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ABSTRACT

Let G be a graph and k ≥ χ(G) be an integer. The k-colouring graph of G is

the graph whose vertices are k-colourings of G, with two colourings adjacent if they

colour exactly one vertex differently. We explore the Hamiltonicity and connectivity of

such graphs, with particular focus on the k-colouring graphs of complete multipartite

graphs. We determine the connectivity of the k-colouring graph of the complete graph

Kn for all n, and show that the k-colouring graph of a complete multipartite graph

K is 2-connected whenever k ≥ χ(K) + 1. Additionally, we examine a conjecture

that every connected k-colouring graph is 2-connected, and give counterexamples for

k ≥ 4. As our main result, we show that for all k ≥ 2t, the k-colouring graph

of a complete t-partite graph is Hamiltonian. Finally, we characterize the complete

multipartite graphs K whose (χ(K) + 1)-colouring graphs are Hamiltonian.
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Chapter 1

Introduction

Let G be a graph and let k be a positive integer. The focus of our work is on the

k-colouring graph of G, denoted Ck(G), which is the graph whose vertices are proper

k-colourings of G, with two colourings adjacent if and only if they differ in the colour

of exactly one vertex. For a graph G, we consider the Hamiltonicity and connectivity

of Ck(G), for various values of k. Primarily, we will give results on the Hamiltonicity

and connectivity of k-colouring graphs of complete multipartite graphs.

The problem of determining the Hamiltonicity of Ck(G) was first considered by

Choo [8] in 2003 (also see [9]). Choo has shown that, given a graph G, there is

a number k0(G) such that for all k ≥ k0(G), Ck(G) is Hamiltonian. The number

k0(G) is referred to as the Gray code number of G, as a Hamilton cycle in Ck(G) is a

combinatorial Gray code.

The existence of k0(G) for any graph G suggests the obvious question: Given G,

what is k0(G)? Choo [8] answers this question for complete graphs, trees and cycles.

Further work on this problem has been done by Celaya et al. [3], who determine

Gray code numbers of complete bipartite graphs. The results of Celaya et al. [3] are

a basis for the results of this thesis.

Connectivity of the k-colouring graph has been explored more thoroughly than

Hamiltonicity of the k-colouring graph. This is in no small part due to its relevance to

the Glauber dynamics Markov chain of k-colourings. This is the Markov chain whose

states are k-colourings, and a transition between states occurs by selecting a colour

c uniformly at random, and a vertex uniformly at random to be coloured with c.

Algorithms for random sampling of k-colourings and approximating the number of k-

colourings arise from these Markov chains, and connectivity of the k-colouring graph

plays a pivotal role. Jerrum [18] gives a fully polynomial randomized approximation
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scheme for estimating the number of k-colourings of a graph when k ≥ 2∆(G) + 1.

Dyer et al. [11] give an algorithm for almost uniformly randomly generating a k-

colouring of a random graph G with constant average degree, when k is sufficiently

small compared to ∆(G). Lucier and Molloy [19] give results on Glauber dynamics

Markov chains of bounded degree trees.

The problem of determining connectivity of the k-colouring graph of a graph G

in general is considered by Cereceda et al. [5] in 2008. This work includes a proof

that Ck(G) is connected whenever k ≥ 1 + Col(G), which follows from a result of

Dyer et al. [11]. In addition, it is shown that in general there is no function φ(χ(G))

such that the φ(χ(G))-colouring graph of G is connected. If χ(G) = 2 or 3, then

the χ(G)-colouring graph of G is not connected, and when χ(G) ≥ 4 there exist

graphs for which the χ(G)-colouring graph of G is connected. Connectivity of the

3-colouring graph of a bipartite graph is examined by Cereceda et al. [6]. Given a

bipartite graph G, it is shown that C3(G) is connected if and only if G is pinchable to

C6, where pinching refers to indentifying two vertices at distance two, and a graph

G is pinchable to H when there is a series of pinches that transforms G into H.

Some complexity results are also given. The problem of deciding whether or not the

3-colour graph of a bipartite graph is connected is shown to be coNP-Complete. In

contrast, the problem of deciding whether or not two k-colourings are in the same

component of Ck(G) is PSPACE-Complete when k ≥ 4 [2], and in P when k = 3 [4].

Some alternate colour graphs have also been considered. Finbow and MacGillivray

[12] consider variations of the k-colouring graph, the k-Bell colour graph and the k-

Stirling colour graph. The k-Bell colour graph of G is the graph whose vertices are the

partitions of the vertices of G into at most k independent sets. The k-Stirling colour

graph of G is the graph whose vertices are the partitions of the vertices of G into

exactly k independent sets. Various results on the Hamiltonicity and connectivity of

such graphs are given.

Two colorings are referred to as non-isomorphic if they admit different partitions

of V (G). In 2012, Haas [16] examined the canonical k-colouring graph of G, whose

vertices are non-isomorphic k-colourings which are lexographically least under some

enumeration π of the vertices of G. Two vertices are adjacent if and only if they

differ in the colour of exactly one vertex. It is shown that every graph has a canonical

k-colouring graph which is not connected for some π and k. Additionally, it is shown

that every tree T has an ordering π of its vertices such that the canonical k-colouring

graph of T under π is Hamiltonian for every k ≥ 3. Finally, it is shown that the
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canonical k-colouring graph of a cycle C, with k ≥ 4, will always be connected under

some π.

This thesis continues the work of finding Gray code numbers for classes of graphs.

In particular, the class of complete multipartite graphs is examined. We also give re-

sults on the connectivity of colour graphs of complete multipartite graphs. Chapter 2

gives formal definitions and notation which will be used throughout this thesis, as well

as an overview of some theorems that we will commonly reference. In Chapter 3, we

discuss the connectivity of the colour graph of complete multipartite graphs. We find

the connectivity of the k-colouring graph of a complete graph Kt, for all k ≥ t+1. We

show that the k-colouring graph of a complete multipartite graph has connectivity at

least 2 whenever it is connected. We address whether or not a connected k-colouring

graph is in general necessarily 2-connected, and show that this is false for k ≥ 4. In

Chapter 4, we examine a class of graphs, a subclass of what we call SDR graphs,

which appear as subgraphs of k-colouring graphs of complete multipartite graphs.

We show that these graphs will have always have Hamilton paths, and give results

on the structure of such paths. In Chapter 5, for complete multipartite graphs K, we

give our results regarding the Gray code number k0(K) of K. We establish an upper-

bound on k0(K), and characterize the graphs K whose (χ(K) + 1)-colouring graphs

are Hamiltonian. In Chapter 6, we close with a brief discussion of open problems.



4

Chapter 2

Background

In this chapter, we introduce the definitions and notation which will be used through-

out the rest of this thesis. In addition, we present a selection of useful theorems on

Hamiltonicity and connectivity of colour graphs.

2.1 Definitions and Notation

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. For u, v ∈ V (G), we use

the notation u ∼ v to denote uv ∈ E(G). A proper k-colouring of G is a function

f : V (G) → {1, 2, . . . , k} such that if vi ∼ vj, then f(vi) 6= f(vj). We say a proper

k-colouring uses the colour c ∈ {1, 2, . . . , k} if for some v ∈ V (G), f(v) = c. The

proper k-colouring graph of G, Ck(G) is the graph whose vertex set is the set of proper

k-colourings of G, with two colourings being adjacent if and only if they differ in

the colour of exactly one vertex of G. As we restrict our attention to only proper

k-colourings, we will refer to the proper k-colouring graph and proper k-colourings as

simply the k-colour graph and k-colourings respectively.

A complete t-partite graph Ka1,a2,...,at is the graph whose vertex set is partitoned

by sets V1, V2, . . . , Vt, with |Vi| = ai, and for v ∈ Vi and u ∈ Vj, u ∼ v if and only if

i 6= j. Notice that the complete t-partite graph K1,1,...,1 is isomorphic to Kt. Unless

otherwise stated, we assume without loss of generality that a1 ≥ a2 ≥ · · · ≥ at.

The Gray code number k0(G) of G is the smallest number such that Ck(G) is

Hamiltonian for all k ≥ k0(G). The existence of k0(G) for any graph G was shown

by Choo [8], and a proof will be given at the end of this chapter. A Hamilton cycle

in Ck(G) corresponds to a cyclic list of the k-colourings of G such that consecutive
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colourings in the list differ in the colour of exactly one vertex.

Let G be a graph where Ck(G) is Hamiltonian, and let C = f0, f1, . . . , fN−1, f0 be

a Hamilton cycle in Ck(G). We say that C has Property A if for all c ∈ {1, 2, . . . , k},
there is an integer s such that, interpreting indices modulo N , neither fs nor fs+1

color any vertex with c. If the integer s is assigned to colours c1 and c2, one of c1 or

c2 can be reassigned the integer s + 1, as adjacent colourings differ in the colour of

exactly one vertex. Therefore, if a Hamilton cycle has Property A , then each colour c

can be assigned a unique integer s such that neither fs nor fs+1 color any vertex with

c. If Ck(G) has a Hamilton cycle with Property A, we say Ck(G) is A-Hamiltonian.

This property is introduced in this thesis, and is used extensively as a construction

tool throughout.

The notation v1, v2, . . . , vi will be used to denote a path from v1 to vi, and the

notation v1, v2, . . . , vi, v1 will be used to denote a cycle. If P1 = v1, v2, . . . , vi, P2 =

u1, u2, . . . , uj, and vi ∼ u1, then P1P2 is used to denote the path v1, v2, . . . , vi, u1, u2,

. . . , uj. Similar notation is used to concatenate the path P1 with the single vertex u1.

That is, P1u1 denotes the path v1, v2, . . . , vi, u1.

Let G be a graph, and let π = v1, v2, . . . , vn be an enumeration of the vertices

of G. Let Gi denote the subgraph of G induced by the vertices {v1, v2, . . . , vi}, and

let dGi
(v) denote the degree of v in Gi. Let Dπ = max1≤i≤n dGi

(vi). The colouring

number of G, denoted Col(G), is the value minπDπ + 1.

Let G be a group and X ⊂ G. The Cayley graph Cay(X : G) is defined as the

graph with vertex set V (Cay(X : G)) = G and with vertices g and g′ adjacent if and

only if g′ = gx for some x ∈ X. Results on Hamiltonicity of Cayley graphs can be

found in [20] and [10].

Any further terminology and notation will be consistent with Bondy and Murty

[1].

2.2 Useful Theorems

Among the results of Cereceda et al. [5] regarding connectivity of k-colouring graphs

is the following theorem, a slight modification of a theorem by Dyer et al. [11], which

shows Ck(G) is connected for a sufficiently large k.

Theorem 2.2.1 (Cereceda et al. [5]). Let G be a graph. If k ≥ 1 + Col(G), then

Ck(G) is connected.
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An analagous result for Hamiltonicity was given by Choo [8].

Theorem 2.2.2 (Choo [8]). Let G be a graph. If k ≥ 2 + Col(G), then Ck(G) is

Hamiltonian.

This theorem proves the existence of k0(G) for any graph G. In the next section of

this chapter, we will give the proof of this theorem, modified such that the construc-

tion produces a Hamilton cycle with Property A. Along with this existence result,

Choo [8] establishes Gray code numbers for complete graphs, trees and cycles.

Theorem 2.2.3 (Choo [8]). k0(K1) = 3, and k0(Kn) = n+ 1 for n ≥ 2.

The proof of this theorem shows that Ct+1(Kt) ∼= Cay(X : St+1), where X is the

generating set of transpositions X = {(1, t+ 1), (2, t+ 1), . . . , (t, t+ 1)}. We will see

in Chapter 5 that the structure of Ct+1(Ka1,a2,...,at) closely depends on the structure

of Ct+1(Kt).

Theorem 2.2.4 (Choo [8]). Let T be a star with n + 1 ≥ 2 vertices. Then C3(T ) is

Hamiltonian if and only if n is odd.

Given that a star T with n+ 1 vertices is isomorphic to Kn,1, this result also has

particular relevance to our problem.

Theorem 2.2.5 (Choo [8]). Let T be a tree. If T is a star with 2k + 1 ≥ 3 vertices,

then k0(T ) = 4. Otherwise, k0(T ) = 3.

Theorem 2.2.6 (Choo [8]). For all n ≥ 3, we have k0(Cn) = 4.

Further work has been done by Celaya et al. [3], who gave Gray code numbers for

complete bipartite graphs. The ideas presented in [3] are a basis for the work done

in this thesis. We attempt to generalize these results on complete 2-partite graphs to

results on complete t-partite graphs.

Theorem 2.2.7 (Celaya et al. [3]). For positive integers l and r, C2(Kl,r) is not

Hamiltonian, and C3(Kl,r) is Hamiltonian if and only if l, r are both odd.

In Chapter 5, we generalize this theorem to characterize the complete t-partite

graphs K = Ka1,a2,...,at for which Ct+1(K) is Hamiltonian.

Theorem 2.2.8 (Celaya et al. [3]). Let 1 ≤ l ≤ r and let k ≥ 4. Then Ck(Kl,r) is

Hamiltonian.
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The main result of this thesis is the following generalization of this theorem, which

we will prove in Chapter 5.

Theorem 2.2.9. Let a1, a2, . . . , at be positive integers such that a1 ≥ a2 ≥ · · · ≥ at.

Then, Ck(Ka1,a2,...,at) is Hamiltonian for all k ≥ 2t.

2.3 The Modified Existence Theorem

As a final preliminary, we give a proof of Theorem 2.2.2, modified such that it con-

structs Hamilton cycles with Property A. To begin, we introduce a useful class of

graphs known as C-Graphs. In this section, we consider subscripts to be modulo N .

A C-Graph is a graphG whose vertices may be partitioned into sets F0, F1, . . . , FN−1

such that for i ∈ {0, 1, . . . , N − 1}, |Fi| ≥ 3 and Fi induces a Hamilton connected

subgraph of G. We will now give some conditions under which a C-Graph is Hamil-

tonian, proofs of which can be found in [9] (Choo and MacGillivray). Let [Fj, Fj+1]

denote the set of edges with one vertex in Fj, and one vertex in Fj+1.

Lemma 2.3.1 (Choo and MacGillivray [9]). Let G be a C-Graph with vertex partition

F0, F1, . . . , FN−1. If, for each i ∈ {0, 1, . . . , N − 1}, there exist vertex disjoint edges

xiyi+1 where xi ∈ Fi and yi+1 ∈ Fi+1, then G is Hamiltonian.

[Choo and MacGillivray [9]]

Corollary 2.3.2 (Choo and MacGillivray [9]). Let G be a C-Graph with vertex parti-

tion F0, F1, . . . , FN−1. Suppose for each j ∈ {0, 1, . . . , N − 1} that [Fj, Fj+1] contains

at least 2 vertex disjoint edges. If there exists i ∈ {0, 1, . . . , N − 1} such that some

vertex x ∈ Fi has a neighbour in Fi+1, and [Fi−1, Fi−{x}] contains at least two vertex

disjoint edges, then G is Hamiltonian.

