29	14.26	7.82	102.81	91.71
190	2.99	247.13	13.41	91.21	30.99	8.49	11.96	8.02	19.42	91.95
191	2.42	95.65	13.92	78.00	0.51	8.58	11.37	8.16	93.93	93.22
192	1.36	121.42	14.93	57.52	0.00	8.62	11.11	8.33	186.26	93.95
193	1.51	130.16	14.14	66.44	0.00	8.59	10.57	8.40	113.10	93.73
194	0.74	120.93	16.70	71.76	0.00	8.54	11.17	8.40	84.53	93.05
195	1.40	130.98	16.60	83.93	11.43	8.56	12.05	8.45	76.76	92.28
196	1.89	224.06	15.95	70.56	0.25	8.67	12.19	8.59	134.07	91.94
197	1.05	190.66	15.66	74.35	0.00	8.79	12.43	8.72	113.97	92.70
198	1.41	127.47	19.23	60.60	0.00	8.89	13.38	8.84	201.15	93.33
199	1.83	165.07	19.30	71.39	1.52	9.02	13.99	8.97	131.27	92.85
200	2.33	232.26	17.58	60.28	0.00	9.20	14.37	9.14	196.82	92.48
201	2.65	256.51	15.11	63.93	0.00	9.38	13.22	9.28	97.46	92.38
202	1.81	178.81	14.76	72.06	0.00	9.47	13.89	9.30	144.12	92.72
203	2.34	104.58	13.51	87.12	3.56	9.54	13.09	9.33	60.79	93.16
204	1.75	138.80	12.37	89.05	4.32	9.60	13.06	9.35	62.71	93.13
205	1.58	209.03	14.11	85.44	7.11	9.64	13.70	9.37	93.42	93.26
206	2.46	229.75	18.94	56.76	0.00	9.70	14.52	9.46	181.65	92.91
207	2.09	248.67	18.52	57.20	0.00	9.78	14.99	9.56	176.19	92.47
208	2.10	244.16	13.68	85.33	16.76	9.85	13.37	9.64	61.71	92.68
209	2.37	231.99	14.67	68.58	0.00	9.91	12.55	9.69	98.91	93.14
210	2.05	222.83	13.60	71.31	0.51	9.92	12.22	9.70	58.85	92.97
211	1.90	204.90	15.67	60.88	0.00	9.89	13.25	9.67	162.44	93.20
212	1.84	206.27	15.78	70.51	1.02	9.87	13.40	9.67	105.20	92.86
213	3.09	235.79	14.13	65.22	0.00	9.89	12.79	9.71	103.09	92.92
214	2.38	237.72	16.05	54.82	0.00	9.89	13.69	9.70	155.37	93.04
215	2.05	253.65	14.33	68.70	0.25	9.86	13.59	9.68	144.18	93.13
216	1.34	209.70	16.17	60.32	0.00	9.84	13.97	9.67	157.77	93.40
217	1.48	126.17	16.92	61.34	0.00	9.85	14.48	9.68	148.97	93.28
218	1.68	171.32	13.52	85.68	1.52	9.91	13.58	9.74	12.44	93.00
219	1.84	264.95	12.02	89.83	2.29	9.95	11.98	9.77	37.78	93.01
220	1.23	231.93	16.76	68.11	0.00	9.86	14.08	9.66	168.46	93.35
221	1.35	181.42	16.65	67.67	0.00	9.92	15.06	9.69	139.39	93.10
222	1.57	236.30	14.21	69.33	0.00	10.04	14.56	9.82	133.27	93.03
223	1.05	100.98	15.29	63.60	0.00	10.10	13.80	9.86	119.63	93.30
224	1.56	182.45	17.24	65.76	2.03	10.10	13.92	9.83	120.78	93.49
225	1.46	145.42	16.23	76.16	5.08	10.18	15.19	9.86	106.36	93.26
226	1.93	174.47	17.83	75.28	4.06	10.34	15.70	9.96	141.62	92.80
227	2.29	247.72	13.30	71.37	2.29	10.50	15.22	10.13	90.59	92.81
228	2.76	240.39	13.05	63.61	0.00	10.57	13.14	10.22	133.21	92.99
229	2.61	247.39	12.72	65.49	0.00	10.45	13.01	10.13	135.69	93.01
230	1.89	252.00	9.78	83.48	1.78	10.38	12.40	10.02	65.35	93.31
231	1.52	207.77	10.59	78.76	2.54	10.27	11.88	9.89	86.62	93.47

232	1.31	170.77	12.77	71.42	0.00	10.15	11.67	9.77	76.81	93.25
233	1.92	169.77	18.99	61.58	0.00	10.08	13.66	9.70	123.43	92.47
234	1.88	226.89	19.62	54.19	0.00	10.21	14.65	9.78	109.36	92.17
235	3.24	246.01	15.10	63.55	0.25	10.44	14.03	9.93	90.27	92.53
236	2.24	208.33	15.09	56.09	0.00	10.54	12.60	9.98	89.28	92.94
237	2.97	250.28	12.18	61.43	0.00	10.48	12.01	9.92	101.37	93.30
238	1.42	191.39	13.98	61.82	0.00	10.38	11.42	9.81	102.08	93.82
239	1.62	209.83	16.84	56.75	0.00	10.24	12.18	9.71	100.45	93.36
240	1.59	226.16	14.83	59.18	0.00	10.25	12.74	9.70	127.57	93.51
241	1.80	187.99	15.48	71.47	0.00	10.33	13.34	9.71	32.43	92.76
242	2.50	244.14	12.22	73.42	0.00	10.43	12.61	9.75	94.99	92.71
243	2.60	254.38	9.33	72.89	0.00	10.44	11.91	9.73	82.58	93.19
244	1.20	198.76	9.33	65.73	0.00	10.35	10.67	9.64	106.44	93.11
245	1.50	209.66	9.17	70.67	0.00	10.13	10.98	9.48	92.57	93.26
246	1.46	183.89	8.68	73.37	0.00	9.98	10.48	9.35	98.48	93.97
247	2.51	190.30	16.15	54.67	0.00	9.82	10.76	9.22	101.07	93.04
248	2.29	226.48	16.99	52.69	0.00	9.83	11.48	9.21	105.24	92.81
249	2.33	221.36	18.66	50.30	0.00	9.96	12.15	9.20	109.45	93.47
250	2.01	209.65	20.79	45.49 55.75	0.00	10.13	12.80	9.34	110.92	93.89
251	1.19	100.20	19.00	55.75 53.24	0.00	10.32	13.48	9.43	119.48	94.13
292	1.00	200.94	20.70	52.34 51.42	0.00	10.49	10.70	9.00	00.45	93.07
200	1.75	209.90	10.70	72.00	1.52	10.04	10.71	9.03	99.40 26.71	93.75
204 255	2.60	209.00	8 51	75.99	0.25	10.74	12.04	9.07	68 49	93.09
256	1.06	125 56	2 72	63 51	0.25	10.00	9.97	9.37	82.26	90.94
250	2 40	138 44	5 95	50 24	0.25	10.00	7 77	9.07	86.43	94.70
258	1 84	140 49	10.86	50.24	0.00	9.56	7 41	8 75	68 67	92 77
259	2.09	170 48	9.26	89.47	8.64	9.29	9.34	8.59	3 41	91.81
260	3 74	246 73	8.97	85 56	7 37	9.20	9.54	8 59	36 37	92.26
261	2.11	237.37	9.07	76.06	0.00	9.16	9.69	8.60	68.58	92.78
262	1.79	228.08	8.23	73.89	0.76	9.14	9.43	8.59	76.67	93.11
263	1.37	189.55	9.15	73.77	0.25	9.06	8.85	8.51	75.77	93.85
264	2.90	146.12	13.00	52.74	0.00	8.91	9.09	8.37	57.51	93.01
265	2.37	215.54	13.91	45.60	0.00	8.83	9.59	8.30	48.82	92.65
266	2.08	171.00	15.37	58.29	0.00	8.85	9.57	8.31	35.56	92.48
267	1.31	212.49	12.74	58.14	0.00	8.86	10.43	8.33	73.82	92.99
268	2.82	136.97	18.38	51.98	0.00	8.92	11.73	8.35	55.11	92.17
269	2.65	223.47	12.31	51.06	0.00	9.02	11.28	8.38	52.03	92.29
270	2.08	214.72	11.58	47.39	0.00	9.13	9.39	8.42	46.42	92.24
271	2.65	259.67	8.04	67.96	0.00	9.03	8.81	8.30	13.88	93.52
272	2.13	159.07	6.84	70.71	0.00	8.81	8.00	8.14	46.20	94.02
273	2.75	195.48	10.59	49.26	0.00	8.53	7.03	7.96	33.21	92.50
274	1.68	216.44	7.24	51.26	0.00	8.33	7.96	7.85	43.16	93.41
275	1.70	100.37	5.45	77.13	0.25	8.21	7.20	7.76	0.26	93.82
276	2.42	107.40	4.86	90.44	0.00	8.06	6.36	7.66	11.33	93.56

ML Fe	en 2012					Ground/	Water tem	perature		
	Wind		Air	Relative		~10 cm	~20 cm	~40 cm	Net	Air
	Speed	Wind	Temp	Humidity	Precip	below	below	below	Radiation	Pressure
	(ms ⁻¹)	Direction	(°C)	(%)	(mm)	(°C)	(°C)	(°C)	$W(m^{2)-1}$	(Kpa)
	Daily	(°) Daily	Daily	Daily	Daily	daily	daily	daily	Daily	Daily
DOY	Mean	Mean	Mean	Mean	Total	Average	Average	Average	Mean	Mean
160	2.15	106.42	16.04	42.78	0.00	8.77	10.30	11.69	168.06	92.82
161	2.32	85.88	16.16	51.71	0.00	8.91	10.75	12.27	125.38	92.38
162	3.66	70.36	11.40	72.97	0.00	9.10	10.76	12.86	84.39	92.87
163	1.52	157.89	11.92	58.49	0.00	8.99	9.91	9.61	122.25	93.38
164	2.62	182.77	13.91	83.52	4.06	8.97	10.82	12.59	67.62	92.88
165	1.82	164.66	13.14	87.39	3.30	9.27	11.44	13.86	83.28	92.58
166	3.58	293.25	12.68	70.47	0.25	9.59	11.45	13.54	158.13	92.79
167	1.69	232.94	11.56	60.66	0.51	9.62	10.88	12.30	140.95	93.42
168	2 75	163 34	12 84	59 79	1 02	9.51	10 77	12 73	100 78	92 92
169	1.97	233.97	12 47	84 86	2.54	946	10.81	11.56	48 16	91 77
170	2.32	281 20	12 59	83.62	2.03	9.56	11 14	12 71	90.19	92.01
171	2.02	201.20	11 75	88.88	3.05	9.00	11.14	13.06	77 33	02.01
172	2.77	277.71	14.02	60.00	0.05	0.95	11.45	12.00	171 / 9	02.02
172	2.57	151 11	15.02	45 60	0.23	9.00	11.20	12.00	106.40	93.40 03.73
173	2.02	161 73	16.40	49.00	0.00	9.04	11.15	12.24	147.00	93.73
174	2.00	04.62	10.49	40.29	0.00	9.00	11.50	13.00	147.09	93.50
175	2.04	94.02	16.90	40.30	0.00	10.00	11.79	13.00	191.09	93.00
170	3.00	139.11	10.32	62.40	0.01	10.11	10.04	14.1Z	49.42	93.07
1//	2.69	228.74	19.43	60.49	0.00	10.19	12.04	13.72	154.20	92.90
178	2.58	273.93	19.39	44.31	0.00	10.39	12.62	15.53	192.14	92.33
179	4.31	297.76	15.74	60.93	1.52	10.59	12.66	15.28	141.85	91.95
