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The stochastic nature of solar renewable power poses challenges in distribution networks with

high-penetration photovoltaic (PV) generation in terms of maintaining adequate generation to sat-

isfy end-users as well as accomplishing voltage regulation. However, real power control of modern

programmable electric loads and reactive power compensation from the power electronic interfaces

of PV generators offer opportunities to overcome these challenges to eventually achieve customer

satisfaction and minimize costs for the operation of distribution systems. To cope with the ran-

dom and intermittent nature of solar generation, this thesis introduces a stochastic optimization

model for real and reactive power management in such distribution systems with a large number

of residential-scale PV generation units. Decision variables include demand response schedules of

programmable loads, as well as reactive power consumption or generation by the PV inverters in a

fashion adaptive to the uncertain real power generation. Voltage regulation is also addressed in the

stochastic optimization framework through enforcement of suitable constraints or using principles

of risk-averse optimization. A decentralized solver based on the alternating direction method of

multipliers (ADMM) is also developed featuring closed-form updates per node and communication

only between neighboring nodes. Numerical tests are provided to demonstrate the superior perfor-

mance of applying this stochastic optimization model for power management in large distribution

networks compared to other proposed schemes in the literature.
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Chapter 1: INTRODUCTION

The increased demand of electricity makes reliable and efficient provision of electric energy by

transmission and distribution system operators hard to accomplish without the risk of regional

blackouts. The fossil-fueled bulk electric energy generation of today’s industry will not be able to

meet this soaring demand without moving towards a smarter grid capable of decentralized produc-

tion of electric energy from renewable energy sources.

Integration of renewable energy such as wind, solar, or geothermal energy will help balance

the environmental impact of thermal power generation. In addition to environmental benefits of

renewable energy generation, the premise of distributed generation (DG) is to produce electricity

close to the point where it is consumed. Therefore, deployment of DG reduces the need for in-

vestments in bulk generation and transmission, while it also bypasses the congested transmission

network. Residential-scale photovoltaic (PV) generation units are prime examples of DG.

However, the stochastic nature of renewable energy, and solar PV generation in particular,

presents a challenge in that it requires consumption awareness by the users so that production is

guaranteed never to be less than the demand. The rapid changes in weather conditions lead to

unexpected variations in electricity generation levels. Particularly for solar power generation from

PV units, abrupt irradiance condition changes may lead to inadequate or at times excess generation,

which eventually may result in voltage fluctuations across the distribution feeders.

To cope with these issues, introduction of end-user programmable loads in electricity distribu-

tion networks, such as smart chargers of plug-in electric vehicles that have the ability to control

their power consumption, merged with capabilities of advanced metering infrastructure can help

distribution system operators (DSO) communicate with customers to balance the load during peak

hours. Moreover, leveraging improvements in power electronics can facilitate voltage regulation.

For instance, in solar PV generation, the inverters which interface the PV units with the grid can

be allowed to generate or consume reactive power. These capabilities open up significant oppor-

tunities for successful power management, voltage regulation, and thermal loss minimization in
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distribution systems.

It thus becomes necessary for DSOs to assess the underlying uncertainty in solar power gen-

eration in order to be able to successfully integrate high penetration levels of PV units into their

network. An attractive solution developed in this thesis is utilizing stochastic programming tools

to manage real and reactive power of users in a fashion adaptive to the uncertain generation to

achieve objectives such as minimization of the thermal losses and costs of operation as well as

enforce voltages to remain in safety levels.

Moreover, risk-averse optimization techniques can be harnessed so that the risk of high voltage

deviations in the network is guaranteed to be minimized. Specifically, to cope with the fact that

voltage deviations are random variables, a stochastic optimization problem that includes a measure

of risk called the conditional-value-at-risk (CV@R) of absolute voltage deviations from the nomi-

nal value, in addition to the previously described objectives, is pursued in this thesis. The decision

variables of this stochastic program comprise of real power consumption of controllable loads and

reactive power injection or consumption of PV inverters. The CV@R amounts to the conditional

expectation of absolute voltage deviations being greater than a specific threshold.

In what follows, Section 1.1 summarizes the current literature, and Section 1.2 presents the

outline of the thesis. The work in this thesis has lead to publications [1] and [2].

1.1 Prior art

Power management in governing electricity distribution networks must include the power flow

equations which characterize the relationship between power production, consumption, thermal

losses as well as the voltage variations across the network. One of the chief challenges in real

and reactive power management is that the power flow equations are non-convex; see [3], [4],

[5] for the canonical form of power flow equations in radial distribution systems. In recent years,

convex approximations or relaxations have been pursued to render the resulting optimization prob-

lems tractable. These are presented next according to the complexity of the optimization problem

class they belong to. The centralized reactive power management problem in [6] is relying on a
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linear approximation of the power flow equations in radial networks called the LinDistFlow

model. Decentralized local policies for reactive power control are pursued in [7] and [8] using the

LinDistFlow model as well, albeit without optimality guarantees. An optimal decentralized

algorithm for reactive power control has recently been the theme of [9] using the LinDistFlow

model and the alternating-direction method of multipliers (ADMM). A decentralized algorithm

for real power control is developed in [10] relying on convex envelope approximations and the

ADMM. A centralized model for reactive power control and PV inverter loss minimization is for-

mulated in [11] leveraging a second-order cone programming (SOCP) relaxation. Distributed al-

gorithms for real and reactive power control of programmable loads are developed in [12] and [13]

using SOCP relaxations and the predictor-corrector proximal method of multipliers (PCPMM). Re-

cently, an ADMM-based decentralized algorithm leveraging SOCP relaxations was designed [14].

See [11–14] and references therein for conditions where the SOCP relaxation is exact. A dis-

tributed scheme for real and reactive power control using semidefinite programming (SDP) re-

laxation and a dual subgradient method is pursued in [15]. Conditions for exactness of the SDP

relaxation are also developed in [15] and references therein. Control of fossil fuel fired distributed

generation is tackled in [16] for three-phase unbalanced distribution systems leveraging SDP re-

laxations and ADMM. Sophisticated policies for real and reactive power flow control from PV

inverters are designed in [17] relying on SDP relaxations and ADMM.

Risk-averse optimization tools have also been utilized in power system operation, but not for

voltage regulation. Various measures of risk, including the CV@R, are reviewed in [18, Ch. 4],

and applications to electricity markets are given. Moreover, optimal power flow in transmission

networks with high levels of wind integration is pursued in [19] using a CV@R objective to re-

duce the risk of limited renewable energy availability. To accommodate uncertainty, [20] develops

a chance-constrained stochastic program under a probabilistic forecast of spatio-temporal varia-

tions of renewable energy while considering forecast errors. Conservative approximations to the

chance constraints using the CV@R are adopted, and adaptive policies linear in the uncertainty are

pursued.
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1.2 Contributions of this thesis

In this thesis, a framework for real and reactive power management in distribution systems under

uncertainty of solar power generation due to fast-changing irradiance conditions is developed.

This framework is in contrast to the previously mentioned research efforts [6–17], which adopt

deterministic optimization models. The overall approach here leads to stochastic programming

models whereby decision making happens in two stages. First-stage decisions are the real power

consumptions of programmable loads, while the reactive power generated or consumed by the PV

inverters comprise the second-stage decisions. The premise is that the inverter reactive power is

decided in a fashion adaptive to the real power generated by the PV unit, which is modeled as

random taking values from a set of possible scenarios. The objective is to maximize the sum-

utility of the users stemming from consuming power, minus the expected value of thermal losses

in the distribution system, while maintaining the voltage at every feeder node at safe levels (voltage

regulation).

The voltage regulation problem is managed in two different ways. The first method imposes

hard constraints at every node and for every possible generation outcome, while the second one

aims to develop risk-averse formulations by introducing a measure of risk known as the CV@R

[21]. Voltage regulation in this case, is achieved by minimizing a term that calculates the CV@R of

absolute voltage deviations while achieving previously described objectives. The CV@R amounts

to the conditional expectation of absolute voltage deviations being greater than a specific threshold.

The resulting minimization problems in both cases turn out to be a quadratic program.

A decentralized algorithm based on the ADMM has also been developed to solve the resulting

optimization problems on a radial distribution network, whereby only neighboring users will need

to exchange information which entails limited communication overhead. The SOCP relaxation and

LinDistFlow models are adopted to provide approximations of the power flow equations. No-

tice that a large number of constraints needs to be included, because a set of power flow equations

for each possible scenario of solar power generation across the feeder must be incorporated. This
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challenge is well handled by ADMM.

The ADMM-based algorithm is utilizing auxiliary variables similar to the ones in [9] and [14];

in this work, decomposition per node as well as per scenario is achieved. It is also worth emphasiz-

ing that the resulting ADMM-based iterations are in closed form, thus allowing the optimization of

networks with large number of nodes. Finally, the programmable loads are modeled as operating

at a constant power factor. The implication is that the consumed reactive power is linearly related

to consumed real power, which is a different model than the box-constrained consumed reactive

power—independently of real power—adopted in [12–14].

The remainder of this thesis is organized as follows. Chapter 2 describes the power flow equa-

tions in general radial distribution networks, which can be modeled by trees. User power consump-

tion and PV generation models are also presented. In Chapter 3 modeling of uncertain solar PV

generation is followed on account of the objectives to be accomplished by DSOs. The stochastic

program to attain the required objectives is formulated while voltage regulation is achieved by ex-

plicitly enforcing voltage levels for every node and generation scenario. A decentralized algorithm

based on ADMM to solve the problem is also developed. Numerical tests and comparisons with

a local reactive power control policies are supplied to highlight the benefits of the approach. In

Chapter 4, a risk-averse formulation is presented for joint voltage regulation and power manage-

ment. A CV@R objective per node is incorporated to account for the risk of having high absolute

voltage deviation, in addition to terms corresponding to customer dissatisfaction, power generation

costs, and line thermal losses. To highlight the benefits of the approach, a risk-neutral formulation

that minimizes the expected value of absolute voltage deviations—instead of evaluating the risk of

having large absolute voltage deviations—is also presented. The thesis is concluded in Chapter 5

with directions to future work.
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Chapter 2: NETWORK MODEL

Consider the single-phase equivalent of a radial distribution network as depicted in Fig. 2.1. A

tree is an appropriate graph to model the distribution network whereby each node i in the set

N = {0, 1, 2, ..., N} represents one of the N + 1 buses, and each link i ∈ E = {1, 2, ..., N}
represents the power line toward node i. Node 0 corresponds to the substation, while other nodes

are the electricity end-users. The real and reactive power demand for this network is provided

from the power that enters from the transmission network through the substation (i.e. bus 0) into

the main feeder and flows into all nodes through the corresponding lines.

In Fig. 2.1, the root of the tree corresponds to the substation, and every other node on the tree

represents a bus. The substation (node 0) provides power to nodes 1 and 2 through corresponding

links 1 and 2. In this case, node 0 is called the ancestor for nodes 1 and 2, and nodes 1, 2 are called

the children of node 0. From the figure, it is evident that each node i except for the root (i.e., node

0) has a unique ancestor, which we denote by Ai. For instance, node 0 is the ancestor for nodes 1

and 2, thus A1 = 0 and A2 = 0. Nodes that do not have children are called leaves of the tree, or

terminal nodes. All nodes except for the terminal ones can have several children. Let Ci denote the

set of children corresponding to node i. In the previous example, we have that C0 = {1, 2}. If a

node does not have any children then Ci = ∅.
Let Pi and Qi indicate respectively the real and reactive power flow entering node i and Si rep-

resent the complex power phasor whose real and imaginary parts are Pi and Qi. Complex voltage

phasor at node i is denoted by Vi, while Ii is the complex phasor representing the current flowing

into node i through the corresponding link i. The magnitudes of the aforementioned phasors are

denoted by Vi and Ii. These quantities are related as follows:

Si = Pi + jQi = ViI∗i (2.1)

with I∗i representing the complex conjugate of the current phasor.

A link that connects the ancestor Ai to its child node i has an impedance ri + jxi which
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Figure 2.1: Radial distribution network with N user nodes modeled as a tree.

according to Ohm’s law results in voltage drop and thermal losses on the network lines. Using

KVL for node i ∈ N\{0} and its ancestor Ai, one can derive an expression for the magnitude of

voltages, currents, and power flows as follows:

VAi
= Vi + (ri + jxi)Ii ⇒

V 2
Ai

=
(Vi + (ri + jxi)Ii

)(Vi + (ri + jxi)Ii
)∗
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=
(Vi + (ri + jxi)Ii

)(V∗i + (ri − jxi)I∗i
)

= V 2
i + (ri − jxi)ViI

∗
i + (ri + jxi)V∗i Ii + (r2i + x2

i )I
2
i

= V 2
i + (ri)(V〉I∗i + V∗i Ii)− jxi(ViI∗i − V∗i Ii) + (r2i + x2

i )I
2
i

= V 2
i + ri(Si + S∗i )− jxi(Si − S∗i ) + (r2i + x2

i )I
2
i

= V 2
i + ri(2Pi)− jxi(2jQi) + (r2i + x2

i )I
2
i ⇒

V 2
Ai

= V 2
i + 2(riPi + xiQi) + (r2i + x2

i )I
2
i . (2.2)

The magnitude of voltage in the substation is a known fixed value V0. Each node may contain

electric loads which consume power, or local generators, possibly photovoltaic, which provide

power. The net real power consumption for every node i, which is the total load demand minus

generation, is denoted by pi. Similarly, let qi denote the net reactive power consumption of node

i. The power flows into node i (i.e. Pi and Qi) will supply the demand for local net consumption

of bus i, as well as all the power flows to the children of bus i. Since the links connecting to the

children have impedance, active and reactive losses occur in the network:

Pi =
∑
j∈Ci

(Pj + rjI
2
j ) + pi, i = 0, 1, . . . , N (2.3a)

Qi =
∑
j∈Ci

(Qj + xjI
2
j ) + qi, i = 0, 1, . . . , N. (2.3b)

In these equations, pi and qi can be later on be broken down to consumption minus generation in

nodes capable of power generation (see Section 2.2). The terms rjI
2
j and xjI

2
j represent real and

reactive power losses. Equations (2.1)–(2.3) are known as the power flow equations. The variables

in these equations are {Pi}Ni=0, {Qi}Ni=0, {Vi}Ni=1, {Ii}Ni=1, and active and reactive net consumptions

{pi}Ni=0 and {qi}Ni=0. By using (2.3) in (2.2), it is evident that in addition to thermal losses on the

links (i.e., rjI
2
j and xjI

2
j ), real and reactive consumption of users contribute to the voltage drop

from ancestor node Ai to node i.

The power flow equations (2.1)-(2.3) must hold in a distribution network under any circum-
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stances, hence they impose themselves as constraints in optimization problems for distribution

networks. Notice that these constraints are non-convex. To render optimization problems involv-

ing power flow equations as their constraints tractable, convex approximations and relaxations of

(2.1)-(2.3) have been pursued; see e.g. [8], [13], [12], [14], [6], [7], [9], [11], [3], [22], [23] and

references therein. The approximations that will be utilized in this thesis are presented next using

unifying notations for general tree networks.

2.1 Approximations of power flow equations

A linear approximation of power flow equations known as LinDistFlow is presented in Subsec-

tion 2.1.1. Next, in Subsection 2.1.2 the SOCP relaxation of the power flow equations is obtained

using a suitable change of variables in (2.1).

2.1.1 LinDistFlow approximation

The real and reactive power losses for link i ∈ E , that is, the terms riI
2
i and xiI

2
i in equations (2.3),

can be equivalently calculated upon squaring (2.1) to obtain I2i :

riI
2
i = ri

P 2
i +Q2

i

V 2
i

(2.4)

xiI
2
i = xi

P 2
i +Q2

i

V 2
i

. (2.5)

In many practical cases, the loss terms in (2.4) and (2.5) are much smaller than real power flow Pi

and reactive power flow Qi:

riI
2
i = ri

P 2
i +Q2

i

V 2
i

<< Pi (2.6)

xiI
2
i = xi

P 2
i +Q2

i

V 2
i

<< Qi. (2.7)

In this case, the terms involving riI
2
i and xiI

2
i can be dropped from (2.2) and (2.3). Upon defining

vi = V 2
i , the following linear power flow equations known as simplified Dist-Flow equations are
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obtained from (2.2) and (2.3) [3], [4], [9]:

Simplified Dist-Flow:

Pi =
∑
j∈Ci

Pj + pi, i ∈ N

Qi =
∑
j∈Ci

Qj + qi, i ∈ N

vAi
= vi + 2(riPi + xiQi), i ∈ N\{0}

vi ≥ 0, i ∈ N\{0}.