Corollary 2.3.3 (Choo and MacGillivray [9]). Let G be a C-Graph with vertex parti-

tion F0, F1, . . . , FN−1. Suppose for each j ∈ {0, 1, . . . , N − 1} that [Fj, Fj+1] contains

at least 2 vertex disjoint edges. If there exists i ∈ {0, 1, . . . , N−1} such that [Fi, Fi+1]

contains at least three vertex disjoint edges, then G is Hamiltonian.

In light of these results, we have all the tools we need to prove the modified

existence theorem. The construction used in this proof is identical to the construction

used by Choo [8]. This proof merely notes that the Hamilton cycle constructed does

in fact have Property A.
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Theorem 2.3.4. Let G be a graph. If k ≥ Col(G) + 2, then Ck(G) has a Hamilton

cycle with Property A.

Proof. Let σ = v1v2 . . . vn be an ordering of V (G) such that Dσ = minπDπ. Let

k ≥ 3 +Dσ = 2 +Col(G). Let Gi denote the subgraph of G induced by v1, v2, . . . , vi.

We will show that Ck(Gi) has a Hamilton cycle with Property A by induction on i.

Let {1, 2, . . . , k} be our set of colours. Then, Ck(G1) = Ck(K1) ∼= Kk. This graph

clearly has a Hamilton cycle, and since k ≥ 3, for each j ∈ {1, 2, . . . , k} any such

Hamilton cycle must have consecutive colourings which do not use j. Thus, Property

A is present.

For some i ∈ {2, 3, . . . , n − 1}, let f0, f1, . . . , fN−1, f0 be a Hamilton cycle in

Ck(Gi−1) which has Property A. Let Fj be the set of colourings in Ck(Gi) which agree

with fj on V (Gi−1), for 0 ≤ j ≤ N − 1. Now, since k ≥ 3 + Dσ ≥ 3 + dGi
(vi),

we have |Fj| ≥ 3. We also have that Fj induces a complete subgraph of Ck(Gi).

Therefore, since complete graphs are Hamilton connected, Ck(Gi) is a C-Graph with

vertex partition F0, F1, . . . , FN−1.

Now, consider some j ∈ {0, 1, . . . , N −1}. For colourings cj ∈ Fj and cj+1 ∈ Fj+1,

cj ∼ cj+1 if and only if cj and cj+1 colour vi the same colour. As a result, edges in

[Fj, Fj+1] are vertex disjoint. Let wj denote the unique vertex such that fj(wj) 6=
fj+1(wj). If vi � wj, then each vertex in Fj has a neighbour in Fj+1. In this case,

[Fj, Fj+1] contains at least three vertex disjoint edges. If vi ∼ wj, a vertex in Fj which

colours vi with the colour fj+1(wj) will not have a neighbour in Fj+1. Therefore, in

this case we may only guarantee that [Fj, Fj+1] has at least two vertex disjoint edges.

Therefore, if for some j, wj � vi, then Ck(Gi) is Hamiltonian by Corollary 2.3.3.

Suppose that wj ∼ vi for each j ∈ {0, 1, . . . , N − 1}. We have already shown

that [Fj, Fj+1] contains at least two vertex disjoint edges for each j. Let cN−1 be a

colouring in FN−1 which has a neighbour in F0. Let r be the largest integer such

that fr−1 uses the colour cN−1(vi), but fr does not. Let cr be the colouring in Fr

which assigns vi the colour cN−1(vi). By definition of r, fr+1 does not use cN−1(vi).

Then, cr has a neighbour in Fr+1, and does not have a neighbour in Fr−1. Therefore,

[Fr−1, Fr − {cr}] has at least two vertex disjoint edges. Then, Ck(Gi) is Hamiltonian

by Corollary 2.3.2.

All that is left is to verify the Property A holds for these Hamilton cycles. First,

it is important to notice that the Hamilton cycle constructed by Corollary 2.3.2, and

similarly by Corollary 2.3.3, is the concatenation of Hamilton paths of the Fis. There-

fore, our constructed Hamilton cycle visits the vertices of Fj and Fj+1 consecutively,
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for each j ∈ {0, 1, . . . , N − 1}. By induction, for l ∈ {1, 2, . . . , k} there exists jl such

that neither fjl nor fjl+1 use the colour l. Then, Fjl and Fjl+1 each contain a single

vertex which uses colour l. Since |Fjl |+ |Fjl+1| ≥ 6, and exactly two of these vertices

use l, there must be consecutive vertices which do not use l. Thus, our Hamilton

cycles maintains Property A.
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Chapter 3

Connectivity of Colour Graphs

In an effort to improve our overall understanding of colour graphs, in particular

colour graphs of complete multipartite graphs, we considered the connectivity of

these graphs. Chartrand and Kapoor [7] show that the cube of a connected graph

is Hamiltonian. In the context of colour graphs, for a graph G, a Hamilton cycle

in the cube of Ck(G) corresponds to a cyclic list of the k-colourings of G such that

consecutive colourings in the list differ in the colour of at most three vertices. In this

chapter, we will give a few basic results on the connectivity of colour graphs. To begin,

we examine the connectivity of the colour graph of Kt, the simplest complete t-partite

graph. We show that the connectivity of Ck(Kt) is equal to its minimum degree. We

then turn our attention toward Ck(Ka1,a2,...,at), proving that we have connectivity at

least 2 whenever k ≥ t + 1, an obvious necessary condition for Hamiltonicity. To

finish the chapter, we take a brief look at connectivity of colour graphs in general.

3.1 Connectivity of Ck(K)

The first section of this chapter considers the connectivity of colour graphs of complete

multipartite graphs, starting with Kt. In the case of Kt, we are able to establish the

connectivity of Ck(Kt) by proving the following theorem.

Theorem 3.1.1. Ck(Kt) has connectivity δ(Ck(Kt)) = t(k − t), whenever k ≥ t+ 1.

Proof. We will prove the result by induction on the number of colours, k. As we have

previously noted, Ct+1(Kt) ∼= Cay(X : St+1), where X is the minimal generating set

of transpositions X = {(1, t+1), (2, t+1), . . . , (t, t+1)}. It follows from a theorem of
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Godsil [14] that Cay(X : St+1) has connectivity t, and thus Ct+1(Kt) has connectivity

t = t((t+ 1)− t) as well.

Suppose for some k − 1 ≥ t + 1 the result holds, and consider Ck(Kt). Let x and

y be any two non-adjacent vertices in Ck(Kt). We will prove our result in two cases,

based on the number of colours used by x and y.

Case 1: There is a colour c not used by x or y.

In this case, we will show that any set which disconnects x from y must have size

at least t(k− t) by describing t(k− t) internally vertex disjoint paths between x and

y. Let c be any colour not used by x or y. Let G be the subgraph of Ck(Kt) induced

by the vertices which do not use c. Note that x, y ∈ V (G). Then, G ∼= Ck−1(Kt), and

therefore by induction G contains t((k−1)−t) internally vertex disjoint xy-paths. We

will utilize the fact that none of these paths contain a vertex which uses the colour c to

construct t additional internally vertex disjoint xy-paths. Let P0 = x, f1, f2, . . . , fα, y

denote any one of our xy-paths contained in G. Let xi denote the vertex obtained

by recolouring vi in x with colour c, for 1 ≤ i ≤ t. Define yi similarly. Let f ij denote

the vertex obtained by recolouring vi in fj to c, for 1 ≤ i ≤ t and 1 ≤ j ≤ α. Then,

x, xi, f i1, f
i
2, . . . , f

i
α, y

i, y is a walk from x to y. Though it may not itself be a path

due to the possibility of repeated vertices, it contains a path Pi from x to y. Then

P1, P2, . . . , Pt are our t additional internally vertex disjoint xy-paths, and we have a

total of t(k − t) paths, as desired.

Case 2: All k colours are used by x or y.

The proof is by contradiction. Let S be a minimal set that separates x from y

in Ck(Kt), and suppose |S| < t(k − t). Let Gx and Gy denote the components of

Ck(Kt) − S which contain x and y respectively. Let Sx and Sy denote the sets of

colours not used by x and y respectively. Note that we have Sx ∩ Sy = ∅. By Case

1, any vertex which does not use a colour cx ∈ Sx is either in Gx or in our cut-set

S. Similarly, any vertex which does not use a colour cy ∈ Sy is either in Gy or in S.

Therefore, any colouring which uses neither cx nor cy must be in S.

The number of such colourings is N = (k − 2)(k − 3) · · · (k − (t + 1)). Since

(k − 2) ≥ t, we have N ≥ t(k − t) when t ≥ 3, contradicting |S| < t(k − t). When

t = 2, we must have k = 4, as at most four colours may be used by x and y. Without

loss of generality, we may assume Sx = {1, 2} and Sy = {3, 4}, and there are 8 vertices,

(2, 4), (4, 2), (2, 3), (3, 2), (1, 4), (4, 1), (1, 3) and (3, 1) which must be in S. Again, a

contradiction is reached as |S| < 4, and the result is proven.
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In light of the previous theorem, one might wonder if in general the connectivity

of Ck(Ka1,a2,...,at) is equal to its minimum degree. This is, however, not the case.

Consider the graph Ct+1(Ka1,1,1,...,at=1), with a1 ≥ 3. This graph has minimum degree

a1, but connectivity at most 2, as any two t-colourings which differ only in the colour

of the vertices in V1 form a cut set. Therefore, there are colour graphs of complete

multipartite graphs with arbitrarily large minimum degree, but with connectivity at

most 2. What then, can we say about the connectivity of these colour graphs in

general? The following theorem gives a simple lower bound on the connectivity of

such graphs.

Theorem 3.1.2. For K = Ka1,a2,...,at, the graph Ck(K) has connectivity at least 2

whenever k ≥ t+ 1.

Proof. By Menger’s theorem, it is sufficient to show that between any two vertices

in Ck(K) there are two vertex-disjoint paths. To do this we will show that any two

vertices lie on a common cycle.

Let V1, V2, . . . , Vt be the t-partition of K. Consider Kt, the complete graph on t

vertices, with vertex set V (Kt) = {v1, v2, . . . , vt}. By Theorem 2.2.3, Ck(Kt) is Hamil-

tonian whenever k ≥ t+1. Let N denote the number of vertices in Ck(Kt). For the re-

mainder of this proof, we interpret subscripts modulo N . Let C = f0, f1, . . . , fN−1, f0

be a Hamilton cycle in Ck(Kt). Let Fi denote the vertex in Ck(K) where for each

j ∈ {1, 2, . . . , t} and each u ∈ Vj, Fi(u) = f(vj). That is, Fi is the colouring of K

which colours the vertices of Vj with the colour used by fi to colour vj. Since fi and

fi+1 are adjacent colourings, Fi and Fi+1 differ only in the colour of vertices in Vj, for

some j. Let Pi denote some path in Ck(K) from Fi to a neighbour of Fi+1 obtained

by successively changing the colour of vertices in Vj from fi(vj) to fi+1(vj). Then,

C ′ = P0P1 · · ·PN−1F0 is a cycle in Ck(K) which contains every t colouring of K.

We claim that for every vertex x not contained in V (C ′), there are at least two

internally vertex-disjoint paths from x to distinct vertices of C ′. Since x uses at least

t+ 1 colours, for some j, Vj uses at least two distinct colours, cx,1 and cx,2, to colour

its vertices. Let Px,i, for i = 1 or 2, be the path obtained by recolouring the vertices

of Vj which are not already coloured with cx,i to cx,i one by one, and then recolouring

the vertices of each Vh which uses more than one colour until Vh is monocoloured.

The paths Px,1 and Px,2 are internally vertex disjoint, as, aside from x, no vertex of

Px,1 colours Vj the same as a vertex of Px,2. Each path ends in a t-colouring, and the

claim is proven.
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It is now straightforward to see that any two distinct vertices x, y ∈ V (Ck(K)) lie

on a common cycle. If both x and y lie on C ′, this is trivial. If exactly one of x or

y lies on C ′, using our two internally vertex disjoint paths, a common cycle is again

found immediately. If neither x nor y lie on C ′, there are three possible cases.

x

y

C ′ C ′

x y

Figure 3.1: Px,1 and Px,2 do not intersect Py,1 or Py,2.

C ′

x y

Figure 3.2: One of Px,1 or Px,2 intersects Py,1 or Py,2.

y

x

C ′

xy

C ′

Figure 3.3: Both Px,1 and Px,2 intersect one of Py,1 or Py,2.
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Figures 3.1-3.3 show examples of these three cases, and how to find our cycle in

each. Cycles can be found in each case using methods similar to those shown by our

figures.

v1v2

v3v4

v5v6

v7v8

Figure 3.4: The graph H4 with colouring f , a leaf of the connected colour graph

C4(H4).

3.2 2-Connectedness of colour graphs

In this section, we turn our attention to a problem which is only tangentially related

to our main focus, but is still worth consideration. Although never published, Horak

[17] conjectured that every colour graph which is connected must also be 2-connected.

A theorem of Fleischner [13] states that the square of every 2-connected graph is

Hamiltonian. For a graph G, a Hamilton cycle in the square of Ck(G) corresponds

to a cyclic list of the k-colourings of G, such that consecutive colourings in the list

differ in the colour of at most two vertices. If Horak’s conjecture is true, the square

of every connected colour graph is Hamiltonian. Indeed, this is the case for colour

graphs of complete multipartite graphs. However, we will show that for each k ≥ 4,

there is at least one graph G such that Ck(G) is connected, but not 2-connected.

Let H4 be the graph displayed in Figure 3.4. The colour of a vertex in Figure 3.4

is represented by its shape. For i ≥ 5, let Hi = Hi−1 + {ui}, where Hi−1 + {ui} is the

graph obtained by adding a dominating vertex ui to Hi−1. Given an ordering π =
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x1, x2, . . . , xi+4 of the vertices ofHi, we have Col(Hi) ≤ Dπ+1 = max1≤j≤i+4 dHj
i
(xi)+

1. Let σ be the ordering x1 = u1 , x2 = u2 , . . . , xi−4 = ui−4 , xi−3 = v1 , xi−2 =

v2 , . . . , xi+4 = v8. Then, Dσ + 1 = i − 1 ≥ Col(Hi). By Theorem 2.2.1, we know

that Ck(Hi) is connected whenever k ≥ Col(Hi) + 1. Therefore, Ci(Hi) is connected.

Furthermore, the colouring f in C4(H4) shown in Figure 3.4 has only a single vertex

which can change colour: the vertex v8 may change from square to diamond. Let f ′

denote the colouring obtained by recolouring v8 to diamond. Then, f ′ is a cut vertex

in C4(H4), and C4(H4) is therefore not 2-connected. By extending f to an i-colouring

of Hi by using the additional i − 4 colours to colour u1 through ui−4, we may use a

similar argument to show that Hi is connected, but not 2-connected. Therefore, we

arrive at the following conclusion:

Theorem 3.2.1. For k ≥ 4, there is a graph G such that Ck(G) is connected, but not

2-connected.

