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ABSTRACT 

Fosshage, Erik D.  MSIE, Purdue University, May 2014. The Effect of Job Performance 
Aids on Quality Assurance.  Major Professor: Barrett Caldwell. 
 
 
 
Job performance aids (JPAs) have been studied for many decades in a variety of 

disciplines and for many different types of tasks, yet this is the first known research 

experiment using JPAs in a quality assurance (QA) context.  The objective of this thesis 

was to assess whether a JPA has an effect on the performance of a QA observer 

performing the concurrent dual verification technique for a basic assembly task. The JPA 

used in this study was a simple checklist, and the design borrows heavily from prior 

research on task analysis and other human factors principles.  The assembly task and QA 

construct of concurrent dual verification are consistent with those of a high consequence 

manufacturing environment. Results showed that the JPA had only a limited effect on QA 

performance in the context of this experiment. However, there were three important and 

unexpected findings that may draw interest from a variety of practitioners. First, a novel 

testing methodology sensitive enough to measure the effects of a JPA on performance 

was created.  Second, the discovery that there are different probabilities of detection for 

different types of error in a QA context may be the most far-reaching results.  Third, 

these results highlight the limitations of concurrent dual verification as a control against 
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defects.  It is hoped that both the methodology and results of this study are an effective 

baseline from which to launch future research activities. 



1 

 

 INTRODUCTION CHAPTER 1.

According to James Cantrell, the main engineer for the Skipper satellite, “It’s always the 

simple stuff that kills you.”  Skipper failed one day into its mission because Russian 

scientists mistakenly connected the solar panels backwards (“Russians Miswire Satellite”, 

1996), an oversight that could have been avoided with the use of a quality assurance 

(QA) checklist.  A checklist may also have prevented the NASA Genesis probe from 

crash-landing in 2004 when its drogue parachute failed to deploy due to a deceleration 

sensor that was installed backwards (“Official: Genesis Pre-Launch”, 2006). These 

examples remind us that even simple human errors can have large consequences, and 

though human error can never completely be eliminated we can nonetheless introduce 

processes and tools that are designed to prevent errors or to catch errors and minimize 

their impact.  

 

One purpose of checklists is to support either simple or complex actions that are subject 

to the limitations of human performance.  In the delivery of a product or activity, an 

overarching goal for quality assurance and human factors professionals is often the 

prevention of defects, and this becomes equally as important as it is difficult when 

dealing with both complex and critical systems.  People who are present during high 

consequence failures (or near misses) always remember the story and are extremely 
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unlikely to repeat the same mistakes, a concept best captured by Vilfredo Pareto in 1870: 

“Give me a fruitful error any time, full of seeds, bursting with its own corrections” (from 

Comment on Kepler, quoted in Helmreich and Merritt, 2001).  A checklist often is a 

lesson intended for an audience that was not present during a mishap who should learn 

the failure mechanisms in order to avoid them.  This study examines how a checklist (a 

specific type of job performance aid, or JPA) may affect human performance in the 

verification activities that are often employed in systems that have high consequences for 

failure. 

 

1.1 Motivation 

The author’s original intent in selecting a thesis topic was to bridge the QA and human 

factors disciplines, because his work experience resides in the former and major field of 

study is in the latter.  Consultations with staff in the Human Factors department at Sandia 

National Laboratories (SNL) revealed an internal paper titled “The Effectiveness of 

Verification in Industrial Applications” (Stevens-Adams et al., 2013) that reviews the 

academic and applied literature on the verification construct, variables underlying its 

effectiveness, and the applications that are best suited to a particular work environment.  

The paper cites different definitions of verification from Department of Energy (DOE) 

standards and handbooks, including the concurrent dual verification technique that is 

utilized by the Surety Engineering Group1 at SNL in its high consequence manufacturing 

environments (DOE, 1993; DOE, 2009) whereby a QA observer is present to witness 

                                                 
1 “Surety” encompasses a number of disciplines related to nuclear weapons such as safety, reliability, 
quality, human factors, and assessment, and is a term not widely used outside of SNL.  The Surety 
Engineering Group is staffed primarily by quality engineers. 
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activities being performed.  In consultation with SNL and Purdue advisors, it was 

determined that there has been a dearth of research on the concurrent dual verification 

technique and that an appropriate thesis topic would be to address this particular QA task. 

 

An episode from the author’s past involved mentoring an inexperienced QA checker to 

verify assembly tasks for a high consequence product, including questions about how to 

specifically complete these tasks.  This particular incident related to the performance of 

concurrent dual verification led to the selection of a job performance aid as the focus of 

this thesis, and more specifically an examination of checklist aids in QA.  After 

performing a cursory literature search on JPAs, it was initially determined that the topic 

of JPAs related to QA tasks had not previously been studied.  A more thorough search of 

the JPA literature eventually located a detailed experiment (Shriver et al., 1982) that 

studied the effect of JPAs on eight (8) different tasks within a nuclear power plant, one of 

which was specific to QA.  However, the QA-focused JPA was eventually dropped from 

the Shriver study as being too task-interdependent and reliant upon wider functional 

understanding from an expert operator.  The project director (L. Zach, personal 

communication, June 2013) and lead principal investigator (E.L. Shriver, personal 

communication, June 2013) of the 1982 report have been located and verified that, to 

their knowledge, no other research on JPAs for QA has ever been published. 

 

This research study is therefore a nexus for multiple interests: the design and use of 

checklists to improve human performance, the linkage of human factors and QA 
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techniques for defect prevention, and a continuation of both previous and existing 

research.  In addition to academic discoveries, this study of JPAs can benefit a wide-

ranging audience of practitioners as a tool for reducing the likelihood of high 

consequence events that still happen in every-day life; rockets and satellites continue to 

fail (Cheng et al., 2009), medical errors lead to tragic results (Dhillon, 2008), and in fact 

lives could even be saved by implementing a checklist (Haynes et al., 2009).  This topic 

has such an impact that it has even spawned a New York Times bestseller The Checklist 

Manifesto (Gawande, 2010) that has drawn popular interest on an international level. 

 

1.2 Research Statement 

Since this was the first known study that examined the use of JPAs for the QA role, the 

primary research focus was to determine whether a simple JPA (i.e., checklist) has an 

effect on QA performance, and then only on the concurrent dual verification technique.  

Once the experimental design was chosen, additional hypotheses were tested regarding 

independent variables and an important test assumption that was inadvertently germane 

to the results.  

 

1.3 Thesis Organization 

This thesis consists of six chapters.  Chapter 2 examines prior research on JPAs in a 

variety of disciplines, especially human factors, and provides definitions of concurrent 

dual verification in a QA context.  Chapter 3 explains the methodologies used in the 

design of the experiment, as well as the JPA itself.  Chapter 4 presents results and 



5 

 

analysis of the data while Chapter 5 discusses the key implications of the study.  Chapter 

6 presents conclusions and recommends future studies regarding the effect of different 

JPA formats on QA performance, as well as their potential to affect other QA tools and 

processes besides verification techniques.. 
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  LITERATURE REVIEW CHAPTER 2.

Probably the best-known JPA is the pilot’s checklist, which was born on October 30, 

1935 at Wright Air Field in Dayton, Ohio during the initial test flight of the Boeing 

Model 299 aircraft (which later became the B-17 “Flying Fortress”). The Model 299 

crashed after take-off, killing two of the 5 crewmen.  The accident investigation board 

determined that no mechanical failures had occurred and that the aircraft crashed because 

the pilot forgot to unlock the elevator and rudder locks.  The Model 299 was substantially 

more complex than previous aircraft and simply too much for one pilot to remember how 

to fly, so the approach at the time was to simplify this complexity with a pilot’s checklist 

(Meilinger, 2004; Gawande, 2010).   

 

Over the next few decades research on JPAs would be conducted in a variety of 

disciplines, beginning with U.S. Air Force behavioral research in the 1950s.  From 1951 

to 1956 the Air Force Behavioral Science Laboratory, at the re-named Wright-Patterson 

Air Force Base in Dayton, contracted the human factors specialists at the American 

Institute for Research to study how behavioral and psychological factors could be 

identified and then used to design training requirements for specific tasks (Miller, 1953).  

It was during this study that Dr. Edgar Shriver coined the term “task analysis” to specify 

the need to identify stimulus elements, or behavioral cues, that indicate when a task is 
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complete and then place these directly into training instructions (Shriver et al., 1982).  

Newman (1957) and Miller (1956), under contract to the Air Force Personnel and 

Training Research Center in Denver, Colorado, also recognized the need to identify 

specific behavioral processes to improve both accuracy and training time and then elicit 

these processes into clear and concise instructions that are compatible with the skills and 

abilities of the users.   

 

Task analysis was widely adopted and matured by a variety of practitioners, but 

behavioral cues and the role of behavioral processes were not always used due to 

inconsistent applications of the technique as new task analysis methodologies were 

developed (Davies, 1973; Stammers et al., 1990).  For example, Mager (1962) renamed 

the stimulus elements as “conditions” and this resulted in the stimulus term often being 

misinterpreted as environmental (e.g. temperature) or setup conditions to the experiment; 

as a result the behavioral stimulus elements were often lost (Shriver et al., 1982).  

 

In 1969 the Special Interest Group on Task Analysis of the Human Factors Society 

(chaired by Shriver) counted over 80 variations of task analysis in use at the time; in 

many instances the behavioral cues were missing.  This led to the sub-categorization of 

task analysis methods into more specific methodologies such as basic task analysis 

(Miller, 1953), job analysis (Chapanis, 1970), functional analysis (Shriver, 1960), and 

link analysis (Thomson, 1972). A major output of the interest group’s effort was the 

establishment of the behavioral task analysis (BTA) technique that returned the stimulus 

element to task analysis.  The BTA technique was later codified in a U.S. Air Force 
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technical report (Shriver, 1975) that would also serve as an important milestone in the 

development of JPAs.   

 

The first research activities that specifically used the term “job performance aid” began 

with more U.S. military contracts in the late 1950s and early 1960s in conjunction with 

task analysis (e.g. Shriver, Fink, & Trexler, 1959; Folley, 1961; Folley & Shettel, 1962; 

Goff et al., 1969).  Over the next two decades JPAs were being studied in a variety of 

contexts.  The early military studies tended to look for ways to reduce errors in complex 

tasks that were not often performed correctly (such as repair and maintenance activities) 

or to shorten the training time necessary for novice technicians to acquire such skills 

(Gebhard, 1970; Elliott & Joyce, 1971; Foley, 1972).  Later studies were refined to 

determine how different JPA formats (pictures or printed text) could convey information 

differently and were therefore better suited for particular circumstances (Booher, 1975; 

Smillie, 1978; Smillie & Ayoub, 1980).  Throughout these experiments the JPA was 

found to be an effective tool at simplifying tasks for novice users that would normally 

require extensive training or complex information processing, and errors in human 

performance were reduced significantly. These experiences led to a variety of 

specifications (Folley et al., 1971; Joyce et al., 1973a; Shriver, 1975) and handbooks 

(Joyce et al., 1973b; Booher, 1978; Smillie, 1985) to assist developers in creating 

effective JPAs for a wide variety of tasks in both military and commercial industries.  

 

Meanwhile, specific industries were conducting their own studies on the limitations of 

human performance.  McKenzie (1958) was an early proponent of having clear standards 
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and instructions in order to improve the accuracy and consistency of inspectors.  This 

followed with more than three decades of research from the industrial inspection 

community (summarized in detail by Fox, 1973; Wiener, 1975, Drury, 1982, and See, 

2012), with some of it focused on vigilance theory (e.g. Elliott, 1960; McGrath and 

Harabedian, 1961; Mackie, 1964; Baddeley and Colquhoun, 1969, Tsao, Drury, and 

Morawski, 1979; Tsao and Wang, 1984; Murray and Caldwell, 1996) that stemmed from 

the pioneering work of Mackworth (1950).  These studies were paralleled by researchers 

who began to understand the underlying models of human information processing that 

would become useful to JPA developers (Gagne, 1962; Kibler, 1965; Harris, 1969, 

Norman, 1981; Rasmussen, 1982; Norman, 1983; Rasmussen and Vicente, 1989; Reason, 

1990; Barshi and Healy, 1993; Allen and Rankin, 1997).  