180	3.90	272.84	16.67	52.03	0.00	10.68	12.45	14.29	183.60	92.78
181	1.40	215.26	14.33	64.29	0.25	10.64	12.04	14.31	78.65	92.99
182	2.32	228.33	18.86	52.58	0.00	10.54	11.94	14.39	1/1.36	92.98
183	2.15	197.26	14.76	83.99	16.51	10.56	12.28	15.44	16.26	92.77
184	2.76	252.36	16.51	59.18	0.00	10.82	12.36	14.11	138.93	92.92
185	2.72	100.32	13.37	84.37	41.91	10.92	12.58	14.39	21.54	92.27
186	4.14	255.07	14.85	75.31	8.89	11.33	12.38	12.30	84.48	91.78
187	2.95	234.52	15.40	67.79	0.00	11.53	12.74	12.99	149.55	93.27
188	1.98	192.04	14.56	65.67	2.03	11.80	13.16	14.34	119.68	93.75
189	1.16	209.21	18.38	50.25	0.00	11.88	13.25	14.07	195.13	94.07
190	2.31	163.49	22.22	49.49	0.00	12.30	14.66	16.47	180.09	94.02
191	1.93	196.61	25.25	51.55	0.00	12.87	15.54	17.47	185.11	93.71
192	2.77	197.56	25.31	52.92	0.00	13.49	16.47	19.19	175.06	93.19
193	2.65	271.86	20.90	47.35	0.00	13.89	16.20	18.74	151.26	93.30
194	3.37	228.33	21.33	40.45	0.00	13.88	15.58	16.84	169.95	93.38
195	1.50	221.21	15.80	51.08	0.00	13.72	14.87	14.80	165.04	93.98
196	2.19	149.65	18.95	57.92	0.00	13.47	14.75	15.95	151.99	93.65
197	2.27	94.18	19.17	74.47	0.00	13.47	15.22	17.14	60.20	93.46
198	1.37	214.46	18.16	67.70	0.00	13.53	15.09	16.90	125.98	93.51
199	3.72	176.77	19.74	68.11	0.00	13.57	15.25	17.17	168.22	93.00
200	2.64	204.53	17.87	81.71	19.05	13.72	15.55	16.52	77.93	92.57
201	4.90	279.16	14.34	74.17	0.25	13.96	15.46	16.98	76.18	93.24
202	1.68	235.18	18.19	59.55	0.00	13.69	14.57	14.80	185.90	93.91
203	2.52	126.18	19.22	69.47	2.03	13.60	15.20	16.42	122.90	93.21
204	2.03	226.32	18.13	79.31	0.00	13.78	15.42	17.33	121.86	93.42
205	1.95	117.27	19.74	61.75	0.00	13.88	15.43	16.97	137.83	93.41

206	2.52	99.19	17.32	84.83	44.96	14.03	15.87	17.10	49.57	92.90
207	1.86	153.07	17.75	83.26	6.60	14.65	16.07	16.44	62.15	93.40
208	0.94	181.26	16.98	80.72	1.27	14.99	16.40	17.32	54.99	93.64
209	1.63	216.33	17.96	73.21	0.00	15.02	16.38	17.22	132.86	93.25
210	1.08	187.25	16.65	82.18	9.65	15.24	16.89	18.44	66.48	93.27
211	1.28	207.98	17.70	79.00	0.00	15.41	16.99	17.96	113.68	93.46
212	2.54	257.49	20.75	56.92	0.00	15.66	17.59	20.00	168.20	93.26
213	3.17	273.47	18.11	60.38	0.00	15.78	17.52	20.56	117.54	93.19
214	2.95	270.90	17.20	55.50	0.00	15.54	16.79	18.48	148.56	93.28
215	2.46	290.03	12.92	87.98	9.40	15.33	16.38	18.27	9.25	93.28
216	1.45	210.31	16.36	74.02	0.00	15.04	15.95	15.63	111.80	93.51
217	3.52	248.77	18.81	65.06	0.00	15.21	16.77	18.98	125.06	93.21
218	2.93	276.67	15.01	58.95	0.00	15.19	16.20	17.73	149.32	93.48
219	1.19	172.19	16.72	57.33	0.00	14.82	15.49	15.57	148.08	93.75
220	2.15	93.05	18.91	57.47	0.00	14.79	16.27	17.17	152.00	93.73
221	3.05	144.85	20.19	59.17	14.22	14.97	16.28	16.69	147.64	93.68
222	3.79	250.77	16.67	74.04	11.94	15.18	16.38	17.46	66.10	93.35
223	3.25	261.17	16.42	51.71	0.00	15.07	15.78	16.94	124.15	93.54
224	3 93	284 72	13 68	61 16	0.25	14 81	15 57	17 15	118 63	93 64
225	1.61	250.01	13.00	69.46	0.25	14.39	14.73	14.98	129.12	94.01
226	2.85	174.39	14.74	75.53	10.67	14.18	14.94	15.60	48.63	93.34
227	2.86	204.41	11.67	87.19	2.79	14.20	14.68	15.26	8.31	93.36
228	2.22	278.77	11.35	69.38	0.00	13.80	13.74	13.78	113.63	94.03
229	2.52	243.21	16.16	60.05	0.00	13.48	14.16	15.07	110.83	93.53
230	2.29	243.94	17.48	58.79	0.00	13.64	14.65	15.72	110.54	93.60
231	2.01	169.62	18.50	56.08	0.00	13.81	14.68	15.39	139.62	93.76
232	2.74	202.86	20.69	57.15	0.00	13.92	15.12	15.83	126.82	93.33
233	2.09	140.20	20.12	64.26	0.00	14.16	15.47	16.42	110.15	93.24
234	1.69	165.16	20.03	65.87	11.68	14.35	15.77	16.77	104.22	92.96
235	1.94	251.40	14.83	91.46	5.59	14.61	15.93	16.76	10.25	92.86
236	2.97	277.83	15.76	76.43	0.25	14.58	15.53	15.61	109.84	92.75
237	2.56	248.91	12.79	72.96	0.51	14.57	15.50	16.44	68.64	92.69
238	2.93	305.75	12.05	89.72	1.52	14.30	14.71	14.84	10.44	92.81
239	1.03	208.07	14.28	71.93	0.00	13.96	14.29	14.45	89.94	93.46
240	2.84	182.13	17.08	66.21	0.00	13.78	14.42	14.43	98.02	93.24
241	1.47	231.35	17.91	61.35	0.00	13.80	14.60	14.87	99.65	92.85
242	3.55	258.45	14.20	68,99	1.27	13.88	14.80	15.22	75.46	92.53
243	3.69	278.68	9.91	77.12	0.00	13.80	14.11	14.11	48.71	93.11
244	1.38	174.81	10.69	72.56	0.00	13.34	13.24	13.06	109.96	93.50
245	3.57	103.45	13.30	79.56	13.46	12.98	13.22	12.95	28.41	92.77
246	4.48	296.33	11.67	94.55	46.99	12.92	13.18	13.05	0.41	91.97
247	5.78	290.61	9.99	82.40	11.68	12.62	12.70	12.50	35.94	92.60
248	3.33	298.10	10.57	89.88	3.05	12.16	11.96	11.86	13.82	93.17
249	1.45	195.28	11.80	78.60	0.00	11.85	12.33	11.94	67.85	93.38
250	2.03	211.95	12.93	68.52	0.00	11.95	12.51	12.64	101.83	93.64
251	2.84	224.42	12.76	62.08	0.00	12.28	12.97	13.60	79.73	93.77
252	3.14	183.67	13.03	67.04	0.00	11.82	12.36	13.32	90.24	93.60
253	1.81	133.05	15.99	63.78	0.00	12.24	13.51	14.57	69.41	92.46
254	3.90	270.36	10.30	86.12	14.22	12.73	13.35	15.32	7.65	91.81
255	6.46	304.33	7.37	65.47	3.05	11.68	10.91	11.21	0.87	92.30
256	2.98	281.88	3.72	69.48	0.00	10.61	9.83	9.29	-15.78	93.47
	-			-	-		-	-	-	-

ML Bo	og 2012									
	Wind		Air	Relative		~10 cm	~20 cm	~40 cm	Net	Air
	Speed	Wind	Temp	Humidity	Precip	below	below	below	Radiation	Pressure
	(ms ⁻ ')	Direction	(°C)	(%)	(mm)	(°C)	(°C)	(°C)	W(m ²⁾⁻¹	(Kpa)
DOV	Daily	(°) Daily	Daily	Daily	Daily	daily	daily	daily	Daily	Daily
DOY	Mean	Mean	Mean	Mean	lotal	Average	Average	Average	Mean	Mean
160	3.23	87.21	13.10	77.43	0.25	4.33	5.49	6.30	61.06	92.85
161	3.95	90.80	16.23	69.25	0.25	4.44	5.55	6.54	113.37	92.40
162	2.69	142.43	16.19	48.98	0.25	4.62	5.91	7.12	180.90	92.86
163	1.39	103.02	16.10	43.38	0.00	4.84	6.10	7.08	175.51	93.40
164	1.64	95.37	16.09	52.04	0.00	5.03	6.23	7.45	131.48	92.90
165	3.17	161.39	11.61	73.40	0.00	5.22	6.51	7.76	88.81	92.60
166	1.00	143.82	11.65	58.91	0.00	5.38	6.53	7.51	125.99	92.80
167	1.80	183.39	13.92	83.43	4.83	5.48	6.74	8.22	78.43	93.42
168	1.20	144.42	13.21	87.82	4.06	5.63	7.18	8.72	86.89	92.98
169	2.74	278.34	12.87	70.67	0.25	5.81	7.45	8.63	167.06	91.79
170	1.29	237.53	11.45	61.97	0.25	5.96	7.39	8.14	149.85	92.01
171	1.78	147.47	12.67	60.09	0.00	6.04	7.26	8.11	100.54	92.81
172	1.38	215.17	12.37	85.46	3.81	6.10	7.28	8.33	52.36	93.48
173	1.69	266.03	12.61	83.71	1.52	6.18	7.53	8.70	90.36	93.75
174	2.07	279.50	11.80	89.27	3.56	6.28	7.81	9.02	75.40	93.52
175	1.92	248.19	13.89	61.84	0.00	6.40	7.88	8.75	176.97	93.65
176	1.09	163.01	15.29	44.98	0.00	6.48	7.82	8.61	206.04	93.70
177	1.51	169.08	16.06	49.69	0.00	6.57	7.88	8.93	153.40	92.93
178	1.45	78.08	16.94	47.05	0.00	6.65	7.99	9.07	198.76	92.36
179	1.90	120.57	16.26	61.87	0.51	6.75	8.27	9.62	51.02	91.96
180	1.83	207.67	19.56	59.97	0.00	6.86	8.58	10.17	156.59	92.79
181	1.81	251.48	19.58	44.34	0.00	7.04	9.06	10.69	197.93	93.00
182	3.30	285.29	15.71	60.51	1.02	7.25	9.32	10.56	146.16	93.00
183	2.84	251.12	17.07	50.74	0.00	7.40	9.34	10.36	188.44	92.78
184	0.99	197.35	14.23	63.82	0.00	7.51	9.35	10.26	78.56	92.93
185	1 55	208 75	18.92	52 21	0.00	7 56	9 40	10.36	176 15	92 32
186	1 56	201 68	14 61	84 90	15 75	7 64	9.65	10.75	22 79	91 76
187	1.96	232.60	16.67	58.76	0.00	7.75	9.57	10.37	141.27	93.27