The question still remains whether or not Horak’s conjecture is true when k = 3.

When k = 1, the conjecture holds vacuously. Let Qn denotes the n− cube, the graph

whose vertex set is the set of binary strings of length n, where two strings are adjacent

if they differ in exactly one position. When k = 2, if Ck(G) is connected, then G can

contain no edges, and Ck(G) ∼= Qn, where n = |V (G)|. It is well known that Qn is

Hamiltonian whenever n ≥ 2, and is therefore 2-connected.
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Chapter 4

Hamilton Paths and Cycles in SDR

Graphs

In this chapter, we will examine some properties of the following class of graphs.

For a collection of sets S = A1, A2, . . . , At, where Ai = {xi,1, xi,2, . . . , xi,ai}, we de-

fine a graph GS corresponding to reconfigurations of SDRs of S. Let V (GS) =

{(v1, v2, . . . , vt)|vi ∈ Ai and vi 6= vj if i 6= j}, and E(GS) = {((v1, v2, . . . , vt),
(u1, u2, . . . , ut))|∃ i such that vj = uj ⇐⇒ j 6= i}. In other words, if u and v are

vertices of GS, then u and v are SDRs of S, where the ith coordinate corresponds

to the representative of Ai. We have u ∼ v ⇐⇒ u and v differ in exactly one

coordinate. Our study of this class of graphs is motivated by their relation to colour

graphs. For example, consider the complete graph Kt with vertex set {v1, v2, . . . , vt}.
Then, GS is isomorphic to the graph of vertex colourings of Kt where the colour of

vi is restricted to elements of Ai.

4.1 Preliminaries

Not all collections S produce graphs GS which are relevant to our study of colour

graphs. We define the set St, which contains the t-collections of sets we will examine

in this chapter.

For t ≥ 2, let St denote the set of collections S = A1, A2, . . . , At for which the

following properties hold:

• Ai = {x1, x2, . . . , xl, yi1, yi2, . . . , yiai},

• a1 ≥ a2 ≥ · · · ≥ at ≥ 1,
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• Ai ∩ Aj = {x1, x2, . . . , xl} ∀i, j such that i 6= j,

• |
⋃t
i=1Ai| ≥ 2t.

Let S ∈ St. Then, S is a collection of sets where an element z of
⋃t
i=1Ai is either

in every set, or exactly one set. Specifically, each yji is distinct. In the Chapter 5,

we will see that the colour graph Ck(Kb1,b2,...,bt), where bi ≥ 2 for every i, can be

partitioned into some number of subgraphs, each of which is isomorphic to GS, for

some S ∈ St. The lemmas in this chapter show in a variety of ways that we may

always find a Hamilton path in GS which suits our needs. This is a very difficult

task. In order to prove the results of the section, we must consider a property of GS

analagous to Property A in colour graphs. In the context of an SDR graph GS, we

will say a Hamilton cycle C in GS has Property A if for each i ∈ {1, 2, . . . , l}, there

exist consecutive vertices in C which do not use xi. We say GS is A-Hamiltonian if it

contains a Hamilton cycle with Property A. For the remainder of this chapter, when

discussing a collection of sets S, it is assumed S ∈ St unless otherwise stated.

In our examination of S, it is extremely useful to utilize the automorphisms of

GS.

Let X =
⋃t
i=1Ai. Let πx : X → X be any bijection where for every i and

j, πx(yji ) = yji . In other words, πx is some function which permutes the xis. For

v = (v1, v2, . . . , vt) ∈ V (GS), let πx(v) = (πx(v1), π
x(v2), . . . , π

x(vt)).

Automorphism Property I: πx is an automorphism of GS.

Let i ∈ {1, 2, . . . , t}, and let πy
i

: X → X be any bijection where for every

k, πy
i
(yjk) = yjk when j 6= i, and πy

i
(xj) = xj. Then, πy

i
is a function which

permutes the yijs for some fixed i. As before, for v = (v1, v2, . . . , vt) ∈ V (GS), let

πy
i
(v) = (πy

i
(v1), π

yi(v2), . . . , π
yi(vt)).

Automorphism Property II: πy
i

is an automorphism of GS.

Automorphism Properties I and II utilize the fact that if a and b are elements of

the same sets in some collection of sets S, swapping the labels of a and b in any SDR

of S will give you an SDR of S. The automorphism of Automorphism Property I

permutes the labels of elements which are in every set of a collection of sets S, while

the automorphism of Automorphism Property II permutes the labels of elements
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which are in exactly one set of such a collection. We now give a third automorphism

of GS.

Suppose |Ai| = |Aj| for some i < j. We define the function φ(i j) : V (GS)→ V (GS)

by the following rule:

φ(i j)((v1, v2, . . . , vi−1, vi, vi+1, . . . , vj−1, vj, vj+1, . . . , vt))

= (v1, v2, . . . , vi−1, v
′
j, vi+1, . . . , vj−1, v

′
i, vj+1, . . . , vt)

v′i =

{
vi if vi ∈ {x1, x2, . . . , xl}
yjk if vi = yik

v′j =

{
vj if vj ∈ {x1, x2, . . . , xl}
yik if vj = yjk

The function φ(i j) captures the notion of swapping the ith and jth coordinates of

every vertex in GS.

Automorphism Property III: φ(i j) is an automorphism of GS.

Let X t be the unique collection in St which satisfies the additional properties

l = 1, a1 = t, and ai = 1 for i ∈ {2, 3, . . . , t}. Then, X t is the collection where

A1 = {x1, y11, y12, . . . , y1t }, and Ai = {x1, yi1}. The collection X t is a special case, and

must be separately addressed.

4.2 Hamilton path and cycle constructions

Our first result restricts attention to the case t = 2. This result will be used as a

base case for induction to prove results for larger values of t. Consider the following

example to demonstrate the use of Automorphism Property I and Automorphism

Property II.

Suppose S = A1, A2, with A1 = {x1, x2, x3, y11, y12, y13, y14} and A2 = {x1, x2, x3, y21}.
Say a Hamilton cycle in GS which contains the edge e = (u, v), where u = (y11, x1) and

v = (y11, x2) is required. Consider any edge of the form e′ = (u′, v′) with u′ = (y1i , xj)

and v′ = (y1i , xk) for some i ∈ {1, 2, 3, 4} and j, k ∈ {1, 2, 3}, j 6= k. By Automorphism

Properties I and II, some automorphism of GS maps e to e′. Then, a Hamilton cycle
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in GS which contains the edge e′ can be mapped to a Hamilton cycle which contains

the edge e by some automorphism.

We refer to the orbit of an edge e under the automorphisms of Automorphism

Properties I and II as its edge type. Suppose we want to show that for every edge e of

GS, there is a Hamilton cycle in GS which contains e. In light of the above, we only

need to show that an edge from every edge type appears in a Hamilton cycle in GS.

With this fact in mind, we are now ready to prove our result.

Lemma 4.2.1. Let S ∈ S2 − {X2}. For any edge e in GS, there is a Hamilton cycle

with Property A which contains e.

Proof. To prove this result in a reasonably efficient manner, we appeal to Automor-

phism Properties I and II. Consider an edge e of GS. Instead of finding a Hamilton

cycle which contains e, one may find a Hamilton cycle C ′ which contains any edge e′

which shares an edge type with e. Using an automorphism which maps e′ to e, we

may transform C ′ into a Hamilton cycle which contains e.

We use (x, y) → (x′, y) to denote the set of edges ((v1, v2), (v
′
1, v2)), where v1,

v2 ∈ {x1, x2, . . . , xl}, v1 6= v′1 and v2 ∈ {y21, y22, . . . , y2a2}. The other edge types listed

define sets of edges in a similar manner. The following are the 12 possible edge types,

which we label as 1 through 12.

1. (x, x′)↔ (x′′, x′)

2. (x, x′)↔ (x, x′′)

3. (x, x′)↔ (y, x′)

4. (x, x′)↔ (x, y)

5. (y, y′)↔ (x, y′)

6. (y, y′)↔ (y, x)

7. (y, y′)↔ (y′′, y′)

8. (y, y′)↔ (y, y′′)

9. (x, y)↔ (x′, y)

10. (x, y)↔ (x, y′)
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11. (y, x)↔ (y′, x)

12. (y, x)↔ (y, x′)

The following is a list of possible values for l, a1 and a2, together with when each

edge type will occur.

l = 0 :

• a1 ≤ 2, a2 = 1 : No graphs.

• a1 ≥ 3, a2 = 1 : 7.

• a1 ≥ 2, a2 ≥ 2 : 7, 8.

l = 1 :

• a1 = 1, a2 = 1 : No graphs.

• a1 = 2, a2 = 1 : GX2 .

• a1 ≥ 3, a2 = 1 : 5, 6, 7, 11.

• a1 ≥ 2, a2 ≥ 2 : 5, 6, 7, 8, 10, 11.

l = 2 :

• a1 = 1, a2 = 1 : 3, 4, 5, 6, 9, 12.

• a1 ≥ 2, a2 = 1 : 3, 4, 5, 6, 7, 9, 11, 12.

• a1 ≥ 2, a2 ≥ 2 : 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

l ≥ 3 :

• a1 = 1, a2 = 1 : 1, 2, 3, 4, 5, 6, 9, 12.

• a1 ≥ 2, a2 = 1 : 1, 2, 3, 4, 5, 6, 7, 9, 11, 12.

• a1 ≥ 2, a2 ≥ 2 : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
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Figures 4.1-4.10 show the smallest graphs of the possiblities listed above, and

Hamilton cycles in those graphs which have the edge types we desire, as well as

Property A. The method of generalizing these cycles to larger graphs should be

apparent, as additional rows and columns of vertices are easily included. Figures

which contain two cycles in two copies of the graph are those whose edge types are

not all covered by a single cycle. In each figure, the dashed edges represent the set of

edges used to verify Property A on the cycle. Note that some edges are not shown in

these figures. Vertices which share either a row or a column are adjacent. The SDR

which a vertex represents is indicated by row and column. For example, if a vertex is

in row x2 and column y21, it represents the SDR (x2, y
2
1). The rows are labelled with

elements of A1, and the columns are labelled with elements of A2.

y11

y12

y13
y21

Figure 4.1: l = 0, a1 = 3, a2 = 1.

y21

y11
y21 y22

Figure 4.2: l = 0, a1 = 2, a2 = 2.
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x1

y11

y21

y31

x1 y21

Figure 4.3: l = 1, a1 = 3, a2 = 1.

x1

y11

y12

x1 y21 y22

Figure 4.4: l = 1, a1 = 2, a2 = 2.

x1

x2

y11

x1 x2 y21 x1

x2

y21

x1
x2

y11

Figure 4.5: l = 2, a1 = 1, a2 = 1.
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x1

x2

y11

y12

x1

x2

y11

y12

x1 x2 y21 x1 x2 y21

Figure 4.6: l = 2, a1 = 2, a2 = 1.

x1

x2

y11

y12

x1 x2 y21 y22

x1

x2

y11

y12

x1 x2 y21 y22

Figure 4.7: l = 2, a1 = 2, a2 = 2.

x1

x2

x3

y11

x1 x2 x3 y21

Figure 4.8: l = 3, a1 = 1, a2 = 1.
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x1

x2

x3

y11

y12

x1 x2 x3 y21

Figure 4.9: l = 3, a1 = 2, a2 = 1.

x1

x2

x3

y11

y12

x1 x2 x3 y21 y22

x1

x2

x3

y11

y12

x1 x2 x3 y21 y22

Figure 4.10: l = 3, a1 = 2, a2 = 2.

Our work in the next chapter has more specific requirements for a few particular

collections in St. We will now resolve one such case. Let Jn denote the graphKn2Kn−
{(1, 1), (2, 2), . . . , (n−1, n−1)}. Celaya et al. [3] prove the following result regarding

Jn.

Lemma 4.2.2 (Celaya et al. [3]). For n ≥ 3, Jn has a Hamilton path from (n, n) to

every other vertex of Jn − {(n, n)}.

We use this result as the basis for induction to prove the following lemma.
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Lemma 4.2.3. Given a collection of sets S = A1, A2, . . . , An, where n ≥ 2, and

Ai = {x1, x2, . . . , xl, yi}, with l ≥ n, the graph GS has a Hamilton path from y =

(y1, y2, . . . , yn) to any other vertex in V (GS).

Proof. First, note that S ∈ St, as |
⋃n
i=1Ai| = l + n ≥ 2n. Hence, we turn to the

automorphisms of GS to simplify the problem. By Automorphism Properties I and

III, for any vertex x ∈ V (GS), there exists an automorphism φ such that φ(y) = y

and φ(x) = v, where v ∈ Xn = {(x1, y2, y3, . . . , yn),

(x1, x2, y3, . . . , yn), . . . , (x1, x2, x3, . . . , xn)}. Therefore, to prove this lemma it is suffi-

cient to find a Hamilton path beginning at v and ending at y for each v ∈ Xn.

We prove this result by induction on n. Notice that when n = 2, GS
∼= Jl+1.

Therefore, by Lemma 4.2.2, the result holds when n = 2. Now, suppose for some

i, i ≥ 2, the result holds. Let n = i + 1. For j ∈ {1, 2, . . . , l}, let Hj denote

the subgraph of GS induced by vertices in which the nth coordinate is xj. Let H0

denote the subgraph of GS induced by vertices in which the nth coordinate is yn. For

j ∈ {1, 2, . . . , l}, Hj
∼= GSj

, where Sj = A1 − {xj}, A2 − {xj}, . . . , An−1 − {xj}, and

by induction GSj
has a Hamilton path from (y1, y2, . . . , yn−1) to any other vertex in

V (GSj
). Similarly, H0

∼= GS0 , where S0 = A1, A2, . . . , An−1, and GS0 has a Hamilton

path from (y1, y2, . . . , yn−1) to any other vertex in V (GS0).

For 0 ≤ j ≤ l, let uj denote the vertex in Hj which the kth coordinate is yk, for

each 1 ≤ k ≤ i. Notice that u0 = y, and that uj ∼ uk for each j, k ∈ {0, 1, 2, . . . , l},
with j 6= k. For some Y ⊂ {1, 2, . . . , l}, let HY denote the subgraph of GS induced

by vertices in which the nth coordinate is an element of {xi|i ∈ Y }. We will now

show that for any j, k ∈ {1, 2, . . . , l}, where j 6= k, there exists a Hamilton path in

H{j,k} beginning at uj and ending at uk. First, let Pj be a Hamilton path in Hj from

uj to vj, where vj is any vertex for which no coordinate is xk. Let Pk be a Hamilton

path in Hk from vk to uk, where vk is the vertex obtained by switching the (i + 1)st

coordinate of vj from xj to xk. Then, PjPk is the desired path. By combining several

such paths, it follows that for any even subset I ⊂ {1, 2, . . . , l}, the graph HI has a

Hamilton path from uj to uk for any j, k ∈ I, with j 6= k.