(2.8a)

(2.8b)

(2.8c)

(2.8d)

Note that (2.8d) is enforced because of the definition of vi. Since the voltage deviations from

the nominal values are small [i.e. (Vi − V0)
2 ≈ 0 ] a further approximation of (2.8c) has been

proposed [7], [23]. By expanding the quadratic term the following approximation holds:

(Vi − V0)
2 = V 2

i + V 2
0 − 2ViV0 ≈ 0

⇒ V 2
i ≈ 2ViV0 − V 2

0 . (2.9)

Applying equation (2.9) to nodes i and Ai yields:

V 2
Ai

= 2VAi
V0 − V 2

0 (2.10)

V 2
i = 2ViV0 − V 2

0 . (2.11)

Using (2.10) in (2.2) yields

2VAi
V0 − V 2

0 = 2ViV0 − V 2
0 + 2(riPi + xiQi)⇒

VAi
= Vi +

riPi + xiQi

V0

The latter is a linear equality. Equations (2.8a)–(2.8b) are linear approximations of power flow
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equations and are called LinDistFlow:

LinDistFlow:

Pi =
∑
j∈Ci

Pj + pi, i ∈ N

Qi =
∑
j∈Ci

Qj + qi, i ∈ N

VAi
= Vi +

riPi + xiQi

V0

, i ∈ N\{0}

Vi ≥ 0, i ∈ N\{0}.

(2.12a)

(2.12b)

(2.12c)

(2.12d)

Note that (2.12d) is enforced because Vi is a phasor magnitude.

2.1.2 SOCP relaxation

Define variables vi = V 2
i (as before), and li = I2i . Squaring (2.1) yields

P 2
i +Q2

i = vili (2.13)

Equation (2.13) is a quadratic equality constraint and hence it is not convex. The equality can be

relaxed to an inequality [22], which, together with (2.3), forms the following SOCP relaxation to

the power flow equations:

SOCP Power Flows:

Pi =
∑
j∈Ci

(Pj + rjli) + pi, i ∈ N

Qi =
∑
j∈Ci

(Qj + xjli) + qi, i ∈ N

vAi
= vi + 2(riPi + xiQi) + (r2i + x2

i )li, i ∈ N\{0}

P 2
i +Q2

i ≤ vili, i ∈ N\{0}

vi ≥ 0, li ≥ 0, i ∈ N\{0}.

(2.14a)

(2.14b)

(2.14c)

(2.14d)

(2.14e)
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Equations (2.14a)–(2.14c) are linear, while (2.14d) can be written equivalently as an SOCP

constraint as follows [24, Exercise 4.2]:

4(P 2
i +Q2

i ) ≤ 4vili = (vi + li)
2 − (vi − li)

2

⇒ 4(P 2
i +Q2

i ) + (vi − li)
2 ≤ (vi + li)

2

⇒

∥∥∥∥∥∥∥∥∥∥
2Pi

2Qi

li − vi

∥∥∥∥∥∥∥∥∥∥
2

≤ li + vi

(2.15)

Note also that since vi = V 2
i and li = I2i , constraint (2.14e) has to be enforced.

2.2 Power injection model

In the distribution network of Fig. 2.1, nodes i ∈ N\{0} represent users. Each user i demands

electric loads with aggregated real and reactive power consumptions denoted by pci and qci . To

include programmable loads in our model, each user i is allowed to demand that its real power

consumption be within a certain range:

pmin
ci
≤ pci ≤ pmax

ci
. (2.16)

For typical residential areas, reactive power consumption is linearly related to active power con-

sumption with a constant known as power factor PFi ∈ [0, 1):

qci =

√
1

PF2
i

− 1pci . (2.17)

User i may also be capable of PV generation. We will assume that for these types of users

a photovoltaic inverter is installed that generates real electric power wi by utilizing the available

solar power. Generating solar power wi at node i has an effect on the net real power consumption
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pi in equation (2.3a). Specifically, pi can now be broken down to consumption minus generation:

pi = pci − wi. (2.18)

The maximum apparent power capability of the inverter for node i is denoted by swi
which is the

nameplate capacity of the PV inverter. Currently, the PV inverters must operate with PF = 1

which means that they cannot inject or consume reactive power and hence swi
= wi. However, by

taking note of power flow equations in (2.1)–(2.3) a possible method to overcome voltage drop in

distribution networks is to generate or consume an optimized amount of reactive power.

To elaborate, consider the linear approximation of power flow equations (2.12):

VAi
= Vi +

riPi + xiQi

V0

⇒ ΔVi = VAi
− Vi =

riPi + xiQi

V0

. (2.19)

If the power flow Pi is positive such that the voltage drop is significant, one possible solution

is to alter the net reactive power consumption qi to make up for the voltage drop by providing

negative Qi in (2.8b). This strategy is called reactive power control [23]. In order to allow reactive

power compensation, PV inverters will need to operate at power factors less than one. In this case,

maximum apparent power swi
can be considered to be a factor k greater than the maximum real

power capability of the PV unit, that is:

swi
= kwmax

i . (2.20)

Quantities swi
, k, and wmax

i are all parameters of the PV system. Deviating from operating at

PF = 1 offers the opportunity to alter qi using the PV inverters as sinks or sources of reactive

power. Assume the PV inverter at node i generates reactive power qwi
, then the term qi in equation

(2.3) is broken down to:

qi = qci − qwi
(2.21)

The reactive power generation by PV inverter is a controllable variable but is limited to lie within
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the following bounds [25] [6]:

qwi
∈ [qmin

wi
, qmax

wi
] = [−

√
s2wi
− wi

2,
√

s2wi
− w2

i ]. (2.22)

On a sunny day, when the irradiance conditions are optimal for PV generation, real power genera-

tion will be at its maximum, that is, wi = wmax
i , which limits the possible range of reactive power

generation by that PV. unit.
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Chapter 3: VOLTAGE-CONSTRAINED REAL AND REACTIVE POWER

MANAGEMENT

Distribution networks are usually governed by distribution system operators (DSO) which commit

to provide electric power to end-users. The first important objective for a DSO is to deliver the

required power levels to users in order to increase customer satisfaction. The required power for

the users is injected into the distribution network through the substation, which is connected to

the transmission network. Achieving minimum costs in provision of this total power is a second

objective for a DSO. In addition, delivering power to the users requires that current flows through

the lines which incurs thermal losses. Minimization of these losses is a third objective for a DSO.

Moreover, increased power demand of end-users forces voltage levels to drop significantly (see

Chapter 2 for details). Maintaining voltage levels within acceptable bounds at the network buses

is known as voltage regulation and is also among the important tasks of a DSO.

Distributed solar power generation can help reduce the thermal losses in the network, because

part of customer demand is supplied by distributed generation nearby. However, solar power gen-

eration is inherently of stochastic nature due to fast changing irradiance conditions–caused by

e.g., transient clouds. This uncertainty in available solar power poses difficulties for the DSO to

efficiently achieve the previously mentioned objectives.

To elaborate, consider a situation in which the weather condition is such that solar power gen-

eration is so low that it does not meet the demand. To achieve customer satisfaction in this case,

the DSO will need to incur a cost to provide power from the transmission network as well as sus-

tain additional thermal losses on the distribution lines. On the other hand, unexpected increased

levels of grid-connected local generation along with variation in sun irradiance conditions lead

to large variations of voltage levels in the network, which is unacceptable for network-connected

equipment.

Introduction of programmable loads into the smart grid opens up the possibility to modify

customer’s demand based on available power and hence minimize the network operating costs.
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Moreover, the reactive power control capabilities of PV inverters offer an opportunity to perform

voltage regulation. Based on the possibilities that these technologies offer, this chapter develops

a framework for real and reactive power management in distribution networks under uncertain

solar power generation. The overall approach is to model the problem as a stochastic program

with two sets of decision variables. The first set is the real power consumptions of programmable

loads, while the second set features the reactive power generation or consumption of PV inverter

units. The goal is to optimize these decision variables in a fashion adaptive to the uncertain power

generation by PV units. This uncertain solar power generation at every node is modeled as a

random variable taking values from a possible set of scenarios.

In what follows, Section 3.1 describes power management in tree networks with the SOCP

relaxation of the power flow equations. This includes explanation of the stochastic generation

model, introduction of mathematical expressions for the previously mentioned objectives, formu-

lation of the optimization problem and finally, the detailed derivation of a decentralized solver

for that problem. Section 3.2 focuses on specialized decentralized solvers for power management

in single-feeder distribution networks, which are particular cases of tree networks, relying on the

LinDistFlow approximation. Section 3.3 provides details of computer simulations and numer-

ical test results for typical examples of tree and single-feeder distribution networks.

3.1 Power management in tree networks with SOCP relaxation of power

flow equations

3.1.1 Stochastic generation model

The real solar power generation at node i is a random variable. To specify the distribution of this

random variable, the typical model is to assume that it takes values from a set of M possible sce-

narios, each with probability πm for m ∈ {1, 2, ...,M} [18]. In each scenario m, the corresponding

generated power by the PV inverter at node i is denoted by wm
i , which is assumed to be known.

The scenario modeling of PV generation renders the real and reactive power flows (that is,
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Pi and Qi), voltage and current magnitudes squared (vi and li) to be scenario-dependent as well.

However, since the customers have to be immune to the various possible scenarios, customer power

consumption (pci) is considered to be scenario-independent. Using the SOCP relaxation model

described in the previous chapter, the power flow equations in scenario m ∈ {1, 2, ...,M} are as

follows:

Pm
i =

∑
j∈Ci

(Pm
j + rjl

m
j ) + pci − wm

i , i ∈ N (3.1a)

Qm
i =

∑
j∈Ci

(Qm
j + xjl

m
j ) +

√
1

PFi
2 − 1pci − qmwi

, i ∈ N (3.1b)

vmAi
= vmi + 2(riP

m
i + xiQ

m
i ) + (r2i + x2

i )l
m
i , i ∈ N\{0} (3.1c)

(Pm
i )2 + (Qm

i )
2 ≤ vmi l

m
i , i ∈ N\{0} (3.1d)

vmi ≥ 0, lmi ≥ 0, i ∈ N\{0} (3.1e)

These equations are exactly the power flows derived in (2.14a)-(2.14d), where the net real and

reactive power consumption (i.e., pi and qi) are replaced by the equivalent consumption minus

generation per scenario.

3.1.2 Objective functions

The objective function to be minimized is a linear combination of three terms: 1) negative of the

utility that captures customer satisfaction, 2) the expected cost of providing real power to operate

the distribution system, and 3) aggregate thermal losses across the distribution network.

It was previously mentioned that customer satisfaction can be captured by evaluating the real

power delivered to each customer. The model adopted here specifies that customer i is most sat-

isfied when pci = pmax
ci

and is least satisfied when pci = pmin
ci

. One possible utility function is a

concave quadratic ui(pci) = −Kui
(pci − pmax

ci
)2 where Kui

≥ 0 is a user-dependent weighting

parameter. If pci has units of kilowatts, Kui
will have units of $/(kW)2. The negative sum of all

these utility functions constitutes the first objective.
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As for the second objective, the total real power that needs to be provided for the operation of

the distribution network at scenario m is Pm
0 . A typical cost model for Pm

0 can take the following

form:

Cost(Pm
0 ) =

⎧⎪⎨⎪⎩ K0(P
m
0 )2 for Pm

0 ≥ 0

0 for Pm
0 ≤ 0

(3.2)

where K0 ≥ 0 is a constant with units of $/(kW)2. In this model, it is considered that when the

required power to be provided is negative there will be no cost. The expected value of this cost

over all the scenarios is considered to be the second objective.

The losses incurred in each line per scenario m may be calculated by evaluating the loss term

(2.4) after replacing the current magnitude value with lmi . The expected value of losses is therefore:
M∑

m=1

πm
N∑
i=1

ri(l
m
i ), and is the third objective.

As described earlier in the chapter, an important task of the DSO is to perform voltage regula-

tion in order to avoid large variations in voltage levels across the network buses. In this chapter, the

proposed formulation handles voltage regulation through enforcing the following hard constraint

for every bus i ∈ {1, . . . , N} in all scenarios m ∈ {1, 2, ...,M}

(1− ε)2V 2
0 ≤ vmi ≤ (1 + ε)2V 2

0 , i ∈ N\{0} (3.3)

where typically a value of ε = 0.05 could be chosen.

3.1.3 Optimization problem

Let vectors pc,P0,v, l,P,Q,qw collect values per node and per scenario for corresponding vari-

ables pci , P
m
0 , vmi , l

m
i , P

m
i , Qm

i , q
m
wi

respectively. By considering the objective function and rewrit-

ing the power flow equations of SOCP relaxation per scenario, the overall optimization problem

will be as follows:
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min
pc,P0,v,l,P,Q,qw

∑
i∈N

Kui
(pci − pmax

ci
)2 +

M∑
m=1

πmCost(Pm
0 )2 +KLoss

∑
i∈N\{0}

M∑
m=1

πmril
m
i (3.4a)

subject to

for i ∈ N and m = 1, 2, ...,M :

Pm
i =

∑
j∈Ci

(Pm
j + rjl

m
j ) + pci − wm

i (3.4b)

Qm
i =

∑
j∈Ci

(Qm
j + xjl

m
j ) +

√
1

PF2
i

− 1pci − qmwi
(3.4c)

pmin
ci
≤ pci ≤ pmax

ci
(3.4d)

qmin
wi
≤ qmwi

≤ qmax
wi

(3.4e)

for i ∈ N\{0} and m = 1, 2, ...,M :

vmAi
= vmi + 2(riP

m
i + xiQ

m
i ) + (r2i + x2

i )l
m
i i (3.4f)

(Pm
i )2 + (Qm

i )
2 ≤ vmi l

m
i , v

m
i ≥ 0, lmi ≥ 0 (3.4g)

(1− ε)2V 2
0 ≤ vmi ≤ (1 + ε)2V 2

0 (3.4h)

In the above, the function Cost(Pm
0 ) follows from (3.2), where the explicit expression with

regard to Pm
0 is only available by knowledge of whether Pm

0 is non-negative or not. Note that Pm
0

is a decision variable and hence it is not known in advance. By introducing two non-negative slack

variables, namely Pm
0+ to handle cases where Pm

0 is non-negative, and Pm
0− to handle cases where

Pm
0 is non-positive, we will try to equivalently represent Cost(Pm

0 ) in (3.2) with the following

form:

Cost(Pm
0 ) = K0(P

m
0+)

2 (3.5a)

Pm
0 = Pm

0+ − Pm
0− (3.5b)

Pm
0+ ≥ 0, Pm

0− ≥ 0 (3.5c)
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In this representation of Cost(Pm
0 ), for cases where Pm

0 is non-negative:

Cost(Pm
0 ) = K0(P

m
0 )2 = K0(P

m
0+)

2.

This yields that Pm
0+ = Pm

0 and by (3.5b) and (3.5c) Pm
0− = 0. Similarly, for cases where Pm

0 is

negative:

Cost(Pm
0 ) = 0 = K0(P

m
0+)

2.

This yields that Pm
0+ = 0 and Pm

0− = −Pm
0 . The advantage here is that, the explicit form of

Cost(Pm
0 ) (i.e. (3.5a)) can be used in (3.4a), while constraints (3.5b) and (3.5b) are handled by

including them along with all other constraints of optimization problem(3.4). These slack variables

help to avoid the difficulty of having to deal with (3.2) directly. Let P0+ and P0− collect Pm
0+ and

Pm
0− respectively for all the scenarios, the overall optimization problem amounts to the following

convex quadratic program:

min
pc,P0+,P0−,v,l,P,Q,qw

∑
i∈N

Kui
(pci − pmax

ci
)2 +

M∑
m=1

K0(π
m)(Pm

0+)
2 +KLoss

∑
i∈N\{0}

M∑
m=1

πmril
m
i

(3.6a)

subject to

for i ∈ N and m = 1, 2, ...,M :

Pm
i =

∑
j∈Ci

(Pm
j + rjl

m
j ) + pci − wm

i (3.6b)

Qm
i =

∑
j∈Ci

(Qm
j + xjl

m
j ) +

√
1

PF2
i

− 1pci − qmwi
(3.6c)

pmin
ci
≤ pci ≤ pmax

ci
(3.6d)
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qmin
wi
≤ qmwi

≤ qmax
wi

(3.6e)

Pm
0 = Pm

0+ − Pm
0−, P

m
0+ ≥ 0, Pm

0− ≥ 0 (3.6f)

for i ∈ N\{0} and m = 1, 2, ...,M :

vmAi
= vmi + 2(riP

m
i + xiQ

m
i ) + (r2i + x2

i )l
m
i i (3.6g)

(Pm
i )2 + (Qm

i )
2 ≤ vmi l

m
i , v

m
i ≥ 0, lmi ≥ 0 (3.6h)

(1− ε)2V 2
0 ≤ vmi ≤ (1 + ε)2V 2

0 (3.6i)

It is also not hard to prove that at the optimal point only one of the variables Pm
0+ or Pm

0− is

nonzero. The proof is via contradiction and is provided in appendix A.

3.1.4 Decentralized algorithm

Problem (3.6) includes variables that pertain to different parts of the distribution network. Power

consumption pci , reactive power generation qmwi
, and the voltages vmi correspond to the buses.