 

Following the Three Mile Island accident (Kemeny, 1979) the nuclear power industry 

commissioned a series of studies to understand and eliminate the potential for human 

errors, and JPA research experienced a resurgence of interest (Clark, 1982; Shriver et al., 

1982; Mattson, 1989; Hallbert et al., 1992).  In the years since, other high consequence 

industries such as commercial aviation and medicine have followed suit by embracing a 

JPA focused approach (most notably checklists) as well as wider principles of error 

management, human factors, and quality assurance (Helmreich and Schaefer, 1994; 

Helmreich, 2000; Helmreich and Merritt, 2001; Haynes et al., 2009; Gawande, 2010; 

White et al., 2010). 
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SNL designs and builds a variety of high consequence products, however its primary 

mission is with nuclear weapons.  SNL is therefore subject to the guidance and oversight 

by the Department of Energy (DOE).  As reviewed in Stevens-Adams (2013), the DOE 

Human Performance Handbook (DOE, 2009) focuses on tools and methods for 

preventing and mitigating human error, including processes specifically related to 

verification activities that are useful for quality assurance: 

 Self-Checking – A process by which the performer pauses to reflect on the 

intended action and its expected outcome, whether the proposed action is correct 

for the situation, and resolve any questions or concerns before proceeding by 

using the STAR (Stop, Think, Act, Review) practice. 

 Peer Checking – A series of actions by 2 individuals working together at the 

same time and place, before and during a specific action, as an augmentation but 

not a replacement for self-checking. 

 Concurrent Verification – A series of actions by 2 individuals, at the same time 

and place, to separately confirm the condition before, during, and after an action, 

when the consequences of an incorrect condition would subsequently lead to 

undesired harm. 

 Independent Verification – A process by which one individual, separated by 

time and distance from the action, confirms the desired condition. 

 Peer Review – A process by which qualified reviewers read and check the quality 

of another’s work, and is an informal technique that does not supplant required 

procedures or checklists. 
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As further discussed in Stevens-Adams (2013), DOE Order 422.1, Conduct of 

Operations, requires independent and concurrent dual verification techniques to be 

implemented for critical equipment configurations.  These two techniques are further 

defined in the DOE Guide to Good Practices for Independent Verification (DOE, 1993): 

 Independent Verification – The act of checking, by a separate qualified person, 

that a given operation or the position of a component conforms to established 

criteria. 

 Concurrent Dual Verification – A method of checking an operation, an act of 

positioning, or a calculation in which the verifier independently observes and/or 

confirms the activity. 

 

There has been a divergence between the term inspector, which implies an independent 

reviewer of a particular item or task, and checker that is specified by the verification 

techniques.  As a result of the above definitions (plus the fact that this study is about 

check-lists), the term checker will be used throughout this paper to refer to the QA role 

being performed by the experimental participants.   

 

The motivation for this study should now be understood as an intersection between the 

complementary disciplines of human factors and QA (itself derived from the tradition of 

inspection), with a focus on the concurrent dual verification activity within high 

consequence environments. The JPA approach continues a contemporary interest in 

checklists while leveraging the legacy techniques of task analysis, plus it is one of many 

tools that a QA practitioner can use as a control against the risk of defects.  The 
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concurrent dual verification JPA thus fills a research void and should draw interest from a 

variety of disciplines.  
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 METHODOLOGY CHAPTER 3.

This chapter describes the methodology and approach used for the research study. 

Section 3.1 specifies the approach behind the selection of the experimental task and 

presents an appropriate and novel test apparatus as a contribution to the wider body of 

knowledge.  Section 3.2 explains the experimental design.  Section 3.3 explains how the 

number of experimental participants was determined and Section 3.4 discusses the 

selection of participants and the presentation of the experiment.  Section 3.5 details the 

rationale and configuration of the job performance aid used in this study.   

 

3.1 Experimental Task Selection 

The primary emphasis of the original research question is on the effectiveness of a JPA 

on a concurrent dual verification task.  However, there must be a task for the QA 

checkers to observe such that they can perform concurrent dual verification.  Basic 

guidelines for selecting this task were as follows: 

 Not be too complex or time-consuming 

 Not be too simple, such that the ability to inject faults would be difficult as they 

would be too obvious 
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 Be consistent with a task that may be conducted in a high consequence 

manufacturing environment  

 

A predefined Lego™ assembly task (with visual assembly instructions) was determined 

to satisfy these conditions, with a corresponding checklist for the QA checker to follow 

(or have absent in the control condition).  An advantage of selecting a Lego™ assembly 

task over more applied techniques (such as repairing a lawnmower engine or replacing a 

circuit board in a personal computer) is that there is not any built-in covariance of prior 

knowledge for experimental participants who may have expertise in these applied tasks.  

In other words, selecting simple tasks would reduce uncontrolled differences in 

participant expertise. Another advantage is the similarity of the Lego™ task with those 

conducted in a high consequence manufacturing environment.  Assemblers are often 

provided with a kit of similar-looking parts (e.g., fasteners of different size but equal 

length) and instructions how to install them, and in many real-world applications there is 

a QA checker to oversee the task and ensure that no errors are made. 

 

A within-subjects design model was chosen in order for participants to have their 

performance evaluated both with and without the checklist, so this drove the need for a 

second assembly task.  Due to the potential for learning effects, two different Lego™ 

assembly tasks (Pattern A, Pattern B) were identified in which faults could be introduced 

by the inclusion of incorrect pieces into the patterns.  Another variable to be reasonably 

controlled is the difference in size or complexity between the two patterns.  This 

constraint eliminated many of the popular Lego™ patterns from contention, such as 
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Lego™ City or themed sets like Star Wars™ or super heroes, since the ability to equalize 

both size and complexity across two patterns is difficult.  Further, defined patterns with 

uniquely shaped pieces typically require all parts to be used during assembly (i.e., there 

are no pieces left over).  This might make it too obvious to inject faults into these 

complex patterns.  The option chosen for this experimental task was to select two similar 

but existing patterns (so the instructions were already developed and available) and then 

combine them into a larger boxed kit (thus each pattern was a sub-assembly within the 

larger kit). 

 

Pattern A (see Appendix A) has 104 pieces with 7 of them specifically chosen for 

inserting a fault.  Pattern B (see Appendix B) has 150 pieces, with another 7 pieces 

specifically chosen for inserting a fault.  Since one of the constraints is to avoid selecting 

a task that is too simple, the patterns were not assembled as stand-alone kits but instead 

contained within a larger set of pieces that may or may not be used in either sub-

assembly. This eliminates the potential confound where the QA checker might notice that 

an “incorrect” part was used if there are supposed to be no pieces remaining when the 

assembly task is completed.  The total number of available pieces needs to be higher than 

both sub-assemblies combined, with additional margin such that there is sufficient 

uncertainty in the experiment to warrant the use of a JPA.  Since the total number of 

pieces in Pattern A and Pattern B is 254 (almost 256 = 27 or 7 bits of information), a total 

assembly kit of 512 pieces was chosen since 512 = 29 or 9 bits of potential information 

(Posner, 1964).  
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However, the total number of bits of information is much higher than 9 bits when 

considering the different part shapes (23 for Pattern A), colors (6 for Pattern A), and 

markings that each act as multipliers to the total number of possible combinations of parts 

within the two patterns.  This large number is roughly doubled when adding in Pattern B, 

and doubled again when considering parts not used in either pattern.  Thus there is 

tremendous (and sufficient) uncertainty in the kit of 512 parts that experimental 

participants were not able to determine the total number of pieces being used for each 

pattern.  If the JPA effectively improves the chances that the correct piece in the correct 

color and correct shape is installed in the correct way, and it is “infused” (Oberhettinger, 

2012) at the correct time and correct place in the assembly process, then it would be a 

tremendously useful tool to support concurrent dual verification in mitigating human 

error. 

 

In order to more fully describe the correct piece / correct place discussion above, consider 

that each of the 512 pieces belongs to only one of the following five part groups: 

 Parts used only in Pattern A: 52 pieces 

 Parts used only in Pattern B: 98 pieces 

 Parts that exist in both patterns A and B: 104 pieces (or 52 in both patterns) 

 “Incorrect” parts that are used to interject faults into both patterns: 9 pieces (see 

Appendix C) 

 Parts not used in either pattern: 249 pieces 
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To further clarify, Pattern A has 52 pieces that are unique and 52 that are also used in 

Pattern B, for a total of 104 pieces.  Pattern B has 98 pieces that are unique and 52 that 

are also used in Pattern A, for a total of 150 pieces.  Mutual exclusivity of the five part 

groups allows exact probabilities to be determined for analysis and compared to 

experimental results.  The inclusion of both patterns in the kit of 512 pieces, as well as 

the decision to not return the first pattern’s pieces to the kit before commencing with the 

second pattern in the trial, are counterbalanced by the randomized assignment of 

participants to one of the four test conditions.   

 

3.2 Test Approach 

In the Lego™ assembly task described in Section 3.1, experimental participants 

performed the role of QA checker and the author acted as the assembler of the patterns. A 

distinction was made between an error by the assembler that was purposely made (fault) 

in order to elicit experimental data and an error that was unintentionally made (mistake) 

and is less germane to the results.  However, the use of the term “error” was necessary in 

providing instructions to the checkers because they correctly identified both faults and 

mistakes during the experiment without any knowledge of the difference between the 

two.  The instructions given to the participant before the test began were: “Please let me 

know if you notice any errors. “ When a fault was made and the QA checker did not 

notice, this was defined as a miss; if they did notice, it was defined as a detection.  Some 

faults were detected immediately, but others were detected later in the assembly process.  

This difference was anticipated and considered important to the results, so there needed 
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to be a way to distinguish between the two responses.  While the identification of a fault 

before turning the page in the assembly instructions is a detection, if the fault was 

identified after the page was turned it was determined to be a catch.  A false alarm 

occurred when an error (fault or mistake) was not performed but the QA checker notified 

the assembler that they thought one had occurred. If the assembler intentionally disguised 

a fault from the QA checker then it was classified as a violation (though the experiment 

was designed to eliminate the risk of violations and none were present in the results). 

Finally, sequence errors are a special type of false alarm that is similar to Norman’s 

(1981) mode error, where the response is incorrect and represents a user assuming a state 

other than the true state of the task.  These definitions, specific to this study and not 

necessarily in common use elsewhere, are summarized in Table 1: 

 

Table 1: Definitions Used in the Assembly Task 

Fault 
An intentional and specific error that is introduced by the 
assembler 

Mistake An unintentional error by the assembler 
Error The use of an incorrect piece or incorrect assembly order 
Miss An error that is not noticed by the QA checker; includes catches 

Detection 
Before turning the next page of the assembly instructions, the 
QA checker identifies an error 

Catch 
An error that is noticed by the QA checker later (after the page 
has been turned) 

False alarm 
Any response from the QA checker when there is no error 
present 

Violation 
A fault that is purposely hidden from the QA checker, such that 
there is not an opportunity to notice it  

Sequence error 
The QA checker verbally authorizes the assembler to turn the 
page of the instructions before the assembly task on that page 
has been completed; treated as a false alarm 
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Faults were inserted by the assembler into both patterns in specific pre-determined 

locations, with the pre-test instruction that the QA checker observe the assembly task and 

tell the assembler if they noticed any errors.  The fault types are: 

1. Marking Fault: Insert the incorrect piece that has markings.  For example, instead 

of inserting the “correct” 2 x 2 yellow piece another 2 x 2 yellow piece with a 

pattern on one side is installed. 

2. Incorrect Piece: Insert the incorrect piece(s) but with no markings.  For example, 

instead of inserting the “correct” 2 x 4 black piece two 1 x 4 black pieces is 

installed. 

3. Wrong Order: Insert the correct piece(s) but in the incorrect configuration. For 

example, instead of constructing a 2 x 10 wall with a 2 x 8 piece on the left and a 

2 x 2 piece on the right, the order is switched and the 2 x 2 piece goes on the left 

4. Wrong Orientation: Insert the correct piece(s) but in the wrong location or 

orientation.  For example, a window piece is installed backwards, or offset by one 

row from what the “correct” orientation is. 

