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Abstract 

The main goal of this study was to determine the thermal ecology of the small tree lizard 

Urosaurus ornatus in a Chihuahuan Desert landscape. The study site was located at Indio 

Mountains Research Station (IMRS), Hudspeth County, Texas. We obtained body temperature 

(Tb) data on 385 lizards collected from April 2007 to June 2014 during the active period using a 

cloacal thermometer. Additionally, we recorded air temperature (Ta) and substrate temperature 

(Ts) of lizard microhabitats at the time of capture, and the operative temperature of lizard models 

left in the sun and shade from May to September 2014.  My results showed that the mean Tb for 

all adult lizards was 33.6 ± 2.8°C, with a range of 24.0 to 40.2°C. This average Tb was similar but 

lower than those found in other populations in Southwestern United States.  The results indicated 

that U. ornatus at IMRS displays mostly a thigmothermic behavior.  Thermoregulatory behavior 

of these individuals showed that U. ornatus is a thermoconformer on IMRS.  There was no 

statistical difference in mean Tb between males and females or between non-gravid females.  

However, there was a significant difference between lizards found in the sun and lizards found in 

the shade.  It is expected that rising global temperatures will influence this region and therefore 

will have an impact on the population of U. ornatus too; possibly affecting aspects such as time 

for feeding, reproducing, and of course thermoregulating.  Thus, it is important for us to understand 

the thermoregulatory needs of ectothermic organisms as they are dependent on the direct 

environmental temperatures for survival, especially since many recognize that rapid global 

warming has already been activated by human misuse of natural resources. 



v 

Table of Contents 

Acknowledgements……………………………………………………………………………...iii 

Abstract……………………………………………………………………………………….…iv 

Table of Contents…………………………………………………………………………….......v 

List of Tables…………………………………………………………………………….............vi 

List of Figures…….…………………………………………………………………………….vii 

Introduction……………………………………………………………………………………....1 

Materials and Methods………….………………………………………………………………12 

Results…......................................................................................................................................16 

Discussion......…………………………………………………………………………………..37 

Literature Cited…………………………………………………………………………………43 

Curriculum Vitae…….…………………………………………………………………………49 



vi 

List of Tables 

Table 1. Mean body temperatures (Tb), range of body temperatures, and number of active 

lizards at specific ambient temperatures (Ta) for U. ornatus on IMRS during 

 activity periods of 2007 through 2014…………………………………………...23 

Table 2. Mean body temperatures (Tb), range of body temperatures, and number of active 

 lizards at specific substrate temperatures (Ts) for U. ornatus on IMRS during the 

activity periods of 2007 through 2014……………………………………………24 



vii 

Lists of Figures 

Figure 1. The distribution of Urosaurus ornatus in southwestern United States and northern 

Mexico (from Haase 2009); modified by J. S. Alva. The location of Indio 

Mountains Research Station, Hudspeth County, Texas is marked by the star.  The 

different colors represent the subspecies (geographic variants) that Haase (2009) 

recognized.………………………………………………………………………...3 

Figure 2. Urosaurus ornatus from Indio Mountains Research Station, Hudspeth County, 

Texas, during April and May 2013. (A) Dorsal view of a male, and throat and 

ventral color variations of two females (B) and three males (C)………………….5 

Figure 3. Map of Chihuahuan Desert (Schmidt, 1979); modified by V. Mata-Silva. Location 

of IMRS is depicted by the star………………………………………………..…13 

Figure 4. Boxplots of female and male adult U. ornatus mean snout – vent length (SVL) at 

the time of this study in IMRS during its activity period of March through 

November from 2007 through 2014……………………………………………..17 

Figure 5. Boxplots of female and male adult U. ornatus mean Body mass (Mb) at the time 

of this study in IMRS during its activity period of March through November from 

2007 through 2014………………………………………………………………17 

Figure 6. Boxplots of gravid and non-gravid female U. ornatus snout – vent length (SVL, 

mm) in IMRS during its activity period from 2007 through 2014………………18 

Figure 7. Boxplots of gravid and non-gravid female U. ornatus body mass (Mb, g) in IMRS 

during its activity period from 2007 through 2014………………………………18 



 

viii 
 

Figure 8. Distribution of body temperatures (Tb) at the time of capture of 385 active  

  Urosaurus ornatus on IMRS during the study period from 2007 through 2014...19 

Figure 9. Distributions of ambient air temperatures at the time of capture of 385 active U. 

   ornatus on IMRS during the study periods of 2077 through 2014.……………..20 

Figure 10. Distributions of substrate temperatures at capture time of 385 active Urosaurus  

  ornatus on IMRS during the activity periods of 2007 through 2014…………….21 

Figure 11. Scatter plots of Tb and Ta (blue circles), and Tb and Ts (brown circles) with lines  

  of best fit: Tb and Ta (blue line: R2 Linear = 0.383), Tb and Ts (brown line: R2  

  Linear = 0.469)…………………………………………………………………..26 

Figure 12. Scatter plot of Tb and Ts with line of best fit.  R2 Linear = 0.414………………27 

Figure 13. Boxplots, of 237 male and 135 female U. ornatus body temperature (Tb, °C) in  

  IMRS during its activity period from 2007 – 2014.  The box bounds the IQR  

  divided by the median and whiskers extend to minimum and maximum values of  

  the dataset. Open circles are outliers that extend past ± 1.5 × IQR.……………..28 

Figure 14. Boxplots showing body temperatures (Tb) of 42 gravid and 94 non-gravid female  

  U. ornatus on IMRS during the activity periods of 2007 through 2014. The box  

  bounds the IQR divided by the median and whiskers extend to minimum and  

  maximum values of the dataset. Open circles are outliers that extend past ± 1.5 ×  

  IQR..……………………………………………………………………………..29 

Figure 15.  Boxplots of Tb (°C) for lizards found in the sun and those in the shade during the  

  activity periods of 2007 through 2014. The box bounds the IQR divided by the  



 

ix 
 

  median and whiskers extend to minimum and maximum values of the dataset.  

  Open circles are outliers that extend past ± 1.5 × IQR.……………………..…..30 

Figure 16.  Boxplots of mean Tb, Ta, and Ts for each month during the activity period of U.  

  ornatus on IMRS during the years 2007 through 2014.  Means ± 2 standard error  

  are shown.…………………………………………………………………….…32 

Figure 17.  Mean body temperatures (Tb) (red), and sun (blue) and shade (green) optimal  

  temperatures (Te’s), with standard error bars for each 30 minute intervals in May.  

  Mean Tb’s were from the years 2007 through 2014, and Te’s were only from the  

  year 2013. Means ± 2  standard error are shown…………………………………33 

Figure 18.  Mean body temperatures (Tb) (red), and sun (blue) and shade (green) optimal  

  temperatures (Te’s), with standard error bars for each 30 minute intervals in June.  

  Mean Tb’s were from the years 2007 through 2014, and Te’s were only from  

  the year 2013. Means ± 2 standard error are shown…………………………….34 

Figure 19. Mean body temperatures (Tb) (red), and sun (blue) and shade (green) optimal  

  temperatures (Te’s), with standard error bars for each 30 minute intervals in July.  