188	1.86	97.36	13 21	84 74	40.89	7 81	9.55	10.36	24 94	93 76
189	3 55	273 92	14 70	76 80	8 89	7 89	9.55	9.83	95.60	94.08
190	2 10	216 19	15 54	67.04	0.00	7.96	9.39	9 47	157.98	94 04
191	1.33	183.81	14 40	66 71	1 78	8.03	9.27	9.29	128 14	93 74
192	0.88	197 20	17.98	52 16	0.00	8 10	9.13	9.15	207.92	93.21
102	1 52	148 48	22.23	49.01	0.00	8 14	0.10 0.17	9.10	187.84	03.31
194	1.02	178.09	25.41	50.90	0.00	8 21	9.52	9.20	107.04	03.30
105	2.03	177.74	25.70	51 43	0.00	8 36	10.02	10.48	181 20	03.00
196	1 08	247.27	20.70	46.43	0.00	8.57	10.00	10.40	156.63	03.67
107	2 37	277.27	21.01	30.35	0.00	8 77	10.04	11.17	174 43	03.07
100	2.07	222.21	15.03	59.55	0.00	9.02	10.90	11.55	174.45	93.47 03.54
100	1.21	127.75	19.80	57.00	0.00	0.95	10.05	11.40	155.95	03.04
200	1.40	97.01	10.02	57.90	0.00	9.02	10.90	11.40	62.00	93.03
200	1.44	200 17	19.10	67.02	0.00	9.10	11.12	11.90	02.90	92.09
201	1.04	200.17	10.04	67.92	0.00	9.19	11.24	10.00	131.11	30.24 02.02
202	2.4/ 1.00	100.42	19.00	01.31	0.00	9.29	11.41	12.20	1/0./5	93.93
203	1.80	184.33	0.11	δ2.51 70.00	19.81	9.41	11.75	12.70	80.76	93.24
204	3.50	255.34	14.42	/3.62	0.25	9.55	11.91	12.23	69.87	93.42
205	1.20	212.41	18.26	59.50	0.00	9.63	11.60	11.78	191.96	93.43
206	1.66	109.35	19.31	68.68	2.29	9.66	11.72	12.39	126.36	92.91
-----	------	--------	-------	-------	-------	-------	-------	-------	--------	-------
207	1.43	205.28	18.22	78.30	0.00	9.75	11.96	12.62	125.58	93.39
208	1.28	106.24	19.57	62.08	0.00	9.85	12.04	12.59	141.83	93.66
209	1.89	127.33	17.25	85.46	41.91	9.94	12.22	12.88	55.47	93.27
210	1.62	218.32	17.71	83.87	5.59	10.08	12.39	12.42	65.38	93.28
211	0.62	170.85	16.64	81.22	0.76	10.24	12.26	12.07	61.56	93.47
212	1.14	199.07	17.69	73.46	0.00	10.35	12.06	11.84	138.34	93.28
213	0.78	186.57	16.34	83.18	10.41	10.41	11.97	11.76	71.07	93.20
214	0.92	191.28	17.42	79.34	0.00	10.44	11.97	11.80	119.76	93.30
215	1.83	233.18	20.92	56.41	0.00	10.48	12.05	11.91	177.78	93.30
216	2.24	246.62	18.17	60.04	0.00	10.53	12.25	12.12	122.87	93.52
217	2.17	246.14	17.47	53.57	0.00	10.60	12.38	12.25	155.77	93.23
218	1.82	267.92	12.85	87.79	7.11	10.64	12.42	12.27	9.90	93.48
219	1.07	208.13	16.30	74.81	0.25	10.66	12.35	12.17	119.67	93.76
220	2.44	224.93	18.82	64.86	0.00	10.66	12.41	12.29	126.81	93.74
221	2.26	260.67	15.12	58.75	0.00	10.69	12.51	12.36	152.56	93.71
222	0.87	163,79	16.43	57.52	0.00	10.71	12.42	12.23	152.21	93.36
223	1.45	92.39	19.05	57.74	0.00	10.70	12.48	12.45	157.28	93.56
224	1 99	126 53	20.37	57 61	0.00	10 73	12 62	12 61	154 52	93 65
225	2.63	228.24	16.67	74.79	25.91	10.78	12.85	12.79	68.89	94.02
226	2.29	239.00	16.55	50.67	0.00	10.86	12.78	12.46	129.87	93.38
227	2.88	262.01	13.80	60.19	0.25	10.90	12.63	12.26	121.03	93.34
228	1.24	241.18	12.88	69.61	0.00	10.90	12.41	11.97	133.49	94.05
229	1.93	153.56	14.49	76.08	10.16	11.22	12.25	11.84	49.89	93.55
230	2.46	260.07	11.61	88.57	2.54	12.33	12.23	11.80	11.90	93.60
231	1.65	258.33	11.18	69.52	0.00	13.55	12.06	11.50	118.54	93.78
232	1.68	220.47	16.04	60.10	0.00	17.01	11.86	11.30	119.90	93.35
233	1.77	249.05	17.54	58.51	0.00	18.48	11.88	11.41	114.18	93.26
234	1.28	155.03	17.88	57.51	0.00	19.49	11.97	11.51	145.88	92.98
235	1.93	183.20	20.92	55.83	0.00	22.36	12.12	11.81	129.23	92.87
236	1.31	118.47	20.09	63.83	0.00	20.98	12.41	12.17	114.38	92.76
237	1.19	164.95	19.93	66.06	12.70	22.02	12.67	12.47	111.89	92.71
238	1.45	243.60	14.60	92.10	4.57	15.17	12.96	12.62	14.47	92.81
239	2.10	255.26	15.90	76.11	0.00	19.03	12.92	12.45	108.32	93.46
240	1.87	230.13	12.82	72.28	0.51	15.07	12.91	12.37	75.65	93.27
241	2.39	289.14	11.90	89.91	1.78	12.67	12.74	12.12	12.11	92.87
242	0.75	178.53	13.93	72.26	0.00	15.22	12.57	11.89	93.72	92.54
243	1.90	160.04	16.72	66.92	0.00	16.72	12.45	11.81	105.62	93.11
244	1.09	217.48	17.74	62.63	0.00	18.37	12.47	11.91	108.02	93.52
245	2.51	243.20	14.20	69.11	1.27	14.96	12.56	12.03	72.83	92.81
246	2.66	255.64	10.01	76.56	0.00	10.59	12.44	11.65	49.00	91.98
247	0.93	150.02	10.40	72.39	0.00	12.81	12.08	11.06	117.22	92.61
248	2.26	83.90	13.16	79.88	10.67	13.21	11.91	11.14	30.31	93.18
249	3.78	288.06	11.52	95.37	44.70	11.63	11.98	11.28	1.89	93.38
250	4.12	267.06	9.98	82.96	9.14	12.09	11.92	11.10	80.53	93.66
251	2.74	276.79	10.35	90.37	2.54	10.78	11.81	10.93	18.83	93.77
252	1.21	203.71	11.49	79.64	0.00	13.14	11.69	10.80	74.13	93.64
253	1.30	189.05	12.60	69.04	0.00	14.11	11.66	10.78	112.36	92.50
254	2.26	224.15	12.74	61.64	0.00	13.28	11.72	10.84	87.13	91.83
255	1.93	168.26	12.52	67.80	0.00	12.99	11.72	10.71	99.91	92.32
256	1.17	117.84	15.89	63.81	0.00	15.41	11.66	10.62	78.37	93.49
		-	-		-					-

JPH (Jpland 20	012	Ground/Water temperature								
	Wind		Air	Relative		~10 cm	~20 cm	~40 cm	Net	Air	
	Speed	Wind	Temp	Humidity	Precip	below	below	below	Radiation	Pressure	
	(ms⁻¹)	Direction	(°C)	(%)	(mm)	(°C)	(°C)	(°C)	$W(m^{2)-1}$	(Kpa)	
	Daily	(°) Daily	Daily	Daily	Daily	daily	daily	daily	Daily	Daily	
DOY	Mean	Mean	Mean	Mean	Total	Average	Average	Average	Mean	Mean	
160	0.43	170.15	18.35	42.48	0.00	11.51	11.28	13.19	85.47	66.89	
161	0.47	168.00	16.99	58.62	0.00	11.61	11.38	13.27	71.90	67.50	
162	0.68	177.03	13.28	67.52	0.00	11.73	11.51	13.01	37.98	70.37	
163	0.33	156.61	12.68	50.67	0.00	11.12	10.88	11.79	79.50	70.20	
164	0.36	153.13	12.96	76.57	5.08	11.09	10.82	12.21	39.72	71.34	
165	0.31	174.84	15.71	69.13	0.25	11.23	10.95	12.69	49.12	71.62	
166	0.39	213.78	14.58	72.56	1.27	11.49	11.20	12.85	35.24	71.16	
167	0.37	188 68	12 48	64 30	0.00	11 22	10.97	11 87	48 74	70.97	
168	0.41	160.33	13 47	64 61	3.56	10.92	10 74	11 75	55 41	70.38	
169	0.36	168.72	14 16	84 76	16.00	11 15	10.07	12 35	34 78	71.43	
170	0.00	185 10	14.10	04.70	8 38	11.10	11 30	12.00	22.60	70.70	
170	0.20	205.95	12.26	90.97	1 79	11.50	11.30	12.01	22.00	72.21	
171	0.57	205.05	14.75	02.0 4 55.25	0.00	11.74	11.44	12.00	23.49	72.55	
172	0.01	100.27	14.75	20.30	0.00	11.00	11.27	12.00	92.31	70.00	
173	0.39	180.65	16.40	47.28	0.00	11.46	11.19	12.45	94.73	68.29	
1/4	0.53	181.12	19.33	44.23	0.00	11.74	11.48	13.24	83.16	67.18	
175	0.50	177.34	17.85	46.04	0.00	12.01	11.79	13.33	90.82	67.60	
176	0.40	162.51	18.19	49.95	0.00	12.07	11.85	13.29	51.56	67.57	
177	0.40	174.91	20.05	67.87	5.08	12.53	12.29	14.56	78.96	67.89	
178	0.53	185.12	21.48	48.83	0.00	13.25	12.93	15.36	92.51	66.96	
179	0.43	209.27	17.39	65.86	6.35	13.37	13.09	14.81	61.49	67.63	
180	0.58	209.66	19.58	56.71	0.25	13.55	13.29	15.16	89.98	68.53	
181	0.41	179.26	17.48	59.48	0.00	13.57	13.31	14.77	54.49	68.19	
182	0.50	177.16	20.66	53.24	0.00	13.54	13.31	14.97	94.28	67.35	
183	0.24	182.78	17.14	77.90	4.32	13.75	13.51	14.91	9.39	69.21	
184	0.47	189.12	18.94	59.55	0.00	13.56	13.32	14.84	87.96	69.30	
185	0.34	174.46	17.80	69.16	11.18	13.70	13.44	14.89	42.49	68.30	
186	0.78	199.25	14.45	90.01	29.46	13.81	13.59	14.47	-1.35	71.55	
187	0.43	206.16	16.71	69.26	0.25	13.46	13.23	14.32	73.32	70.36	
188	0.40	180.38	16.47	71.89	0.51	13.71	13.45	14.89	67.36	69.98	
189	0.39	177.24	19.40	56.64	0.00	13.73	13.54	14.95	88.01	68.77	
190	0.42	172.96	23.29	48.57	0.00	14.02	13.83	15.75	78.89	67.20	
191	0.44	179.29	26.23	48.18	0.00	14.68	14.50	16.93	90.73	66.13	
