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ABSTRACT

The ocean emission and subsequent oxidation of dimethylsulfide (DMS) provides a
source of sulfate in the atmosphere, potentially affecting the amount of solar radiation
reaching the Earth’s surface through both direct and indirect radiative effects of sulfate
aerosols. DMS in the ocean can be quite variable with season and location, which in
turn leads to high spatial and temporal variability of ocean DMS emissions. This study
tested currently available observational and empirically-based climatologies of DMS
concentration in the surface ocean. The exploration of the existing parameterizations
mainly reveals the limitations of estimating DMS with an empirical model based on
variables such as chlorophyll and mixed layer depth. The different algorithms show
significant differences in spatial pattern, and none correlate strongly with observations.
There is considerable uncertainty both in terms of the spatiotemporal distribution
in DMS concentration and flux, as well as in the global total DMS flux. The present
research investigates the influence of DMS on sulfate aerosols and radiative fluxes
given different DMS climatologies in the fourth generation of the Canadian Global
Atmospheric Climate Model (CanAM4.1). In general, the response in the radiative
flux seems to follow the variation in the global mean flux of DMS linearly. Differences
in the spatial and temporal structure of oceanic DMS have only a secondary effect
on the radiative changes. The overall response of the atmosphere to the presence or
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absence of structure of DMS in space and time is distinctly smaller compared to the
possible uncertainty of this response associated with the magnitude of the annually
averaged global flux.
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Chapter 1

Introduction

The flux of biogenically derived dimethylsulfide (DMS) from the ocean represents
a major source of sulfur into the Earth’s atmosphere (Andreae and Raemdonck,
1983; Bates et al., 1992). The oxidation of DMS in the atmosphere produces sulfate
aerosols, which affect incoming solar radiation directly, via scattering, and indirectly,
by contributing to cloud condensation nuclei (CCN), which influence the radiative
properties of clouds (Andreae and Crutzen, 1997; Charlson et al., 1987).

More than 40 years ago, Lovelock et al. (1972) presented the first quantitative
measurements of DMS concentration in the surface ocean and the atmosphere, pointing
to the importance of DMS in closing the world’s sulfur budget. Interest in scientific
research on DMS rose for several reasons, not least of which is its potential influence on
Earth’s climate. Shaw (1983) was the first to propose a link between ocean biota and
the Earth’s radiation budget via the emission of DMS. But the “CLAW hypothesis”,
proposed by and named for Charlson, Lovelock, Andreae, and Warren (1987), is
generally credited as having launched the modern era of research into the role of DMS
in the climate system. The CLAW hypothesis suggests the existence of a negative
feedback loop involving phytoplankton and the Earth’s climate through a link between
temperature and DMS production (Charlson et al., 1987).

Although numerous studies have since investigated the details of the proposed
mechanisms in this feedback loop, there is still no consensus about the importance of
DMS in regional and global climate and about the response of the sulfur cycle to climate
change. Recent studies have questioned the central premise of the CLAW hypothesis
and some researchers assert that the climatic effects of DMS are relatively minor and
that many other aerosol precursors (e.g., sea salt and organic compounds) could play
an equal or greater climatic role (Quinn and Bates, 2011). Further evidence against
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the CLAW hypothesis is the lack of evidence of a strong DMS-induced formation of
CCN in a global aerosol microphysics model (Woodhouse et al., 2010, 2013). This
is coupled with uncertainty about how changes in CCN affect cloud albedo (Stevens
and Feingold, 2009). Finally, some modelling studies indicate that DMS production is
insensitive to future changes in climate (Bopp et al., 2003; Vallina and Simó, 2007).
Some model studies indicate a more substantial response of DMS in warming scenarios;
however, they provide contradictory results, where DMS production can be either
enhanced (Cameron-Smith et al., 2011; Gabric et al., 2005, 2004) or reduced (Kloster
et al., 2007; Six et al., 2013) by increased carbon dioxide and climate change. Along
with uncertainties in atmospheric chemistry and cloud physics, the uncertain influence
of DMS in the present and future climate arises because DMS cycling in the ocean is
more complex than was initially realized (Stefels et al., 2007).

Researchers have yet to achieve a consistent, complete understanding of the
physical and biogeochemical processes that control the production of DMS and its
removal from the ocean. It is known that DMS derives from a precursor compound,
dimethylsulfoniopropionate (DMSP), which is produced mainly by a range of micro-
and macroalgae, but also found in more complex organisms, including corals (Raina
et al., 2013; Stefels, 2000). However, it is not known exactly why DMSP is produced
or what selective advantage compensates for the metabolic cost of producing such a
compound. Past studies have suggested various purposes for DMSP: as a factor in
the osmoregulation (Stefels, 2000; Vairavamurthy et al., 1985), as a cryoprotectant
(Karsten et al., 1992, 1996), as an antioxidant (Sunda et al., 2002), and as a grazing
deterrent or chemical defense mechanism (Steinke et al., 2002; Wolfe and Steinke,
1996; Wolfe et al., 1997).

DMSP is produced in varying quantities by a number of phytoplankton classes
(Keller et al., 1989). Production depends strongly on the type of algae, with low
concentrations generally found in diatoms and high concentrations found in some other
groups such as dinoflagellates, prymnesiophytes, and haptophytes (Keller et al., 1989;
Stefels et al., 2007; Yoch, 2002). DMSP is released into the water during grazing (Wolfe
and Steinke, 1996), viral lysis (Malin et al., 1998) and other forms of algal mortality
(Nguyen et al., 1988). After DMSP enters the water column, it can be converted to
DMS by the enzyme DMSP-lyase (Curson et al., 2008; Todd et al., 2009, 2007). Not all
DMSP is converted to DMS (Kiene and Linn, 2000). Nonetheless, DMS production in
surface waters seems to depend mostly on the rate at which phytoplankton cells release
DMSP, coupled with bacterial activity that converts DMSP to DMS (e.g., Bates et al.,
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1994; Kiene et al., 2000; Stefels, 2000). Demand for sulfur appears to be one factor in
the bacterial DMSP conversion rate: high demand leads to high assimilation of sulfur
and low conversion of DMSP to DMS (Kiene et al., 2000). Current experimental
evidence is lacking, but some researchers have suggested direct transfer across the
cell membrane as an additional source of DMS in the water column (Vallina et al.,
2008; Vogt et al., 2010). Sunda et al. (2002) suggested that shortage of nutrients or
increased levels of ultraviolet (UV) radiation might lead to intracellular cleavage of
DMSP and a direct DMS release from phytoplankton cells.

DMS can be removed from the water by bacterial consumption (Vila-Costa et al.,
2006), by photooxidation (Brimblecombe and Shooter, 1986; Kieber et al., 1996), and
by outgassing to the atmosphere (Nightingale et al., 2000; Zemmelink et al., 2004a,b).
The relative importance of these removal pathways depends on physical conditions
and varies in time and space. Some studies have shown, for example, that exposure
to UV radiation reduces bacterial consumption of DMS (Slezak et al., 2001; Toole
et al., 2006). Other environmental factors likely control the rate of DMS consumption
by bacteria, in particular the ones that regulate general bacterial activity, such as
temperature and availability of nutrients (nitrogen, phosphorus) and dissolved organic
matter. Photooxidation of DMS – yielding, among other products, dimethylsulphoxide
(DMSO) – depends on incident solar radiation and temperature at the ocean surface
(Toole et al., 2006, 2003). Outgassing of DMS from the ocean surface is of interest
because of its potential climatic significance, but it is a relatively minor term in the
ocean DMS budget. Potentially as little as 1-10% of ocean DMS production reaches
the atmosphere (Bates et al., 1994; Malin et al., 1992). The dynamics of DMS(P) are
described in detail elsewhere (e.g., Kiene et al., 2000; Simó, 2004; Stefels et al., 2007).

Despite extensive research, it has been difficult to completely elucidate the produc-
tion and consumption processes of DMS, which involve the entire planktonic ecosystem
including diverse phytoplankton taxa. Specific algal species can be identified as the
most important DMSP sources, and the DMSP production rate is influenced by
the physiological condition of the individual algal cells. Many factors, both biotic
and abiotic, affect how much DMSP is converted into DMS and the turnover time
of DMS in the water column (Stefels et al., 2007). This complexity explains why
there is no clear relationship between DMS concentration and commonly measured
parameters associated with plankton biomass or productivity (e.g., chlorophyll or
nutrient concentrations). Thus, DMS fields cannot unambiguously be reconstructed
from well-constrained biological and chemical fields, increasing the difficulty of using
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models to project DMS concentrations in future climates.
A major milestone in DMS research was the compilation of a global DMS database

(Kettle et al., 1999). This database helped to develop a better understanding of
spatial and temporal patterns of DMS concentration and the extent of its interannual
variability (Halloran et al., 2010). This database is a key tool for modellers attempting
to develop diagnostic and prognostic formulations of DMS to include in global ocean
models. However, spatial and temporal variations in DMS concentration, as well as
interannual variability, are still not well constrained because the number of available
observations is still relatively small. The current observational dataset provides only
sparse information from wide expanses of the ocean. However, there are large temporal
and spatial variations in the sea surface concentration of DMS (Asher et al., 2011;
Tortell et al., 2011; Tortell, 2005). Ideally, one would have measurements uniformly
distributed and at different times of the year to fully characterize the spatial and
seasonal variability. Since data this comprehensive are not yet available, interpolation
and extrapolation schemes are required to construct continuous global fields of DMS
concentrations that are based on the available in situ observations (Kettle et al.,
1999; Lana et al., 2011). These estimates generally indicate continuously elevated
concentrations in tropical latitudes in contrast to low (winter) and high (summer)
concentrations in temperate and high latitudes. However, one needs to recognize biases
in both geographic and temporal distribution of the raw data, mainly attributable to
the way cruises were planned and how frequently some locations were visited.

In general, there are three main approaches to estimating the global distribution of
DMS concentration: (1) interpolation of in situ observations (Kettle et al., 1999; Lana
et al., 2011); (2) empirical parameterizations (e.g., Anderson et al., 2001; Simó and
Dachs, 2002), which use other fields to calculate DMS; and (3) prognostic formulations
within a process-based model (Le Clainche et al., 2010). The following section describes
each of these approaches in more detail.

1.1 Reconstructing global distributions of DMS

The earliest studies on this topic estimated DMS from a small number of measurements.
The pioneering work by Bates et al. (1987) proposed a direct relationship between DMS
flux and surface irradiance. This reconstruction of DMS flux found its first application
in atmospheric modeling. Erickson et al. (1990) calculated a global field of ocean
DMS concentration with the relationship from Bates et al. (1987). This preliminary
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model of a global distribution of DMS concentration suggested a relationship between
DMS and latitude, where concentrations are greatest at higher latitudes. However,
this model failed to explain how DMS varies longitudinally. The work of Bates et al.
(1987) was also used by Spiro et al. (1992) to construct a climatology of ocean DMS
flux. Pham et al. (1995) considered the empirical relationship between solar radiation
and DMS flux to derive the distribution of DMS emissions, by distributing an estimate
of the global DMS source strength (19.2 TgS y−1) over the world’s oceans, modulated
by the solar radiation reaching the ocean according to Bates et al. (1987). Other
early estimates of spatial and temporal variations of DMS for specific regions, rather
than globally, include Galloway et al. (1992); Liss et al. (1993); Tarrasón et al. (1995);
Turner et al. (1996, 1995).

1.1.1 Observation-based DMS distributions

A major step towards improved, data-based global representation of surface ocean DMS
concentration was the construction of a DMS climatology based on more than 15,000
in situ DMS measurements (Kettle et al., 1999). Similar to the World Ocean Atlas
(WOA) approach of developing continuous fields of e.g., nitrate concentration (Garcia
et al., 2010), the Kettle climatology was generated from available DMS measurements
using extrapolation and interpolation techniques to derive continuous monthly fields
of sea surface concentration of DMS. Kettle et al. (1999) used all available DMS
measurements, organized them into grid boxes for each climatological month (from
January to December), and constructed gridded datasets of DMS concentration. To
obtain continuous data fields, one must interpolate (through space and time) between
data points and extrapolate to fill regions with no data coverage. Shortly after the
release of the DMS climatology by Kettle et al. (1999) (hereafter referred to as K99),
an updated version was published by Kettle and Andreae (2000) (hereafter referred to
as K00), which incorporated a minor adjustment to address problematic interpolated
regions in the high northern latitudes in winter, and integrated a few additional DMS
measurements.

The sparsity of DMS measurements is important given the high variability of
DMS concentration. This lack of data was a serious shortcoming of the Kettle
climatologies. Lana et al. (2011) produced an updated DMS climatology incorporating
new measurements obtained between 2000 and 2009 (representing an almost threefold
increase relative to K00, from ∼16,500 observations to 47,313). Given its release in
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2010, the Lana climatology is commonly abbreviated as L10. Although L10 includes
three times as many measurements as the older K99 and K00, many of the gridded
DMS values are still based on interpolation and extrapolation methods that do not
consider physical and biogeochemical processes. Furthermore, the climatologies of
both Kettle et al. and Lana et al. involve a rather subjective division of the oceans
into so-called biogeochemical provinces (Longhurst et al., 1995), which raises questions
regarding the fidelity with which these climatological maps represent actual spatial
and temporal patterns of DMS concentrations.

1.1.2 Empirical reconstructions of the DMS distribution

Alternative methods for deriving DMS distributions that are not prescribed functions
of space and time have attracted attention for at least two reasons. First, observation-
based DMS fields are a product of somewhat subjective (e.g., categorization of
DMS data by biogeochemical provinces) and nonphysical methodologies and do not
offer insight into the interactions between DMS concentration and ocean physical
and biogeochemical processes. Secondly, such fields do not account for interannual
variability and potential trends due to climate change. Shortly after the work of
Kettle et al. (1999) and Kettle and Andreae (2000), a series of studies were conducted
in which the available DMS database was used to construct algorithms that predict
DMS distributions based on other parameters. The assumption underlying these
empirical models is that realistic DMS variation can be produced by empirically
derived equations describing the links between DMS and readily available biophysical
parameters.

Anderson et al. (2001) used the available global set of in situ measurements, as
presented by Kettle et al. (1999), to construct a multivariate empirical relationship
between DMS and chlorophyll a concentration (hereafter, chlorophyll), light, and
nitrate. In a sense, Anderson et al. (2001) utilized a proxy for primary productivity to
derive DMS variations in the ocean. This approach resulted in high concentrations of
DMS where productivity is generally high, such as the high-latitude oceans in summer
as well as coastal and upwelling regions. However, the approach underestimates DMS
spatial variability across lower productivity areas.

A major drawback in using bulk properties such as chlorophyll as a variable
from which to calculate DMS values is that different phytoplankton groups produce
varying amounts of DMSP and are thus associated with varying DMS concentrations
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(Keller et al., 1989). To address this concern, the composition of the phytoplankton
community has been used as additional information to construct a second class of
DMS parameterizations (Aumont et al., 2002; Belviso et al., 2004b). The nonlinear
relationships devised by Aumont et al. (2002) use chlorophyll and a measure of the
phytoplankton community composition, the Fp ratio, to estimate DMS concentrations.
The Fp ratio represents the proportion of diatoms within the phytoplankton commu-
nity and is determined from pigment concentrations (fucoxanthin and peridinin), as
described by Claustre (1994). However, pigment data are often scarce, and global
ocean models do not include pigments as a readily available output. Aumont et al.
(2002) approximated the Fp ratio as the ratio of silicious to nonsilicious phytoplankton.
Instead of observational data, chlorophyll and Fp ratio values from a global ocean
biogeochemical model were used. Thus, this approach was subject to model bias.

To overcome the necessity of using rarely-available pigment data or silicate ratios,
Belviso et al. (2004b) modified the relationship devised by Aumont et al. (2002) to
model the Fp ratio directly from chlorophyll. The new empirical relationship is a
nonlinear function that calculates DMS solely from chlorophyll. Therefore, satellite
chlorophyll data can be used to derive a global distribution of DMS. Similar to the
approach of Anderson et al. (2001), a disadvantage of this approach is that it leads
to DMS concentrations that are too dependent on chlorophyll. Subsequent studies
have shown that in many regions DMS concentration shows no correlation, or even a
negative correlation, with chlorophyll (e.g., Toole and Siegel, 2004).

To accommodate the lack of a consistent correlation between DMS concentra-
tions and phytoplankton biomass or biological productivity, Simó and Dachs (2002)
developed a two-equation algorithm that uses mixed layer depth (MLD) as a key
predictor of DMS variability. Using data available at the time, Simó and Pedrós-Alió
(1999) argued for the existence of a strong relationship between DMS production
and MLD. Using the global DMS database (Kettle et al., 1999), Simó and Dachs
(2002) found two relationships depending on the ratio of chlorophyll to MLD. In
high chlorophyll-to-MLD cases (mostly associated with coastal areas and temperate
to high latitudes during the productive season), they found that DMS is a linear
function of the chlorophyll-to-MLD ratio. In low-productivity regions, where the
chlorophyll-to-MLD ratio is lower than 0.02 mg m−4 (85% of the ocean surface), DMS
concentration is estimated as a logarithmic function of MLD alone.

Aranami and Tsunogai (2004) refined the Simó and Dachs (2002) algorithm. In
high-chlorophyll (low MLD) waters, the linear relationship between DMS and the
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chlorophyll-to-MLD ratio remained unmodified. In less productive waters, where MLD
is the only parameter used to estimate DMS concentration, Aranami and Tsunogai
(2004) postulated that the concentration of DMS is determined by the variation in
MLD through dilution, so that the product of DMS and MLD is constant. Independent
data from the Pacific suggested that this inverse relationship between DMS and MLD
provides a better fit than the logarithmic relationship of Simó and Dachs (2002).

The most recently-developed category of predictive approaches involves the use of
a linear relationship between DMS and the amount of solar irradiance that is received
in the upper mixed layer. Vallina and Simó (2007) estimated DMS concentration
as a linear function of the solar radiation dose (SRD), which is determined from
MLD and surface solar irradiance. Biological parameters, such as chlorophyll, the
Fp ratio, and nutrient concentrations, are not taken into account. The approach has
gained considerable interest because the influence of solar radiation is incorporated
(Bates et al., 1987; Toole and Siegel, 2004) and because it only requires MLD and
surface irradiance, which are readily available as global data products and are common
outputs from models.

Miles et al. (2009) suggested a slight modification of the relationship described by
Vallina and Simó (2007), assuming that the correlation between ultraviolet A radiation
dose (UVRD) and DMS is a more direct biophysical relationship than DMS and SRD.
This reasoning is based on experimental studies. Sunda et al. (2002) showed that some
species produce more DMS under elevated UV radiation. Furthermore, an increase
in UV radiation increases the DMSP-to-DMS conversion rate (Hefu and Kirst, 1997)
through suppression of bacterial activity that consumes DMS and DMSP (Slezak
et al., 2001; Toole et al., 2006).

Several studies have used empirical algorithms within global climate models to
predict DMS concentrations and emissions in climate change scenarios. Bopp et al.
(2003) made use of the relationship of DMS with chlorophyll and the Fp ratio (Aumont
et al., 2002) to investigate the effect of a global warming scenario (2×CO2) on
DMS concentration and flux. The calculated change in DMS flux (+2%) generated
projections of radiative forcing that would result in only a slight climate feedback
(Bopp et al., 2004). Gabric et al. (2004) used the parameterization of Simó and
Dachs (2002) to compare present-day DMS concentration with a scenario in which
atmospheric CO2 was three times higher than present-day levels. As a consequence of
increased CO2, they predicted a global DMS flux increase of approximately +14%.
Gunson et al. (2006) applied the DMS formulation of Anderson et al. (2001) to



9

suggest that global temperature changes of up to +1.6℃ or -0.8℃ could occur if DMS
flux was decreased or increased respectively by a factor of two. The relationship of
DMS with SRD (Vallina and Simó, 2007) was utilized in an ocean general circulation
model (GCM) to predict DMS in a climate change scenario with a 50% increase
in atmospheric CO2 compared to the present day (Vallina et al., 2007b). The 50%
increase in CO2 resulted in a ∼1% increase of global mean DMS concentration. In
total, these modelling studies suggest only small global increases in DMS flux as a
result of anthropogenic forcing. Their results suggest that the response of DMS to
climate change would be only a slight climate feedback. However, regional climates,
particularly in the Southern Hemisphere, would be more strongly affected (Bopp et al.,
2003, 2004; Gabric et al., 2004; Vallina et al., 2007b).

1.1.3 Description of available prognostic formulations

In addition to empirical parameterizations, prognostic models of DMS are the third
method used to construct a global DMS distribution. Along with local 1D process-
based models (e.g., Polimene et al., 2012; Steiner and Denman, 2008; Toole et al.,
2008; Vallina et al., 2008), mechanistic DMS modules have been integrated into
biogeochemical/ecosystem models within a 3D ocean framework (e.g., Elliott, 2009;
Six and Maier-Reimer, 2006; Vogt et al., 2010). Because it addresses global DMS
dynamics, the present study focuses on approaches that use a prognostic biogeochemical
formulation within a global (3D) ocean model.

As these prognostic models have become increasingly complex, they have integrated
a variety of different source and sink terms, production modeling, and explicit advection
and removal of DMS(P) within an ocean ecosystem model (Le Clainche et al., 2010).
In general, implementing a marine sulfur cycle has been conducted by coupling a
sulfur module to a carbon or nitrogen-based plankton ecosystem model. The number
of state variables in the sulfur module varies among approaches but usually includes
DMS, particulate DMSP (DMSPp), and/or dissolved DMSP (DMSPd). Most of the
models categorize plankton groups into subclasses or so-called functional groups, for
which a specific DMSP cell quota (sulfur-to-carbon ratio) is defined. The cell quotas
are based on available observations (Stefels et al., 2007) and are generally defined as a
constant value for each functional group. Representations of heterotrophic bacteria
and zooplankton are typically very simple (Le Clainche et al., 2010).

One of the first ecosystem models to incorporate DMS cycling was presented by
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Gabric et al. (1993). This model is a network flow model describing the ocean plankton
community in terms of nitrogen coupled with sulfur. This Gabric model has been
extended and used to simulate DMS fluxes in the Southern Ocean (Gabric et al., 1996,
1995), the Barents Sea (Gabric et al., 1999) and the North Atlantic (Watts and Bigg,
2001). A series of studies (Gabric et al., 2003, 2005, 1998, 2001) applied the Gabric
model to GCM output.

Chu et al. (2003) incorporated a simplified version of the DMS model of Gabric
et al. (1993) within a high-resolution version (average 0.2° grid) of the ocean circulation
model Parallel Ocean Program (POP). The prognostic DMS formulation in POP
was the first fully mechanistic description of the production and removal of DMS
that was integrated within a global eddy-permitting ocean GCM. Within the POP
module, DMS is produced through the lysis of dissolved DMSP, which in turn is
produced by phytoplankton. DMS is also released directly by plankton. DMS is
removed by microbial (e.g., bacterial) consumption, photolysis, and gas exchange
with the atmosphere. The description of the marine cycling of DMS by Chu et al.
(2003) is relatively simple in that DMS production and consumption rates are globally
and seasonally constant and are merely adjusted to ensure agreement with global
climatologies at basin scale. Furthermore, in this model no distinctions are made for
the rate among different plankton species. The marine sulfur module within POP, as
part of the Community Climate System Model (CCSM), was subsequently developed
in a series of studies (Chu et al., 2004; Elliott, 2009; Elliott et al., 2007) and now
includes much greater complexity, including taxonomic resolution, incorporation of
stress factors regulating general marine sulfur metabolism, and kinetics of bacterial
uptake.

Another global process-based DMS model was presented by Kloster et al. (2006)
and was further developed by Six and Maier-Reimer (2006) within the Hamburg Model
of Ocean Carbon Cycling (HAMOCC5), the ocean biogeochemistry module of the Max
Planck Institute for Meteorology Earth System Model (MPI-ESM). This approach
ties the production of DMS to the export of opaline and calciferous shells. It further
includes a source through phytoplankton cell disruption (grazing and senescence).
DMS loss is modelled as consumption by bacteria, photolysis or outgassing to the
atmosphere. The model does not take DMSP production or transformation into
account, with the following justification: too little is known about the DMSP to
DMS transformation process, and insufficient data regarding DMSPp concentration is
available for assessment of model simulation of the concentration of this compound
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to be feasible. Kloster et al. (2007) applied this approach to compare simulations of
past and future climate conditions. A recent study by Six et al. (2013) applied the
DMS module in HAMOCC5 (hereafter HAMOCC) to investigate the effect of ocean
acidification on DMS production.

PlankTOM5 (Vogt et al., 2010) and PISCES (Belviso et al., 2012) contain more
recently developed DMS modules. PlankTOM5 is a multiple phytoplankton functional
type model comprising three phytoplankton groups (nanophytoplankton, diatoms and
coccolithophorids), two zooplankton groups (micro- and mesozooplankton) and 29
different tracers (including iron, silica, phosphate, nitrate). The cycling of sulfur is
modelled by interactions between the different plankton groups and DMSPp, DMSPd
and DMS pools. Similarly, PISCES includes two phytoplankton groups (nanophyto-
plankton and diatoms) as well as micro- and mesozooplankton, and two sulfur tracers
(DMS and DMSPp). Both for PISCES and PlankTOM5, the underlying physical
model is the Océan PArallélisé (OPA) global GCM.