  Mean Tb’s were from the years 2007 through 2014, and Te’s were only from  

  the year 2013. Means ± 2 standard error are shown…………………………….35 

Figure 20.  Mean body temperatures (Tb) (red), and sun (blue) and shade (green) optimal  

  temperatures (Te’s), with standard error bars for each 30 minute intervals in  

  August. Mean Tb’s were from the years 2007 through 2014, and Te’s were only  

  from the year 2013. Means ± 2 standard error are shown………………………36 



 

1 
 

Introduction 

      Thermal ecology is the study of the independent and interactive biotic and abiotic 

components of naturally heated environments 

(http://encyclopedia2.thefreedictionary.com/thermal+ecology; 27 July 2013).  It is universally 

critical to understand thermal relationships associated with any species, including the small Ornate 

Tree Lizard, Urosaurus ornatus because temperature plays a major role in the distribution, 

seasonal activities, and diversity patterns shown within reptiles.  Vitt and Caldwell (2009) describe 

temperature as “the master limiting factor in the distributional and diversity patterns of amphibians 

and reptiles,” because they are ectothermic and use external heat sources to regulate their body 

temperatures. When looking at the broader scale, Vitt and Caldwell (2009) pointed out that there 

are no reptiles and amphibians in cold regions, like Antarctica, while the greatest diversity lies 

within the tropics and warm temperate regions.  On a smaller scale, Vitt and Caldwell (2009) 

asserted that even “in a single habitat, the spatial occurrence and temporal activity pattern of each 

amphibian or reptilian species is related one way or another to temperature.”  Pough (1973) 

mentioned that when asking a biological question about reptiles, it is almost impossible not to 

include indirect or direct thermoregulatory capacities.  He gave examples of how temperature is 

related in different ways to the following three different biological disciplines: “ecologists found 

that niches are defined in part by thermal relationships; ethologists discovered that reptiles behave 

differently at different body temperatures; and zoogeographers must consider radiant energy 

patterns available in postulated routes of migration.”  Based on the way reptiles obtain body heat, 

they can be classified four ways (Huey and Slatkin, 1976; Zug et al, 2001): 1) heliothermic - 

obtaining most of their heat through solar radiation; 2) thigmothermic - obtaining most through 
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substrate; 3) thermoregulation - actively regulating their body temperature; or 4) by being a 

thermoconformer - where body temperature fluctuates with the ambient temperature. 

      Urosaurus ornatus is a member of the New World lizard family, Phrynosomatidae (Spiny 

Lizards), which according to the Center for North American Herpetology (CNAH; www.cnah.org) 

contains nine genera and 47 species in North America. Urosaurus is comprised of seven species 

ranging from southwestern U. S. to northern Mexico (Haase 2009; Wilson and Johnson 2010). 

Distribution of U. ornatus is restricted to southwestern U.S. and northern Mexico (Fig. 1; Haase 

2009). Even though there has been 10 recognized subspecies (geographic variants) of U. ornatus 

(Wikipedia, the free encyclopedia, 27 July 2014), subspecies as a formal taxonomic category is 

losing favor and considered to be a non-taxon by many modern phylogenetically grounded 

taxonomists (e.g., Fitzpatrick 2010; Johnson et. al. 2010: Padial and de la Riva 2010; Porras et al. 

2013; Reiserer et al. 2013), so no subspecies designation will be followed herein.  Consistent 

geographic variation in morphological characters is considered to represent geographic pattern 

classes (Grismer 2002), not formal taxonomic units.  
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Figure 1. The distribution of Urosaurus ornatus in southwestern United States and northern 

Mexico (from Haase 2009); modified by J. S. Alva. The location of Indio Mountains Research 

Station, Hudspeth County, Texas is marked by the star. The different colors represent the 

subspecies (geographic variants) that Haase (2009) recognized. 

Description:  Most descriptive information below is based on Haase (2009) or from others 

cited in the text. Urosaurus ornatus is a small, thin lizard with a snout to vent length (SVL) of up 

to 60 mm.  Vitt et al. (1981) reported SVL to range from 50 - 60 mm, with an average of 51.2 + 

.29 mm for females and 52.5 + .42 mm for males. Smith and Ballinger (1995) after measuring 490 

U. ornatus found that in southeastern Arizona and southwestern New Mexico, males were 
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significantly larger than females in SVL and body mass.  Urosaurus ornatus possess a throat fold 

and two longitudinal folds along the sides of the body.  Their dorsal surface has granular scales 

with two separated rows of enlarged mid-dorsal scales.  Their legs and tail have noticeable keeled 

scales and males have two enlarged post-anal scales.  Their dorsal coloration is gray, tan, or brown, 

with black or brown irregular blotches, crossbars, or striations that are often edged with lighter 

gray (Fig. 2A).  Many males and females have light stripes from the sides of their heads going 

backward along each side of their bodies.  The base of the tail is normally a rusty red-brown color. 

Urosaurus ornatus may appear dark when first emerging during the day, throughout courtship or 

territorial displays, or during cool ambient daytime temperatures. Males have two bluish (blue, 

metallic blue, blue-green) ventral patches, and a blue, blue-green, yellow, orange, or a combination 

of any of those colors on their throats (Fig. 2C), which according to Thompson and Moore (1991) 

and Hover (1985) signals their hierarchical status in a population.  Females lack ventral belly 

coloration, but their throat can range from colorless to yellow or orange (Fig. 2B).  Juveniles are 

similar to females in coloration, but have different body proportions, including relatively larger 

heads. 
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Figure 2. Urosaurus ornatus from Indio Mountains Research Station, Hudspeth County, Texas, 

during April and May 2013. (A) Dorsal view of a male, and throat and ventral color variations of 

two females (B) and three males (C).  

  

A B B 

C C C 
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      Habitat:  Ornate Tree Lizards are normally found in arid or semi-arid regions, and usually 

associated with trees (Baltosser and Best 1990; Thompson and Moore 1991) or rocks within 

habitats that include rocky slopes, canyons, cliffs, savannas, and riparian woodlands; reported 

elevation is from sea level to about 2440 m.  Populations occupying trees have been found on 

mesquite, alder, cottonwood, oak, pine, and junipers, where they forage and bask, but in areas 

around human habitation, they also use rocks, stumps, fences, building walls, or other surface 

objects for those purposes (Haase 2009).  Urosaurus ornatus are primarily arboreal in the Sonoran 

Desert because they are usually restricted to riparian habitats or - tree covered mountain ranges 

(Vitt et al. 1981).  However, despite their common name they are most often found on rocks in 

southwestern Texas and throughout New Mexico (Dunham 1980; Degenhardt et al. 1996; 

Gehlbach 1965; Zucker 1989). Couvillon (2011) reported that U. ornatus occurs ubiquitously in 

Hudspeth County, Texas, on Indio Mountains Research Station (IMRS) where rocks are prevalent, 

and apparently do not discriminate between rock types. They are also found on fences and 

buildings located around IMRS Headquarters. 

      Diet and Predation: The diet of U. ornatus consists of varied insects, like ants, beetles, 

true bugs, beetle larvae, and other small arthropods, including scorpions (Haase 2009; Vitt et al. 