Let v ∈ Xn. We are now ready to construct a Hamilton path from v to y = u0.

We consider cases, based on the parity of l, and the nth coordinate of v.

Case 1.1: l odd, nth coordinate xn.

Let P0 be a Hamilton path inH0 from u0 to v0, where v0 is the vertex (xn, y2, y3, . . . ,

yn). Let w0 be the vertex which follows u0 in P0. Let P ′0 denote the path from w0 to

v0 obtained by removing u0 from P0. Since w0 is adjacent to u0, there is exactly one
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s ∈ {1, 2, . . . , l} such that some coordinate of w0 is xs. Let t ∈ {1, 2, . . . , l} − {s, n}.
Let Pt be a Hamilton path in Ht from ut to vt, where vt is the vertex obtained by

switching the nth coordinate of w0 from yn to xt. Let r ∈ {1, 2, . . . , l} − {t, n}. Let

Pr denote a Hamilton path in Hr from vr to ur, where vr is the vertex obtained by

switching the nth coordinate of v0 from yn to xr. Let Pn be a Hamilton path in Hn

from un to vn = v. Now, since l is odd, I = {1, 2, . . . , l} − {n, r, t} is even. Let PI be

a Hamilton path in HI from uj to uk for some j, k ∈ I. Now, a Hamilton path in GS

from y = u0 to v = vn is u0PtP
′
0PrPIPn. (See Figure 4.11.)

Case 1.2: l odd, nth coordinate yn.

Let P0 be a Hamilton path in H0 from u0 to v0 = v. Define w0, P
′
0 and Pt

analogously to the previous case. Again, I = {1, 2, . . . , l} − {t} is even, so we may

define PI in a similar fashion to the previous case as well. Then, u0PIPtP
′
0 is the

desired Hamilton path. (See Figure 4.12.)

Case 2.1: l even, nth coordinate xn.

Define P0 and Pn as in Case 1.1. Let t ∈ {1, 2, . . . , l}−{n}. Let Pt be a Hamilton

path in Ht from vt to ut, where vt is the vertex obtained by switching the nth coor-

dinate of v0 from yn to xt. Then, I = {1, 2, . . . , l}−{n, t} is even, and we may define

PI similar to the previous cases. Then, P0PtPIPn is the desired Hamilton path. (See

Figure 4.13.)

Case 2.2: l even, nth coordinate yn.

Define P ′0 and Pt as in Case 1.2. Let wt be the vertex which follows ut in Pt, and

let P ′t be the path from wt to vt obtained by removing ut from Pt. Again, since wt is

adjacent to ut, there is exactly one s ∈ {1, 2, . . . , l} such that some coordinate of wt

is xs. Let r ∈ {1, 2, . . . , l} − {s, t}. Let Pr be a Hamilton path in Hr from ur to vr,

where vr is the vertex obtained by switching the nth coordinate of wt from xt to xr.

Once again, I = {1, 2, . . . , l}−{r, t} is even, and we may define PI analogously to the

previous cases. Then, u0utPIPrP
′
tP
′
0 is the desired Hamilton path. (See Figure 4.14.)

The result follows by induction.
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Figure 4.11: l odd, nth coordinate xi.
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Figure 4.12: l odd, nth coordinate yi.
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Figure 4.13: l even, nth coordinate xi.
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Figure 4.14: l even, nth coordinate yi.

We now address another special case, the collection of sets X t. Recall that this is

the collection where A1 = {x1, y11, y12, . . . , y1t } and Ai = {x1, yi1} for i ∈ {2, 3, . . . , t}.
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Lemma 4.2.4. For each t ≥ 3, the graph GXt contains a Hamilton path. Further-

more, any pair of vertices u = (u1, u2, . . . , ut) and v = (v1, v2, . . . , vt) of V (GXt) may

be chosen as the endpoints of such a path as long as ui = x1 or vi = x1 for some i.

If, in addition, u � v, then the path has an edge neither of whose end points use x1.

Proof. Let Hi be the subgraph of GXt induced by vertices in which the ith coordinate

is x1. For i ∈ {2, 3, . . . , t}, Hi is isomorphic to Kt, with the t vertices corresponding

to the t possible choices for the first coordinate. The choices for the first coordinate

are {y11, y12, . . . , y1t }, with each other coordinate being fixed. Since Hi is isomorphic to

Kt, it must contain a Hamilton path from any vertex to any other vertex. The graph

H1 is simply the single vertex (x1, y
2
1, y

3
1, . . . , y

t
1).

Let H0 be the subgraph of GXt induced by vertices in which no coordinate is x1.

Notice that
⋃t
i=0 V (Hi) = V (GXt), and V (Hi)∩V (Hj) = ∅ whenever i 6= j. H0 is also

isomorphic to Kt. Each vertex in H0 is adjacent to a vertex in Hi, i ∈ {1, 2, . . . , t},
by switching the ith coordinate to x1. As such, for every edge (v1, v2) in H0, there

exists a path beginning at v1 and ending at v2 whose internal vertices are exactly the

vertices of Hi.

Let u and v denote the vertices we wish to be the endpoints of our Hamilton path.

We now consider two cases, based on whether or not u and v are adjacent.

Case 1: u ∼ v.

Consider a Hamilton cycle in H0 with edges e1, e2, . . . , et, and replace each of ei

with a path to Hi as described above. The result is a Hamilton cycle C of GXt .

We must now confirm that without loss of generality this Hamilton cycle contains

the edge e = (u, v). We know at least one of u or v uses x1 on some coordinate;

therefore, e is not an edge of H0. For each i ∈ {2, 3, . . . , t}, the cycle we described

contains some edge which switches the ith coordinate from x1 to yi1, as well as an

edge which fixes the ith coordinate at x1, changing the first coordinate from y1i to y1j

for some i 6= j. For H1, our cycle contains an edge which switches the first coordinate

from x1 to y1j for some j. These edges cover all possible edge types outside of edges

within H0. By Automorphism Property II, we can take our cycle C and permute the

y1j s to get the edge we want.

Case 2: u � v

Suppose u ∈ V (H1). Then u is adjacent to every vertex of H0. Therefore, we must

have v ∈ V (Hi) for some i ∈ {2, 3, . . . , t}. Starting from v, it is simple to construct a

path which first visits every vertex of Hi, then visits every vertex in H0, and finally

moves to u. The path we have constructed contains t − 1 edges of H0. Then, since
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|{2, 3, . . . , i− 1, i+ 1, . . . , t}| = t− 2, for each j ∈ {2, 3, . . . , i− 1, i+ 1, . . . , t} we may

assign an edge (vj−1, vj) of our path to be replaced with a path from vj−1 to vj whose

internal vertices are the vertices of Hj, completing our Hamilton path from u to v.

Suppose u ∈ V (H0). We again must have v ∈ V (Hi) for some i ∈ {2, 3, . . . , t}, as

u is adjacent to the lone vertex of H1, and also to every other vertex in H0. Since

t ≥ 3, there exists a Hamilton path in Hi starting at v and ending at a vertex w not

adjacent to u. From w, we can take a Hamilton path in H0 ending at u. Again, this

path uses t− 1 edges from H0, so we may connect our remaining t− 2 subgraphs to

form a Hamilton path as we have done previously.

Suppose u ∈ V (Hi), for i ∈ {2, 3, . . . , t}. The last remaining case to check is

v ∈ Hj, for j ∈ {2, 3, . . . , t} and j 6= i. Start by taking any Hamilton path in Hi

starting at u. Move into H0, and take a Hamilton path ending at any vertex not

adjacent to v, which is always possible as t ≥ 3. Now, move into Hj, and take a

Hamilton path ending at v. The result is a path starting at u and ending at v, which

visits every vertex in each of Hi, Hj and H0. Additionally, this path uses t− 1 edges

within H0. As such, we can connect the remaining t − 2 subgraphs in the manner

described above.

In each of these three cases, the Hamilton path described contains an edge in H0,

which is an edge that does not use x1 on either of its end points, and we are done.

Our final goal for this chapter is to generalize Lemma 4.2.1 for larger values of t.

In other words, we want to prove the following theorem.

Theorem 4.2.5. Let S ∈ St−{X t}. For any edge e in GS, there is a Hamilton cycle

with Property A in GS which contains e.

The proof for this theroem is quite long and involved. We will present the proof

as a series of lemmas. The general tactic for the proof is by induction on t, using

Lemma 4.2.1 to verify the base case t = 2. For induction we assume that the result

is true for any S ∈ Sk, when 2 ≤ k ≤ t− 1.

Recall that for S = A1, A2, . . . , At ∈ St, we define Ai = {x1, x2, . . . , xl, yi1, yi2, . . . ,
yiai}, with a1 ≥ a2 ≥ · · · ≥ at. For z ∈ At, let Hz denote the subgraph of GS induced

by vertices in which the t-th coordinate is z. If z is used on the t-th coordinate

it cannot be used on any other coordinate, and so we have Hz
∼= GS′ , where S ′ =

A1 − {z}, A2 − {z}, . . . , At−1 − {z} = A′1, A
′
2, . . . , A

′
t−1. In order to use induction, we

must verify that S ′ ∈ St−1, and we must address that possiblity that S ′ = X t−1.
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It is not difficult to see that the only property of sets in St−1 which S ′ might

not satisfy is the requirement α = |
⋃t−1
i=1 A

′
i| ≥ 2(t − 1). Since S ∈ St, we know

|
⋃t
i=1Ai| ≥ 2t. Therefore, if z ∈ {yt1, yt2, . . . , ytat} then Ai−{z} = Ai, and α ≥ 2t−at.

If at ≤ 2, we are done. Suppose at ≥ 3. Since a1 ≥ a2 ≥ · · · ≥ at, in this case

|
⋃t
i=1Ai| ≥ att, α ≥ att− at = at(t− 1) ≥ 2(t− 1), and we are done. If, on the other

hand, z ∈ {x1, x2, . . . , xl}, then α ≥ 2t − at − 1. If at ≤ 1, we are done. Suppose

at ≥ 2. Here we have |
⋃t
i=1Ai| ≥ att + 1, as the element z must also be accounted

for. Therefore, we have α ≥ att+ 1− at − 1 = at(t− 1) ≥ 2(t− 1), and we are done.

Therefore, S ′ ∈ St−1.
Since S ′ ∈ St−1, we may assume by the induction hypothesis that for any edge e

in GS′ , there is a Hamilton cycle in GS′ with Property A which contains e, provided

S ′ is not X t−1. We resolve the case S ′ = X t−1 separately.

Suppose S ′ = X t−1. In this case, we have at = 1. If z = yt1, then we must have

A1 = {x1, y11, y12, . . . , y1t−1}, and Ai = {x1, yi1} for i ∈ {2, 3, . . . , t}. However, this

implies |
⋃t
i=1Ai| = 2t − 1, a contradiction. Therefore, we must have l = 2, and

z = x1 or z = x2. In this case, A1 = {x1, x2, y11, y12, . . . , y1t } and Ai = {x1, x2, yi1}. Let

Y t ∈ St denote this collection of sets. We resolve this special case with the following

lemma.

Lemma 4.2.6. Let S ∈ Sk, S 6= Xk, for some k, 2 ≤ k ≤ t− 1. If, for any edge e of

GS, there is a Hamilton cycle with Property A in GS which contains e then, for any

edge e in Y t, there is a Hamilton cycle with Property A in GY t which contains e.

Proof. The case t = 3 will be handled via diagrams.

When t = 3, consider the following ten edge types, with notation similar to the

notation used in the proof of Lemma 4.2.1. Similarly to the proof of Lemma 4.2.1, we

use Automorphism Properties I, II and III in order to restrict our search to Hamilton

cycles that contain each of these edge types.

1. (x, x′, y)→ (y, x′, y)

2. (x, x′, y)→ (x, y, y′)

3. (y, x, x′)→ (y′, x, x′)

4. (y, x, x′)→ (y, y′, x′)

5. (x, y, y′)→ (y′′, y, y′)
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6. (x, y, y′)→ (x′, y, y′)

7. (y, x, y′)→ (y, y′′, y′)

8. (y, x, y′)→ (y′′, x, y′)

9. (y, x, y′)→ (y, x′, y′)

10. (y, y′, y′′)→ (y′′′, y′, y′′)

For α ∈ {x1, x2, yt1}, let Hα denote the subgraph of GY t induced by the vertices in

which the third coordinate is α. See Figure 4.15 and Figure 4.16 for Hamilton cycles

C1 and C2 with Property A in GY 3 , which cover all ten possible edge types.

Now, suppose t ≥ 4. The graph GY t may be partitioned into the three disjoint

subgraphs Hx1 , Hx2 , and Hyt1
. Since Hx1 and Hx2 are both isomorphic to GXt ,

we may apply Lemma 4.2.4. The graph Hyt1
is isomorphic to GS

yt1

, where Syt1 =

A1, A2, . . . , At−1. It can be easily checked that Syt1 ∈ St−1. By assumption, we may

find a Hamilton cycle in Hyt1
which contains a prescribed edge, and has Property A.

Let e = (u, v) = ((u1, u2, . . . , uk+1), (v1, v2, . . . , vk+1)) be any edge in GY t . We will

construct a Hamilton cycle C in GY t which contains the edge e, and then we will

verify that C has consecutive vertices not containing xi, for i ∈ {1, 2}. To do this,

we will utilize the symmetries of GY t .

By Automorphism Properties I, II and III, as before, it suffices to find enough

Hamilton cycles with Property A so that an edge of each edge type (listed below)

appears in one of them. We can then apply the appropriate automorphism to find

the Hamilton cycle we desire. Note that by Automorphism Property III, since a2 =

a3 = · · · = at = 1, we only need to consider the edges in which the first or the second

coordinate changes. The following are the edge categories of GY t , grouped by which

coordinate changes.

Case 1: First coordinate changes:

a. from y1i to y1j , with x1 and x2 not used.

b. from y1i to y1j , with x1 used, x2 not used.

c. from y1i to y1j , with x1 and x2 used.

d. from y1i to x1, with x2 not used.
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Figure 4.15: Hamilton cycle C1 in GS.
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Hx1 Hx2Hy31

Figure 4.16: Hamilton cycle C2 in GS.
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e. from y1i to x1, with x2 used.

f . from x1 to x2.

Case 2: Second coordinate changes:

a. from y21 to x1, with x2 not used.

b. from y21 to x1, with x2 used on the first coordinate.

c. from y21 to x1, with x2 used on the ith coordinate, i ∈ {3, 4, . . . , t}.

d. from x1 to x2.

We will now describe a set of Hamilton cycles with Property A in GY t which

contain an edge of each of these ten edge categories. First, we will partition Hyt1
into

three subgraphs. Let Hx1,yt1
, Hx2,yt1

, and Hyt−1
1 ,yt1

be the subgraphs of Hyt1
induced by

vertices with (t− 1)st coordinate x1, x2, and yt−11 , respectively. We will denote these

by Hx1,y, Hx2,y and Hy,y. We have t ≥ 4, and each of these subgraphs is isomorphic

to the graph GS′ for a collection of t − 2 sets S ′ ∈ St−2. Therefore, by assumption,

Hx1,y, Hx2,y and Hy,y all have Hamilton cycles with Property A.