Power flows (Pm
i , Qm

i ) and current magnitudes lmi pertain to every link. A centralized solution

methodology, similar to the ones in today’s energy management systems, requires communication

of these local quantities to the DSO, which can be prohibitive once the network and/or the number

of scenarios is considerably large. In addition to this communication overhead, privacy issues may

arise since local information such as utility functions, real power consumption bounds, and power

factors are to be communicated to a centralized DSO. Besides, in larger networks where number of

the variables is high, it is preferable to break the problem into smaller subproblems allowing each

node to handle their own individual problem and then talk to each other to converge to the same

optimal point as the one that would have been achieved via the centralized method [26].

Since the objective (3.6a) is a sum of terms corresponding to different parts of the network,

it can be readily separated per node. Moreover, constraints (3.6d) and (3.6e) are specific to user

i. Constraints (3.6h) and (3.6i) can be handled on each link locally and (3.6f) only refers to the

substation. The only obstacle to completely decompose the problem per node are the power flow
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equations (3.6b), (3.6c) and (3.6g) which couple certain quantities of ancestor nodes to the children

nodes and vice versa.

In order to write the problem in a form amenable to a decentralized solution via the ADMM

(cf. Appendix B), a set of auxiliary variables must be introduced. Specifically, since any node i

except for the leaves has child nodes, to bypass the need to know Pm
j ,Qm

j and lmj of child node

j ∈ Ci at its ancestor node i, respective copies of these variables, P̂m
j ,Q̂m

j ,l̂mj , can be introduced.

The total number of these copies per scenario is N . Moreover, because all nodes except for the

root have ancestors, v̂mi is ushered as the copy of ancestor voltage of node i at node i. Again,

there are exactly N copies (one for every node) per scenario. An additional set of copies per sce-

nario, namely, P̃m
i , Q̃m

i , l̃mi , and ṽmi for all n ∈ N\{0} and P̃m
0+,P̃m

0− for the root (i.e., i = 0) is

also introduced, the purpose of which will be evident shortly. Let the set of boldface variables

{P, P̂, P̃,Q, Q̂, Q̃,v, l, l̂, l̃, v̂, ṽ, p̃c,pc,qw, q̃w,P0+,P0−, P̃0+, P̃0−} represent vectors collect-

ing the corresponding values of that variable in all scenarios and nodes. The problem takes the

following form:

min
P,P̂,P̃,

Q,Q̂,Q̃,

,l,̂l,̃l
v,v̂,ṽ

p̃c,pc,qw,q̃w

P0+,P0−,P̃0+,P̃0−

∑
i∈N

Kui
p̃ci − pmax

ci
)2 +

M∑
m=1

K0π
m(Pm

0+)
2 +KLoss

∑
i∈N\{0}

M∑
m=1

ril
m
i (3.7a)

subject to:

Coupling Constraints (for m = 1, 2, ...,M ):

for i ∈ N\{0} : Pm
i = P̃m

i Qm
i = Q̃m

i lmi = l̃mi vmi = ṽmi v̂mj = ṽmAj
(3.7b)

for i ∈ N , j ∈ Ci : P̂m
j = P̃m

j Q̂m
j = Q̃m

j l̂mj = l̃mj pmci = p̃ci qmwi
= q̃mwi

(3.7c)

for i = 0 : Pm
0+ = P̃m

0+ Pm
0− = P̃m

0− (3.7d)
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Individual Equality Constraints (for m = 1, 2, ...,M ):

for i ∈ N : Pm
i =

∑
j∈Ci

(P̂m
j + rj l̂

m
j ) + pmci − wm

i (3.7e)

for i ∈ N : Qm
i =

∑
j∈Ci

(Q̂m
j + xj l̂

m
j ) +

√
1

PF2
i

− 1pmci − qmwi
(3.7f)

for i ∈ N\{0} : v̂mi = vmi + 2(riP
m
i + xiQ

m
i ) + (r2i + x2

i )l
m
i (3.7g)

for i = 0 : Pm
0 = Pm

0+ − Pm
0− (3.7h)

Individual Inequality Constraints (for m = 1, 2, ...,M )

for i ∈ N\{0} : (P̃m
j )2 + (Q̃m

j )
2 ≤ (ṽmj )(l̃

m
j ) (3.7i)

for i ∈ N\{0} : (1− ε)2V 2
0 ≤ ṽmi ≤ (1 + ε)2V 2

0 (3.7j)

for i ∈ N : pmin
ci
≤ p̃ci ≤ pmax

ci
(3.7k)

for i ∈ N : −
√
s2wi
− (wm

i )
2 ≤ q̃mwi

≤
√

s2wi
− (wm

i )
2 (3.7l)

for i = 0 : P̃m
0+ ≥ 0, P̃m

0− ≥ 0 (3.7m)

Problem (3.7) is equivalent to (3.6) with additional equality constraints yielding a suitable form for

ADMM [cf. problem B.1 in Appendix B]. The x and z [corresponding to the prototype ADMM

problem (B.1) in Appendix B] variables are shown in Table 3.1. The purpose of introducing the

Tilde variables is so that the individual inequality constraints can be handled separately in the z-

update. The x-update on the other hand turns out to be an equality constrained QP. This separation

of variables are essential to finding closed-form solutions for the updates.

Updates

The Lagrange multipliers corresponding to the coupling constrains of (3.7) are listed in Table 3.2.

To perform ADMM, first the augmented Lagrangian for problem (3.7) needs to be formed which

turns out to be separable across variables xi (i ∈ N ) with z fixed, or across variables zi (i ∈ N )
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Table 3.1: Variables

Nodes involved Variables

xm
0 Root {Pm

0 , Qm
0 , P

m
0+, P

m
0−, {P̂m

j , Q̂m
j , l̂

m
j }j∈Ci , pmc0 , qmw0

}
xm
i Neither root nor leaf {Pm

i , Qm
i , v

m
i , l

m
i , {P̂m

j , Q̂m
j , l̂

m
j }j∈Ci , v̂mi , pmci , qmwi

}
xm
i Leaf {Pm

i , Qm
i , v

m
i , l

m
i , v̂

m
i , p

m
ci
, qmwi

}
xi All nodes {xm

i }Mm=1

zm0 Root {P̃m
0+, P̃

m
0−, q̃

m
w0
}

z0 Root {{zm0 }Mm=1, p̃c0}
zmi Not root {P̃m

i , Q̃m
i , ṽ

m
i , l̃

m
i , q̃

m
wi
}

zi Not root {{zmi }Mm=1, p̃ci}

with xi fixed. For the detailed derivation of each variable update the reader is referred to Appendix

C where closed-form solution for individual updates per node and per scenario are provided.

Table 3.2: Lagrange Multipliers

Equality Constraint Lagrange Multiplier

Pm
i = P̃m

i λm
i

Qm
i = Q̃m

i μm
i

lmi = l̃mi γm
i

vmi = ṽmi ωm
i

v̂mj = ṽmAj
ω̂m
j

P̂m
j = P̃j∈Ci λ̂m

j

Q̂m
j = Q̃j∈Ci μ̂m

j

l̂mj = l̃j∈Ci γ̂m
j

pmci = p̃ci ηmi
qmwi

= q̃mwi
θmi

Pm
0+ = P̃m

0+ ζm+
Pm
0− = P̃m

0− ζm−

Decentralized implementation and communication requirements

In the implementation of this algorithm, each node i ∈ N is responsible for maintaining and

updating variables xi, zi, and the corresponding Lagrange parameters.

The ADMM algorithm works as depicted in Fig. 3.1. First, z and the Lagrange multipliers

are initialized with arbitrary numbers. In each iteration, every node i that has children receives

P̃m
j , Q̃m

j and l̃mj for every j ∈ Ci. Also, each node i receives ṽmAi
from its ancestor. Using these
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Figure 3.1: Communication requirements of the ADMM algorithm. In each iteration, prior to

the x-update, node i receives P̃m
j , Q̃m

j , and l̃mj from its children nodes, and receives ṽmAi
from its

ancestor nodes. Prior to z-update ancestor node Ai sends P̂m
i , Q̂m

i and l̂mi to node i while node

i receives all the v̂mj variables from its children. Note that whenever a variable is transmitted, its

corresponding Lagrange multiplier is transmitted as well.

variables, x variable is updated according to Appendix C. Prior to the z-update step, P̂m
i , Q̂m

i , l̂
m
i

are sent to node i from ancestor Ai meanwhile node i collects {vmj }j∈Ci from its children. Note

that, node 0 only communicates with its children, and the leaf nodes only communicate with their

ancestors. All other nodes communicate both with their children and ancestors.

Upon receiving the required information, node i performs the z-update step. Upon completion

of the z-update step, the Lagrange multipliers are updated. Therefore in this algorithm only neigh-

bors will need to communicate. Note that whenever a variable is transferred, its corresponding

Lagrange multiplier will be transferred with it. Algorithm 3.1 summarizes the specific parameters

and communications in each iteration.

3.2 Power management in single-feeder networks with LinDistFlow

The purpose of this section is to derive a simplified version of the decentralized solver for single-

feeder networks using the LinDistFlow equations. Consider the single-branch radial distribu-
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Algorithm 3.1 Required Communications and Updates

1. Initialize z-variables and Lagrange parameters with random numbers at every node i.

2. For every node i repeat steps 3-7 until convergence (i.e., when quantities r(k) and s(k) in

(B.4) are smaller than an acceptable tolerance)

3. Receive P̃m
j , Q̃m

j , l̃mj , λ̂m
j , μ̂m

j , and γ̂m
j from all j ∈ Ci and for m = 0, 1, 2, ..,M . Also

receive ṽmAi
from node Ai and m = 0, 1, 2, ..,M .

4. Perform x-update

5. Receive the updated x-variables P̂m
i , Q̂m

i and l̂mi for m = 0, 1, 2, ..,M from Ai. Also receive

v̂mj and ω̂m
j from all nodes j ∈ Ci and m = 0, 1, 2, ...,M .

6. Perform z-update

7. Update the Lagrange parameters

tion feeder depicted in Fig. 3.2. Node 0 represents the substation, while nodes 1, . . . , N correspond

to users. User i = 1, . . . , N will have programmable loads, and possibly PV generation. The

single-feeder network is a special case of the tree network.

Figure 3.2: Single-branch radial distribution network with N user nodes.

Since in a single-feeder network all nodes except for the root have exactly one ancestor, and all

nodes except for the leaves have exactly one child, the index j in the previous equations renders

unnecessary, so that Ai = i − 1 and Ci = {i + 1}. Concretely, let Pm
i and Qm

i respectively be

the real and reactive power flow going into node i per scenario m; and V m
i the magnitude of the

voltage phasor at node i per scenario m. Also assume that the voltages, power flows over lines,

and power injections at the nodes are related through the approximation LinDistFlow equations
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with i ∈ {0, 1, 2, ..., N − 1} and m ∈ {1, 2, ...,M} [cf. (2.12)]1.

Pm
i = Pm

i+1 + pci − wm
i (3.8a)

Qm
i = Qm

i+1 +

√
1

PF2
i

− 1pci − qmwi
(3.8b)

V m
i+1 = V m

i − ri+1P
m
i+1 + xi+1Q

m
i+1

1000V 2
0

(3.8c)

and also the terminal conditions

Pm
N = pcN − wm

N (3.8d)

Qm
N =

√
1

PF2
N

− 1pcN − qmwN
(3.8e)

V m
0 = 1. (3.8f)

In the previous equations, V0 is the magnitude of the voltage phasor at the substation, and is a

known constant measured in kilovolts. Also known constants are ri and xi, which respectively

denote the resistance and reactance of the line connecting node i to i+ 1, and have units of Ohms.

Real powers (Pm
i , pci , p

m
gi

) are in kilowatts, while reactive powers (Qm
i , qci , q

m
wi

) have units of

kVars. The quantities V j
i are expressed per unit (p.u.), where the normalization is with respect to

V0.

Finally, it is evident from (3.8c) that voltage values across the network may vary significantly

depending on the values of power flows. To apply voltage regulation, we can enforce

1− ε ≤ V m
i ≤ (1 + ε). (3.9)

1To have a consistent notation in this section and section 3.1, for demonstration purposes, power flows are con-

sidered to be flowing into a node, for example Pm
0 denotes real power going into node 0. Another model could be to

consider power flows going out of the node, in which case Pm
0 will be considered going out of node 0. By consider-

ing power flows going out of the node the LinDistFlow equations will have a slightly different form and terminal

conditions which are mentioned in Appendix F along with the derivation of the ADMM algorithm. Throughout this

thesis, the simulation results for single-feeder networks with LinDistFlow follow the latter model which is explic-

itly mentioned in Appendix F. The difference between the two models is merely on two conventions and the models

are equivalent.
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3.2.1 Objective function

The only difference in objective functions compared to Section 3.1.2 will be in the evaluation of

losses. The losses across the network at scenario m can be approximated by
∑N−1

i=0 ri

(Pm
i )2+(Qm

i )2

V 2
0

[6, 7].

With the aforementioned models in mind, the optimization problem to be solved stands as

follows.

min
P,Q,v,pc

qw,P0+,P0−

N∑
i=1

[
Kui

(pci − pmax
ci

)2
]
+

M∑
m=1

πmK0(P
m
0+)

2 +
N−1∑
i=0

M∑
m=1

KCostπ
mri

(Pm
i )2 + (Qm

i )
2

V 2
0

(3.10)

subject to (3.8a)-(3.9) and (3.6d)-(3.6f)

3.2.2 Equivalent problem

With x and z stacking all xi and zi per node and per scenario according to Table 3.1 disregarding

variables lmi , l̂
m
i , l̃

m
i , problem (3.10) is equivalently formulated as follows:

min
x,z

N∑
i=1

[
Kui

(p̃ci − pMax
ci

)2
]
+

M∑
m=1

πmK0(P
m
0+)

2 +KLoss

N−1∑
i=0

M∑
m=1

πmri
(Pm

i )2 + (Qm
i )

2

V 2
0

(3.11a)

subject to

Coupling Constraints (for m = 1, 2, . . . ,M ):

P̃m
i = Pm

i , P̃m
i = P̂m

i (i ∈ {0, ..., N − 1}) (3.11b)

Q̃m
i = Qm

i , Q̃
m
i = Q̂m

i (i ∈ {0, ..., N − 1}) (3.11c)
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Ṽ m
i = V m

i , Ṽ m
i = V̂ m

i (i ∈ {1, ..., N}) (3.11d)

p̃ci = pmci , q̃
m
wi

= qmwi
(i ∈ {1, ..., N}) (3.11e)

P̃m
0+ = Pm

0+, P̃
m
0− = Pm

0− (3.11f)

Individual Constraints (for m = 1, 2, . . . ,M ):

Pm
i = P̂m

i+1 + pmci − wm
i (i ∈ {0, ..., N − 1}) (3.11g)

Qm
i = Q̂m

i+1 +

√
1

PF2
i

− 1pmci − qmwi
(i ∈ {1, ..., N}) (3.11h)

V̂ m
i = V m

i +
riP

m
i + xiQ

m
i

1000V 2
0

(i ∈ {0, ..., N − 1}) (3.11i)

pmin
ci
≤ p̃ci ≤ pmax

ci
(i ∈ {1, ..., N}) (3.11j)

−
√
s2wi
− (wm

i )
2 ≤ q̃mwi

≤
√

s2wi
− (wm

i )
2(i ∈ {1, ..., N}) (3.11k)

1− ε ≤ Ṽ m
i ≤ 1 + ε (i ∈ {1, ..., N}) (3.11l)

Pm
0 = Pm

0+ − Pm
0− (3.11m)

P̃m
0+ ≥ 0, P̃m

0− ≥ 0 (3.11n)

Pm
N = pcN − wm

N (3.11o)

Qm
N =

√
1

PF2
N

− 1pcN − qmwn
(3.11p)

V m
0 = 1 (3.11q)

In (F.1e), v̂i may be interpreted as node i’s estimate of the voltage in node i + 1. Similarly, in

(F.1f) and (F.1g), P̂m
i+1 and Q̂m

i+1 are interpreted as node i’s estimates of the real and reactive power

flow from node i + 1, respectively. The optimization variables x := {x0,x1, ...,xN} and z :=

{z0, z1, ..., zN} of the previous problem are defined in (F.2). In the following lists, the boldface

variables on the right-hand sides represent vectors of length M collecting the corresponding values

29



of that variable in all scenarios.

x0 := {P0,Q0,v0,P0+,P0−} (3.12a)

xN :=
{
PN ,QN ,vN ,pcN ,qwN

, P̂N , Q̂N

}
(3.12b)

z0 :=
{
P̃0, Q̃0, ṽ0, P̃0+, Q̃0+

}
(3.12c)

zN = {ṽN , p̃cN , q̃wN
} (3.12d)

and for i ∈ {1, 2, ..., N − 1},

xi :=
{
Pi,Qi,vi,pci ,qwi

, P̂i, Q̂i, v̂i

}
(3.12e)

zi :=
{
P̃i, Q̃i, ṽi, p̃ci , q̃wi

}
. (3.12f)

Note here that only p̃ci is not boldfaced which means that in all the scenarios it has the same

value.

Updates

The Lagrange multipliers corresponding to the coupling constrains of (F.1) are listed in Table 3.3.