 

The fault types were chosen for their reasonable similarity to those that occur in high 

consequence environments.  For example, fault type 4 (wrong orientation) is similar to a 

component being installed backwards on a printed circuit board.  The author has past 

experience with fault type 1, dating from an incident whereby a damaged part with 

noticeable indications of wear was nearly installed onto a larger assembly.  The specific 

faults in the Lego™ assembly task were only selected for their ease of insertion and 
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ability to avoid detection by the QA checker, and were not equally spaced throughout the 

assembly task.  These faults are further detailed in Section 3.4. 

 

The independent variables are as follows: 

 Pattern order (A first or B first) 

 JPA (present or not present) 

 

Uncontrolled variables (potential covariants) that were observed are: 

 Pattern A elapsed time 

 Pattern B elapsed time 

 Patterns A and B combined elapsed time 

 Fault type  

 

Because the errors (both faults and mistakes) are performed by the assembler they are 

independent of the presence or absence of the JPA.  Therefore the responses from the 

participant (the QA checker) represent the primary dependent variables for this study.  

For purposes of simplifying the statistical design the dependent variables have been 

categorized as described above and summarized into only 3 response levels: 1) 

detections; 2) misses, and 3) false alarms. 

 

The primary purpose of this experiment is to determine whether or not the JPA has an 

effect on the performance of the QA checker.  Therefore, the first null hypothesis to be 

tested is: 
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H1: The presence of a JPA has no effect on the detection of faults in the quality assurance 

role. 

 

with the alternative hypothesis being: 

 

H1A: The presence of a JPA has an effect on the detection of errors in the quality 

assurance role. 

 

The following additional hypotheses are being tested in this experiment, specifically 

addressing the independent variables listed previously: 

 

H2: There is no difference in the detection of faults with a JPA than without a JPA. 

H2A: There is a difference in the detection of faults with a JPA than without a JPA. 

 

H3: The order of presentation of the JPA has no effect on the detection of faults in the 

quality assurance role. 

H3A: The order of presentation of the JPA has an effect on the detection of faults in the 

quality assurance role. 

 

H4: The order of presentation of the different patterns has no effect on the detection of 

faults in the quality assurance role. 

H4A: The order of presentation of the different patterns has an effect on the detection of 

faults in the quality assurance role. 
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An additional hypothesis, H5, is explained in the next section. 

 

3.3 Sample Size Determination 

The minimum number of participants was determined from the estimated probability of 

detecting each fault, with different values estimated for with and without a JPA.  The 

different probabilities of detection among the 14 total faults span a fuzzy range between 

somewhat-easy and somewhat-difficult, and the added complexity of 4 different fault 

types with uneven placement throughout the two patterns made it necessary to create 

simplifying assumptions for both easier statistical analyses and a testable hypothesis.  

The probabilistic Rasch (1960) model, which in turn requires an ordered index based on 

the Guttman (1944) scale, is an appropriate guide for this experiment as it models the 

trade-off between the QA checker’s abilities and the difficulty of detecting each fault.   

 

One simplifying assumption was to assign a constant average probability of detection 

across all fault instances.  Since the checklist specifically identified the 4 different fault 

types, it was reasonable to assume that the average probability of detection is p1=0.5 

without a JPA and p2=0.9 with a JPA. The number of experimental participants (n) must 

be a multiple of 4 to match the number of test conditions (listed in Section 3.1) and 

therefore make the experiment balanced.  For n*14 binary trials (n*7 with a JPA and n*7 

without a JPA), the probability of concluding that there is a difference when p1=p2 

depends on n as follows in Table 2: 
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Table 2: Probability of Correctly Concluding that p2>p1 

n Type-1 error of 0.05 Type-1 error of 0.025 
4 0.96 0.93 
8 0.9995 0.998 
12     ~1 0.99998 
≥16       ~1 

 

This analysis suggests a minimum sample size of eight participants.  However, the 

simplifying assumption of average probability of detection across the individual 14 faults 

suggests that this number should be higher.  Once the experimental trials began it soon 

became apparent that the addition of more participants was not particularly onerous on 

the assembler or support staff and could be accomplished in a reasonably short 

timeframe.  Thus the number of participants for this experiment was raised to 24.  In 

addition, the assumption of an average probability of detection being uniformly 

distributed across the experiment is an additional hypothesis to be tested: 

 

H5: The probability of detection for each fault is equal. 

H5A: The probability of detection for each fault is not equal. 

 

3.4 Test Procedure 

Participants consisted of permanent and contract employees (14 males, 10 females) from 

SNL.  Candidates who perform QA activities as part of their normal job responsibilities 

were specifically excluded from this study, so all QA checkers were considered novices 

in this role. The experiment was conducted in a video recording studio to facilitate both 
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the capture of the assembly tasks and audio of the QA checker’s interactions with the 

assembler.  The video camera was placed such that all responses were recorded but not 

the faces of participants, in order to maintain confidentiality of participation. Figure 1 

shows the test setup from one of the experimental trials with the assembler on the left and 

the QA checker seated off-camera on the right. 

Figure 1: Test Setup 
 

The assembly instructions were printed and used by the assembler in clear view of the 

QA checker, along with the collection of 512 pieces.  These assembly instructions were 

the original instructions for each pattern developed by Lego™, with no changes or 

additions.  The pre-test instructions given verbally to the QA checkers (only once, before 

the first pattern was presented) were to observe the assembly task and report any errors as 

soon as they were noticed, and not to touch any of the Lego™ pieces or assist the 

assembler in locating them.  Participant #7 was disqualified due to misunderstanding the 



25 

 

pre-test instructions.  Another participant was recruited to replace #7 prior to the 

completion of the study, maintaining a total of 24 valid participants.  

 

For one of the two assembly tasks in each experimental trial, the checklist was provided 

for review beforehand and was available throughout the duration of that assembly task.  

Table 3 summarizes how the order of patterns varied across the 24 participants.  By 

varying the order of assembly in this way, specific effects of the presence of a JPA (if 

they exist) can be distinguished from the effects of sequence of assembly (H2 – H3). 

 

Table 3: Grouping of Experimental Participants By Sequence of Assembly 

Number of 
Participants 

Sequence of Assembly, Presence of JPA Abbreviation 

6 Pattern A without JPA, followed by Pattern B with JPA A{JB} 
6 Pattern A with JPA, followed by Pattern B without JPA {JA}B 
6 Pattern B without JPA, followed by Pattern A with JPA B{JA} 
6 Pattern B with JPA, followed by Pattern A without JPA {JB}A 

 

As explained earlier in Section 3.2, the assembler intentionally inserted faults in 14 

specific locations (seven in each pattern) and there were four different types of faults.  

Table 4 summarizes the specific faults and associated fault types; raw data results appear 

in Appendix E. 
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Table 4: Fault Descriptions/Types 

Fault Fault Description Fault Type

Fault #1: Inject kitty 1x2 white piece on far right, facing backward (p.5) 1

Fault #2: Switch order of 1x1 and 1x3 yellow pieces on left side (p.8) 3

Fault #3: Switch order of 2x2 and 2x4 yellow pieces on right side (p.9) 3

Fault #4: Switch order of 1x1 and 1x2 orange pieces on right side (p.14) 3

Fault #5: Install window backwards (p.15) 4

Fault #6: Inject kitty 1x2 white piece, facing forward (P.19) 1

Fault #7: Inject 1x1 eye piece, facing right (P.20) 1

Fault #8: Make 4th 2x4 black block two 1x4s (p.2) 2

Fault #9: Don’t install red window ahead of white door (p.6) 4

Fault #10: Inject 1x2 yellow kitty on right side, facing forward (p.10) 1

Fault #11: Switch order of 2x2 and 2x4 white pieces on right side (p.12) 3

Fault #12: Inject kitty 1x2 white piece on right side, facing left ‐‐ towards QA (p.14) 1

Fault #13: Make two 1x4 white blocks one 2x4 block (p.14) 2

Fault #14: Inject 2x2 yellow eye block, face forward (p.16) 1

1 = Markings

2 = Incorrect piece(s)

3 = Wrong order

4 = Wrong orientation

 
 

Figure 2 shows the specific page from the assembly instructions during which Fault #1 

was inserted; fault #1 was also fault type 1. The arrow points to the white 1 X 2 Lego™ 

piece that was chosen for replacement with one of identical shape and color, except with 

markings on one side.   
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Figure 2: Sample Instructions Page, Depicting Fault #1 (Fault Type 1) 

 

The actual replacement of this piece in an experimental trial is shown by the arrow in 

Figure 3, where markings are shown on the back side of the part that is facing away from 

the QA checker. During experimental design it was thought that pieces with markings 

would be too easily noticeable if they were facing the checker, so it was determined that 

most of them would face in a different direction. As a counterbalance against these faults 

then becoming too difficult to notice, all pieces with markings were placed face-up on the 

table during the trial such that the QA checker would have the opportunity to notice them.   
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Figure 3: Fault #1 Occurring in an Experimental Trial 

 

All four fault types are illustrated in Appendix F.  The complete set of assembly 

instructions appear in Appendix H (Pattern A) and Appendix I (Pattern B). Note that 

some pages appear lighter in contrast than others; these pages were purposely altered in 

order to more accurately identify the black pieces. While most pages depict black pieces 

it was important to clearly identify those pieces on the page of instructions in which they 

were installed, to eliminate any confusion.  This was deemed an important activity in 

order to remove the confound of the QA checker’s visual acuity, and it was especially 

important for Fault #8 where a 2 X 4 black piece was replaced by two 1 X 4 black pieces. 

(This fault, an example of fault type 2, is depicted in Figure F3 and Figure F4.) 
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3.5 Job Performance Aid 

This experiment was designed to focus not on the Lego™ assembly task itself but rather 

the effectiveness of a JPA for the experimental participant that is performing the role of 

the QA checker.  Prior JPA research (Miller, 1956; Gebhard, 1970; Elliott & Joyce, 1971; 

Foley, 1972; Clark, 1982; Shriver et al., 1982, Barshi & Healy, 1993) has studied the use 

of JPAs with both novice and expert users, but there is general agreement that they are 

most effective as training aids for novice users.  Some common themes in the literature 

proved useful in the development of the checklist for this study:   

 The focus is on the user.  JPA developers should use task analysis techniques to 

fully understand the job function and the behaviors used when the task is 

performed (Gebhard, 1970; Clark, 1982; Shriver et al, 1982; Smillie, 1985).   

 Information must be task oriented. The JPA should identify exactly what the 

user needs to do using brief, concise, and explicit instructions to aid short term 

memory.  Instructions should be directive and action-specific using simplified and 

standard language, and contain only information that is necessary (McKenzie, 

1958; Gebhard, 1970; Clark, 1982; Shriver et al., 1982; Smillie, 1985; Hallbert et 

al., 1992; Gawande, 2010) 

 

The JPA for this experiment (see Appendix D) consists of a short, concise, and simple 

checklist intended to elicit behaviors that would enhance the detection of faults in this 

experiment.  Each of the six checklist items was considered to be essential information, 

with the following rationale: 
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 Your role as an observer is an essential part of this important task. Complex 

assemblies require a second set of eyes in order to catch any errors. It is the 

author’s experience that novice QA checkers do not always recognize the 

importance of simply being an observer for an important task.  McKenzie (1958) 

noted that inspection takes place in a social context where there may be different 

‘social norms’ of rejection, which is consistent with the author noting that subject 

matter experts who perform the work may sometimes resent a non-expert 

“checking their work.”  In addition, Wiener (1975) reminds us of Herzberg’s 

(1966) theory of industrial motivation and quotes Lucaccini et al. (1968) where 

subjects receiving more positively-toned instructions detected more signals. 

 Pay attention for the following types of error. Both Clark (1982) and White et al. 

(2010) recommend that hazards or high-risk concerns have their own specific 

checklist items, though to avoid confusion the four fault types were addressed in 

only three statements. 

 Feel free to ask questions about the task at any time. If necessary, ask the 

assembler to stop until you are comfortable with proceeding. This statement was 

intended to build the QA checker’s confidence by signaling that they are vital to 

the assembly process and could stop it at any time.  It also grants permission to 

talk to the assembler and not be considered a distraction. 

  The assembler should not turn to the next page of the instructions without your 

approval. This statement was necessary to establish the event horizon at which a 
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detection becomes a catch.  The specific emphasis on catches was kept from the 

QA checker as it would have introduced a confound. 