1981).  In central Arizona, Vitt et al. (1981) observed U. ornatus actively feeding during early 

morning hours, even though their body temperatures were at their lowest during those times. They 

are sit-and-wait predators, feeding mostly on insects, which are themselves most active during 

morning hours.  Urosaurus ornatus have been shown to be preyed upon by small carnivorous 

mammals, raptorial birds, larger lizards, and some snakes (Haase 2009; Dunham 1981). The 

ground-foraging bat, Antrozous pallidus, was found to prey on U. ornatus on IMRS by Lenhart et 

al. (2010). Urosaurus ornatus were also reported to weigh less and grow slower during dry years 
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than wet years because of the adverse relationship of dry weather to prey abundance (Ballinger 

1977; Dunham 1981).  

      Reproduction:  Much has been reported about reproduction in U. ornatus, which was 

reviewed extensively by Degenhardt et al. (1996), the source for most information referred to 

below; other material is referenced separately in the text.  Females become mature between an age 

of nine to 12 months at a minimum SVL of 41 mm and produce up to six clutches per year; more 

commonly two or three per year. Availability of food and water resources is critical to reproduction 

cycles; Gehlbach (1965) found that the oviposition of U. ornatus seems to be correlated with the 

onset of summer rainfall; therefore dry years should have a negative effect on number of clutches 

and possibly clutch size (five to 16 eggs). Males become sexually mature at about the same time 

and size (40 mm SVL) as females. Males are territorial and actively fight to defend their space for 

exclusive mating opportunities with female residents (M’Closkey et al. 1987); females are 

relatively sedentary within their home ranges (Deslippe et al. 1990). Hatchlings may appear from 

July through August. 

Thermal Ecology: Although thermal ecology of U. ornatus has previously been studied 

within desert environments, few such investigations transpired in the northern Chihuahuan Desert 

of Trans-Pecos, Texas, as implied by the absence of such investigation in the literature. Still, a few 

studies have been undertaken by others in the southwestern U.S.; a summary of those papers is 

given below.  

      Urosaurus ornatus can be active on warm days all year, even during cooler winter months 

on sunny days with ambient temperatures above 15°C (Haase 2009).  In areas prone to subfreezing 

winter temperatures, they go into winter dormancy (brumate) from late fall through early spring, 
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sometimes aggregating in large groups in prime refuges.  They may also go into summer dormancy 

(aestivate) during times of drought or very warm temperatures to minimize water loss and retain 

fat reserves (Haase 2009). In Arizona, Vitt et al. (1981) found U. ornatus to actively 

thermoregulate by basking in the sun during early mornings to elevate their body temperatures, 

then moving back and forth from sun to shade to maintain a relatively constant body temperature 

(behavioral homeothermy); they also entered fissures in large mesquite trees or retreated under 

loose bark to avoid high temperatures.  Vitt and Caldwell (2009) explained that within a relatively 

narrow range, reptiles and amphibians behaviorally regulate their body temperatures by taking 

advantage of the sun and warm surfaces to increase temperatures, and by using shade, retreats, 

water, and cool surfaces to decrease temperatures. Smith and Ballinger (1994b) compared thermal 

ecology between sympatric Sceloporus virgatus and U. ornatus from the Chiricahua Mountains of 

southeastern Arizona, and found that at similar ambient temperatures, S. virgatus body 

temperatures were significantly lower than U. ornatus. Smith and Ballinger (1995) compared 

ecology of U. ornatus in a desert environment at 1350 m elevation in southwestern New Mexico 

and at a low elevation (1700 m) montane site in southeastern Arizona; he found that elevation 

(desert and low-montane locations) and reproductive conditions (gravid and non-gravid females) 

to have no influence on the mean body temperature of U. ornatus.  On the other hand, the month 

(Mar., June, July, and Aug. had the highest mean body temperatures) and the gender (females had 

a significantly lower Tb than males) had a significant effect on the mean Tb of the U. ornatus.  

Bogert (1949) found that species of different genera living side by side in the same environment 

were able to maintain significantly different body temperatures by behaviorally thermoregulating.  

That study also compared species of Cnemidophorus (= Aspidoscelis; Reeder et al. 2002) and 

Sceloporus in different environments in Arizona and Florida, and found that lizards in the same 
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genus, but living in different habitats or climatic regions, tend to have similar body temperatures, 

suggesting that they have genetically controlled preference for specific body temperatures.  

However, Pough (1973) believed that genetic controlled temperature preference could also be 

affected by environmental conditions. Congdon et al. (1982), in part, looked at body, substrate, 

and air temperatures associated with U. ornatus and U. graciosus in Arizona.  They found body 

temperatures of both species to be low in the early morning and increase as the ambient and 

substrate temperatures increased.  However, the afternoon body temperatures of U. graciosus 

significantly increased from their morning temperatures, but afternoon temperatures of U. ornatus 

did not significantly increase from its morning body temperatures.  Vitt et al. (1981) investigated 

U. ornatus thermal activity in riparian habitats in central Arizona and correlated it to time of day, 

habitat temperatures, and body temperatures.  Zucker (1987) did not focus solely on body 

temperatures of U. ornatus, but did determine them to time, air temperature, and light intensity 

when lizards emerged in the morning and when they moved from sun to shade. Lowe and Vance 

(1955) included some aspects of temperature tolerance, like the incipient upper lethal temperature 

and resistance time for U. ornatus near Tucson, Arizona. 

The major goal of the study presented herein was to examine the thermal ecology of U. 

ornatus on IMRS, within a northern Chihuahuan Desert landscape located in Trans-Pecos, Texas.  

Relevant questions asked during the study included: 1). What was the normal range of 

temperatures for U. ornatus during its activity period?  2). Was thermal biology of Urosaurus 

ornatus on IMRS similar to those reported from other locations?   3). Was U. ornatus a 

thigmothermic or heliothermic lizard species? 4). Were U. ornatus thermoconformers or 

thermoregulators? 5). Did males and females differ in mean body temperature? 6). Did gravid and 

non-gravid females differ in their body temperatures? 7). Did the mean body temperatures of 
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lizards found in the sun differ from those found in the shade?  8). Was there differences in body 

temperature patterns among seasons?  9). Were there similarities in patterns between mean 

operative temperatures (Te) and mean body temperatures (Tb) of active U. ornatus?  The 

hypotheses related to all but number 1 of the above questions are: 1). Normal range of temperatures 

allowing lizard activity was determined after evaluating all temperature measurements during this 

study.  2). The thermal behavior of U. ornatus on IMRS will be similar to other locations. 3). 