1.2 Previous intercomparison studies

A number of studies that critically examine the predictive capabilities of DMS models
and algorithms have been published. Belviso et al. (2004a) compared seven global-scale
climatologies derived from parameterizations and modeling (Anderson et al., 2001;
Aumont et al., 2002; Belviso et al., 2004b; Chu et al., 2003; Simó and Dachs, 2002),
as well as the widely used data-based Kettle climatologies (K99, K00). Altogether, a
high level of uncertainty was observed for zonal and annual mean concentrations of
DMS, although Belviso et al. (2004a) argue that some algorithms perform better than
others in specific regions. The tropics were found to be less variable, with a coefficient
of variation (CV) of 50%, than the high latitudes (CV = 100%), and uncertainties
associated with the sea-surface DMS concentration were found to exceed those of the
gas transfer velocity.

Other studies have conducted local comparisons of proposed algorithms and tested
them with directly measured data, often from regions of the ocean that are believed to
be exceptional in terms of ocean DMS production and/or DMS-aerosol interaction but
are poorly sampled. Bell et al. (2006), for example, examined the performance of several
algorithms by using measurements that were made as part of the Atlantic Meridional
Transect (AMT) program. The authors noted a tendency for recent algorithms to
overestimate DMS concentration in oligotrophic waters, with the dilution model by
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Aranami and Tsunogai (2004) providing the best fit to the AMT data. Hind et al.
(2011) tested a number of predictive algorithms with a comprehensive set of high-
resolution data that were collected during the VocalsRex expedition in the southeast
Pacific. Although none of the tested algorithms performed very well, the use of the
Anderson et al. (2001) algorithm with in situ chlorophyll and in situ nitrate best
captured the variability of offshore eddies and coastal processes. Asher et al. (2011)
used high-resolution observations from the northeast subarctic Pacific to examine
the variability of sea surface DMS concentration (along with other parameters) at
very fine spatial and temporal scales. Using the observational data set to test the
algorithms by Simó and Dachs (2002) and Vallina and Simó (2007), they confirmed
the ability of these algorithms to predict large-scale seasonal changes in DMS in this
region. However, the performance of the algorithms broke down at fine spatial and
temporal resolution.

As explained above, the algorithm by Vallina and Simó (2007) assumes that mixed-
layer SRD is related to DMS. Vallina and Simó (2007) argued that global surface
ocean concentrations of DMS are more closely correlated with SRD in the mixed
layer than with other parameters, such as chlorophyll or temperature. However, these
findings were not supported by Belviso and Caniaux (2009) who found that only
19% to 24% of the variance in monthly surface DMS concentration in the northeast
Atlantic can be explained by SRD, compared to 81% reported by Vallina and Simó
(2007) in the northwest Mediterranean. Using the updated GSS database of DMS
concentration measurements, Derevianko et al. (2009) could not confirm a robust
relationship between SRD and DMS globally. A linear relationship between DMS and
SRD, however, was supported by Miles et al. (2009) with the use of in situ data from
the AMT program. Sensitivity tests further showed that the relationship between
DMS and SRD is strongly affected by the model used for attenuation of irradiance
(Miles et al., 2009). While such methodologies have been disputed (Hind et al., 2011),
the possible existence of a closely coupled seasonal cycle that involves both SRD and
DMS raises important questions, at the very least, concerning the appropriate scale
for substantiating a climate feedback mechanism (Derevianko et al., 2009; Vallina
and Simó, 2007). Derevianko et al. (2009) found that SRD accounted for only 14%
of the total variance, but they noted that monthly mean data may not fully capture
the effects of smaller scale phenomena, such as synoptic scale storms and cloud cover
variations.

Halloran et al. (2010) examined two DMS parameterizations (Anderson et al., 2001;
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Simó and Dachs, 2002), within a fully coupled Earth System Model (HadGEM2-ES),
and argued that they can estimate independent observations of DMS concentrations
with a level of skill similar to that of K99. The algorithms were generally found to be
poor predictors of DMS concentration, partly because of presumed inaccuracies in the
modelled biological fields. The authors contend that differences in predicted future
seawater concentrations of DMS between the algorithms occurred largely because
the algorithm by Simó and Dachs (2002) uses MLD as a parameter, while that of
Anderson et al. (2001) does not. Woodhouse et al. (2010) calculated the sensitivity
of cloud condensation nuclei (CCN) to changing DMS flux using five different DMS
climatologies within a global aerosol microphysics model. A wide range of DMS fluxes
was observed among the different climatologies, but CCN concentration was found to
be relatively insensitive to changes in DMS flux.

Le Clainche et al. (2010) compared contemporary 3D process-based models (along
with 1D, single column models) of DMS. Each of the four 3D models (POP-TGM,
PISCES, HAMOCC, and PlankTOM5) depicted generally similar DMS(P) cycle
processes, with none of the models explicitly representing bacteria. The models
differed in their ability to capture the observed seasonal cycles of chlorophyll and DMS
concentration at low and mid-latitudes. In this regard, POP-TGM was found to be the
most successful in reproducing the change from positive (higher latitudes) to negative
(lower latitudes) seasonal correlation between chlorophyll and DMS concentration.
The models were more comparable in their ability to simulate chlorophyll than DMS.

1.3 Scope of this study

There are three distinct parts to this study: (1) An analysis of the various param-
eterizations and reconstructions of DMS concentration, (2) a sensitivity analysis of
DMS flux for a range of DMS concentration fields and gas transfer formulations and
(3) an investigation of the impact of different representations of DMS concentrations
and fluxes on atmospheric composition and radiative fluxes in a comprehensive atmo-
spheric GCM. Chapter 2 focuses on the ocean, where possible ways to represent ocean
DMS concentration are outlined and tested in order to quantify uncertainties in DMS
concentration. Chapter 3 is concerned with what happens at the air-sea interface, and
analyzes dependence of DMS flux on different air-sea gas transfer models. Chapter 4
addresses the effects of DMS in the atmosphere, and how the uncertainty in spatial
and temporal distribution of DMS concentration and the overall strength of DMS flux
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affects the atmospheric sulfur cycle and aerosol radiative effects.
A nearly complete collection of existing DMS reconstructions allows thorough

investigation of their similarities and differences. By comparing these different clima-
tologies, one can identify regions in which climatologies generally agree or disagree with
each other. Furthermore, given the expanded global repository of DMS measurements
since the construction of K00 (GSS database), it is possible to appraise the strengths
and weaknesses of each DMS reconstruction.

As described in Section 1.2, comparisons of a subset of the global DMS fields have
previously been published. Belviso et al. (2004a) described the earlier observation-
based climatologies (K99 and K00), the first set of parameterized DMS fields (Anderson
et al., 2001; Aumont et al., 2002; Belviso et al., 2004b; Simó and Dachs, 2002), and
one of the first prognostically modelled DMS fields (Chu et al., 2003). Le Clainche
et al. (2010) compared an initial collection of prognostic DMS models (PlankTOM,
POP-TGM, PISCES, and HAMOCC). Chapter 2 extends these analyses with an
expanded set of DMS fields from new algorithms, a variety of input data fields and
additional point observations of DMS.

Chapter 3 provides an assessment of the uncertainty in DMS flux due to variation
in gas exchange parameterizations (in addition to the variation in DMS concentration).
Air-sea gas exchange is a key process in the climatic influence of DMS. A considerable
amount of research has been devoted to air-sea flux of DMS, and a number of standard
parameterizations have been developed to model the efflux of DMS from the ocean.
In this study only the most commonly used gas transfer models are considered; those
of Liss and Merlivat (1986), Wanninkhof (1992), and Nightingale et al. (2000). The
influence of the air-side resistance on DMS flux estimates will also be considered.

In Chapter 4, the atmospheric sulfur cycle (DMS, sulfur dioxide and sulfate) and
associated radiative forcing of sulfate aerosol are investigated by coupling different
DMS climatologies with the Canadian Atmosphere Model (CanAM4.1). The main
focus of Chapter 4 is a set of sensitivity analyses to investigate the sensitivity of the
atmospheric response to (1) the spatial and temporal structure of DMS concentration,
(2) the relationship between flux and concentration of DMS, and (3) the overall DMS
source strength. The observed sensitivities of atmospheric sulfur burdens and radiative
forcing can then be translated into an estimate of uncertainty in climate effects of
DMS given the range of DMS concentration and flux estimates.

Each chapter builds on the results of the preceding chapters. In Chapter 2,
uncertainty in DMS concentration is considered, which is further used in Chapter
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3 to assess uncertainty in DMS flux. Chapter 4 takes the uncertainty about DMS
flux and assesses its implications for atmospheric chemistry and climate, using a set
of model simulations. Hence, the combined studies of Chapters 2-4 will assess the
role of DMS in the present climate by estimating and comparing uncertainties in the
representations of concentration and air-sea exchange. A summary and conclusions
are presented in Chapter 5, along with limitations of the current study and potential
avenues for further research.
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Chapter 2

Intercomparison of available
reconstruction approaches for global
modelling purposes

2.1 Introduction

The main goal of Chapter 2 is to compare a number of published representations of
surface ocean DMS concentration for climate modelling. Research in the last ∼15
years has led to a range of different DMS reconstruction approaches. Global DMS
fields were either directly derived from DMS observations (Kettle et al., 1999; Lana
et al., 2011), calculated from other proxy data sets (e.g., Anderson et al., 2001; Simó
and Dachs, 2002), or prognostically modelled (e.g., Vogt et al., 2010). Implementing
these different fields in the model leads to differences in air-sea flux, atmospheric
sulfur burden and aerosol concentration, and thus climate influence. Before any of
these DMS representations are used as part of a modelling study (Chapter 4), the
different fields are first evaluated and compared. With the use of current information
on DMS dynamics in the ocean, derived DMS fields are examined to determine their
geophysical and biogeochemical fidelity.

A number of global climatological maps derived from the approaches described
above have been obtained for this intercomparison study. Given the complex DMS
dynamics within the oceans, it is questionable whether the climatological fields of the
monthly global distribution of DMS concentrations are geophysically plausible. The
precision and/or accuracy of the emerging patterns and gradients of DMS concentration
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in these climatologies might be inadequate for a robust estimate of DMS fluxes and
its influence on climate. Outlining the differences and similarities among the fields
can help determine what underlying reasons account for the different patterns of DMS
distribution among different schemes.

The sensitivity of different algorithm outputs to different input fields (observational
climatology versus model) is also examined. Depending on the field used, different data
products can be used as an input for a specific algorithm to derive DMS distribution.
This analysis gives insight into the level of sensitivity of the parameterizations in
terms of differences in input fields, such as mixed layer depth (MLD), which is a key
parameter in some algorithms. Mixed layer depth can be defined in different ways.
The question to be considered is how sensitive a given algorithm is to the exact MLD
definition. Large sensitivity would imply that the implementation of such an algorithm
in an ocean model would require that its applicability to the exact formulation used
to define the MLD in the ocean model be determined.

2.2 Methods

2.2.1 Datasets

The datasets considered in this thesis were obtained from various sources. Global fields
of DMS concentration were either obtained directly as gridded fields or reproduced
through various parameterizations using global fields of the input parameters. For
intercomparison of DMS climatologies, all fields were regridded to a common 1°×1°
grid. Most regridding was done by built-in functions in Ferret (http://ferret.pmel.noaa.
gov/Ferret, Hankin et al. (2007)) or Matlab (http://www.mathworks.com/products/
matlab). In case of irregular model grids, Climate Data Operators (https://code.
zmaw.de/projects/cdo) were used to grid the data onto uniform, regular grids.

2.2.1.1 Observationally-based DMS climatologies

One of the central datasets used in this study are the observation-based monthly
climatological fields of DMS. The contemporary L10 climatology (Lana et al., 2011) was
downloaded from the Surface Ocean – Lower Atmosphere Study (SOLAS) website (http:
//www.bodc.ac.uk/solas_integration/implementation_products/group1/dms/).
For reference, the older DMS K00 climatology by Kettle and Andreae (2000) and
K99 climatology by Kettle et al. (1999) were also obtained. The K00 climatology was

http://ferret.pmel.noaa.gov/Ferret
http://ferret.pmel.noaa.gov/Ferret
http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab
https://code.zmaw.de/projects/cdo
https://code.zmaw.de/projects/cdo
http://www.bodc.ac.uk/solas_integration/implementation_products/group1/dms/
http://www.bodc.ac.uk/solas_integration/implementation_products/group1/dms/
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originally obtained from the National Center for Atmospheric Research (NCAR) data
archive (http://rda.ucar.edu/datasets/ds289.2/), whereas the K99 climatology was
the version used in the Canadian Earth System Model, provided by Knut von Salzen.
All three climatologies were constructed using surface (0-10 m) DMS concentration
measurements exclusively, with a 1°×1° resolution. No modification was made to the
fields. Because the L10 climatology provides a direct update from the K99 and K00
climatologies, with a substantial addition of data (∼38,000 new samples) but a similar
methodology, the L10 climatology was used as the reference climatology for comparing
DMS distributions generated from models or empirical algorithms. Table 2.1 provides
a list of the basic characteristics of the three observation-based climatologies that have
been used in DMS research.

Table 2.1: Basic characteristics of past and contemporary DMS climatologies, in-
cluding mean and standard deviation∗.

Name Number of Time span Mean σs σt Reference
Observations (nM) (nM) (nM)

K99 14,980 1972-1997 2.22 1.17 1.51 Kettle et al. (1999)
K00 ∼16,500 1972-1999 2.17 1.14 1.66 Kettle and Andreae (2000)
L10 47,313 1972-2009 2.35 1.25 1.29 Lana et al. (2011)

∗ The mean is given as an area-weighted annual global mean. σs is the standard deviation in space
(calculated as the area-weighted standard deviation of the annual mean distribution). σt is the
standard deviation in time (calculated as the area-weighted mean of the global distribution of seasonal
standard deviation).

The observational data on which the K99, K00, and L10 climatologies are based,
are collected in the Global Surface Seawater DMS database (GSS database) and were
obtained from NOAA-PMEL (http://saga.pmel.noaa.gov/dms). The dataset not only
contains sea surface concentration of DMS, but includes a range of ancillary data
(chlorophyll, light, MLD, etc.) for a subset of observations. The database includes a
total of 48,134 DMS measurements, of which only 9984 contain DMS and chlorophyll.
There are 4893 data points for DMSP (dissolved and/or particulate), but only 130
locations contain a full set of measurements. Previous studies (e.g., Kettle et al.,
1999) used the GSS database to explore correlations of DMS with the other measured
quantities in the dataset, but no single variable produced a significant correlation.
The main use of the GSS database in this study was to evaluate reconstructions of
DMS concentration, and thus mainly involves only DMS measurements and metadata

http://rda.ucar.edu/datasets/ds289.2/
http://saga.pmel.noaa.gov/dms
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(location, date, and time).

2.2.1.2 Simulated DMS distributions

Besides the parameterized reconstruction considered in Section 2.2.2, DMS distribu-
tions have been obtained from global model simulations. Two modeled DMS datasets
were obtained from the historical simulations of 20th century climate as standardized
for the Coupled Model Intercomparison Project 5 (CMIP5, Taylor et al., 2012). One is
from the Hadley Centre Global Environmental Model version 2 – Earth System model
(HadGEM2-ES), and the other one is from the Max Planck Institute for Meteorology
Earth System Model – Low Resolution (MPI-ESM-LR). Both datasets contain monthly
outputs from historical simulations (1850 to 2005) and RCP 4.5/8.5 scenarios (Moss
et al., 2010) from 2005 to 2100. The time period relevant to this study is between
1972 and 2010 because DMS observations are available only from that period. For the
intercomparison of climatologies, simulated DMS distributions from HadGEM2-ES
and MPI-ESM-LR were averaged to 12 monthly climatological fields (January to
December) over this time period, and regridded to 1°×1° resolution.

The DMS output from HadGEM2 is generated within the global ocean biogeo-
chemical model Diat-HadOCC (hereafter, HadOCC). DMS concentrations are derived
from the SD02 empirical algorithm (Simó and Dachs, 2002), which calculates DMS as
a function of model MLD and chlorophyll (Collins et al., 2011). The CMIP5 output
of DMS from HadGEM2 represents a contemporary example of the online application
of a parameterization within a global model to simulate DMS, in contrast to a fully
prognostic treatment to simulate dynamics of DMS production and consumption (e.g.,
Vogt et al., 2010). The details of the implementation and evaluation of the DMS
scheme in HadOCC are described in Halloran et al. (2010).

In contrast to HadGEM2-ES, the CMIP5 DMS dataset from MPI-ESM-LR simu-
lates DMS with a fully prognostic formulation within the Hamburg Ocean Carbon Cycle
model (HAMOCC) (Ilyina et al., 2013). The marine sulfur cycle within HAMOCC
allows for the explicit representation of sources and sinks of DMS (Kloster et al., 2006;
Six and Maier-Reimer, 2006) and is one of the four global 3D models that currently
simulate DMS prognostically (Le Clainche et al., 2010). HAMOCC’s DMS formulation
includes a simple production term, a bacterial consumption term, removal by photoly-
sis, and air–sea gas exchange. Unlike other prognostic schemes, HAMOCC describes
only DMS explicitly, while its precursor compound DMSP is not considered as a
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tracer (Ilyina et al., 2013). DMS production is related to export production of silicate
and calcium carbonate, where scaling factors account for greater DMS production
associated with calcareous vs. silicious phytoplankton. The consumption of DMS by
bacteria is a simple Monod function with a temperature dependent maximum rate.
The destruction of DMS through photolysis is controlled by a photolysis rate constant
and the local solar radiation. The studies by Kloster et al. (2006, 2007) and Six and
Maier-Reimer (2006) contain a detailed description of the HAMOCC DMS model.

Table 2.2: Basic characteristics of the prognostic DMS models evaluated. Mean and
standard deviations are computed as in Table 2.1.

Name Physical Biogeochemistry Mean σs σt Reference(s)
model /Carbon cycle

model
(nM) (nM) (nM)

HAMOCC MPI-ESM-LR HAMOCC5 2.05 1.81 1.11 Kloster et al.
(2006), Six and
Maier-Reimer

(2006)

PlankTOM OPA PlankTOM5 1.74 0.80 0.77 Vogt et al.
(2010)

PISCES OPA PISCES 1.64 0.93 1.04 Belviso et al.
(2012)

POP-TGM POP DML-TGM 2.03 1.13 1.23 Elliott (2009)

Climatological maps of sea surface DMS concentration were obtained from other
GCM simulations using prognostic DMS schemes via direct correspondence with the
research groups. The models considered includes the ocean biogeochemistry model
PlankTOM5 (Vogt et al., 2010), embedded in the OPA physical model. 12 monthly
fields of simulated sea surface DMS concentration from the Pelagic Interaction Scheme
for Carbon & Ecosystem Studies (PISCES) was provided by I. Masotti. This study
also used annual and zonal mean DMS concentration fields derived from a model run
of the POP Trace Gas Module (POP-TGM), as described in Elliott (2009). Table 2.2
shows the basic characteristics of the prognostic DMS models discussed in this study.
All fields were regridded to a uniform, 1°×1° grid to ease intercomparison. For all
the models the average grid resolution is slightly lower than 1°×1°, such that no
degradation of the data occurs due to the interpolation. It is important to note
that the averaging period differs for each of the models. For PlankTOM5, the DMS
dataset is derived only from the year 2006 (Vogt et al., 2010). For PISCES the 12
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monthly concentration fields are from the fourth year of a short (< 5 years) sensitivity
experiment, which was initiated after a spin up of several thousand years. The DMS
distribution from POP-TGM is derived from one year of a standard model run forced
with a repeating year of NCEP reanalysis (Elliott, 2009).

2.2.1.3 Datasets for parameterized DMS distributions

Further datasets were obtained in order to derive DMS distributions from algorithms
(Section 2.2.2). As with the DMS fields, these were regridded to a common resolution
of 1°×1°. The construction of DMS fields via algorithms in the present study includes
new and updated datasets that were not available at the time the algorithms were
originally published. For instance, Anderson et al. (2001) used modelled nitrate
concentration, whereas this study uses monthly climatological fields of nitrate from
the World Ocean Atlas (WOA) 2009 (Garcia et al., 2010). There was no monthly
observation-based nitrate climatology available to Anderson et al. (2001).

For the application of those algorithms making use of chlorophyll, satellite chloro-
phyll data from three different sensors (SeaWiFS, MODIS-Aqua, and MODIS-Terra)
were combined to create a single climatology of chlorophyll. The chlorophyll dataset
consists of 15 years of data (1998-2012). The SeaWiFS dataset starts in 1998 and
continues through 2007. MODIS-Terra and Aqua data begin in 2001 and 2003 respec-
tively and continue through 2012. For a given year, data from all available sensors are
used to derive the climatological mean.

The chlorophyll climatology has 12 monthly mean fields. However, these data do
not represent complete seasonal and global coverage. For example, there is an absence
of data in the high latitudes of the winter hemisphere (because the sensors measure
Earth radiance derived from backscattered solar radiation). In some months, certain
regions completely lack data due to conditions such as persistent dust (e.g., in the
Arabian Sea in July), clouds, or ice cover. A simple linear method was employed
to interpolate temporal data gaps, while near-zero chlorophyll concentrations (10−7

mg m−3) were assigned to high latitudes in winter. Underestimation of chlorophyll in
the winter hemisphere is expected to have little effect on algorithm performance. For
instance, for SD02 and AT04 it can be assumed that chlorophyll is sufficiently low
in the high latitudes in winter that the algorithm will normally apply the MLD-only
equation (see equation (3) in Section 2.2.2.3). A sensitivity test with AN01-derived
DMS concentrations confirmed a marginal effect of the exact methodology of filling
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the gaps in the chlorophyll dataset. As a lower extreme case, one approach used zero
to fill the data gaps and, as an upper extreme, another approach filled gaps by linear
interpolation. The difference in global mean concentration between those two extreme
cases was just 0.05 nM (∼2%).

Various mixed layer depth (MLD) fields were obtained. MLD can be characterized
by a range of criteria. In general, MLD is based on the first depth at which density or
temperature changes by a specified amount relative to the surface. Among the available
empirical approaches, various types of MLD climatologies were used. The original
approach by Simó and Dachs (2002) used a MLD derived from WOA temperature
and salinity fields with the MLD being the depth at which density is 0.125 kg m−3

higher than at the surface (Levitus, 1982). In contrast, Vallina and Simó (2007) used
one of the MLD fields from de Boyer Montégut et al. (2004), defined as the depth at
which temperature is 0.1℃ lower compared to 5 m depth.

To explore the sensitivity of the algorithms to differences among MLD climatologies,
a range of different data sources and MLD definitions were considered. Two main
sources were used: those of de Boyer Montégut et al. (2004) and WOA (Levitus,
1982). Various types of MLD climatologies from de Boyer Montégut et al. (2004)
were obtained from the Ifremer/Los Mixed Layer Depth Climatology website (http://
www.ifremer.fr/cerweb/deboyer/mld/home.php). WOA 2009 temperature (Locarnini
et al., 2010) and salinity fields (Antonov et al., 2010) were obtained to construct
a climatology, in which MLD was defined as the depth at which density was 0.125
kg m−3 higher than at the surface. Furthermore, a monthly MLD simulated by the
Canadian Earth System Model (CanESM2) with historical greenhouse-gas forcing was
included, derived from averaging monthly fields from 1986 through 2005. This field
corresponds to the variable "omlmax" in the CMIP5 data archive, and represents the
maximum MLD in a given month.

For those algorithms making use of irradiance, all-sky surface shortwave irradiance
products from the Clouds and the Earth’s Radiant Energy System (CERES) (Kato
et al. 2013; Loeb et al. 2009, http://ceres.larc.nasa.gov/) and the International Satellite
Cloud Climatology Project (ISCCP) dataset (Bishop et al., 1997) were obtained. In
addition, daily mean solar irradiance at the top of the atmosphere was calculated
according to Brock (1981) and then converted into surface irradiance using a fixed
transmission coefficient of 0.5 (Vallina and Simó, 2007).

A global dataset of satellite-surface ultraviolet (UV) radiation at Earth’s surface,
weighted for UV-A, was obtained from the NCAR Community Data Portal (http://cdp.

http://www.ifremer.fr/cerweb/deboyer/mld/home.php
http://www.ifremer.fr/cerweb/deboyer/mld/home.php
http://ceres.larc.nasa.gov/
http://cdp.ucar.edu


23

ucar.edu). The dataset is derived by averaging UV-A radiation between wavelengths
315 to 400 nm, over the years 1979 through 2000. The UV irradiance is defined at the
Earth’s surface, calculated with the Tropospheric Ultraviolet-Visible (TUV) radiative
transfer model given estimates of ozone and clouds from NASA’s Total Ozone Mapping
Spectrometer (TOMS). A full description of the dataset is provided by Lee-Taylor
et al. (2010).