192	0.45	173.82	23.64	67.25	14.48	15.37	15.19	17.58	70.23	65.89	
193	0.35	203.13	21.49	61.76	0.00	15.55	15.31	17.12	71.64	68.67	
194	0.51	184.86	20.43	47.90	0.00	15.45	15.20	16.73	48.11	67.76	
195	0.39	187.87	17.28	50.36	0.00	15.03	14.79	15.78	60.11	67.73	
196	0.37	168.42	21.07	48.08	0.00	14.70	14.48	15.78	71.48	67.41	
197	0.39	164.26	18.11	71.14	0.00	14.79	14.58	15.84	31.31	68.80	
198	0.31	177.28	19.11	60.26	0.00	14.56	14.36	15.59	59.29	68.52	
199	0.56	164.76	21.46	60.71	0.00	14.65	14.46	16.02	62.63	67.23	
200	0.34	153 35	18 66	82 61	11 94	14 92	14 70	16.20	21 15	68 72	
201	0.58	216 75	14 91	88 53	7.87	14 69	14 48	15.32	4.43	71 70	
202	0.38	193 59	18 84	61.37	0.00	14 34	14 15	15 19	79 27	69 74	
203	0.26	175 23	18 17	71 62	0.25	14 40	14 20	15 26	16 14	69 53	
204	0.29	180.59	19 45	73 15	0.00	14.36	14 18	15.51	41 23	69.63	
205	0.40	171 09	20.69	64 12	0.00	14 59	14 42	15.97	74 46	68 29	
	0.10		-0.00	0	0.00					00.20	

206 0.38 186.22 19.32 72.29 0.00 14.86 14.69 16.13 27.04 6 207 0.38 195.41 21.47 69.35 0.00 14.93 14.76 16.38 55.32 6 208 0.42 174.82 20.87 66.69 0.00 15.14 16.61 74.04 6 210 0.39 165.58 20.90 61.63 0.00 15.16 15.06 15.93 23.29 6 211 0.24 172.93 18.03 69.78 0.00 15.16 15.06 15.93 23.29 64 213 0.33 175.40 18.14 66.32 0.00 14.81 14.72 15.61 48.35 66.40 7 214 0.53 172.08 18.99 20.06 57.06 0.00 14.43 14.32 15.74 48.48 219 0.30 174.63 16.83 56.80 0.00 14.43 14.32											
207 0.38 195.41 21.47 69.35 0.00 14.93 14.76 16.38 55.32 6 208 0.42 174.82 20.87 66.89 0.00 15.14 14.97 16.61 74.04 6 209 0.34 167.20 20.77 66.87 0.00 15.13 15.21 16.63 64.30 6 211 0.24 172.93 18.03 69.78 0.00 15.16 15.06 15.93 23.23 23.23 23.23 23.23 23.23 23.23 23.24 7.66 14.91 14.81 15.92 39.47 6 214 0.32 175.84 18.14 68.32 0.00 14.41 14.72 15.61 48.35 6 216 0.38 16.83 16.49 7.24 0.00 14.41 14.30 14.92 52.13 6 219 0.30 174.63 16.83 56.80 0.00 14.44 14.30 14	206	0.38	186.22	19.32	72.29	0.00	14.86	14.69	16.13	27.04	69.08
208 0.42 174.82 20.87 65.69 0.00 15.14 14.97 16.61 64.30 6 209 0.34 187.20 20.77 68.87 0.00 15.27 15.13 16.63 64.30 6 211 0.24 172.93 18.03 69.78 0.00 15.16 15.61 15.62 16.592 23.29 6 213 0.33 175.40 192.99 63.14 0.76 14.94 14.81 15.92 39.47 6 214 0.32 175.84 18.14 66.32 0.00 14.451 14.72 15.61 66.40 7 215 0.25 172.09 16.11 84.06 2.79 14.70 14.60 14.92 15.71 14.83 66.40 7 14.83 14.22 15.74 44.33 64.42 20.06 7.76 0.00 14.44 14.30 14.52 50.01 6 220 0.37 16.14 19.87 <t< th=""><th>207</th><th>0.38</th><th>195.41</th><th>21.47</th><th>69.35</th><th>0.00</th><th>14.93</th><th>14.76</th><th>16.38</th><th>55.32</th><th>69.08</th></t<>	207	0.38	195.41	21.47	69.35	0.00	14.93	14.76	16.38	55.32	69.08
209 0.34 187.20 20.77 68.87 0.00 15.27 15.13 16.63 64.30 E 210 0.39 165.58 20.90 61.36 0.00 15.16 15.21 15.53 15.23 15.33 23.29 E 211 0.24 172.93 18.03 66.78 0.00 15.16 15.06 15.93 23.29 E 212 0.50 192.19 21.77 65.74 0.00 14.81 14.72 15.61 48.35 E 214 0.32 175.84 16.49 72.44 0.00 14.43 14.27 15.10 66.40 7 216 0.38 16.83 16.83 56.80 0.00 14.44 14.30 14.92 52.13 E 210 0.61 17.13 52.93 0.00 14.44 14.30 14.92 54.30 E 21.30 E 21.30 E 22.13 E 22.13 E <t< th=""><th>208</th><th>0.42</th><th>174.82</th><th>20.87</th><th>65.69</th><th>0.00</th><th>15.14</th><th>14.97</th><th>16.61</th><th>74.04</th><th>68.17</th></t<>	208	0.42	174.82	20.87	65.69	0.00	15.14	14.97	16.61	74.04	68.17
210 0.39 165.58 20.90 61.36 0.00 15.31 15.21 16.56 65.18 6 211 0.24 172.93 18.03 69.78 0.00 15.16 15.06 15.93 23.29 6 213 0.33 175.40 192.99 63.14 0.76 14.94 14.87 15.92 61.77 6 214 0.32 175.40 18.14 68.32 0.00 14.37 14.87 15.37 12.08 7 215 0.25 172.09 16.01 84.06 2.79 14.70 14.60 15.37 12.08 7 216 0.38 168.87 16.43 52.00 57.06 0.00 14.43 14.30 14.52 50.01 6 219 0.30 174.63 16.83 56.80 0.00 14.17 14.09 15.02 93.47 6 221 0.33 170.0 18.58 81.10 4.57 14.35	209	0.34	187.20	20.77	68.87	0.00	15.27	15.13	16.63	64.30	68.08
211 0.24 172.93 18.03 69.78 0.00 15.16 15.06 15.93 23.29 6 212 0.50 192.19 21.77 56.74 0.00 14.91 14.81 15.92 39.47 6 214 0.32 175.84 18.14 66.32 0.00 14.81 14.72 15.61 48.35 216 0.38 168.87 16.49 72.54 0.00 14.37 14.40 15.37 12.08 7 217 0.53 189.95 20.06 57.06 0.00 14.37 14.42 15.74 44.38 6 2 23.4 14.50 50.01 6 20.01 14.94 13.35 14.50 50.01 6 222 0.33 174.63 16.83 56.80 0.00 14.04 13.95 14.50 50.01 6 222 0.33 174.63 16.83 56.51 0.00 14.30 14.45 7 7 224 0.54 213.39 14.61 58.49 0.00 14.06 14.00 14.36 26.75 <th>210</th> <th>0.39</th> <th>165.58</th> <th>20.90</th> <th>61.36</th> <th>0.00</th> <th>15.31</th> <th>15.21</th> <th>16.56</th> <th>65.18</th> <th>67.93</th>	210	0.39	165.58	20.90	61.36	0.00	15.31	15.21	16.56	65.18	67.93
212 0.50 192.19 21.77 56.74 0.00 14.91 14.81 15.92 61.77 6 213 0.33 175.84 192.96 63.14 0.76 14.94 14.87 15.92 39.47 216 0.38 168.87 16.49 72.54 0.00 14.31 14.72 15.13 66.40 7 216 0.38 168.87 16.49 72.54 0.00 14.35 14.427 15.10 66.40 7 217 0.53 189.95 20.06 77.13 52.93 0.00 14.44 14.30 14.92 50.01 66.40 210 0.37 161.14 19.87 59.91 0.51 14.17 14.09 15.02 50.01 60.22 39.47 6 221 0.36 177.06 18.58 81.10 45.7 14.35 14.29 15.49 1.24 6 222 0.34 170.70 18.58 81.10	211	0.24	172.93	18.03	69.78	0.00	15.16	15.06	15.93	23.29	69.17
213 0.33 175.40 19.29 63.14 0.76 14.94 14.87 15.62 39.47 6 214 0.32 175.84 18.14 68.32 0.00 14.81 14.72 15.61 48.35 216 0.25 172.09 16.01 84.06 2.79 14.70 14.60 15.37 12.08 7 217 0.53 189.95 20.06 57.06 0.00 14.34 14.32 15.14 44.38 6 219 0.30 174.63 16.83 56.80 0.00 14.04 13.95 14.55 50.01 6 221 0.46 167.82 20.56 50.87 0.00 14.17 14.09 15.00 46.26 6 223 0.46 184.40 18.32 66.51 0.00 14.06 14.00 14.38 26.75 7 224 0.54 213.93 14.61 58.49 0.00 14.06 14.00 14.38 26.75 7 226 0.30 157.16 14.59 79.73<	212	0.50	192.19	21.77	56.74	0.00	14.91	14.81	15.92	61.77	68.30
214 0.32 175.84 18.14 68.32 0.00 14.81 14.72 15.61 48.35 6 215 0.25 1772.09 16.01 84.06 2.79 14.70 14.60 15.77 12.08 7 216 0.38 188.87 16.49 72.54 0.00 14.47 14.27 15.10 66.40 7 217 0.53 189.95 20.06 57.06 0.00 14.44 14.30 14.92 52.13 6 219 0.30 174.63 16.83 56.87 0.00 14.14 14.09 15.00 46.26 6 221 0.46 167.82 20.56 50.87 0.00 14.30 14.29 15.49 1.24 6 6 222 0.38 177.00 18.58 81.10 4.57 14.35 14.29 15.49 1.24 6 7 223 0.33 192.21 14.80 61.41 0.00	213	0.33	175.40	19.29	63.14	0.76	14.94	14.87	15.92	39.47	67.88
215 0.25 172.09 16.01 84.06 2.79 14.70 14.60 15.37 12.08 7 216 0.38 168.87 16.49 72.54 0.00 14.37 14.27 15.74 44.38 6 217 0.53 189.95 20.06 57.06 0.00 14.46 14.42 15.74 44.38 6 218 0.64 220.06 17.13 52.93 0.00 14.44 14.30 14.92 52.13 6 210 0.37 161.14 19.87 59.91 0.51 14.17 14.08 15.22 39.47 6 221 0.46 187.40 18.25 56.51 0.00 14.03 14.23 15.14 45.07 6 224 0.54 21.393 14.61 58.49 0.00 14.06 14.00 14.36 26.75 7 226 0.30 157.16 14.59 79.73 3.81 13.38 13.84 45.76 6 229 0.20 180.34 12.99	214	0.32	175.84	18.14	68.32	0.00	14.81	14.72	15.61	48.35	68.84
216 0.38 168.87 16.49 72.54 0.00 14.37 14.27 15.10 66.40 7 217 0.53 189.95 20.06 57.06 0.00 14.56 14.42 15.74 44.38 6 219 0.30 174.63 16.83 56.80 0.00 14.04 13.95 14.50 50.01 6 220 0.38 177.00 18.58 81.10 4.57 14.35 14.29 15.49 1.24 6 221 0.46 187.42 20.56 50.87 0.00 14.17 14.09 15.00 46.26 6 222 0.38 177.00 18.58 81.10 4.57 14.35 14.29 15.49 1.24 67.7 223 0.33 192.22 14.80 61.41 0.00 13.58 13.84 45.76 7 226 0.33 193.34 12.29 67.73 0.00 12.83 13.01	215	0.25	172.09	16.01	84.06	2.79	14.70	14.60	15.37	12.08	70.75
