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SUMMARY 

 

Boreal peatlands are important ecosystems to the global carbon cycle.  Although 

they cover only 3% of the earth’s land surface area, boreal peatlands store roughly one 

third of the world’s soil carbon. Peatlands also comprise a large natural source of 

methane emitted to the atmosphere. Some methane in peatlands is oxidized before 

escaping to the atmosphere by aerobic methane oxidizing bacteria.  With changing 

climate conditions, the fate of the stored carbon and emitted methane from these systems 

is uncertain. One important step toward better understanding the effects of climate 

change on carbon cycling in peatlands is to ascertain the microorganisms actively 

involved in carbon cycling. To investigate the active aerobic methane oxidizing bacteria 

in a boreal peat bog, a combination of microcosm experiments, DNA-stable isotope 

probing, and next generation sequencing technologies were employed. Studies were 

conducted on samples from the S1 peat bog in the Marcell Experimental Forest (MEF). 

Potential rates of methane oxidation were determined to be in the range of 13.85 to 17.26 

µmol CH4 g dwt-1 d-1. After incubating with 13C-CH4, DNA was extracted from these 

samples, separated into heavy and light fractions with cesium chloride gradient formation 

by ultracentrifugation and needle fractionation, and fractions were fingerprinted with 

automated ribosomal intergenic spacer analysis (ARISA) and further interrogated with 

qPCR. Based on ARISA, distinct banding patterns were observed in heavy fractions in 

comparison to the light fractions indicating an incorporation of 13C into the DNA of 

active methane oxidizers. This was further supported by a relative enrichment in the 

functional gene pmoA, which encodes a subunit of the particulate methane 

monooxygenase, in heavy fractions from samples incubated for fourteen days. Within 

heavy fractions for samples incubated for 8 and 14 days, the relative abundance of 

methanotrophs increased to 37% and 25%, respectively, from an in situ abundance of 



 x 

approximately 4%. Phylogenetic analysis revealed that the methanotrophic community 

was composed of both Alpha and Gammaproteobacterial methanotrophs of the genera 

Methylocystis, Methylomonas, and Methylovulum. Both Methylocystis and Methylomonas 

have been detected in peatlands before, however, none of the phylotypes in this study 

were closely related to any known cultivated members of these groups. These data are the 

first to implicate Methylovulum as an active methane oxidizer in peatlands, though this 

organism has been detected in another cold aquatic ecosystem with consistent methane 

emissions. The Methylovulum sequences from this study, like Methylocystis and 

Methylomonas, were not closely related to the only cultivated member of this genus. 

While Methylocystis was dominant in 13C-enriched fractions with a relative abundance of 

30% of the microbial community after an eight-day incubation, Methylomonas became 

dominant with a relative abundance of approximately 16% after fourteen days of 

incubation. The relative abundance of Methylovulum was maintained at 2% in 13C-

enriched fractions after eight and fourteen days.  
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CHAPTER 1 

INTRODUCTION 

Peatlands and Methane 

 Wetland ecosystems, such as peatlands, make a substantial contribution to the 

global carbon cycle, releasing 20-40% of the global methane to the atmosphere each year 

[1]. Peatlands are a particularly abundant in boreal climate zones but with some 

representation in tropical climate zones. Depending on environmental conditions, 

peatlands are designated fens and bogs [2-4]. The primary distinguishing characteristic is 

the source of water input to the ecosystem. Bogs, or ombrotrophic peatlands, receive 

water inputs solely from precipitation while fens, or minerotrophic peatlands, receive 

inputs from groundwater, rendering the bogs more nutrient limited than the fens [2, 4]. 

Predominant vegetation varies with sedges more abundant in fens, while mosses and 

woody plants make a larger contribution in bogs [4].  Boreal peatlands in particular are 

characterized by acidic, cold, waterlogged, and anoxic conditions with pH values as low 

as 3.5 and temperatures which can fall below freezing at the surface [2, 5, 6]. Plant 

communities in peat bogs are predominated by Sphagnum mosses which act to acidify 

their surroundings and release phenolic compounds which can inhibit microbial 

metabolism [6].  

     Due to a combination of the aforementioned physicochemical conditions in peatlands, 

the microbially mediated breakdown of organic matter proceeds slowly, resulting in a net 

carbon sink [2, 4, 6, 7]. Overall, peatlands are believed to store approximately one third 

of the world soil carbon, the equivalent of twenty-five to fifty percent of atmospheric 

carbon, in an ecosystem which only covers three percent of the earth’s land surface area 

[6, 7].  