Urosaurus ornatus will be thigmothermic because the Chihuahuan desert has one of the highest 

daily fluctuating environmental temperatures when compared to other deserts.  4). U. ornatus will 

be thermoregulators because U. ornatus is known to maintain its body temperatures by sun-shade 

shuttling (Congdon et al. 1982).  Also, during this study individual U. ornatus were seen actively 

regulating on a regular basis, which is a common behavior for thermoregulators.  On the other 

hand, thermoconformers usually stay put and their body temperature fluctuates with the changing 

ambient temperatures (Huey and Slatkin 1976).  5). There should be no significant difference in 

mean body temperatures between males and females because in a study done by Huey and Pianka 

(2007), in which they looked at 56 different species, 11,371 individuals, of lizards from deserts of 

Africa, Australia, and North America found both sexes to have similar body temperatures, ambient 

temperatures, and times of daily activity.  Mean body temperatures of males and females of 80.4% 

of the species differed by less than 1°C, and in only eight out of the 56 species did the mean Tb of 

males and females differ significantly.  6). There will be a significant difference in body 

temperatures between gravid and non-gravid female U. ornatus because gravid females may alter 

their thermoregulatory behavior (Beuchat 1980).  7). There will be a significant difference in body 

temperatures between lizards found in the sun and those in the shade because it is assumed that 

lizards found basking in the sun would have a much higher mean Tb than those that are cooling in 
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the shade. 8). There will be differences in body temperature patterns among seasons because that 

situation was observed in similar studies of other populations of U. ornatus in the southwestern 

United States (Smith and Ballinger 1994b, 1995).  9.) There will be similarities in patterns between 

mean operative temperatures and mean body temperatures of active U. ornatus because, when 

used correctly Te models can be a powerful instrument for assimilating thermal environments 

experienced by animals (Dzialowski 2005). 

      Temperature plays a critical role in the everyday lives of ectotherms, because it influences 

the distribution, seasonal activity behaviors, and diversity patterns in reptiles everywhere.  Climate 

change is already having an effect on biodiversity and it is projected to become a larger threat in 

the future (www.globalissues.org/article/172/climate-change-affects-biodiversity).  Although 

climate change has occurred throughout the history of earth, rapid changes can affect the ability 

for organisms to adapt.  It is expected that rising global temperatures will also influence this region 

and therefore will have an impact on the population of U. ornatus too; possibly affecting aspects 

such as time for feeding, reproducing, and of course thermoregulating.  Therefore, it is important 

for us to understand the thermoregulatory needs of ectothermic organisms as they are dependent 

on direct environmental temperatures for survival, especially since many recognize that rapid 

global warming has already been activated by human misuse of natural resources. 

 

 

 

 



 

12 
 

Materials and Methods 

Study Site: Body temperature data was obtained from U. ornatus captured on Indio 

Mountains Research Stattion (IMRS), situated in southeastern Hudspeth County, Texas (Fig. 3), 

from April 2007-July 2012 by Vicente Mata-Silva, and from August 2012-June 2014 by me during 

activity periods of March through November. Study site information was mostly taken from 

Johnson (2000) and Worthington et al. (2014); other sources are mentioned in the text. IMRS is 

north and east of the Rio Grande near Culberson County border. The Headquarters (HQ) complex 

is centered on (30.776667°N, 105.015833°W; WGS84), 1230 m elevation, and located ca. 40 km 

southwest of Van Horn (Fig. 3).  The IMRS at present contains about 40,000 acres of mostly 

pristine Chihuahuan Desert scrub and is managed by the University of Texas at El Paso (UTEP).  

It encompasses most of the Indio Mountains, which is the lower southern spur of the Eagle 

Mountains located to the north.  IMRS is characterized by mountainous outcrops, alluvial fans and 

rocky slopes, both leading to numerous arroyos and bajadas supporting a variety of vegetation 

communities which vary with elevation and slope.  The station lands contain a perennial water 

source, Squaw Spring, which flows a few hundred meters along Squaw Creek.  Vegetation is 

typical of Chihuahuan Desert scrubland, with Creosote-Lechuguilla-Ocotillo-Yucca associations, 

and Tabosa-Black Grama desert grassland.  Elevation ranges from 900 m near the Rio Grande, to 

almost 1600 m on several peaks. The eastern slopes of the Indio Mountains are primarily 

Cretaceous limestone with complex over thrusting and sharp ridges.  The western slopes contain 

gently tilted Permian conglomerates, sandstones, and shales.  The southcentral portion of the 

property also exhibits traces of Tertiary volcanism, complete with basalts, pumice, and ashfall 

layers.  Salts and gypsum occur there as well, and clay and gravel beds are found in portions of 

the property nearest the Rio Grande.  Animal life is typical of the northern Chihuahuan Desert 
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scrubland and associated desert grassland fauna.  Desert invertebrates, like insects and spiders, are 

abundant, 25 mammal species have been recorded, 141 species of an expected list of around 200 

birds have been observed (Wiseman 2014), 38 species of reptiles (snakes, lizards, and turtles) have 

been recorded, and five amphibian species have been found on the property. IMRS was described 

by Escamilla (2012) as having the following six vegetation classes that were derived from cluster 

analysis and ordination: 1) Agave Bouteloua complex; 2) Bouteloua grassland; 3) Agave Bouteloua 

Viguiera complex; 4) Arroyo Riparian; 5) Larrea Acacia Complex; and Tanks (artificial ponds 

with earthen dams). 

 

Figure 3.  Map of Chihuahuan Desert (Schmidt 1979); modified by V. Mata-Silva. Location of 

IMRS is depicted by the star. 
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Data Procurement: Body size was determined in the field by measuring snout to vent 

length (SVL) and tail length (TL) to the nearest mm using a flexible ruler, and weight to the nearest 

0.1 g using a hand-held spring scale (Fig. 4).  Body temperatures (Tb), ambient temperature (Ta), 

at the level above ground where lizards resided, and substrate (Ts) temperatures were taken using 

a cloacal quick-read thermometer.  The bulb of the thermometer was kept in the shade for all three 

measurements.  Special care was taken to ensure that body temperatures were not overly influenced 

by handling. Lizards that could not be measured within 30 seconds after capture were let go and 

allowed to be re-acclimated to its surrounding for at least 30 minutes before another capture was 

attempted.  Body temperatures were taken primarily from lizards actively basking or foraging, but 

those captured in rock crevices or tree fissures were processed as well.  The temporal focus of 

twice daily lizard collecting during warm months was from 0800 to 1200 h and from 1700 to 2000 

h. Searches were also made during colder months when temperatures reached >15º C.  Lizards 

were captured mostly with a fishing rod with a noose made out of a thick white thread positioned 

at the end, but on a few occasions they were captured by hand.  After a lizard was located and 

captured by hand or noose, the following was quickly recorded: Tb, Ta, and Ts, in that order; sex; 

SVL, TL, and weight; morphological color patterns; lizard behaviors (basking, foraging, and 

reproduction); date and time; location coordinates and elevation; microhabitat (localized biotic and 

abiotic features); weather conditions; and any other information perceived to be relevant.  Each 

lizard was captured and measured only one time.  At the beginning of the study a few lizards got 

away before I was able to take SVL and/or Mb measurements.  Furthermore, operative 

temperatures (Te) were acquired through the use of calibrated HOBO® Temp/Temp External data 

loggers – H08-031-08 and lizard models, placed in microhabitats used by U. ornatus.   Lizard 

models were made out of silicon plastic tubing, which were previously painted with brown color 



 

15 
 

to match the animal’s absorptivity.  Data logger probes were embedded into the models, and sealed 

with a cork and rubber glue.  Six models were used, three were located on rocky substrate, and 

exposed to the sun, and three were located always in shade inside rock crevices. Te was recorded 

during the warm months, from May to September, in 2013. 