Consider a Hamilton cycle Cy,y in Hy,y. Clearly, Cy,y must contain a pair of

consecutive vertices u1 and u2, where u1 uses neither x1 nor x2 on any coordinate,

and u2 uses exactly one of x1 or x2 on its coordinates. Without loss of generality,

assume some coordinate of u2 is x1. Let Py,y be the Hamilton path in Hy,y from u2 to

u1. Let u′1 be the vertex obtained by changing the last coordinate of u1 to x1. Let u′2

be the vertex obtained by changing the last coordinate of u2 to x2. Notice, u′1 ∈ Hx1

and u′2 ∈ Hx2 . Now, by Lemma 4.2.4, let Px1 be a Hamilton path in Hx1 starting at

u′1 and ending at some vertex v′1, which uses x2 in the (t− 1)st coordinate and is not

adjacent to u′1. Let Px2 be a Hamilton path in Hx2 starting at the vertex w′1, which

uses x1 in the (t−1)st coordinate, and is equal to v′1 on coordinates one through t−2,

and ending at u′2. Since u′2 uses x1 on some coordinate other than the (t − 1)st, we

have that w′1 and u′2 are not adjacent. In addition, by Lemma 4.2.4, Px1 and Px2 can

be constructed to contain a single edge which does not use x2 or x1, respectively.

Let v1 be the vertex obtained by changing the last coordinate of v′1 to yt1, and

let w1 be the vertex obtained by changing the last coordinate of w′1 to yt1. Notice

v1 ∈ Hx2,y and w1 ∈ Hx1,y, and that v1 ∼ w1. Let v2 be the vertex obtained by

switching the first coordinate of v1 to y1i for some i ∈ {1, 2, . . . , t − 1}, and let w2
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be the vertex obtained by switching the first coordinate of w1 to y1i as well. Then,

v2 ∼ w2. Now, by induction, there is a Hamilton path Px1,y in Hx1,y from w2 to w1,

and there is a Hamilton path Px2,y in Hx2,y from v1 to v2. Now, Py,yPx1Px2,yPx1,yPx2u2

is a Hamilton cycle CY t in GY t . (See Figure 4.17.)

This construction does not depend on which Hamilton cycle we choose for Hy,y.

By induction, there exists a Hamilton cycle Cy,y in Hy,y which uses any edge of Hy,y,

and therefore the cycle we constructed may contain any such edge. Looking at the

list of the ten edge types, this covers almost all of them. The only possible edges

not covered are 1c and 2c, and only when t is exactly four (as the (t− 1)st and t-th

coordinates are fixed at yt−11 and yt1 respectively within Hy,y). However, both edge

types 1c and 2c are contained in our Hamilton paths Px1 in Hx1 , and Px2 in Hx2 . As

such, CY t may contain any edge in GY t . We must now verify that CY t has Property

A. By Lemma 4.2.4, and since u′1 � v′1 and u′2 � w′1, Px1 and Px2 will contain an

edge that fits our needs

u1

u′1

u2

u′2

v1

v′1

v2 w2 w1

w′1

Hx2,y Hx1,y

Hy,y

Hx1 Hx2

Figure 4.17: A Hamilton cycle in GY t .

In light of this result, we now consider S ∈ St, S 6= X t and S 6= Y t. As previously

discussed, for z ∈ At, we may now assume that for any edge e of Hz, there is a

Hamilton cycle with Property A in Hz which contains e. The problem of proving GS

has the Hamilton cycle we want is still far from easy. We will split the remainder of
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our proof into three parts, based on the value of l. The first case considers only the

collections S for which l = 0.

Lemma 4.2.7. Let S ∈ St − {X t, Y t}, with l = 0 and t ≥ 3. For any edge e in GS,

there is a Hamilton cycle with Property A in GS which contains e.

Proof. In this case, GS
∼= Ka12Ka22 · · ·2Kat . This graph has a Hamilton cycle

whenever a1 + a2 + · · · + at > t + 1. Since we have a1 + a2 + · · · + at ≥ 2t, we have

a Hamilton cycle. By Automorphism Property II, we may assume that this cycle

contains the edge e we desire. When l = 0, any Hamilton cycle vacuously satisfies

the requirements of Property A.

Lemma 4.2.8. Let S ∈ St − {X t, Y t}, with l = 1 and t ≥ 3. For any edge e in GS,

there is a Hamilton cycle with Property A in GS which contains e.

Proof. Let H0 denote the subgraph of GS induced by the vertices which do not use x1

on any coordinate, and let Hi, i ∈ {1, 2, . . . , t}, denote the subgraph of GS induced

by the vertices which use x1 on coordinate i. Notice that H0
∼= Ka12Ka22 · · ·2Kat ,

and Hi
∼= Ka12Ka22 · · ·2Kai−1

2Kai+1
2 · · ·2Kat . Recalling that a1 ≥ a2 ≥ · · · ≥ at,

we consider two cases based on the value a2.

Case 1: a2 = 1.

Here, we have A1 = {x1, y11, y12, . . . , y1a1}, and Ai = {x1, yi1} when i ∈ {2, 3, . . . , t}.
We may assume a1 ≥ t + 1, as |

⋃t
i=1Ai| < 2t if a1 < t, and S = X t if a1 = t. We

can use the same technique as in Case 1 of the proof of Lemma 4.2.4 to construct a

Hamilton cycle CS in GS. However, in this case H0
∼= Ka1 , which contains a1 ≥ t+ 1

vertices. As such, E(CS) will contain some edge of H0. This edge does not use x1 on

any coordinate, and by the construction our cycle may contain any edge not contained

within H0. By Automorphism Property II, we may assume CS uses a particular edge

contained within H0. Therefore, there is a cycle that contains any edge we want, and

will always have some edge contained in H0. This gives consecutive vertices in CS

which do not use x1 on any coordinate. Hence, Property A holds.

Case 2: a2 ≥ 2.

First, we show that Hi, i ∈ {1, 2, . . . , t}, contains a Hamilton path from u to v

whenever u ∼ v. Recall that Hi
∼= Ka12Ka22 · · ·2Kai−1

2Kai+1
2 · · ·2Kat . In this

case, we have a1+a2+· · ·+ai−1+ai+1+· · ·+at ≥ t. If a1+a2+· · ·+ai−1+ai+1+· · ·+at >
t, for any edge e in Hi, Hi contains a Hamilton cycle which contains e, for the reasons

described in the proof of Lemma 4.2.7. If a1 + a2 + · · · + ai−1 + ai+1 + · · · + at = t,
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then Hi
∼= K2. In either case, it is clear that Hi contains a Hamilton path from u to

v whenever u ∼ v.

Now, we also have a1 + a2 + · · · + at ≥ 2t− 1, and therefore for any edge e with

endpoints in H0, there is a Hamilton cycle C0 in H0 which contains e, for reasons

stated in the proof of Lemma 4.2.7. For some edge e = (u, v) in C0, there are distinct

vertices ui and vi in Hi such that u ∼ ui, v ∼ vi, and ui ∼ vi if and only if u and v

do not differ on the ith coordinate. If that is the case for the edge e, we may replace

e with a Hamilton path in Hi from ui to vi. Therefore, if for each i ∈ {1, 2, . . . , t},
there is an edge ei with endpoints that do not differ in the ith coordinate, and ei 6= ej

whenever i 6= j, we may construct a Hamilton cycle in GS by replacing ei with a

Hamilton path in Hi for each i. We now show that such a set of edges exists.

Let s = max{i|ai ≥ 2}. In this case, we have s ≥ 2. Notice that if i ∈ {s+ 1, s+

2, . . . , t}, then there are no edges in H0 which change coordinate i, so any edge in C0

may be chosen as ei. For each i ∈ {1, 2, . . . , s}, there are at least ai ≥ 2 edges in C0

which change the ith coordinate. For i ∈ {1, 2, . . . , s − 1}, let ei be any edge in C0

which changes the (i + 1)st coordinate. Let es be any edge in C0 which changes the

first coordinate. We will now use a counting argument to show that there are enough

“unclaimed” edges of C0 to assign to the remaining t−s subgraphs Hi. Let m denote

the number of edges in C0. There are then m− s unclaimed edges of C0. Noting that

m ≥ a1 + a2 + · · ·+ as, consider the following:

2t− 1 ≤ a1 + a2 + · · ·+ at

2t− 1 ≤ a1 + a2 + · · ·+ as + (t− s)

(t− 1) + s ≤ a1 + a2 + · · ·+ as

Thus, we have m − s ≥ a1 + a2 + · · · + as ≥ (t − 1) + s − s = (t − 1). We have

only t− s ≤ t− 2 = t− 2 edges left to choose, and at least (t− 1) edges from which

to choose. Choose any set of t− s of these edges to be ei for i ∈ {s+ 1, s+ 2, . . . , t}.
Notice that we have at least one edge e0 in C0 where e0 6= ei for each i ∈ {1, 2, . . . , t}.
Furthermore, we can choose ei for i ∈ {s + 1, s + 2, . . . , t} so that we can assume

e0 changes the jth coordinate, for some j ∈ {1, 2, . . . , s}. Our Hamilton cycle CS

of GS is constructed by replacing each ei in C0 with a Hamilton path in Hi. The

resulting cycle CS must contain at least one edge of H0, which gives us consecutive

vertices which do not use x1 on any coordinate. We must now show that for any edge
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e = (u, v) in GS, our construction can produce a Hamilton cycle which contains e.

We will do so in three cases, based on the three possible edge types in GS.

Suppose u ∈ V (H0), v ∈ V (Hi), i ∈ {1, 2, . . . , t}. In this case, the edge e switches

the ith coordinate from yij to x1, for some j ∈ {1, 2, . . . , ai}. The Hamilton cycle in GS

will always contain some edge e′ with the same edge type as e, and by Automorphism

Property II, we can permute the yiks so that e′ maps to e, and we are done.

Suppose u, v ∈ V (H0). Let w denote the coordinate in which u and v differ.

Note that we must have w ∈ {1, 2, . . . , s}. As described above, we may construct our

Hamilton cycle such that the edge e0 changes coordinate w. Again, by Automorphism

Property II, we can permute the yjks so that the edge e0 maps to our desired edge e,

and we are done.

Suppose u,v ∈ V (Hi) for some i ∈ {1, 2, . . . , t}. Let w denote the coordinate in

which u and v differ. Again, we have w ∈ {1, 2, . . . , s}. If Hi has only two vertices,

then we are done. So, assume Hi has at least three vertices. If the Hamilton path

in Hi we used to construct our Hamilton cycle contains some edge e′ which changes

coordinate w, we may permute the yjks such that e′ maps to e, and we are done. The

only way such an e′ will not exist is if the endpoints of the Hamilton path in Hi differ

in the wth coordinate. This occurs precisely when ei changes the wth coordinate. If

i ∈ {s+1, s+2, . . . , t}, we can alter the choice of ei to an edge which does not change

the wth coordinate. If i ∈ {1, 2, . . . , s}, we alter the choice of ei easily unless s = 2.

However, if s = 2, each edge in Hi will be an edge which changes the wth coordinate.

Therefore we may construct a Hamilton cycle such that it contains an e′, which we

can map to e under some permutation of the yjks by Automorphism Property II.

These three cases cover all the possible edge types in GS, and therefore, for any

e ∈ E(GS), we may construct a Hamilton cycle in GS which contains e, and has an

edge e0 which does not use x1 on any coordinate, so we are done.

Lemma 4.2.9. Let S ∈ St − {X t, Y t}, with l ≥ 2 and t ≥ 3. For any edge e in GS,

there is a Hamilton cycle with Property A in GS which contains e.

Proof. Let e = (v, v′) be any edge in GS. We will construct a Hamilton cycle in GS

which contains the edge e in two cases, based on whether or not v and v′ differ on

the t-th coordinate, or some other coordinate.

Case 1: v = (v1, v2, . . . , vt−1, vt), v
′ = (v1, v2, . . . , vt−1, v

′
t), vt 6= v′t.

Our first step is to construct a cycle which contains exactly the vertices of Hvt

and Hv′t
, and which contains the edge e. By induction, Hvt and Hv′t

will each contain
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Hamilton cycles which use prescribed edges. Let Cvt be a Hamilton cycle in Hvt using

the edge (v, u) = ((v1, v2, . . . , vt−1, vt), (v1, v2, . . . , vi−1, v
′
i, vi+1, . . . , vt−1, vt)) and let

Cv′t be a Hamilton cycle in Hv′t
using the edge (v′, u′) = ((v1, v2, . . . , vt−1, v

′
t), (v1, v2,

. . . , vi−1, v
′
i, vi+1, . . . , vt−1, v

′
t)).

We must justify that such a v′i exists. If ai > 1 for some i, one of yi1 or yi2 is a valid

candidate. Otherwise, if vj 6= yj1 for some j, yj1 is a valid candidate. Now, if ai = 1

and vi = yi1 for all i, we must have l ≥ 3, as |
⋃t
i=1Ai| ≥ 2t and t− 1 ≥ 2. Then, one

of x1, x2 or x3 is a valid candidate. Therefore, we may always find the desired v′i, for

some 2 ≤ i ≤ t− 1.

Now, as v ∼ v′ and u ∼ u′, we may simply delete the edges (v, u) and (v′, u′) and

add the edges (v, v′) and (u, u′) to create the desired cycle. Figure 4.18 displays this

process. We will informally refer to this process as stitching the cycles Cvt and Cv′t
together.

Hvt

Hv′t

Hvt

Hv′t

uv

u′v′ v′

uv

u′

Figure 4.18: Stitching cycles together.

In several steps we will extend our cycle to include the vertices of Ha, for each

a ∈ At − {vt, v′t}.
First, we will extend our cycle to include the vertices ofHxi , for xi ∈ {x1, x2, . . . , xl}

−{vt, v′t}. By induction, the cycle Cvt we have chosen for Hvt will have consecu-

tive vertices which do not use xi on any coordinate (it is possible that these ver-

tices are the vertices u and v, which is a problem that is addressed later). Let

(vi, ui) = ((w1, w2, . . . , wt−1, vt), (w1, w2, . . . , wi−1, w
′
i, wi+1, . . . , wt−1, vt)) be an edge

of Hvt which does not use xi. By induction, we may choose a Hamilton cycle Cxi in Hxi

which contains the edge (v′i, u
′
i) = ((w1, w2, . . . , wt−1, xi), (w1, w2, . . . , wi−1, w

′
i, wi+1, . . . , wt−1,

xi)). We may now stitch Cxi onto our existing cycle by deleting the edges (vi, ui) and
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(v′i, u
′
i), and adding the edges (vi, v

′
i) and (ui, u

′
i).