After forming the augmented Lagrangian for problem (F.1), it turns out that it is separable across

variables xi (i ∈ {0, 1, ..., N}) with z fixed, or across variables zi (i ∈ {0, 1, ..., N}) with x fixed.

For the detailed derivation of each variable update the reader is referred to Appendix F.

Table 3.3: Coupling Constraints & Associated Lagrange Multipliers

P̃m
i = Pm

i P̃i = P̂m
i Q̃m

i = Qm
i Q̃i = Q̂m

i q̃mwi
= qmwi

λm
i λ̂m

i μm
i μ̂m

i θmi

ṽmi = vmi ṽmi = v̂mi p̃ci = pmci P̃m
0+ = Pm

0+ P̃m
0− = Pm

0−

ωm
i ω̂m

i ηmi ξm+ ξm−
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Communication requirements

The ADMM algorithm works as depicted in Fig. 3.3. First, z and the Lagrange multipliers are

initialized with arbitrary numbers. In each iteration, prior to x-update, node i receives P̃m
i+1, Q̃m

i+1,

λ̂m
i+1 and μ̂m

i+1 from node i + 1. Node i also requires reception of ṽmi−1 from node i − 1 before

completing the xi-update. Prior to the zi-update step, P̂m
i and Q̂m

i are sent from node i− 1 to i. In

this case, node 0 only sends these variables, and node N only receives them. Moreover, node i+1

sends v̂mi+1 to node i. In this case, node 0 is only a receiver and node N is only a sender. Upon

receiving the required information, node i performs the zi-update step. Upon completion of the zi-

update step, the Lagrange multipliers are updated. These steps are summarized in Algorithm 3.2.

Figure 3.3: Communication requirements of the ADMM algorithm. Prior to the xi-update node

i receives ṽmi−1 from node i − 1 and receives P̃m
i+1, Q̃m

i+1,λ̂m
i+1,μ̂m

i+1 from node i + 1. Prior to the

z-update, node i receives P̂m
i and Q̂m

i from node i− 1 while it receives v̂mi+1 from node i+ 1.
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Algorithm 3.2 Required Communications and Updates For Single-Feeder

1. Initialize z-variables and Lagrange parameters with random numbers at every node i.

2. For every node i repeat steps 3-7 until convergence:

3. Receive P̃m
i+1, Q̃

m
i+1, λ̂m

i+1 and μ̂m
i+1 from node i + 1 and for m = 0, 1, 2, ..,M . Also receive

ṽmi−1 from node i− 1 for m = 0, 1, 2, ..,M .

4. Perform x-update

5. Receive the updated x-variables P̂m
i , Q̂m

i for m = 0, 1, 2, ..,M from node i−1. Also receive

v̂mi+1 and ω̂m
i+1 from node i+ 1 for m = 0, 1, 2, ...,M .

6. Perform z-update

7. Update the lagrange parameters

3.3 Numerical tests

In this section numerical experiments are conducted to evaluate the effectiveness of the previously

formulated stochastic optimization programs and the decentralized solvers. To acquire intuitive

understanding, specific examples of a single-feeder network of Fig. 3.2 which is a special case of a

tree network are considered here. Tests on a general tree network are left to be covered in Chapter

4. Here, the algorithm of Section 3.2 is studied first with LinDistFlow in Subsection 3.3.1.

The more complicated algorithm of Section 3.1 is then put to test on a single-feeder with SOCP

relaxation model in Subsection 3.3.2.

3.3.1 Numerical test with LinDistFlow approximation

The algorithm of Section 3.2 is tested here. The single-feeder network considered is representative

of a sparsely-loaded rural distribution network and resembles the test circuits in [7] and [8]. The

nominal substation voltage is V0 = 7.2kV , and line impedance is (0.33 + j0.38)Ω/km. There are

N = 250 user nodes. The distances between neighboring nodes are drawn from a uniform dis-

tribution between 0.2km to 0.3km, unless otherwise stated. For the voltage regulation constraint

in (3.3), ε = 0.03 is selected. The real power consumption at each user node is constrained in
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[1kW, 3.5kW ], and the corresponding power factor is considered to be 0.944 for all users. The

constants in the objective function are set to Kui
= 1 and K0 = N . For the PV enabled nodes, the

maximum apparent power capability is set to smax
w = 1.1kW , and is 10% greater than the maximum

real power generation capacity of PV enabled nodes, i.e., swi
= smax

w = 1.1wmax
i . Furthermore,

four types of weather conditions are considered, namely, sunny, partly cloudy, cloudy, and inter-

mittently changing, each corresponding to a different distribution from which wm
i is drawn. For

each of these weather types, wm
i is selected randomly from a uniform distribution with lower and

upper limits that span the designated intervals in Table. 3.4 in M scenarios. It is also assumed that

the scenarios are equally probable with πm = 1
M

.

Table 3.4: wm
i Sample Space Based on the Weather Condition

Weather Condition wm
i sample space

Sunny [0.75wmax
i , wmax

i ]

Partly Cloudy [0.25wmax
i , wmax

i ]

Cloudy [0, 0.25wmax
i ]

Intermittently Changing [0, wmax
i ]

The effect of the number of scenarios on the solution is studied first. Specifically, Table 3.5

shows the objective value for different number of scenarios and for each type of weather. In

these simulations, all the nodes are capable of PV generation (PV penetration level is 100 %), and

the distances between nodes are constant and set to 0.2km to restrict randomness exclusively to

weather. The table shows that roughly M = 100 scenarios are sufficient to achieve a stabilized

objective value.

Next, the effect of the weather type and the penetration level (defined as the fraction of nodes

having PV generation) on the total real power provided by the substation is investigated. The bar

graph in Fig. 3.4 shows the expected value of P0—that is, 1
M

M∑
m=1

Pm
0 —averaged over 10 simulation

runs. For the case of 20% penetration, the nodes are randomly selected. The figure illustrates that
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Table 3.5: Objective Value for Different Number of Scenarios in Four Types of Weather
���������Weather

M
50 100 150 200

Sunny (×107) 0.0325 0.0327 0.0328 0.0325

Partly Cloudy(×107) 0.4214 0.4224 0.4241 0.4211

Cloudy (×107) 1.2004 1.2022 1.2070 1.2064

Changing(×107) 0.3846 0.3874 0.3901 0.3912

for a high level of PV penetration, less power is provided by the substation, and this effect is

significantly more pronounced for sunny weather.

Sunny Partly Cloudy Cloudy
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Figure 3.4: Value of (1/M)
∑M

m=1 P
m
0 (kW) averaged over 10 simulation runs, with N = 100 and

M = 200, for three different weather types and two penetration levels.

The proposed stochastic programming approach is also compared to a local reactive power

control scheme proposed in [7]. The scheme is local in the sense that it only relies on local variables

wm
i , pci , and qci to set qmwi

= Fi(w
m
i , pci , qci), where

Fi(w
m
i , pci , qci) = Constri

[
KF

(L)
i + (1−K)F

(V )
i

]
(3.13)
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Table 3.6: Objective Values, Max Voltage Deviation and Average Voltage Deviation

Method objective (×107) maxi,m
|V m

i −V 0|
V 0

Stoch. Progr. 1.0628 0.0300

K = −5 1.0645 0.0513

K = −4 1.0645 0.0513

K = −3 1.0645 0.0513

K = −2 1.0645 0.0513

K = −1 1.0646 0.0514

K = 0 1.0646 0.0514

K = 1 1.0646 0.0539

K = 2 1.0646 0.0572

K = 3 1.0646 0.0605

K = 4 1.0646 0.0638

K = 5 1.0646 0.0660

Constri[q
m] =

⎧⎪⎪⎨⎪⎪⎩
qm, |qm| ≤√

s2wi
− (wm

i )
2

qj

|qj |
√

s2wi
− (wm

i )
2, otherwise

F
(L)
i = Constri(qci), F

(V )
i = Constri

[
qci +

xi(pci − wm
i )

ri

]

Note that the previous control policy does not optimize pci or qci , but considers them given, while

it depends on the parameter K [cf. (3.13)]. Upon setting qmwi
, the power flows Pm

i and Qm
i as well

as the voltages V m
i can be found recursively using the LinDistFlow equations.

In order to compare with the previous control algorithm, first problem (F.1) is solved with
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N = 250, M = 100, and PV penetration level of 20 %. This yields pci and qci values that can be

used as inputs to the local control policy (3.13). Table 3.6 lists the objective value [cf. (3.10)] and

maximum absolute voltage deviation achieved by the stochastic programming approach as well as

by the local control policy for different values of K, averaged over 10 simulation runs.

The table reveals that the local control policy performs well in terms of the achieved objective

value—which is largely due to the fact that the inputs to (3.13) are the optimal real power consump-

tions. The local control policy on the other hand performs poorly in terms of voltage regulation,

which is depicted also in Fig. 3.5.
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Figure 3.5: Average node voltages (i.e., 1
M

∑M
m=1 V

m
i ) averaged over 10 simulation runs, across

N = 250 nodes for sunny weather type and with PV penetration level of 20 %.
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3.3.2 Numerical tests with SOCP relaxation

The test circuit here is once again a single-feeder network similar to the one in the previous Subsec-

tion. The nominal substation voltage is V0 = 7.2 (kV), and line impedance is (0.33+ j0.38)Ω/km.

There are N = 100 user nodes and the distances between neighboring nodes is set to d = 0.2 (km).

The maximum allowable voltage deviation from the nominal value at user nodes is set to ε = 0.05

(p.u). Each user i requires a real power pci that lies between the bounds shown in Fig. 3.6. Select

nodes {5, 15, ..., 95} are considered as the PV enabled nodes with real power generated following

a uniform distribution from the intervals depicted also Fig. 3.6. The maximum apparent power

capacity in this section is assigned to be swi
= 40 (kVA) which is relatively large compared to the

maximum demand of each customer (i.e., pmax
ci

). The intention here is to study the effect of large

PV installations in select nodes on a typical distribution network.

Figure 3.6: Power demand bounds [pmin
ci

, pmax
ci

] by user nodes, and the intervals for real power

generation by PV-enabled nodes

By implementing the algorithm outlined in Section 3.1 the optimal power consumption is

determined and plotted for all the nodes in Fig. 3.7. It is observed that in the nodes closer to

the substation where the PV generation capacity is low, the DSO optimally allocates minimum

required power consumption pci = 1(kW) to the users, however towards the terminal nodes, as the
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generation level rises, the DSO manages to provide more satisfaction to the customer demands.

Figure 3.7: Optimal allocated power consumption pci to the user nodes

Voltage variations across the network are also studied. Fig. 3.8 provides three plots for maxi-

mum voltage, minimum voltage and average voltages for all the scenarios across the user nodes.

From the figure, it is observed that nodes close to PV generation are prone to voltage rise, whereas

nodes far from PV generation are more likely to suffer from voltage drops.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

Nodes

V
o
lt
a
g
e
(p
.u
)

 

 

Maximum voltage (maxm V m
i
)

Minimum voltage (minm V m
i
)

Average voltage 1
M

M∑

m=1
V

m
i

1 − ε

1 + ε
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Chapter 4: RISK-AVERSE VOLTAGE REGULATION AND POWER

MANAGEMENT

4.1 Introduction

In the previous chapter, it was observed that local photovoltaic (PV) generation in electricity dis-

tribution networks imposes significant unforeseen variations on voltage levels thereby maintaining

voltages close to their nominal values becomes a challenge. In an attempt to attain voltage regula-

tion, PV inverters were permitted to inject or consume reactive power and end-user programmable

loads with demand response capabilities allowed control of their real power consumption. How-

ever, voltage regulation was successfully obtained by enforcing voltage levels to be within an

acceptable bound. The main drawback of performing voltage regulation through the use of strict

constraints is that under certain circumstances the problem will turn out to be infeasible and thus

there will be no option other than increasing the allowable margin prior to scheduling. The down-

side with the previously mentioned approach is that it will be exigent to find a margin suitable for a

range of PV generation scenarios. An alternative attractive approach to voltage regulation could be

to solve an optimization problem which incorporates an objective that in a way penalizes voltage

deviations from the nominal value.

Due to the randomness in solar power generation and its effects on voltage levels, any objective

function introduced for voltage regulation will need to account for the underlying uncertainty in

voltage deviations. This chapter introduces one such objective. In particular, this chapter focuses

on achieving voltage regulation through solving a stochastic program which penalizes a measure of

risk known as the conditional-value-at-risk(CV@R) [21]. The CV@R is a conditional expectation

of absolute voltage deviations being greater than a specific threshold.

By employing the CV@R of voltage deviations, the primary goal of this chapter is then to pro-

pose a risk-averse formulation for voltage regulation that performs real and reactive power man-

agement under uncertainty of PV power generation in radial distribution networks. Concretely,
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in addition to the objectives in the previous chapter such as minimizing customer dissatisfaction,

power generation costs, and power losses, the CV@R objective is included to evaluate the risk

of having high values of absolute voltage deviations. The uncertainty in PV power generation

is once again modeled with finite number of scenarios and a stochastic optimization program is

formulated. The resulting minimization problem is a quadratic program with scenario-dependent

decision variables which pertain to reactive power of PV inverters, and scenario-independent deci-

sions variables which amount to the real power consumption in each node. To highlight the benefits

of the approach, we also include a risk-neutral formulation which minimizes the expected value of

absolute deviations instead of accounting for the risk of having high voltage variations.

4.2 Risk-averse voltage regulation

In the previous chapter, the objective considered minimization of the linear combination of three

terms: thermal losses, the cost of providing power to the distribution system [i.e., Cost(P0)], as

well as providing customer satisfaction. Voltage regulation was handled by enforcing constraint

(3.6i). In this section, instead of enforcing such constraint, a fourth optimization goal is introduced

which aims to reduce the voltage variation across the network.

Fluctuations in renewable energy generation by PV inverters (wi) will cause random fluctua-

tions on node voltages [see (3.8a)-(3.8c)]. The random variable capturing this voltage deviation

for every node i from its nominal value is |vi − v0|. One natural objective for voltage regulation

in node i can be to minimize the expected value of that random variable –that is, E[|vi − v0|]. In

a distribution network, some voltage deviation from the nominal value may be tolerated; however,

significant deviations from the nominal value should not occur often. A disadvantage of using the

expected value as an objective for regulating voltage at node i is that in some unfavorable scenar-

ios, it may allow significant deviations from the nominal value, only to make up for this in other

scenarios which yield lower absolute deviation.

It would be interesting to have a formulation that can minimize a threshold so that for most

cases the voltage deviation will be guaranteed to be less than that threshold. This formulation will
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allow some deviations from the nominal value, however, it does not allow significant deviations

to occur as often. In other words, a new objective can be used to measure the risk of having high

voltage deviations and the new formulation can aim to minimize that risk.

4.2.1 Risk measures

For every user node i and its corresponding voltage level Vi, the α-V@R for voltage deviation is the

minimum value of the absolute deviation of Vi from its nominal values V0 such that the probability

of the deviation being lower than or equal to this value is at least α.

eα := min{e ∈ R : Prob(|Vi − V0| ≤ e) ≥ α}. (4.1)

Typical values considered for α are 0.9, 0.95 and 0.99. Note that, if vi = V 2
i is used, such as in the

SOCP formulation, then α-V@R will take the form :

eα := min{e ∈ R : Prob(|vi − V 2
0 | ≤ e) ≥ α}. (4.2)

The conditional expectation of absolute voltage deviation the α-V@R is defined as the α-

CV@R

φα(|Vi − V0|) = E
[|Vi − V0| | |Vi − V0| > eα

]
(4.3)

and likewise for vi = V 2
i

φα(|vi − v0|) = E
[|vi − v0| | |vi − v0| > eα

]
. (4.4)

In order to reduce the risk of high voltage deviations, initially one can choose to minimize the

V@R which will ensure that for most scenarios the absolute voltage deviation is at its minimum.

However, V@R lacks convexity which makes it a difficult objective to work with. On the other

hand, CV@R can be shown to be convex, and the definitions guarantee that α-CV@R is always

greater than or equal to α-V@R [21]; therefore, minimizing the α-CV@R ultimately results in
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having low α-V@R’s for voltage deviation as well. Since samples of random variable wi (i.e. wm
i )

are known, by [21, Theorem 1], random variable |Vi − V0| or |vi − v0| can be represented by its

corresponding samples and α-CV@R can be approximated as:

φα(|Vi − V0|) = inf
ei
{ei + 1

1− α

M∑
m=1

πm
[|V m

i − V0| − e]+} (4.5)

or

φα(|vi − v0|) = inf
ei
{ei + 1

1− α

M∑
m=1

πm
[|vmi − v0| − e]+} (4.6)

where [t]+ = max{0, t}.
Equations (4.3) and (4.5) [or (4.4) and (4.6)] hold when the cumulative distribution function of

|Vi−V0| (respectively of |vi− v0|) is continuous. In order to avoid mathematical complication, we

assume that this is the case. (Even if this assumption does not hold, (4.5) is taken as the definition

of CV@R, but the interpretation as conditional expectation needs to be modified [27, Sec. 6.2].)