Data Analyses: Data of all adult lizards was statistically analyzed with Minitab or SPSS 

software.  Tb and Ts data was normalized by removing outliers because we could not find a 

transformation that would produce a normal distribution.  We used non-parametric test for the data 

sets that did not have a normal distribution.  Analysis of covariance (ANCOVA) was used to 

determine if there were significant differences in body temperatures between adult males and 

females, between gravid and non-gravid females, and between lizards under different ambient 

conditions, considering the variables Ts as a covariant, because it had a stronger influence on the 

body temperature than Ta.  Female lizards with an SVL of 42 mm or greater and males with an 

SVL of 41 mm or greater will be considered to be adults (Degenhardt et al. 1996).   Pearson’s 

correlation test was used to determine correlation between Tb and Ts, and Tb and Ta. Lizard 

populations were considered to be thermoregulators if the value of the slope of a lineal regression 

of Tb with Ts or Ta is zero or close to zero, or thermoconformers if the slope value was one or 

close to one (Huey and Slatkin 1976). Lizards were considered heliothermic if correlation between 

Tb and Ta was higher when compared to the correlation of Tb and Ts (Zug et al., 2001). However, 

they were considered thigmothermic if the opposite results were indicated. 
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Results 

Urosaurus ornatus is primarily a saxicolous species on IMRS, since in most cases 

individuals were found on stone outcrops composed of a variety of rock types (i.e., conglomerate, 

sandstone, limestone and occasionally volcanic rock) located throughout the area.   On a few 

occasions they were active on plants (e.g., Ocotillo, Honey Mesquite, Lechuguilla), on wooden 

fence posts, or on rock or stucco walls of IMRS Headquarters buildings.  Tree Lizards were found 

at elevations ranging from 1002 to 1397 m. The mean elevation was 1246 m and most lizards were 

found at elevations between 1200 and 1300 m.  Tree Lizards were captured in14 different types of 

weather conditions, with the highest number of lizards (220) found during calm and sunny days, 

sunny and breezy days (80), partly cloudy and calm days (38), and sunny and windy days (32). 

The other weather condition types, in descending order were: partly cloudy and breezy, cloudy 

and calm, cloudy and breezy, sunny and light breeze, partly cloudy and light breeze, partly cloudy 

and windy, cloudy and windy, cloudy and light breeze, dark and calm, and dusk and calm.  Most 

of the lizards (304) were found basking in the sun, the second most (112 lizards) were resting in 

the shade, and on 10 occasions lizards were actively trying to catch prey, defecating, or exhibiting 

push-up behavior.  

      A total of 426 U. ornatus of all age classes were processed from April 2007 to June 2014 

by Vicente Mata-Silva and myself.  Of those, 390 (91.5%) were adults, 34 (8.0%) were juveniles, 

and two (0.5%) were hatchlings. The SVL range of 426 U. ornatus was 26 to 55 mm with a mean 

of 45.8 ± 4.5 mm, and the Mb range was 0.1 to 5.8 g with a mean of 2.9 ± 0.9 g.  Adult U. ornatus 

had a mean SVL of 47.0 ± 2.9 mm with a range of 40.0 to 55.0 mm (N = 384), and a mean Mb of 

3.1 ± 0.8 g with a range of 1.0 to 5.8 g (N = 382) (Fig. 4). The mean Mb without the outliers is 3.0 

± 0.7 g with a range of 1.0 to 5.0 g (N = 374).  The two hatchlings observed on 24 August 2013 



 

17 
 

had a mean SVL of 26.5 ± 0.7 mm and a mean Mb of 0.5 ± 0.1 g.  The 34 juveniles had a mean 

SVL of 36.1 ± 3.2 mm (range 30 to 40 mm) and a mean Mb of 1.4 g (range 0.1 to 2.8 g).  The 

three smallest juveniles (SVL = 30 mm) were observed on 25 August 2012, 7 September 2012, 

and 21 September 2013.  Of the 373 quantifiable adults, 237 were males and 135 were females.  

Males had both significantly larger mean SVL (47.5 ± 3.0 mm (N = 240) vs. 46.1 ± 2.8 (N = 141); 

U1, 380 = 11,932.0; z = -4.83; P < 0.00001) (Fig. 4) and higher Mb than females (3.2 ± 0.70 (N = 

234) vs. 2.7 ± 0.75 (N=137); U1, 370 = 9,646.5; z = -6.42; P < 0.00001) (Fig.5). Of the 135 females 

42 were gravid and 94 were not.  Gravid females had both significantly longer mean SVL (48.2 ± 

3.0 mm (N = 42) vs. 45.2 ± 2.3 (N = 94); U1, 135 = 920.0; z = -5.0; P = 0.000001)(Figure 6) and 

heavier Mb than non-gravid females (3.5 ± 0.88 (N = 42) vs. 2.5 ± 0.54 (N=93); U1, 134 = 562.5; z 

= -6.62; P < 0.0001) (Figure 7). 

Figure 4.  Boxplots of female and male adult 

U. ornatus mean snout – vent length (SVL) 

on IMRS during its activity period of March 

through November from 2007 through 2014. 

 
Figure 5. Boxplots of female and male adult 

U. ornatus mean body mass (Mb) at the time 

of this study on IMRS during its activity 

period of March through November from 

2007 through 2014. 
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Figure 6. Boxplots of gravid and non-gravid 

female U. ornatus snout – vent length (SVL, 

mm) in IMRS during its activity period from 

2007 through 2014. 

 

Figure 7. Boxplots of gravid and non-gravid 

female U. ornatus body mass (Mb, g) in 

IMRS during its activity period from 2007 

through 2014. 
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Thermal Ecology: 

Body temperatures: Tb of 385 U. ornatus ranged from 24.0 to 40.2°C with a mean of 33.6 

± 2.8°C.  The most number of individuals (63) were found with a body temperature of 34°C and 

the next highest number of individuals, respectively, is 35 at 35°C and 34 at 36°C (Figure 8). 

 

 

Figure 8. Distribution of body temperatures (Tb) at the time of capture of 385 active Urosaurus 

ornatus on IMRS during the study period from 2007 through 2014. 
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Ambient temperatures: Mean ambient temperature (Ta) for 385 lizards was 29.2 ± 3.9°C, 

range 16.0 to 38.2°C.  Most lizards were found in ambient temperature between 26°C and 33°C, 

with the highest number (42) found at 28°C and the next highest (32) at 27°C (Figure 9). 

 

Figure 9. Distributions of ambient air temperatures at the time of capture of 385 active U. ornatus 

on IMRS during the study periods of 2007 through 2014. 
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Substrate Temperatures: Mean Ts for 385 lizards was 30.8 ± 3.7°C, range 18.0 to 41.9.  

The highest number of lizards were found on substrates with temperatures between 28.0 and 34°C 

(Figure 10); the three highest numbers were at temperatures of 32°C (46), 33°C (43), and 28°C 

(40). 