2.2.2 The use of algorithms to reconstruct global distributions

of DMS

Different types of algorithms have been derived empirically using available data,
given a limited understanding of the underlying processes controlling sea surface
concentrations of DMS. Table 2.3 lists all of the algorithms considered in this study
and their general characteristics. It must be emphasized that all algorithms presented
in this section are empirical. They have been constructed only from specific predictors
and predictands, which are usually limited in geographical and seasonal coverage, with
little or no sampling of interannual variability. Access to the entire updated database
of DMS bottle data provides the opportunity to recalculate empirical coefficients
for some of the algorithms. Based on the various available input datasets and the
updated DMS database, the goal was to discover to what extent the coefficients could
vary. If any coefficient in the algorithms was derived from the best fit between DMS
bottle and corresponding input data, updated DMS and input datasets were used
to reestimate these empirical coefficients. It was assumed that the functional forms
were generally optimal for the given input data; however the coefficients are subject to
retuning. Only some cases presented a convincing reason to reestimate coefficients and
use those instead of the ones in the original publication. In most cases, the changes in
the coefficients were minor or somewhat dubious, given the large spreads in the data.

The sensitivity of the modelled DMS concentration to variations in the input
fields was tested. The focus was on input fields that tended to be less constrained
between different data products and which were likely to show a difference between
observation-based, reanalysis and model-derived products. For the final intercompari-
son, observation-based input fields were chosen for each DMS parameterization that
would give rise to the best agreement with DMS observations.

Four principal classes of empirical models exist, distinguished by the predictor of
DMS concentrations used. The first and only example of its class, Anderson et al.

http://cdp.ucar.edu
http://cdp.ucar.edu
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Table 2.3: List of empirical algorithms and models evaluated in this study, including
ranges of global mean and standard deviation of DMS concentration given a set of
possible values of the input fields. DMS concentrations were computed as described in
the text (Section 2.2.2). Mean and standard deviations are computed as in Table 2.1.

Name Input fields Range of Reference
mean (nM) σs (nM) σt (nM)

AN01 chlorophyll,
nitrate, surface

irradiance

2.17-2.22 1.22-1.27 0.44-0.55 Anderson et al.
(2001)

BE04 chlorophyll 1.55-1.76 1.19-1.36 0.35-0.46 Belviso et al.
(2004a)

AU02† chlorophyll, silica 1.70 1.65 0.43 Aumont et al.
(2002)

SD02 chlorophyll, MLD 1.78-2.62 1.39-3.63 0.57-1.17 Simó and Dachs
(2002)

HadOCC† chlorophyll, MLD 2.09 2.23 1.01 Collins et al.
(2011)

AT04 chlorophyll, MLD 1.36-2.62 1.29-3.09 0.66-1.59 Aranami and
Tsunogai (2004)

VS07 MLD, surface
irradiance

1.94-2.57 1.22-1.63 0.73-0.90 Vallina and Simó
(2007)

MI09 MLD, surface UV
irradiance

2.21-2.41 1.22-1.57 0.40-0.82 Miles et al. (2009)

† Model output.

(2001) used a proxy for primary productivity to derive the global monthly fields of
DMS. Two other studies soon followed, which computed DMS concentrations from
chlorophyll and an index of marine phytoplankton community structure (Aumont
et al., 2002; Belviso et al., 2004b). The third class of studies use mixed layer depth as
the critical variable to model DMS (Aranami and Tsunogai, 2004; Simó and Dachs,
2002). As a further refinement of the MLD approach, a fourth class of studies modelled
DMS as a function of the so-called solar radiation dose, which, in turn, is mainly a
function of MLD (Vallina and Simó, 2007). Descriptions are provided below of each
algorithm discussed and tested in this study. For clarity, the following abbreviations
are used to identify them: (1) AN01 (Anderson et al., 2001), (2) AU02 (Aumont et al.,
2002) and BE04 (Belviso et al., 2004b), (3) SD02 (Simó and Dachs, 2002) and AT04
(Aranami and Tsunogai, 2004), and (4) VS07 (Vallina and Simó, 2007) and MI09
(Miles et al., 2009).
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2.2.2.1 AN01

The AN01 scheme of Anderson et al. (2001) is an empirical relationship between
DMS and the product of surface chlorophyll concentration (C), light intensity (J)
and a nutrient term. The nutrient term (Q) is a Michaelis-Menten-type limitation
factor: Q = N/(KN + N), where KN is the half saturation constant (taken as 0.5
mmol N m−3) and N is the sea-surface nitrate concentration. For the original AN01
parameterization, Anderson et al. used the GSS DMS database (Kettle et al., 1999),
extracting DMS and in situ chlorophyll and combining them with monthly average
values for light (Esbensen and Kushnir, 1981) and HadOCC simulated sea-surface
nitrate concentration (Palmer and Totterdell, 2001). This resulted in 2622 locations
that had DMS and values for chlorophyll, light, and nitrate; only a small fraction of
the DMS observations in the database had a corresponding value for chlorophyll. A
scatterplot of DMS vs. log10(CJQ) using these data did not show a clear correlation,
so Anderson et al. binned the data sequentially in ascending values of log10(CJQ).
Each bin had exactly 23 data points whose DMS concentration and log10(CJQ) values
were averaged to give 114 binned values. The DMS vs. log10(CJQ) plot of those
points showed a much clearer relationship. Then, the binned values were the basis of
the least-squares broken-stick regression:

DMS = 2.29 for log10(CJQ) ≤ 1.72

DMS = 8.24[log10(CJQ)− 1.72] + 2.29 for log10(CJQ) > 1.72
(1)

For this study, the AN01 parameterization was re-evaluated with the updated GSS
database, and new chlorophyll, shortwave radiation, and nitrate climatologies were
used (Figure 2.1). Various data sources were used, including: the limited number of
in-situ chlorophyll or satellite-derived chlorophyll, and shortwave radiation from either
ISCCP or CERES (accounting for clouds). In addition, various binning methods with
varied amounts of data in each bin were tested. One difference from the original
approach of AN01 was that log10(DMS) was used as the predictand rather than DMS
(Figure 2.1). The broken-stick regression results are not strongly sensitive to the choice
of dataset or bin number. The best-fit model is:

log10(DMS) = 0.07 log10(CJQ) + 0.23 for log10(CJQ) ≤ 1.50

log10(DMS) = 0.52 log10(CJQ)− 0.45 for log10(CJQ) > 1.50
(2)

Interestingly, with the additional data, a positive slope for data in the lower range
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of log10(CJQ) could be detected. A slightly stronger correlation could be achieved
with observations when using the new regression based on the logarithmic transfor-
mation. Because the algorithm was meant to derive global DMS distribution from
climatological data, the particular relationship above is only based on climatological
satellite chlorophyll instead of in situ measurements. Furthermore, discrete DMS
measurements were averaged in monthly 1°×1° bins, and each bin mean value was
associated with the corresponding value of chlorophyll, light, and nitrate from the
climatologies. Monthly global DMS fields were derived by using the new equation
with monthly fields of chlorophyll concentration, irradiance, and nitrate.

2.2.2.2 AU02 / BE04

Aumont et al. (2002) presented diagnostic relationships to predict particulate DMSP
as well as DMS concentration as a function of chlorophyll concentration and a ratio
indicating the proportion of microphytoplankton (Fp-ratio). The Fp-ratio was originally
defined as the ratio of the integrated concentrations of the pigments fucoxanthin
(characteristic for diatoms) and peridinin (characteristic for dinoflagellates) to the
sum of the integrated concentrations of diagnostic pigments of all taxa in a plankton
community (Claustre, 1994). Due to the difficulty of estimating global distributions
of those pigments (whether through models or observations), Aumont et al. (2002)
estimated the Fp ratio with a silica ratio that is defined as the ratio of the local
production of biogenic silica to the maximum production of biogenic silica. This proxy
estimate was then applied in a global ocean model to derive the global distribution
of DMS and DMSP. Global observation-based fields of either Fp-ratio or silica ratio
were unavailable, so reconstructing DMS with the AU02 algorithm was impossible.
Therefore, only the model output from the original publication (Aumont et al., 2002)
was used. In the present study, AU02 represents a model-derived DMS reconstruction
and is independent of observational input data.

Belviso et al. (2004b) modified the empirical relationship of Aumont et al. (2002)
to describe DMS as a function of chlorophyll only. Pigment measurements from
the Atlantic Ocean (Belviso et al., 2001) were used to come up with an empirical
relationship that describes the Fp ratio as a function of chlorophyll concentration.
Thus, Belviso et al. (2004b) were able to use global fields of chlorophyll from a 4-year
(1998-2001) long dataset of satellite (SeaWiFS) measurements to generate monthly
mean maps of sea-surface DMS concentration. As with AU02, the absence of global
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Figure 2.1: DMS (a, b) and log10(DMS) (c, d) vs. log10(CJQ). (a, c) Raw data
(N = 3445); (b, d) Binned data after averaging 3444 raw data points into 82 bins
containing each 42 raw data points. One data point was randomly omitted in the
binning process to ensure that each bin contained an equal number of data points. A
similar illustration was used as in Anderson et al. (2001) in order to better compare
the original and new approaches. Open circles in (b) and (d) show the means of the
82 bins which are the basis of the new “broken-stick” regression. The median of each
bin of 42 raw data values for log10(CJQ) < 1.5 are included in (b) to compare with
the original approach of Anderson et al. (2001) who used the median for log10(CJQ)
(instead of the mean) below the breaking point(s) for the regression. The “broken-stick”
regression based on log10(DMS) vs. log10(CJQ) is shown as a red dashed line (b, d).
Original AN01 regression is shown as a black solid line in (b).

pigment data precluded the present analysis from re-estimating model parameters of
the BE04 algorithm.

To construct a monthly DMS climatology following the BE04 approach, the
equations were used as described in Belviso et al. (2004b). In addition to the 4 years
of monthly fields of chlorophyll, this study also used the climatological mean field for
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Figure 2.2: Seasonal mean of DMS surface concentration computed from BE04
algorithm. (a, c) Global distribution of DMS concentration derived from chlorophyll
climatology and (b, d) from monthly fields of SeaWiFS chlorophyll. Seasonal distribu-
tions are averages for December-January-February (a, b) and June-July-August (c,
d).

each month. While this approach might have reduced the resulting variability, the
original dataset (S. Belviso, personal communication) showed close agreement with the
climatological approach (Figure 2.2). For construction of the DMS climatology with
the BE04 algorithm, the method of the original authors was used when filling data
gaps. Instead of estimating missing chlorophyll data by linear interpolation, DMS
was set as 0.2 nM for all regions where the chlorophyll climatology had no data. In
addition, the same upper cutoff for DMS concentration, 50 nM, was used, to avoid
unrealistically high values for coastal waters.

2.2.2.3 SD02 / AT04

Simó and Dachs (2002) built an empirical relationship that enables calculation of DMS
from chlorophyll concentrations (Chl) and MLD. As in AN01, they chose data pairs
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from the DMS database that included both chlorophyll and DMS. Filtering out those
data points that had DMS > 100 nM and/or chlorophyll > 15 mg m−3 (that is, points
associated with coastal areas or extreme algal blooms) resulted in 2385 data pairs.
Each pair was then associated with a climatological MLD by corresponding latitude,
longitude, and month. The MLD was taken from an older climatology (Monterey and
Levitus, 1997). Data pairs were averaged according to cruises or hydrographic regions,
resulting in 43 average values for DMS (nM), Chl (mg m−3), and MLD (m). Given
the 43 data points, Simó and Dachs (2002) came up with a two-equation algorithm
with a threshold determined by the ratio of chlorophyll to MLD (Chl/MLD, mg m−4):

DMS = − ln(MLD) + 5.7 for Chl/MLD < 0.02 mg m−4

DMS = 55.8

(
Chl

MLD

)
+ 0.6 for Chl/MLD ≥ 0.02 mg m−4

(3)

Since the -ln(MLD) term in equation (3) produces negative DMS concentration for
very large MLD, a lower limit of zero had to be imposed for the calculated DMS
concentration.

Aranami and Tsunogai (2004) considered additional observational DMS data
from northern North Pacific regions using the method proposed by Simó and Dachs
(2002). They found that the Simó and Dachs algorithm is not entirely consistent with
observations in the open ocean. In the case of Chl/MLD < 0.02 mg m−4, the SD02
relationship underestimates DMS in shallower MLD (MLD <∼40 m) and overestimates
it in deeper mixed layers. Aranami and Tsunogai (2004) only reconsidered the MLD-
only equation of the piecewise relationship of Simó and Dachs (2002) (first line in
equation (3)). Instead of the inverse logarithmic regression with MLD, they suggested
a simple dilution model as an alternative. The dilution model produced by Aranami
and Tsunogai (2004) is

DMS ×MLD = constant for Chl/MLD < 0.02 mg m−4 (4)

The given observation yielded a best-fit relationship of DMS×MLD = 60±30 µmol m−2.
The dilution model suggests a variability in DMS that is larger than that given by
Simó and Dachs (2002) (see Figure 5 in Aranami and Tsunogai (2004)).

The present study reconsidered both approaches with the complete GSS DMS
database and the chlorophyll climatology and MLD climatologies. Use of additional
data that included all ocean regions showed much more variability than the results
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Figure 2.3: Variation in the root mean square difference (RMSD) and the difference
in relative standard deviation (RSD) between AT04 derived and observed DMS with
DMS×MLD for Chl/MLD< 0.02 mg m−4.

of Simó and Dachs (2002) indicated. The regression model was not robust to a
variation of binning approaches, such that a regression analysis could not detect a
robust best-choice relationship between DMS and MLD. Therefore, it was decided
to retain the equations as published in Simó and Dachs (2002) to create a monthly
climatology of DMS fields using the composite chlorophyll climatology and available
MLD fields.

For the AT04 approach, the relationship DMS×MLD = 56 µmol m−2 was used
to reconstruct global fields of DMS concentration, because this value minimized
the misfit between model and the observations (Figure 2.3). Considering various
binning techniques and different MLD climatologies, Spearman rank correlation
for the AT04 model with observations ranged from 0.27 to 0.41. The MLD fields
of de Boyer Montégut et al. (2004) resulted in the best possible correlation with
observations. AT04 derived DMS distributions with MLD based on a fixed density
criterion (depth at which σθ > 0.03 compared to σθ at 10 m depth) or a fixed
temperature criterion (0.2℃ departure with respect to the temperature at 10 m)
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Figure 2.4: Regression for the AT04 algorithm for DMS vs. MLD in case of
Chl/MLD< 0.02 mg m−4. Averages of DMS and MLD for 5°×5° latitude-longitude
grid boxes are shown as grey data points.

resulted in similar correlation with observations. The correlation between modelled
and observed DMS was relatively insensitive to DMS×MLD ranging from 30 to 60
µmol m−2. For DMS×MLD > 60 µmol m−2, correlation with observations declined.
The constant value of 56 µmol m−2 for DMS×MLD was chosen so that the relative
standard deviation (sigma/mean) of the resulting DMS distribution was closest to
that of the observational (GSS) DMS dataset (for DMS < 50 nM). Furthermore,
DMS×MLD = 56 µmol m−2 is approximately the value for which the root mean
square difference between parameterized and observed DMS is at a minimum (Figure
2.3). However, the scatter of the data is very large (Figure 2.4).

2.2.2.4 VS07 / MI09

Vallina and Simó (2007) investigated the possibility that seawater concentration of
DMS is linked to the exposure to sunlight that organisms in the sunlit ocean surface
layer receive. They defined a so-called solar radiation dose (SRD) to describe the
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exposure of sunlight the upper mixed layer receives on average at a certain time of
the year. As in Vallina and Simó (2007), SRD was calculated in the present study
assuming an exponential decay of the daily average surface solar irradiance (I0) with
depth, such that

SRD =
I0

(kMLD)

(
1− e−kMLD

)
(5)

where I0 is the daily average surface solar irradiance, and k the light-extinction
coefficient. For the global ocean, Vallina and Simó (2007) calculated daily average
top-of-the-atmosphere solar irradiance (Brock, 1981) and then applied a transmission
coefficient of 0.5 to obtain I0. This methodology was tested along with more realistic
satellite derived surface irradiance products from CERES and ISCCP. Furthermore,
various MLD climatologies based on different criteria were considered. In the original
study by Vallina and Simó (2007), MLD was obtained from de Boyer Montégut et al.
(2004), with a fixed temperature criterion, taken as the depth at which temperature was
0.1℃ lower than the temperature at 5 m depth (hereinafter referred to as VS07it). The
present study also uses two additional MLD climatologies from de Boyer Montégut et al.
(2004) (referred to as BMit and BMip), as well as MLD derived from the World Ocean
Atlas 2009 temperature (Locarnini et al., 2010) and salinity fields (Antonov et al.,
2010) (referred to as WOA09). Vallina and Simó (2007) light-extinction coefficient of
k = 0.06 m−1 was adopted, based on previous experimental studies (Smith and Baker,
1979).

The DMS-SRD linear relationship was re-fitted for the different light and MLD
climatologies, based on the approach of Vallina and Simo (2007). To construct a global
relationship between DMS and SRD, the ocean was divided into 10°×20° latitude-
longitude boxes. For each month, gridded SRD data and available DMS measurements
from the GSS DMS database were averaged within the boxes. Further averaging of the
DMS and SRD data by 15 W m−2 intervals reveals a linear relationship between DMS
and SRD. Linear regression analyses of DMS vs. SRD for each combination of MLD
and light fields yield corresponding equations that can be used to construct a global
climatology of DMS from global fields of MLD and light. Figure 2.5 (a) through (d)
illustrate examples of linear regression between DMS and SRD.
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Figure 2.5: Regression of DMS on SRD for the VS07 algorithm. (Continued on the
following page)
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Figure 2.5: Similar illustration was used as in Vallina and Simó (2007)/Lana et al.
(2012) in order to better compare results of this study with previous studies. As
for the original VS07 approach, DMS and SRD are first averaged by grid size (10°
latitude by 20° longitude) and then binned by SRD intervals of 15 W m−2. The
gray shaded area shows the standard deviation of the averages (black dots). Under
each data point, the upper number represent the amount of 10°×20° means and the
lower number represents the amount of original DMS samples included. Different
panels show regression corresponding to different sources: Top panels (a, b) show
regressions using half of top-of-the-atmosphere (TOA) for I0 with (a) MLD as in
original VS07 (VS07it: definition criterion of a 0.1℃ departure with respect to the
temperature at 5 m) and (b) MLD by de Boyer Montegut (BMit: definition criterion
of a 0.5℃ departure with respect to the temperature at 10 m). Middle panels (c, d)
show regressions using clear-sky surface irradiance by CERES for I0 with (c) MLD by
BMit and (d) MLD by WOA 2009 (definition criterion of depth at which density is
0.125 kg m−3 greater with respect to surface). Bottom panels (e, f) show regressions
using all-sky surface irradiance by (e) CERES and (f) ISCCP for I0 with (e) MLD by
BMit and (f) MLD by de Boyer Montegut (BMip: definition criterion of 0.03 kg m−3
departure with respect to value at 10 m depth). When using all-sky surface irradiance
for I0 (e, f), the relationship is nonlinear, such that a quadratic (instead of a linear)
regression is shown in panels e and f.

Miles et al. (2009) used observational data from the Atlantic Meridional Transect
(AMT) program to test the VS07 relationship between DMS and SRD. Besides
SRD, Miles et al. also derived an ultraviolet radiation dose, restricting surface
irradiance to a narrower spectral band corresponding to UV-A (315-400 nm). The
proposed relationship between DMS and UVRD uses a cloud-adjusted irradiance field
and considers only UV radiation, which is believed to affect DMSP production in
phytoplankton. However, the new expression did not improve the correlation with
Miles et al.’s AMT data compared to the SRD methodology of Vallina and Simó
(2007).

This study used the same methodology as described in Vallina and Simó (2007)
to derive DMS distributions from the MI09 approach. The only difference was the
use of a UVA climatology instead of total solar irradiance. Furthermore, a universal
attenuation coefficient of k = 0.10 m−1, appropriate for UVA under oligotrophic
conditions (Miles et al., 2009), was used. As a global field of I0, the NASA TOMS
UVA surface irradiance product was used. As with VS07, the present study considered
different MLD fields to obtain relationships between DMS and UVRD (Figure 2.6).
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Figure 2.6: Regression of DMS on UVRD for the MI09 algorithm. Illustration is
as in Figure 2.5. DMS and UVRD are first averaged by grid size (10° latitude by 20°
longitude) and then binned by UVRD intervals of 1 W m−2. Different panels show
regression corresponding to different sources. The upper four panels show regression
using clear-sky UV-A irradiance with (a, b) MLD by de Boyer Montegut (BMit and
BMip); (c) WOA 2009 and (d) CanESM. The bottom two panels show regression
using all-sky UV-A irradiance with MLD by (e) BMit and (f) BMip.
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2.2.3 Methodology used for the intercomparison and evalua-

tion of DMS climatologies

2.2.3.1 Taylor diagram

Taylor diagrams (Taylor, 2001) are a convenient way to compare all available DMS
reconstruction simultaneously with a reference dataset (in the present case, L10 or the
observations). Taylor diagrams were computed for the complete global spatiotemporal
distributions of DMS concentration. In a Taylor diagram, each dataset (reference
and test) is represented by a single point. The radial distance (i.e., the distance from
the origin) of the point on the diagram corresponds to the standard deviation of
the dataset, while the angle relative to the vertical corresponds to the correlation
coefficient. The centered root-mean-square (RMS) error corresponds to the distance
between the points corresponding to the reference and test datasets (Taylor, 2001).

2.2.3.2 Mapping temporal correlations

To analyze temporal correlations between reconstructed DMS distributions and the
observation-based L10 climatology, global maps of correlations between seasonal cycles
were constructed. This revealed information about regional differences, such as where
specific reconstructions were consistent with the L10 climatology, and where they
were not. The procedures described in Lana et al. (2012) and Vallina et al. (2007a)
were followed, with slight modifications. Global distributions of Spearman’s rank
correlation coefficient (ρ) were derived by taking the gridded data in a 5°×5° window
and calculating the corresponding ρ for each 1°×1° grid point. The rank coefficient ρ
was used instead of the more usual Pearson coefficient, because the seasonal cycles
are not normally distributed. Rather than evaluating temporal correlations for each
individual grid point, a perimeter of 5°×5° was chosen. Thus, for each grid point
within a monthly map, 24 surrounding points were used in the evaluation along with
the central point. This helped to focus the analysis on larger-scale variations, and
minimize the influence of small-scale differences. For 12 monthly fields, 300 data
points (12×25) were used to calculate ρ for individual 1°×1° grid points. Along the
coast, points were omitted which had more than 5 grid points of land mask.
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2.2.3.3 Binning, averaging, and filtering DMS data

For comparison to DMS observations, the gridded DMS fields were sampled at the
corresponding location and month. When comparing gridded products representing
mean data for a given climatological month, differences in scale and resolution need to
be taken into account. The gridded products are not directly comparable to the raw
observations, as the gridded products do not resolve the fine-scale temporal and spatial
variability of the observational data. To account for differences in spatial and temporal
structure, observations were binned by month in 5°×5° grid boxes, and the gridded
DMS products were sampled monthly as 5°×5° spatial averages at the locations of the
raw observations. Abnormally extreme raw data (> 100 nM), such as data arising
from an algal bloom, were not considered representative of the regional mean state and
removed from the analysis before averaging. Grid averages that consisted of less than
three measurements were flagged for optional filtering. When averaging the gridded
fields, 5°×5° domains which contained more than 10 points associated with land mask
were excluded from further analysis.

For comparison of annual cycles (Section 2.3.4.3), control regions were chosen that
have (near) complete seasonal coverage of observational data. For each region, spatial
averages of available observations, L10 and reconstructed DMS were computed for
each month of the year. When averaging observational data by month, the available
samples were first averaged for each 5°×5° grid within the control area, instead of
computing a single average for the entire region. This was done because discrete
DMS samples from the GSS database are usually distributed non-uniformly within the
assigned control regions. A single mean for the observational data in a given region
could be dominated by a few clusters of data points, and would not be representative
of the whole region.

2.3 Results

2.3.1 Observationally-based climatologies

The observation-based climatologies (K99, K00, and L10) are produced using similar
methodologies, with L10 making use of the largest set of observations (Table 2.1).
Nonetheless, similarities and differences among the three climatologies are evident
from their annual mean spatial distributions and zonal mean distribution in latitude
and time (Figure 2.7).
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Figure 2.7: Global map of annual mean DMS concentration (nM) and corresponding
zonal mean annual cycle for each observation-based climatology: K99 (upper panel),
K00 (middle panel) and L10 (lower panel). The colour scale has an upper limit of 12
nM for illustrative purposes. Note that there are regions in the high latitudes where
annual mean DMS concentration exceeds 12 nM.
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The differences between K99 and K00 are minor since only slight adjustments
from K99 were undertaken in constructing K00. Both climatologies have the same
basic spatial structure (Figure 2.7). K00 included a few updates in terms of data
additions from the Atlantic (Belviso et al., 2000) and Indian Oceans (Sciare et al.,
1999). The main change resulted from a modification in the interpolation scheme that
better represents wintertime DMS concentrations for high latitude provinces (Kettle
and Andreae, 2000). The effect of the adjustment is evident in the clear reduction
in the annual mean DMS concentration in the North Atlantic and North Pacific, as
well as a slight increase in the Southern Hemisphere. The change in the temporal
interpolation scheme is also evident in the enhanced seasonality in K00 relative to
K99, as illustrated in the latitude–time plot of K99 and K00 (Figure 2.7). The high
northern latitudes show lower DMS concentration during the winter months in K00
as compared to K99. In turn, the Southern Hemisphere in K00 shows higher DMS
concentration in December.