In the next section, tree networks with SOCP relaxation and the the α-CV@R of vi as an ob-

jective are considered first. A decentralized algorithm is also developed. A single-feeder network

with the LinDistFlow approximations and the α-CV@R of Vi as objective are considered in

Section 4.4. Numerical tests for tree networks and single-feeder networks, along with a compari-

son with a risk-neutral formulation are provided in Section 4.5.

4.3 Voltage regulation in tree networks with SOCP power flow equations

The problem at hand bears similarities to the one solved in the previous chapter, however the goal

here is to minimize the linear combination of the previous objectives introduced in section 3.1.2

and the CV@R term (4.6). Minimizing the CV@R can be done by performing a joint minimization

over vmi and ei [21, Theorem 2]:
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min
pc,P0+,P0−,v,l,P,Q,qw

∑
i∈N

Kui
(pci − pmax

ci
)2 +

M∑
m=1

K0(π
m)(Pm

0+)
2

+KLoss

∑
i∈N\{0}

M∑
m=1

πmril
m
i +

∑
i∈N\{0}

κi

(
ei +

1

1− αi

M∑
m=1

πm
[|vmi − V 2

0 | − ei
]+)

(4.7)

subject to (3.6b)-(3.6h), (3.6d)-(3.6f) where κi ≥ 0 is a weight.

By introducing an auxiliary decision variable fm
i that upper bounds the term |vmi − V 2

0 | − ei in

the objective of (4.8a), we can write the risk-averse formulation as a quadratic program:

min
pc,P0+,P0−,v,l,P,Q,qw

∑
i∈N

Kui
(pci − pmax

ci
)2 +

M∑
m=1

K0(π
m)(Pm

0+)
2

+KLoss

∑
i∈N\{0}

M∑
m=1

πmril
m
i +

∑
i∈N\{0}

κi

(
ei(1− αi) +

M∑
m=1

πmfm
i

)
(4.8a)

subject to

for i ∈ N and m = 1, 2, ...,M

Pm
i =

∑
j∈Ci

(Pm
j + rjl

m
j ) + pci − wm

i (4.8b)

Qm
i =

∑
j∈Ci

(Qm
j + xjl

m
j ) +

√
1

PF2
i

− 1pci − qmwi
(4.8c)

pmin
ci
≤ pci ≤ pmax

ci
(4.8d)

qmin
wi
≤ qmwi

≤ qmax
wi

(4.8e)

Pm
0 = Pm

0+ − Pm
0−, P

m
0+ ≥ 0, Pm

0− ≥ 0 (4.8f)

for i ∈ N\{0} and m = 1, 2, ...,M

vmAi
= vmi + 2(riP

m
i + xiQ

m
i ) + (r2i + x2

i )l
m
i i (4.8g)

(Pm
i )2 + (Qm

i )
2 ≤ vmi l

m
i , v

m
i ≥ 0, lmi ≥ 0 (4.8h)
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− ei − fm
i ≤ vmi − V 2

0 ≤ ei + fm
i , fm

i ≥ 0 (4.8i)

Furthermore, in this formulation, the numerical instability of (4.7) due to the division by a small

number
(
i.e. (1− αi)

)
is mitigated by multiplying the CV@R term in (4.8a) with (1− αi) [21].

4.3.1 Decentralized algorithm

With variables similar to the ones explained in the previous chapter we can develop a decentralized

algorithm based on the ADMM. To handle the two inequalities in (4.8i) which couple the variables

vmi , fm
i and ei we introduce auxiliary variables fm

i , emi , g
m
i , h

m
i ,f̃m

i , ẽi, g̃
m
i , h̃

m
i and the following

additional constraints:

fm
i + emi + vmi − V 2

0 − gmi = 0 (4.9)

fm
i + emi − vmi + V 2

0 − hm
i = 0 (4.10)

f̃m
i ≥ 0, ẽi ≥ 0, g̃mi ≥ 0, h̃m

i ≥= 0 (4.11)

fm
i = f̃m

i (4.12)

emi = ẽi (4.13)

gmi = g̃mi (4.14)

hm
i = h̃m

i (4.15)

Using these auxiliary variables and the ones provided in Chapter 3, the equivalent optimization

problem can be formulated:

min
P,P̂,P̃,

Q,Q̂,Q̃,
v,v̂,ṽ

p̃c,pc,qw,q̃w

P0+,P0−,,P̃0+,P̃0−

∑
i∈N

Kui
(p̃ci − pmax

ci
)2 +

M∑
m=1

K0(π
m)(Pm

0+)
2 +KLoss

∑
i∈N\{0}

M∑
m=1

ril
m
i

+
∑

i∈N\{0}
κi

(
ẽi(1− αi) +

M∑
m=1

πmfm
i

)
(4.16a)
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subject to

Coupling Constraints (m = 1, 2, ...,M ):

for i ∈ N\{0} : Pm
i = P̃m

i Qm
i = Q̃m

i lmi = l̃mi vmi = ṽmi v̂mj = ṽmAj
(4.16b)

for i ∈ N\{0} : emi = ẽi fm
i = f̃m

i gmi = g̃mi hm
i = h̃m

i (4.16c)

for i ∈ N , j ∈ Ci : P̂m
j = P̃m

j Q̂m
j = Q̃m

j l̂mj = l̃mj pmci = p̃ci qmwi
= q̃mwi

(4.16d)

for i = 0 : Pm
0+ = P̃m

0+ Pm
0− = P̃m

0− (4.16e)

Individual Equality Constraints (m = 1, 2, ...,M ):

for i ∈ N : Pm
i =

∑
j∈Ci

(P̂m
j + rj l̂

m
j ) + pmci − wm

i (4.16f)

for i ∈ N : Qm
i =

∑
j∈Ci

(Q̂m
j + xj l̂

m
j ) +

√
1

PF2
i

− 1pmci − qmwi
(4.16g)

for i ∈ N\{0} : v̂i = vmi + 2(riP
m
i + xiQ

m
i ) + (r2i + x2

i )l
m
i (4.16h)

for i ∈ N\{0} : fm
i + emi + vmi − V 2

0 − gmi = 0 (4.16i)

for i ∈ N\{0} : fm
i + emi − vmi + V 2

0 − hm
i = 0 (4.16j)

for i = 0 : Pm
0 = Pm

0+ − Pm
0− (4.16k)

Individual Inequality Constraints (m = 1, 2, ...,M )

for i ∈ N\{0} : (P̃m
j )2 + (Q̃m

j )
2 ≤ (ṽmj )(l̃

m
j ) ṽmi ≥ 0, l̃mi ≥ 0 (4.16l)

for i ∈ N\{0} : ẽi ≥ 0 f̃m
i ≥ 0 g̃mi ≥ 0 h̃m

i ≥ 0 (4.16m)

for i ∈ N : pmin
ci
≤ p̃ci ≤ pmax

ci
(4.16n)

for i ∈ N : −
√

s2wi
− (wm

i )
2 ≤ q̃mwi

≤
√

s2wi
− (wm

i )
2 (4.16o)

for i = 0 : P̃m
0+ ≥ 0, P̃m

0− ≥ 0 (4.16p)
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The problem (4.16) is equivalent to (4.8) however it has the advantage of being in the form

of problem (B.1) in Appendix B and can be solved via the ADMM. The purpose of introducing

P̂m
j ,Q̂m

j ,l̂mj is to bypass the need to know Pm
j ,Qm

j and lmj of child node j ∈ Ci on its ancestor node

i. The total number of these copies per scenario is N . Variable v̂mi is also introduced to represent

the copy of voltage node Ai on node i. Again, since only the root does not have an ancestor, there

are exactly N copies of this variable per scenario. The Tilde variables, P̃m
i , Q̃m

i , l̃mi , and ṽmi for all

n ∈ N and m ∈ {1, 2, ...,M} provide the opportunity to handle equality constraints separate from

the inequality constraints, yielding closed-form updates (the same role as in problem (3.7))

Table 4.1: Variables

Nodes involved Variables

xm
0 Root and its children j ∈ C0 {Pm

0 , Qm
0 , P

m
0+, P

m
0−, P̂

m
j , Q̂m

j , l̂
m
j , p

m
c0
, qmw0

}
xm
i Neither root nor leaf {Pm

i , Qm
i , v

m
i , l

m
i , P̂

m
j , Q̂m

j , v̂
m
i , p

m
ci
, qmwi

, fm
i , emi , g

m
i , h

m
i }

xm
i Leaf {Pm

i , Qm
i , v

m
i , l

m
i , v̂

m
i , p

m
ci
, qmwi

, fm
i , emi , g

m
i , h

m
i }

xi All nodes {xm
i }Mm=1

zm0 Root {P̃m
0+, P̃

m
0−, q̃

m
w0
}

z0 Root {{zm0 }Mm=1, p̃c0}
zmi Not root {P̃m

i , Q̃m
i , ṽ

m
i , l̃

m
i , q̃

m
wi
, f̃m

i , g̃mi , h̃
m
i }

zi Not root {{zmi }Mm=1, p̃ci , ẽi}

4.3.2 Algorithm and communication requirements

The augmented Lagrangian and the derivation of closed-form updates for every variable per node

and per scenario is similar to the algorithm described in the previous chapter with steps that follow

the same routine detailed in Appendix C. Furthermore, since the newly introduced variables in this

formulation (i.e., fm
i , emi , g

m
i , h

m
i , f̃

m
i , ẽi, g̃

m
i and h̃m

i ) are all local, the communication requirements

of this algorithm is exactly the same as the one described in Chapter 3.

4.4 Voltage regulation in single-feeder networks with LinDistFlow

Considering the single-feeder network of Fig. 3.2, the goal is to minimize the linear combination

of the objectives introduced in Sec. 3.2.1 and the CV@R in (4.5). Once again, as per [21, Th. 2],
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Table 4.2: Lagrange Multipliers

Equality Constraint Lagrange Multiplier

Pm
i = P̃m

i λm
i

Qm
i = Q̃m

i μm
i

lmi = l̃mi γm
i

vmi = ṽmi ωm
i

v̂mj = ṽmAj
ω̂m
j

emi = ẽi ωm
ei

fm
i = f̃m

i ωm
fi

gmi = g̃mi ωm
gi

hm
i = h̃m

i ωm
hi

P̂m
j = P̃j∈Ci λ̂m

j

Q̂m
j = Q̃j∈Ci μ̂m

j

l̂mj = l̃j∈Ci γ̂m
j

pmci = p̃ci ηmi
qmwi

= q̃mwi
θmi

Pm
0+ = P̃0+i

m ζm+
Pm
0− = P̃0−im ζm−

minimizing the CV@R can be done by performing a joint minimization over V m
i and ei [cf. (4.5)];

putting everything together, the real and reactive power management problem with risk-averse

voltage regulation is

min
pc,qc,qw,P,Q,v,e

N∑
i=1

Kui
(pci − pmax

ci
)2 +

M∑
m=1

πmCost(Pm
0 )

+
N∑
i=1

KLossri

M∑
m=1

πm (Pm
i )2 + (Qm

i )
2

V 2
0

+
N∑
i=1

κi

(
ei +

1

1− αi

M∑
m=1

πm
[|V m

i − V0| − e
]+)

(4.17)

subject to (3.8a)-(3.8f), where vectors pc,qc,qw,P,Q,V, e collect respectively pci , qci , q
m
wi

, Pm
i ,

Qm
i , V m

i , and ei for all i and m, and κi ≥ 0 are weights.

Upon introducing an auxiliary decision variable fm
i that upper bounds the term [|V m

i −V0|−ei]+
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in (4.17), the problem can be written as a convex quadratic program:

Risk− Averse Formulation

min
pc,qc,qw,P,Q,v,e,f ,P0+,P0−

N∑
i=1

Kui
(pci − pmax

ci
)2 +

M∑
m=1

πmK0(P
m
0+)

2

+
N∑
i=1

KLossri

M∑
m=1

πm (Pm
i )2 + (Qm

i )
2

V 2
0

+
N∑
i=1

κi

(
ei +

1

1− αi

M∑
m=1

πmfm
i

)
(4.18a)

subject to

for i ∈ {0, 1, 2, ..., N − 1}:

Pm
i = Pm

i+1 + pci − wm
i (4.18b)

Qm
i = Qm

i+1 +

√
1

PF2
i

− 1pci − qmwi
(4.18c)

V m
i+1 = V m

i − ri+1P
m
i+1 + xi+1Q

m
i+1

1000V 2
0

(4.18d)

for i ∈ {1, 2, ..., N}:
− ei − fm

i ≤ vmi − v0 ≤ ei + fm
i , fm

i ≥ 0; (4.18e)

and also the terminal conditions:

Pm
N = pcN − wm

N (4.18f)

Qm
N =

√
1

PF2
N

− 1pcN − qmwN
(4.18g)

V m
0 = 1. (4.18h)

Pm
0 = Pm

0+ − Pm
0−, P

m
0+ ≥ 0, Pm

0− ≥ 0, (4.18i)

Formulation (4.18) has the property that the optimal αi-V@R of |Vi−V0| is given by the optimal e∗i ,
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while the optimal αi-CV@R emerges as the optimal value of the last term in parenthesis in (4.18a).

That is,

E
[|Vi − V0|

∣∣ |Vi − V0| > e∗i
]
= e∗i +

1

1− αi

M∑
m=1

πmfm∗
i (4.19)

Prob[|Vi − V0| ≤ e∗i ] ≥ α. (4.20)

In the numerical tests, the empirical counterparts of the left-hand sides of (4.19) and (4.20) (ob-

tained using optimal solution {V m∗
i }Mm=1) are found to match their theoretical values.

For comparison, the problem with the objective of minimizing the average absolute deviations

is also considered. This problem is referred to as risk-neutral formulation and is stated as

Risk− Neutral Formulation

min
pc,qc,qw,P,Q,v,P0+,P0−

N∑
i=1

Kui
(pci − pmax

ci
)2 +

M∑
m=1

K0π
m(Pm

0+)
2

+
N−1∑
i=0

Klossri

M∑
m=1

πm (Pm
i )2 + (Qm

i )
2

V 2
0

+
N∑
i=1

κi

M∑
m=1

πm|V m
i − V0| (4.21)

subject to (4.18b)– (4.18i)

and is also a quadratic optimization problem.

4.5 Numerical tests

4.5.1 Tree network with SOCP approximation

In this section numerical experiments are conducted on a residential scale distribution network

with a tree configuration and N = 250 user nodes, as depicted in Fig. 4.1. Nodes 1, 2, ..., 100 form

the main branch and the two laterals branch off from nodes 74 and 75 respectively. Each nodes’
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Figure 4.1: A tree network with one main branch and two laterals

load demand pci is constrained by the interval [pmin
ci

, pmax
ci

] = [1, 4] (kW) with PF = 0.944. Nodes

i ∈ {0, 10, ..., 240} are selected to be capable of PV generation which yields the penetration level

of 10 %. For these PV-enabled nodes swi
= 50 (kW) and wmax

i =
swi

1.1
. There are M = 100

equally probable scenarios considered, and wm
i which is the real power actually generated by the

PV units is sampled from a uniform distribution in the interval [0.75wmax
i , wmax

i ] corresponding to

a sunny day (see Table. 3.4). The nominal voltage at the substation is V0 = 7.2 (kV), and the lines

have impedance r + jx = (0.33 + j0.38) × d where d = 200(m) is considered fixed to ensure

that randomness is only due to the renewable power generation. For this network, optimization

problem(4.8) is solved with the decentralized algorithm described in section 4.3.1, with weight

parameters Kui
= 1,K0 = M ,KLoss = 1 and κi = 10 for all nodes. The quantities αi is considered

to be 0.9–which means that after solving the problem, we should expect approximately that 90 %

of the determined squared voltage deviations |vmi − v0| are less than or equal to the determined

optimal e∗i which is the 0.9-V@R1

1The ADMM algorithm converges once the primal and dual residuals go below an acceptable tolerance level [cf.

(B.4)]. The greatest relative tolerance in these simulations was considered to be 0.01. This means that the optimal e∗i
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According to (4.2), the minimum margin for which the probability of |vi−v0| being smaller than

margin is 90% is equal to the 90%-V@R. The 90%-V@R is the optimal e∗i which is determined

by the algorithm. Fig. 4.2 shows the empirical probability that Prob(|vi − v0| ≤ ei), calculated as

number of scenarios for which the inequality |vmi − v0| ≤ ei holds divided by M. Four different

values of ei, namely ei = e∗i + 0.002,ei = e∗i + 0.001,ei = e∗i and ei = e∗i − 0.01 are considered.