 For each page of the instructions, the order of assembly does not matter. To avoid 

confusion that could have led to an increase in false alarms, this statement needed 

to be explicit. 

 The box contains 512 total parts.  Some parts will be used and some will not. This 

statement eliminates the confound whereby the QA checker could use the 

presence or absence of parts on the table as a cue. 

 

Clark (1982), Shriver et al. (1982), and Smillie (1985) are emphatic that the key final step 

in successful development of a JPA is verification and validation with expert users.  The 

process relies heavily on these reviews to identify and correct procedural ambiguities, 

omissions, and inaccuracies, and depending on the complexity of the JPA the process 

may require multiple iterations.  For the simple and concise checklist in this experiment, 

the author conducted a pilot study with four QA experts in the Surety Engineering Group 

at SNL for additional guidance and a final verification of the checklist format.  The study 

was approved (before the pilot study) by both the SNL and Purdue University 

Institutional Review Boards under protocols SNL1349 and IRB00001150, respectively. 
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 RESULTS AND ANALYSIS CHAPTER 4.

Binary responses for 14 fault observations were recorded for each participant, and are 

summarized in Table 5.  Participant #7 was disqualified due to misunderstanding the pre-

test instructions and was replaced with participant #25.  The three Pattern B instances 

where only 6 trials appeared were from incorrect assembly and the planned fault could 

not be inserted.  Note that participant #1 detected every fault in both patterns.  

 

Table 5: Fault Detection Performance, By Participant 

Subject #

Pattern A

Trials

Pattern A

Detections

Pattern B

Trials

Pattern B

Detections

Percent

Detected

1 7 7 7 7 100%

2 7 5 6 5 77%

3 7 4 7 3 50%

4 7 7 6 3 77%

5 7 6 6 4 77%

6 7 5 7 4 64%

8 7 4 7 5 64%

9 7 6 7 5 79%

10 7 5 7 7 86%

11 7 3 7 4 50%

12 7 3 7 4 50%

13 7 3 7 4 50%

14 7 3 7 6 64%

15 7 4 7 4 57%

16 7 4 7 5 64%

17 7 6 7 3 64%

18 7 3 7 4 50%

19 7 4 7 2 43%

20 7 4 7 3 50%

21 7 4 7 5 64%

22 7 4 7 5 64%

23 7 4 7 5 64%

24 7 3 7 3 43%

25 7 4 7 3 50%  
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Table 6 summarizes the results for each particular fault. The three instances of incorrect 

assembly are seen again where two of the trials associated with fault #8 and one trial with 

fault #11 were deemed to be a “no test”.  It is noteworthy that fault #2, fault #4, and fault 

#11 were always detected while fault #1, fault #6, fault #7, fault #10, and fault #14 were 

frequently missed.  The members of the latter group (#1, #6, #7, #10, and #14) are all 

marking faults (fault type 1); however, fault #12 (also fault type 1) was specifically 

designed to be noticed and, as expected, frequently detected2.    

 

Table 6: Performance, By Fault Number 

Pattern

Fault

Number

Fault

Type

Number of

Trials

Number of

Detects

Percent

Detected

A 1 1 24 5 21%

A 2 3 24 24 100%

A 3 3 24 23 96%

A 4 3 24 24 100%

A 5 4 24 17 71%

A 6 1 24 6 25%

A 7 1 24 6 25%

B 8 2 22 15 68%

B 9 4 24 21 88%

B 10 1 24 5 21%

B 11 3 23 23 100%

B 12 1 24 20 83%

B 13 2 24 17 71%

B 14 1 24 2 8%  

 

Using the performance summaries in Table 5 and Table 6 as a guide, binary logistic 

regression (Agresti, 2013) was used to model the probability of detecting a fault as a 

                                                 
2 This intentionally-noticeable fault was designed to address the vigilance decrement noted by Tsao, 
Drury,and  Morawski (1984) where a subject’s expectations of finding another defect appeared to decrease 
immediately after a defect had been found. However, hypotheses related to vigilance theory were later 
dropped from this study. 
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function of the experimental factors.  In logistic regression, the probability of 

detection,	 , is assumed to relate to the experimental factors ( , , ⋯ , ) via the 

general expression 
, ,⋯,

, ,⋯,
, , ⋯ , , where p is the number of 

factors. Note that 
, ,⋯,

, ,⋯,
	is commonly referred to as the logit or log odds.  

Here, we further assume that f is a linear combination of the factors.  Collectively, the set 

of values for the experimental factors describes the experimental condition.   

 

Due to the nature of the experiment and the apparent differences in detection ability 

across faults, separate probability models (see Appendix G) were developed for each 

pattern. For Pattern A, faults #2 and #4 were excluded from the models because they 

were always detected and therefore there is no ability to discern an effect of sequence in 

those cases; for Pattern B, fault #11 was excluded for the same reason.  The model form 

used in each case is:  

 

,			

,			
,                                                                       (1) 

 

where  represents the log odds at a standard experimental condition (defined by a 

standard error number and a standard sequence) ,  reflects the change in log odds when 

changing the experimental condition  from the standard fault number to fault #i, an d  

reflects the change in log odds when changing the experimental condition from the 

standard sequence to sequence j. In the case of both patterns, the standard sequence is 



35 

 

denoted by pattern A, followed by the JPA instructions and then pattern B, or in study 

notation, A{JB} (see Table 3).  In the case of pattern A, fault #1 is the standard fault 

number and in the case of pattern B, fault #8 is the standard fault number.  The form of 

the model allows for an assessment of the effect of the JPA given differences in detection 

ability across fault numbers.  The effect of fault number is compensated for by the  

terms, while the effect of the JPA is associated with the  terms (more on this in Chapter 

5). 

 

Minitab (version 16.1.1) was used to estimate the model parameters for each pattern; the 

complete set of Minitab results appears in Appendix G.  Table 7 and Table 8 display the 

parameter estimates (and associated p-values) related with patterns A and B, respectively.  

The p-values measure whether or not the model terms are significantly (p < 0.05) 

different than zero. 

 

Table 7: Logistic Regression Table, Pattern A  

Parameter        Estimate   SE Estimate   Z-ratio      P-value      
              -2.845      0.810         -3.51        0.000 
             1.792      0.776          2.31        0.021         
             1.999      0.778          2.57        0.010         
             1.578      0.775          2.04        0.042         
               4.967      1.218          4.08        0.000       
               2.494      0.731          3.41        0.001        
               0.251      0.710          0.35        0.724         
               0.251      0.710          0.35        0.724         
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Table 8: Logistic Regression Table, Pattern B 

Parameter        Estimate   SE Estimate   Z-ratio      P-value       
               0.893      0.593         1.50         0.132 

             0.350      0.637         0.55         0.582    
            -0.615      0.610        -1.01         0.313    
            -0.187      0.612        -0.31         0.760    

               1.211      0.776         1.56         0.119    
             -2.150      0.691        -3.11         0.002    
              0.870      0.722         1.20         0.228    
              0.132      0.650         0.20         0.839    
             -3.227      0.879        -3.67         0.000    

 

For the various experimental conditions, the fitted model can be used to estimate the 

probability of detection by inverting equation (1) and replacing the parameters with their 

estimates.  For example, suppose that we are interested in the probability of detecting 

fault #1 (pattern A) assuming the standard sequence A{JB}. Then, 

1 ,			 A JB 0.0549 , where 2.845 (from Table 7).  

Further suppose that we are interested in the probability of detecting fault #6 (pattern A) 

assuming the sequence B{JA}. Then, 6 ,			 B JA

0.3095 , where , , 	   are from Table 7.  Table 9 and Table 10 list the 

estimated probabilities of detection (for all experimental conditions) and compare with 

the observed fraction of faults detected for patterns A and B, respectively.  Note that the 

estimated probability of detection matches reasonably well with the observed fraction 

detected for all cases.  The implication is that the predictors contained in the equation (1) 

model contain all of the necessary information, meaning that this is an accurate model for 

the experimental conditions.  The same conclusion was reached from Minitab (see 

Appendix G) using the Pearson (p=0.171), Deviance (p=0.194), and especially Hosmer-
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Lemeshow (p=0.725) formal tests where p-values greater than 0.05 indicate that there is 

no evidence for lack-of-fit and that the model is accurate.  These results would not be 

statistically different from increasing the pool of participants except in the case of a much 

larger number that would be required to detect small differences. 

 

Table 9: Estimated Probability of Detection, Pattern A 

Fault # Sequence

Estimated 

Probability 

of Detection

Observed 

Fraction 

Detected

1 A {JB} 0.055 0.000

1 B {JA} 0.259 0.500

1 {JA} B 0.300 0.167

1 {JB} A 0.220 0.167

3 A {JB} 0.893 1.000

3 B {JA} 0.980 1.000

3 {JA} B 0.984 1.000

3 {JB} A 0.976 0.833

5 A {JB} 0.413 0.500

5 B {JA} 0.809 0.500

5 {JA} B 0.839 0.833

5 {JB} A 0.773 1.000

6 A {JB} 0.069 0.000

6 B {JA} 0.310 0.333

6 {JA} B 0.355 0.500

6 {JB} A 0.266 0.167

7 A {JB} 0.069 0.000

7 B {JA} 0.310 0.333

7 {JA} B 0.355 0.333

7 {JB} A 0.266 0.333  
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Table 10: Estimated Probability of Detection, Pattern B 

Fault # Sequence

Estimated 

Probability of 

Detection

Observed 

Fraction 

Detected

8 A {JB} 0.709 0.833

8 B {JA} 0.776 0.800

8 {JA} B 0.569 0.400

8 {JB} A 0.670 0.667

9 A {JB} 0.891 0.833

9 B {JA} 0.921 0.833

9 {JA} B 0.816 0.833

9 {JB} A 0.872 1.000

10 A {JB} 0.221 0.167

10 B {JA} 0.288 0.333

10 {JA} B 0.133 0.333

10 {JB} A 0.191 0.000

12 A {JB} 0.854 1.000

12 B {JA} 0.892 0.667

12 {JA} B 0.759 0.833

12 {JB} A 0.829 0.833

13 A {JB} 0.736 0.667

13 B {JA} 0.798 0.833

13 {JA} B 0.601 0.500

13 {JB} A 0.698 0.833

14 A {JB} 0.088 0.000

14 B {JA} 0.121 0.333

14 {JA} B 0.050 0.000  
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 DISCUSSION CHAPTER 5.

The effect of the JPA can be deduced by considering the complete set of estimated  

terms in the model, which represent the 4 test conditions shown in Table 3.  In the case of 

pattern A (see Table 7), note that	 ,	 , and  are all statistically 

significantly non-zero (each with a p-value less than 0.05) and positive, thus implying 

increased probability of detection versus the standard sequence A{JB}.  This means that 

faults in Pattern A were detected less frequently in the standard A{JB} sequence, when 

the Pattern A assembly was observed first and the JPA appeared in the second trial on 

Pattern B. This suggests that the JPA may have had only a limited effect in this 

experiment. Further, the values of the three γ parameter estimates in Table 7 are 

statistically indistinguishable from one another (the standard error estimates are 

essentially identical).  Thus, the probability of detection of Pattern A faults is impacted 

by both the sequence of observation (whether or not the assembly of pattern A was 

observed before the assembly of pattern B) and whether or not a JPA was present.   

 

The only distinguishable effect of the JPA is its presence in a 3-way interaction between 

sequence, presence/absence of a JPA, and Pattern A.  If there was an effect from only the 

JPA, the  and 	 , terms in Table 7 would be statistically significant and positive 

while  would be near zero. These results for Pattern A further suggest that the 
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learning effect has a greater impact than the JPA. In contrast, the effects of sequence 

and/or presence/absence of a JPA on the probability of detection for pattern B (see Table 

8) were not observed (i.e., ,	 , and  were all statistically indistinguishable 

from zero with non-significant p-values). 