On the other hand, the differences between K00 and L10 are rather large (Figure
2.7). The methodology used to produce the fields is the same, but the inclusion of
about 10 more years of data has changed the temporal and spatial pattern significantly.
In particular, DMS concentrations in the Southern Hemisphere differ due to addition
of many new data (Lana et al., 2011). Annual mean DMS concentration is nearly
twice as large in the southern Indian Ocean and Western Equatorial Pacific in L10
compared to K00. There is higher annual DMS concentration in the northeast Pacific,
whereas the annual mean in the North Atlantic is reduced in L10 compared to K00. A
detailed description of the improved spatial and temporal patterns of L10 compared
to K00 is presented in Lana et al. (2011). Since L10 represents a distinct improvement
from K99 and K00 (Figure 2.8), it can be regarded as the best available choice for the
observationally-based DMS climatology.

2.3.2 Sensitivity of parameterized DMS to different input fields

Before comparing the DMS distributions from the available empirical algorithms
with the observation-based climatology and models, it is important to consider the
robustness of each individual algorithm to variations in its input fields. The questions
to be addressed are: Which algorithm tends to be more sensitive to which input field?
Are the differences resulting from different inputs comparable to the differences among
different functional forms (e.g., SD02 vs. AT04)? To what extent does reestimation
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of the algorithm’s coefficients with new data change the output? As GCM fields are
biased relative to observations, the sensitivity of simulated DMS fields to input fields
is particularly important with regard to the implementation of these algorithms in
global models.
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Figure 2.9: Global maps of the annual mean surface concentration of DMS (nM)
computed with the SD02 (a, c, e) and AT04 (b, d, f) algorithms with different MLD
products: (a, b) BMip; (c, d) WOA09 and (e, f) CanESM.

Global climatologies of chlorophyll are based on satellite ocean colour. Since such
remotely-sensed chlorophyll products are fairly well constrained (McClain, 2009), few
differences among the different products can be expected. For the algorithms that have
chlorophyll as an input field (AN01, BE02, SD02, and AT04), three different chlorophyll
fields were used, which are not entirely independent of each other: (1) a SeaWiFS
chlorophyll climatology (1998-2004); (2) monthly fields of SeaWiFS chlorophyll from
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2000 to 2007; and (3) a composite of SeaWiFS, MODIS-Aqua, and Terra (1998-2012).
For any particular algorithm, the resulting DMS fields from the different climatological
fields were very similar. The algorithm with the greatest sensitivity to chlorophyll is
BE04, for which the global mean varies from 1.55 to 1.76 nM among the three fields
(Table 2.3). SD02 and AT04 have greater sensitivity overall, although this is not due
to chlorophyll.

Biases in GCM-based chlorophyll are expected to be larger than observationally
based values, which can lead to greater differences in DMS concentration. The
exploration of DMS sensitivity to differences in simulated chlorophyll distributions was
not within the scope of this study. However, this study considered SD02-simulated DMS
from HadOCC (Collins et al., 2011) and AU02-simulated DMS from IPSL-OCCM2
(Aumont et al., 2002), both use simulated chlorophyll concentrations. Comparisons
between SD02 derived DMS from satellite chlorophyll fields and HadOCC as well as
between AU02 derived DMS from satellite chlorophyll and IPSL-OCCM2 is discussed
in Section 2.3.3.

Low sensitivity was observed in AN01 when using different surface irradiance
products. In SD02, AT04, VS07, and MI09, algorithm sensitivity was explored for
different MLD products, both model derived (CanESM2) and observation-based (WOA
2009; de Boyer Montégut et al., 2004). In general, the sensitivities of the algorithms
to different MLD input fields were fairly low. Among the observation-based MLD
climatologies (WOA 2009; de Boyer Montégut et al., 2004) especially in SD02 and
AT04, the main deviations were in the variability of the output fields (Table 2.3). The
largest differences occurred over the continental shelves, and mostly in the Northern
Hemisphere summer (Figure 2.9). Those regions are generally associated with high
chlorophyll concentrations, so small changes in MLD result in large changes of the
chlorophyll to MLD ratio and therefore of the predicted DMS. While the MLD field
in Arctic and coastal regions derived from WOA 2009 temperature and salinity is
strongly influenced by the strong salinity gradients that occur due to strong fluxes of
freshwater, these features are not apparent in the MLD field from de Boyer Montégut
et al. (2004). When the continental shelves are disregarded, annual mean fields of
DMS concentration are more consistent among the different MLD input fields (Figure
2.9).

Not surprisingly, the differences in the DMS fields using model simulated MLD
were greater compared to different observation-based data products (Figure 2.9), as
spatial patterns of modelled MLD fields are less constrained than those based on
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Figure 2.10: Various MLD products, observation-based (a, b, c) and model (d).
Panels a, b and c represent MLD distributions derived from profile data (BMip, BMit
and WOA09). Panel d represent simulated MLD from a global ocean model (CanESM).

observations. Figure 2.10 illustrates that differences between models are larger than
differences between observational MLD products or different criteria (density versus
temperature). When implementing MLD-based empirical algorithms for DMS into
global ocean models, it should be considered that inter-model differences in simulated
MLD tend to be large (Doney et al., 2004). In general, it can be assumed that
inter-model differences in chlorophyll, nitrate, and MLD might generate differences in
the DMS fields comparable in size to the differences between the observational and
model fields.

Considering VS07, Lana et al. (2012) showed that the relationship between DMS
and SRD is robust to different DMS data sources. The present study confirmed this
robustness using different MLD products, as the coefficients of the regression line
between SRD and DMS differed only marginally (Figure 2.5). Different irradiance
fields were used to derive the SRD distribution: satellite-derived climatologies (CERES,
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ISCCP) and top-of-atmosphere irradiance (Brock, 1981) reduced by 50% as in Vallina
and Simó (2007). Interestingly, when all-sky surface irradiance fields obtained by
CERES or ISCCP (which account for clouds) were used, binned SRD showed a
more nonlinear relationship with binned DMS than when using the fields derived
by equations from Brock (1981) (Figure 2.5 e and f). This finding suggests that
the variation in MLD, rather than the variation in SRD, directly controls DMS,
whereas irradiance helps to account for the general DMS seasonality (Miles et al.,
2009). Similarly, for MI09, the linear relationship between UVRD and DMS is only
observed when using clear-sky, as opposed to cloud-adjusted, surface UVA irradiance
field (Figure 2.6).

For the rest of this study only one DMS concentration field is used for a given
algorithm. A preliminary correlation analysis with all available input fields for AN01,
BE04 (Table 2.4), SD02, AT04 (Table 2.5), VS07 (Table 2.6) and MI09 (Table 2.7)
has been undertaken to evaluate the different combinations of input fields. For most
algorithms, the differences in correlations are very small. For each algorithm, the DMS
concentration field with the greatest Spearman correlation was chosen for further use
in the intercomparison. The only exception is SD02 and AT04 for which the BMip

MLD field was used to be consistent with previous studies.

Table 2.4: Correlations of different DMS fields derived from AN01 and BE04 with
observations. Three different chlorophyll fields were used to obtain the different DMS
fields. Correlations between observations and the original DMS fields (as presented in
the original publication or obtained from the author) are also included. Observations
were averaged in monthly 5◦ × 5◦ bins. Correlation is given as Spearman correlation
coefficient (and Pearson correlation coefficient in brackets).

Chlorophyll AN01 BE04
merged climatology 0.46 -0.03

(0.47) (0.12)
SeaWiFS climatology 0.45 0.13

(0.52) (0.28)
SeaWiFS monthly fields 0.44 0.09

(0.49) (0.24)
original (as published) 0.40 0.15

(0.46) (0.31)
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Table 2.5: Correlations of different SD02 and AT04 DMS fields with observations
given different MLD fields. Observations were averaged in monthly 5◦ × 5◦ bins.
Correlation is given as Spearman correlation coefficient (and Pearson correlation
coefficient in brackets).

MLD fields SD02 AT04
BMit 0.41 0.42

(0.19) (0.22)
BMip 0.35 0.36

(0.19) (0.22)
WOA09 0.26 0.26

(0.08) (0.03)
CanESM 0.25 0.25

(0.24) (0.19)

Table 2.6: Correlations of different VS07 DMS fields with observations. Observations
were averaged in monthly 5◦ × 5◦ bins. Correlation is given as Spearman correlation
coefficient (and Pearson correlation coefficient in brackets).

BMit VS07it BMip WOA09 CanESM
TOA×0.5 0.49 0.45 0.46 0.38 0.40

(0.27) (0.21) (0.24) (0.14) (0.31)
CERES (clear-sky) 0.50 0.45 0.47 0.39 0.41

(0.28) (0.22) (0.25) (0.15) (0.32)
CERES (all-sky) 0.44 0.38 0.40 0.33 0.40

(0.21) (0.15) (0.18) (0.08) (0.26)
ISCCP (all-sky) 0.43 0.37 0.39 0.33 0.40

(0.19) (0.14) (0.16) (0.08) (0.26)

Table 2.7: Correlations of different MI09 DMS fields with observations. Observations
were averaged in monthly 5◦ × 5◦ bins. Correlation is given as Spearman correlation
coefficient (and Pearson correlation coefficient in brackets).

BMit VS07it BMip WOA09 CanESM

UVA (clear-sky) 0.46 0.41 0.43 0.35 0.40
(0.20) (0.14) (0.17) (0.09) (0.28)

UVA (all-sky) 0.37 0.32 0.34 0.30 0.39
(0.08) (0.03) (0.05) (0.01) (0.21)
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2.3.3 Spatial and temporal variations in the given DMS recon-

structions

Figure 2.11 shows the annual mean fields of DMS from L10 along with those estimated
by seven algorithms. The spatial pattern of annual mean DMS concentration fields
show substantial differences from each other. However, some fields are clearly alike
due to similarities in the algorithms and input fields. General similarities in the global
distribution of annual mean DMS concentrations are seen between SD02 and AT04,
as well as VS07 and MI09, all of which include MLD as a key parameter (Figure
2.11). Unlike SD02 and AT04, VS07 and MI09 do not show enhancement around the
coastlines because they do not include chlorophyll as an input variable.

The annual mean DMS concentration field from AN01 shows patterns distinct
from other reconstructions and primarily reflects the spatial pattern of chlorophyll
and nitrate (Figure 2.11). Calculated DMS concentration increases with chlorophyll,
irradiance, or nitrate and is uniform over large areas of the open ocean. High
concentrations are mostly associated with high chlorophyll concentration, while many
regions of low concentration correspond to regions with minimal nitrate concentrations.
Large regions of the surface ocean in the tropics and subtropics are low in productivity,
nitrate and chlorophyll (e.g., McClain et al., 2004). The original algorithm of Anderson
et al. (2001) assigned a fixed minimum DMS concentration of 2.29 nM, resulting in
vast regions of constant DMS concentration and relatively little spatial and temporal
variability (Belviso et al., 2004a). The DMS field resulting from the updated AN01
algorithm discussed in Section 2.2.2.1 has no baseline value and provides more spatial
variation (Figure 2.11).

Similar to AN01, BE04 estimates DMS concentration as a function of chlorophyll.
However, since its functional form is very different from AN01, the annual mean fields
and the seasonal variations, are very different from AN01 (Figures 2.11 and 2.12).
BE04 generally predicts lower DMS than AN01 in coastal and other highly-productive
regions. On the other hand, the subtropical regions, such as the Sargasso Sea and
South Indian Ocean, have higher DMS concentration in BE04 relative to AN01 (Figure
2.11).
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Figure 2.11: Global maps of the annual mean surface concentration of DMS (nM)
from (a) L10 climatology, (b) AN01, (c) BE04+AU02, (d) BE04, (e) SD02, (f) AT04,
(g) VS07 and (h) MI09 parameterizations. “BE04+AU02” indicates a combination of
BE04 and AU02 algorithm: The Fp-ratio was derived using formulations as in BE04,
while DMS concentrations was calculated with AU02.
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Figure 2.12: Latitude-time plots of the sea-surface concentration of DMS. For
latitude-time plots of the observation-based climatologies see Figure 2.7.
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Figure 2.13: Global maps of annual mean surface concentration of DMS (nM) from
the two diagnostic models (i.e., DMS based on algorithms implemented in a model).

Comparison of the different algorithms show that depending on how the DMS is
parameterized, DMS distributions differ substantially in spatial and temporal structure
(Figure 2.11 and 2.12). GCM-based DMS fields (Figure 2.13 and 2.14) also differ
greatly from each other and do not share many features in common with L10 or
empirically-derived DMS fields. It is striking how different the observationally-based
fields of SD02 (Figure 2.11) are from the model output of HadOCC (Figure 2.13),
which implements the SD02 algorithm in a global ocean carbon model. This difference
illustrates the effect of model bias on the resulting DMS distribution. The same is
true for the AU02 algorithm when it is implemented in the ocean carbon cycle model
IPSL-OCCM2 versus the reconstruction with satellite-based chlorophyll. However,
here the functional forms are slightly different, because the Fp ratio had to be derived
form the chlorophyll fields using the formulation presented in Belviso et al. (2004b).

HAMOCC, PlankTOM, PISCES, and POP-TGM represent fully prognostic models
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of DMS production and distribution. Some similarities are seen in the annual mean
concentration fields of PISCES and HAMOCC (Figure 2.14), having patterns closer to
general marine productivity than the ones from PlankTOM and POP-TGM. Inspection
of the available reconstructions, demonstrates that DMS fields derived from algorithms
with observationally-based input shows greatly reduced spatial variability relative to
the observation-based climatologies (L10 and K00) and most of the GCM-based DMS
fields (Figures 2.11, 2.13 and 2.14).
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Figure 2.14: Global maps of annual mean surface concentration of DMS (nM) from
four global models.
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In many reconstructed or modeled fields, DMS concentrations in the eastern equa-
torial Pacific are enhanced (Figures 2.11, 2.13 and 2.14). MLD-derived climatologies
(SD02, AT04, VS08, MI09, HadOCC) show low annual-mean concentrations in the
North Atlantic relative to L10 (between 45°N to 60°N; Figures 2.11 and 2.13), likely be-
cause of the deep mixed layers in the winter and spring. The DMS fields of HAMOCC,
PISCES, and PlankTOM, for which the source of DMS is not directly controlled by
variation in MLD, also show lower DMS in that region. This is not the case with
AN01, as the latter puts more weight on chlorophyll concentration.

A number of fields (L10, SD02, AT04, VS07, MI09, as well as model output
from HadOCC and HAMOCC) show a band of low annual-mean DMS concentration
between 40°S to 60°S (Figures 2.11, 2.13 and 2.14). This band is narrower in HAMOCC
(Figure 2.14) and HadOCC (Figure 2.13) than in SD02, AT04, VS07 and MI09 (Figures
2.7 and 2.11). However, this band is not a consistent feature among reconstructions.
AN01, for example, shows a pattern of generally elevated annual-mean DMS along this
band (Figure 2.11). DMS concentrations in the Southern Ocean are lowest in AT04
and SD02, because of the strong dependence on MLD, which are deep in the Southern
Ocean due to strong winds and surface heat loss. The Southern Ocean band of low
DMS in mechanistic models (such as HAMOCC) (Figure 2.14) likely results from
large MLD in concert with a predominance of diatoms (Cameron-Smith et al., 2011;
Kloster et al., 2007). Elevated concentrations adjacent to Antarctica are present in
some climatologies, but only PISCES estimates very high DMS concentrations similar
to L10.

Considering the latitude–time plots (Figure 2.12), a greater seasonal variation
in DMS concentrations at high latitudes compared to lower latitudes is a feature
of most reconstructions and global simulations. Seasonal variation in the low to
mid-latitudes is generally weaker, and its pattern varies greatly between the different
reconstructions, and there is no general feature apparent among all the climatologies.
The seasonal range varies substantially among the different reconstructions. In some of
the prognostic models (e.g., HAMOCC, PISCES), concentrations can vary by almost
two orders of magnitude over the year (Figure 2.12).

Patterns of seasonal variability of DMS in SD02, AT04, and VS07 are similar,
although high-latitude summer concentrations in the Northern Hemisphere (NH) are
much larger in SD02 and AT04 (Figure 2.12 and 2.15). AN01 exhibits high DMS
concentration in the NH summer which is similar in its persistence compared to
L10 (Figure 2.7 and 2.15). However, in AN01, there is a markedly smaller seasonal
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variability, especially between 20°N and 40°N (Figure 2.12 and 2.15a). Globally, there
is little seasonal variability between 40°S and 40°N in AN01 and BE04. Most other
approaches show distinct seasonal variability in mid-latitude bands (between 20° and
40° N/S) and substantially less variability in the tropical latitudes (Figure 2.12 and
2.15). The constant moderate concentration in the tropics throughout the year is
shared with the observational climatology L10 (Figure 2.7). BE04 shows a consistently
low concentration, whereas HadOCC and HAMOCC show elevated DMS concentration
throughout the year (Figure 2.12), with maximum concentrations in January to April
and August to October. The only climatology where tropical latitudes are more
seasonally variable is HadOCC (Figure 2.12 and 2.15) with maxima in spring and fall
(Figure 2.12).

Table 2.8 confirms that none of the spatiotemporal distributions of DMS concentra-
tion strongly correlated with one another. Correlation is only high when approaches
are similar. Correlation coefficients only exceed 0.60 when two models possess common
key parameters, such as MLD in SD02 and VS07 (Table 2.8).

2.3.4 Assessing DMS reconstructions

2.3.4.1 Testing global fields of reconstructed DMS against the L10 clima-
tology

Global space-time distributions Directly comparing gridded maps and zonal
mean (latitude-time) plots allows a qualitative analysis of general patterns in the
reconstructed distributions of DMS. As a more quantitative evaluation, the different
fields can be compared together against a standard climatology using Taylor diagrams.
Although it is not perfectly accurate, L10 is chosen as the standard climatology
representing the spatial and temporal patterns most closely related to observations
(Figure 2.8).

Figure 2.16 provides a concise demonstration that none of the parameterized (Panel
A) or modeled (Panel B) DMS patterns match well globally with the L10 climatology.
The prognostic models other than PlankTOM show similar or greater variability than
L10. The older observation-based climatology (K00) also has a much greater variability
than L10; this result shows how the incorporation of extra data has smoothed the
interpolated DMS fields (Figure 2.7). All parameterized DMS distributions have lower
variability than L10. Although the variability of SD02 and AT04 are close to L10,
they demonstrate weak spatial correlation and high RMS error.
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A

B

Figure 2.16: Taylor diagrams describing the total space-time variations of DMS
concentration as obtained from 12 gridded data sets compared with L10, separated by
ranges of variability. Panel A shows DMS concentrations estimated from empirical
algorithms, which show generally low variability compared to L10. Panel B shows all
remaining estimates including prognostic models and K00.
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It can be argued that many features in L10 are based on localized observations that
do not correspond to the monthly mean state and result in its relatively high spatial
variability. Choosing only the low to medium concentration range of L10 (0 to 4.2 nM),
corresponding to 90% of the data, and comparing it to the reconstructions improves the
agreement in variance: most parameterized DMS fields now have variability similar to
L10 (Figure 2.17). However, the correlations are still very weak. The only improvement
can be seen with VS07 and MI09, which both improve by about 0.2 (compare Figure
2.16 Panel A with Figure 2.17). This indicates that the SRD regression accounts
for variations in the medium concentration range. However, how important high
concentrations are in determining the mean distribution remains unclear.
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Figure 2.17: Taylor diagram as in Figure 2.16, but with L10 DMS only from 0 to
4.2 nM.

Seasonal cycles of global, hemispheric, and latitudinal means Seasonal cy-
cles of DMS will now be considered globally, hemispherically, and in different latitude
bands. The seasonal cycles of monthly global mean DMS concentration agree rea-
sonably well in terms of overall magnitude (Figure 2.18a). Annual cycles of all
parameterized DMS fields have a distinctly reduced seasonal range relative to those
in the L10 climatology and simulated by GCMs. None of the approaches yields
seasonal cycles with the same range as L10. Figure 2.18a shows that L10 produces
a pronounced maximum in the time period between November to February which
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is generally not reproduced by the parameterized DMS datasets. Although most
DMS reconstructions and models generally capture the higher concentrations, it is
much weaker than the maximum in the L10 dataset. The prognostic methods seem
to produce a more realistic seasonal variation than the diagnostic data sets. The
one reconstruction that comes closest to L10 global seasonality is HadOCC, which
represents modeled DMS via the use of the SD02 parameterization. Additionally,
the seasonal range in PlankTOM compared well to L10, but its global means are
considerably lower compared to L10 global means (Figure 2.18a).
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Figure 2.18: Annual cycles of monthly mean surface ocean DMS concentrations for
(a) global mean, (b) the Northern Hemisphere (20°-90°N), (c) the Southern Hemisphere
(30°-90°S) and (d) equatorial band (20°S-20°N). L10 is shown in black in all panels.
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Extratropical seasonal cycles show better agreement between reconstructions and
L10 in the Northern versus the Southern Hemisphere (SH), as shown in Figure 2.18b
and 2.18c. The annual cycles in Figure 2.18c indicate that the lower agreement in the
SH compared to NH seems to be mainly due to the reconstructions not producing the
high mean concentration in the SH summer. Seasonal cycles in the lower latitudes are
largely uncorrelated with each other, and none of the reconstructed seasonal cycles
look like the seasonal cycle of L10. However, the seasonal amplitude is generally low
(Figure 2.18d).

Averaging by 30° latitudinal bands permits comparison among the different ap-
proaches, highlighting approaches that agree better in particular latitude bands.
Seasonal cycles are much larger in the mid and high latitudes where the different
approaches also show a more constrained picture of the extent of seasonality. In par-
ticular, the waters close to Antarctica are where approaches mostly diverge in terms
of seasonal variability. Models show seasonal cycles more comparable in amplitude
to L10; PISCES and HAMOCC have the largest range (Figure 2.12). The latitude
band from 30° to 60°S, which can be mostly associated with the Southern Ocean,
shows less of a spread in variability among the schemes. Modeled DMS again has
higher seasonal variability, which is similar to L10. The best agreement with L10 is
provided by HadOCC, which modulates DMS via modeled MLD and shows a seasonal
range closest to L10. DMS cycles that are parameterized via MLD also show good
agreement in seasonal pattern but with significantly reduced variation. HAMOCC,
and to a lesser extent PlankTOM, match L10 in terms of variation, but have generally
lower mean DMS concentration (by ∼1 nM). Interestingly, the cycle given by PISCES
is much reduced in this latitude band compared to cycles close to Antarctica and show
a seasonal range that is comparable to the parameterizations.

Seasonality is much lower among all approaches near the equator, and seasonal
cycles in the lower latitude bands show the weakest agreement (Figure 2.12 and 2.18d).
L10, parameterizations and models differ on where the maxima and minima occur
during the year. While L10 shows high concentrations in the NH winter and low
concentrations in the summer, models like PlankTOM and HAMOCC show slight
maxima in February/March and a greater peak in September. MLD derived DMS
fields, including the one from HadOCC, show a large peak in the NH spring, a small
peak in October and lows in the NH summer. Although these differences are clearly
apparent, the very low seasonality in the equator needs to be considered, and most
approaches match the mean values in the equatorial zone.
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Annual cycles agree in the NH mid-latitudes, where the concentration peaks in
NH mid-summer and shows a sharp decrease in fall to the NH winter low (Figure
2.12). The L10 cycle shows high values throughout the summer with two distinct
peaks in May and August. The MLD derived fields, especially AT04, match this cycle
well, with a single peak in July and a slightly sharper rise and fall at the beginning
and end of the summer season. HAMOCC matches L10 with a single peak in May
and an earlier decline in June/July. In this latitude band, there is no difference in
seasonal range between parameterized and prognostic DMS. Indeed, PlankTOM and
PISCES show low seasonal ranges in this latitude band; about half of that of L10
and most other approaches. The Arctic (60° to 90°N) is again a region where cycles
diverge (Figure 2.12). Here, AN01, VS07, and MI09 provide the best match with
L10. Prognostic models yielded much larger seasonal amplitude compared to the
other approaches. Summer peaks, i.e., June/July, are around 6-8 nM, while L10 peaks
earlier, in May, at around 4.5 nM. However, this latitude band is probably one in
which little confidence can be placed in either models or the climatology.

Spatial patterns of temporal correlation with L10 The regions where algo-
rithms and global models are consistent, or inconsistent, with the seasonal cycle of
the observations in L10 can be identified by analysis of the spatial variations of the
temporal correlation with L10 (Figure 2.19). Global distributions of Spearman’s rank
correlation coefficient (ρ) between L10 and the corresponding reconstructed DMS
(Figure 2.19) further demonstrate that most reconstructed DMS variations match L10
in the northern and southern high latitudes. The northeastern Atlantic is a region
where almost all approaches can reproduce L10 seasonality. Furthermore, this region
has high observational data coverage, so it is where one can put more confidence in
L10. The seasonality of DMS over most of the Southern Ocean is consistent between
L10 and most reconstructions, with the exception of BE04. In much of the Southern
Ocean, BE04 has a high degree of anticorrelation, which means that it has a similarly
phased seasonal cycle, with opposite phase. PlankTOM and PISCES show slightly
less correlation around the Southern Ocean region compared to HAMOCC, AN01 and
all MLD-based approaches.