The figure experimentally proves that for e∗i , Prob(|vi − v0| ≤ e∗i ) ≈ αi = 0.9
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Figure 4.2: Empirical probability calculated as the number of scenarios for which |vmi − v0| ≤ ei
divided by M. Four values of ei, namely ei = e∗i+0.002, ei = e∗i+0.001, ei = e∗i , and ei = e∗i−0.01
are considered for αi = 0.9 and for all nodes. Notice for ei → e∗+i , almost 90% of node voltages

are within the ei-margin

Voltage variation across the nodes is also depicted in Fig. 4.3. In this setup, it turns out that

the network experiences high voltage drop in many nodes. An interesting fact observed is that the

branching nodes (i.e, nodes 74 and 75) are susceptible to large voltage drops implying the huge

consumption burdened on these nodes due to the laterals. Notice though that the formulation only

guarantees to provide a threshold such that in 90 % of cases node voltages are expected to fall

determined by the algorithm may be slightly different from the actual optimal e∗i . Therefore, in addition to e∗i found by

the algorithm, two additional values of ei namely, e∗i +0.001 and e∗i +0.002 were considered as possible candidates. In

the simulations, the minimum calculated e∗i was 2.53. Therefore even if we consider e∗i + 0.002, the relative accuracy

would be 0.002
2.53 ≈ 7.9e− 4 which is much lower than the relative tolerance of 0.01 for the simulations.
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within that margin.
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Figure 4.3: Maximum, minimum and average voltage profile

4.5.2 Single-feeder network with LinDistFlow

Numerical experiments are conducted on a residential distribution network as the one in Fig. 3.2

with N = 100 users connected to the main feeder. Each user demands load pci ∈ [pmin
c , pmax

c ] =

[10, 40] (kW) with PFi = 0.944. For user nodes capable of PV generation, the maximum apparent

power generation capacity swi
is set to the same value for all i (given shortly). The maximum real

power generation capacity wi
max are related to swi

through wi
max = swi

/1.1, following [7]. If a

user node does not have PV generation, then swi
= 0 and wmax

i = 0. For buses with PV inverters,

M = 100 scenarios are considered; and in scenario m, wm
i is sampled from a uniform distribution

in the interval [0.75wmax
i , wmax

i ] to represent a relatively sunny day. The nominal voltage at the

substation is V0 = 7.2 (kV), while r + jx = (0.33 + j0.38) × d where d is the distance between

nodes. This distance is set to d = 200(m) to ensure that randomness is only due to renewable power

generation. The scenarios are considered to be equally probable, that is, πm = 1
M

. Throughout the

simulations, the quantities αi and weights κi are selected to be equal for all nodes. In the objective

function, Kui
= 0.001, K0 = 0.01 and KLoss = 0.01. All optimization problems are solved using
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Figure 4.4: Optimal α-V@R for different κi.

the CVX toolbox in Matlab with solver SDPT3 [28, 29].

The risk-averse formulation is investigated first. In this set of simulations, only 10 % of user

nodes (randomly selected) are capable of PV generation with swi
= 250 (kVA), while αi=0.9 is

selected. Fig. 4.4 shows α-V@R—which is the optimal e∗i in (4.18)—for different values of κi.

Fig. 4.5 depicts the α-CV@R evaluated as sample conditional expectation [cf. (4.19)], that is,

the sample average of |V m∗
i − V0| accounting only those scenarios that satisfy |V m∗

i − V0| > e∗i .

The absolute difference between the left- and right-hand sides of (4.19) was found to be less than

0.3% of V0 for all values of κi. It is seen from Fig. 4.4 and 4.5 that increasing κi puts emphasis on

decreasing the corresponding α-V@R and α-CV@R. Fig. 4.6 shows the empirical probability that

the absolute voltage deviation is at most α-V@R, calculated as the number of scenarios for which

|V m∗
i − V0| ≤ e∗i , divided by M . This probability matches the selected α = 0.9.

Comparison of results obtained with the risk-averse and risk-neutral formulations is presented

next. For these simulations, the number of nodes with PV generation is increased from 10 % to
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Figure 4.5: α-CV@R for different κi obtained using {V m∗
i }Mm=1.

50 %, however maximum apparent power is reduced to swi
= 50 (kVA), while κi = 1 in both

problems, and αi = 0.8 for the risk-averse problem. Optimal values for both problems are listed

in Table 4.3.

It can be observed that the risk-neutral formulation achieves lower cost terms for the system.

However, this superior performance comes at the cost of poor voltage regulation. Specifically,

Fig. 4.7 and 4.8 respectively show the expected value and standard deviation of the absolute voltage

deviation normalized by the nominal voltage V0. These measures are smaller under the the risk-

averse formulation as compared to the corresponding ones of the risk-neutral formulation.

Table 4.3: Objective Values of Risk-Averse and Risk-Neutral Problems
���������Obj

Problem
CV@R Risk Neutral

Utility ×Ki 51.0936 51.0397

K0 × Cost(P0) 2.8681 2.6748

Kloss×Line Losses 17.0770 15.9992
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Figure 4.6: Empirical probability calculated as the number of scenarios for which |V m∗
i −V0| ≤ e∗i

divided by M for different κi.

To further illustrate the effect of the CV@R objective in shaping the distribution of |Vi −
V0|, Fig. 4.9 shows the empirical cumulative distribution function of |VN − V0| (obtained from

the optimal voltages {V m∗
N }Mm=1 at the terminal node). The CV@R objective guarantees that for

α = 80% of the scenarios the deviation of the terminal node voltage from the nominal value is

below the optimal α-V@R. For all scenarios, the deviation of the terminal node voltage from V0 is

below 0.01V0. On the other hand, the risk-neutral formulation provides no such guarantee, and the

absolute deviation of VN from V0 can be greater than 0.01V0 for many scenarios.
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Figure 4.7: Optimal expected value of absolute voltage deviation in risk-averse and risk-neutral

problems obtained using {V m∗
i }Mm=1.
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Figure 4.8: Optimal standard deviation of absolute voltage deviation in risk-averse and risk-neutral

problems obtained using {V m∗
i }Mm=1.

56



0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eN

v0

P
(|
v
N
−

v
0
|
≤

e
N
)

 

 

Risk-Averse
Risk-Neutral
αN

e
∗

N

v0
(αN -V@R)

Figure 4.9: Empirical cumulative distribution function of terminal node voltage in risk-averse and

risk-neutral problems obtained from samples |V m∗
N − V0| ≤ ei divided by M

57



Chapter 5: SUMMARY AND FUTURE DIRECTIONS

This thesis focused on leveraging stochastic programming tools for power management in distri-

bution networks featuring high penetration of renewable solar photovoltaic generation and con-

trollable loads. The introduction of PV generation in distribution networks offers production of

green electric energy and lessens transmission thermal losses by reducing the distance between

the place of generation and consumers. There are two chief challenges in integrating distributed

PV generation into current residential distribution networks. First, due to the unpredictable pat-

terns in weather conditions yielding unforeseen shortfalls in electricity production levels from

these sources throughout the day, there is a risk of inadequate generation with respect to customer

demand. Second, uncertainty in PV generation results in alteration of voltage levels across the

network, rendering voltage regulation a daunting task.

Recently, demand response has been made possible by programmable loads which can adjust

their real power consumption. This technology blended with advancements in power electronics

which have enabled PV inverters to generate or consume reactive power offers an opportunity to

overcome the two challenges previously mentioned. Demand response amounts to adjusting cus-

tomer demand while there are generation fluctuations and reactive power control aids in reducing

thermal losses and maintaining voltage constraints.

In this thesis, after reviewing power flow equations in tree distribution networks, and introduc-

ing models for programmable loads and PV injection, a stochastic program was formulated with

the aim of minimizing customer dissatisfaction, cost of power provision, and thermal losses. The

decision variables in this optimization problem were the real power consumption of programmable

loads and reactive power portion of PV inverters. The uncertainty inherent in PV generation was

modeled by a finite number of scenarios in each of which the value of generation was assumed to

be known. Accounting for uncertainty rendered the power flow equations to be scenario dependent.

Real power consumption of consumers were scenario independent, while reactive power injection

or consumption of PV inverters depended on the solar generation scenario.
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Voltage regulation, which is the task of maintaining voltages across the distribution network

close to the nominal value of the substation voltage, was accomplished in two ways. The first

method enforces every node voltage in the system to be within a specific region for every possible

generation scenario and was the theme of Chapter 3. The second approach entails minimizing

the CV@R of voltage deviations from the nominal value in Chapter 4. The proposed models

were tested on single-feeder distribution networks to show the advantages of this formulations as

opposed to the suggested alternatives.

Another focus of this thesis was to develop decentralized algorithms for solving the previously

mentioned stochastic optimization problems. In distribution networks with large number of nodes,

a centralized approach requires communicating all parameters and variables to a central agent,

which entails large overhead and can be prone to errors in case of communication failures.The

decentralized algorithm developed in this thesis has the desirable attribute that only neighbors

need to exchange information, thereby reducing the communication overhead. The algorithm was

based the alternating direction method of multipliers. In order to utilize ADMM, appropriate re-

formulations of the stochastic optimization problems with judiciously selected auxiliary variables

were developed. The upshot was that, in each update of the ADMM, the minimization problems

were solvable in closed form, and decomposition was achieved both per node and per scenario for

scenario dependent variables.

The work in this thesis can be extended in several directions, which are listed next:

• Exact power flow equations: In Chapter 2, the power flow equations were detailed. These

equations were non-convex, and linear and SOCP approximations were pursued in this the-

sis. One direction of research is to develop decentralized algorithms that utilize exact power

flow equations without any approximations.

• Inverter sizing: In Chapter 2, while introducing the PV inverter model, it was assumed that

the inverters have a nameplate capacity swi
. The research issue here is to determine appro-

priate inverter sizes that can yield reduced distribution system costs for different distribution
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functions of irradiance.

• Capacitor placement and sizing: Reactive power compensation in distribution network

has traditionally been accomplished through capacitor banks. In this thesis, the only source

of reactive power was the inverters of PV enabled nodes. Optimally determining capacitor

sizes and placement in distribution networks within the framework of optimization under

uncertainty in solar generation remains a challenge.

• Real time adjustment of real power consumption: In the move to a smarter power grid,

scheduling of energy requires not only coordinated generation but organized consumption.

The programmable load model described in Chapter 2 is only a basic model accounting for

the bounds of power consumption. The consumption in residential areas can be monitored

by utility companies through the use of smart meters in an hourly manner. The real-time

adjustment of real power consumption of devices depending on the customer preferences

and the prices at a given time of day is an exciting area of research.

• Distributed storage: The premise here is that end-users can use batteries to store energy

at certain times and utilize this energy at a later time. These storage devices may also be

allowed to sell certain energy back to the network, or participate in voltage regulation. Inte-

grating distributed storage capabilities into the power management framework is an enticing

task.
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Appendix A: PROOF THAT ONLY ONE OF THE TWO VARIABLES P0+

OR P0− IS NONZERO AT THE OPTIMAL POINT

In this section we will prove that at the optimal point of problem (3.6), only one of the two decision

variables Pm
0+ and Pm

0− is nonzero:

Suppose that this is not the case, meaning that both Pm
0+ and Pm

0− are nonzero. Following (3.6f),

Pm
0 = Pm

0+ − Pm
0−. First assume that Pm

0 ≥ 0 and define two new variables Pm
0+2

= Pm
0 and

Pm
0−2

= 0. Constraint (3.6f) holds for Pm
0+2

and Pm
0−2

. Moreover, Pm
0+2

= Pm
0 = Pm

0+ − Pm
0−. Since

Pm
0− is nonzero, it must be positive and hence Pm

0+2
< Pm

0+. Since Pm
0+2

and Pm
0+ are both positive:

Pm
0+2

< Pm
0+ ⇒ K0(P

m
0+2

)2 < K0(P
m
0+2

)2 (A.1)

Result (A.1) means that the cost in (3.6a) is smaller for the new set of variables Pm
0+2

and Pm
0−2

.

Since Pm
0+ and Pm

0− were considered to be the optimal points, this is a contradiction and hence Pm
0+

and Pm
0− cannot be both positive at the optimal point.

Next, assume that Pm
0 ≤ 0. Define two new variables Pm

0+2
= 0 and Pm

0−2
= −Pm

0 . Constraint

(3.6f) holds for Pm
0+2

and Pm
0−2

. Notice that:

Pm
0+2

= 0 < Pm
0+ ⇒ K0(P

m
0+2

)2 = 0 < K0(P
m
0+)

2 (A.2)

Therefore once again, the cost in (3.6a) is smaller for the new set of variables Pm
0+2

and Pm
0−2

and

that Pm
0+ and Pm

0− cannot be both positive at the optimal point.
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Appendix B: OVERVIEW OF ADMM

ADMM is an algorithm that aims to solve the problems of the form

min
x,z

f(x) + g(z) (B.1a)

subject to

Ax+Bz = c (B.1b)

x ∈ X , z ∈ Z (B.1c)

where X ⊆ Rn, and Z ⊆ Rm are convex sets and (B.1b) is a linear equality between the x and z

variables. Defining the augmented Lagrangian with parameter ρ > 0 as:

Lρ(x, z,y) = f(x) + g(y) + yT (Ax+Bz− c) +
ρ

2
||Ax+Bz− c||22 (B.2)

where y is the vector of Lagrange multipliers for the linear constraint (B.1b). The ADMM solves

the problem by primal and dual iterations. The primal variables x and z updates are achieved

successively by solving the following problems in each iteration:

x(k + 1) = argmin
x∈X

Lρ (x, z(k),y(k)) (B.3a)

z(k + 1) = argmin
z∈Z

Lρ (x(k + 1), z,y(k)) (B.3b)

y(k + 1) = y(k) + ρ (Ax(k + 1) + Bz(k + 1)− c) (B.3c)

Let

r(k) := ||Ax(k) + Bz(k)− c|| (B.4)
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s(k) := ρ||ATB(z(k)− z(k − 1))|| (B.5)

define the respective primal and dual feasibility residuals [14], a common stopping criterion for

the ADMM is thus when at an iteration k these values are smaller than an acceptable tolerance.
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Appendix C: UPDATES OF SOCP ADMM ALGORITHM

C.1 Equivalent problem

The problem to solve via ADMM will be of the following form:

min
P,P̂,P̃,

Q,Q̂,Q̃,
v,v̂,ṽ

p̃c,pc,qw,q̃w

P0+,P0−,,P̃0+,P̃0−

∑
i∈N

Kui
(p̃ci − pmax

ci
)2 +

M∑
m=1

K0(π
m)(Pm

0+)
2 +KLoss

∑
i∈N\{0}

M∑
m=1

ril
m
i (C.1a)

subject to:

Coupling Constraints:

for i ∈ N\{0} : Pm
i = P̃m

i Qm
i = Q̃m

i lmi = l̃mi vmi = ṽmi v̂mj = ṽmAj
(C.1b)

for i ∈ N : P̂m
j = P̃j∈Ci Q̂m

j = Q̃j∈Ci l̂mj = l̃j∈Ci pmci = p̃ci qmwi
= q̃mwi

(C.1c)

for root: Pm
0+ = P̃m

0+ Pm
0− = P̃m

0− (C.1d)

Individual Equality Constraints:

Pm
i =

∑
j∈Ci

(P̂m
j + rj l̂

m
j ) + pmci − wm

i (C.1e)

Qm
i =

∑
j∈Ci

(Q̂m
j + xj l̂

m
j ) +

√
1

PF2
i

− 1pmci − qmwi
(C.1f)

for i ∈ N\{0} : v̂i = vmi + 2(riP
m
i + xiQ

m
i ) + (r2i + x2

i )l
m
i (C.1g)

for root: Pm
0 = Pm

0+ − Pm
0− (C.1h)

Individual Inequality Constraints

for i ∈ N\{0} : (P̃m
j )2 + (Q̃m

j )
2 ≤ (ṽmj )(l̃

m
j ) (C.1i)
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(1− ε)2V + 02 ≤ ṽmi ≤ (1 + ε)2v20 (C.1j)

for i ∈ N : pmin
ci
≤ p̃ci ≤ pmax

ci
(C.1k)

−
√
s2wi
− (wm

i )
2 ≤ q̃mwi

≤
√

s2wi
− (wm

i )
2 (C.1l)

for root: P̃m
0+ ≥ 0, P̃m

0− ≥ 0 (C.1m)

Table C.1: Lagrange Multipliers

Equality Constraint Lagrange Multiplier

Pm
i = P̃m

i λm
i

Qm
i = Q̃m

i μm
i

lmi = l̃mi γm
i

vmi = ṽmi ωm
i

v̂mj = ṽmAj
ω̂m
j

P̂m
j = P̃j∈Ci λ̂m

j

Q̂m
j = Q̃j∈Ci μ̂m

j

l̂mj = l̃j∈Ci γ̂m
j

pmci = p̃ci ηmi
qmwi

= q̃mwi
θmi

Pm
0+ = P̃0+i

m ζm+
Pm
0− = P̃0−im ζm−

C.2 Augmented Lagrangian

Lρ(X,Z,Y) =
∑
i∈N

Kui
(p̃ci − pmax

ci
)2 +

M∑
m=1

K0π
m(Pm

0+)
2 +

∑
i∈N+

M∑
m=1

πmril
m
i

+
∑
i∈N+

M∑
m=1

λm
i (P

m
i − P̃m

i ) +
∑
i∈N

M∑
m=1

∑
j∈Ci

λ̂m
j (P̂

m
j − P̃m

j ) +
∑
i∈N+

M∑
m=1

μm
i (Q

m
i − Q̃m

i )