We must now extend our cycle to include the vertices of Hyti
, for yti ∈ {yt1, yt2, . . . ,

ytat}− {vt, v
′
t}. In this case, any choice of an edge in Hvt which has not been stitched

onto can be chosen to attach Hyti
, in a similar manner. Note that the number of edges

used by a Hamilton cycle in Hvt is large enough that running out of edges to attach

cycles onto is not a concern.

After this process is complete, we are left with a Hamilton cycle CS in GS, which

contains the edge e. We must verify that CS has Property A. By induction, Cv′t
must contain consecutive vertices which do not use xi on any coordinate, for each

xi ∈ {x1, x2, . . . , xl}−{vt, v′t}. If u′ and v′ are the only such vertices for some xi, then

note that the edge e must not use xi.

Suppose vt ∈ {x1, x2, . . . , xl}. If u′ and v′ are not the only consecutive vertices

in Cv′t which do not use vt on any coordinate, then we have consecutive vertices

in CS which do not use vt on any coordinate. Suppose they are. Then, for each

xi ∈ {x1, x2, . . . , xl} − {vt}, there must be consecutive vertices in Cv′t which do not

use xi on any coordinate, and which are not both u′ and v′. Then, instead of stitching

a Hamilton cycle Ca in Ha, for some a ∈ At − {vt, v′t}, to an edge of Cvt , we may

stitch it to an edge e′ 6= (u′, v′) of Cv′t . By assumption, e′ will use vt, and by induction

Ca must contain an edge which does not use vt, our final cycle CS will contain an

edge which does not use vt, and is contained within Ha. The edge in Cvt we used

previously to stitch Ca onto will be in our final cycle, and hence we will still have an

edge which does not use a.

Suppose v′t ∈ {x1, x2, . . . , xl}. We may assume that vt ∈ {x1, x2, . . . , xl}, otherwise

we may switch the roles of vt and v′t in the construction and use the previous argument.

Since at ≥ 1, we must have yt1 ∈ At−{vt, v′t}. We may stitch a Hamilton cycle Cyt1 in

Hyt1
onto some edge of Cvt which uses v′t on one of its end vertices, and our cycle CS

is then guaranteed to have consecutive vertices contained within Hyt1
which do not

use v′t for similar reasons as those discussed in the previous case.

In the case that At = {x1, x2, yt,1}, with vt = x1 and v′t = x2, there is only

one subgraph, Hyt1
, to attach. Therefore, we cannot use both of the previous ar-

guments, as each requires the attachment of such a subgraph. An alternate con-

struction is given for this case. Here, we have v = (y1v1 , y
2
v2
, . . . , yt−2vt−2

, yt−1vt−1
, x1) and

v′ = (y1v1 , y
2
v2
, . . . , yt−2vt−2

, yt−1vt−1
, x2). Let:

• u = (y1v1 , y
2
v2
, . . . , yt−2vt−2

, x2, x1),
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Hx1

Hx2

Hyt,1

v

v′

e
w

w′

u′
u

Figure 4.19: A Hamilton Cycle in GS, when At = {x1, x2, yt1}.

• u′ = (y1v1 , y
2
v2
, . . . , yt−2vt−2

, x2, y
t
1),

• w = (y1v1 , y
2
v2
, . . . , yt−2vt−2

, x1, x2), and

• w′ = (y1v1 , y
2
v2
, . . . , yt−2vt−2

, x1, y
t
1).

Then, we have u ∼ v, u ∼ u′, w ∼ v′, w ∼ w′, and u′ ∼ w′. Figure 4.19 illustrates

how to connect Hamilton cycles in Hx1 , Hx2 , and Hyt1
into a Hamilton cycle CS in

GS. Since some coordinate of u′ is x2, and some coordinate of w′ is x1, by induction,

there must be consecutive vertices in CS which do not use x1 on any coordinate,

and consecutive vertices which do not use x2 on any coordinate, each pair contained

within Hyt1
. Therefore, we can guarantee that our constructed cycle CS will have

Property A.

We must now address the possibility that, for some xi, the only consecutive vertices

in Cvt which do not use xi on any coordinate are the vertices v and u. Suppose this

is the case. If the vertices v′ and u′ are not the only consecutive vertices in Cv′t which

do not contain xi, Cxi may simply be stitched onto Cv′t instead of Cvt . Suppose that

the vertices v′ and u′ are the only consecutive vertices in Cv′t which do not contain

xi.

We may resolve this case easily when Hxi is not the only subgraph whose vertices

we need to include with our cycle in Hvt and Hv′t
; that is, when At 6= {vt, v′t, xi}.

In this case, take some a ∈ At − {vt, v′t, xi}, and stitch a cycle Ca in Ha to Cvt in

the manner described above. Now, by induction, the cycle Ca will have two consec-

utive vertices which do not use xi on any coordinate. Furthermore, those vertices

cannot be the vertices used to stitch Ca to Cvt , as then we must have another pair of
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consecutive vertices in Cvt which do not use xi on any coordinate, which contradicts

the assumption that v and u are the only consecutive vertices in Cvt which do not

use xi on any coordinate. Therefore, by induction we may choose a cycle Cxi in Hxi

which will allow us to stitch together Cxi and Ca. Stitching the remaining Cas to our

existing cycle can proceed in the manner described above. Note that the edge e must

not use xi because vt 6= xi and v does not use xi. Hence, we may construct our cycle

such that Property A is satisfied.

Now, suppose that At = {vt, v′t, xi}. Since we know at ≥ 1, and in this case

l ≥ 2, we must have At = {x1, x2, yt1}. Without loss of generality, we may assume

vt = yt1,v
′
t = x1, and xi = x2. Recall that when we stitched Cvt and Cv′t together using

the edges (v, u) in Cvt and (v′, u′) in Cv′t , the choice of u was made arbitrarily. We

chose any u that was adjacent to both v, and some vertex u′ in Hv′t
. Knowing that

v and v′ do not use xi on any coordinate, we may choose u to be a vertex that does

use xi on some coordinate. Simply take any coordinate of v other than the last and

change it to xi to get such a u. The choice for u′ follows. As before, we can choose

Cv′t to contain our new (v′, u′), and Cvt to contain our new (v, u), and stitch them

together with our prescribed edge e = (v, v′) and the edge (u, u′). By induction, both

Cvt and Cv′t will have consecutive vertices which do not use xi on any coordinate, and

neither of these vertices can be u or u′ respectively, as each use xi on some coordinate.

We can then choose a cycle Cxi in Hxi using the appropriate edge, and stitch it to

Cvt as before. We know that Cv′t will have some edge that does not use xi on any

coordinate, and this edge will occur in our final cycle CS. Now, we must show that

our cycle has consecutive vertices which do not use v′t = x1 on any coordinate. Let

(w,w′) denote consecutive vertices in Cvt which do not use x2 on any coordinate. If

either w or w′ use x1 on some coordinate, then by stitching Cx2 onto (w,w′) and

appealing to induction, we know that our final cycle CS will have consecutive vertices

which do not use x1 on any coordinate and which lie in Hxi . Suppose neither w nor

w′ use x1 on any coordinate. Consider the vertex w′′ following w′ on the cycle Cvt .

Since w′ uses neither x2 nor x1 on any coordinate, w′′ can use at most one of x2 and

x1 its coordinates. Thus, a careful selection of one of (w,w′) or (w′, w′′) as the edge

to attach Cx2 onto will yield a Hamilton cycle CS in GS which contains consecutive

vertices which do not use x1 on any coordinate.

We now consider the case where v and v′ differ in some coordinate other than the

t-th coordinate.

Case 2: v = (v1, v2, . . . , vi−1, vi, vi+1, . . . , vt−1, vt), v
′ = (v1, v2, . . . , vi−1, v

′
i, vi+1,
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. . . , vt−1, vt), vi 6= v′i, i 6= t.

We will split this case into sub-cases, based on the t-th coordinate of our edge e.

Case 2.1: vt = xi, for some i ∈ {1, 2, . . . , l}.
By induction, let Cxi be a Hamilton cycle in Hxi which contains the edge e. Let

(u,w) be any other edge of Cxi . Let u′ and w′ be the vertices obtained by switching

the t-th coordinate of u and w respectively to yt1. By induction, let Cyt1 be a Hamilton

cycle with Property A in Hyt1
which contains the edge (u′, w′). As before, we may

remove the edges (u,w) from Cxi and (u′, w′) from Cyt1 , and add in the edges (u, u′)

and (w,w′) to create a cycle which uses the vertices of Hxi and Hyt1
. By induction,

Cyt1 has a distinct edge ej for every j ∈ {1, 2, . . . , l} − {i}, such that neither of the

endpoints of ej use xj on any coordinate. Let e′j be the edge of Hxj obtained by

switching the t-th coordinate of the vertices of ej to xj. By induction, let Cxj be a

Hamilton cycle with Property A in Hxj which contains the edge e′j. Then, as before,

we may stitch each such cycle onto our existing cycle with the appropriate pair of

edge deletions and additions.

It is possible that for some j, the only candidate for the edge ej is the edge (u′, w′).

If l = 2, we may simply choose the edge (u,w) to be an edge which uses xj, which

prevents the possibility that ej = (u′, w′). Otherwise, for each h ∈ {1, 2, . . . , l}−{i, j},
eh must use xj, and therefore the edge e′h will too. Then, by induction, Cxh will have

an edge ej,h which does not use xj, and that edge cannot be the edge e′h. We may

then switch the t-th coordinates of the vertices of ej,h to obtain the edge e′j,h in Hxj ,

use induction to create a Hamilton cycle Cxj in Hxj which contains the edge e′j,h, and

stitch Cxj onto Cxh .

For any y ∈ {yt2, yt3, . . . , ytat}, we may pick any unused edge ey of Cyt1 . Let e′y be

the edge obtained by switching the t-th coordinates of the vertices of ey to y. Let Cy

be a Hamilton cycle in Hy which contains the edge e′y, and stitch Cy to Cyt1 .

After this process is complete, we have our Hamilton cycle CS inGS which contains

the edge e. We must now show that this cycle has Property A. By induction, we

know Cxi has an edge which does not use xj for j ∈ {1, 2, . . . , l} − {i}. If (u,w) is

such an edge for some xj, then the edges (u, u′) and (w,w′) are both edges in CS

which do not use xj. It remains to show that xi is not used on an edge of CS.

Consider any of the edges ej, for j ∈ {1, 2, . . . , l} − {i}. If ej uses xi, then e′j uses

xi as well. Therefore, CS will have an edge contained within Hxj which does not use

xi, and we are done. Suppose then that ej does not use xi. Then, e′j does not use xi

as well. Therefore, each of the edges used to stitch Cxj to Cyt1 will not use xi, and we
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are done.

Case 2.2: vt = yti , for some i ∈ {1, 2, . . . , at}.
By induction, let Cyti be a Hamilton cycle in Hyti

which uses the edge e. By

induction, Cyti has an edge ej for every j ∈ {1, 2, . . . , l}, such ej does not use xj. Let

e′j be the edge of Hxj obtained by switching the t-th coordinate of the vertices of ej

to xj. By induction, let Cxj be a Hamilton cycle in Hxj which contains the edge e′j.

We may stitch Cxj to Cyti on the edge ej. This possibility that ej = e for some j

is resolved in a similar manner as the possiblity that ej = (u′, w′) for some j in the

previous case.

For any y ∈ {yt1, yt2, . . . , ytat} − {y
t
i}, we may pick any unused edge ey of Cyti . Let

e′y be the edge obtained by switching the t-th coordinates of the vertices of ey to y.

Let Cy be a Hamilton cycle in Hy which contains the edge e′y, and stitch Cy to Cyt1
as before.

We are left with a Hamilton cycle CS in GS, which contains our edge e. As always,

we must confirm CS has Property A.

First, suppose that ej 6= e, for all j ∈ {1, 2, . . . , l}. If this is the case, then either

Cx1 or the set of edges used to stitch Cx1 and Cyti together will contain edges which

do not use xj for j ∈ {2, 3, . . . , l}. Additionally, either Cx2 or the set of edges used

to stitch Cx2 and Cyti together will contain an edge which does not use x1.

Suppose that for some j ∈ {1, 2, . . . , l}, e is the only edge of Cyti which does not use

xj. In this case, we will have stitched Hxj onto Hxh for some h ∈ {1, 2, . . . , l} − {j}.
Then, by induction, Cxj will have consecutive vertices which do not use xm on any

coordinate, for m ∈ {1, 2, . . . , l} − {j, h}. Since by assumption e does not use xj, we

just need to find consecutive vertices in CS which do not use xh on any coordinate.

This can be done in the same manner as finding an edge which does not use xi from

the previous case. However, in this case, there is the possibility that when l = 2 this

cannot be done. If this is the case, without loss of generality we may say that Cx1 is

stitched to Cyt1 , Cx2 is stitched to Cx1 , and the edge e is the only edge in Cyt1 which

does not use x2. Then, consider any vertex u of Cyt1 which uses neither x1 nor x2 on

any coordinate. Since e is the only edge which does not use x2, the neighbours w and

w′ of u in Cyt1 will not use x2. Therefore, neither (u,w) nor (u,w′) will use x1 on any

coordinate. Since we only use one edge of Cyt1 to stitch Cx1 onto, our Hamilton cycle

CS will use at least one of (u,w) and (u,w′), and we are done.

This completes the proof of Theorem 4.2.5.
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Chapter 5

Hamiltonicity of Ck(K)

Recall that we denote a complete multipartite graph Ka1,a2,...,at by K. In this chapter,

we address our main problem: determining whether or not Ck(K) is Hamiltonian for

various values of k. In the first section, we present two “construction” theorems,

which given a graph G and subgraph H of G, under particular circumstances allow

us to construct a Hamilton cycle in the colour graph of G from a Hamilton cycle in

the colour graph of H. We then use these theorems to give our main result, an upper

bound on k0(K), the Gray code number of a complete multipartite graph K. We give

a result on the lower bound on k0(K) with respect to the number of parts of K with

size two, and we fully characterize the graphs K for which Ct+1(K) is Hamiltonian.

5.1 Construction Theorems

The first of our construction theorems examines the symmetries between the colour

graph Ck(G), and the colour graph Ck+1(G+{v}), where G+{v} is the graph obtained

by adding a dominating vertex to G. This is of particular use for the purpose of

constructing Hamilton cycles in complete multipartite graphs, as Ka1,a2,...,at + {v} ∼=
Ka1,a2,...,at,1.

Theorem 5.1.1. For any graph G, if Ck(G) is A-Hamiltonian and k ≥ χ(G) + 2,

then Ck+1(G+ {v}) is A-Hamiltonian.