 

As seen in Table 6, marking faults (fault type 1) were frequently missed and therefore 

dominate the 3-way interaction term in the results for Pattern A.  This can be seen in the 

β3 term in Table 7 with the statistically significant p-value < 0.0005 and a large positive 

value for the estimate (4.967).  This indicates that for Pattern A, participants were much 

more likely to detect fault #3 (and fault type 3, which is an incorrect-order fault) 

compared to fault #1 (the default condition, as well as a marking fault).  Similarly, the β10 

term for Pattern B in Table 8 is statistically significant (p=0.002) with a large negative 

estimate (-2.150) and signifies that the marking fault #10 was much less likely to be 

detected than the incorrect-piece fault (fault type 2) in the default condition.  This 

suggests that the reason Pattern A appears in the 3-way interaction term is because it has 

more marking errors (even when considering fault #12, which was designed to be 

noticed) and thus gives a better opportunity to detect differences in the probability of 

detection between the different fault types.   

 

Given these results, the primary null hypothesis was not fully rejected: 

 

H1: The presence of a JPA has no effect on the detection of faults in the quality assurance 

role. 
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The effect of the JPA was not statistically significant on its own but rather as part of a 3-

way interaction between sequence of observation, presence of a JPA, and Pattern A. 

Thus, the additional null hypotheses were only partially accepted: 

 

H2: There is no difference in the detection of faults with a JPA than without a JPA. 

H3: The order of presentation of the JPA has no effect on the detection of faults in the 

quality assurance role. 

H4: The order of presentation of the different patterns has no effect on the detection of 

faults in the quality assurance role. 

 

What may be the most intriguing discovery in this study, however, is the ability to reject 

the final null hypothesis: 

 

H5: The probability of detection for each fault is equal. 

 

In hindsight, one weakness in the experimental design is that faults were not evenly 

distributed throughout the individual trial for each pattern, either by elapsed time or 

number of pieces of assembly.  This might have been negligible if the assumption of 

average probability of detection across all faults was realistic; however, this assumption 

was shown to be demonstrably wrong and therefore acted as a confound influencing the 

expected results. Clearly, some fault types in this study were more difficult to detect than 

other fault types.  The discovery that there are different probabilities of detection for 
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different types of error, using this study’s experimental design and within the verification 

context, may be the most useful result from this experiment.   

 

Returning to the original motivation for the study provides a reminder that this research 

project is not just an experiment about Lego™ pieces and JPAs, but also a study of QA 

practices.  In order for QA practitioners to effectively use tools to control risk they must 

be both well designed and well understood by the designer and the user.  Stammers et al. 

(1990) suggests that task analysis methodologies themselves are limited by the difficulty 

of accurately predicting behavior due to the influence of cognitive factors that cannot be 

easily observed or modeled, thus even proper JPA development using task analyses face 

the same limitations. If this study were designed to detect only the main effect of a JPA 

on performance, then the results would have been disappointing and perhaps no 

interaction with other independent variables would have been discovered. These findings 

illustrate that this specific JPA format (i.e., a checklist) is not necessarily an effective 

control to improve the performance of concurrent dual verification activities. Past 

findings (Clark, 1982; Shriver et al., 1982; Smillie, 1985) echo the conclusion of this 

research that no single JPA format is best for all circumstances.  It should also be noted 

that the verification techniques appearing in many guidebooks, such as the DOE Human 

Performance Handbook (DOE, 2009) mentioned earlier in Chapter 2, are presented as 

being effective without any qualifications as to whether they are actually useful or 

conditions under which they must be applied in order to be beneficial.  This study found, 

however, that concurrent dual verification may not always be as effective a technique as 

expected or desired, either with or without a JPA. 
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 CONCLUSION AND FUTURE RESEARCH CHAPTER 6.

The research presented in this thesis is the first known example of evidence-based job 

performance aid (JPA) use in a quality assurance setting.  This study used an assembly 

task and checklist format as the vehicle for the experiment, and incorporated previously 

recognized design principles from the literature into the configuration of the JPA. The 

design of the task included some simplifying assumptions regarding an average 

probability of detection between different types of error, and this led to the primary 

research hypotheses unable to be proved. Nevertheless, there were 3 important findings.   

 

First, this study created a testing methodology sensitive enough to detect differences in 

the effects on performance between the 1) sequence of observation of patterns, 2) 

presence/absence of a JPA, and 3) Pattern A.  The author reflects that if the main effect of 

a JPA on performance of a concurrent dual verification task were easily identifiable then 

it would likely have been detected long ago, though it is worth noting that there has not 

been any research located on concurrent dual verification either with or without the use of 

JPAs.  Second, the results indicate that concurrent dual verification itself is not 

necessarily as effective a control as presented in the literature (however, some error 

detection is probably better than none in most cases).  One cannot assume that having a 

QA checker in place will have the desired impact on error detection or mitigation, 
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especially for specific types of errors.  Third, the assumption of average probability of 

detection between different types of error may have been demonstrably wrong but the 

error detection probability could be empirically verified within the error construct created 

during this experiment.  Because the probability of detection of different error types has 

not previously been studied in this context, it is hoped that these results are well-received 

by a wide community of practitioners.  In addition, the subtle and complex interactions of 

JPA design, error type, and base error probability identified in this study help to clarify 

the lack of clear findings in past research. 

 

These results can be used as a cautionary tale for processes and tools that QA 

practitioners use to prevent or mitigate human errors.  Once an error is found, the simple 

conclusion is usually to blame the assembler (or checker) without understanding the 

complexity of tasks that both are being asked to perform. Caldwell (2008) reminds us to 

look for patterns of events from multiple causal factors, but this study contributes another 

dimension by recognizing that different types of error may require different mitigation 

techniques.  The common risk matrix (Cox, 2008) describes the likelihood of errors 

occurring against their consequences, but this is independent of the probability of those 

errors being detected during a concurrent checking task.  The likelihood of an error 

occurring can never be zero but if the probability of an error being detected can be 

improved, then an effective use of QA controls might be to improve the chances that 

catastrophic errors do not go unnoticed.  The recognition in this study that different types 

of error have different probabilities of detection, which could then be inserted into a 
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checklist as behavioral cues, might be highly useful as a leverage to the success of both 

JPA design and concurrent dual verification activities. 

 

Both the methodology and results of this study are an effective baseline from which to 

launch future research activities.  Results suggest that a learning effect overshadowed the 

presence of the JPA, therefore a redesigned study to counterbalance this effect might be 

useful.  Repeating the same experiment with a uniform fault type, which would likely 

provide a more constant probability of detection for all faults, may also yield intriguing 

results.  A focus on marking faults, which can be considered signals, might provide an 

attractive opportunity.  Since incorrect markings may fall below the signal detection 

threshold (Swets, 1964; Baker, 1975), such a focused study might extend this essential 

paradigm of vigilance theory (e.g., Mackie, 1964; Kibler, 1965; Stanislaw, 1990; 

Caldwell, 1999).  If a similar experiment equally spaced the faults (possibly by elapsed 

time) throughout the assembly task, then perhaps a vigilance decrement could be studied 

in a number of ways.  It was mentioned previously that fault #12 was designed to address 

findings by Tsao, Drury, and Morawski (1979) and a later study by Tsao and Wang 

(1984) examined faults of different difficulty, suggesting that these faults may have 

different probabilities of detection.  These and other vigilance studies may benefit from 

the recognition of different probabilities of detection for different types of error, both 

within and outside of the concurrent dual verification construct.  Altmann (2002) has 

fundamental areas of overlap with the current research by examining a performance 

decline within the current task as memory decays (or loses activation) to make room for 

encoding the next task.  Similarly, Altmann and Trafton (2007) discuss the effects of 
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delayed response and performance recovery after interruptions.  While this study was 

unable to directly test the activation or interruption recovery concept, given that the 

presence of a JPA is not a repetitive intervention, a future experiment with multiple JPAs 

could address this activation model.  Finally, it is worth noting that the QA checkers in 

this experiment used a simple checklist as the JPA, and future studies may have different 

results with other JPA formats.  Perhaps as a result of such studies, optimal JPA formats 

for different fault types may emerge. 
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Appendix A Pattern A  

 

Figure A1: Pieces from Pattern A (Lego™ Kit 5508)  
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Part ID 
# of 
Parts 

Part ID 
# of 
Parts 

Part ID 
# of 
Parts 

4528139  1  4521943  1  611226  2 
4528164  3  300901  1  303726  9 
4563682  2  4181142  2  4180814  2 
303221  1  300101  1  300924  4 
371021  3  300401  5  300124  6 
300421  2  300501  2  301024  2 
300521  2  300201  4  300224  7 
4552353  2  4181144  2  362224  2 
4153827  2  300126  2  300324  5 
4118827  2  300326  3  235724  4 

4121739  2  303926  1  300424  4 
4173805  2  4121966  1  300524  2 

4520842  6        Total:  104 
 

Figure A2: Lego™ Kit 5508 Contents 
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Appendix B Pattern B 

 

 

Figure B1: Pieces from Pattern B (Lego™ Kit 6167) 
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Part ID 
# of 
Parts 

Part ID 
# of 
Parts 

Part ID 
# of 
Parts 

621628  2  300126  4  4247139  1 
4220632  2  301026  2  300401  4 
4124107  2  3004626  1  300501  2 
4153827  4  302226  1  300724  2 
4118827  2  306226  4  300824  2 
4211183  2  4113220  1  4181143  2 
413221  3  395701  1  300824  2 
365921  2  4218637  1  301024  1 
4162384  1  300701  2  300124  7 
4144003  1  300801  2  300224  12 

304321  1  4181142  3  362224  4 
4157124  2  301001  2  300324  9 
300421  4  300901  6  300424  2 
4129539  9  300201  4  300524  2 
303921  6  300301  4  407024  1 
303721  8  300101  6  3005744  1 

4217795  1        Total:  150 
 

Figure B2: Lego™ Kit 6167 Contents 
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Appendix C Incorrect Parts 

Figure C1: Parts Used for Faults 
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Appendix D Job Performance Aid 

Job Performance Aid 

For the Quality Assurance Role 

 Your role as an observer is an essential part of this important task. 
Complex assemblies require a second set of eyes in order to catch any 
errors. 

 Pay attention for the following types of error: 
o An incorrect piece is installed, meaning that it is either the 

wrong size, wrong color, or wrong markings 
o The correct piece is installed, but in the wrong orientation 
o The correct piece is installed, but in the wrong location 

 Feel free to ask questions about the task at any time. If necessary, ask 
the assembler to stop until you are comfortable with proceeding.  

 The assembler should not turn to the next page of the instructions 
without your approval. 

 For each page of the instructions, the order of assembly does not 
matter. 

 The box contains 512 total parts.  Some parts will be used and some 
will not. 
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Appendix E Raw Data 

Figure E1: First Pattern Raw Data (1 of 2) 

 

Male = 14

Female = 10
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First JPA First Minute Second Minute Second
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Total 