+
∑
i∈N

M∑
m=1

∑
j∈Ci

μ̂m
j (Q̂

m
j − Q̃m

j ) +
∑
i∈N+

M∑
m=1

γm
i (lmi − l̃mi ) +

∑
i∈N

M∑
m=1

∑
j∈Ci

γ̂j
m(l̂mj − l̃mj )

+
∑
i∈N+

M∑
m=1

ωm
i (v

m
i − ṽmi ) +

∑
i∈N+

M∑
m=1

ω̂m
j (v̂

m
j − ṽmj ) +

∑
i∈N

M∑
m=1

ηmi (p
m
ci
− p̃ci)
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Table C.2: Variables

Nodes involved Variables

Xm
0 Root and its children j ∈ C0 {Pm

0 , Qm
0 , P

m
0+, P

m
0−, P̂

m
j , Q̂m

j , l̂
m
j , p

m
c0
, qmw0

}
Xm

i Neither root nor leaf and the children j ∈ Ci {Pm
i , Qm

i , v
m
i , l

m
i , P̂

m
j , Q̂m

j , v̂
m
i , p

m
ci
, qmwi

}
Xm

i Leaf {Pm
i , Qm

i , v
m
i , l

m
i , v̂

m
i , p

m
ci
, qmwi

}
Zm

0 Root {P̃m
0+, P̃

m
0−, q̃

m
w0
}

Z0 Root {{Zm
0 }Mm=1, p̃c0}

Zm
i Not root {P̃m

i , Q̃m
i , ṽ

m
i , l̃

m
i , q̃

m
wi
}

Zi Not root {{Zm
i }Mm=1, p̃ci}

+
∑
i∈N

M∑
m=1

θmi (q
m
wi
− q̃mwi

) +
M∑

m=1

ζm+ (Pm
0+ − P̃m

0+) +
M∑

m=1

ζm− (P
m
0− − P̃m

0−)

+
ρ

2

⎡⎣∑
i∈N+

M∑
m=1

(Pm
i − P̃m

i )2 +
∑
i∈N

M∑
m=1

∑
j∈Ci

(P̂m
j − P̃m

j )2 +
∑
i∈N+

M∑
m=1

(Qm
i − Q̃m

i )
2

+
∑
i∈N

M∑
m=1

∑
j∈Ci

(Q̂m
j − Q̃m

j )
2 +

∑
i∈N+

M∑
m=1

(lmi − l̃mi )
2 +

∑
i∈N

M∑
m=1

∑
j∈Ci

(l̂mj − l̃mj )
2

+
∑
i∈N+

M∑
m=1

(vmi − ṽmi )
2 +

∑
i∈N+

M∑
m=1

(v̂mj − ṽmj )
2 +

∑
i∈N

M∑
m=1

(pmci − p̃ci)
2

+
∑
i∈N

M∑
m=1

(qmwi
− q̃mwi

)2 +
M∑

m=1

(Pm
0+ − P̃m

0+)
2 +

M∑
m=1

(Pm
0− − P̃m

0−)
2

]
(C.2)

C.3 Updates

We will divide the nodes into three subsets {root, leaf, other} and for each of these cases we will

write the updates. Each step of the ADMM will consist of minimizing the augmented Lagrangian

with respect to either X or Z and updating the Lagrange parameters.

C.3.1 Xm
0 -update

For the root in scenario m, the X-update will be broken down to the following quadratic program:

min
Xm

0

K0π
m(Pm

0+)
2 +

∑
j∈C〉

λ̂m
j (P̂

m
j − P̃m

j ) +
∑
j∈C′

μ̂m
j (Q̂

m
j − Q̃m

j ) +
∑
j∈C′

γ̂m
j (l̂mj − l̃mj )
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+ ηm0 (p
m
c0
− p̃mc0) + θm0 (qw0 − q̃mwi

) + ζm+ (Pm
0+ − P̃m

0+) + ζm− (P
m
0− − P̃m

0−)

+
ρ

2

[∑
j∈C′

(P̂m
j − P̃m

j )2 +
∑
j∈C′

(Q̂m
j − Q̃m

j )
2 +

∑
j∈C′

(l̂mj − l̃mj )
2

+ (pmc0 − p̃mc0)
2 + (qwi

− q̃mw0
)2 + (Pm

0+ − P̃m
0+)

2 + (Pm
0− − P̃m

0−)
2
]

(C.3a)

subject to:

Pm
0 = Pm

0+ − Pm
0− (C.3b)

Pm
0 =

∑
j∈C0

(P̂m
j + rj l̂

m
j ) + pmci − pmgi (C.3c)

Qm
0 =

∑
j∈C0

(Q̂m
j + xj l̂

m
j ) +

√
1

PF2
i

− 1pmci − qmw0
(C.3d)

This problem is a QP of the form

1

2
xTAx+ bTx (C.4a)

s.t. : Cx = d (C.4b)

Where A = 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pm
0+︷ ︸︸ ︷

ρ

2
+K0π

m

Pm
0−︷︸︸︷
0

P̂m
j︷︸︸︷
0

Q̂m
j︷︸︸︷
0

l̂mj︷︸︸︷
0

pmc0︷︸︸︷
0

qmw0︷︸︸︷
0

0 ρ
2

0 0 0 0 0

0 0 ρ
2

0 0 0 0

0 0 0 ρ
2

0 0 0

0 0 0 0 ρ
2

0 0

0 0 0 0 0 ρ
2

0

0 0 0 0 0 0 ρ
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4+3×|C0|)×(4+3×|C0|)

.
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b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζm+ − ρP̃m
0+

ζm− − ρP̃m
0−

λ̂m
j − ρP̃m

j

μ̂m
j − ρQ̃m

j

γ̂m
j − ρl̃mj

ηm0 − ρp̃c0

θm0 − ρq̃mw0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4+3×|C0|)×1

for j ∈ C0.

C = [

Pm
0+︷︸︸︷
1

Pm
0−︷︸︸︷
−1

P̂m
j︷︸︸︷
−1

Q̂m
j︷︸︸︷
0

l̂mj︷︸︸︷
−rj

pmc0︷︸︸︷
−1

qmw0︷︸︸︷
0 ] and d = [−pmw0

]

This quadratic problem has a closed form solution developed in Appendix D.

C.3.2 Xm
i -update

For the nodes that are not root or leaf in scenario m, the X-update will be broken down to the

following quadratic program:

min
Xm

i

πmril
m
i + λm

i (P
m
i − P̃m

i ) +
∑
j∈C〉

λ̂m
j (P̂

m
j − P̃m

j ) + μm
i (Q

m
i − Q̃m

i ) +
∑
j∈C′

μ̂m
j (Q̂

m
j − Q̃m

j )

+γm
i (lmi − l̃mi )+

∑
j∈C′

γ̂m
j (l̂mj − l̃mj )+ωm

i (v
m
i − ṽmi )+ ω̂m

i (v̂
m
i − ṽmi )+ηmi (p

m
ci
− p̃mci )+θmi (qwi

− q̃mwi
)

+
ρ

2

[
(Pm

i − P̃m
i )2 +

∑
j∈C′

(P̂m
j − P̃m

j )2 + (Qm
i − Q̃m

i ) +
∑
j∈C′

(Q̂m
j − Q̃m

j )
2 + (lmi − l̃mi )

2

+
∑
j∈C′

(l̂mj − l̃mj )
2 + (vmi − ṽmi )

2 + (ṽmi − ṽmi )
2 + (pmci − p̃mci )

2 + (qmwi
− q̃mwi

)2

]
(C.5a)

subject to:

Pm
i =

∑
j∈Ci

(P̂m
j + rj l̂

m
j ) + pmci − pmgi (C.5b)

Qm
i =

∑
j∈Ci

(Q̂m
j + xj l̂

m
j ) +

√
1

PF2
i

− 1pmci − qmwi
(C.5c)
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v̂mi = vmi + 2(riP
m
i + xiQ

m
i ) + (r2i + x2

i )l
m
i (C.5d)

This problem is a QP of the form

1

2
xTAx+ bTx (C.6a)

s.t. : Cx = d (C.6b)

A = 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pm
i︷︸︸︷
ρ

2

Qm
i︷︸︸︷
0

vmi︷︸︸︷
0

lmi︷︸︸︷
0

P̂m
j︷︸︸︷
0

Q̂m
j︷︸︸︷
0

l̂mj︷︸︸︷
0

v̂mi︷︸︸︷
0

pmc0︷︸︸︷
0

qmw0︷︸︸︷
0

0 ρ
2

0 0 0 0 0 0 0 0

0 0 ρ
2

0 0 0 0 0 0 0

0 0 0 ρ
2

0 0 0 0 0 0

0 0 0 0 ρ
2

0 0 0 0 0

0 0 0 0 0 ρ
2

0 0 0 0

0 0 0 0 0 0 ρ
2

0 0 0

0 0 0 0 0 0 0 ρ
2

0 0

0 0 0 0 0 0 0 0 ρ
2

0

0 0 0 0 0 0 0 0 0 ρ
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7+3×|C0|)×(7+3×|C0|)

.
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b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γm
i − ρP̃m

i

μm
i − ρQ̃m

i

ωm
i − ρṽmi

γm
i − ρl̃mi + πmri

λ̂m
j − ρP̃m

j

μ̂m
j − ρQ̃m

j

γ̂m
j − ρl̃mj

ω̂m
i − ρṽAi

ηmi − ρp̃ci

θmi − ρq̃mwi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7+3×|Ci|)×1

for j ∈ Ci.

C =

⎡⎢⎢⎢⎢⎢⎢⎣
Pm
i︷︸︸︷
1

Qm
i︷︸︸︷
0

vmi︷︸︸︷
0

lmi︷︸︸︷
0

P̂m
j︷︸︸︷
−1

Q̂m
j︷︸︸︷
0

l̂mj︷︸︸︷
−rj

v̂mi︷︸︸︷
0

pmci︷︸︸︷
−1

qmwi︷︸︸︷
0

0 1 0 0 0 −1 −xj 0 −
√

1
PF2

i
− 1 1

2ri 2xi 1 (r2i + x2
i ) 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
3×(7+3×|Ci|)

and d =

⎡⎢⎢⎢⎢⎣
−pmwi

0

0

⎤⎥⎥⎥⎥⎦
Note that in the case where Ai = 1 then the term for v̂mi in the third row of C disappears and d

will change to: d =

⎡⎢⎢⎢⎢⎣
−pmwi

0

−V 2
0

⎤⎥⎥⎥⎥⎦
C.3.3 Xm

i -update leaf

For the nodes that are not root or leaf in scenario m, the X-update will be broken down to the

following quadratic program:

min
Xm

i

πmril
m
i +λm

i (P
m
i − P̃m

i )+μm
i (Q

m
i − Q̃m

i )+ γm
i (lmi − l̃mi )+ωm

i (v
m
i − ṽmi )+ ω̂m

i (v̂
m
i − ṽmi )
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+ ηmi (p
m
ci
− p̃mci ) + θmi (qwi

− q̃mwi
) +

ρ

2

[
(Pm

i − P̃m
i )2 + (Qm

i − Q̃m
i ) + (lmi − l̃mi )

2

+(vmi − ṽmi )
2 + (ṽmi − ṽmi )

2 + (pmci − p̃mci )
2 + (qmwi

− q̃mwi
)2
]

(C.7a)

subject to:

Pm
i = pmci − pmgi (C.7b)

Qm
i =

√
1

PF2
i

− 1pmci − qmwi
(C.7c)

v̂mi = vmi + 2(riP
m
i + xiQ

m
i ) + (r2i + x2

i )l
m
i (C.7d)

This problem is a QP of the form

1

2
xTAx+ bTx (C.8a)

s.t. : Cx = d (C.8b)

A = 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pm
i︷︸︸︷
ρ

2

Qm
i︷︸︸︷
0

vmi︷︸︸︷
0

lmi︷︸︸︷
0

v̂mi︷︸︸︷
0

pmc0︷︸︸︷
0

qmw0︷︸︸︷
0

0 ρ
2

0 0 0 0 0

0 0 ρ
2

0 0 0 0

0 0 0 ρ
2

0 0 0

0 0 0 0 ρ
2

0 0

0 0 0 0 0 ρ
2

0

0 0 0 0 0 0 ρ
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
7×7

.
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b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λm
i − ρP̃m

i

μm
i − ρQ̃m

i

ωm
i − ρṽmi

γm
i − ρl̃mi + πmri

ηmi − ρp̃ci

θmi − ρq̃mwi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
7×1

C =

⎡⎢⎢⎢⎢⎢⎢⎣
Pm
i︷︸︸︷
1

Qm
i︷︸︸︷
0

vmi︷︸︸︷
0

lmi︷︸︸︷
0

P̂m
j︷︸︸︷
−1

Q̂m
j︷︸︸︷
0

l̂mj︷︸︸︷
−rj

v̂mi︷︸︸︷
0

pmci︷︸︸︷
−1

qmwi︷︸︸︷
0

0 1 0 0 0 −1 −xj 0 −
√

1
PF2

i
− 1 1

2ri 2xi 1 (r2i + x2
i ) 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
3×(7+3×|Ci|)

and d =

⎡⎢⎢⎢⎢⎣
−pmwi

0

0

⎤⎥⎥⎥⎥⎦
C.3.4 Zm

0 -update

For p̃c0 the Lagrangian breaks down to:

L = ku0(p̃c0 − pmax
c0

)2 +
M∑

m=1

ηm0 (p
m
c0
− p̃c0) +

ρ

2

M∑
m=1

(pmci − p̃ci)
2 (C.9)

Taking the derivative and setting it to zero yields:

∂L

∂p̃c0
= 0

⇒ p̃∗c0 =
2K0p

max
c +

M∑
m=1

[
ηm0 + ρpmc0

]
2K0 + ρM

(C.10)

Since pc0 has to be within specific boundaries:

p̃c0(k + 1) = max
{
pmin
c0

,min{p̃∗c0 , pmax
c0
}} (C.11)
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For P̃m
0+:

L = ζm+ (Pm
0+ − P̃m

0+) +
ρ

2
(Pm

0+ − P̃m
0+)

2 (C.12)

Following the same logic:

∂L

∂P̃0+

= 0⇒ P̃m∗
0+ =

ζm+ + ρPm
0+

ρ
(C.13)

Since Pm
0+ has to be greater than zero :

P̃m
0+(k + 1) = max{0, P̃m∗

0+ } (C.14)

Similarly for P̃m
0−:

P̃m∗
0− =

ζm− + ρPm
0−

ρ
(C.15)

P̃m
0−(k + 1) = max{0, P̃m∗

0− } (C.16)

For q̃mw0
the Lagrangian becomes:

L = θmi (q
m
w0
− q̃mwi

) +
ρ

2
(qmwi

− q̃mwi
)2 (C.17)

Hence:

∂L

∂q̃mw0

= 0⇒ q̃m∗w0
=

θmi + ρqmwi

ρ
(C.18)

To conform to the bounds:

qmw0
(k + 1) = max

{
qmin
w ,min{q̃m∗w0

, qmax
w0
}} (C.19)
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C.3.5 Zi-update

For p̃ci the Lagrangian breaks down to:

L = Kui
(p̃ci − pmax

ci
)2 +

M∑
m=1

ηmi (p
m
ci
− p̃ci) +

ρ

2

M∑
m=1

(pmci − p̃ci)
2 (C.20)

Taking the derivative and setting it to zero yields:

∂L

∂p̃c0
= 0

⇒ p̃∗ci =
2Kui

pmax
ci

+
M∑

m=1

[
ηmi + ρpmci

]
2Kui

+ ρM
(C.21)

Since pci has to be within specific boundaries:

p̃ci(k + 1) = max
{
pmin
ci

,min{p̃∗ci , pmax
ci
}} (C.22)

For q̃mwi
the Lagrangian becomes:

L = θmi (q
m
wi
− q̃mwi

) +
ρ

2
(qmwi

− q̃mwi
)2 (C.23)

Hence:

∂L

∂q̃mwi

= 0⇒ q̃m∗wi
=

θmi + ρqmwi

ρ
(C.24)

To conform to the bounds:

qmwi
(k + 1) = max

{
qmin
w ,min{q̃m∗wi

, qmax
wi
}} (C.25)
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P̃m
i , Q̃m

i , ṽ
m
i , l̃

m
i -update:

L = min
{
λm
i (P

m
i 0P̃m

i ) + λ̂m
i (P̂

m
i − P̃m

i ) + μm
i (Q

m
i − Q̃m

i ) + μ̂m
i (Q̂

m
i − Q̃m

i )

+ γm
i (lmi − l̃mi ) + γ̂m

i (l̂mi − l̃mi ) + ωm
i (v

m
i − ṽmi ) +

∑
j∈Ci

ω̂m
j (v̂

m
j − ṽmi )

+
ρ

2
[(Pm

i − P̃m
i )2 + (P̂m

i − P̃m
i )2 + (Qm

i − Q̃m
i )

2 + (Q̂m
i − Q̃m

i )

+(lmi − l̃mi )
2 + (l̂mi − l̃mi )

2 + (vmi − ṽmi )
2 +

∑
j∈Ci

(v̂j − ṽmi )
2 ]
}

(C.26a)

subject to:

(1− ε)2V 2
0 ≤ ṽmi ≤ (1 + ε)2V 2

0 (C.26b)

(P̃m
i )2 + (Q̃m

i )
2 ≤ ṽmi l̃

m
i , ṽ

m
i ≥ 0, l̃mi ≥ 0 (C.26c)

This problem has a closed form solution which is derived in Appendix E.