Proof. Let Hi denote the subgraph of Ck+1(G + {v}) induced by the vertices which

colour v with i. Notice that each Hi
∼= Ck(G), and is therefore A-Hamiltonian by our

hypothesis. Let C1 = f 1
0 , f

1
1 , . . . , f

1
N−1, f

1
0 be a Hamilton cycle in H1 with Property

A. For i ∈ {2, 3, . . . , k + 1}, let si be an integer such that the colour i is not used
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in both of f 1
si

and f 1
si+1

. By Property A, such an si must exist, and we may assume

si = sj ⇐⇒ i = j. We may also assume si < sj whenever i < j, by relabeling our

colours if necessary.

For i ∈ {2, 3, . . . , k + 1}, let Ci = πi(C1) = πi(f
1
0 ), πi(f

1
1 ), . . . , πi(f

1
N−1), πi(f

1
0 ) =

f i0, f
i
1, . . . , f

i
N−1, f

i
0, where πi = (1 i). It is not difficult to see that if f 1

j ∼ f 1
k ,

then f ij ∼ f ik. Therefore, Ci is a Hamilton cycle in Hi. Furthermore, f isi ∼ f 1
si

as f 1
si

colours no vertex with i, and therefore the two colourings differ only in the

colour of v. Similarly, f isi+1 ∼ f 1
si+1. Let Pi = f isi , f

i
si−1

, . . . , f isi+1
. Pi is a Hamilton

path in Hi from f isi to f isi+1
. For i ∈ {2, 3, . . . , k}, let P ′i = f 1

si+1, f
1
si+2, . . . , f

1
si+1

,

and let P ′k+1 = f 1
sk+1+1, f

1
sk+1+2, . . . , f

1
s2

. Then, the following is a Hamilton cycle in

Ck+1(G+ {v}): C = P2P
′
2P3P

′
3 · · ·Pk+1P

′
k+1f

2
s2

.

To complete the proof, we must show that C has Property A. We know that H1
∼=

Ck(G), and therefore C1 contains consecutive vertices which do not use the colour i,

for i ∈ 2, 3 . . . , k + 1. Therefore, since Ci = πi(C1), Ci must contain consecutive

vertices which do not use the colour j, for j ∈ {1, 2, . . . , j − 1, j, j + 1, . . . , k + 1}.
However, Pi is Ci with the edge ei = (f isi , f

i
si+1

) removed. By construction, ei does

not use colour 1, and therefore Pi may not contain consecutive vertices which do not

use 1. At this point, we know that Pi ∪ Pj, with j 6= i and i, j ∈ {2, 3, . . . , k + 1},
must contain consecutive vertices which do not use colour h, for h ∈ {2, 3, . . . , k+ 1}.
Therefore, all that remains to verify Property A is to find consecutive vertices on C

which do not use colour 1.

To find such vertices, we appeal to our assumption that k ≥ χ(G) + 2. For some

i ∈ {2, 3, . . . , k + 1}, consider integers p and q such that f 1
p and f 1

q use exactly χ(G)

colours, and do not use the colour i. Let cp be another colour not used by f 1
p , and let

cq be another colour not used by f 1
q . For some c ∈ {i, cp, cq}, there exist s, t ∈ Z, s 6= t,

such that f 1
s , f

1
s+1, f

1
t , f

1
t+1 all do not use the colour c. Therefore, as Hc = πc(H1),

f cs , f
c
s+1, f

c
t , f

c
t+1 all do not use the colour 1, and so Cc has at least two edges which

do not use colour 1. Therefore, Pc must contain at least one edge which does not

use colour 1. Therefore, C has Property A , and we have shown Ck+1(G + {v}) is

A-Hamiltonian, as desired.

Corollary 5.1.2. If Ck(Ka1,a2,...,at) is A-Hamiltonian, and k ≥ t+ 2, then

Ck+1(Ka1,a2,...,at,1) is A-Hamiltonian.

The second of our two construction theorems is the one which necessitated our

work in Chapter 4. Unlike our first construction theorem, this theorem is particular
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to complete multipartite graphs. We show that, given a sufficiently large number

of colours, k, adding a vertex to each part of a complete multipartite graph whose

k-colour graph is A-Hamiltonian will result in a graph whose k-colour graph is also

A-Hamiltonian. The result is a generalization of work done by Celaya et al. [3] on

colour graphs of complete bipartite graphs.

Lemma 5.1.3. If Ck(Ka1,a2,...,at) is A-Hamiltonian and k ≥ 2t, Ck(Ka1+1,a2+1,...,at+1)

is A-Hamiltonian.

Proof. Let K ′ = Ka1,a2,...,at , and K = Ka1+1,a2+1,...,at+1. Let {V1, V2, . . . , Vt} be the t-

partition of the vertices ofK ′, and let v1, v2, . . . , vt be vertices such that {V1∪{v1}, V2∪
{v2}, . . . , Vt ∪ {vt}} is the t-partition of K. Let f0, f1, . . . , fN−1, f0 be a Hamilton

cycle with Property A in Ck(K ′). For j ∈ {0, 1, . . . , N − 1}, let Fj denote the set of

colourings in Ck(K) which agree with fj on the colours of V (K ′). Let Aj,i denote the

set of colours that could be assigned to vi to extend fj to a colouring of K. Since the

vis induce a clique, each must be assigned a different colour. Therefore, colourings

in Fj correspond to SDRs of the collection Sj = Aj,1, Aj,2, . . . , Aj,t. Additionally, two

colourings in Fj are adjacent if and only if their corresponding SDRs are adjacent in

the SDR graph of Sj. Therefore, the subgraph induced by Fj is isomorphic to the

SDR graph of Sj. We will now show that Sj must be isomorphic to one of the SDR

graphs we examined in Chapter 4.

Consider some colour c ∈ {1, 2, . . . , k}. If c is used in fj, it must be used on

exactly one part, say Vn. Then, c ∈ Aj,i if and only if i = n. If c is not used in fj,

then c ∈ Aj,i for i ∈ {1, 2, . . . , t}. In other words c is either available to exactly one of

the vis, or it is available to every vi. Let Xj = {x1, x2, . . . , xlj} be the set of colours

such that xn ∈ Aj,i for 1 ≤ n ≤ lj and 1 ≤ i ≤ t. Let Yj,i = {yi,1, yi,2, . . . , yi,bj,i} for

i ∈ {1, 2, . . . , t} be the set of colours such that, for 1 ≤ n ≤ bj,i, yi,n ∈ Aj,m if and

only if m = i. Then, Aj,i = Xj ∪ Yj,i.
Clearly, we must have bj,i ≥ 1, for each i, as at least one colour must be used in fj to

colour the vertices of Vi. Additionally, we have Aj,h∩Aj,i = Xj for h, i ∈ {1, 2, . . . , t}.
Since k ≥ 2t, we must have |

⋃t
i=1Aj,i| ≥ 2t. Since t ≥ 2, we have all the conditions

we need to guarantee Sj ∈ St, and we may therefore apply either Lemma 4.2.4 or

Theorem 4.2.5.

For any j ∈ {1, 2, . . . , t}, we call a vertex w ∈ Fj a sink if it is adjacent to a vertex

in Fj+1. If a vertex w ∈ Fj is not a sink, this means that for some i, the colour used

by w to colour vi is not available to vi to extend fj+1. That is, w(vi) ∈ Aj,i, but
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w(vi) /∈ Aj+1,i. Since fj and fj+1 differ in the colour of only one vertex, if w is not a

sink, fj colours no vertex with w(vi), and fj+1 uses the colour w(vi) on some vertex

in V1 ∪ V2 ∪ · · · ∪ Vi−1 ∪ Vi+1 ∪ · · · ∪ Vt.
We will find a Hamilton cycle in Ck(K) using a similar idea as in the proof of

Lemma 2.3.1 (See [9]). For i ∈ {0, 1, . . . , N − 1}, we will define vertices ti and si such

that there exists a Hamilton path in Fi from si to ti, and ti ∼ si+1 . Without loss of

generality, we may assume f0 is the colouring which assigns each vertex in Vj colour j,

for 1 ≤ j ≤ t. Let t0 ∈ F0 be the vertex such that t0(vj) = j. Since f0 uses colour j on

Vj for each j ∈ {1, 2, . . . , t}, A1,j must contain the colour j. Therefore, t0 is a sink. We

define tj and sj for 1 ≤ j ≤ N − 1 inductively. Suppose t0, s1, t1, s2, t2, . . . , sj−1, tj−1

have been defined. Let sj be the neighbour of tj−1 in Fj.

If Sj ∈ S − {X t}, then by Theorem 4.2.5 we know that Fj contains a Hamilton

cycle which contains some prescribed edge in Fj. As a result, Fj contains a Hamilton

path from sj to any vertex adjacent to sj. We now show that some neighbour of sj

in Fj must be a sink. If a neighbour of sj is not a sink, then there exists a colour c

which is not used by fj but is used by fj+1. Say c is used by fj+1 to colour a vertex

in Vi. Then, any vertex w ∈ Fj which either does not use c, or uses c to colour vi

is a sink. Since |Aj,h| ≥ 2 for each h ∈ {1, 2, . . . , t}, clearly some neighbour of sj

satisfies one of those conditions, and is therefore a sink. Let tj be such a sink. By

Theorem 4.2.5, there is a Hamilton path in Fj from sj to tj.

If Sj = X t, then Aj,i = {x1, yi,1, yi,2, . . . , yi,t} for some i ∈ {1, 2, . . . , t}, and

Aj,h = {x1, yh,1} for all h ∈ {1, 2, . . . , t}− {i}. In this case, we know by Lemma 4.2.4

that Fj contains a Hamilton path between any two vertices, so long as at least one

of them uses the colour x1. Since x1 is the only colour not used by fj, there exists

α ∈ {1, 2, . . . , t} such that every vertex in Fj which uses x1 to colour vα is a sink.

Let tj be any such vertex, with tj 6= sj. Since, tj uses x1, by Lemma 4.2.4 there is a

Hamilton path in Fj from sj to tj.

Now, by our choice of f0, the vertex f0 cannot use any colour which fN−1 does not

use. Therefore, every vertex of FN−1 is a sink. As such, we have enough freedom to

ensure that our choice of tN−1 is not adjacent to t0. Finally, let s0 be the neighbour

of tN−1 in F0. We have S0 = A0,1, A0,2, . . . , A0,t, with A0,i = {x1, x2, . . . , xl0 , yi,1} for

each i ∈ {1, 2, . . . , t}. Then, by Lemma 4.2.3, there is a Hamilton path in F0 from t0

to any other vertex in F0. In particular, there is a Hamilton path in F0 from t0 to s0.

Now that we have defined si and ti for each i ∈ {1, 2, . . . , N − 1}, we may describe a

Hamilton cycle in Ck(K).
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For i ∈ {1, 2, . . . , N − 1}, let Pi be a Hamilton path in Fi from si to ti. Then,

P0P1 · · ·PN−1s0 is a Hamilton cycle in Ck(K). That this cycle has Property A follows

from Theorem 4.2.5, and the fact that f0, f1, . . . , fN−1, f0 has Property A.

5.2 Upper and lower bounds for k0(K)

In this section we give our main result, which uses our constructions theorems The-

orem 5.1.1 and Theorem 5.1.3 to give an upper bound on k0(K). Additionally, we

will show that there exist Ck(K) which are not Hamiltonian for k as large as t+
⌈
t
2

⌉
.

The following simple lemma, which will be presented without proof, illustrates the

construction used to prove our upper bound theorem.

Lemma 5.2.1. Every non-increasing sequence of natural numbers a1, a2, . . . , at can

be reduced to a sequence b, 1 using the following two operations:

O1(b1, b2, . . . , bs) = b1 − 1, b2 − 1, . . . , bs − 1,

O2(b1, b2, . . . , bs−1, 1) = b1, b2, . . . , bs−1.

For example, consider the sequence s0 = 7, 5, 4, 2, 1, 1. The series of moves which

reduces s0 to the length two sequence 3, 1 is as follows:

• s1 = O2(s0) = 7, 5, 4, 2, 1

• s2 = O2(s1) = 7, 5, 4, 2

• s3 = O1(s2) = 6, 4, 3, 1

• s4 = O2(s3) = 6, 4, 3

• s5 = O1(s4) = 5, 3, 2

• s6 = O1(s5) = 4, 2, 1

• s7 = O2(s6) = 4, 2

• s8 = O2(s7) = 3, 1

We are now ready to prove the main result.

Theorem 5.2.2. If k ≥ 2t, Ck(Ka1,a2,...,at) is A-Hamiltonian.
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Proof. By Lemma 5.2.1, there exists a sequence G0, G1, . . . , Gn of complete multipar-

tite graphs such that:

• G0 = Kb,1 for some b,

• Gn = Ka1,a2,...,at ,

• if Gi = Kb1,b2,...,bs−1,bs , then either bs > 1 and Gi−1 = Kb1−1,b2−1,...,bs−1−1,bs−1, or

bs = 1 and Gi−1 = Kb1,b2,...,bs−1 , for 1 ≤ i ≤ n.

Since G0 = Kb,1 is a star, we have that Col(G0) = 2. Therefore, by Theorem 2.3.4,

Cl(G0) is A-Hamiltonian whenever l ≥ 4. Since k ≥ 2t, we must have k − (t − 2) ≥
t + 2 ≥ 4, and so Ck−(t−2)(G0) is A-Hamiltonian. Suppose that for some Gj that Gj

is s-partite, and Ck−(t−s)(Gj) is A-Hamiltonian. Since k ≥ 2t, we have k − (t− s) ≥
t + s ≥ 2s. If Gj+1 is obtained from Gj by adding a vertex to each part of Gj,

then by Lemma 5.1.3, Ck−(t−s)(Gj+1) is A-Hamiltonian. If Gj+1 is obtained from

Gj by adding a single dominating vertex, then by Theorem 5.1.1, Ck−(t−(s+1))(Gj+1)

is A-Hamiltonian. By induction, for each j ∈ {0, 1, . . . , n}, if Gj is s-partite, then

Ck−(t−s)(Gj) is A-Hamiltonian. In particular, Ck−(t−t)(Gn) = Ck(Ka1,a2,...,at) is A-

Hamiltonian.

Corollary 5.2.3. k0(Ka1,a2,...,at) ≤ 2t.

An improvement to this upper bound can be made when Ka1,a2,...,at has some

number of parts of size one by applying Theorem 5.1.1.

Corollary 5.2.4. For K = Ka1,a2,...,at with a1 ≥ a2 ≥ · · · ≥ at, if ai = ai+1 = · · · =

at = 1 where t > i ≥ 3, then Ct+i−1(K) is Hamiltonian.

Proof. C2i−2(Ka1,a2,...,ai−1
) is A-Hamiltonian. The result follows by applying

Theorem 5.1.1 t− (i− 1) times.

We now turn our attention towards a lower bound for k0(K). It is clear that Ct(K)

is not connected, much less Hamiltonian. Considering our upper bound, we are only

left to concern ourselves with the Hamiltonicity of Ck(K) when t + 1 ≤ k ≤ 2t − 1.