Methane in Wetlands 
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 Although peatlands act as net carbon sinks, these wetlands comprise a substantial 

source of methane due to the prevailing anoxic conditions [4]. Methane is an important 

greenhouse gas with a global warming potential twenty five times that of carbon dioxide 

over the course of one hundred years but the impact of changing climate conditions on 

methanotrophic communities remains uncertain [8]. Methane is produced by 

methanogenic archaea and emitted from wetlands by diffusion, ebullition, and through 

plants (aerenchyma flux) [4, 9].   

     Methane emissions from wetlands are highly variable ranging from 80 to 280 Tg CH4 

per year and accounting for 20-40% of the global methane released to the atmosphere [1, 

4]. For northern peatlands, estimates average 46 Tg CH4 per year, or 12.2% of global 

emissions [10]. Future projections of methane emissions remain uncertain for several 

reasons. One source of variability is uncertainty in the extent of wetland coverage, 

particularly wetlands in boreal regions. Another is a lack of understanding about how 

changing biogeochemical parameters responding to climate change may impact carbon 

cycling in individual wetlands. For example, temperature is projected to impact the 

release of greenhouse gases, which could vary substantially in different climate zones [4, 

11].  

     The largest sink of atmospheric methane is chemical oxidation by hydroxyl radicals in 

the atmosphere which oxidizes about 490 Tg CH4 per year, or more than 90% of 

emissions [12].  At the land surface, biological oxidation of methane is carried out by 

microbes, including both aerobic and anaerobic methane oxidizers, which consume up to 

90% of methane produced [13]. While there is some evidence that anaerobic methane 

oxidation occurs in peatlands large knowledge gaps remain with regard to the importance 

and mechanism of this process [14, 15]. More likely, a large proportion of methane is 

oxidized aerobically by methane oxidizing bacteria as it diffuses through aerobic zones in 

the peat column, typically localized to surface regions or near plant roots [4, 9, 15, 16].  
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Methane-Oxidizing Bacteria 

     Aerobic methane oxidizing bacteria, or methanotrophs, are a subgroup of 

methylotrophic bacteria, which are characterized by their utilization of one-carbon 

compounds for energy and assimilation [17]. Methanotrophs are phylogenetically located 

in two phyla: the Proteobacteria and Verrucomicrobia. Within the Proteobacteria, the 

classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria are known to 

contain members capable of methylotrophic metabolism. Of these, the 

Alphaproteobacteria and Gammaproteobacteria as well as some members of the 

Verrucomicrobia contain members which are capable of oxidizing methane gas [18, 19].  

Although members of the Verrucomicrobia have been widely detected in peatlands, none 

have been definitively linked to methanotrophy and thus more research is needed to 

ascertain the role of Verrucomicrobia in the carbon cycle of peatlands [20, 21]. Members 

of the NC10 phylum are also detected in peatlands and capable of anaerobic methane 

oxidation but their role in the biogeochemical cycles in peatlands remains understudied 

[22]. 

     Alphaproteobacterial methanotrophs, previously classified as type II methanotrophs, 

are capable of methane oxidation and carbon assimilation through the serine pathway. By 

use of methane monooxygenase and methanol dehydrogenase enzymes, methanotrophs 

insert an oxygen molecule into methane to form methanol, which is subsequently 

converted to formaldehyde in a 1:1 ratio (1 mole CH4: 1 mole CH2O). In methanotrophs 

possessing the serine pathway, formaldehyde is converted to phosphoglycerate for 

cellular assimilation and carbon dioxide is fixed in the process [17].  Numerous 

alphaproteobacterial methanotrophs exhibit facultative heterotrophy, meaning that they 

are capable of utilizing other C1 compounds or even some multicarbon compounds 

including acetate and ethanol.  For example, within the Methylocystis genus, acetate, 

ethanol, and methanol are utilized; in addition, propanol is utilized by the Methylocella 

genus [18, 21, 23, 24]. Some alphaproteobacterial methanotrophs are believed to be 
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capable of methane oxidation even at atmospheric concentrations of methane [19, 21, 23, 

24].   