The strong correlation of SRD and L10 DMS has been shown by Vallina et al.
(2007a) and Lana et al. (2012). However, although the phases of the DMS seasonal
cycles from VS07 and MI09 match that of L10, they generally cannot match the
seasonal amplitude (see for example Figure 2.18c). Furthermore, MLD- and SRD-
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Figure 2.19: Global distribution of correlation (Spearmans rank correlation coeffi-
cient) between seasonal cycles of reconstructed or modelled DMS and climatological
DMS from L10.

controlled fields clearly match with L10 seasonality in the Sargasso Sea. The process
model HAMOCC, by contrast, clearly does not match with L10 seasonality in the
Sargasso Sea. Other process models, such as PISCES and PlankTOM, show positive
correlation with L10 in the Sargasso Sea, of varying strength (Figure 2.19).

Within the equatorial band, none of the approaches seem to represent a DMS
seasonal cycle that matches L10. This finding agrees with the general divergence
in modelled DMS distribution at low latitudes (Le Clainche et al., 2010). However,
seasonal variability in the tropics is generally low (Figure 2.18d), so slight variations
in the annual cycle can lead to weak or even negative correlations (Lana et al., 2012).
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2.3.4.2 Testing gridded fields of DMS against observations

The extrapolated fields of L10 suffer from inhomogeneities in both geographic and
temporal distribution of the data from which they are calculated. In order to cir-
cumvent L10 in the assessment of the algorithms and global model based DMS fields,
reconstructions were also tested and compared against the database of available DMS
observations. In testing the gridded DMS fields against observations, two spatial
resolutions were considered. For the coarser resolution, available bottle data as given
by the GSS database were binned into 5°×5° grid boxes. For the finer resolution, the
un-extrapolated 1°×1° climatology as described in Lana et al. (2011) was used.
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Figure 2.20: Taylor diagrams for surface ocean DMS concentration showing the
summary statistics of the 12 reconstruction approaches and L10 compared to 1°×1°
(left) and 5°×5° (right) monthly averages, of the GSS observational dataset. Clima-
tologies are separated by variance due to very different ranges in different data sets.
Panels A are Taylor diagrams containing DMS climatologies having similar or greater
variability compared to the observations (OBS). Panels B are Taylor diagrams with
all climatologies having significantly smaller variability compared to OBS.
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Figure 2.20 (left) shows Taylor diagrams of reconstructed space-time distributions
of DMS (12 times 1°×1° global fields for each reconstruction) with the un-extrapolated,
gridded observational data as provided by Lana et al. (2011). The figure illustrates the
spread in variability among the various schemes. The spread is so large that a second
Taylor diagram is used to include DMS fields with much lower spatial variability
than the observations (Figure 2.20 (left) Panel B). All DMS fields derived from
parameterizations with observational input fields have less than half of the variability
of the DMS observations (Figure 2.20 (left)). The Taylor diagrams demonstrate the
relatively weak correlations between observations and climatologies. Even the L10
distribution, which is constructed from the same dataset as it is tested against, shows
a correlation of only 0.70. Given the relatively great weight the AN01 algorithm places
on chlorophyll as a predictor, correlation of AN01-derived DMS with observation is
better than expected (r = 0.39), whereas algorithms that base their DMS distribution
mostly on MLD do less well (r = 0.21) in this comparison. Biases are not distinctly
smaller for more complex prognostic approaches. The prognostic formulation of
PISCES yields variability comparable to observations. To a lesser extend, this is also
true of HAMOCC and HadOCC.

Figure 2.20 (right) shows the same set of Taylor diagrams in which DMS grids,
including the L10 climatology, are subsampled at 5°×5° resolution and tested against
observational data binned with this resolution. The coarsening of the grid has been
done to minimize the influence of mismatches of smaller scale features between the
different datasets on the statistics. In fact, the results are very similar compared
to Figure 2.20 (left). Correlations for some datasets are slightly stronger, but most
remain essentially unchanged compared to the 1°×1° resolution. Most datasets showed
a reduction in variance when 5°×5° were used instead of 1°×1°. Variability was reduced
most for the observational reference dataset: the standard deviation decreased from
6 nM to 4.6 nM. These fairly minor shifts in statistics between 1°×1° and 5°×5°
resolution demonstrates that the generally weak correlations are due not only to
small-scale differences, but to a mismatch on larger scales.
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Figure 2.21: Scatter plots (log scale) of parameterized/modelled versus raw observed
DMS concentration (nM). In-situ DMS concentration samples were averaged in monthly
5°×5° bins and compared to the corresponding 5°×5° monthly averaged value of each
modelled/parameterized DMS field.
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The relationships of the 5°×5° grids of parameterized or modelled DMS against
the binned observations are also illustrated by spatial scatter plots (Figure 2.21).
The scatter plots further demonstrate that while most algorithm or global model
based DMS fields have a positive correlation with observations, none reproduce the
observations convincingly. Even with the coarse spatial averaging to 5°×5° grid
boxes, most parameterizations are unable to reproduce the range of variability seen
in observations. Process-based modelling generally shows greater variability (not
necessarily matching the observations). As the Taylor diagrams (Figure 2.16 and
2.20) already indicated, the main differences among parameterized and prognostically
derived DMS is the extent of variability.

2.3.4.3 Annual cycles of sea-surface DMS concentrations in particular
regions

The results of Section 2.3.4.2 demonstrate that none of the reconstructed or simulated
DMS fields agree well with observations on a global scale. However, regional-scale
analysis can provide more insight into the relative performance of the different ap-
proaches. While Kettle et al. (1999) and Lana et al. (2011) separated the ocean into
biogeochemical provinces using the scheme of Longhurst et al. (1995), a different
approach to defining the regions is used in the present study. Regions with fairly good
observational coverage are chosen to characterize the observed seasonal cycles and
then compared to the seasonal cycles of the different empirical and prognostic models
in such regions. Investigating these seasonal cycles can help characterize model biases
for specific regions, which in turn give insights into why a given model has certain
biases. Because of the relatively small area of the chosen regions (about 20°-by-20°),
a more meaningful variability, less affected by regional differences, can be obtained.
Furthermore, the regional analysis allows evaluation of how the inherent variability of
raw observations affects the fit with monthly means from models and climatology.

Two regions are considered in the North Pacific (Figure 2.22a and 2.22b): one
around Ocean Station P in the Northeast Pacific (Figure 2.22a), extending from 40° to
55°N and 135° to 150°W, and the second in the Bering Sea (Figure 2.22b), extending
from 55° to 65°N and 165° to 180°W. The Bering Sea is distinguished from the Aleutian
Gyre region because it has broad continental shelves and a different seasonal cycle of
productivity from the open North Pacific (Banse and English, 1999). The analysis is
limited to the eastern half of the Bering Sea because of limited data coverage in the
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Figure 2.22: Annual cycles of monthly mean surface ocean DMS concentration in
different regions. Grey crosses (+) are 5°×5° averages of in situ DMS observations
extracted from the GSS database. (a) Northeastern Pacific near Ocean Station P
(50°N, 145°W), (b) eastern Bering Sea, (c) North Atlantic (south of Greenland), (d)
Northwest Atlantic (around BATS station), (e) Northeast Atlantic (east of the Azores),
(f) Equatorial Pacific and (g) southern Indian Ocean.

western half and difference in productivity between the eastern and western regions
(Springer et al., 1996).

The two selected regions in the North Pacific (Figures 2.22a and b) are relatively
similar in the overall shape, except that in most cases the annual cycle of DMS
concentration in the Bering Sea (Figure 2.22b) have an earlier summer maximum
than those in the Northeastern Pacific (Figure 2.22a). Most reconstructions and
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Figure 2.22 (continued).

models are unable to capture the seasonal cycle in the Northeast Pacific region. Only
HadOCC and HAMOCC show high DMS concentrations in the summer as indicated
by the observations (Figure 2.22a). Agreement between predicted and observed DMS
seasonality is better in the Bering Sea. In both regions, the observations and L10
show the same general seasonal cycle, but with the observations having much more
scatter. This is true for most of the regions examined in this study.

For the North Atlantic, three different regions are selected. The first one is an area
south of Greenland with a similar range of latitudes as the Northeast Pacific: 46° to
56°N and 39° to 49°W (Figure 2.22c). The second is in the Subtropical North Atlantic
around the Bermuda Atlantic Time-series Study (BATS) location and extends from
25° to 40°N and 60° to 75°W (Figure 2.22d). The third is the Northeast Atlantic east
of the Azores and extends from 33° to 47°N to 15° to 25°W (Figure 2.22e).

The difference in DMS seasonality between the North Pacific (Figures 2.22a and
b) and North Atlantic (Figure 2.22c) is similar in many reconstructions, especially
HadOCC and HAMOCC, for which summer variations in chlorophyll and DMS are
tightly coupled. These models do not produce the observed high concentrations
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in either the North Atlantic (Figure 2.22c) or the North Pacific during summer
(Figures 2.22a and b). In the Bering Sea, the MLD-/chlorophyll-based approaches
perform slightly better than the SRD/UVRD-based approaches. The seasonal cycles
of HadOCC-simulated DMS in the North Atlantic and North Pacific are similar, but
the amplitudes are considerably reduced in the North Atlantic compared to the North
Pacific. In the North Atlantic, strong phytoplankton blooms are generally observed
during spring, and a deep mixed layer is present during winter. The intensity of North
Atlantic spring blooms differs from that of North Pacific spring blooms, partly because
of iron limitation and the permanent halocline, which does not allow deep mixing
(Gargett, 1991). Therefore, not much entrainment of nutrients occurs during winter.
This phenomenon seems to be reflected in SD02/AT04 (as well as in AN01), but not
in HadOCC, where the reduced amplitude observed in summer DMS in the North
Atlantic compared with the North Pacific seems counterintuitive.

The seasonal amplitude of observed DMS concentration in the Northwest Atlantic
is best matched by SRD/UVRD-based models (VS07 and MI09), for which the
DMS estimates exhibit even stronger seasonal variation than L10. This variation
closely agrees with the raw observation averages in the summer months (Figure
2.22d). However, it is clearly different from the seasonality of chlorophyll (not
shown), as can be deduced from the poor performance of approaches such as AN01
and HAMOCC. Chlorophyll is not necessarily a good proxy for productivity in the
subtropics (Winn et al., 1995). The seasonality of DMS concentration in this region
suggests a fundamental difference between the underlying mechanisms that control
general biological productivity and DMS production. The good fit of SRD/UVRD-
derived DMS with observations from the Northwest Atlantic suggests that an external
environmental factor related to solar irradiance might be an appropriate proxy for
DMS in that particular region.

The observed seasonal cycles suggest that the Northeast Atlantic region (Figure
2.22e) is a distinctly different regime compared with the Northwest Atlantic region.
DMS concentration is observed to peak during spring or early summer and thus
conforms more to a classic spring bloom pattern. Chlorophyll-based approaches such
as AN01 and HAMOCC therefore perform well in matching with the raw observations
and climatological seasonal cycle, while MLD- or SRD/UVRD-based methods (SD02,
AT04, HadOCC, VS07 and MI09) incorrectly estimate the peak of DMS concentration
later during summer.

The tropical Pacific is an interesting region because of the major differences in
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the seasonal cycle among models and parameterizations, as well as in comparisons
to climatology (L10) and observations. For the tropical Pacific, a region between 20°
north and south and 140° to 170°W is chosen. In this region, observations indicate
considerable variability compared with the overall amplitude of estimated seasonal
cycles (Figure 2.22f). The seasonal cycle of DMS is not well captured in tropical
latitudes. Most approaches agree on the generally low seasonality of DMS. MLD-
dependent approaches, particularly HadOCC, show greater seasonality. However, the
seasonal cycle is uncorrelated with that given by the climatology (Figure 2.22f).

The South Indian Ocean again shows a high degree in seasonality with DMS peaking
in December (Figure 2.22g). While all of the global model and algorithm products
show basically the same seasonal cycle, the amplitude is considerably underestimated
by the algorithms. Consistent with observations, the algorithms and models show
low DMS concentration in the Southern winter, although concentrations are too low
during Southern summer. None of the methods obtain a seasonal cycle as large as the
one suggested by the climatology. Only some of the global models, such as HadOCC,
HAMOCC, and PlankTOM, get close to the observed and climatological seasonality.

2.4 Discussion

2.4.1 Application of empirical models as an alternative to fully

prognostic schemes

Both prognostic and diagnostic approaches are currently being used to model sea-
surface concentrations of DMS. Whereas diagnostic models use empirical relationships
between environmental variables and DMS, prognostic modelling accounts for the
processes controlling the sinks, sources and cycling of DMS and its precursor compound,
DMSP. Despite their much greater complexity in comparison to relatively simple
empirical models, prognostic models do not do much better in reproducing observations
(Figures 2.16, 2.20, 2.21). Figure 2.21 suggests that prognostic approaches yield
DMS distributions that on average agree slightly better with observations in terms
of variance and correlation. However, the limited success of process-based models
suggests that some biological or environmental factors contributing to the DMS
budget are missing from prognostic modelling approaches, or that the factors that are
incorporated are modelled incorrectly. Previous studies identified a major limitation of
current prognostic approaches to be an overly strong coupling of the sulfur cycle and
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ecosystem dynamics (Cropp et al., 2004; Le Clainche et al., 2010). As the use of DMS
diagnostic formulations within ocean models is more computationally efficient than
prognostic formulations, they may still be a good alternative. Their performance is not
substantially worse in terms of correlation than the current (and far more complex)
prognostic schemes.

This study has demonstrated that a clear shortcoming of empirical models using
observed climatologies is that the spatial and seasonal variance of DMS is much lower
than indicated by observations. This is not the case for DMS fields simulated by the
empirical algorithms implemented within a model (e.g., HadOCC), where DMS is
calculated with instantaneous simulated quantities (in the HadOCC case, chlorophyll
and MLD). Monthly averaged DMS fields from such coupled diagnostic modelling
seem to have variance much closer to the variance of the L10 climatology and of the
raw observations. Although having a model bias, the modelled spatial and temporal
fields have more similar variation to the observed DMS than similar algorithms using
monthly averaged observation-based fields as inputs. Furthermore, there could also be
issues with short-term and interannual variability in the input fields that is averaged
out when applying the algorithms to derive DMS from climatological input fields. For
example, the SD02 formulation, with MLD as an input, only uses the climatological
monthly fields, because that is all that is available on a global scale. However, there
can be strong anomalies relative to the climatological seasonal cycle. It is possible that
the omission of such deviations from the mean state creates a bias. Again, the use of
such algorithms in a model would not have this disadvantage, as the algorithms utilize
instantaneous values of the input fields. However, the input fields will have model
biases, and it is not clear by how much fidelity is affected by the use of climatological
observation-based versus using instantaneous simulated input fields.

Algorithms trained on climatological data (e.g. of chlorophyll, MLD, or irradiance)
cannot be expected to capture either sub-monthly or interannual variability. This
problem is of particular concern when these algorithms are implemented within
GCMs. A preferable approach would be to develop algorithms using instantaneous
simultaneous observations of DMS and the predictor variables. This approach is not
possible using existing datasets, but could guide the future collection of data.

It is also possible that many of the limitations of the parameterizations are due to
differences in spatial and temporal coverage between the data used for developing the
parameterization and the data against which the algorithms are tested. Regression
analyses presented here (e.g., Figure 2.1 and 2.4) indicate that the apparent lack of
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skill in the parameterizations is not just due to differences between the distributions
of training and tested datasets. Reparameterizing the different algorithms for a more
global coverage of data did not significantly improve the correlation when tested on a
global scale. However, in tuning an algorithm for a specific region, its performance in
reproducing observations might be significantly improved for a particular region, such
that the applicability of an algorithm might vary extensively depending on the region.

However, it seems that empirical algorithms for DMS cannot be universally applied.
If an empirical algorithm is trained on data collected at certain times and in certain
places and then tested against data collected at other times and places, the space/time
difference alone will affect the skill of the algorithm. One reason for the lack of skill is
the sampling bias. This is an inherent concern with empirical models, as an empirical
model is only as good as the data that it is trained on. However, if there is true
generality in the formulations in the models, this should not matter. It should be able
to be trained in the Atlantic and applied in the Pacific (Friedrichs et al., 2007). If
this does not work, then the algorithm is lacking in generality. This seems to be the
case in all of the DMS empirical algorithms that were tested in this study.

Given such considerations, it is important to keep in mind the limitations of
the empirical DMS algorithms (Halloran et al., 2010). Belviso et al. (2012) raised
concern regarding the generality of the parameters influencing the global distribution
of DMS. The functional form of an empirical model can not be easily adjusted to a
specific region or ocean regime, nor is there great opportunity to resolve phytoplankton
taxonomic composition, which is an important factor in DMS production. As an
example, the Fp ratio, as a community structure index, represents a simple shortcut to
account for the different source strength of DMSP/DMS among phytoplankton types,
but it is too simple to account for species specific DMS production. A focus on specific
phytoplankton taxa is only possible with the development of explicit models. The use
of algorithms in global estimation of DMS may be an option for climate modelling
purposes. In terms of studying the underlying mechanisms of the DMS production,
research needs to be focused on the further development of mechanistic models.
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2.4.2 Representativeness of DMS variations in climatologies

versus models: The problem with using climatologies as

a reference

When comparing empirical DMS reconstructions or simulations with L10, it is im-
portant to consider the essential difference in methodology between these. In the
case of L10, the fields are directly derived from in situ observations by interpolation
and extrapolation of data points that are localized in space and time. Localized high
concentrations, which may not be representative of the local space- or time-mean,
are extrapolated across data-sparse regions in L10. The main disadvantage of L10
and its precursors (K99 and K00) is thus that small-scale features are transformed
into large-scale ones by the interpolation procedure. In contrast, the spatial scales of
parameterized and model-derived DMS fields are derived from the input fields or the
global model dynamics. Disagreement between L10 and such fields cannot necessarily
be interpreted as errors of the reconstructed or simulated fields.

Furthermore, extrapolation of a relatively small number of data points in L10 can
lead to unrealistic distributions that do not conform to ocean biophysical features.
The construction of a climatology from raw data leads to a significant reduction in
spatial variance. Where there are regions with generally low DMS concentration and
’hot spots’ of high concentration, L10 shows a generally higher values, and these high
concentrations are generally more spread out. The lack of coverage in space and
time limits the reliability of the climatologies. For example, the equatorial Pacific
upwelling region in L10 is characterised by large ’bulb’ of high concentration that
do not conform any obvious geophysical mechanisms. In the development of gridded
DMS climatologies, it is important to assess if such features are based on something
realistic, or if they occur simply because there are certain times of year, or certain
years, that samples were taken there.

The Kettle climatologies (K99 and K00) have data up to 1999 and 2000, respectively.
Using data collected after 2000 as an independent dataset, Halloran et al. (2010)
showed that the mismatch between K99 and the post-2000 observational database
is as bad or worse as that of algorithms. The data collected after 2000 most likely
have a different space/time distribution than the data collected before 2000. To some
extent, this should explain the weak correlation with K99 presented by Halloran
et al. (2010). The high correlation between observations and L10 shows that sampling
significantly improves climatologies (particularly in data-rich regions). However, using
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new observations, independent of L10, to test L10, might lead to a similar mismatch
as demonstrated by Halloran et al. (2010) with K99.

Sparse sampling affects the temporal structure of the climatologies as well as the
spatial structure. Finding appropriate estimates of monthly mean DMS concentration
is difficult given the high temporal variability of DMS in most of the ocean (Asher
et al., 2011; Tortell et al., 2011; Tortell, 2005). This might be particular problematic
for the assessment of seasonality in high latitudes. In the construction of monthly
climatologies, undersampled regions such as the Southern Ocean will be influenced by
large individual point measurements that are not representative of the whole month.
Furthermore, there are many regions that have large interannual variability (Halloran
et al., 2010), which by construction is disregarded in the design of the climatological
maps but may have a dynamical relevance. The tropical Pacific might be especially a
problematic region when ignoring interannual variability (Figure 2.22f).

2.4.3 Further developments in understanding what controls

DMS in the ocean

This study clearly shows that current models (both empirical and prognostic) are
not strongly correlated with the DMS observational database. However, the rela-
tively sparse observational data coverage prevents a truly global assessment of the
reconstructed and simulated DMS fields. Furthermore, the presence of interannual
variability results in differences between reconstructed and simulated DMS fields and
the raw observations, as outlined in the above section.

The general disagreement of the different approaches with raw observations under-
scores the high spatial and temporal variability and the complexity of the underlying
ecosystem processes. Given the complexity of marine DMS production/consumption
mechanisms, involving various pathways of sinks and sources for DMS, it is under-
standable that it is difficult to find a universal relationship between DMS seawater
concentration and any other parameters such as chlorophyll concentration, MLD, or
irradiance. Earlier studies suggested that linking DMS to key parameters is possible
on a local to regional scale for a specific time of the year (e.g., Aranami and Tsunogai,
2004; Kameyama et al., 2013; Miles et al., 2012). However, doing so for large spatial
and temporal scales has not been successful to this point.

Historically, oceanic concentrations of DMS was mainly related to plankton biomass
since phytoplankton and algae are known to generate the precursor compound DMSP.
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However, it is now known that many other factors, such as nutrient conditions, the
level of incident UV solar radiation, and various other stress factors have an effect on
DMSP production. On top of these complexities, the formation of DMS from DMSP
is a complex process controlled by different mechanisms. As a result, DMS is only
indirectly related to DMSP and, in turn, DMS and DMSP are often weakly (or not at
all) correlated with parameters such as chlorophyll or phytoplankton biomass.

A recent study conducted in the Northwest Atlantic region by Lizotte et al. (2012)
made a clear distinction between those parameters correlated with DMS production
and those parameters affecting DMSP release. While DMSP production is more
associated with biological parameters such as chlorophyll, community structure, and
bacterial biomass, DMS is clearly less correlated to such parameters and more linked to
physical factors such as MLD and solar irradiance. The development of DMS ecosystem
models based on experimental and field work should provide better representation of
the mechanisms responsible for DMS concentrations in the ocean. In this regard, recent
studies have emphasized the decoupling of DMS production from the productivity of
the underlying ecosystem (Cropp et al., 2004; Le Clainche et al., 2010).

Given the complexity of the marine DMS(P) cycle, it is useful to distinguish
different regimes based on differences in physical and ecological factors. Toole and
Siegel (2004) argued for the existence of two different types of regimes with distinct
factors controlling DMSP production and DMSP to DMS conversion: the "bloom-
dominated" and "stress-dominated" regimes. DMS production is more directly linked
to phytoplankton productivity in a bloom-dominated regime, while stress factors
such as UV radiation and nutrient limitation are the key variables determining DMS
production in a stress-dominated case. The notion of stress-induced production
of DMS is the main explanation for observations of elevated DMS concentration,
uncoupled from algal biomass (called the DMS summer paradox). For example,
Vallina et al. (2008) presumed a mechanism for an independent source of DMS directly
from phytoplankton cells during the summer due to enhanced solar radiation stress.
Understanding this mechanism requires further experimental and in situ observational
studies.

A recent review by Liss et al. (2014) categorized DMS cycling in the ocean by species
composition, i.e., dominated either by a high DMSP producer (e.g., coccolithophores)
or low DMSP producer (e.g., diatoms). Furthermore, these systems can then be
classified into high stress or low stress conditions. For each of these four categories,
specific mechanisms can be identified that control the extent of DMSP production and
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DMS yield. Such classifications represent a possible avenue of investigation to improve
empirical models as well as mechanistic modelling of DMS in ocean ecosystem models.
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Chapter 3

Sensitivity of DMS flux

3.1 Introduction

In this chapter the DMS concentration fields that were compared in Chapter 2 are
used to estimate the global flux of DMS to the atmosphere. Furthermore, as with
the intercomparison of DMS concentration fields, a similar analysis is made for flux
fields. Rather than seawater concentrations of DMS, it is the air-sea flux of DMS
that ultimately controls how much DMS enters the atmosphere where it potentially
influences aerosols, CCN and climate. In order to derive the flux of DMS, we need to
know not just the surface concentration of DMS, but also the transfer velocity. In
general, the air-sea flux of a gas is derived by multiplying its difference in concentration
between air and water phases with the gas transfer velocity (also known as piston
velocity). In the case of DMS, the concentration difference is largely defined by the
ocean surface concentration because the atmospheric concentration is known to be
orders of magnitude smaller. The gas transfer velocity (kT ) is estimated from a simple
two-layer gas exchange model (Liss and Slater, 1974). For gases like DMS, it is often
argued that water transfer velocity is the controlling factor, so that kT is just equal to
the water-side transfer velocity (kw), while the air-side transfer velocity (ka) can be
neglected.