 

Figure 10. Distributions of substrate temperatures at capture time of 385 active Urosaurus ornatus 

on IMRS during the activity periods of 2007 through 2014. 
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Relationships between Tb and Ta, and Tb and Ts: Active lizards found in the early 

morning and near dusk when ambient and substrate temperatures were at their lowest, had mean 

body temperatures that exceeded air and substrate temperatures.  As the air and substrate 

temperatures increased and decreased there was a corresponding increase and decrease in the 

lizard’s body temperatures (Tables 1 and 2).  Table 1 shows that most lizards were found between 

average Ta of 26.3 and 32.3°C and with average Tb’s ranging from 32.8 to 35.1°C.  Table 2 

indicates that most lizards were found between average Ts of 28.3 to 33.2°C with average Tb’s of 

32.4 to 35.1°C. 
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Table 1. Mean body temperatures (Tb), range of body temperatures, and number of active lizards 

at specific ambient temperatures (Ta) for U. ornatus on IMRS during activity periods of 2007 

through 2014.  

Mean Ta (° C) Mean Tb (° C) Tb Range (° C) N 

16 26.5 26.5 1 

18.3 30.2 28.0-32.4 2 

20.1 27.7 24.8-33.0 3 

21.2 31.4 31-32.3 3 

22.2 30.3 2.0-34.0 4 

23.2 29.9 24.0-34.5 15 

24.1 30.9 24.5-36.6 20 

25.3 32.7 29.0-36.2 23 

26.3 32.8 28.5-37.0 37 

27.3 32.9 29.0-36.0 38 

28.1 33.4 29.8-38.4 37 

29.2 33.4 26.0-38.0 33 

30.2 33.5 24.0-36.9 30 

31.3 34.7 29.0-39.0 40 

32.3 35.1 31.8-38.0 31 

33.3 35.8 33.8-39.0 24 

34.2 34.6 31.2-36.8 10 

35.4 37.8 36.0-40.2 10 

36.4 36.4 30.0-39.0 13 

37.2 36.4 34.0-39.8 7 

38.1 38.0 36.0-38.2 4 
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Table 2. Mean body temperatures (Tb), range of body temperatures, and number of active lizards 

at specific substrate temperatures (Ts) for U. ornatus on IMRS during the activity periods of 2007 

through 2014. 

Mean Ts (° C) Mean Tb (° C) Tb Range (° C) N 

18.0 26.5 26.5 1 

21.0 25.4 25.4 1 

23.1 28.4 24.0-33.0 8 

24.2 29.8 24.5-34.5 11 

25.3 30.1 25.0-36.6 11 

26.2 31.8 26.0-35.0 19 

27.2 32.5 29.4-36.5 22 

28.3 32.4 28.5-36.0 40 

29.2 32.5 24.0-38.4 35 

30.2 33.4 29.0-37.0 34 

31.3 33.8 29.0-37.0 35 

32.2 34.3 31.0-39.0 46 

33.2 35.1 31.0-39.0 43 

34.1 35.5 33.0-38.0 26 

35.1 35.7 33.0-39.0 16 

36.2 35.5 30.0-40.2 17 

37.3 37.2 35.5-39.8 8 

38.1 38.2 36.5-39.5 8 

39.2 36.0 36.0 2 

40.0 38.5 38.5 1 

41.9 39.0 39.0 1 
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Parametric and Non-Parametric Tests: All the data below includes 373 adult lizards 

captured during the activity periods of March through November during the years 2007 through 

2014.  The data was not normally distributed and transformations failed, thus outliers were 

removed in order to normalize the data.  However, this only worked for Tb and Ts (Shapiro-Wilk 

test, p > 0.05) data.  A visual inspection of all three temperatures, Tb, Ta, and Ts, histograms, 

normal Q-Q plots, and box plots depicted that the data was approximately normally distributed.   

However, the Shapiro-Wilk test for Ta indicated the data was not normally distributed (p < 0.05).  

Whenever assumptions of analysis were violated non-parametric test were used.   

Thigmothermic vs Heliothermic: A Pearson product-moment correlation was run to 

determine the relationship between body (Tb) and substrate (Ts) temperatures for U. ornatus.  

There was a strong, positive correlation, which was statistically significant, between Tb and Ts (r 

= 0.643, n = 373, p < .0001).  A Spearman’s rank-order correlation was run to determine the 

relationship between body (Tb), and the ambient (Ta) temperatures for U. ornatus, which also had 

a strong positive correlation that was statistically significant (r = 0.579, n = 373, p < .0001).  The 

stronger of the two correlations was Tb and Ts, suggesting U. ornatus displays a thigmothermic 

behavior at IMRS (Zug et al., 2001).  Figure 11 shows the scatterplots of Tb and Ts, and Tb and 

Ta with lines of best fit. 
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Figure 11. Scatter plots of Tb and Ta (blue circles), and Tb and Ts (brown circles) with lines of 

best fit: Tb and Ta (blue line: R2 Linear = 0.383), Tb and Ts (brown line: R2 Linear = 0.469). 
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Thermoconformers vs Thermoregulators: As just mentioned, there was a positive 

relationship between Tb and Ts and it is stronger than the relationship between Tb and Ta.  There 

still exists a lot of variation around the regression line however the r2 value is 0.414. The linear 

regression equation is Tb = 19.72 + 0.46 * Ts (Figure 12).  There is a significant relationship 

between Tb and Ts (p < 0.05).  Based on the slope value of 0.46, which is closer to zero than 1, 

this suggests that U. ornatus tend to behave as thermoregulators at IMRS (Huey and Slatkin, 1976). 

 
Figure 12. Scatter plot of Tb and Ts with line of best fit.  R2 Linear = 0.414. 
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Males vs Females:  Of the 373 adults, 237 were males and 135 were females.  As indicated 

before, males had both significantly larger mean SVL and heavier weight than females. There was 

only a 0.1 degree difference between mean male and female body temperatures, and an ANCOVA 

controlling for Ts found mean body temperatures to have no statistical difference (P = 0.337).   

Mean Tb for 135 females was 33.9°C, range 26.5-39.0°C and for 237 males was 33.8°C, range 

27.0-40.2°C (Fig. 13). 

 
Figure 13. Boxplots, of 237 male and 135 female U. ornatus body temperature (Tb, °C) in IMRS 

during its activity period from 2007 – 2014.  The box bounds the IQR divided by the median and 

whiskers extend to minimum and maximum values of the dataset. Open circles are outliers that 

extend past ± 1.5 × IQR. 
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Gravid and Non-Gravid Females:  Of the 135 females, 42 were gravid and 94 were non-

gravid females.  As indicated before, mean Tb for 42 gravid females (33.5 ± 2.5°C) was slightly 

lower than the mean Tb for 94 non-gravid females (34.1 ± 2.6°C) (Figure 14).  In order to assess 

if there are significant differences in body temperatures between gravid females and non-gravid 

females an analyses of covariance (ANCOVA) was conducted and found to have no statistically 

significant differences (p > 0.05). 

 
Figure 14. Boxplots showing body temperatures (Tb) of 42 gravid and 94 non-gravid female U. 

ornatus on IMRS during the activity periods of 2007 through 2014. The box bounds the IQR 

divided by the median and whiskers extend to minimum and maximum values of the dataset. Open 

circles are outliers that extend past ± 1.5 × IQR. 
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Sun vs. Shade: The mean Tb of 269 lizards found in the sun (33.8 ± 2.4°C) was very 

similar to the mean Tb of 104 lizards found in the shade (34.0 ± 2.7°C); however, the mean Tb of 

the lizards in the sun was slightly higher (Fig. 15).  An ANCOVA controlling for Ts found there 

was a statistical difference. 