     Gammaproteobacterial methanotrophs, previously classified as type I or type X 

methanotrophs, assimilate formaldehyde through the ribulose monophosphate (RuMP) 

pathway. In the RuMP pathway, formaldehyde is converted to glyceraldehyde-3-

phosphate, which is then incorporated into cellular material. Unlike the serine pathway, 

carbon dioxide is not fixed in the RuMP pathway [17]. Although one strain of 

Methylomonas can be adapted to grow on glucose or methanol in the absence of methane, 

no other gammaproteobacterial methanotrophs to date have been identified as facultative 

[25].  

     All methanotrophic bacteria possess a form of methane monooxygenase (MMO). This 

enzyme exists in two forms: membrane-bound particulate methane monooxygenase 

(pMMO) and soluble methane monooxygenase (sMMO). Almost all methanotrophs 

possess pMMO with the exception of a few Alphaproteobacterial methanotrophs that 

only possess the sMMO form (Methylocella and Methyloferula) [21]. For methanotrophs 

that possess both the pMMO and the sMMO expression of each is controlled by copper 

concentrations [17, 21]. A few Alphaproteobacterial methanotrophs may also express an 

alternate form of pMMO, pMMO2, which enables these methanotrophs to grow at low 

methane concentrations [18, 21]. A similar trait is observed within Gammaproteobacterial 

methanotrophs with the expression of a non-canonical form of the particulate methane 

monooxygenase, pXMO, which shows some in situ expression but requires further 

investigation as a functional target [26].  

     Common functional gene targets for methanotrophs are pmoA for the particulate 

methane monooxygenase and mmoX for the soluble methane monooxygenase [27]. 

Environmental samples from peat bogs have been screened in the past for both of these 

functional targets, and both have been shown to occur in situ [15]. Further investigation 

of the methanotrophic community in peatlands indicated a predominance of 
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Alphaproteobacterial members, particularly Methylocystis sp. for which there are several 

cultured representatives [15, 16, 20, 28]. More recently the potential contribution of 

Gammaproteobacterial methanotrophs has been recognized and the first 

Gammaproteobacterial methanotroph from a peat bog was recently isolated [28, 29].  

 

Methanotrophs in Peatlands 

     The methanotrophic community in acidic boreal peatlands has been studied in the past 

with a variety of techniques including cloning, next-generation sequencing, 

metagenomics, cultivation, microarray analysis, and stable isotope probing (SIP) [5, 13, 

15, 16, 20, 28-36]. Across many of these studies the consensus, until more recently, has 

been that acidic peatlands are dominated by Alphaproteobacterial, or type II, 

methanotrophs [13, 15, 16, 20, 30, 34-37]. Particularly, Methylocystis sp. have been 

isolated from acidic peatlands and have been identified as dominant methane oxidizers 

through clone libraries, microarray analysis of the functional gene target pmoA, next-

generation sequencing and metagenomic analysis of peat, and through SIP experiments 

[13, 15, 16, 20, 30, 34-37].  

     In a few SIP studies on peatlands, Gammaproteobacterial, type I, methanotrophs were 

detected and until recently included primarily Methylobacter sp. [16, 38].  In 2011, Kip et 

al. used pyrosequencing of pmoA amplicons to show a predominance of Methylomonas 

as well as Methylocystis associated with Sphagnum mosses [29]. This was further 

supported with cultivation studies later that year which yielded cultures of Methylomonas 

strains as well as a strain that was related to Methylosoma and Methylovulum, all of 

which are Gammaproteobacterial methanotrophs [28].  Even more recent cultivation 

endeavors from Danilova and Dedysh resulted in a culture of the first described 

acidotolerant Gammaproteobacterial methanotroph, Methylomonas paludis, which was 

isolated from an acidic boreal peatland; however, within the same study Methylocystis 

was still determined to be the dominant methanotroph, with the Gammaproteobacterial 
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methanotrophs comprising an insignificant portion of the methanotrophic community 

[31].  Conversely in another study published in 2014 by Lin et al, both Alpha and 

Gammaproteobacterial methanotrophs (the family Methylocystaceae and the genus 

Methylomonas respectively) codominated the methanotrophic sequences in DNA and 

RNA pyrosequencing reads [5].  Such widely varied accounts of the 

Gammaproteobacterial contribution to methane oxidation in peatlands suggests that 

further research is required to gain a better grasp of the extent of the involvement of type 

I methanotrophs in acidic peatlands. 