The magnitude of kw is influenced by a number of factors, but is believed to be
controlled mainly by physical quantities such as wind speed (through its influence
on mixed-layer turbulence and surface wave breaking) and sea surface temperature
(SST). There is, however, no unique method to derive the transfer velocity, and there
remains considerable uncertainty as to its value or how it should be parameterized.
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Parameterizing kw is difficult, partly because there are so many potentially influential
factors to consider. Transfer parameterizations in ocean models generally rely on wind
speed and water temperature alone to estimate kw. In this analysis, it was decided to
focus on three of the most commonly used relationships in the DMS flux literature,
each of which use reference height (10 m) wind speed (u10) and SST.

Past sensitivity studies have generated estimates of DMS flux by using different
transfer velocity formulations, DMS climatologies, and wind/SST fields. Kettle and
Andreae (2000) used the K00 data-based DMS climatology to come up with a range of
fluxes resulting from different piston velocity formulations and wind fields. This study
was global in scale, but used only their climatology. Archer et al. (2002) used a local
DMS model to derive a range of flux estimates with different formulations of piston
velocity. This study used a process-based approach to derive DMS concentration and
flux, but was local in scale (in the northern North Sea). Elliott (2009) used both
the K00 DMS climatology and the POP-TGM prognostic model (within CCSM) to
derive global DMS flux estimates using piston velocity schemes from Nightingale et al.
(2000), Liss and Merlivat (1986), and Wanninkhof (1992) as well as a hybrid of the
latter two. The Elliott (2009) sensitivity study was wider in scale than Kettle and
Andreae (2000) because it not only used the climatology but also simulated DMS,
thereby allowing for a comparison to be made between fluxes calculated using both
climatological and instantaneous DMS concentration values. However, the author only
considered POP-TGM and K00 as possible representations of the DMS sea surface
distribution.

Here, the sensitivity of DMS flux is tested with a range of DMS concentration
fields and transfer parameterizations. The differences in DMS concentration among
raw observations, data-based climatologies, empirical reconstructions, and simulations
is an important indication of the uncertainties of DMS concentration fields. This
chapter addresses the influence of the differences among DMS concentration fields on
air-sea fluxes of DMS.
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3.2 Methods

3.2.1 Air-sea gas exchange parameterizations

The ocean-atmosphere flux of DMS is computed as the product of the gas transfer
velocity (kT ) and concentration difference (∆C) (Liss and Slater, 1974):

FDMS = kT∆C (6)

where ∆C is the difference between ocean and atmosphere concentrations of DMS.
∆C = Cw − Ca/H, where Cw and Ca are the gas concentrations in water and air,
respectively, and H is the dimensionless Henry’s law constant. The atmospheric
DMS concentrations are usually several orders of magnitude lower than the DMS
concentrations in the surface ocean, and can be taken to be negligible, such that
∆C = Cw. The total gas transfer velocity, kT , can be expressed in terms of resistances
on both sides of the air-sea interface. As such we have:

1

kT
=

1

(εkw)
+

1

(Hka)
(7)

where kw and ka are the individual transfer velocities for water and air, respectively; ε
is a dimensionless factor that accounts for any enhancement of the water-side transfer
due to chemical reactions (Liss and Merlivat, 1986).

The air-side resistance is often assumed to be small enough to be negligible.
This assumption, however, may not hold true at low temperatures and high wind
speeds, as demonstrated by McGillis et al. (2000). This study considers both cases:
where air resistance is ignored and where it is accounted for. When air resistance is
ignored, kT is just equal to kw. When air resistance is accounted for, kT is calculated
using the atmospheric gradient fraction (γa), such that kT = kw(1 − γa), where
γa = 1/(1 + ka/(αkw)) (Lana et al., 2011; McGillis et al., 2000). The dimensionless
quantity γa is the fractional contribution of the gas concentration gradient across the
air side boundary layer to the total air-water concentration gradient. The airside
transfer coefficient (ka) is based on the study by Kondo (1975) and calculated as:

ka = 659u10

(
MDMS

MH2O

)−1/2
(8)

where MDMS and MH2O are the molecular weights of DMS and water, respectively.
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u10 is given in m s−1, while kw is expressed in cmh−1. The DMS solubility (α) is taken
from Dacey et al. (1984) as a function of SST:

α = e3525/SST−9.464 (9)

where SST is given in Kelvin (K).
Three different formulations of the waterside transfer velocity (kw) are considered:

those of Liss and Merlivat (1986), Wanninkhof (1992), and Nightingale et al. (2000).
Hereafter the three formulations are referred to as LM86, W92 and N00, respectively.
Liss and Merlivat (1986) developed a piston velocity parameterization originally for
CO2. Equations are developed for three wind regimes based on u10: below or equal to
3.6 m s−1 (smooth), between 3.6 and 13 m s−1 (rough surface), and higher than 13
m s−1 (breaking wave). The latter was found to involve bubble development, which
enhanced transfer rates (Table 3.1). This study, however, was based mainly on data
from lake experiments (Wanninkhof et al., 1985), which might not be representative
for conditions in the ocean. Wanninkhof (1992) developed a quadratic function for
wind speed and gas transfer for global winds (Table 3.1). The study by Wanninkhof
also demonstrated that different formulations need to be used whether instantaneous
(short-term) or time averaged long-term (e.g., monthly mean) wind speeds are used.
In the current study, the relationship based on the W92 formulation for short-term
winds is utilized since reanalysis fields with instantaneous winds are used.

The piston velocities given by the formulation of Liss and Merlivat (1986) are
everywhere lower than those of Wanninkhof (1992), as illustrated in Figure 3.1.
Nightingale et al. (2000) proposed a parameterization intermediate between these
two, obtained using aspects of both LM86 and W92. The Nightingale et al. (2000)
study described four expeditions using volatile and non-volatile tracers in the North
Sea to measure sea-air gas transfer rates. The data from all four of these expeditions
were combined and used to test the available published relationships for the transfer
velocity. While these data showed a dependence of piston velocity on wind speed,
the considerable scatter around this relationship indicated that gas transfer was
influenced by additional factors. As the data scatter fell between the LM86 and
W92 estimates, N00 (Table 3.1) is intermediate between LM86 and W92. Subsequent
studies have identified N00 as the best available choice for DMS (e.g., Boucher et al.,
2003; Marandino et al., 2009).
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Figure 3.1: Gas transfer velocity (k600) as a function of wind speed for the three gas
transfer wind speed relationships used in this study: LM86 (Liss and Merlivat, 1986),
W92 (Wanninkhof, 1992) and N00 (Nightingale et al., 2000). k600 indicates that the
gas transfer velocity is normalized to a Schmidt number (Sc) of 600 which corresponds
to Sc of CO2 in freshwater at 20℃.

Figure 3.1 is a graphical representation of the k600 piston velocity (i.e., kw nor-
malized to a Schmidt number of 600) versus wind speed relationship for the three
formulations. The piston velocities are Schmidt number corrected, after the equations
of Saltzman et al. (1993), to account for molecular diffusivity. Under LM86, the
Schmidt number dependence varies according to wind speed from negative two thirds
power (smooth surfaces) to negative one half (rough surface and breaking wave). For
W92 and N00, the Schmidt number dependence is negative one half power, which
is likely inaccurate for very low wind speeds (Elliott, 2009). Unlike LM86 and N00,
the Schmidt number reference value for W92 is chosen for CO2 in seawater (Sc=660)
rather than freshwater (Sc=600).
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3.2.2 Data

The transfer velocity kT was calculated using wind speed, sea surface temperature
(SST), and sea-ice cover from ERA-Interim, the global atmospheric reanalysis produced
by the European Centre for Medium-Range Weather Forecasts (ECMWF). These
data were obtained from the ECMWF website (http://apps.ecmwf.int/datasets/data/
interim_full_daily/) and are described in Dee et al. (2011). Kettle and Andreae
(2000) considered the sensitivity of estimated fluxes to different global-scale wind and
SST climatologies. As sea surface wind fields from modern reanalyses are robust and
agree well with observations (Monahan, 2006), this study will use only ERA-Interim
reanalysis products.

Climatological air-sea fluxes of DMS were derived by using the 12 monthly fields
of a given DMS climatology and a given 12-month climatology of kT . To derive the kT
climatologies, daily instantaneous (0:00 GMT) wind speed, SST and sea ice cover for
the period of 1979 to 2011 were used to derive global fields of daily instantaneous kT .
Different kT climatologies were derived depending on the wind parameterization scheme
(LM86, W92 or N00) and whether air resistance was considered or not. The reduction
in flux due to sea ice was incorporated into the calculation of kT , such that the final
transfer coefficient was taken as kT (1-fice), where fice is the ice-covered fraction. The
daily fields of the final transfer coefficient were then averaged by month to create a
12-month climatology. In order to derive DMS flux fields from the concentration fields,
the transfer coefficient climatology was converted from the ERA grid (1.5°×1.5°) to
that of the DMS concentration climatology (1°×1°) by linear interpolation.

The DMS datasets that were used to derive the flux field do not have complete
global and seasonal coverage. When comparing integrated flux, it is necessary that
data coverage between different DMS climatologies is comparable so that comparisons
can be made without biasing flux estimates from regions with limited temporal and/or
spatial coverage. The de Boyer Montégut MLD climatology (de Boyer Montégut et al.,
2004) is used for all of the MLD-derived DMS algorithms (SD02, AT04, VS07 and
MI09), in which there are data missing in the northern high latitudes during the
boreal winter (December, January and February). These data are likely missing due
to sea ice cover during that time. However, other fields such as L10 or model fields
of DMS have data in those regions. To compare all of the fields together, missing
values in the high latitude Northern Hemisphere winter were replaced with a near-zero
concentration (0.001 nM) (assuming very low concentration during winter). For the

http://apps.ecmwf.int/datasets/data/interim_full_daily/
http://apps.ecmwf.int/datasets/data/interim_full_daily/
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few cases where there were missing data values during summer (which would likely
have higher concentrations of DMS), DMS was calculated from the CanESM2 MLD
field.

In addition to climatological flux fields, the ERA-Interim data were also used to
derive fluxes corresponding to each individual DMS measurement in the GSS database
(see Section 2.2.1.1). ERA-Interim datasets for wind velocity, SST and ice cover were
subsampled at the location, date and time of the corresponding GSS concentration,
and used to derive an instantaneous value of the gas transfer coefficient, which could
then be used to derive an estimate of flux. In order to compare these observational
estimates with climatological flux, the resulting GSS fluxes were averaged for each
month over the period 1979 to 2010 to yield a 1°×1°, 12-month climatology of observed
flux.

3.3 Results

3.3.1 Ranges of global annual total flux given available DMS

fields and wind parameterizations

Table 3.2 lists the range of possible global integrated DMS flux for each concentration
field and piston velocity parameterization, ranked in order of increasing transfer
coefficient (LM86, N00 and W92). All flux estimates in Table 3.2 were derived without
accounting for air-side resistance. Use of LM86 produces the lowest fluxes, while W92
produces the highest fluxes. In the case of empirical algorithms, there is additional
uncertainty associated with the different input fields. The ranges in Table 3.2 clearly
demonstrate a substantial divergence among global DMS flux estimates obtained using
piston velocity parameterizations and concentration fields commonly found in the
literature. Given the uncertainty of both piston velocity parameterizations and DMS
reconstructions, the range of potential fluxes is quite large (8 to 33 TgS y−1; Table
3.2).

Figure 3.2 presents a graphical representation of the results in Table 3.2 and
provides a comparison of global flux using the N00 scheme both with and without
consideration of air resistance. Among the various DMS climatologies, the largest
fluxes are produced by L10, VS07, MI09, and AN01; while the smallest fluxes are
produced by AT04, PlankTOM and PISCES. For the N00 scheme, it is found that
flux decreases by 7% on average when air resistance is considered (solid diamonds),
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Table 3.2: Global total DMS flux estimates computed for available DMS concentration
fields and various piston velocity formulations.∗

Piston schemes
DMS fields LM86 N00 W92 Total range
K99 16.0 22.6 28.0 16.0-28.0
K00 15.4 21.8 26.9 15.4-26.9
L10 17.9 25.3 31.2 17.9-31.2
AN01 17.8-18.1 25.1-25.3 31.3-31.8 17.8-31.8
BE04 12.6-13.6 17.7-19.1 21.9-23.6 12.6-23.6
AU02 13.2 18.6 23.1 13.2-23.1
SD02 12.6-18.7 17.8-26.5 22.0-32.7 12.6-32.7
HadOCC 15.2 21.6 26.6 15.2-26.6
AT04 8.8-17.8 12.5-25.3 15.4-31.1 8.8-31.1
VS07 16.0-19.0 22.7-27.0 28.0-33.2 16.0-33.2
MI09 16.9-19.3 24.0-27.3 29.5-33.6 16.9-33.6
HAMOCC 15.0 21.2 26.1 15.0-26.1
PlankTOM 12.3 17.4 21.6 12.3-21.6
PISCES 12.4 17.5 21.7 12.4-21.7
Total range 8.8-19.3 12.5-27.3 15.4-33.6 8.8-33.6

∗ Units are TgS y−1. The acronyms of the DMS fields and piston velocity formulations are defined in
Chapter 2 and 3, respectively. For empirical algorithms, a range of possible integrated fluxes were
chosen instead of a single value given different input fields. All flux estimates were derived without
accounting for air-side resistance.

with little variation among concentration fields. In contrast, considerable variability is
associated with the choice of piston scheme or DMS concentration field. In Figure 3.2,
the grey shaded band illustrates the wide range of fluxes for a single piston scheme (the
N00 & γa scheme) across the available DMS concentration fields. The range of fluxes
among the available piston schemes for any given DMS concentration climatology is
similar or larger.

The grey band darkens toward the flux produced by L10 so that flux estimates
can be seen in relation to this climatology, which this study considers to be the
observation-based standard. From the results in Chapter 2, it can be argued that
greater confidence can be placed on the L10-derived flux estimate than any of the
others. Flux estimates differing more from L10 value therefore might be interpreted
with greater skepticism. Note that L10 is also the field that yields the greatest flux
when the N00 & γa scheme is used.
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Figure 3.2: Global annual integrated DMS flux ranges resulting from the wind
parameterizations of LM86, W92, and N00 for each of the DMS concentration fields.
The vertical ticks of the horizontal lines denote the global flux estimate for each of the
three wind parameterizations (without air resistance). The diamond denotes the flux
estimate given N00 with consideration of air resistance (N00 & γa, as described in
Section 3.2.1). Bold lines around the diamond of algorithm-based DMS fields represent
the range of flux estimate given various input fields. The gray shaded band displays
the range of fluxes for N00 & γa across the available DMS concentration fields.
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In the present study, the re-estimation of AN01 algorithm parameters with new
data (Figure 2.1), did not appreciably change the correlations between the original
AN01 DMS concentration field and the observations (GSS database) or L10 (see Table
2.4). The new AN01 algorithm does, however, yield a flux estimate that is very close
to the L10 estimate, mostly because the high baseline value of 2.29 nM has been
eliminated. Woodhouse et al. (2010) used the original AN01 (among other fields) to
simulate DMS flux, noting the particularly high fluxes that were produced with the
original AN01 algorithm. With the new AN01 algorithm, flux estimates are improved
in the global total flux, though not in spatial pattern.

For the empirical algorithms, thicker lines around the diamonds in Figure 3.2 denote
ranges in DMS flux (obtained using N00 & γa) resulting from different input fields for
the DMS algorithm. SD02 and AT04 yield the greatest range in annual flux estimates.
The smallest flux estimates from these algorithms occur when CanESM2 MLD is
used as an input field. However, this low estimate could partly be due to the use of
regression parameters estimated for the observation-based MLD by de Boyer Montégut
et al. (2004). Refitting the AT04 formulation to the CanESM2 MLD data result in a
flux that is greater by ∼20% (not shown). However, for consistency the same equation
(MLD×DMS = 56) was applied for AT04, irrespective of what input fields are used.
This is also true for the SD02 algorithm.

Using the same equation with different inputs has been done in previous studies
(e.g., Halloran et al., 2010). In HadOCC, the SD02 algorithm is used to derive DMS
from simulated MLD and chlorophyll. Originally, the SD02 algorithm was constructed
using observational data. However, there was no retuning of the SD02 regression
within the HadOCC model, as explained in Section 2.2.2.3. Parameterizations that
had their parameters retuned to the specific input fields used (VS07, MI09) give
generally a more constrained range in flux estimates than those that did not (SD02,
AT04). As noted above, retuning the parameters also increases the flux somewhat
for AT04. These large deviations in flux estimates just due to the use of unoptimized
algorithms should be considered when using algorithms such as SD02 or AT04 in a
model.

A scatterplot of integrated flux (calculated using N00 & γa) versus global- and
annual mean DMS concentrations shows a roughly linear relationship between these
two quantities (Figure 3.3). The small deviations demonstrate that the spatial and
temporal structure of the concentration fields has some influence on the fluxes. For
example, the fact that AN01 yields roughly the same flux as L10, despite having lower
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Figure 3.3: Global integrated DMS flux versus annual mean concentration as
computed from different DMS concentration fields. All fluxes are calculated using the
N00 & γa scheme.

mean concentration, implies that high concentrations and high wind speeds co-occur
in AN01 more often than they do in L10. In general, however, the influence of spatial
(and temporal) structure in the DMS concentration climatologies on global total flux
appears to be minor.

Figure 3.4 depicts the relationship between annual- and global-mean DMS con-
centration and flux, for the different piston velocity schemes (LM86, N00, W92).
The relationships are found to be qualitatively similar for the three schemes. The
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y = 11 x - 0.8

Figure 3.4: Global integrated DMS flux versus annual mean concentration as com-
puted from different DMS concentration fields for the gas transfer parameterizations
of LM86 (squares), W92 (triangles), and N00 (circles). All three cases ignore the effect
of air resistance. Each case also includes a regression line showing the relationship
between the different DMS concentration fields.

relationship is positive and linear in each case, but slopes vary from 7.8 (LM86) to 14
(W92). Fluxes increase per unit change in concentration most for W92 and least for
LM86. Not only do flux integrals differ depending on which piston velocity formulation
is used, these differences increase with DMS concentration.

Section 3.1 looked at flux variations occurring both due to difference in piston
velocity parameterization and DMS concentration. The next sections in this chapter
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focus on the intercomparison of flux fields derived from the concentration climatologies
discussed in Chapter 2, such that the piston velocity parameterization can be held
fixed. N00 & γa was chosen as the standard formulation since it can be considered
most appropriate for DMS. First, N00 is the current choice for most DMS flux studies
found in the literature, and secondly, air-side resistance should be considered when
deriving DMS fluxes (McGillis et al., 2000).

3.3.2 The spatial distribution of annual mean flux derived

from the different concentration fields

The flux of DMS to the atmosphere is computed as the product of the concentration
of DMS and the gas transfer velocity, which is largely determined by wind speed and
SST. Therefore spatial variability in the flux (Figure 3.5) results from variability in
both the DMS concentrations and piston velocity. The concentration of DMS varies
widely across different areas of the ocean (Chapter 2) accounting for a great deal of
the variability of flux. For example, fluxes in the subtropics tend to be relatively
small (except for BE04), whereas in the central equatorial Pacific, fluxes tend to be
elevated (except for BE04, AU02 and PlankTOM). Although greater similarity is
evident among flux fields than concentration fields, there are still considerable areas
of disagreement. Broad regions such as the Subpolar North Atlantic and Pacific, the
Eastern Equatorial Pacific, and the Southern Ocean show great differences in fluxes
depending on what concentration field is used (Figure 3.5). HAMOCC and HadOCC
are clear outliers with extreme annual mean values in the central and east equatorial
Pacific.

Fluxes computed from L10 are clearly less patchy than those from the other
observationally-based climatologies (K00 and K99). AN01 yields an annual mean
flux field that is more homogenous than L10 and most of the prognostic models.
AN01 shows a broad band of elevated flux between 40 and 60°S that likely is due
to the presence of persistent high winds and elevated concentrations (relative to
other climatologies). Similarly, VS07 and MI09 yield flux fields with broad regions of
elevated annual mean fluxes. Comparing annual mean concentration maps in Figures
2.11 through 2.14 and flux fields in Figure 3.5, it can be observed that most regions of
high concentration are also regions of high flux. However, high concentration adjacent
to Antarctica (as seen in L10, AN01 or PISCES) does not yield high annual mean
fluxes due to the presence of ice cover suppressing the flux for much of the year.
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Figure 3.5: Global maps of the annual mean flux of DMS from each of the DMS
concentration fields using N00 & γa.
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The chlorophyll-based climatologies (AN01, AU02, SD02, AT04) seem to show
greater fluxes in coastal upwelling regions and on the continental shelves (Figure 3.5).
However, these areas constitute only a small percentage of the whole ocean surface,
so even with these larger concentrations the contribution of DMS from continental
shelves to the global total flux is relatively small. The observational climatology, L10,
gives no indication that either DMS concentration or flux is higher in coastal regions
as compared to the open ocean.

3.3.3 Comparison of DMS flux fields versus L10 and observa-

tions

A Taylor diagram of flux fields with L10 as a reference (Figure 3.6a) shows that
the disagreement in spatial and temporal pattern with L10 (as measured by pattern
correlation) is similar for both the flux and concentration fields. However, the variance
does not differ by orders of magnitude as was the case with the concentration fields
(see Section 2.3.4). In terms of correlation and RMS error, the DMS flux fields that
are derived from the earlier observation-based climatologies (K99 and K00) agree no
better with L10 than the flux fields that are derived from most of the reconstructions
and models (Figure 3.6a). This is striking given that the data used to create K99/K00
makes up close to one-third of the data that were used to construct L10.

Figure 3.6b displays a Taylor diagram with DMS flux derived from the GSS
database as the reference. In comparison with GSS derived flux estimates, L10 clearly
outperforms the other fields, but there is still some disagreement (r = 0.7). K99 and
K00, on the other hand, do not clearly outperform any of the fields using either L10
or the observations as the reference. The relatively good performance of L10 is not
surprising given that it was obtained from the GSS data.

Figure 3.7 shows relative frequency distributions (as percentage of ocean surface
area) of DMS concentration and flux for L10, K00, K99, AN01, AT04 and VS07. For
each field, the upper panel shows the frequency distribution of DMS concentration,
while the lower panel shows the frequency distribution of the computed flux. The
frequency distributions of the individual observations (GSS) are represented with a
black line in each panel. The subset of DMS concentration climatologies was chosen
to represent the range of differences between the observational data set and the
climatologies for both concentration and flux distribution.
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Figure 3.6: Taylor diagrams describing the total space-time variations of DMS flux
fields obtained from each of the DMS concentration fields, tested against (a) the L10
flux field and (b) the flux dataset derived from the GSS observations. All fluxes are
calculated using the N00 & γa scheme.
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The climatologies have narrower distributions than the individual observations.
For example, L10 underestimates the frequency of occurrence of concentrations of 0
to 1.5 nM and 14 to 60 nM, while in the mid-range, 1.5 to 5 nM, L10 overestimates
the frequency of occurrence of DMS concentrations in this range. This reduction in
range might partly be explained by data extrapolation techniques that average low
and high concentrations, and concentrate the data toward the middle of the range.
These differences are more pronounced for the flux distributions. The L10 distribution
clearly peaks at a higher flux (4-5 µmol m−2 d−1) than the flux derived from the
observations (1-2 µmol m−2 d−1).

The narrowing of concentration and flux ranges is greatest for AN01 and VS07
which both fail to capture a large portion of the range that is seen in the observations.
The frequency distribution of AN01 derived DMS matches with observations for inter-
mediate concentrations between 3 nM and 10 nM, but fails to produce concentrations
below 1 nM or above 20 nM. The parameterized DMS concentration of VS07 does
not show concentrations higher than 5 nM, but does not show such a narrow peak in
DMS as shown in AN01 (Figure 3.7). The narrow frequency distribution for AN01
and VS07 are consistent with the high degree of spatial homogeneity shown in the
concentration maps (Figure 2.11). Among the algorithms, AT04 best matches the
observations, but the match with the flux distribution is not as good. In all cases, the
mismatch between climatology/reconstruction and observed distributions is greater
for fluxes than for concentration (Figure 3.7).

Comparing the frequency distributions for concentration and flux is also useful for
understanding the representativeness of regions with relatively large concentrations.
The observational dataset includes very high concentrations that are usually linked
to brief events, such as phytoplankton blooms. None of the DMS fields (except K99
and K00) show such extreme values (Figure 3.7 insets). Similarly, extreme fluxes are
not reproduced. The best match between the observations and the climatology is
given, not surprisingly, by L10, though it does not capture observed extremes as well
as K00 and K99 do, particularly for fluxes. Comparing the top and bottom panels for
each climatology, the overall shape of the frequency distributions are similar between
concentration and flux.

Note that the frequency distributions characterize only the range and relative
frequency of concentrations and fluxes, and not the spatial or temporal patterns.
While the AT04 distribution matches the observations relatively well, the correlation is
no better than for other climatologies (Figures 2.16, 2.20 and 3.6). Although L10 best
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matches the observations (Chapter 2), Figure 3.7 shows that L10 still underestimates
the frequency of occurence of high concentrations as compared to the observational
dataset.