217 0.53 189.95 20.06 57.06 0.00 14.56 14.42 15.74 44.38 64 218 0.36 220.06 17.13 52.93 0.00 14.44 14.30 14.92 52.13 66 220 0.37 161.14 19.87 59.91 0.51 14.17 14.08 15.22 39.47 66 221 0.46 167.82 20.56 50.87 0.00 14.17 14.08 15.22 39.47 66 222 0.46 184.40 18.32 56.51 0.00 14.30 14.23 15.14 45.07 66 223 0.46 184.40 18.32 56.51 0.00 14.30 14.23 15.14 45.76 7 224 0.53 13.07 13.84 45.76 7 226 0.30 157.16 14.59 79.73 3.81 13.38 13.84 42.60 7 224 0.20	216	0.38	168.87	16.49	72.54	0.00	14.37	14.27	15.10	66.40	70.66
218 0.64 220.06 17.13 52.93 0.00 14.44 14.30 14.92 52.13 62 219 0.30 174.63 16.83 56.80 0.00 14.04 13.95 14.50 50.01 62 221 0.46 167.82 20.56 50.87 0.00 14.17 14.08 15.22 39.47 66 222 0.38 177.00 18.58 81.10 4.57 14.35 14.29 15.49 1.24 66 224 0.54 213.93 14.61 58.49 0.00 14.06 14.00 14.38 26.75 225 0.33 192.22 14.80 61.41 0.00 13.58 13.84 45.76 7 226 0.30 157.16 14.59 79.73 3.81 13.38 13.80 14.24 42.96 66 230 0.20 178.68 17.20 81.47 0.76 13.18 13.61<	217	0.53	189.95	20.06	57.06	0.00	14.56	14.42	15.74	44.38	69.13
219 0.30 174.63 16.83 56.80 0.00 14.04 13.95 14.50 50.01 6 220 0.37 161.14 19.87 59.91 0.51 14.17 14.08 15.22 39.47 6 221 0.46 167.82 20.56 50.87 0.00 14.17 14.09 15.00 46.26 6 222 0.38 177.00 18.58 81.10 4.57 14.35 14.29 15.44 45.07 6 224 0.54 213.93 14.61 58.49 0.00 14.06 14.00 14.36 26.75 7 225 0.33 192.22 14.80 61.41 0.00 12.83 13.07 13.84 45.76 7 226 0.30 157.16 14.59 79.73 3.81 13.38 13.84 42.60 7 229 0.20 160.70 16.60 80.79 0.00 12.83 13.07 13.46 37.67 6 231 0.20 176.67 17.46	218	0.64	220.06	17.13	52.93	0.00	14.44	14.30	14.92	52.13	68.59
220 0.37 161.14 19.87 59.91 0.51 14.17 14.08 15.22 39.47 6 221 0.46 167.82 20.56 50.87 0.00 14.17 14.09 15.00 46.26 6 222 0.38 177.00 18.58 81.10 4.57 14.35 14.23 15.14 45.07 6 223 0.46 184.40 18.32 56.51 0.00 14.30 14.23 15.14 45.07 6 224 0.54 213.93 14.61 58.49 0.00 14.06 14.02 15.84 45.76 7 226 0.30 157.16 14.59 78.23 0.25 13.42 13.83 12.24 7 229 0.20 160.70 16.68 80.73 0.00 12.83 13.07 13.46 37.67 6 230 0.20 177.67 17.46 72.68 0.00 13.27 13.59	219	0.30	174.63	16.83	56.80	0.00	14.04	13.95	14.50	50.01	68.50
221 0.46 167.82 20.56 50.87 0.00 14.17 14.09 15.00 46.26 6 222 0.38 177.00 18.58 81.10 4.57 14.35 14.29 15.49 1.24 6 223 0.46 184.40 18.32 56.51 0.00 14.30 14.23 15.14 45.07 6 224 0.54 213.93 14.61 58.49 0.00 13.58 13.84 45.76 7 226 0.33 192.22 14.80 61.41 0.00 13.58 13.84 45.76 7 227 0.59 221.40 13.69 78.23 0.25 13.42 13.93 12.24 7 228 0.38 193.34 12.29 67.73 0.00 13.81 13.07 13.46 37.67 6 231 0.20 178.68 17.20 81.47 0.76 13.18 13.61	220	0.37	161.14	19.87	59.91	0.51	14.17	14.08	15.22	39.47	68.19
222 0.38 177.00 18.58 81.10 4.57 14.35 14.29 15.49 1.24 66 223 0.46 184.40 18.32 56.51 0.00 14.30 14.23 15.14 45.07 66 224 0.54 213.93 14.61 58.49 0.00 14.06 14.00 14.38 25.7 225 0.33 192.22 14.80 61.41 0.00 13.88 13.84 45.76 7 226 0.33 193.22 14.80 61.41 0.00 12.89 13.80 13.80 82.8 7 227 0.59 221.40 13.69 78.23 0.25 13.42 13.93 12.24 7 228 0.38 193.34 12.29 67.3 0.00 12.83 13.07 13.46 37.67 66 231 0.20 177.68 17.46 72.68 0.00 13.27	221	0.46	167.82	20.56	50.87	0.00	14.17	14.09	15.00	46.26	67.52
223 0.46 184.40 18.32 56.51 0.00 14.30 14.23 15.14 45.07 6 224 0.54 213.93 14.61 58.49 0.00 14.06 14.00 14.36 26.75 7 225 0.33 192.22 14.80 61.41 0.00 13.58 13.84 45.76 7 226 0.30 157.16 14.59 79.73 3.81 13.38 13.93 12.24 7 229 0.20 160.70 16.60 80.79 0.00 12.83 13.07 13.46 37.67 6 230 0.20 178.68 17.20 81.47 0.76 13.18 13.61 14.24 42.96 6 231 0.20 157.67 17.46 72.68 0.00 13.27 13.59 14.02 47.06 6 233 0.20 161.51 17.73 19.88 80.43 1.52 13.72 14.29 14.92 32.63 6 234 0.20 177.73	222	0.38	177.00	18.58	81.10	4.57	14.35	14.29	15.49	1.24	69.31
224 0.54 213.93 14.61 58.49 0.00 14.06 14.00 14.36 26.75 7 225 0.33 192.22 14.80 61.41 0.00 13.58 13.84 45.76 7 226 0.30 157.16 14.59 79.73 3.81 13.38 13.60 8.28 7 227 0.59 221.40 13.69 78.23 0.25 13.42 13.93 12.24 7 228 0.38 193.34 12.29 67.73 0.00 12.83 13.07 13.46 37.67 6 230 0.20 176.67 17.46 72.68 0.00 13.43 13.96 14.62 47.59 6 231 0.20 177.73 19.88 80.43 1.52 13.72 14.59 14.92 32.63 6 234 0.20 177.73 19.88 80.43 1.52 13.72 14.29 14.92 32.63 6 235 0.20 186.77 14.69 <td< th=""><th>223</th><th>0.46</th><th>184.40</th><th>18.32</th><th>56.51</th><th>0.00</th><th>14.30</th><th>14.23</th><th>15.14</th><th>45.07</th><th>69.68</th></td<>	223	0.46	184.40	18.32	56.51	0.00	14.30	14.23	15.14	45.07	69.68
225 0.33 192.22 14.80 61.41 0.00 13.58 13.84 45.76 7 226 0.30 157.16 14.59 79.73 3.81 13.38 13.60 8.28 7 227 0.59 221.40 13.69 78.23 0.25 13.42 13.93 12.24 7 228 0.38 193.34 12.29 67.73 0.00 12.83 13.07 13.46 37.67 6 230 0.20 178.68 17.20 81.47 0.76 13.18 13.61 14.24 42.96 6 231 0.20 157.67 17.46 72.68 0.00 13.43 13.96 14.63 47.06 6 233 0.20 161.51 17.73 71.66 0.00 13.67 14.15 14.53 24.72 6 234 0.20 182.51 16.07 95.00 10.92 14.03 14.57 15.10 3.86 7 236 0.20 182.51 16.07 <td< th=""><th>224</th><th>0.54</th><th>213.93</th><th>14.61</th><th>58.49</th><th>0.00</th><th>14.06</th><th>14.00</th><th>14.36</th><th>26.75</th><th>70.24</th></td<>	224	0.54	213.93	14.61	58.49	0.00	14.06	14.00	14.36	26.75	70.24
226 0.30 157.16 14.59 79.73 3.81 13.38 13.60 8.28 7 227 0.59 221.40 13.69 78.23 0.25 13.42 13.93 12.24 7 228 0.38 193.34 12.29 67.73 0.00 12.83 13.07 13.46 37.67 6 230 0.20 178.68 17.20 81.47 0.76 13.18 13.61 14.24 42.96 6 231 0.20 157.67 17.46 72.68 0.00 13.27 13.59 14.02 47.59 6 233 0.20 161.51 17.73 71.66 0.00 13.67 14.53 24.72 6 234 0.20 194.72 17.05 89.52 0.76 14.09 14.52 15.05 29.82 7 236 0.20 194.72 17.05 89.52 0.76 14.09 14.52 15.05 29.82 7 237 0.20 196.77 14.69 86.03	225	0.33	192.22	14.80	61.41	0.00	13.58		13.84	45.76	70.34
227 0.59 221.40 13.69 78.23 0.25 13.42 13.93 12.24 7 228 0.38 193.34 12.29 67.73 0.00 12.99 12.88 42.60 7 229 0.20 160.70 16.60 80.79 0.00 12.83 13.07 13.46 37.67 6 230 0.20 178.68 17.20 81.47 0.76 13.18 13.61 14.24 42.96 6 231 0.20 157.67 17.46 72.68 0.00 13.43 13.96 14.63 47.06 6 233 0.20 161.51 17.73 71.66 0.00 13.67 14.15 14.53 24.72 6 234 0.20 177.73 19.88 80.43 1.52 13.72 14.29 14.92 32.63 6 235 0.20 182.51 16.10 95.00 10.92 14.03 14.57 15.10 3.86 7 236 0.20 196.77 14.69	226	0.30	157.16	14.59	79.73	3.81	13.38		13.60	8.28	70.52
228 0.38 193.34 12.29 67.73 0.00 12.99 12.88 42.60 7 229 0.20 160.70 16.60 80.79 0.00 12.83 13.07 13.46 37.67 6 230 0.20 178.68 17.20 81.47 0.76 13.18 13.61 14.24 42.96 6 231 0.20 177.67 17.46 72.68 0.00 13.27 13.59 14.02 47.59 6 233 0.20 161.51 17.73 71.66 0.00 13.67 14.15 14.53 24.72 6 234 0.20 177.73 19.88 80.43 1.52 13.72 14.29 14.92 32.63 6 236 0.20 194.72 17.05 89.52 0.76 14.09 14.52 15.05 29.82 7 237 0.20 196.77 14.69 86.03 0.00 13.74 13.89 14.22 2.28 7 238 0.20 177.93 16.89	227	0.59	221.40	13.69	78.23	0.25	13.42		13.93	12.24	72.06