 

Significance 

     As mentioned previously, wetlands are the largest natural source of methane 

emissions, with peatlands acting as a primary contributor to this methane flux [4]. 

Although peatlands currently act as net carbon sinks and methane sources, the effects of 

climate change on these environments are not well understood. Additionally peatlands are 

not currently included in climate change models in spite of the large carbon store in these 

ecosystems [2, 4, 11]. In an effort to include peatlands in climate change models and to 

better understand how these fragile ecosystems may respond to changing climate 

conditions, it is important to first understand the microbial community composition and 

how this composition changes with changing environmental conditions [11]. One way to 

investigate this is to ascertain not only the members of the microbial community present 

but to also determine which of these members are actively involved in carbon cycling.  A 

mesoscale climate change study called SPRUCE, spruce and peatland responses under 

environmental change, was implemented to help ascertain the effects of rising 

temperatures and carbon dioxide concentrations on boreal peatlands. This project is 

occurring over the course of ten years in the Marcell Experimental Forest (MEF) S1 bog 

in which the peat and surrounding air is being warmed and the carbon dioxide increased 
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to monitor the effects of changing climate conditions on numerous aspects of the carbon 

cycle in boreal peatlands, including methane cycling [39].  

 

Objective and Hypothesis 

     Within the larger objectives of the SPRUCE project, my objective is to identify the 

active members of the microbial community involved in methane oxidation at the surface 

of the S1 bog. The active microbial groups that mediate a particular metabolic process 

may be effectively characterized through the use of DNA stable isotope probing (DNA-

SIP). DNA-SIP has been successfully employed to investigate the methanotrophic 

community in a wide variety of environments including peatlands [14, 16, 30, 40, 41]. 

This method can be employed to ascertain the active methanotrophic community 

involved in methane oxidation by adding 13C-CH4 to microcosm incubations. Within 

these incubations methanotrophs participating in methane oxidation oxidize the “heavy” 

methane and incorporate the 13C into their DNA through fixation of formaldehyde. This 

enriched DNA can be separated from the 12C or light DNA using cesium chloride 

gradient formation. The heavy DNA can then be sequenced to determine the microbial 

community actively involved in oxidizing methane [42]. Alphaproteobacterial, type II, 

methanotrophs only require two moles of formaldehyde with one mole of CO2 for use in 

central metabolism whereas Gammaproteobacterial, type I, methanotrophs require three 

moles of formaldehyde for use in central metabolism; therefore, the alphaproteobacterial 

methanotrophs may incorporate the 13C into DNA more quickly than the 

gammaproteobacterial methanotrophs, indicating a need for multiple time points to assess 

the active methanotrophic community [17]. Based on aforementioned studies of 

methanotrophs in peatlands, it was hypothesized that the Alphaproteobacterial 

methanotrophs (Type II) were actively involved in methane oxidation with only a minor 

contribution from the Gammaproteobacterial methanotrophs (Type I).  
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CHAPTER 2 

METHODOLOGY 

  

Site Description and Sample Collection 

 Peat samples were collected at the S1 Bog located in the Marcell Experimental 

Forest (MEF; N 47°30.476’; W 93°27.162’) north of Grand Rapids, MN [43]. This site 

has been described in detail in other publications [5, 34]. The average pH at the S1 bog is 

3.5 - 4 with a salt content below detection limit [5]. Oxygen is depleted to below 

detection within the top five centimeters of the bog [5].  

     Samples were collected with a sterilized bread knife from the 0 – 10 cm depth inverval 

in hollows from S1, transect 3 in July 2012. The collected peat was homogenized and 

stored at 4°C until use in experiments.   

Potential Rates of Methane Oxidation 

     Ten grams of homogenized peat from the 0 – 10 cm depth interval was added to 150 

mL serum bottles in triplicate. Bottles were sealed with blue-butyl rubber stoppers and 

crimped with aluminum crimp seals. The headspace of each sample was amended with 

CH4 (Sigma) to 1% (vol/vol) final concentration. Samples were incubated in the dark at 

room temperature and methane concentrations were monitored by gas chromatography 

with a flame ionization detector (GC-FID) on a Shimadzu model GC-2014 equipped with 

a methanizer over the course of two weeks.  