As will be shown in the next section, Ct+1(K) is Hamiltonian for some choices of K,

and not Hamiltonian for others. As a result, it is likely the case that k0(K) ≥ t + 1

is the best general lower bound that exists. It is however worth noting that it may
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be possible for Ck′(K) to be Hamiltonian, but Ck(K) be non-Hamiltonian for some

2t ≥ k ≥ k′. The result that follows is an attempt to gain insight on why some

complete multipartite graphs fail to have Hamiltonian colour graphs for a particular

number of colours while others succeed. Furthermore, this result shows that for k as

large as t +
⌈
t
2

⌉
, there are complete t-partite graphs whose k-colour graphs are not

Hamiltonian.

For a graph G, let ω(G) denote the number of connected components of G. Before

we continue, recall a well known necessary condition for Hamiltonicity of G (see [1],

page 53).

Lemma 5.2.5. If G is Hamiltonian, and S ⊆ V (G), then ω(G− S) ≤ |S|.

We use this condition to prove the following result.

Lemma 5.2.6. For K = Ka1,a2,...,at, if K has s parts of size two, then Ck(K) is not

Hamiltonian for k ≤ t+
⌈
s
2

⌉
Proof. Suppose k = t+c, where c ≤ s. Let T ⊆ V (Ck(K)) denote the set of colourings

of K in which c parts of size two are coloured with two colours, and the remaining t−c
parts are coloured with a single colour. Let S ⊆ V (Ck(K)) denote the set of colourings

of K in which c − 1 parts of size two are coloured with two colours, the remaining

t − c + 1 parts are coloured with a single colour, and one colour is unused. Notice

that the subgraph induced by T contains no edges, as the only vertices which can

change colour are those in the parts of size two which are coloured with two colours,

and they can only be changed to the colour of the other vertex in their part. As

such, vertices in T are adjacent only to vertices in S. Then, ω(Ck(K)− S) ≥ |T |+ 1.

Therefore, if |S| ≤ |T |, Ck(K) is not Hamiltonian by Lemma 5.2.5. It is a simple

counting exercise to show that |T | =
(
s
c

)
(t+ c)!, and |S| =

(
s
c−1

)
(t+ c)!. So, |S| ≤ |T |

whenever
(
s
c

)
≥
(
s
c−1

)
. This inequality holds whenever c ≤

⌈
s
2

⌉
.

A computer search for Hamilton cycles in colour graphs of some small complete 3-

partite graphs suggests that K2,2,2 is the only complete 3-partite graph whose 5-colour

graph is not Hamiltonian.

5.3 Hamiltonicity of Ct+1(K)

Let V1, V2, . . . , Vt be the t-partition of K, where |Vi| = ai. It is clear that Ct(K) is

not connected for t ≥ 2, and of course cannot be Hamiltonian. This is not the case
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C4(K3) C4(K3,3,1)

e

f1

f2

f1

f2

He

Figure 5.1: A vertex f1 of C4(K3) and its neighbourhood, and the corresponding
subgraph of C4(K3,3,1). The thick edges represent the edge e of C4(K3), and the
subgraph He of C4(K3,3,1) corresponding to e. In the right hand graph, f1 and f2
are the two 3-colourings contained in He, and each other vertex of He represents a
4-colouring.

with Ct+1(K). In this section we characterize the complete t-partite graphs whose

(t+ 1)-colour graphs are Hamiltonian. Once again our results are a generalization of

the work done by Celaya et al. [3] on colour graphs of complete bipartite graphs. To

begin, we will examine some basic necessary conditions.

Consider Ct+1(K1,1,...,1) = Ct+1(Kt). Let V (Kt) = {v1, v2, . . . , vt}. There is an

important relationship between Hamilton cycles in Ct+1(Kt) and Hamilton cycles in

Ct+1(K). Let e = (f1, f2) ∈ E(Ct+1(Kt)). Let He be the subgraph of Ct+1(K) induced

by the colourings where, for each i, Vi is coloured using colours from {f1(vi), f2(vi)}.
Since f1(vi) = f2(vi) for all but one vertex, this subgraph simply contains colourings in

which one part Vj is coloured using two colours, and each other part is monocoloured.

Recall that Qn denotes the n− cube, the graph whose vertex set is the set of binary

strings of length n, where two strings are adjacent if they differ in exactly one position.

Notice that He
∼= Qaj , as there is a clear correspondence between binary strings of

length aj and colourings of Vj using two colours. Figure 5.1 gives an example of how

the edges of C4(K3) correspond to subgraphs of C4(K3,3,1).

It should be clear that every vertex in Ct+1(K) is contained in He for some e. More

specifically, if f ∈ Ct+1(K) is a colouring which uses all t + 1 colours, it will appear
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in exactly one subgraph He, and if f uses t colours, it will appear in t subgraphs He,

corresponding to the t edges incident to the vertex in Ct+1(Kt) corresponding to f .

Consider He for some edge e ∈ E(Ct+1(Kt)). Let f1 and f2 denote the two colour-

ings in V (He) which use t colours. Since no colour used on Vi can be used on Vj

for any j 6= i and any vertex y ∈ V (He) − {f1, f2} uses all t + 1 colours, any path

from a vertex x ∈ V (Ct+1(K)) − V (He) to y must contain either f1 or f2. In other

words, {f1, f2} is a disconnecting set of Ct+1(K). As a result, a Hamilton cycle in

Ct+1(K) must be composed of a sequence of Hamilton paths in the Hes which begin

and end at the vertices of He which use t colours. Each such path corresponds to

an edge e ∈ Ct+1(Kt), and therefore a Hamilton cycle in Ct+1(K) will correspond

to a Hamilton cycle in Ct+1(Kt). Our first condition comes from the fact that we

need He to contain a Hamilton path beginning and ending at its t colourings. Since

He
∼= Qaj for some j ∈ {1, 2, . . . , t}, this is equivalent to finding a Hamilton path in

Qaj from 00 . . . 0 to 11 . . . 1. The following lemma, a proof of which may be found in

[9], illustrates when this can be done.

Lemma 5.3.1. For n ≥ 1, there is a Hamilton path in Qn from 00 . . . 0 to 11 . . . 1 if

and only if n is odd.

As a result, we immediately get the following corollary.

Corollary 5.3.2. If Ct+1(Ka1,a2,...,at) is Hamiltonian, ai is odd for each i.

We now complete the argument for complete bipartite graphs, reaffirming the

result of Celaya et al. [3]. The proof we give is similar to the proof given by Celaya

et al.

Theorem 5.3.3 (Celaya at al. [3]). C3(Ka1,a2) is Hamiltonian if and only if a1 and

a2 are both odd.

Proof. We know that C3(K2) is Hamiltonian, and since each vertex in C3(K2) has

degree two, every edge of C3(K2) is used in this cycle. Note that C3(K2) has 3! = 6

vertices. Let f0, f1, . . . , f5, f0 denote the Hamilton cycle in C3(K2), and let ei =

(fi, fi+1), interpreting indices modulo 6. Let f ′i and f ′i+1 denote the t colourings in

Hei which use the same colours on the same parts as fi and fi+1 respectively. If a1

and a2 are both odd, by Lemma 5.3.1 there will always be a Hamilton path Pei in

Hei from f ′i to f ′i+1. Then, Pe0Pe1 · · ·Pe5 is a Hamilton cycle in C3(Ka1,a2). If either

a1 or a2 is even, then some for some edge ei, by Lemma 5.3.1 Hei will not contain a

Hamilton path from f ′i to f ′i+1, and a Hamilton cycle in C3(Ka1,a2) cannot exist.
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Since Ct+1(Kt) is also Hamiltonian for t ≥ 3, one might imagine a similar idea

would work to find Hamilton cycles in Ct+1(Ka1,a2,...,at) when t ≥ 3. This however is

not necessarily the case. Since the degree of a vertex in Ct+1(Kt) is t, if t ≥ 3, there

must be some edges which are not used in a Hamilton cycle C in Ct+1(Kt). Consider

such an edge e, and say e changes the colour of vi in Kt. Then, since He
∼= Qai ,

if ai ≥ 2, there will be vertices in He which are not visited by the cycle in Ct+1(K)

which corresponds to C. Thus, C does not correspond to a Hamilton cycle in Ct+1(K).

Furthermore, if ai > 1, any Hamilton cycle C ′ in Ct+1(Kt) which does correspond to

a Hamilton cycle in Ct+1(K) must use every edge e which changes the colour of vi.

If ai = 1 then He contains only two vertices, the two possible t colourings, and these

vertices will appear in He′ for some e′ which is used by C. Every vertex in Ct+1(Kt)

is incident with exactly one edge which changes the colour of vi, and indeed the set

Ei of all edges in Ct+1(Kt) which change the colour of vi is a perfect matching.

To reiterate, each vertex vi has a corresponding value ai, which is the size of Vi.

Additionally, if ai > 1, vi has a corresponding set of edges Ei which must be used in

any Hamilton cycle in Ct+1(Kt) which corresponds with a Hamilton cycle in Ct+1(K) =

Ct+1(Ka1,a2,...,at). Note that E(Ct+1(Kt)) = E1 ∪ E2 ∪ · · · ∪ Et, and that Ei ∩ Ej = ∅
whenever i 6= j. If there exist ai, aj and ak, with i 6= j 6= k, ai ≥ aj ≥ ak ≥ 2,

then there clearly cannot be a Hamilton cycle in Ct+1(Kt) which uses every edge in

Ei∪Ej ∪Ek. Therefore, no Hamilton cycle in Ct+1(Kt) can correspond to a Hamilton

cycle in Ct+1(K). Since a Hamilton cycle in Ct+1(K) necessarily has a corresponding

Hamilton cycle in Ct+1(Kt), we conclude that Ct+1(K) is not Hamiltonian. Suppose

then, that only a1 and a2 are greater than one. A corresponding Hamilton cycle in

Ct+1(Kt) must use every edge in E1 ∪ E2, and since E1 and E2 are disjoint perfect

matchings, a corresponding Hamilton cycle in Ct+1(Kt) cannot use any edge that is

not in E1∪E2. Since these edges correspond to changing the colour of vertices v1 and

v2 respectively, clearly we cannot have a Hamilton cycle, as the colour of v3 is never

changed using only these edges. This proves the following lemma.

Lemma 5.3.4. If Ct+1(Ka1,a2,...,at) is Hamiltonian and t ≥ 3, then a2 = a3 = · · · =

at = 1.

At this point, we are left to consider Ct+1(K) for K = Ka1,1,1,...,1, with a1 odd.

Furthermore, a Hamilton cycle in Ct+1(K) must correspond to a Hamilton cycle in

Ct+1(Kt) which uses every edge in the perfect matching E1, the set of edges which

change the colour of v1. Notice that the edges of such a cycle must alternate between
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edges in E1 and edges not in E1, as using two edges in E1 consecutively contradicts

that E1 is a perfect matching, and using two edges not in E1 consecutively would result

in the cycle missing some edge in E1. We will turn our efforts towards discerning when

such a cycle in Ct+1(Kt) will exist. To do so, we turn our attention to a particular

Cayley graph.

Choo [9] noticed that Ct+1(Kt) ∼= Cay(X : St+1), where X = {(1, t + 1), (2, t +

1), . . . , (t, t + 1)}. We allow the permutation π of {1, 2, . . . , t + 1} to correspond

with a colouring f of {v1, v2, . . . , vt+1} in the obvious manner, where π(i) = f(vi)

for i ∈ {1, 2 . . . , t}. In addition, π(t + 1) corresponds to the single colour not used

by f . Thus, the transposition (i, t + 1) is equivalent to switching the colour of vi to

the single unused colour. A Hamilton cycle π1, π2, . . . , π(t+1)!, π1 in Cay(X : St+1)

can be represented by a sequence t1, t2, . . . , t(t+1)! of transpositions in X such that

ti ◦ πi = πi+1, interpreted modulo (t+ 1)!. Recall that we are looking for a Hamilton

cycle in Ct+1(Kt) in which every other edge changes the colour of v1. In order to find

this Hamilton cycle, we can equivalently find a Hamilton cycle in Cay(X : St+1) which

is represented by (1, t+1), t2, (1, t+1), t3, . . . , (1, t+1), tt+1!, where ti ∈ X−{(1, t+1)}.
This is equivalent to finding a Hamilton cycle in the directed Cayley graph Dt+1 =

Cay(X ′ : At+1), where X ′ = {(1, t+1)(i, t+1) : 2 ≤ i ≤ t} = {(1, i, t+1) : 2 ≤ i ≤ t},
and At+1 ⊂ St+1 is the set of even permutations of a set of size t+ 1. The group At+1

is known as the alternating group. We then have the following lemma.

Lemma 5.3.5. Ct+1(Ka1,a2,...,at), with t ≥ 3, is Hamiltonian if and only if

• a1 is odd,

• ai = 1, for 2 ≤ i ≤ t,

• Dt+1 is Hamiltonian.

Gould and Roth [15] proved the following theorem.

Theorem 5.3.6. Dn is Hamiltonian if n = 3 or n ≥ 5, and Dn is not Hamiltonian

if n = 4.

Therefore, we have fully characterized the complete t-partite graphs with Hamil-

tonian (t+ 1)-colour graphs with the following three theorems.

Theorem 5.3.7. C3(Ka1,a2) is Hamiltonian if and only if a1 and a2 are odd.
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Theorem 5.3.8. C4(Ka1,a2,a3) is Hamiltonian if and only if a1 = a2 = a3 = 1.

Theorem 5.3.9. Ct+1(Ka1,a2,...,at) is Hamiltonian if and only if a1 is odd, and ai = 1

for 2 ≤ i ≤ t.
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Chapter 6

Open Problems

Our analysis leaves the following open problems regarding colouring graphs of com-

plete multipartite graphs.

• For k ≤ t+
⌈
t
2

⌉
, for which complete t-partite graphs is Ck(K) Hamiltonian?

• Given a complete t-partite graphK, is Ck(K) Hamiltonian whenever k > t+
⌈
t
2

⌉
?

Our results, supported by a limited computer search, suggest that this may be

the case.

• More specifically, is K2,2,2 the only complete 3-partite graph whose 5 colour

graph is non-Hamiltonian?

Concerning connectivity of colouring graphs, the following problem remains unsolved.

• Does there exist a 3-colouring graph which is connected, but not 2-connected?

On the Hamiltonicity of colouring graphs:

• Determine Gray code numbers of further classes of graphs.

• If Ck(G) is Hamiltonian, is Ck+1(G) always Hamiltonian?

To study the Gray code numbers of unexplored classes of graphs, the best candidates

seem to be classes of highly structured graphs, such as outerplanar graphs, k-trees,

and perhaps chordal graphs. With regards to whether or not Hamiltonicity of Ck(G)

implies Hamiltonicity of Ck+1(G), a similar result by Cereceda et al. [5] suggests that

this is not the case. It is shown that there exist graphs G and integers k such that

Ck(G) is connected and Ck+1(G) is not connected. The graphs used for these examples

are good candidates for an analagous result regarding Hamiltonicity.
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