229 0.20 160.70 16.60 80.79 0.00 12.83 13.07 13.46 37.67 6 230 0.20 178.68 17.20 81.47 0.76 13.18 13.61 14.24 42.96 6 231 0.20 157.67 17.46 72.68 0.00 13.43 13.96 14.63 47.69 6 233 0.20 161.51 17.73 71.66 0.00 13.67 14.15 14.53 24.72 6 234 0.20 177.73 19.88 80.43 1.52 13.72 14.29 14.92 32.63 6 235 0.20 182.51 16.10 95.00 10.92 14.03 14.57 15.10 3.86 7 236 0.20 194.72 17.05 89.52 0.76 14.09 14.52 15.05 29.82 7 239 0.20 173.05 16.07 79.90 0.00 13.43 13.62 13.97 32.85 6 241 0.20 157.93 16.89	228	0.38	193.34	12.29	67.73	0.00	12.99		12.88	42.60	70.58
230 0.20 178.68 17.20 81.47 0.76 13.18 13.61 14.24 42.96 6 231 0.20 157.67 17.46 72.68 0.00 13.27 13.59 14.02 47.59 6 233 0.20 161.51 17.73 71.66 0.00 13.67 14.15 14.53 24.72 6 234 0.20 177.73 19.88 80.43 1.52 13.72 14.29 14.92 32.63 6 235 0.20 182.51 16.10 95.00 10.92 14.03 14.57 15.10 3.86 7 236 0.20 194.72 17.05 89.52 0.76 14.09 14.52 15.05 29.82 7 237 0.20 196.77 14.69 86.03 0.00 13.74 13.89 14.22 2.28 7 239 0.20 173.05 16.07 79.90 0.00 13.56 13.69 14.02 42.74 7 240 0.20 187.56 13.98	229	0.20	160.70	16.60	80.79	0.00	12.83	13.07	13.46	37.67	69.98
231 0.20 157.67 17.46 72.68 0.00 13.27 13.59 14.02 47.59 6 232 0.20 173.29 20.84 65.09 0.00 13.43 13.96 14.63 47.06 6 234 0.20 161.51 17.73 71.66 0.00 13.67 14.15 14.53 24.72 6 234 0.20 177.73 19.88 80.43 1.52 13.72 14.29 14.92 32.63 6 235 0.20 182.51 16.10 95.00 10.92 14.03 14.57 15.10 3.86 7 236 0.20 194.72 17.05 89.52 0.76 14.09 14.52 15.05 29.82 7 237 0.20 196.77 14.69 86.03 0.00 13.74 13.89 14.22 2.28 7 238 0.20 217.75 18.67 73.82 0.00 13.57 13.89 14.02 42.74 7 240 0.20 157.93 16.67	230	0.20	178.68	17.20	81.47	0.76	13.18	13.61	14.24	42.96	69.31
232 0.20 173.29 20.84 65.09 0.00 13.43 13.96 14.63 47.06 6 233 0.20 161.51 17.73 71.66 0.00 13.67 14.15 14.53 24.72 6 234 0.20 177.73 19.88 80.43 1.52 13.72 14.29 14.92 32.63 6 235 0.20 182.51 16.10 95.00 10.92 14.03 14.57 15.10 3.86 7 236 0.20 194.72 17.05 89.52 0.76 14.09 14.52 15.05 29.82 7 237 0.20 196.77 14.69 86.03 0.00 13.74 13.89 14.22 2.28 7 238 0.20 173.05 16.07 79.90 0.00 13.56 13.69 14.02 42.74 7 240 0.20 172.25 18.06 73.82 0.00 13.57 13.87 14.35 37.26 6 241 0.20 192.68 16.07	231	0.20	157.67	17.46	72.68	0.00	13.27	13.59	14.02	47.59	68.07
233 0.20 161.51 17.73 71.66 0.00 13.67 14.15 14.53 24.72 6 234 0.20 177.73 19.88 80.43 1.52 13.72 14.29 14.92 32.63 6 235 0.20 182.51 16.10 95.00 10.92 14.03 14.57 15.10 3.86 7 236 0.20 194.72 17.05 89.52 0.76 14.09 14.52 15.05 29.82 7 237 0.20 196.77 14.69 86.03 0.00 13.91 14.09 14.35 24.55 7 238 0.20 220.07 14.52 93.31 0.00 13.74 13.89 14.22 2.28 7 240 0.20 157.93 16.89 78.40 0.00 13.43 13.62 13.97 32.85 6 241 0.20 172.25 18.06 73.82 0.00 13.57 13.87 14.35 37.26 6 242 0.20 192.68 16.07	232	0.20	173.29	20.84	65.09	0.00	13.43	13.96	14.63	47.06	67.59
234 0.20 177.73 19.88 80.43 1.52 13.72 14.29 14.92 32.63 6 235 0.20 182.51 16.10 95.00 10.92 14.03 14.57 15.10 3.86 7 236 0.20 194.72 17.05 89.52 0.76 14.09 14.52 15.05 29.82 7 237 0.20 196.77 14.69 86.03 0.00 13.91 14.09 14.35 24.55 7 238 0.20 220.07 14.52 93.31 0.00 13.74 13.89 14.22 2.28 7 240 0.20 157.93 16.07 79.90 0.00 13.43 13.62 13.97 32.85 6 241 0.20 172.25 18.06 73.82 0.00 13.57 13.87 14.35 37.26 6 242 0.20 192.68 16.07 85.38 0.25 13.75 14.02 14.52 17.03 7 244 0.20 187.56 13.98	233	0.20	161.51	17.73	71.66	0.00	13.67	14.15	14.53	24.72	67.83
235 0.20 182.51 16.10 95.00 10.92 14.03 14.57 15.10 3.86 7 236 0.20 194.72 17.05 89.52 0.76 14.09 14.52 15.05 29.82 7 237 0.20 196.77 14.69 86.03 0.00 13.91 14.09 14.35 24.55 7 238 0.20 220.07 14.52 93.31 0.00 13.74 13.89 14.22 2.28 7 240 0.20 157.93 16.89 78.40 0.00 13.43 13.62 13.97 32.85 6 241 0.20 172.25 18.06 73.82 0.00 13.57 13.87 14.35 37.26 6 242 0.20 192.68 16.07 85.38 0.25 13.75 14.02 14.52 17.03 7 243 0.20 219.76 12.62 91.04 0.25 13.49 13.48 13.62 3.72 7 244 0.20 187.56 13.98	234	0.20	177.73	19.88	80.43	1.52	13.72	14.29	14.92	32.63	68.45
236 0.20 194.72 17.05 89.52 0.76 14.09 14.52 15.05 29.82 7 237 0.20 196.77 14.69 86.03 0.00 13.91 14.09 14.35 24.55 7 238 0.20 220.07 14.52 93.31 0.00 13.74 13.89 14.22 2.28 7 239 0.20 173.05 16.07 79.90 0.00 13.56 13.69 14.02 42.74 7 240 0.20 157.93 16.89 78.40 0.00 13.43 13.62 13.97 32.85 66 241 0.20 172.25 18.06 73.82 0.00 13.57 13.87 14.35 37.26 66 242 0.20 192.68 16.07 85.38 0.25 13.75 14.02 14.52 17.03 7 243 0.20 219.76 12.62 91.04 0.25 13.49 13.48 13.62 3.72 7 244 0.20 187.56 13.98	235	0.20	182.51	16.10	95.00	10.92	14.03	14.57	15.10	3.86	70.21
237 0.20 196.77 14.69 86.03 0.00 13.91 14.09 14.35 24.55 7 238 0.20 220.07 14.52 93.31 0.00 13.74 13.89 14.22 2.28 7 239 0.20 173.05 16.07 79.90 0.00 13.56 13.69 14.02 42.74 7 240 0.20 157.93 16.89 78.40 0.00 13.43 13.62 13.97 32.85 66 241 0.20 172.25 18.06 73.82 0.00 13.57 13.87 14.35 37.26 66 242 0.20 192.68 16.07 85.38 0.25 13.75 14.02 14.52 17.03 7 243 0.20 219.76 12.62 91.04 0.25 13.49 13.48 13.62 3.72 7 244 0.20 187.56 13.98 77.68 0.00 13.07 13.03 13.13 37.47 7 246 0.20 177.19 12.98	236	0.20	194.72	17.05	89.52	0.76	14.09	14.52	15.05	29.82	71.67
238 0.20 220.07 14.52 93.31 0.00 13.74 13.89 14.22 2.28 7 239 0.20 173.05 16.07 79.90 0.00 13.56 13.69 14.02 42.74 7 240 0.20 157.93 16.89 78.40 0.00 13.43 13.62 13.97 32.85 6 241 0.20 172.25 18.06 73.82 0.00 13.57 13.87 14.35 37.26 6 242 0.20 192.68 16.07 85.38 0.25 13.75 14.02 14.52 17.03 7 243 0.20 219.76 12.62 91.04 0.25 13.49 13.48 13.62 3.72 7 244 0.20 187.56 13.98 77.68 0.00 13.07 13.03 13.13 37.47 7 245 0.20 177.19 12.98 91.59 1.52 12.70 12.64 12.66 -2.41 7 246 0.20 218.20 14.03	237	0.20	196.77	14.69	86.03	0.00	13.91	14.09	14.35	24.55	70.94
239 0.20 173.05 16.07 79.90 0.00 13.56 13.69 14.02 42.74 7 240 0.20 157.93 16.89 78.40 0.00 13.43 13.62 13.97 32.85 6 241 0.20 172.25 18.06 73.82 0.00 13.57 13.87 14.35 37.26 6 242 0.20 192.68 16.07 85.38 0.25 13.75 14.02 14.52 17.03 7 243 0.20 219.76 12.62 91.04 0.25 13.49 13.48 13.62 3.72 7 244 0.20 187.56 13.98 77.68 0.00 13.07 13.03 13.13 37.47 7 245 0.20 177.19 12.98 91.59 1.52 12.70 12.64 12.66 -2.41 7 246 0.20 212.83 13.57 96.56 20.57 12.67 12.63 12.68 4.22 6 248 0.20 154.41 13.35	238	0.20	220.07	14.52	93.31	0.00	13.74	13.89	14.22	2.28	71.52
2400.20157.9316.8978.400.0013.4313.6213.9732.8562410.20172.2518.0673.820.0013.5713.8714.3537.2662420.20192.6816.0785.380.2513.7514.0214.5217.0372430.20219.7612.6291.040.2513.4913.4813.623.7272440.20187.5613.9877.680.0013.0713.0313.1337.4772450.20177.1912.9891.591.5212.7012.6412.66-2.4172460.20212.8313.5796.5620.5712.6712.6312.684.2262480.20218.2014.0394.200.0012.4112.4412.6927.4562490.20154.4113.3586.950.2512.4912.5512.7740.8172500.20181.3512.2682.860.0012.1212.0111.9034.3072510.20175.7912.2487.180.7611.9411.9811.9635.7072530.20168.1811.7682.950.0011.6711.6111.4721.9962530.20204.0912.2392.5316.0011.7511.9211.984.607254	239	0.20	173.05	16.07	79.90	0.00	13.56	13.69	14.02	42.74	70.94