 

DNA-SIP Incubations 

     Ten grams of homogenized peat from 0 – 10 cm from S1T3M were added to 150 mL 

serum bottles in duplicate for each treatment. Bottles were sealed with blue-butyl rubber 

stoppers and crimped with aluminum crimp seals. Treatments included those for which 
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the headspace was amended with 1% (vol/vol) 99.9% 12C-CH4 (Sigma); and others for 

which the headspace was amended with 1% (vol/vol) 99.9% 13C-CH4 (Sigma). Headspace 

concentrations were monitored with GC-FID equipped with a methanizer over two 

weeks. In parallel, 12C and 13C-CH4 samples were sacrificed at the initiation of the 

experiment (T0)*, after eight days (T1)†, and after fourteen days (T2). A subsample of 5 

grams was removed from each sample and frozen at -80°C until DNA was extracted for 

further analysis.  

     Dry weights were calculated by weighing out ~5 grams of peat from the incubation. 

Samples were then dried in a drying oven at 60°C until a stable mass was obtained. 

 

DNA Extractions 

     DNA was extracted from frozen peat samples with the MoBio powersoil DNA kit 

according to the manufacturer’s protocol and stored at -20°C for further analysis. 

 

Stable Isotope Probing Procedure: Cesium Chloride Gradient Formation with 

Ultracentrifugation, Needle Fractionation, and DNA Precipitation  

     Stable isotope probing was conducted as described by Dunford and Neufeld [42]. In 

brief, DNA was added to a cesium chloride solution and centrifuged by 

ultracentrifugation. After 40 hours, samples were removed from the ultracentrifuge and 

fractionated by needle fractionation into twelve or thirteen fractions and the density of 

each fraction was determined with a digital refractometer. DNA was precipitated from all 

fractions with polyethylene glycol and glycogen as a carrier. Precipitated DNA was 

stored at -20°C for further analysis. 

                                                

 
 
* Samples sacrificed for the T0 sampling were only amended with 12C-CH4 due to lack of sufficient 13C-
CH4 samples for all three timepoints. 
† Only one 13C-CH4 sample was sacrificed at T1 due to lack of sufficient 13C-CH4 samples. 
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DNA-Fingerprinting: ARISA and qPCR for pmoA 

     All fractions from heavy and light samples from T1 and T2 were fingerprinted with 

ARISA. First, ARISA PCR was run on each sample with the S-D-Bact-1522-b-S-20 and 

L-D-Bact-132-a-A-18 primers. PCR products were run on a 1.5% agarose gel with 

1xTBE buffer and successful reaction products were cleaned with the MoBio PCR 

cleanup kit following the manufacturer’s instructions. ARISA PCR products were then 

run in an Agilent2100 model bioanalyzer and unique bands in heavy fractions were noted 

from 13C-CH4 samples to determine the success of the SIP incubation.     

     All fractions from the 13C-CH4 sample from the fourteen day incubation were also 

fingerprinted with qPCR for the functional gene pmoA. All fractions were run with 

A189f/Mb661r primers to target the abundance of pmoA genes. Samples were run against 

a standard curve in a StepOnePlus instrument with 96 wells.                                                        

 

Sequencing and Analysis 

     One 13C-CH4 sample from T1 (8 day incubation) and one 13C-CH4 sample from T2 

(14 day incubation) were sequenced with Illumina sequencing technology at the 

Michigan State Sequencing Facility. Sequences were analyzed in QIIME 1.8.1 (Figure 1). 

Analyzed sequences were further characterized with Primer6 with SIMPER to identify 

organisms contributing to the differences between heavy and light fractions. The 

methanotrophs from all fractions were identified with a maximum-likelihood tree with 

bootstrap analysis (1,000 replications). Further statistical analyses were conducted in R 

[44].  
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Figure 1: Flowchart for sequence analysis of SSU rRNA gene sequences in QIIME 1.8.1. 
All samples sequenced were DNA samples.   
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CHAPTER 3 

RESULTS 

 

Potential Rates of Methane Oxidation 

     The most rapid methane oxidation rates were observed within the first three days of 

incubation at room temperature. Rates ranged from 13.85 to 17.26 µmol CH4 g dwt -1 d-1. 

Samples amended with 13C-CH4 and 12C-CH4 demonstrated potential oxidation rates of 

15.08 ± 2.33 µmol CH4 g dwt-1 d-1 and 15.93 ± 1.58 µmol CH4 g dwt-1 d-1, respectively. 