3.4 Discussion

As discussed in the previous chapter, one of the limitations of L10 is its relatively
coarse spatial resolution. DMS concentration measured in the ocean is highly spatially
variable. However, L10 clearly has spatial concentration features that spread out over
hundreds of kilometres. Essentially, climatologies tend to have a lot of extreme values
in places where observations have been made. Actual DMS distributions are likely to
be highly spatially (as well as temporally) variable and show variability even at very
fine scales (Asher et al., 2011). Estimating the global flux of DMS from spatially and
temporally variable observations of DMS remains a significant challenge. The use of
climatological averages and extrapolations into data-sparse regions might affect the
ability of climatological fields to estimate the global DMS flux (Figure 3.7). In order
to assess the skill of DMS concentration derived global flux estimates, one needs to
test these with actual measurements of DMS flux.

Figure 3.3 suggests that to first order it is the global mean concentration of
DMS that primarily determines the global mean flux, while the spatial and temporal
distribution of DMS is of secondary importance. The climatologies (K99, K00 and
L10) show a pronounced seasonality, which none of the reconstruction approaches
reproduce. As well, the DMS distributions from most of the empirical algorithms
have much less spatial variability than the climatologies (Figure 2.11). In terms of
the global atmospheric sulfur budget, it is an important result that these spatial
and seasonal differences have a small effect on global mean estimates of flux (Figure
3.3). However, the spatial structure of DMS flux influences global climate through
local changes in CCN concentration (Woodhouse et al., 2013). In the next chapter,
a global atmospheric model will be used to test what effect the variation in spatial
and temporal distribution of DMS concentration has on sulfate aerosol burdens and
radiative fluxes (and thus climate).

Considering all available DMS concentration fields (reconstructed and modelled),
a wide range of global mean flux estimates was derived (Table 3.2 and Figure 3.2)
which can be used to define boundary conditions for an atmospheric GCM. It is
noteworthy that L10 is at the high end of the range of DMS flux estimates. This
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result has implications for the interpretation of previous sensitivity studies that used
K00 or simulated/parameterized DMS concentration. Using L10 versus other DMS
fields, one should expect a greater sensitivity to changes in wind patterns, for example
(Figure 3.4). Consequently, the importance of DMS for climate might be greater than
was previously estimated. Given the variable global annual mean concentrations of
the different climatologies, future projections of global climate will depend on which
climatology is used.

The sensitivity of the integral flux to differences in the input fields and to the
reestimation of algorithm parameters when using different input fields indicates
potential problems if algorithms are used with input fields other than those on which
the parameter estimates were based. For example, in the case of MLD, this study
has shown that it is problematic to apply the same equation (estimating DMS as a
function of MLD) irrespective of which MLD climatology is used.

It is important to call attention to the need for more realistic gas transfer formula-
tions in climate models. There is a lot of uncertainty concerning the sea-air transfer of
DMS. The formulations used in this study are generally empirical and better models
are needed that are based on actual physical processes (Elliott, 2009; Fairall et al.,
2000, 2011; Garbe et al., 2014; Hare et al., 2004; Johnson, 2010; Yang et al., 2011).
Transfer velocity formulations are empirical formulations based on observations, and
are only as good as the observational data that was used to construct them. A more
realistic way to derive DMS fluxes is to have a more physical approach, meaning that
processes are actually modelled (with no direct dependency on observations). However,
the implementation of such physical models (instead of the empirical transfer param-
eterizations) is still preliminary and not really feasible for global DMS simulations.
Nonetheless, using such physical approaches is the ultimate goal in terms of modelling
the DMS flux. Elliott (2009) argues that a piecewise composite between LM86 and
W92 is a first step towards a more physical representation of the transfer of DMS
through the air-sea interface, because it conforms better to novel eddy covariance
studies on DMS (e.g., Blomquist et al., 2006; Huebert et al., 2004).
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Chapter 4

Simulation of DMS fluxes: Model
sensitivity

4.1 Introduction

The previous chapters demonstrated that there are large differences in DMS sea
surface concentration between different climatologies (Chapter 2), and that these
differences can cause substantial variation in flux (Chapter 3). The next question is
the implication of these differences for the global climate. Although DMS fields show
large differences in spatial pattern and seasonality, the differences in global and annual
mean fluxes are considerably smaller and the climate impacts may also be smaller.
Such a question is naturally addressed using a climate model. Using different DMS
concentration fields as boundary conditions, the resulting changes in tropospheric
chemistry and radiative forcing can be assessed and differences between different DMS
flux estimates can be put in a climate perspective. Previous modelling studies focused
on the effect of DMS on aerosol, CCN and radiative forcing by scaling a single DMS
field (e.g., Gunson et al. (2006); Thomas et al. (2011)). However, there has not been
much discussion on the climatic effect of spatial and temporal variations of DMS flux
(Woodhouse et al., 2013). Part of this chapter evaluates the importance of spatial and
temporal structure of a DMS concentration field to model climate forcing.

Prior to this work, the operational version of the Canadian GCM still derived
ocean emissions of DMS using the old K99 climatology. Integrating the updated L10
climatology into the latest version of the Canadian Earth System Model (CanESM2)
provides the opportunity to contrast the older model configuration with K99 to new
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model boundary conditions and new gas transfer formulations. For this study, several
AGCM runs were done using different DMS concentration fields including L10 as the
control field. Simulations with different transfer velocities were also performed.

The K99 climatology (and to some extent L10) shows large scale features and
“bulls-eye” maxima that may reflect incomplete sampling rather than physical or
biogeochemical processes. However, whether these fine scale features are important in
a global climate simulation remains uncertain, given the large-scale structure of the
winds which drive the fluxes and the subsequent transport and oxidation to sulfate
aerosol. Alternate DMS concentration fields were also designed for this study to shed
light on the importance of spatial and temporal structure in DMS in determining
effects on the marine aerosol burden and radiative fluxes. In order to test the effect of
seasonality the L10 field was replaced by an annual-mean climatology. This study also
examines the effect of spatial variability within the DMS concentration by replacing
spatially variable fields with their spatial means. Analyzing the effects of seasonal and
spatial variations in DMS opens up a new perspective on climate sensitivity to DMS.

4.2 Methods

4.2.1 Model description

All model simulations presented in this study were made with the fourth generation
Canadian Atmosphere Model (CanAM4.1). CanAM4.1 is a slightly newer version
of CanAM4, which is described in von Salzen et al. (2013). Differences between the
two model versions are mainly due to improved diagnostic capabilities in CanAM4.1.
The model has a horizontal resolution that is defined spectrally with a triangular
truncation at wave number 63 (T63) for dynamic transport (i.e. advection) and with a
128-by-64 linear grid for computing physical terms. The vertical domain of the model
has 49 layers extending from the surface to 1 hPa. The vertical grid spacing is about
100 m at the surface and then monotonically increases at higher altitudes.

Figure 4.1 presents a schematic of the sulfur cycle and the radiative effects of sulfate
aerosols in CanAM4.1. The ocean efflux of DMS is a source of aerosols via oxidation
to sulfur dioxide (SO2), which in turn is oxidized to form sulfuric acid (H2SO4) and
sulfate (SO2−

4 ). The air-sea gas transfer of DMS is calculated with SST, ice cover,
and wind speed from the model. Ice cover and SST are specified in all model runs
used here with a climatological dataset from the Atmospheric Model Intercomparison
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Figure 4.1: Schematic representation of the sulfur cycle and radiative effects of
sulfate aerosols in CanAM4.1 (courtesy of Knut von Salzen). In each grid cell, the
model accounts for sources and sinks of sulfate aerosol (SO2−

4 ), SO2 and DMS. SO2

is emitted from volcanos, fires, and anthropogenic sources. DMS is mainly emitted
from the oceans but there are also some terrestrial sources. DMS is oxidized to SO2

by OH during the day and by NO3 during the night. In clear-sky conditions, SO2 is
oxidized to sulfuric acid which can either form new sulfate particles by nucleation or
condense onto existing particles. In clouds, sulfate is produced from in-cloud oxidation
of SO2. In-cloud oxidation of sulfur and wet deposition is treated separately for layer
(i.e., stratiform) and convective clouds. For both types of clouds, the oxidation occurs
via ozone (O3) and hydrogen peroxide (H2O2). The oxidation rates depend on the
pH of the cloud water which depends on the concentrations of nitric acid (HNO3),
ammonia (NH3), and carbon dioxide (CO2). Sulfate aerosols are mainly removed by
wet deposition, with dry deposition being only a minor sink term.

Project (AMIP) (Hurrell et al., 2008). In addition to the ocean efflux, the model also
accounts for DMS fluxes from the terrestrial biosphere, which are given as monthly
mean fields (Spiro et al., 1992). DMS is oxidized to SO2 by hydroxyl radicals (OH)
during daylight hours and by nitrate radicals (NO3) at night. Besides DMS, the
model also includes additional terrestrial sources of sulfur to the atmosphere (Figure
4.1): monthly mean emissions of gas phase SO2 from fires (i.e., biomass burning) and
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anthropogenic sources (Lamarque et al., 2010), as well as from volcanic emissions
(Dentener et al., 2006).

Transport, dry and wet deposition, as well as chemical transformations of the
constituents are all calculated by CanAM4.1. In terms of the production of sulfate
aerosol (SO2−

4 ), there is in-cloud and gas-phase (clear-sky) oxidation of SO2. However
the main source of sulfate aerosols in the atmosphere is in-cloud oxidation, which
differs in some ways for layer (i.e., stratiform) and convective clouds. The presence of
ozone (O3) and hydrogen peroxide (H2O2) as oxidants is a requirement for both types
of clouds (von Salzen et al., 2000). As seen in Table 4.1, the concentrations of nitric
acid (HNO3), ammonia (NH3) and carbon dioxide (CO2) affect the pH of cloud water
and as a consequence the oxidation rates (von Salzen et al., 2000). The formulation
from Slingo (1987) is used, which calculates the fraction for in-cloud oxidation in the
condensed phase via the precipitation flux. Under clear-sky conditions, OH radical
is the only oxidant of SO2. There is no fully interactive chemical transport module,
so that CanAM4.1 uses specified oxidant concentrations (OH, NO3, O3, H2O2) from
the Model for Ozone and Related Chemical Tracers (MOZART) as presented by
Brasseur et al. (1998). CanAM4.1 also specifies ammonia (NH3) and ammonium
(NH+

4 ) concentration (Dentener and Crutzen, 1994), which are used for the calculation
of pH. Table 4.1 summarizes the relevant chemical reactions included in CanAM4.1
(von Salzen et al., 2013).

The removal of sulfate aerosol takes place through wet and dry deposition. The
dry deposition flux of sulfate simply depends on the concentration within the model
layer adjacent to the surface along with a defined dry deposition velocity (Lohmann
et al., 1999). Wet deposition, as with the in-cloud oxidation outlined above, is treated
individually for layer and convective clouds. For convection there is scavenging within
clouds, which is a function of precipitation Giorgi and Chameides (1986), as well as
scavenging underneath clouds by falling rain droplets, which is parameterized using a
mean collection efficiency (Berge, 1993). Wet deposition is the main and more efficient
process in removing sulfate aerosol, so precipitation is an important control on the
sink of sulfate.

CanAM4.1 uses a bulk aerosol scheme, which means that there is no information
on aerosol size distribution, but only the total mass. The model defines sulfate, organic
carbon, black carbon, sea salt, and dust as separate aerosol species (Croft et al., 2005;
Lohmann et al., 1999). CanAM4.1 includes data by the Aerosol Comparisons between
Observations and Models (AeroCom) project for natural and anthropogenic aerosol
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emissions (e.g., Kinne et al., 2006; Textor et al., 2006). In the CanAM4.1 version
used in this study the cloud droplet number concentration (CDNC) depends only on
the local concentration of sulfate. The empirical parameterization by Dufresne et al.
(2005) is used which relates CDNC to the concentration of sulfate as:

CDNC = 60(SO2−
4 )0.2 (10)

where CDNC is in number cm−3 and SO2−
4 in µg m−3. For this relationship, a lower

bound on CDNC of 1 cm−3 is used.
CanAM4.1 calculates the direct radiative effect of scattering by aerosols and the

first indirect radiative effect due to interactions with clouds, influencing cloud optical
properties. Effects of aerosols on the conversion of cloud water to precipitation (second
indirect effect) are not considered in the current version of CanAM4.1. In terms of
the direct effect, calculations account for scattering and absorption using the Mie
solution approach. The main input parameters for the calculations are aerosol mass
and relative humidity. Sulfate aerosols scatter radiation more efficiently at higher
relative humidity because aerosols swell in size with relative humidity to establish
thermodynamic equilibrium according to Raoult’s law. The overall efficiency of the
scattering effect also varies with wavelength and concentration of aerosol. In general,
the net clear-sky radiative effect should be roughly proportional to the aerosol burden.
The first indirect effect uses the relationship between sulfate aerosol and cloud droplet
number concentration (CDNC) as described above, which is used to determine the
effective radius of cloud droplets. Smaller droplets are more efficient at scattering solar
radiation than larger droplets. Given the much greater cloud fraction of stratiform
clouds compared to convective clouds, the indirect effect only is applied in layer clouds.
Within each grid cell, the cloud forcing is determined as the difference between the
all-sky forcing and clear-sky forcing.

4.2.2 Description of the model experiments

A series of experiments was conducted to investigate the impacts of different seawater
DMS climatologies and different gas transfer formulations on atmospheric burden
of DMS, SO2, sulfate aerosol burden and radiative forcing (Table 4.2). The control
simulation was carried out using the L10 DMS concentration field with the N00 wind
parameterization scheme and considering air resistance (L10 & N00 & γa). The model
experiments can be classified relative to the control in three different ways: (1) different
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flux parameterizations, (2) different DMS concentration fields or (3) different DMS
concentration pattern but scaled to yield the same global mean flux as the control.
In the subsequent evaluation of the model experiments, results are always compared
against the control run. All DMS concentration field were prepared offline before
implementation in the model. This study used only the AGCM CanAM4.1 and not
the coupled CanESM, so that the algorithm-derived DMS field considered (AN01) was
obtained using observed chlorophyll, light, and nutrient fields (as outlined in Section
2.2.2.1). Observed rather than simulated fields were used to avoid uncertainty from
model bias. Differences among the model runs are due to either changing the DMS
concentration (spatial pattern or total amount) or the air-sea gas transfer formulation.
Other aspects of the model, such as oxidation pathways and cloud microphysics, are
the same for all model experiments.

Table 4.2: List of model sensitivity experiments.

Name Description
L10 & N00 & γa Control experiment
L10 & N00 No air resistance
L10 & LM86 LM86 flux scheme, no air resistance
K99 & LM86 Older K99 climatology instead of L10 climatology, LM86 flux

scheme, no air resistance
K99 & N00 & γa As control, but with K99 climatology
K00 & N00 & γa As control, but with K00 climatology
K99* & N00 & γa As control, but with K99 scaled to L10 global flux
AN01* & N00 & γa As control, but with AN01 scaled to L10 global flux
Temporally invariant L10 annual mean field for all months scaled to the original

L10 global flux
Spatially uniform Spatially uniform fields with monthly global mean of L10 as

concentration and scaled to the original L10 global flux
No ocean DMS No DMS emissions from ocean

For each model configuration (as listed in Table 4.2), an ensemble of three 5-
year long runs were produced. Each ensemble member uses the exact same model
configuration but a different seed was used in the random number generator used
in the radiation code. The three model runs for each configuration were produced
to assess the internal variability of the model. The ensemble-mean result will be a
statistically more robust estimate of the climate influence of DMS than the result of
any individual member of the ensemble. In fact, the results of the 3-member ensemble
mean is likely more robust than from a single 15-year long simulation, given that
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the ensemble members are statistically independent of each other, so that there is no
autocorrelation from one 5 year period to the next. The spread among realizations
will indicate how large the response to changes in DMS fluxes is relative to internal
variability. All experiments are run with present-day climate, for the period from
January 2003 to December 2008. The first year was a spin-up period, so that the time
period of the analyzed data is January 2004 to December 2008. The model output
fields considered in this study are listed in Table 4.3.

Table 4.3: List of model output fields used in this study.

Variable
name

Description Units

DMS and other sulfur species
EDSO DMS emissions over ocean kg m−2 s−1
EDSL DMS emissions over land kg m−2 s−1
DOXD Oxidation rate for reaction of DMS with OH during day-

time
kg m−2 s−1

NOXD Oxidation rate for reaction of DMS with NO3 during night-
time

kg m−2 s−1

VI11 Atmospheric burden of DMS kg m−2
VI12 Atmospheric burden of SO2 kg m−2
VI13 Atmospheric burden of SO2−

4 kg m−2
Radiative flux

BALT Net radiation at TOA W m−2
FSR Reflected solar flux at TOA W m−2
FSRC Clear-sky reflected solar flux at TOA W m−2
CFST Solar cloud forcing at TOA W m−2

4.2.3 Scaling DMS concentration fields to L10 flux

In order to evaluate the importance of spatial and temporal structure of the DMS
distribution, this study included model runs with DMS concentration fields that either
had no seasonality (temporally invariant) or no spatial structure (spatially uniform).
For the temporally invariant field, the annual mean field of L10 was used for all the
months of the year. For the spatially uniform case, the global mean annual cycle
was preserved, but each monthly field was replaced with the global mean for that
month. The flux associated with these annual mean or global mean concentrations is
not generally equal the global mean flux associated with the spatially or temporally
varying concentration. In order to ensure that the total flux remains the same when
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the spatial or temporal variability is suppressed, the temporally invariant or spatially
uniform DMS concentration field was changed by a constant scaling factor. This factor
was determined with offline calculations using ERA reanalysis wind and SST data.
The scaling factor was a single constant for the temporally invariant run (c = 0.96).
For the spatial uniform case a scaling factor had to be determined for each monthly
field, in order to preserve the global mean annual cycle of the L10-derived flux.

Two additional model runs were conducted with spatial and temporal patterns
given by climatologies other than L10 (K99 and AN01), but scaled to have the same
global mean flux as L10 (Table 4.2). In order to remove the effect of the change in
global total flux of DMS on model results, K99 and AN01 were scaled by a single
factor, so that they will produce about the same global flux as in the control (L10).

4.3 Results

4.3.1 Comparison between model and reanalysis flux estimates

Before analyzing the model results, the simulated DMS flux from the model was
compared to the DMS flux calculated with the ERA-Interim reanalysis SST, sea ice,
and wind speed fields. The calculations with the ERA-Interim product were redone
for the same time period as the model simulations (January 2004 to December 2008).
The global- and annual-mean flux is generally higher in the CanAM4.1 simulation
than when derived offline with the reanalysis fields (Table 4.4). The global mean
flux is 20-22% larger in the model when N00 is used (with or without air resistance)
and 12% larger when LM86 is used. These differences must primarily result from the
winds, because SST and sea ice cover are specified in all simulations with the AMIP
boundary conditions, which should be very similar to the ERA-Interim fields. The
winds are overall somewhat stronger in the model than in the reanalysis fields. The
probability distribution and seasonality of the winds are also slightly different between
the model and the reanalysis product. A preliminary comparison between model
and ERA-Interim wind velocity fields shows that the annual mean surface level wind
velocity is 17% higher on average in CanAM4.1 (control run). Fluxes are particularly
sensitive to high winds, and slight changes in the wind distribution can be magnified
in the DMS flux.

Despite the differences in flux estimates between model and offline calculations, the
sensitivity of DMS flux to changes in DMS climatology and gas transfer formulation



106

T
ab

le
4.
4:

O
ce
an

em
is
si
on

s
of

D
M
S
fr
om

C
an

A
M
4.
1
an

d
offl

in
e
ca
lc
ul
at
io
ns

w
it
h
re
an

al
ys
is

fie
ld
s.

D
M
S
flu

x
is

de
ri
ve
d
fo
r

th
e
ti
m
e
pe

ri
od

of
th
e
m
od

el
si
m
ul
at
io
ns

(J
an

ua
ry

20
04

to
D
ec
em

be
r
20

08
).

M
od

el
ru
ns

C
an

A
M
4.
1

E
R
A
-I
nt
er
im

G
lo
ba

lm
ea
n

SD
(s
pa

ti
al
)

To
ta
lfl

ux
G
lo
ba

lm
ea
n

SD
(s
pa

ti
al
)

To
ta
lfl

ux
µ
m
ol

m
−
2
s−

1
µ
m
ol

m
−
2
s−

1
Tg

S
y−

1
µ
m
ol

m
−
2
s−

1
µ
m
ol

m
−
2
s−

1
Tg

S
y−

1

L1
0
&

N
00

&
γ
a

7.
02

4.
56

28
.9

5.
72

3.
65

23
.6

L1
0
&

N
00

7.
60

4.
88

31
.3

6.
13

3.
87

25
.3

L1
0
&

LM
86

4.
94

3.
27

20
.4

4.
34

2.
80

17
.9

K
99

&
LM

86
4.
44

2.
84

18
.3

3.
89

2.
38

16
.0

K
99

&
N
00

&
γ
a

6.
31

3.
97

25
.9

5.
11

3.
08

21
.0

K
00

&
N
00

&
γ
a

6.
02

3.
55

24
.7

4.
90

2.
81

20
.3



107

are similar (Table 4.5). This similarity in relative sensitivity is important since the
offline calculations using reanalysis fields are used to determine the scaling factors
described in the previous section. The magnitude of change is slightly higher in the
model, because of the greater total flux. Given the similar sensitivities, the use of
reanalysis-derived scaling factors in the GCM runs is a reasonable approximation.

Table 4.5: Difference in total ocean DMS efflux (in TgS y−1) relative to control (L10
& N00 & γa) for both CanAM4.1 and offline calculations with reanalysis data. The
corresponding percentage change is given in brackets. DMS flux is derived for the
time period of the model simulations (January 2004 to December 2008).

Model runs CanAM4.1 ERA-Interim

L10 & N00 +2.4 +1.7
(8%) (7%)

L10 & LM86 -8.5 -5.7
(30%) (24%)

K99 & LM86 -10.7 -7.7
(37%) (32%)

K99 & N00 & γa
-3.0 -2.7
(10%) (11%)

K00 & N00 & γa
-4.2 -3.4
(14%) (14%)

4.3.2 Fluxes and atmospheric sulfur burdens

Table 4.6 presents the simulated sulfur sources, sinks, and atmospheric burdens. The
simulated sulfur budget is in equilibrium: the total oxidation (by OH and NO3)
matches the total emission of DMS for all model runs. Consistent with the results in
Chapter 3, the DMS flux calculated with the L10 DMS concentration field is higher
than that calculated with K99 or K00, independent of which gas transfer formulation
is used. Between L10 to K99, the reduction in DMS emission results in a reduction
in oxidation by OH, while nighttime oxidation by NO3 does not change much. So
the change in spatial pattern between K99 to L10 mostly affects daytime oxidation
rate. However, in the case of K00 and L10, both daytime and nighttime oxidation is
affected equally. The responses of oxidation rates to changes in DMS concentration
patterns are likely a function of the distribution of the oxidants OH and NO3, which
are specified in CanAM4.1. Table 4.6 also confirms that the scaling of DMS fields to
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control flux works well. All modified concentration fields yield the same global total
flux as the control.

There is an approximately linear response in atmospheric sulfur burdens to changes
in DMS flux (Table 4.6). The largest changes occur in the DMS burden, with the
greatest difference of ∼0.1 TgS (61%) between L10 & N00 and K99 & LM86, which
almost corresponds to a 1:1 response with the change in DMS flux (68%) between
these two end points. The burdens of SO2 and sulfate are less sensitive, because of
the large background value for SO2 and sulfate from other sources (anthropogenic and
volcanic). The only case where global atmospheric budgets of SO2 and sulfate show a
substantial change is when ocean DMS is turned off as an extreme scenario. In that
case the SO2 and sulfate burdens are slightly more than half that in the control run.

Figure 4.2 shows clear linear relationships between DMS, SO2, and SO2−
4 burden

and DMS flux. One can see in this figure a natural partition of the runs depending
on what DMS field is used. Two separate regression lines were computed for runs
with L10 (blue) and with K99 (purple). These two sets of regression lines are almost
parallel, indicating an approximately constant offset in burden between the K99 and
L10 simulations. Consistent with the flux results in Chapter 3, Figure 4.2 shows
that spatial and temporal structure of DMS does not have a strong influence on
total atmospheric sulfur burden. The structure in the DMS distribution does affect
the oxidation pathway slightly in the step from SO2 to sulfate, where the linear
relationships differ slightly more than in other cases.

4.3.3 Relationship between radiative forcing, sulfate and DMS

In general, the response of radiative forcing follows the variation in the global mean
flux of DMS linearly (Figure 4.3). However, there are some deviations from that linear
relationship that can be attributed to differences in spatial and temporal pattern
among the DMS fields. The relationship between the radiation fields and DMS flux
can be roughly divided in two cases: L10 (blue) and K99 (purple). The response of
the radiative forcing to differences in flux (e.g., from different wind parameterizations),
is smaller for K99 fields than for L10.