2410.20172.2518.0673.820.0013.5713.8714.3537.2662420.20192.6816.0785.380.2513.7514.0214.5217.0372430.20219.7612.6291.040.2513.4913.4813.623.7272440.20187.5613.9877.680.0013.0713.0313.1337.4772450.20177.1912.9891.591.5212.7012.6412.66-2.4172460.20212.8313.5796.5620.5712.7212.8213.062.7472470.20232.3511.4996.6920.5712.6712.6312.684.2262480.20218.2014.0394.200.0012.4112.4412.6927.4562490.20154.4113.3586.950.2512.4912.5512.7740.8172500.20181.3512.2682.860.0012.1212.0111.9034.3072510.20175.7912.2487.180.7611.9411.9811.9635.7072520.20168.1811.7682.950.0011.6711.6111.4721.9962530.20153.9313.1884.720.0011.6011.6911.7319.787254	240	0.20	157.93	16.89	78.40	0.00	13.43	13.62	13.97	32.85	69.89
2420.20192.6816.0785.380.2513.7514.0214.5217.0372430.20219.7612.6291.040.2513.4913.4813.623.7272440.20187.5613.9877.680.0013.0713.0313.1337.4772450.20177.1912.9891.591.5212.7012.6412.66-2.4172460.20212.8313.5796.5620.5712.7212.8213.062.7472470.20232.3511.4996.6920.5712.6712.6312.684.22662480.20218.2014.0394.200.0012.4112.4412.6927.45662490.20154.4113.3586.950.2512.4912.5512.7740.8172500.20181.3512.2682.860.0012.1212.0111.9034.3072510.20175.7912.2487.180.7611.9411.9811.9635.7072520.20168.1811.7682.950.0011.6711.6111.4721.9962530.20153.9313.1884.720.0011.6011.6911.7319.7872540.20204.0912.2392.5316.0011.7511.9211.984.6072	241	0.20	172.25	18.06	73.82	0.00	13.57	13.87	14.35	37.26	69.26
2430.20219.7612.6291.040.2513.4913.4813.623.7272440.20187.5613.9877.680.0013.0713.0313.1337.4772450.20177.1912.9891.591.5212.7012.6412.66-2.4172460.20212.8313.5796.5620.5712.7212.8213.062.7472470.20232.3511.4996.6920.5712.6712.6312.684.22662480.20218.2014.0394.200.0012.4112.4412.6927.45662490.20154.4113.3586.950.2512.4912.5512.7740.8172500.20181.3512.2682.860.0012.1212.0111.9034.3072510.20175.7912.2487.180.7611.9411.9811.9635.7072520.20168.1811.7682.950.0011.6711.6111.4721.99662530.20153.9313.1884.720.0011.6011.6911.7319.7872540.20204.0912.2392.5316.0011.7511.9211.984.6072550.20237.258.2796.6723.1111.5611.3511.03-3.2166 <th< th=""><th>242</th><th>0.20</th><th>192.68</th><th>16.07</th><th>85.38</th><th>0.25</th><th>13.75</th><th>14.02</th><th>14.52</th><th>17.03</th><th>70.54</th></th<>	242	0.20	192.68	16.07	85.38	0.25	13.75	14.02	14.52	17.03	70.54
244 0.20 187.56 13.98 77.68 0.00 13.07 13.03 13.13 37.47 7 245 0.20 177.19 12.98 91.59 1.52 12.70 12.64 12.66 -2.41 7 246 0.20 212.83 13.57 96.56 20.57 12.72 12.82 13.06 2.74 7 247 0.20 232.35 11.49 96.69 20.57 12.67 12.63 12.68 4.22 6 248 0.20 218.20 14.03 94.20 0.00 12.41 12.44 12.69 27.45 6 249 0.20 154.41 13.35 86.95 0.25 12.49 12.55 12.77 40.81 7 250 0.20 181.35 12.26 82.86 0.00 12.12 12.01 11.90 34.30 7 251 0.20 175.79 12.24 87.18 0.76 11.94 11.98 11.96 35.70 7 253 0.20 153.93 13.18	243	0.20	219.76	12.62	91.04	0.25	13.49	13.48	13.62	3.72	71.02
2450.20177.1912.9891.591.5212.7012.6412.66-2.4172460.20212.8313.5796.5620.5712.7212.8213.062.7472470.20232.3511.4996.6920.5712.6712.6312.684.2262480.20218.2014.0394.200.0012.4112.4412.6927.4562490.20154.4113.3586.950.2512.4912.5512.7740.8172500.20181.3512.2682.860.0012.1212.0111.9034.3072510.20175.7912.2487.180.7611.9411.9811.9635.7072520.20168.1811.7682.950.0011.6711.6111.4721.9962530.20153.9313.1884.720.0011.6011.6911.7319.7872540.20204.0912.2392.5316.0011.7511.9211.984.6072550.20237.258.2796.6723.1111.5611.3511.03-3.2162560.20202.076.6589.580.0010.7510.359.8718.056	244	0.20	187.56	13.98	77.68	0.00	13.07	13.03	13.13	37.47	71.36
2460.20212.8313.5796.5620.5712.7212.8213.062.7472470.20232.3511.4996.6920.5712.6712.6312.684.2262480.20218.2014.0394.200.0012.4112.4412.6927.4562490.20154.4113.3586.950.2512.4912.5512.7740.8172500.20181.3512.2682.860.0012.1212.0111.9034.3072510.20175.7912.2487.180.7611.9411.9811.9635.7072520.20168.1811.7682.950.0011.6711.6111.4721.9962530.20153.9313.1884.720.0011.6011.6911.7319.7872540.20204.0912.2392.5316.0011.7511.9211.984.6072550.20237.258.2796.6723.1111.5611.3511.03-3.2162560.20202.076.6589.580.0010.7510.359.8718.056	245	0.20	177.19	12.98	91.59	1.52	12.70	12.64	12.66	-2.41	71.18
247 0.20 232.35 11.49 96.69 20.57 12.67 12.63 12.68 4.22 6 248 0.20 218.20 14.03 94.20 0.00 12.41 12.44 12.69 27.45 6 249 0.20 154.41 13.35 86.95 0.25 12.49 12.55 12.77 40.81 7 250 0.20 181.35 12.26 82.86 0.00 12.12 12.01 11.90 34.30 7 251 0.20 175.79 12.24 87.18 0.76 11.94 11.98 11.96 35.70 7 252 0.20 168.18 11.76 82.95 0.00 11.67 11.61 11.47 21.99 6 253 0.20 153.93 13.18 84.72 0.00 11.60 11.69 11.73 19.78 7 254 0.20 204.09 12.23 92.53 16.00 11.75 11.92 11.98 4.60 7 255 0.20 237.25 8.27	246	0.20	212.83	13.57	96.56	20.57	12.72	12.82	13.06	2.74	71.03
2480.20218.2014.0394.200.0012.4112.4412.6927.4562490.20154.4113.3586.950.2512.4912.5512.7740.8172500.20181.3512.2682.860.0012.1212.0111.9034.3072510.20175.7912.2487.180.7611.9411.9811.9635.7072520.20168.1811.7682.950.0011.6711.6111.4721.9962530.20153.9313.1884.720.0011.6011.6911.7319.7872540.20204.0912.2392.5316.0011.7511.9211.984.6072550.20237.258.2796.6723.1111.5611.3511.03-3.2162560.20202.076.6589.580.0010.7510.359.8718.056	247	0.20	232.35	11.49	96.69	20.57	12.67	12.63	12.68	4.22	69.47
2490.20154.4113.3586.950.2512.4912.5512.7740.8172500.20181.3512.2682.860.0012.1212.0111.9034.3072510.20175.7912.2487.180.7611.9411.9811.9635.7072520.20168.1811.7682.950.0011.6711.6111.4721.9962530.20153.9313.1884.720.0011.6011.6911.7319.7872540.20204.0912.2392.5316.0011.7511.9211.984.6072550.20237.258.2796.6723.1111.5611.3511.03-3.2162560.20202.076.6589.580.0010.7510.359.8718.056	248	0.20	218.20	14.03	94.20	0.00	12.41	12.44	12.69	27.45	69.55
250 0.20 181.35 12.26 82.86 0.00 12.12 12.01 11.90 34.30 7 251 0.20 175.79 12.24 87.18 0.76 11.94 11.98 11.96 35.70 7 252 0.20 168.18 11.76 82.95 0.00 11.67 11.61 11.47 21.99 6 253 0.20 153.93 13.18 84.72 0.00 11.60 11.69 11.73 19.78 7 254 0.20 204.09 12.23 92.53 16.00 11.75 11.92 11.98 4.60 7 255 0.20 237.25 8.27 96.67 23.11 11.56 11.35 11.03 -3.21 6 256 0.20 202.07 6.65 89.58 0.00 10.75 10.35 9.87 18.05 6	249	0.20	154.41	13.35	86.95	0.25	12.49	12.55	12.77	40.81	70.43
251 0.20 175.79 12.24 87.18 0.76 11.94 11.98 11.96 35.70 7 252 0.20 168.18 11.76 82.95 0.00 11.67 11.61 11.47 21.99 6 253 0.20 153.93 13.18 84.72 0.00 11.60 11.69 11.73 19.78 7 254 0.20 204.09 12.23 92.53 16.00 11.75 11.92 11.98 4.60 7 255 0.20 237.25 8.27 96.67 23.11 11.56 11.35 11.03 -3.21 6 256 0.20 202.07 6.65 89.58 0.00 10.75 10.35 9.87 18.05 6	250	0.20	181.35	12.26	82.86	0.00	12.12	12.01	11.90	34.30	70.07
252 0.20 168.18 11.76 82.95 0.00 11.67 11.61 11.47 21.99 6 253 0.20 153.93 13.18 84.72 0.00 11.60 11.69 11.73 19.78 7 254 0.20 204.09 12.23 92.53 16.00 11.75 11.92 11.98 4.60 7 255 0.20 237.25 8.27 96.67 23.11 11.56 11.35 11.03 -3.21 6 256 0.20 202.07 6.65 89.58 0.00 10.75 10.35 9.87 18.05 6	251	0.20	175.79	12.24	87.18	0.76	11.94	11.98	11.96	35.70	70.17
253 0.20153.9313.1884.720.0011.6011.6911.7319.787 254 0.20204.0912.2392.5316.0011.7511.9211.984.607 255 0.20237.258.2796.6723.1111.5611.3511.03-3.216 256 0.20202.076.6589.580.0010.7510.359.8718.056	252	0.20	168.18	11.76	82.95	0.00	11.67	11.61	11.47	21.99	69.79
254 0.20 204.09 12.23 92.53 16.00 11.75 11.92 11.98 4.60 7 255 0.20 237.25 8.27 96.67 23.11 11.56 11.35 11.03 -3.21 6 256 0.20 202.07 6.65 89.58 0.00 10.75 10.35 9.87 18.05 6	253	0.20	153.93	13.18	84.72	0.00	11.60	11.69	11.73	19.78	70.41