After two weeks, nearly all of the methane in the headspace had been oxidized (Figure 2). 

Samples were sacrificed after eight days for time point one, after peak methane oxidation 

rates were observed, and after fourteen days for time point two, after nearly all of the 

methane had been consumed. 
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Figure 2: The oxidation of methane with time in the stable isotope probing incubations. 
Red dots represent 12C-CH4 treatments whereas blue dots represent 13C-CH4 amended 
treatments. The observed methane oxidation rates ranged between 13.85 and 17.26 µmol 
CH4 g dwt-1 d-1. 
 

DNA-Fingerprinting: ARISA and pmoA qPCR 

     Unique bands were identified in the heavy fractions of ARISA gel images in samples 

collected after 8 and 14 days of incubation (Figure 3, 4). Fractions were further 

interrogated using qPCR for the functional gene pmoA for the 14-day sample. An 

enrichment of pmoA genes was observed in the heavy fractions in comparison to the light 

fractions with an abundance of approximately 12% pmoA in the 13C-enriched fraction 

and 0.09% pmoA in the lightest, 12C-enriched fraction (Figure 5).   
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Figure 3: ARISA gel image for the 13C-CH4 amended treatment after 8 days of 
incubation. Heavy fractions are labeled 4f1-4f8. Light fractions are labeled 4f9-4f12. 
Unique bands were observed in fractions 7 and 8 at approximately 980 and 915 base pairs 
in length.  
 

 

Figure 4: ARISA gel image for the 13C-CH4 amended treatment after 14 days of 
incubation. Labels 7f1-7f8 represent heavy fractions. Labels of 7f9-7f12 represent light 
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fractions. Unique bands were observed in fractions 7 and 8 at approximately 980 and 915 
base pairs in length.  
 

 
 
Figure 5: The relative abundance of pmoA genes in samples collected after 14 days of 
incubation. Enrichment was observed in heavy fractions, such as fraction 7 
(density=1.729 g mL-1), compared to light fractions such as fraction 10 (density=1.716 g 
mL-1). Gene abundance of pmoA was normalized to rRNA gene abundance as determined 
by qPCR. Copies of pmoA were below detection for fractions one through three. 
 
 
Sequence Analysis 

     Shifts in microbial community composition across density fractions were investigated 

with Bray-Curtis through similarity indices generated from next generation sequencing of 

SSU rRNA genes.  A greater similarity was observed within the time points than among 

the densities of the samples (Figure 6). Community composition indicated a slight 

enrichment in Proteobacteria in the heavy fractions after 8 and 14 days of incubation, 

although this enrichment was not significant (F-value = 0.74, df = 3, p = 0.581) (Figure 
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7). The Proteobacterial community was composed of the four classes Beta, Delta, 

Gamma, and Alphaproteobacteria with a predominance of Alpha and 

Gammaproteobacteria detected (Figure 8). A greater relative abundance of 

methanotrophs was observed in the 13C-enriched heavy fractions (36%) compared to light 

fractions (1%) 8 days of incubation (Figure 9). A relative abundance of 10 to 25% of 

known methanotrophic groups was observed after 14 days in the heavy fractions, while 

methanotrophs comprised 2% or less of the communities in the light fraction (Figure 9). 

The differing relative abundance of the methanotrophic community was significantly 

different across time points and densities (F-value = 7.144, df = 3, p = 0.0439) (Figure 9).  

In particular, the Alphaproteobacterial community changed significantly with time (p1) 

and density (p2) (F-value = 17.75, df = 3, p-value = 0.00894; Tukey post-hoc p1 = 0.0109, 

p2 = 0.0338) (Figure 9). The Gammaproteobacterial community did not change 

significantly with time or density (F-value = 5.099, df =3, p-value = 0.0748) (Figure 9). 