Figure 4.3 shows that there is considerable spread in top of the atmosphere (TOA)
radiative forcing depending on the strength of the ocean DMS source. Across all
experiments considered the range in ensemble-mean response is 0.67 W m−2. In the
extreme end-member case of removing ocean DMS emission completely, a radiative
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Figure 4.2: Scatterplots of atmospheric burdens of sulfur species vs. other species
and ocean DMS emissions. Each data point represents the ensemble mean of a model
experiment and shows the global annual mean value. The experiment names are
listed in the legend and are described in Table 4.2. Crosses represent regular runs
with unmodified DMS fields, and are the only data points used for the corresponding
regression lines. The first column shows atmospheric burdens of sulfur species (SO2−

4 ,
SO2, DMS) against ocean emission of DMS, the second column shows atmospheric
burdens of SO2−

4 and SO2 against DMS burden and the third column shows atmospheric
burden of SO2−

4 plotted against the SO2 burden.

forcing of +2.27 W m−2 resulted (not shown). Thus, the range for the given selection
of DMS fields and flux parameterizations (0.67 W m−2) is almost 30% of the total
radiative forcing by ocean DMS in the model. Using LM86 or N00 causes a greater
response in flux and thus in radiative forcing than varying the DMS field. The
DMS concentration fields considered in this analysis form a relatively similar subset
compared to the range discussed in Chapter 3. Use of some of these very different
concentration fields could result in substantially different radiative forcings.



111

4.5 5 5.5 6 6.5 7 7.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ocean DMS efflux   (µmol m−2 d−1)

D
ev

ia
tio

n 
of

 n
et

 ra
di

at
io

n 
at

 T
O

A 
fro

m
 c

on
tro

l (
W

 m
−2

)

 

 

L10 & N00 & γ   (control)
L10 & N00
L10 & LM86
K99 & LM86
K99 & N00 & γa
K99* & N00 & γa
K00 & N00 & γa
temporally invariant DMS
spatially uniform DMS
AN01* & N00 & γa

a

Individual run
Ensemble mean | unmodified
Ensemble mean | scaled (*)
Ensemble mean | uniform
Regression for L10 runs
Regression for K99 runs

Figure 4.3: Radiative forcing difference (change in global annual mean net radiation at
the top of the atmosphere (TOA)) between model experiments and control experiment
relative to the global annual mean flux of ocean DMS. The experiment names are listed
in the legend and are described in Table 4.2. Crosses represent the ensemble mean of
regular runs with unscaled DMS fields; individual runs for each experiment are shown
as dots of the same colour. Open circles denote ensemble mean of model experiments
with seasonality (red) or spatial pattern (yellow) removed. Open diamonds denote
model runs with DMS fields different from L10 but scaled to give the same global
mean flux as L10. Only data from individual runs with unmodified K99 (purple) or
L10 (blue) DMS emissions are used for the corresponding regression lines.

The spread of the individual ensemble members (Figure 4.3) indicates the range
of variability in radiative forcing that one can expect simply from model internal
variability (i.e. variability among ensemble members). These uncertainties arise from
the fact that the model generates its own variability independent of the boundary
conditions. It is worth noting that this spread is on average 0.12 W m−2 (ranging
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from 0.04 to 0.19 W m−2), which is non-trivial compared to the range of the ensemble
means (0.67 W m−2).
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Figure 4.4: Difference in global annual mean net radiation at the top of the at-
mosphere (TOA) between model experiments and control plotted against the global
ocean efflux of DMS. Deviations in net radiation at TOA from the control are plotted
against the global total flux derived from the ERA-Interim reanalysis product (as
described in Chapter 3) for model runs using N00 & γa as the air-sea transfer scheme
(large filled circles). A linear regression for these runs only (grey dashed line) is used
to derive estimates for other experiments (small red dots on regression line).

In order to obtain a rough estimate of the possible range in radiative forcing
corresponding to the entire range of DMS climatologies, a linear regression model was
constructed from the subset of model runs using N00 & γa as the flux scheme (Figure
4.4). As DMS fluxes from CanAM4.1 are not available for all DMS climatologies,
offline reanalysis-based DMS fluxes are used to calculate a regression of radiative
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forcing on DMS flux (Figure 4.4). Estimates of radiative forcing from the different
DMS climatologies yields a range of 0.75 W m−2 with L10 representing the lower end
since it has the greatest flux. This spread in net radiation is comparable to the total
spread of model runs of 0.67 W m−2 (excluding the no ocean DMS flux case).

A similar estimate can be made for variation among the available piston velocity
schemes. In this case, the linear regression is constructed only with model runs that
have the same DMS field, but different flux parameterizations (not shown). Taking L10
as the DMS field and only considering the variation in flux estimates from changing
the piston velocity schemes (LM86 to W92) gives a range of 1.04 W m−2 in radiative
forcing. However, this estimate can be considered an upper limit, since the choice of
W92 as the flux parameterization likely leads to an overestimate of the DMS flux and
the choice of LM86 likely an underestimate. Nonetheless, this analysis puts the model
results in perspective relative to the overall range of flux estimates (Chapter 3).

Figure 4.3 shows that the response of global mean radiative forcing to variation
in the global mean flux is linear to first order. The relationship between radiative
forcing and atmospheric sulfate burden shows near linearity, irrespective of differences
in the spatial/temporal pattern of the DMS concentration field (Figure 4.5). In this
scatterplot, there is no evidence of distinct relationships depending on use of the L10
or K99 climatologies. Thus, the deviation from linearity seems to be mainly due to
changes in the oxidation pathway that occur because the spatial and temporal pattern
affects the way in which DMS is transformed into sulfate (Figure 4.2).

Figure 4.6 shows global means of individual radiation fields (cloud forcing, clear-sky
reflected and total reflected flux at TOA) plotted against global mean DMS flux and
global mean sulfate burden. The top and middle panels differentiate the total reflected
radiation into cloud forcing (i.e. reflected radiation due to clouds) and clear-sky
reflection, i.e., the indirect and direct aerosol radiative effects. As with total radiative
forcing, the two groups corresponding to the two DMS climatologies are evident in the
scatterplots of cloud forcing and clear-sky reflection. These two populations are not
evident in the scatterplots with the atmospheric sulfate burden, indicating a direct
relationship between burden and radiative forcing (Figure 4.6).

An interesting difference is evident between scaled fields with spatial and temporal
structure, such as K99* and AN01*, and the spatially uniform and temporally invariant
DMS field. There is no change in cloud forcing (relative to the baseline simulation) for
the spatially uniform and temporally invariant cases despite reductions in the global
mean sulfate burden (Figure 4.6). This is also seen to some extent in AN01*. On the
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Figure 4.5: Deviation in global annual mean net radiation at TOA from control
plotted against the global annual mean atmospheric burden of SO2−

4 . The experiment
names are listed in the legend and are described in Table 4.2. Crosses represent the
ensemble mean of regular runs with unmodified DMS fields. The three individual
runs for each experiment are shown as dots of the same colour. Open circles denote
ensemble mean of model experiments with seasonality (red) or spatial pattern (yellow)
removed. Open diamonds denote model runs with DMS fields different from L10 but
scaled to give the same global mean flux as L10. All data points are used for the
linear regression (grey dashed line).

other hand the model run with K99*, which represents changing the DMS pattern
from L10 to K99 while preserving the same global mean flux, shows a reduction in
cloud forcing that scales linearly with the reduction in sulfate. The differences among
the scaled fields in the cloud forcing is compensated to some extent in the clear sky
reflected flux (Figure 4.6). In this case the temporally invariant case shows a greater
reduction than expected by a linear dependence on sulfate burden. Experiments with
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AN01* and the spatially uniform case conform more closely to the linear trend. The
all-sky forcing (i.e., deviation of reflected solar flux at TOA), which is the cumulative
forcing of cloud and clear-sky reflection, shows a very similar response to global mean
DMS flux and atmospheric sulfate burden (Figure 4.6) as the total radiative forcing
(Figures 4.3 and 4.5). The range in all-sky forcing is as large as in total forcing among
the model experiments. The total radiative forcing includes variation in longwave
radiation, whereas the reflected solar flux accounts only for shortwave radiation. The
bottom two panels in Figure 4.6 suggest that radiative forcing is primarily in the
shortwave flux and there are only slight variations in the longwave (e.g., compare to
Figures 4.3 and 4.5).

4.3.4 The effect of spatial and temporal structure on aerosol

and radiative forcing

Suppressing the spatial or temporal variability of ocean DMS concentration changes
the radiative fluxes (Figures 4.3 and 4.6). Figure 4.7 shows the changes in global
mean flux, oxidation rate, sulfur burdens, and radiation between the control run and
model runs with seasonally invariant (red) and spatially uniform (yellow) DMS fields.
The two cases are compared with the changes from a model run that used the N00
scheme without the air resistance term (blue). This permits a comparison of model
response to changes in DMS distribution with changes in the overall strength of the
DMS source. The main effect of removing the air resistance terms is an overall increase
in DMS flux but no change in pattern.

The global mean burden of a species in the atmosphere over a given time period is
determined by the efficiency of internal sources and sinks (e.g. chemical production
rates or emissions) and indirectly by the transport. The mean state can be assumed
to be at equilibrium (Table 4.6), so the budgets are a simple sum over all internal
sources and sinks, i.e., changes in fluxes should be very nearly balanced by changes in
the oxidation rates. This is the case in the model results as shown in Figure 4.7. For
spatially or seasonally invariant DMS concentrations, the global mean DMS flux is
nearly the same as in the control. There are substantial changes in the sink strengths:
daytime oxidation of DMS with OH is decreased and compensated by an increase in
nighttime oxidation with NO3. The model run without air resistance shows an increase
in global mean DMS flux compared to the control of about 0.40 µmol m−2 d−1, which
is balanced by an increase in oxidation rates.
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In terms of the atmospheric sulfur burden, there is an obvious response in the
model run without air resistance, with an overall increase in the burdens of DMS, SO2

and SO2−
4 . Of the averaged fields, only the spatially-uniform DMS case seems to cause

a change in the spatio-temporal oxidation pattern that substantially affects the DMS
burden. All of the changes in the atmospheric sulfur burden for the spatially-uniform
DMS are well outside of the range of variability (indicated by the error bars). For
temporally invariant DMS, this is only true for the atmospheric burden of sulfate.
The sulfate burden for spatially uniform and temporally invariant DMS runs shows a
reduction comparable to the increase due to the omission of the air resistance term.
Resolving the spatial-temporal pattern of DMS affects sulfate to the same extent
as neglecting air resistance, which is not routinely considered in air-sea gas transfer
models of DMS.

Figure 4.7 demonstrates that the spatial and temporal pattern of DMS concentra-
tion affects the aerosol direct radiative forcing, mainly by influencing the efficiency
of oxidation of DMS to SO2 and SO2−

4 . There is a much stronger response in the
clear-sky reflected flux than in the cloud forcing. The change in total reflected solar
flux is outside of the ensemble range only for the temporally-invariant and no-air-
resistance case. The dramatic modification in the spatial and temporal distribution
associated with seasonally-invariant or spatially-uniform DMS concentration, has very
little effect on the indirect forcing (i.e., cloud forcing), but a stronger effect on direct
aerosol radiative effects. However, in the spatially uniform case the response does
not exceed the internal variability (error bars). Interestingly, the response in the
reflected solar radiation is greater for the seasonally invariant case even though the
reduction in sulfate burden of the ensemble mean is somewhat smaller compared to
the spatially uniform case. In the case of the temporally invariant DMS, the reduction
in the reflected solar irradiance is interpreted as being due to the temporal correlation
between DMS flux and irradiance over the seasonal cycle, in addition to the reduction
of atmospheric sulfate burden.
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Figure 4.6: Deviation in global means of cloud forcing (upper panels), clear-sky
reflected (middle panels), and total reflected irradiance (lower panels) at TOA from
control plotted against global annual mean ocean DMS flux (left) and global annual
mean atmospheric burden of SO2−

4 (right). Symbols are the same as in Figure 4.3 and
4.5. Experiment names are listed in the legend and are described in Table 4.2.
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Figure 4.7: Absolute differences in global mean flux, oxidation rates, sulfur burdens,
and radiation between the control run and model runs with seasonally invariant (red)
or spatially uniform (yellow) DMS concentration, and the L10 & N00 model experiment
(blue). Fluxes and oxidation rate of DMS are shown in the upper panels. The global
mean DMS flux includes terrestrial sources to ensure mass balance. The only sink for
DMS is oxidation to SO2, which is shown for both oxidation pathways (oxidation by
OH and NO3 radicals). Absolute changes in the atmospheric sulfur burdens of DMS,
SO2 and SO2−

4 are shown in the middle panels. Bottom panels show absolute changes
in cloud forcing, clear-sky reflected and total reflected shortwave flux. Total reflected
flux is the sum of cloud and clear-sky reflected flux.
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4.4 Discussion

4.4.1 The effect of spatial pattern of the sources and sinks of

DMS on atmospheric sulfur burdens

The burden of DMS is not necessarily linearly related to the magnitude of sources and
sinks in the simulation. It is the efficiency of the sinks which determines the burden.
A very simple model for global DMS concentrations is given through the following
budget equation:

d

dt
〈DMS〉 = 〈E〉 − 〈O ×DMS〉 (11)

where the angle brackets denote global averages. E is the global mean emissions and
O is the oxidation rate (per unit of DMS concentration), or “efficiency” of DMS sinks.
In equilibrium, E = O ×DMS, and the equilibrium concentration of DMS depends
on O. Figure 4.7 shows the relationship between 〈E〉 and 〈O ×DMS〉 (upper three
panels).

The sink term 〈O ×DMS〉 can not be decomposed as 〈O〉 × 〈DMS〉, so the size
of O (efficiency of DMS sinks) can not be easily determined. If O were uncorrelated
with DMS concentration, spatial averaging would have no effect on the sink strength.
However, it is clearly seen in Figure 4.7 that the oxidation efficiency is lower in the
run without spatial structure, which produces higher atmospheric DMS concentration
for the same global mean emissions. Assuming equilibrium, the above equation can
be rewritten as:

〈E〉 = 〈O〉eff × 〈DMS〉, (12)

where 〈O〉eff is the effective global oxidation rate which will depend on the spatial
structure of sources and sinks and can be influenced by transport.

A reduction in the global oxidation efficiency can occur for various reasons. The
most likely cause is that the transport of DMS depnds on the distribution of sources.
For instance, if DMS is emitted in the tropics, some of the DMS is transported to the
upper troposphere through convective processes. For many chemical species, sinks are
weaker in the upper troposphere than in the lower troposphere. This study omitted
analysis of the vertical distribution of the oxidation rates, so it is not possible to
know if this is the mechanism responsible. However, it is expected in general that
differences in DMS transport lead to differences in DMS removal efficiencies and
therefore different burdens in these runs.
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One of the most interesting results is that the spatial and seasonal structure does
affect the sulfur burden even in the global mean. In the case of atmospheric burdens
of SO2 and sulfate, the underlying reasons for the changes are difficult to identify
because of a more complex representation of sinks and sources in the model. The
underlying effects are likely due to a change in the spatial pattern of sources. Sulfate
has a much longer lifetime if it is transported into the upper troposphere because the
main sink of sulfate is scavenging in clouds, which mainly occurs in the lower and
mid troposphere. The reason that the sulfate concentrations are lower in the spatially
uniform and temporally invariant DMS runs might be partly because of a shift of
DMS oxidation into regions with more clouds and precipitation. This would explain
the decreases in sulfate despite an unchanged or slightly increased SO2 burden (Figure
4.7).

4.4.2 The effect of spatial and temporal pattern of DMS on

radiative forcing

The results of the AGCM runs show a nearly-linear response of radiative forcing to
ocean DMS flux, but scatter exists around this relationship. This variability in radiative
forcing for a given global DMS flux is an important uncertainty, which is controlled by
the spatial and temporal pattern of DMS. For a particular global total flux, this study
presents a rough estimate of the possible range in radiative forcing of just 0.2 W m−2

(defined by the range in ensemble means of all model experiments with the same
total flux, irrespective of the spatial and temporal structure in DMS concentration).
Hence, given an approximate uncertainty of 0.2 W m−2, one can estimate the radiative
forcing as a function of global total DMS flux. Consequently, there are two sources of
uncertainty: (1) uncertainty in total emissions and (2) uncertainty in spatial/temporal
pattern. This study showed that to first order, total emissions are more important
than the spatial/temporal pattern.

For higher latitudes L10 (and most other DMS fields) yields stronger seasonality
in concentration compared to the temporally invariant or spatially uniform field,
implying that there will be seasonality in DMS fluxes correlated with radiative
fluxes in these areas, such that DMS concentrations are highest when incoming solar
radiation is greatest. In the case of temporally invariant DMS concentration this
seasonality is neglected and only the seasonality in wind speed and SST, which is
likely less correlated with solar radiation, controls the DMS flux. Thus, the effect of
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the seasonality should be to make the climate effects of DMS stronger. A positive
radiative forcing perturbation is in fact what can be seen from eliminating seasonality
(Figures 4.3 and 4.6). The spatially uniform field represents an extreme case, and it
seems likely that any moderation in this modification of spatial pattern (e.g., using
hemispheric mean separate for each hemisphere instead of the global mean) would
reduce the deviation in the radiative response relative to the control run. These results
suggest that resolving the correct temporal distribution of DMS is more important
than resolving the spatial distribution.

Identifying the reason for radiative effects due to the change in spatial and temporal
structure of the DMS source is difficult, as many processes and feedbacks in the model
could affect radiative fluxes. However, this study was able to demonstrate that the
change almost entirely happens in the shortwave solar flux and is mostly connected to
a general decrease in the atmospheric sulfate burden. As discussed above, the effect
of seasonality in DMS is one exception, and the temporal correlation between DMS
flux and irradiance seems to be an important factor.
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Chapter 5

Summary and conclusions

This review of currently available reconstructions and simulations of DMS distribution
(Chapter 2) indicates that no approach reproduces the observed DMS concentration
in the ocean particularly well. The reconstructed and simulated distributions disagree
with observations and the L10 climatology in terms of variance, and generally display
weak spatial and temporal correlation. When using observationally-based input
fields, all parameterizations substantially underestimate the variance of the available
observational data set or the L10 climatology. Most empirical schemes display low
variance and weak correlations relative to either L10 or the raw observations, clustering
together at the lower left of the Taylor diagrams (Figures 2.16 and 2.20). None of
the global models, either empirical or prognostic, are strongly correlated with L10
(r < 0.4 in all cases). However, some of them, such as HAMOCC and HadOCC,
approximate the variance of L10 or the raw observations. Furthermore, none of the
different approaches are strongly correlated with one another. Correlation coefficients
only exceed 0.60 when two models possess common key parameters, such as MLD in
SD02 and VS07 (Table 2.8). So in addition to universally low skill there is substantial
disagreement among the different approaches. On larger spatial scales, such as
latitudinal or hemispheric means, the different approaches are in greater agreement
with one another and with L10 (Figures 2.18b and 2.18c). However, these estimates
are difficult to test against actual observations.

The analysis in Chapter 2 demonstrated that there are great uncertainties in
ocean DMS concentration, both in the spatial and temporal distribution and the
global mean. Besides uncertainty in concentration, there is large uncertainty in the
air-sea flux. DMS flux distributions derived from algorithms and models also fail to
reproduce L10 derived fluxes and show poor agreement with flux estimates derived
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from point observations. The large uncertainty about DMS concentrations and the
most appropriate flux parameterization yields a large range in possible estimates of
global total DMS flux (Chapter 3).

The uncertainty in spatial and temporal distribution of DMS is quite large. However,
the sensitivity of the atmospheric response to changes in spatial or temporal structure of
the DMS distribution is considerably smaller than that associated with the magnitude
of the global total flux (Chapter 4). This result suggests that on a global scale
it is most important to have an accurate estimate of the global DMS flux, while
resolving the exact spatial and temporal distribution is of less importance. Rough
estimates of the range in radiative forcing given the possible range in DMS flux
were estimated as 0.67 W m−2 (across all model simulations with ocean DMS efflux),
0.75 W m−2 (among available DMS fields) and 1.04 W m−2 (among different flux
parameterizations). Contrasting these uncertainties with the well-constrained radiative
forcing of +1.82± 0.19 W m−2 due to the increase in atmospheric CO2 from 1750
to 2011 (Myhre et al., 2013), emphasizes the degree of uncertainty in DMS-derived
aerosol forcing and the need to better constrain this quantity.

An holistic view of the (global scale) uncertainties is important in terms of under-
standing the role of DMS in the climate system. Uncertainty about the global DMS
concentration translates to uncertainty about global estimates of DMS flux. In the
case of the ocean DMS efflux, besides uncertainty about DMS concentration, there
is substantial uncertainty associated with parameterizations of gas transfer velocity.
This leads to uncertainties in radiative forcing resulting from DMS-derived aerosols,
which suggests that DMS may actually play a more important role in the climate
system than has previously been estimated, and that changes in DMS fluxes could
alter our projections of future climate in unexpected ways.

Previous studies have found a relatively weak influence of DMS fluxes on climate
(e.g., Kloster et al., 2007; Vallina et al., 2007b; Woodhouse et al., 2010). However,
these studies may have a “weak effect” bias because of a low bias in DMS flux (Figure
4.4), which would translate into a low bias in radiative forcing. The results of the
current study show that there is a systematic bias of up to 0.75 W m−2 for some
DMS models and algorithms. However, this full range of uncertainty might not be a
meaningful estimate of the uncertainty, since some representations (e.g., L10) can be
considered more skillful than others (algorithms and models).

The uncertainty in DMS concentration estimates contributes substantially to
uncertainties in present-day aerosol radiative forcing (Carslaw et al., 2013), defined
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as the difference in radiative fluxes between present-day and preindustrial due to
anthropogenic changes in the atmospheric aerosol burden. To estimate the present-day
forcing, it is necessary to have a reliable estimate of aerosol forcing in preindustrial
times. While observationally-based estimates of present-day radiative fluxes can be
made, these are not available for preindustrial conditions. Current understanding of
the natural sulfur cycle indicates that most preindustrial forcing from sulfate aerosol
was determined by DMS flux and volcanic emissions. Uncertainty in estimates of
these fluxes, which must be based on models in the absence of direct observations,
will impact forcing estimates. The large uncertainty in DMS flux translates into
uncertainty in preindustrial aerosol forcing, regardless of whether one assumes that
DMS flux remains the same as or similar to preindustrial conditions. As DMS fluxes
may have changed from the preindustrial state, the use of fluxes estimated from
present-day conditions increases this uncertainty.

Limitations of this study and future directions There are a number of limita-
tions in the present study, which are outlined here along with suggestions for further
research. Results in Chapter 2 demonstrated low skill of existing algorithms and
models in reconstructing sea-surface concentration of DMS. However, the algorithms
and models were tested on a limited dataset of available observations which contain
seasonal and spatial sampling biases. In addition, DMS concentration is highly vari-
able, so the observed mean concentrations for e.g. a 1°×1° grid, used to compare
against reconstructed fields, may not be well constrained. This intercomparison study
strived to include all available prognostic and diagnostic models, but certainly did not
sample the entire spectrum of possibilities.

The intercomparison study may have shown an inherent limitation to the ability of
empirical algorithms to reconstruct DMS concentrations accurately. Over the past 15
years there has not been any progressive improvement, which suggests that empirical
or diagnostic approaches might not be effective in modelling DMS on a global scale.
Empirically derived algorithms may be useful for modelling DMS concentrations in
certain regions, but it seems that none of the present algorithms can accurately model
DMS concentrations globally. This suggests that using such a parameterization for
DMS (as opposed to a climatology) in a climate model is not recommended because
of their substantial biases. Although the presently available prognostic models did
not demonstrate noticeably better skill than the algorithms, future improvements in
process modelling are possible, such that more skillful prognostic DMS models are
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likely to emerge in the future. It is also important to note that the sensitivity analysis
of DMS flux in this study (Chapter 3) includes only a limited number of gas transfer
parameterizations, which are empirical and mainly based on wind speed. Application
of these simple parameterizations ignores potentially important physical mechanisms
in air-sea transfer. Implementing a more physical representation of the DMS transfer
velocity into global models remains a significant challenge.

It is possible that the climate effects of DMS are not completely realistic in
the AGCM because idealized assumptions about aerosol processes are made and
there is no process-based representation of the indirect aerosol effect. These biases
would be expected to be especially pronounced in the parts of the atmosphere least
affected by anthropogenic emissions, such as the Southern Hemisphere. Future model
simulations could be done with an atmosphere model that has a more physical
treatment of aerosol processes and cloud microphysical properties. It is possible that
sensitivity to the spatial and temporal distribution of DMS would increase with an
improved representation of cloud microphysics. Furthermore, instead of using specified
atmospheric concentrations of the oxidants, a more interactive tropospheric chemistry
scheme could be used to achieve a more realistic modelling of atmospheric DMS
oxidation.

This study did not investigate climate sensitivity to DMS flux in a coupled model;
all model simulations were done in an atmosphere-only model (CanAM4.1). These
experiments could be repeated in a coupled model setting, which would allow for
feedbacks, which is a key concept in the CLAW hypothesis. Furthermore, a coupled
model setup could evaluate prognostic DMS modules, for which DMS concentrations
are calculated online, as opposed to being specified by (climatological) fields. This
would make it possible to explore climate sensitivity to specific parameters or different
mechanisms within the prognostic DMS module. Results of using different modules
would be more compatible, since input data are generated from the same physical
model irrespective of what module is used. Hence, this could give information about
the inherent difference among the DMS modules versus differences in the input data
associated with physical and biogeochemistry components of the ocean model. However,
one should keep in mind that simulation of DMS concentration with model fields (as
opposed to observation-based data) will likely introduce additional uncertainty which
are potentially larger than the signal that one is trying to investigate.
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