255 0.20 237.25 8.27 96.67 23.11 11.56 11.35 11.03 -3.21 6 256 0.20 202.07 6.65 89.58 0.00 10.75 10.35 9.87 18.05 6	254	0.20	204.09	12.23	92.53	16.00	11.75	11.92	11.98	4.60	70.63
256 0.20 202.07 6.65 89.58 0.00 10.75 10.35 9.87 18.05 6	255	0.20	237.25	8.27	96.67	23.11	11.56	11.35	11.03	-3.21	68.77
	256	0.20	202.07	6.65	89.58	0.00	10.75	10.35	9.87	18.05	68.00

JPH F	en 2012		Ground/Water temperature										
	Wind		Air	Relative		~10 cm	~20 cm	~40 cm	Net	Air			
	Speed	Wind	Temp	Humidity	Precip	below	below	below	Radiation	Pressure			
	(ms ⁻ ')	Direction	(°C)	(%)	(mm)	(°C)	(°C)	(°C)	W(m ²⁾⁻¹	(Kpa)			
D O) (Daily	(°) Daily	Daily	Daily	Daily	daily	daily	daily	Daily	Daily			
DOY	Mean	Mean	Mean	Mean	lotal	Average	Average	Average	Mean	Mean			
160	0.43	174.72	18.04	44.07	0.00	7.29	7.56	7.83	128.71	96.95			
161	0.47	177.26	16.67	60.51	0.00	7.23	7.58	7.73	106.66	96.54			
162	0.68	188.95	12.94	68.39	0.00	7.32	7.74	7.80	75.29	97.11			
163	0.33	175.87	12.67	52.01	0.00	7.36	7.37	7.77	128.22	97.54			
164	0.36	180.35	12.80	77.36	6.35	7.09	7.45	7.44	68.76	97.14			
165	0.31	188.69	15.72	69.60	0.00	7.24	7.62	7.61	102.99	96.69			
166	0.39	194.69	14.23	74.25	2.03	7.49	7.89	7.89	68.97	96.81			
167	0.37	185.09	12.09	66.39	0.00	7.65	7.70	8.04	101.85	97.58			
168	0.41	176.72	13.21	65.93	4.32	7.39	7.47	7.71	90.77	97.09			
169	0.36	188.02	14.33	84.32	16.26	7.31	7.76	7.65	61.61	95.80			
170	0.28	178.99	14.00	91.54	8.38	7.70	8.34	8.11	44.77	96.07			
171	0.37	204.93	13.05	84.06	2.54	8.12	8.68	8.71	43.41	96.92			
172	0.51	193.64	14.37	56.40	0.25	8.26	8.49	8.75	162.53	97.60			
173	0.39	179.90	16.27	47.87	0.00	8.30	8.37	8.68	164.47	97.82			
174	0.53	186.00	19.07	45.60	0.00	8.25	8.50	8.58	148.76	97.53			
175	0.50	156.42	17.20	48.78	0.00	8.46	8.66	8.83	157.52	97.86			
176	0.40	176.98	18.11	50.48	0.00	8.53	8.67	8.88	74.41	97.82			
177	0.40	183.77	20.19	67.70	7.62	8.48	9.09	8.84	135.57	96.88			
178	0.53	183.70	21.07	50.30	0.00	9.16	9.74	9.65	164.63	96.24			
179	0.43	190.12	17.09	68.67	9.65	9.57	9.76	10.05	87.54	95.82			
180	0.58	183.35	19.70	55.15	0.25	9.51	10.00	10.02	133.11	96.59			
181	0.41	187.41	17.15	61.48	0.00	9.79	9.98	10.28	98.31	96.94			
182	0.50	184 67	20.46	54 75	0.00	9.64	9.90	10.04	157 36	96.90			
183	0.24	183 59	16.92	79.53	5.33	9 75	10.09	10.18	19 09	96 74			
184	0.47	185 70	18.99	59.33	0.00	9 72	10.00	10.10	161.58	96.80			
185	0.34	185 58	17 78	70.00	13 46	9.88	10.02	10.11	61 94	96.42			
186	0.78	188 40	14.37	90.58	37.08	9.80	10.39	10.20	9 11	95 79			
187	0.70	179 30	16 58	70 12	0.51	9.87	10.00	10.34	143 50	97.23			
188	0.40	188 37	16.00	73.22	0.76	10.01	10.20	10.55	102 28	97.20			
180	0.40	176 10	10.20	58 79	0.70	10.01	11 00	11 14	162.20	08 11			
103	0.03	170.19	23.14	10.73	0.00	10.32	11.03	11.14	156.64	08.03			
101	0.42	193.09	25.10	49.74	0.00	11.04	12.00	12.40	167.09	90.05			
102	0.44	170.90	20.14	68.08	17 52	11.40	12.20	12.40	107.90	97.00			
192	0.45	179.09	20.04	60.90	0.00	12.00	12.00	12.43	109.00	97.12			
193	0.55	109.34	21.31	52 59	0.00	12.09	12.04	12.77	130.30	97.14			
194	0.01	101.71	19.91	52.30	0.00	12.09	12.00	12.00	119.10	97.30			
195	0.39	102.10	17.00	53.44	0.00	12.13	12.00	12.01	120.20	90.01			
190	0.37	178.91	20.92	50.00	0.00	12.03	12.44	12.43	141.38	97.00			
197	0.39	192.34	17.00	74.66	0.00	12.07	12.71	12.49	53.00	97.64			
198	0.31	169.98	18.89	62.21	0.00	12.35	12.74	12.77	110.03	97.56			
199	0.56	180.34	21.53	62.17	0.00	12.34	12.89	12.75	122.79	96.95			
200	0.34	181.52	18.56	83.29	17.02	12.60	13.28	13.06	37.06	96.54			
201	0.58	188.40	15.13	87.25	7.87	12.92	13.20	13.37	18.00	97.02			
202	0.38	188.58	18.79	62.07	0.00	12.67	12.87	13.02	154.46	97.91			
203	0.26	191.72	18.16	72.09	0.25	12.45	12.85	12.80	26.97	97.36			
204	0.29	177.51	19.21	75.22	0.00	12.45	12.71	12.78	76.80	97.37			
205	0.40	174.20	20.44	67.37	0.00	12.33	12.71	12.66	146.65	97.51			

206	0.38	200.12	19.02	76.48	0.00	12.41	12.96	12.77	56.33	97.05
207	0.38	191.99	21.15	72.49	0.51	12.67	13.13	13.06	111.20	97.41
208	0.42	196.26	20.60	69.76	0.00	12.80	13.31	13.19	143.53	97.66
209	0.34	186.14	20.58	73.86	0.00	12.97	13.51	13.38	108.09	97.23
210	0.39	185.44	20.69	64.87	0.00	13.16	13.67	13.59	124.53	97.29
211	0.24	178.62	17.74	74.13	0.00	13.28	13.72	13.70	36.45	97.50
212	0.50	189.53	21.41	60.17	0.00	13.27	13.57	13.64	145.91	97.12
213	0.33	177.06	19.01	67.43	0.76	13.16	13.63	13.52	84.64	97.09
214	0.32	182.89	18.07	70.47	0.00	13.28	13.67	13.66	95.53	97.22
215	0.25	173.95	15.85	86.40	3.56	13.28	13.67	13.61	18.18	97.26
216	0.38	174.97	16.56	71.68	0.00	13.31	13.52	13.64	123.85	97.57
217	0.53	184.65	20.09	57.66	0.00	13.13	13.57	13.42	93.34	97.10
218	0.64	200.46	16.65	58.06	0.00	13.33	13.73	13.69	130.03	97.40
219	0.30	180.20	16.59	61.92	0.25	13.34	13.62	13.67	110.66	97.84
220	0.37	166.94	19.48	62.83	0.51	13.21	13.60	13.51	115.81	97.84
221	0.46	181.91	20.23	53.82	0.00	13.37	13.76	13.73	129.14	97.79
222	0.38	189.92	18.73	80.04	5.59	13.43	13.90	13.78	5.76	97.21
223	0.46	186.98	18.30	55.89	0.00	13.59	13.87	13.95	120.75	97.40
224	0.54	188.30	14.38	60.93	0.00	13.51	13.77	13.86	66.97	97.58
225	0.33	196.94	14.54	65.16	0.00	13.34	13.35	13.58	114.96	98.08
226	0.30	171.36	14.53	80.95	3.56	13.04	13.08	13.28	28.51	97.37
227	0.59	196.28	13.46	79.62	0.25	12.75	12.93	12.96	32.25	97.48
228	0.38	203.18	12.69	65.11	0.00	12.68	12.55	12.93	113.28	98.07
229	0.20	182.25	18.11	59.57	0.25	12.26	12.36	12.40	97.55	97.45
230	0.20	180.02	17.47	66.98	0.76	12.32	12.63	12.57	104.02	97.62
231	0.20	163.14	18.67	59.04	0.00	12.59	12.71	12.90	114.50	97.76
232	0.20	187.28	21.85	54.91	0.00	12.55	12.80	12.82	107.58	97.25
233	0.20	169.07	18.43	62.32	0.00	12.76	13.02	13.13	59.45	97.30
234	0.20	180.09	20.54	69.61	2.54	12.72	13.00	13.06	89.55	96.98
235	0.20	183.68	16.41	91.21	12.70	12.86	13.24	13.24	4.75	96.89
236	0.20	178.24	16.99	79.80	0.76	12.90	13.22	13.28	67.78	96.65
237	0.20	200.31	14.00	79.66	0.00	12.95	13.02	13.38	54.16	96.66
238	0.20	217.11	14.17	85.75	0.00	12.66	12.77	12.93	21.59	96.81
239	0.20	180.39	15.54	73.61	0.00	12.51	12.59	12.77	95.51	97.52
240	0.20	176.70	18.10	68.10	0.00	12.40	12.47	12.64	68.74	97.25
241	0.20	175.54	18.23	65.28	0.00	12.34	12.52	12.62	79.46	96.77
242	0.20	177.83	16.28	70.61	0.51	12.38	12.65	12.68	45.16	96.39
243	0.20	180.51	12.53	76.33	0.25	12.43	12.45	12.73	25.40	97.02
244	0.20	180.01	13.21	70.50	0.00	12.12	12.13	12.33	84.42	97.62
245	0.20	184.82	13.40	85.16	1.78	11.92	11.84	12.11	15.70	97.09
246	0.20	203.02	13.42	95.64	22.86	11.64	11.88	11.81	6.32	96.01
247	0.20	185.50	10.53	94.78	24.38	11.71	11.88	11.96	9.62	96.48
248	0.20	176.27	13.27	87.88	0.00	11.60	11.66	11.78	45.80	97.15
249	0.20	163.90	12.41	77.02	0.51	11.50	11.71	11.70	74.19	97.51
250	0.20	181.87	13.21	70.68	0.00	11.54	11.52	11.75	71.33	97.66
251	0.20	191.28	12.40	76.03	0.76	11.19	11.26	11.30	56.89	97.81
252	0.20	180.70	13.47	67.87	0.00	11.10	11.08	11.23	55.65	97.56
253	0.20	154.26	14.51	76.24	0.00	10.83	10.90	10.91	64.08	96.54
254	0.20	186.89	12.01	88.81	19.05	10.78	10.98	10.89	11.57	95.68
255	0.20	144.13	7.62	91.83	27.69	10.88	10.99	11.02	-5.95	96.20
256	0.20	206.23	7.26	68.53	0.00	10.77	10.66	10.87	46.94	97.63