Based on SIMPER analysis, the organisms contributing to the differences between heavy 

and light fractions for both time points included Alpha and Gammaproteobacterial 

methanotrophs. The methanotrophs present in the samples were identified as 

Methylocystis, Methylomonas, and Methylovulum sp, none of which were closely related 

to any currently cultivated organisms (Figure 10). Methylocystis, an Alphaproteobacterial 

methanotroph from the family Methylocystaceae, comprised the majority of the 

methanotroph population in the heavy fractions after 8 days of incubation while 

Methylomonas, a Gammaproteobacterial methanotroph from the family 

Methylococcaceae, became the dominant methanotroph after 14 days of incubation 

(Figure 11). All three genera were enriched in the heavy fractions sampled at 8 and 14 

days, although for the Gammaproteobacterial methanotrophs this enrichment was not 

determined to be significant (Figure 11).  
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Figure 6: Multidimensional scaling (MDS) plot of the square root transformed Bray 
Curtis similarity indices for density fractions separated after 8 and 14 days of incubation. 
Values represent the following treatments and fractions: H1 represent 13C enriched 
fractions, or heavy density fractions, after 8 days of incubation (green triangles), L1 
represent 12C enriched fractions, or light density fractions, after 8 days of incubation 
(inverse blue triangles), VH2 represent the densest fractions after 14 days of incubation 
(blue squares), H2 represent 13C enriched fractions after 14 days of incubation (red 
diamonds), and L2 represent 12C enriched fractions after 14 days of incubation (pink 
circles).  
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Figure 7: The microbial community composition shifted with the change in density. 
Shown above is the community composition in the heavy and light fractions, fractions 7 
and 8 (H1 and H2, respectively) and fractions 10 and 11 (L1 and L2, respectively), after 8 
days (T1) and 14 days of incubation (T2). In particular the Proteobacteria (blue bars) are 
more abundant in the heavy fractions than the light for both time points. When analyzed 
with ANOVA in R this shift was not significant (F-value = 0.74, df = 3, p = 0.581).  
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Figure 8: Proteobacterial community composition with phylotypess related to all four 
classes from both heavy (H) and light (L) fractions after 8 days (T1) and 14 days (T2) of 
incubation. The classes Alpha (red bars) and Gammaproteobacteria (purple bars) are 
enriched in heavy fractions relative to light.  
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Figure 9: The relative abundance of Alphaproteobacterial and Gammaproteobacterial 
methanotrophs was greater in heavy fractions (H) compared to light fractions (L) after 8 
days (T1) and 14 days (T2) of incubation. ANOVA analysis in R showed a significant 
difference between the methanotrophic communities in heavy and light fractions (F-value 
= 7.144, df = 3, p-value = 0.0439) and a significant difference in the Alphaproteobacterial 
abundance with density (T1 light to T1 heavy; p1) and time (T1 heavy to T2 heavy; p2) 
(F-value = 17.75, df = 3, p-value = 0.00894; Tukey post-hoc p1 = 0.0109, p2 = 0.0338). 
Regression analysis showed no significant difference with density or time for the 
Gammaproteobacterial community (F-value = 5.099, df =3, p-value = 0.0748).    
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Figure 10: Phylogeny of methanotrophs within SIP fractions (blue diamonds) showing 
organisms within the Alphaproteobacteria, Methylocystis sp., and the 
Gammaproteobacteria, Methylomonas and Methylovulum sp. This phylogenetic tree was 
prepared with the maximum-likelihood method with bootstrap analysis (1000 
replications). None of the phylotypes are closely related to any of the currently cultured 
members within the respective genus.  
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Figure 11: The relative abundance of methanotroph genera in heavy and light fractions 
shifted with time. The abundance of Methylocystis (red bars) changed significantly with 
time and density (F-value = 17.75, df = 3, p-value = 0.00894). The abundances of 
Methylomonas (green bars) and Methylovulum (blue bars) did not change significantly 
with time or density (F-value = 5.035, df = 3, p-value = 0.0762; F-value = 5.051, df = 3, 
p-value = 0.07584, respectively).  
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CHAPTER 4 

DISCUSSION 

 

     While methanotroph populations have been investigated in peatlands for decades, the 

active members that mediate methane dynamics remain largely uncertain [13, 15, 20, 28-

32]. This work probed the active methanotrophic community in the MEF peat bog at 

Grand Rapids, MN with stable isotope probing, which circumvents the need for 

cultivation [42].  Fractions enriched in 13C were directly sequenced with next generation 

sequencing from samples incubated for 8 and 14 days. The benefit of utilizing next 

generation sequencing is that the DNA can be sequenced directly instead of relying on 

clones to capture the full diversity of the microbial community. Additionally, the time 

course provided the advantage of monitoring the community shift from high methane 

concentrations (after the 8 day incubation) to lower ones (after the 14 day incubation), 

which are more representative of potential methanogenesis rates. 