 
Figure 15. Boxplots of Tb (°C) for 269 lizards found in the sun and 104 found in the shade during 

the activity periods of 2007 through 2014. The box bounds the IQR divided by the median and 

whiskers extend to minimum and maximum values of the dataset. Open circles are outliers that 

extend past ± 1.5 × IQR. 
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Monthly Body Temperatures: Figure 16 shows the mean Tb, Ta, and Ts of U. ornatus 

during each month of its active period.  The lizards with the highest mean Tb were found in the 

month of June (35.0 ± 2.2°C, N = 74); following next were the months of August (34.8 ± 2.0°C, 

N = 11), September (34.4 ± 2.8°C, N=18), and May (33.9 ± 2.1°C, N = 122).  On the other hand, 

the lizards with the lowest mean Tb were found in the months of November (30.1 ± 2.5°C, N = 8), 

March (32.6 ± 2.1°C, N = 21) and July (33.4 ± 2.5°C, N = 62).  Mean Tb for lizards found in April 

was 33.6 ± 2.6°C (N = 48), and for lizards found in October was 33.6 ± 1.2°C (N = 9).  However, 

in order to assess if there are significant differences in body temperatures between months an 

Analyses of Covariance (ANCOVA) was conducted.  The ANCOVA for mean Tb of each month 

during U. ornatus’ activity period controlling for Ts was found to have statistically significant 

differences (p < 0.05).  A Tukey post-hoc test revealed significant differences between March and 

June (p < 0.05), November and June (p < 0.05), and July and June (p < 0.05).  There were no 

significant differences between any other months.  
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Figure 16. Boxplots of mean Tb, Ta, and Ts for each month during the activity period of U. ornatus 

on IMRS during the years 2007 through 2014.  Means ± 2 standard error are shown. 

Operative Temperatures: Figures 17 through 20 are the mean Tb’s of U. ornatus from 

2007 through 2014, and Te’s (sun and shade) from 2013, for each 30 minute intervals for each 

month from May through September.  In May mean Tb’s of active U. ornatus from nine to ten in 

the morning fell between sun and shade mean Te’s.  Once it started to warm up the mean Tb of 

lizards followed the Te of the shade models.  From 1330 to 1530 in the afternoon, when 

temperatures were at their highest, no lizards were found (Figure 17).  This pattern was also seen 
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in the month of June and July, but the gap was wider from about 1200 to 1800 with the exception 

of one lizard at 3:30 pm (Figures 18 and 19). 

 

Figure 17. Mean body temperatures (Tb) (red), and sun (blue) and shade (green) optimal 

temperatures (Te’s), with standard error bars for each 30 minute intervals in May. Mean Tb’s were 

from the years 2007 through 2014, and Te’s were only from the year 2013. Means ± 2 standard 

error are shown. 
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Figure 18. Mean body temperatures (Tb) (red), and sun (blue) and shade (green) optimal 

temperatures (Te’s), with standard error bars for each 30 minute intervals in June. Mean Tb’s were 

from the years 2007 through 2014, and Te’s were only from the year 2013. Means ± 2 standard 

error are shown. 
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Figure 19 Mean body temperatures (Tb) (red), and sun (blue) and shade (green) optimal 

temperatures (Te’s), with standard error bars for each 30 minute intervals in July.  Mean Tb’s were 

from the years 2007 through 2014, and Te’s were only from the year 2013. Means ± 2 standard 

error are shown. 
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Figure 20.  Mean body temperatures (Tb) (red), and sun (blue) and shade (green) optimal 

temperatures (Te’s), with standard error bars for each 30 minute intervals in August. Mean Tb’s 

were from the years 2007 through 2014, and Te’s were only from the year 2013. Means ± 2 

standard error are shown. 
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Discussion 

In this study adult U. ornatus individuals had a mean Tb of 33.6 ± 2.8°C, with a range of 

24.0 to 40.2°C. This average was lower but comparable to those found in other U. ornatus 

populations in the Southwestern United States; in central Arizona Vitt et al. (1981) reported a 

mean Tb of 34.6-37.2°C (N = 160) and Congdon et al. (1982) reported a mean Tb of approximately 

36.0°C (N = 160) in a similar study site. Smith and Ballinger (1995) found the mean Tb to be 

34.8°C (N = 429) in southwestern New Mexico and 35.0°C (N = 57) in southeastern Arizona.  This 

variation could possibly be due to a difference in habitats as none of the previous studies were 

done in the Chihuahuan Desert.   

Ambient and substrate temperatures were at their lowest in the early mornings and near 

dusk.  Active lizards found during those times also experienced the lowest body temperature, 

although they far exceeded the air and substrate temperature.  As the air and substrate temperatures 

increased or decreased there was a corresponding change in the lizard’s body temperatures.  These 

observations were similar to former studies of U. ornatus populations in the Southwestern United 

States (Congdon et al. 1982; Smith and Ballinger 1995).   

To determine if U. ornatus was thigmothermic or heliothermic a correlation between Tb 

and Ts, and Tb and Ta had to be compared.  If the ambient temperature influenced the body 

temperature more than the substrate temperature then the lizard is considered heliothermic and if 

the opposite occurs than the lizard is considered thigmothermic (Zug et al. 2001).  Since the data 

between Tb and Ts was normally distributed a Pearson’s Moment Correlation was performed (r = 

.643, n = 373, p < .0001).  A Spearman’s Correlation was done for Tb and Ta since Ta was non-

normally distributed (r = 0.579, n = 373, p < .0001).  The correlation between Tb and Ts was the 
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strongest suggesting U. ornatus tends to be a thigmothermic species on IMRS.  This could possibly 

be explained by the ambient temperatures fluctuating more quickly than the substrate temperatures 

allowing the lizards to better thermoregulate. Since the Chihuahuan Desert has one of the highest 

daily fluctuating environmental temperatures compared to other warm deserts these lizards could 

possibly prefer the radiant heat from the substrate since its temperature changing rate is more 

constant.   

Since U. ornatus actively regulate their body temperature by sun-shade shuttling (Congdon 

et al. 1982), I hypothesized that they would be thermoregulators as opposed to thermoconformers.  

Thermoconformers do not actively move, so their body temperatures will fluctuate with the 

changing ambient temperatures (Huey and Slatkin 1976).  The value of the slope between Tb and 

Ts of a linear regression should help answer this question.  If the value of the slope is closer to 

zero than it is to one then they would be considered to be thermoregulators; if the value of the 

slope is closer to one then they would be considered to be thermoconformers (Huey and Slatkin 

1976).  The Tb and Ts linear regression had a slope value of 0.46, supporting the hypothesis that 

U. ornatus tend to be thermoregulators.  During this study U. ornatus were observed actively 

moving from the sun to the shade and vice versa on a regular basis, which is a common behavior 

of thermoregulators. 

The next question asked was if males and females differed in mean Tb.  The hypothesis 

stated that there would be no statistical difference in mean Tb between males and females.  Huey 

and Pianka (2007) looked at 56 different species, 11,371 individuals, of lizards from deserts of 

Africa, Australia, and North America.  They found males and females, within the same species, 

have similar body temperatures and are active at similar ambient temperatures and time of day.  