Pattern 

Time

Miss #1 

Actual 

Time

Miss #2 

Actual 

Time

Miss #3 

Actual 

Time

Miss #4 

Actual 

Time

1 M 49 B without JPA, A with JPA 2 20 27 6 24:46

2 F 40 A with JPA, B without JPA 1 1 2 53 6 35 1 21 24 1 21 33 18:40 03:42 18:31

3 M 35 A without JPA, B with JPA 1 3 10 6 32 1 19 36 1 20 14 1 20 22 17:12 03:22 16:26 17:04

4 M 28 A with JPA, B without JPA 1 1 3 18 20 16 16:58

5 F 54 B without JPA, A with JPA 2 42 14 28 1 21 24 1 26 8 23:26 11:46 18:42

6 F 30 B with JPA, A without JPA 1 2 31 11 24 1 16 15 1 18 15 1 22 37 20:06 08:53 13:44 15:44

7 (DQ) F 56 A without JPA, B with JPA

8 M 30 B with JPA, A without JPA 1 4 10 14 47 1 23 41 1 30 31 26:21 10:37 19:31

9 F 35 B with JPA, A without JPA 1 2 50 13 54 1 20 30 1 24 12 21:22 11:04 17:40

10 M 24 B without JPA, A with JPA 2 5 22 14 20:09

11 F 54 A with JPA, B without JPA 1 1 3 18 6 14 1 14 45 1 17 33 1 18 0 1 18 10 14:52 02:56 11:27 14:15 14:42

12 M 43 A without JPA, B with JPA 1 2 43 5 23 1 13 43 1 15 58 1 16 24 1 16 31 13:48 02:40 11:00 13:15 13:41

13 M 49 B without JPA, A with JPA 2 22 9 49 1 13 23 1 15 12 1 18 53 16:31 07:27 11:01 12:50

14 M 25 A without JPA, B with JPA 1 1 57 4 26 1 12 2 1 13 50 1 14 15 1 14 26 12:29 02:29 10:05 11:53 12:18

15 F 56 B with JPA, A without JPA 1 2 4 2 48 1 10 22 1 16 5 1 19 24 17:20 00:44 08:18 14:01

16 F 39 B with JPA, A without JPA 1 3 36 13 5 1 19 24 1 23 30 19:54 09:29 15:48

17 F 37 A with JPA, B without JPA 1 1 3 38 7 54 1 20 40 17:02 04:16

18 M 47 A without JPA, B with JPA 1 2 26 5 39 1 12 45 1 14 42 1 15 8 1 15 21 12:55 03:13 10:19 12:16 12:42

19 M 48 A with JPA, B without JPA 1 1 3 9 6 30 1 16 51 1 17 29 1 17 46 14:37 03:21 13:42 14:20

20 M 65 B without JPA, A with JPA 2 44 14 8 1 19 24 1 19 30 1 21 15 1 25 44 23:00 11:24 16:40 16:46 18:31

21 M 46 A without JPA, B with JPA 1 2 20 4 42 1 14 2 1 14 26 1 14 36 12:16 02:22 11:42 12:06

22 M 55 A with JPA, B without JPA 1 1 3 7 5 42 1 16 2 1 16 25 1 16 33 13:26 02:35 12:55 13:18

23 F 34 A without JPA, B with JPA 1 2 42 5 49 1 15 53 1 16 27 1 16 36 13:54 03:07 13:11 13:45

24 M 53 B without JPA, A with JPA 3 50 4 38 1 8 8 1 12 42 1 18 51 1 22 22 18:32 00:48 04:18 08:52 15:01

25 F 58 B with JPA, A without JPA 1 5 2 6 50 1 14 19 1 19 8 1 21 3 1 24 40 19:38 01:48 09:17 14:06 16:01

First Pattern
Miss #2 Elapsed 

Time Video End Time

Miss #3 Elapsed 

Time

Miss #4 Elapsed 

TimeError Type Error Type Error Type Error Type

Video Start 

Time 

Miss #1 Elapsed 

Time
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Figure E2: First Pattern Raw Data (2 of 2) 

 

Male = 14

Female = 10

Participant Gender Age Presentation Order

Pattern A 

First JPA First #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

False 

Alarms Mistakes

First Half 

Misses

Second 

Half 

Misses Notes

1 M 49 B without JPA, A with JPA 0 0 0 0 0 0 0 1 1 0 0 Test subject is red/green color blind

2 F 40 A with JPA, B without JPA 1 1 1 0 0 0 0 0 1 0 0 1 1

3 M 35 A without JPA, B with JPA 1 1 0 0 0 0 1 1 0 1 1 2

4 M 28 A with JPA, B without JPA 1 1 0 0 0 0 0 0 0 0 0 0 0

5 F 54 B without JPA, A with JPA 0 1 0 0 0 1 0 1 1 1
Only 6 errors, forgot to perform p.2 fault 

correctly

6 F 30 B with JPA, A without JPA 1 0 0 1 0 1 0 1 0 3 1 2

7 (DQ) F 56 A without JPA, B with JPA
Disqualified due to misunderstanding pre‐

trial instructions

8 M 30 B with JPA, A without JPA 1 0 0 1 0 0 0 1 0 1 1 1

9 F 35 B with JPA, A without JPA 1 0 0 1 0 0 0 1 0 1 0 2

10 M 24 B without JPA, A with JPA 0 0 0 0 0 0 0 0 0 0 0

11 F 54 A with JPA, B without JPA 1 1 1 0 0 0 1 1 1 0 0 1 3

12 M 43 A without JPA, B with JPA 1 1 0 0 0 1 1 1 0 0 1 3 Miss #2 became a catch at 14:26

13 M 49 B without JPA, A with JPA 0 0 1 0 1 0 1 0 0 1 2

14 M 25 A without JPA, B with JPA 1 1 0 0 0 1 1 1 0 0 1 3

15 F 56 B with JPA, A without JPA 1 1 0 1 0 0 0 1 2 0 2 1

Norman's mode error, p.2, 2:39 elapsed on 

video; pointed out a missing piece even 

before I had a chance to lay it down ‐ and 

then missed the error that I inserted for 

that very piece, at 2:48 elapsed

16 F 39 B with JPA, A without JPA 1 0 0 1 0 0 0 1 0 0 1 1

17 F 37 A with JPA, B without JPA 1 1 1 0 0 0 0 0 0 1 0 1 0 Miss #1 became a catch at 20:09

18 M 47 A without JPA, B with JPA 1 1 0 0 0 1 1 1 0 1 1 3

19 M 48 A with JPA, B without JPA 1 1 1 0 0 0 0 1 1 0 0 1 2

20 M 65 B without JPA, A with JPA 0 0 1 0 1 1 1 0 0 1 3 Miss #2 became a catch at 19:42

21 M 46 A without JPA, B with JPA 1 1 0 0 0 0 1 1 0 1 1 2

22 M 55 A with JPA, B without JPA 1 1 1 0 0 0 0 1 1 0 0 1 2

23 F 34 A without JPA, B with JPA 1 1 0 0 0 0 1 1 0 0 1 2

24 M 53 B without JPA, A with JPA 1 1 1 0 0 0 1 0 0 3 1 Miss #2 became a catch at 9:12

25 F 58 B with JPA, A without JPA 1 1 0 1 0 0 1 1 1 0 2 2

11 0 0 0 4 9 10 3 1 10 0 3 2 10

First Pattern

Misses
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Figure E3: Second Pattern Raw Data (1 of 2) 
 

 

 

Male = 14

Female = 10

Participant Gender Age Presentation Order

Pattern A 

First JPA First Minute Second Minute Second
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Minute Second

1 M 49 B without JPA, A with JPA 29 6 44 37

2 F 40 A with JPA, B without JPA 1 1 22 35 38 48 1 43 19

3 M 35 A without JPA, B with JPA 1 24 48 25 36 1 33 54 1 38 25 1 40 11 1 44 31

4 M 28 A with JPA, B without JPA 1 1 20 59 29 14 1 33 21 1 35 21 1 39 12

5 F 54 B without JPA, A with JPA 27 30 41 37 1 41 47

6 F 30 B with JPA, A without JPA 1 23 44 27 10 1 38 16 1 39 16

7 (DQ) F 56 A without JPA, B with JPA

8 M 30 B with JPA, A without JPA 1 31 53 35 25 1 39 28 1 46 39 1 47 39

9 F 35 B with JPA, A without JPA 1 25 4 37 30 1 37 38

10 M 24 B without JPA, A with JPA 23 43 34 2 1 36 24 37 30

11 F 54 A with JPA, B without JPA 1 1 19 6 19 55 1 27 47 1 34 56 1 38 30

12 M 43 A without JPA, B with JPA 1 18 0 22 52 1 26 54 1 32 54 1 36 29

13 M 49 B without JPA, A with JPA 20 5 22 48 1 29 37 1 31 38 1 31 54 1 32 0

14 M 25 A without JPA, B with JPA 1 15 55 29 59 1 33 13

15 F 56 B with JPA, A without JPA 1 20 14 23 2 1 31 51 1 32 14 1 32 23

16 F 39 B with JPA, A without JPA 1 24 27 27 14 1 36 41 1 36 55 1 37 38

17 F 37 A with JPA, B without JPA 1 1 21 25 22 17 1 25 39 1 34 41 1 35 48 1 39 59

18 M 47 A without JPA, B with JPA 1 16 59 24 37 1 28 9 1 29 25 1 32 27

19 M 48 A with JPA, B without JPA 1 1 18 26 19 4 1 25 57 1 29 44 1 29 48 1 31 6 1 34 35

20 M 65 B without JPA, A with JPA 27 18 29 55 1 38 31 1 38 39 1 38 58

21 M 46 A without JPA, B with JPA 1 18 15 25 40 1 31 8 1 34 48

22 M 55 A with JPA, B without JPA 1 1 17 20 25 51 1 31 55 1 35 53

23 F 34 A without JPA, B with JPA 1 19 22 28 5 1 34 20 1 38 21

24 M 53 B without JPA, A with JPA 24 16 26 44 1 33 5 1 35 10 1 35 35 1 35 44

25 F 58 B with JPA, A without JPA 1 28 9 30 49 1 41 49 1 42 24 1 42 32

Second Pattern

Error Type Error Type

Video Start 

Time 

Miss #1 Elapsed 

Time

Miss #2 Elapsed 

Time

Miss #3 Elapsed 

Time

Miss #4 Elapsed 

TimeError Type

Miss #5 Elapsed 

Time Error TypeError Type Video End Time
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Figure E4: Second Pattern Raw Data (2 of 2) 
 

 

Male = 14

Female = 10

Participant Gender Age Presentation Order

Pattern A 

First JPA First

Total 

Pattern 

Time

Miss #1 

Actual 

Time

Miss #2 

Actual 

Time

Miss #3 

Actual 

Time

Miss #4 

Actual 

Time

Miss #5 

Actual 

Time #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

False 

Alarms Mistakes

First Half 

Misses

Second 

Half 

Misses Notes

1 M 49 B without JPA, A with JPA 15:31 0 0 0 0 0 0 0 0 0

2 F 40 A with JPA, B without JPA 1 1 20:44 16:13 0 0 0 0 0 1 1 1 0 1

Only 6 errors, forgot to perform p.12 fault 

correctly

Norman's mode error (early page turn), 

p.7, 28:06 elapsed on video

3 M 35 A without JPA, B with JPA 1 19:43 00:48 09:06 13:37 15:23 1 0 1 0 0 1 1 0 0 2 2

4 M 28 A with JPA, B without JPA 1 1 18:13 08:15 12:22 14:22 0 1 0 0 1 1 0 2 1 2
Only 6 errors, forgot to perform p.2 fault 

correctly

5 F 54 B without JPA, A with JPA 14:17 14:07 0 0 0 0 0 0 1 0 0 0 1

6 F 30 B with JPA, A without JPA 1 15:32 03:26 14:32 1 0 0 0 0 1 0 0 1 1 1

Only 6 errors, couldn't perform last one 

(1x1 eye block, p.20) because I mistakenly 

used it in the first pattern

7 (DQ) F 56 A without JPA, B with JPA

8 M 30 B with JPA, A without JPA 1 15:46 03:32 07:35 14:46 1 0 1 0 0 1 0 0 0 2 1
Miss #1 became a catch at 41:58

Miss #3 became a catch at 47:28

9 F 35 B with JPA, A without JPA 1 12:34 12:26 0 0 0 0 0 0 1 0 0 0 1

10 M 24 B without JPA, A with JPA 13:47 10:19 12:41 0 0 0 0 1 1 0 0 0 0 2 Miss #1 became a catch at 34:15

11 F 54 A with JPA, B without JPA 1 1 19:24 00:49 08:41 15:50 1 0 1 0 0 0 1 0 0 2 1

12 M 43 A without JPA, B with JPA 1 18:29 04:52 08:54 14:54 0 1 1 0 0 0 1 0 0 2 1

13 M 49 B without JPA, A with JPA 11:55 02:43 09:32 11:33 11:49 1 0 0 0 1 1 1 1 0 1 3

14 M 25 A without JPA, B with JPA 1 17:18 14:04 0 0 0 0 0 0 1 0 0 0 1

15 F 56 B with JPA, A without JPA 1 12:09 02:48 11:37 12:00 1 0 0 0 0 1 1 0 0 1 2

16 F 39 B with JPA, A without JPA 1 13:11 02:47 12:14 12:28 1 0 0 0 0 1 1 0 0 1 2

17 F 37 A with JPA, B without JPA 1 1 18:34 00:52 04:14 13:16 14:23 1 1 0 0 0 1 1 0 0 2 2

18 M 47 A without JPA, B with JPA 1 15:28 07:38 11:10 12:26 0 0 1 0 0 1 1 1 0 1 2

19 M 48 A with JPA, B without JPA 1 1 16:09 00:38 07:31 11:18 11:22 12:40 1 0 1 0 1 1 1 1 0 2 3

20 M 65 B without JPA, A with JPA 11:40 02:37 11:13 11:21 1 0 0 0 0 1 1 0 0 1 2

21 M 46 A without JPA, B with JPA 1 16:33 07:25 12:53 0 0 1 0 0 0 1 0 0 1 1

22 M 55 A with JPA, B without JPA 1 1 18:33 08:31 14:35 0 0 1 0 0 0 1 0 0 1 1

23 F 34 A without JPA, B with JPA 1 18:59 08:43 14:58 0 0 1 0 0 0 1 0 0 1 1

24 M 53 B without JPA, A with JPA 11:28 02:28 08:49 10:54 11:19 1 0 0 0 1 1 1 0 0 1 3

25 F 58 B with JPA, A without JPA 1 14:23 02:40 13:40 14:15 1 0 0 0 0 1 1 0 0 1 2

8 0 1 0 3 9 8 4 2 9 0 1 5 12

Second Pattern

Misses
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Appendix F Fault Types 

Fault #1, detailed in Chapter 3, is reproduced here: 

 

Figure F1: Sample Instructions Page, Depicting Fault #1 (Fault Type 1) 
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Figure F2: Fault #1 Occurring in an Experimental Trial 
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Figure F3 shows a page from the assembly instructions for fault type 2 (Fault #8), which 

is where an incorrect assembly piece is used. The arrow points to the black 2 x 4 piece 

that is replaced by two 1 x 4 pieces in the experimental trial, one of which is shown in 

Figure F4.   