     The active methanotrophic community was composed of a combination of 

Methylocystis (an Alphaproteobacterial methanotroph), Methylomonas, and 

Methylovulum (both Gammaproteobacterial methanotrophs), which were observed to 

shift with time (Figure 10, 11). The presence of Methylocystis was not surprising given 

the well-documented presence, activity, and cultivated isolates from this methanotroph in 

acidic peatland ecosystems [13, 15, 20, 29, 30]. The presence and abundance of 

Methylomonas and Methylovulum were more surprising. While Methylomonas has been 

detected in amplicon sequences and cultured from peatlands, this genus has not been 

definitively linked to active methane oxidation in acidic boreal peatlands [28, 29, 31, 32]. 

Methylomonas has been detected in other environments such as a cave system, a soda 

lake, and landfill cover soil, through the use of SIP [45-47]. Studies in which 
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Methylomonas was found as an active methane oxidizer share the characteristic of 

environments that are more neutral to alkaline in pH [45-47]. Peatland methanotroph 

studies have utilized a variety of methods including microarrays, PLFA-SIP, clone 

libraries, cultivation methods, and DNA-SIP [13, 15, 16, 20, 30, 31, 33, 38, 45]; however, 

none of these studies combined DNA-SIP with next generation sequencing of the DNA 

from heavy and light fractions over a time course. Within the top 10 cm at the S1 bog, 

potential rates of methanogenesis only reach 0.025 µmol CH4 g dwt-1 d-1 [43]. If these 

potential rates are representative of in situ rates of methanogenesis, the methane 

concentrations in the headspace after 14 days are more representative of the natural 

environment, lending greater significance to the shifting dominance structure of the 

methanotrophs (Figure 2, 9). The combination of next generation sequencing and 

multiple SIP time points enabled detection of the Gammaproteobacterial methanotroph 

community which can now be shown as key active methane oxidizers in an acidic 

peatland ecosystem. Further studies should focus on characterizing methanotrophic 

communities in incubations with lower concentrations of methane that more closely 

resemble the in situ condition.   

     Perhaps most interesting is the presence of Methylovulum in the active methanotrophic 

community. The first isolate of Methylovulum miyakonense was obtained in 2011 and to 

date no new species within this genus have been characterized [48]. Although originally 

isolated from forest soil, M. miyakonense was also recently isolated from peatland soil; 

however, none of the strains were shown to grow under acidic conditions, begging the 

question of the extent of the role Methylovulum might be playing in acidic peatland soil 

[31, 48]. To my knowledge, these are the first data directly linking Methylovulum to 

active methane cycling in peatlands.  Although the relative abundance of Methylovulum 

was low in the fractions, there was a distinct enrichment in the heavy fractions compared 

to the light fractions that was nearly statistically significant (Figure 11).  
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     Several possibilities may explain a seemingly neutrophilic methanotroph participating 

actively in methane oxidation in an acidic soil environment. One previous suggestion is 

the existence of neutral microenvironments, such as the endosphere, within the bog 

system, providing a small niche for Methylovulum [31]. The Methylovulum sequences 

present in this experiment were not closely related to M. miyakonense, suggesting the 

existence of yet uncultivated members of this genus that may be acido-tolerant or 

acidophilic. Methylovulum has also been identified as potentially psychrotolerant and 

capable of oxidizing methane at low concentrations from other environments, suggesting 

adaptability of this organism to the changing environmental conditions at the surface of 

boreal peatlands [49].  

     The methanotrophic community in wetlands plays an important role in the methane 

cycle by oxidizing methane before it reaches the atmosphere. With changing climate 

conditions the future role of methanotrophs in wetlands, particularly boreal peatlands, is 

uncertain. An important step to analyzing the potential impacts of the changing climate 

on the methane cycle in peatlands is to first identify the microorganisms actively 

involved in methane cycling. These data take a step toward that goal by identifying the 

active methane oxidizing bacteria at the S1 bog in the MEF. Active methane oxidizers 

include representatives from both Alpha and Gammaproteobacteria, including for the first 

time support that Methylovulum and Methylomonas are directly involved in methane 

oxidation at the surface of the peat bog. With these data, the specific bacteria involved in 

methane oxidation can be targeted for cultivation for future studies on the physiology of 

these organisms and subsequently the potential effects of climate change on the methane 

oxidizing community in boreal peat bogs.  
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