Mean body temperatures of males and females of 80.4% of the species differed by less than 1°C, 
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and in only eight out of the 56 species did the mean Tb of males and females differ significantly.  

To determine if there was a statistical difference between mean Tb of males and females an 

ANCOVA controlling for Ts was performed.  The mean Tb of males (33.8°C) was almost identical 

to the mean Tb of females (33.9°C), and the ANCOVA controlling for Ts showed that the mean 

Tb of the males and females did not differ significantly from each other, supporting the hypothesis. 

Patterson and Davies (1978) found differences in preferred body temperatures (PBT) of males and 

females of Lacerta vivipara in south England; males had a higher PBT than females.  Smith and 

Ballinger (1995) found female U. ornatus had a significantly lower Tb’s than males (34.5 ± 0.2°C, 

N = 282 vs. 35.1 ± 0.2°C, N= 208) but still varied less than 1°C as those results found by Huey 

and Pianka (2007). Smith and Ballinger (1995) mentioned that other species in the Chiricahua 

Mountains had males with higher body temperatures than the females (e.g., Sceloporus jarrovi, 

Smith and Ballinger 1994a; S. scalaris, Smith et al. 1993), but in a different study no differences 

were found between S.  virgatus (Smith and Ballinger 1994b).  They did not have an explanation 

for the sexual differences in mean body temperatures of U. ornatus in the Chiricahua Mountains 

but suggested it could be a reflection of physiological or behavior differences between the sexes. 

Differences in mean body temperatures of gravid and non-gravid U. ornatus females was 

analyzed, as well.  The hypothesis stated there would be a significant difference because gravid 

females may alter their thermoregulatory behavior since many phases of embryonic development 

are sensitive to temperature (Beuchat 1980).  Other studies have shown that gravid females might 

require more energy for the development of the embryo (Yue et al. 2012).  In my study the mean 

Tb for 42 gravid females (33.5 ± 2.5°C) was slightly lower than the mean Tb for 94 non-gravid 

females (34.1 ± 2.6°C), but an ANCOVA controlling for Ts determined that it was not statistically 

different.  In a similar study Smith and Ballinger (1995) also failed to find any differences in Tb’s 
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between gravid (34.2 ± 0.7°C, N= 14) and non-gravid (34.8 ± 0.2, N = 46) females.  However, U. 

ornatus is oviparous and studies of ovoviviparous lizards found the mean body temperatures of 

gravid females to be significantly lower than non-gravid lizards (Beuchat, 1980; Patterson and 

Davies, 1978; Garrick, 1974). Smith and Ballinger (1995) proposed one of three hypothesis for 

the similarities found between reproductive stages: 1) The preferred body temperatures of U. 

ornatus is the appropriate temperature for the development of the eggs. 2). Body temperatures 

selected for egg development do not need to change due to the oviparity of this species. 3) Body 

temperatures are not changed because it could reduce survival of the gravid females. 

Another question I attempted to answer was determining if there was a statistically 

significant difference between the mean body temperatures of lizards found in the sun from those 

found in the shade.  It was hypothesized that there would be a significant difference because it is 

assumed that the lizards found basking in the sun would have a much higher mean Tb than those 

that are cooling in the shade. The mean Tb of 269 lizards found in the sun (33.8 ± 2.4°C) was very 

similar to the mean Tb of 104 lizards found in the shade (34.0 ± 2.7°C); however, the mean Tb of 

the lizards in the sun was slightly higher.  An ANCOVA controlling for Ts found there was a 

statistical difference, supporting my hypothesis.  These results likely could be explained by the 

thermoregulatory behavior of these individuals, with some individuals basking to increase their 

body temperatures and some found in the shade to reduce their body temperature.  Because the 

study site is exposed to high amounts of solar radiation, lizards were observed shuttling from the 

sun to shaded microhabitats very likely to obtain optimal body temperatures. 

To determine if there are temporal differences in mean body temperature during their active 

periods we analyzed monthly mean Tb.  The hypothesis stated that there would be differences in 

body temperature patterns among months as this was found in similar studies of other populations 
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of U. ornatus in the southwestern United States (Smith and Ballinger 1994b, 1995).  To determine 

if there was a significant effect on Tb of U. ornatus by the month we did an ANCOVA controlling 

for Ts.  This test showed that the monthly environmental temperatures had a significant effect on 

the Tb of U. ornatus.  A Tukey post-hoc test revealed a significant differences between March and 

June (p < 0.05), November and June (p < 0.05), and July and June (p < 0.05).  There were no other 

significant differences between the other months.   March and November are the extremes of the 

active period of U. ornatus which could explain the significantly lower mean Tb during these 

months.  July mean Tb of U. ornatus was expected to be similar to May, June and August. The 

significance difference of July from the other warm months could be explained because data was 

collected during a two week period of intense rain which correlated with lower temperatures.  

Finally, we wanted to determine similarities in patterns between mean Te and mean Tb of 

active U. ornatus.   The hypothesis stated that there would be similarities between these two 

variables because when Te models are used correctly they have shown to be a powerful instrument 

for assimilating the thermal environment experienced by an animal (Dzialowski 2005).  Active U. 

ornatus mean Tb fell within the temperature range of the Te models (Figures 15-18).  Since the 

models were permanently placed in either the sun or the shade and lizards are actively shuttling 

between sun and shade, it is expected that the mean Tb of the lizards would fall between the range 

of the Te from both sun and shade.  May, June, and July (Figure 17-19) all had a period of time, 

in the middle of the day, when I did not have any lizard Tb’s.  This gap could be explained by two 

reasons.  On many occasions I would leave in the early mornings to look for U. ornatus and would 

stay until the lizards would retreated to areas protected from the sun to avoid the heat.  However, 

there were others days in which I would get tired or hungry before the lizards would and I would 

go back to the station to rest and/or eat before I stopped seeing them. 
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Temperature plays a critical role in the everyday lives of ectotherms everywhere, because 

it influences the distribution, seasonal activity behavior, and diversity patterns of these animals. In 

fact, it was described by Vitt and Caldwell (2009) as “the master limiting factor” for ectotherms 

because they have to actively regulate their body temperatures.  For example, there is little to no 

reptiles in extreme ecosystems, such as Antarctica.  In other ecosystems, like the tropics and 

temperate regions, lies the greatest diversity reptiles.  Climate change is already having an effect 

on biodiversity and it is projected to become a larger threat in the future 

(www.globalissues.org/article/172/climate-change-affects-biodiversity).  There is little variation 

in mean Tb of active U. ornatus, so even small changes in global temperatures could affect the 

distribution, abundance, and behavior this lizard.  In this study most lizards were observed in the 

morning and late afternoon during the warm months.  Although climate change has occurred 

throughout the history of earth, rapid changes can affect the ability for organisms to adapt.  It is 

expected that rising global temperatures will also influence this region and therefore will have an 

impact on the population of U. ornatus too; possibly affecting aspects such as time for feeding, 

reproducing, and of course thermoregulating.  Thus, it is important for us to understand the 

thermoregulatory needs of ectothermic organisms as they are dependent on the direct 

environmental temperatures for survival, especially since many recognize that rapid global 

warming has already been activated by human misuse of natural resources. 
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