 

Figure F3: Sample Instructions Page, Depicting Fault #8 (Fault Type 2) 
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Figure F4: Fault #8 Occurring in an Experimental Trial 
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Figure F5 depicts fault type 3 (also Fault #3) whereby the correct pieces are used but they 

are not in the correct order.  The arrow shows the correct orientation where the 2 x 2 

piece is in the rear corner of the assembly.  Figure F6, however, indicates the fault 

whereby the 2 x 4 piece is moved such that it appears in the rear corner instead. 

 

Figure F5: Sample Instructions Page, Depicting Fault #3 (Fault Type 3) 
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Figure F6: Fault #3 Occurring in an Experimental Trial 
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Figure F7 shows a red window in the assembly that is correctly installed.  An example of 

fault type 4, which uses a correct part but in the wrong orientation, is seen in Figure F8 

where the window is installed backwards. 

 

Figure F7: Sample Instructions Page, Depicting Fault #5 (Fault Type 4) 
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Figure F8: Fault #5 Occurring in an Experimental Trial 
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Appendix G Minitab Results 

The following data are a direct output from Minitab analyses.  Note that there were two 

separate series of calculations run on 12/9/2013 and 1/2/2014. 

 

—————   12/9/2013 3:35:45 PM   ————————————————————  
 
Results for: Pattern A 
  

Descriptive Statistics: Result  
 
Variable  ErrorNumber       Sum 
Result    1             19.0000 
          2            0.000000 
          3              1.0000 
          4            0.000000 
          5              7.0000 
          6             18.0000 
          7             18.0000 
 
7 column(s) excluded because they have the wrong number of rows. 
Subset worksheet Subset of Pattern A created. 
 
 

Results for: Pattern A wo S1 E2 E4 
  

Binary Logistic Regression: Result versus Sequence, ErrorNumber  
 
Link Function: Logit 
 
 
Response Information 
 
Variable  Value  Count 
Result    1         63  (Event) 
          0         52 
          Total    115 
 
 
Logistic Regression Table 
 
                                                 Odds     95% CI 
Predictor         Coef   SE Coef      Z      P  Ratio  Lower  Upper 
Constant       2.97386  0.850309   3.50  0.000 
Sequence 
 BJA          -1.20882  0.821704  -1.47  0.141   0.30   0.06   1.49 
 JAB          -2.06992  0.796186  -2.60  0.009   0.13   0.03   0.60 
 JBA          -1.63687  0.792043  -2.07  0.039   0.19   0.04   0.92 
ErrorNumber 
 3            -5.13880   1.23813  -4.15  0.000   0.01   0.00   0.07 
 5            -2.67489  0.773096  -3.46  0.001   0.07   0.02   0.31 
 6           -0.295419  0.771207  -0.38  0.702   0.74   0.16   3.37 
 7           -0.295419  0.771207  -0.38  0.702   0.74   0.16   3.37 
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Log-Likelihood = -48.714 
Test that all slopes are zero: G = 60.943, DF = 7, P-Value = 0.000 
 
 
Goodness-of-Fit Tests 
 
Method           Chi-Square  DF      P 
Pearson             16.2009  12  0.182 
Deviance            15.0132  12  0.241 
Hosmer-Lemeshow      7.8827   8  0.445 
 
 
Table of Observed and Expected Frequencies: 
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic) 
 
                               Group 
Value     1     2    3    4    5    6    7     8     9   10  Total 
1 
  Obs     1     0    1    6    7   10    9    11    12    6     63 
  Exp   0.2   0.8  2.1  4.9  7.8  8.7  9.2  12.4  11.2  5.7 
0 
  Obs    11    11   11    5    5    2    3     4     0    0     52 
  Exp  11.8  10.2  9.9  6.1  4.2  3.3  2.8   2.6   0.8  0.3 
Total    12    11   12   11   12   12   12    15    12    6    115 
 
 
Measures of Association: 
(Between the Response Variable and Predicted Probabilities) 
 
Pairs       Number  Percent  Summary Measures 
Concordant    2814     85.9  Somers' D              0.75 
Discordant     343     10.5  Goodman-Kruskal Gamma  0.78 
Ties           119      3.6  Kendall's Tau-a        0.38 
Total         3276    100.0 
 
13 column(s) excluded because they have the wrong number of rows. 
Subset worksheet Subset of Pattern A created. 
 
13 column(s) excluded because they have the wrong number of rows. 
Subset worksheet Subset of Pattern A created. 
 
 

Results for: Pattern A wo E2 E4 
  

Binary Logistic Regression: Result versus Sequence, ErrorNumber  
 
Link Function: Logit 
 
 
Response Information 
 
Variable  Value  Count 
Result    1         63  (Event) 
          0         57 
          Total    120 
 
 
Logistic Regression Table 
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                                                 Odds     95% CI 
Predictor         Coef   SE Coef      Z      P  Ratio  Lower  Upper 
Constant       2.84529  0.809862   3.51  0.000 
Sequence 
 BJA          -1.79208  0.776314  -2.31  0.021   0.17   0.04   0.76 
 JAB          -1.99867  0.778398  -2.57  0.010   0.14   0.03   0.62 
 JBA          -1.57763  0.774927  -2.04  0.042   0.21   0.05   0.94 
ErrorNumber 
 3            -4.96722   1.21817  -4.08  0.000   0.01   0.00   0.08 
 5            -2.49396  0.731281  -3.41  0.001   0.08   0.02   0.35 
 6           -0.250882  0.709869  -0.35  0.724   0.78   0.19   3.13 
 7           -0.250882  0.709869  -0.35  0.724   0.78   0.19   3.13 
 
 
Log-Likelihood = -53.394 
Test that all slopes are zero: G = 59.267, DF = 7, P-Value = 0.000 
 
 
Goodness-of-Fit Tests 
 
Method           Chi-Square  DF      P 
Pearson             16.4607  12  0.171 
Deviance            15.9309  12  0.194 
Hosmer-Lemeshow      7.2051   8  0.515 
 
 
Table of Observed and Expected Frequencies: 
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic) 
 
                               Group 
Value     1     2    3    4    5    6    7    8     9    10  Total 
1 
  Obs     0     1    4    3    7    8   10    7    11    12     63 
  Exp   0.2   0.8  2.1  4.9  7.7  8.3  8.6  8.9  10.3  11.3 
0 
  Obs    12    11    8    9    5    4    2    5     1     0     57 
  Exp  11.8  11.2  9.9  7.1  4.3  3.7  3.4  3.1   1.7   0.7 
Total    12    12   12   12   12   12   12   12    12    12    120 
 
 
Measures of Association: 
(Between the Response Variable and Predicted Probabilities) 
 
Pairs       Number  Percent  Summary Measures 
Concordant    3030     84.4  Somers' D              0.73 
Discordant     420     11.7  Goodman-Kruskal Gamma  0.76 
Ties           141      3.9  Kendall's Tau-a        0.37 
Total         3591    100.0 
 
  

Binary Logistic Regression: Result versus Sequence, ErrorNumber  
 
Link Function: Logit 
 
 
Response Information 
 
Variable  Value  Count 
Result    1         63  (Event) 
          0         57 
          Total    120 
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Logistic Regression Table 
 
                                                 Odds     95% CI 
Predictor         Coef   SE Coef      Z      P  Ratio  Lower  Upper 
Constant       2.84529  0.809862   3.51  0.000 
Sequence 
 BJA          -1.79208  0.776314  -2.31  0.021   0.17   0.04   0.76 
 JAB          -1.99867  0.778398  -2.57  0.010   0.14   0.03   0.62 
 JBA          -1.57763  0.774927  -2.04  0.042   0.21   0.05   0.94 
ErrorNumber 
 3            -4.96722   1.21817  -4.08  0.000   0.01   0.00   0.08 
 5            -2.49396  0.731281  -3.41  0.001   0.08   0.02   0.35 
 6           -0.250882  0.709869  -0.35  0.724   0.78   0.19   3.13 
 7           -0.250882  0.709869  -0.35  0.724   0.78   0.19   3.13 
 
 
Log-Likelihood = -53.394 
Test that all slopes are zero: G = 59.267, DF = 7, P-Value = 0.000 
 
 
Goodness-of-Fit Tests 
 
Method           Chi-Square  DF      P 
Pearson             16.4607  12  0.171 
Deviance            15.9309  12  0.194 
Hosmer-Lemeshow      7.2051   8  0.515 
 
 
Table of Observed and Expected Frequencies: 
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic) 
 
                               Group 
Value     1     2    3    4    5    6    7    8     9    10  Total 
1 
  Obs     0     1    4    3    7    8   10    7    11    12     63 
  Exp   0.2   0.8  2.1  4.9  7.7  8.3  8.6  8.9  10.3  11.3 
0 
  Obs    12    11    8    9    5    4    2    5     1     0     57 
  Exp  11.8  11.2  9.9  7.1  4.3  3.7  3.4  3.1   1.7   0.7 
Total    12    12   12   12   12   12   12   12    12    12    120 
 
 
Measures of Association: 
(Between the Response Variable and Predicted Probabilities) 
 
Pairs       Number  Percent  Summary Measures 
Concordant    3030     84.4  Somers' D              0.73 
Discordant     420     11.7  Goodman-Kruskal Gamma  0.76 
Ties           141      3.9  Kendall's Tau-a        0.37 
Total         3591    100.0 
 
  

Binary Logistic Regression: Result versus Sequence, ErrorNumber  
 
Link Function: Logit 
 
 
Response Information 
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Variable  Value  Count 
Result    1         63  (Event) 
          0         57 
          Total    120 
 
 
Logistic Regression Table 
 
                                                 Odds     95% CI 
Predictor         Coef   SE Coef      Z      P  Ratio  Lower  Upper 
Constant       2.84529  0.809862   3.51  0.000 
Sequence 
 BJA          -1.79208  0.776314  -2.31  0.021   0.17   0.04   0.76 
 JAB          -1.99867  0.778398  -2.57  0.010   0.14   0.03   0.62 
 JBA          -1.57763  0.774927  -2.04  0.042   0.21   0.05   0.94 
ErrorNumber 
 3            -4.96722   1.21817  -4.08  0.000   0.01   0.00   0.08 
 5            -2.49396  0.731281  -3.41  0.001   0.08   0.02   0.35 
 6           -0.250882  0.709869  -0.35  0.724   0.78   0.19   3.13 
 7           -0.250882  0.709869  -0.35  0.724   0.78   0.19   3.13 
 
 
Log-Likelihood = -53.394 
Test that all slopes are zero: G = 59.267, DF = 7, P-Value = 0.000 
 
 
Goodness-of-Fit Tests 
 
Method           Chi-Square  DF      P 
Pearson             16.4607  12  0.171 
Deviance            15.9309  12  0.194 
Hosmer-Lemeshow      7.2051   8  0.515 
 
 
Table of Observed and Expected Frequencies: 
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic) 
 
                               Group 
Value     1     2    3    4    5    6    7    8     9    10  Total 
1 
  Obs     0     1    4    3    7    8   10    7    11    12     63 
  Exp   0.2   0.8  2.1  4.9  7.7  8.3  8.6  8.9  10.3  11.3 
0 
  Obs    12    11    8    9    5    4    2    5     1     0     57 
  Exp  11.8  11.2  9.9  7.1  4.3  3.7  3.4  3.1   1.7   0.7 
Total    12    12   12   12   12   12   12   12    12    12    120 
 
 
Measures of Association: 
(Between the Response Variable and Predicted Probabilities) 
 
Pairs       Number  Percent  Summary Measures 
Concordant    3030     84.4  Somers' D              0.73 
Discordant     420     11.7  Goodman-Kruskal Gamma  0.76 
Ties           141      3.9  Kendall's Tau-a        0.37 
Total         3591    100.0 
 
 
Results for: Pattern B 
  

Descriptive Statistics: Result  
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Variable  ErrorNumber       Sum 
Result    1               3.000 
          2              1.0000 
          3              10.000 
          4            0.000000 
          5               3.000 
          6               2.000 
          7              10.000 
 
  

Descriptive Statistics: Result  
 
Variable  ErrorNumber     Sum 
Result    1            5.0000 
          2            10.000 
          3            10.000 
          4            1.0000 
          5            8.0000 
          6            14.000 
          7            14.000 
 
  

Descriptive Statistics: Result  
 
Variable  ErrorNumber       Sum 
Result    1               7.000 
          2              3.0000 
          3             19.0000 
          4            0.000000 
          5              4.0000 
          6              7.0000 
          7             22.0000 
 
13 column(s) excluded because they have the wrong number of rows. 
Subset worksheet Pattern B wo E4 created. 
 
 
Results for: Pattern B wo E4 
  

Binary Logistic Regression: Result versus Sequence, ErrorNumber  
 
Link Function: Logit 
 
 
Response Information 
 
Variable  Value  Count 
Result    1         62  (Event) 
          0         80 
          Total    142 
 
* NOTE * 142 cases were used 
* NOTE * 2 cases contained missing values 
 
 
Logistic Regression Table 
 
                                                 Odds      95% CI 
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Predictor         Coef   SE Coef      Z      P  Ratio  Lower   Upper 
Constant     -0.892876  0.593447  -1.50  0.132 
Sequence 
 BJA         -0.350493  0.636774  -0.55  0.582   0.70   0.20    2.45 
 JAB          0.614972  0.610142   1.01  0.313   1.85   0.56    6.12 
 JBA          0.186810  0.611754   0.31  0.760   1.21   0.36    4.00 
ErrorNumber 
 2            -1.21127  0.776262  -1.56  0.119   0.30   0.07    1.36 
 3             2.15010  0.691037   3.11  0.002   8.59   2.22   33.26 
 5           -0.869622  0.721889  -1.20  0.228   0.42   0.10    1.73 
 6           -0.132053  0.649534  -0.20  0.839   0.88   0.25    3.13 
 7             3.22739  0.879472   3.67  0.000  25.21   4.50  141.33 
 
 
Log-Likelihood = -66.020 
Test that all slopes are zero: G = 62.525, DF = 8, P-Value = 0.000 
 
 
Goodness-of-Fit Tests 
 
Method           Chi-Square  DF      P 
Pearson             15.7178  15  0.401 
Deviance            17.4991  15  0.290 
Hosmer-Lemeshow      6.9396   6  0.326 
 
 
Table of Observed and Expected Frequencies: 
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic) 
 
                            Group 
Value     1     2     3     4     5     6     7     8  Total 
1 
  Obs     4     1     3     4     6    12    14    18     62 
  Exp   1.8   2.7   3.4   4.8   6.2  11.1  15.3  16.7 
0 
  Obs    14    17    14    14    12     5     4     0     80 
  Exp  16.2  15.3  13.6  13.2  11.8   5.9   2.7   1.3 
Total    18    18    17    18    18    17    18    18    142 
 
 
Measures of Association: 
(Between the Response Variable and Predicted Probabilities) 
 
Pairs       Number  Percent  Summary Measures 
Concordant    4131     83.3  Somers' D              0.69 
Discordant     703     14.2  Goodman-Kruskal Gamma  0.71 
Ties           126      2.5  Kendall's Tau-a        0.34 
Total         4960    100.0 
 
  

—————   1/2/2014 10:11:20 AM   ———————————————————— 
  
 
Welcome to Minitab, press F1 for help. 
Retrieving project from file: 
'C:\PROJECTS\ACTIVE\FOSSHAGE\REDO_2\MINITAB.MPJ' 
 
Results for: Pattern A wo E2 E4 
  

Binary Logistic Regression: RR versus Sequence, ErrorNumber  
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Link Function: Logit 
 
 
Response Information 
 
Variable  Value  Count 
RR        1         57  (Event) 
          0         63 
          Total    120 
 
 
Logistic Regression Table 
 
                                                               95% CI 
Predictor        Coef   SE Coef      Z      P  Odds Ratio  Lower    Upper 
Constant     -2.84529  0.809862  -3.51  0.000 
Sequence 
 BJA          1.79208  0.776314   2.31  0.021        6.00   1.31    27.48 
 JAB          1.99867  0.778398   2.57  0.010        7.38   1.60    33.93 
 JBA          1.57763  0.774927   2.04  0.042        4.84   1.06    22.12 
ErrorNumber 
 3            4.96722   1.21817   4.08  0.000      143.63  13.19  1563.68 
 5            2.49396  0.731281   3.41  0.001       12.11   2.89    50.77 
 6           0.250882  0.709869   0.35  0.724        1.29   0.32     5.17 
 7           0.250882  0.709869   0.35  0.724        1.29   0.32     5.17 
 
 
Log-Likelihood = -53.394 
Test that all slopes are zero: G = 59.267, DF = 7, P-Value = 0.000 
 
 
Goodness-of-Fit Tests 
 
Method           Chi-Square  DF      P 
Pearson             16.4607  12  0.171 
Deviance            15.9309  12  0.194 
Hosmer-Lemeshow      5.3029   8  0.725 
 
 
Table of Observed and Expected Frequencies: 
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic) 
 
                               Group 
Value     1     2    3    4    5    6    7    8     9    10  Total 
1 
  Obs     0     1    4    3    4    5    9    8    11    12     57 
  Exp   0.7   1.7  3.1  3.4  3.7  4.3  7.1  9.9  11.2  11.8 
0 
  Obs    12    11    8    9    8    7    3    4     1     0     63 
  Exp  11.3  10.3  8.9  8.6  8.3  7.7  4.9  2.1   0.8   0.2 
Total    12    12   12   12   12   12   12   12    12    12    120 
 
 
Measures of Association: 
(Between the Response Variable and Predicted Probabilities) 
 
Pairs       Number  Percent  Summary Measures 
Concordant    3030     84.4  Somers' D              0.73 
Discordant     420     11.7  Goodman-Kruskal Gamma  0.76 
Ties           141      3.9  Kendall's Tau-a        0.37 
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Total         3591    100.0 
 
 

Results for: Pattern B wo E4 
  

Binary Logistic Regression: RR versus Sequence, ErrorNumber  
 
Link Function: Logit 
 
 
Response Information 
 
Variable  Value  Count 
RR        1         80  (Event) 
          0         62 
          Total    142 
 
* NOTE * 142 cases were used 
* NOTE * 2 cases contained missing values 
 
 
Logistic Regression Table 
 
                                                 Odds     95% CI 
Predictor         Coef   SE Coef      Z      P  Ratio  Lower  Upper 
Constant      0.892876  0.593447   1.50  0.132 
Sequence 
 BJA          0.350493  0.636774   0.55  0.582   1.42   0.41   4.95 
 JAB         -0.614972  0.610142  -1.01  0.313   0.54   0.16   1.79 
 JBA         -0.186810  0.611754  -0.31  0.760   0.83   0.25   2.75 
ErrorNumber 
 2             1.21127  0.776262   1.56  0.119   3.36   0.73  15.37 
 3            -2.15010  0.691037  -3.11  0.002   0.12   0.03   0.45 
 5            0.869622  0.721889   1.20  0.228   2.39   0.58   9.82 
 6            0.132053  0.649534   0.20  0.839   1.14   0.32   4.08 
 7            -3.22739  0.879472  -3.67  0.000   0.04   0.01   0.22 
 
 
Log-Likelihood = -66.020 
Test that all slopes are zero: G = 62.525, DF = 8, P-Value = 0.000 
 
 
Goodness-of-Fit Tests 
 
Method           Chi-Square  DF      P 
Pearson             15.7178  15  0.401 
Deviance            17.4991  15  0.290 
Hosmer-Lemeshow      6.9396   6  0.326 
 
 
Table of Observed and Expected Frequencies: 
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic) 
 
                            Group 
Value     1     2     3     4     5     6     7     8  Total 
1 
  Obs     0     4     5    12    14    14    17    14     80 
  Exp   1.3   2.7   5.9  11.8  13.2  13.6  15.3  16.2 
0 
  Obs    18    14    12     6     4     3     1     4     62 
  Exp  16.7  15.3  11.1   6.2   4.8   3.4   2.7   1.8 
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Total    18    18    17    18    18    17    18    18    142 
 
 
Measures of Association: 
(Between the Response Variable and Predicted Probabilities) 
 
Pairs       Number  Percent  Summary Measures 
Concordant    4131     83.3  Somers' D              0.69 
Discordant     703     14.2  Goodman-Kruskal Gamma  0.71 
Ties           126      2.5  Kendall's Tau-a        0.34 
Total         4960    100.0 
 
 

Results for: Pattern A wo E2 E4 
  

Binary Logistic Regression: RR versus Sequence, ErrorNumber  
 
Link Function: Logit 
 
 
Response Information 
 
Variable  Value  Count 
RR        1         57  (Event) 
          0         63 
          Total    120 
 
 
Logistic Regression Table 
 
                                                               95% CI 
Predictor        Coef   SE Coef      Z      P  Odds Ratio  Lower    Upper 
Constant     -2.84529  0.809862  -3.51  0.000 
Sequence 
 BJA          1.79208  0.776314   2.31  0.021        6.00   1.31    27.48 
 JAB          1.99867  0.778398   2.57  0.010        7.38   1.60    33.93 
 JBA          1.57763  0.774927   2.04  0.042        4.84   1.06    22.12 
ErrorNumber 
 3            4.96722   1.21817   4.08  0.000      143.63  13.19  1563.68 
 5            2.49396  0.731281   3.41  0.001       12.11   2.89    50.77 
 6           0.250882  0.709869   0.35  0.724        1.29   0.32     5.17 
 7           0.250882  0.709869   0.35  0.724        1.29   0.32     5.17 
 
 
Log-Likelihood = -53.394 
Test that all slopes are zero: G = 59.267, DF = 7, P-Value = 0.000 
 
 
Goodness-of-Fit Tests 
 
Method           Chi-Square  DF      P 
Pearson             16.4607  12  0.171 
Deviance            15.9309  12  0.194 
Hosmer-Lemeshow      5.3029   8  0.725 
 
 
Table of Observed and Expected Frequencies: 
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic) 
 
                               Group 
Value     1     2    3    4    5    6    7    8     9    10  Total 
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1 
  Obs     0     1    4    3    4    5    9    8    11    12     57 
  Exp   0.7   1.7  3.1  3.4  3.7  4.3  7.1  9.9  11.2  11.8 
0 
  Obs    12    11    8    9    8    7    3    4     1     0     63 
  Exp  11.3  10.3  8.9  8.6  8.3  7.7  4.9  2.1   0.8   0.2 
Total    12    12   12   12   12   12   12   12    12    12    120 
 
 
Measures of Association: 
(Between the Response Variable and Predicted Probabilities) 
 
Pairs       Number  Percent  Summary Measures 
Concordant    3030     84.4  Somers' D              0.73 
Discordant     420     11.7  Goodman-Kruskal Gamma  0.76 
Ties           141      3.9  Kendall's Tau-a        0.37 
Total         3591    100.0 
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Appendix H Assembly Instructions from Pattern A (Lego™ Kit 5508) 
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Appendix I Assembly Instructions from Pattern B (Lego™ Kit 6167) 
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