C.3.6 Zi-update leaf

For p̃ci the Lagrangian breaks down to:

L = Kui
(p̃ci − pmax

ci
)2 +

M∑
m=1

ηmi (p
m
ci
− p̃ci) +

ρ

2

M∑
m=1

(pmci − p̃ci)
2 (C.27)

Taking the derivative and setting it to zero yields:

∂L

∂p̃c0
= 0

⇒ p̃∗ci =
2Kui

pmax
ci

+
M∑

m=1

[
ηmi + ρpmci

]
2Kui

+ ρM
(C.28)

75



Since pci has to be within specific boundaries:

p̃ci(k + 1) = max
{
pmin
ci

,min{p̃∗ci , pmax
ci
}} (C.29)

For q̃mwi
the Lagrangian becomes:

L = θmi (q
m
wi
− q̃mwi

) +
ρ

2
(qmwi

− q̃mwi
)2 (C.30)

Hence:

∂L

∂q̃mwi

= 0⇒ q̃m∗wi
=

θmi + ρqmwi

ρ
(C.31)

To conform to the bounds:

qmwi
(k + 1) = max

{
qmin
w ,min{q̃m∗wi

, qmax
wi
}} (C.32)

P̃m
i , Q̃m

i , ṽ
m
i , l̃

m
i - leaf update:

L = min
{
λm
i (P

m
i 0P̃m

i ) + λ̂m
i (P̂

m
i − P̃m

i ) + μm
i (Q

m
i − Q̃m

i ) + μ̂m
i (Q̂

m
i − Q̃m

i )

+ γm
i (lmi − l̃mi ) + γ̂m

i (l̂mi − l̃mi ) + ωm
i (v

m
i − ṽmi )+

+
ρ

2
[(Pm

i − P̃m
i )2 + (P̂m

i − P̃m
i )2 + (Qm

i − Q̃m
i )

2 + (Q̂m
i − Q̃m

i )

+(lmi − l̃mi )
2 + (l̂mi − l̃mi )

2 + (vmi − ṽmi )
2 ]
}

(C.33a)

subject to:

(1− ε)2V 2
0 ≤ ṽmi ≤ (1 + ε)2V 2

0 (C.33b)

(P̃m
i )2 + (Q̃m

i )
2 ≤ ṽmi l̃

m
i , ṽ

m
i ≥ 0, l̃mi ≥ 0 (C.33c)

This problem has similar form to (C.26) and has a closed form solution.
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Appendix D: CLOSED FORM SOLUTION OF EQUALITY

CONSTRAINED QP IN X-UPDATE

1

2
xTAx+ bTx (D.1)

s.t. : Cx = d (D.2)

The Lagrangian is :

L(x, λ) =
1

2
xTAx+ bTx+ λT (Cx− d) (D.3)

Setting the derivative to zero for optimum x yields:

∂L

∂x
= Ax+ b+ CTλ = 0 (D.4)

hence:

x∗ = A−1(−b− CTλ) (D.5)

Since Cx = d :

Cx∗ = CA−1(−b− CTλ) = d (D.6)

⇒ CA−1(−b)− CA−1CTλ = d (D.7)

⇒ λ = −(CA−1CT )−1(d+ CA−1b) (D.8)

Replacing derived λ from (D.6) in (D.5) yields the optimum x∗:

x∗ = A−1(−b+ CT ((CA−1CT )−1(d+ CA−1b))) (D.9)
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Appendix E: CLOSED FORM SOLUTION OF SOCP CONSTRAINT IN

Z-UPDATE

L = min
{
λm
i (P

m
i 0P̃m

i ) + λ̂m
i (P̂

m
i − P̃m

i ) + μm
i (Q

m
i − Q̃m

i ) + μ̂m
i (Q̂

m
i − Q̃m

i )

+ γm
i (lmi − l̃mi ) + γ̂m

i (l̂mi − l̃mi ) + ωm
i (v

m
i − ṽmi ) +

∑
j∈Ci

ω̂m
j (v̂

m
j − ṽmi )

+
ρ

2
[(Pm

i − P̃m
i )2 + (P̂m

i − P̃m
i )2 + (Qm

i − Q̃m
i )

2 + (Q̂m
i − Q̃m

i )

+(lmi − l̃mi )
2 + (l̂mi − l̃mi )

2 + (vmi − ṽmi )
2 +

∑
j∈Ci

(v̂j − ṽmi )
2 ]
}

(E.1a)

subject to:

(1− ε)2V 2
0 ≤ ṽmi ≤ (1 + ε)2V 2

0 (E.1b)

(P̃m
i )2 + (Q̃m

i )
2 ≤ ṽmi l̃

m
i , ṽ

m
i ≥ 0, l̃mi ≥ 0 (E.1c)

Define new variable: ṽm
′

i =
√
|Ci|+1

2
ṽmi . The problem becomes of the form:

min
y1,y2,y3,y4

4∑
i=1

(y2i + ciyi) (E.2a)

subject to :

y21 + y22 ≤ k2y3y4 (E.2b)

y3 ∈ [ymin
3 , ymax

3 ] (E.2c)

y3 > 0 (E.2d)

where y1 = P̃m
i , y2 = Q̃m

i , y3 = ṽm
′

i and y4 = l̃mi :

k2 =

√
2

|Ci|+ 1
(E.3)
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c1 = −1

ρ
(λm

i + λ̂m
i )− Pm

i − P̂m
i (E.4)

c2 =
1

ρ
(μm

i + μ̂m
i )−Qm

i − Q̂m
i (E.5)

c3 = −ωm
i

√
2

|Ci|+ 1
−

∑
j∈Ci

ω̂j

√
2

|Ci|+ 1
−

∑
j∈Ci

v̂j

√
2

|Ci|+ 1
−

√
2

|Ci|+ 1
vmi (E.6)

c4 = −1

ρ
(γm

i + γ̂m
i )− lmi − l̂mi (E.7)

This problem has can be solved in closed form using the results in [14].
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Appendix F: PROBLEM FORMULATION AND THE ADMM

ALGORITHM FOR THE SIMULATIONS ON SINGLE-FEEDER

NETWORK WITH LINDISTFLOW APPROXIMATION

F.1 Equivalent problem

The equivalent problem amenable for the ADMM, leveraging the model where power flows are

considered to be flowing out of a node is explained here (see Section 3.2). The optimization

problem to be solved via the ADMM is as follows, where all listed constraints hold for m ∈
{1, ...,M}.

min
x,z

N∑
i=1

[
Kui

(p̃ci − pmax
ci

)2
]
+

M∑
m=1

πmK0(P
m
0+)

2 +
N−1∑
i=0

M∑
m=1

πmri
(Pm

i )2 + (Qm
i )

2

V 2
0

(F.1a)

subj. to

Coupling Constraints:

P̃m
i = Pm

i , P̃m
i = P̂m

i , Q̃j
i = Qj

i , Q̃
j
i = Q̂j

i (i ∈ {0, ..., N − 1}) (F.1b)

ṽmi = vmi , ṽ
j
i = v̂mi , p̃ci = pmci , q̃

m
wi

= qmwi
(i ∈ {1, ..., N}) (F.1c)

P̃m
0+ = Pm

0+, P̃
m
0− = Pm

0− (F.1d)

Individual Constraints:

v̂mi+1 = vmi −
riP

m
i + xiQ

m
i

1000V 2
0

(i ∈ {0, ..., N − 1}) (F.1e)

P̂m
i−1 = Pm

i + pmci − wm
i (i ∈ {1, ..., N}) (F.1f)
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Q̂m
i−1 = Qm

i +

√
1

PF2
i

− 1pmci − qmwi
(i ∈ {1, ..., N}) (F.1g)

pmin
ci
≤ p̃ci ≤ pmax

ci
(i ∈ {1, ..., N}) (F.1h)

−
√

s2wi
− (wm

i )
2 ≤ q̃mwi

≤
√

s2wi
− (wm

i )
2(i ∈ {1, ..., N}) (F.1i)

1− ε ≤ ṽmi ≤ 1 + ε (i ∈ {1, ..., N}) (F.1j)

Pm
0 = Pm

0+ − Pm
0− (F.1k)

P̃m
0+ ≥ 0, P̃m

0− ≥ 0, Pm
N = 0, Qm

N = 0, vm0 = 1 (F.1l)

The optimization variables x := {x0,x1, ...,xN} and z := {z0, z1, ..., zN} of the previous problem

are defined in (F.2). In the following lists, the boldface variables on the right-hand sides represent

vectors of length J collecting the corresponding values of that variable in all scenarios.

x0 := {P0,Q0,v0,P0+,P0−} (F.2a)

xN :=
{
PN ,QN ,vN ,pcN ,qwN

, P̂N−1, Q̂N−1
}

(F.2b)

z0 :=
{
P̃0, Q̃0, ṽ0, P̃0+, Q̃0+

}
(F.2c)

zN = {ṽN , p̃cN , q̃wN
} (F.2d)

and for i ∈ {1, 2, ..., N − 1},

xi :=
{
Pi,Qi,vi,pci ,qwi

, P̂i−1, Q̂i−1, v̂i+1

}
(F.2e)

zi :=
{
P̃i, Q̃i, ṽi, p̃ci , q̃wi

}
. (F.2f)

F.2 Augmented Lagrangian

N∑
i=1

[
Kui

(p̃ci − pMax
ci

)2
]
+

M∑
m=1

K0(P
m
0+)

2 +
N−1∑
i=0

M∑
m=1

πmri
(Pm

i )2 + (Qm
i )

2

V 2
0
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Table F.1: Given Variables and Description

Variables Description

P̃i i=0,...,N-1

Pm
i i = 0, ..., N

P̂m
i i = 0, ..., N − 1

ṽmi i = 1, ..., N
vmi i = 1, 2, ..., N
v̂mi i = 1, ..., N

Table F.2: Coupling Constraints & Associated Lagrange Parameters

Constraints Lagrange Parameters Range

P̃i = Pm
i λm

i i = 0, ..., N − 1

P̂m
i = P̃i λ̂m

i+1 i = 0, ..., N − 1
ṽmi = vmi ωm

i i = 1, ..., N
ṽmi = v̂mi ω̂m

i−1 i = 1, 2, ..., N

+
N−1∑
i=0

M∑
m=1

[
λm
i (P̃

m
i − Pm

i ) + λ̂m
i+1(P̃

m
i − P̂m

i ) + μm
i (Q̃

m
i −Qm

i ) + μ̂m
i+1(Q̃

m
i − Q̂m

i )
]

+
N∑
i=1

M∑
m=1

[
ωm
i (ṽ

m
i − vmi ) + ω̂m

i−1(ṽ
m
i − v̂mi ) + ηmi (p̃ci − pmci ) + θmi (q̃

m
wi
− qmwi

)
]

+
M∑

m=1

ζm+ (P̃m
0+ − Pm

0+) + ζm− (P̃
m
0− − Pm

0−) +
ρ

2

M∑
m=1

(P̃m
0+ − Pm

0+)
2 + (P̃m

0− − Pm
0−)

2

+
ρ

2

N−1∑
i=0

M∑
m=1

[
(P̃m

i − Pm
i )2 + (P̃m

i − P̂m
i )2 + (Q̃m

i −Qm
i )

2 + (Q̃m
i − Q̂m

i )
2
]

+
ρ

2

N∑
i=1

M∑
m=1

[
(ṽmi − vmi )

2 + (ṽmi − v̂mi )
2 + (p̃mci −Qm

i )
2 + (q̃mwi

− q̂mwi
)2
]

(F.3)

F.3 x-update

F.3.1 i = 1, 2, ..., N − 1

The x-update for i = 1, ..., N − 1 is as follows:

(Parentheses denotes iteration number)

82



xm
i (k + 1) = argmin{πmri

(Pm
i )2 + (Qm

i )
2

V 2
0

+ λm
i (k)(P̃

m
i (k)− Pm

i ) + λ̂m
i (k)(P̃

m
i−1(k)− P̂m

i−1)

+μm
i (k)(Q̃

m
i (k)−Qm

i )+ μ̂m
i (k)(Q̃

m
i−1(k)− Q̂m

i−1)+ωm
i (k)(ṽ

m
i (k)−vmi )+ ω̂m

i (k)(ṽ
m
i+1(k)− v̂mi+1)

+ηmi (k)(p̃ci(k)−pmci )+θmi (k)(q̃
m
gi
(k)−qmwi

)+
ρ

2
[(P̃m

i (k)−Pm
i )2+(P̃m

i−1(k)−P̂m
i−1)

2+(Q̃m
i (k)−Qm

i )
2

+(Q̃m
i−1(k)− Q̂m

i−1)
2+(ṽmi (k)− vmi )

2+(ṽmi+1(k)− v̂mi+1)
2+(p̃ci(k)− pmci )

2+(q̃mgi (k)− qmwi
)2]}
(F.4)

where xm
i (k + 1) = [Pm

i , P̂m
i−1, Q

m
i , Q̂

m
i−1, v

m
i , v̂

m
i+1, p

m
ci
, qmwi

]T subject to

−P̂m
i−1 + Pm

i + pmci − wm
i = 0 (F.5)

−Q̂m
i−1 +Qm

i +

√
1

PF2
i

− 1pmci − qmwi
= 0 (F.6)

−v̂mi+1 + vmi −
ri

1000V 2
0

Pm
i −

xi

1000V 2
0

Qm
i = 0 (F.7)

These equations form a quadratic convex program which can be solved in closed form. In

order to solve this problem in closed form, first we have to bring the equations to the following

format [24]

argmin{1
2
xTAx+ bTx} (F.8)

subject to : Cx = d (F.9)

Then we can solve for the optimal by calculating Gaussian elimination of KKT matrix:

⎡⎢⎣ A CT

C 0

⎤⎥⎦
⎡⎢⎣ x∗

y∗

⎤⎥⎦ =

⎡⎢⎣ −b
d

⎤⎥⎦ (F.10)

Next we calculate the entries for matrices A and C, and vectors b and d. Assuming that

x = [Pm
i , P̂m

i−1, Q
m
i , Q̂

m
i−1, v

m
i , v̂

m
i+1, p

m
ci
, qmwi

]T
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A = 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
2
+ πmri

V 2
0

0 0 0 0 0 0 0

0 ρ
2

0 0 0 0 0 0

0 0 ρ
2
+ πmri

V 2
0

0 0 0 0 0

0 0 0 ρ
2

0 0 0 0

0 0 0 0 ρ
2

0 0 0

0 0 0 0 0 ρ
2

0 0

0 0 0 0 0 0 ρ
2

0

0 0 0 0 0 0 0 ρ
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λm
i (k)− ρP̃m

i (k)

−λ̂m
i (k)− ρP̃m

i−1(k)

−μm
i (k)− ρQ̃m

i (k)

−μ̂m
i (k)− ρQ̃m

i−1(k)

−ωm
i (k)− ρṽmi (k)

−ω̂m
i (k)− ρṽmi+1(k)

−ηmi (k)− ρp̃ci(k)

−θmi (k)− ρq̃mgi (k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡⎢⎢⎢⎢⎣
1 −1 0 0 0 0 1 0

0 0 1 −1 0 0
√

1
PF2

i
− 1 −1

− ri
1000V 2

0
0 − xi

1000V 2
0

0 1 −1 0 0

⎤⎥⎥⎥⎥⎦

d =

⎡⎢⎢⎢⎢⎣
wm

i

0

0

⎤⎥⎥⎥⎥⎦
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F.3.2 i = 0

xm
0 (k + 1) = argmin{πmr0

(Pm
0 )2 + (Qm

0 )
2

V 2
0

+ πmK0(P
m
0+)

2 + λm
0 (k)(P̃

m
0 (k)− Pm

0 )

+ μm
0 (k)(Q̃

m
0 (k)−Qm

0 ) + ζm+ (P̃m
0+(k)− Pm

0+) + ζm− (k)(P̃
m
0−(k)− Pm

0−) + ω̂m
0 (k)(ṽ

m
1 (k)− v̂m1 )

+
ρ

2
[(P̃m

0 (k)−Pm
0 )2+(Q̃m

0 (k)−Qm
0 )

2+(P̃m
0+(k)−Pm

0+)
2+(P̃m

0−(k)−Pm
0−)

2+(ṽm1 (k)− v̂m1 )
2]}

(F.11)

we assume that Cost(Pm
0+) = K0(P

m
0+)

2

where xm
0 (k + 1) = [Pm

0 , Qm
0 , v̂

m
1 , P

m
0+, P

m
0−]

T subject to

−v̂m1 + 1− r0
1000V 2

0

Pm
0 −

x0

1000V 2
0

Qm
0 = 0 (F.12)

Pm
0 = Pm

0+ − Pm
0− (F.13)

(F.14)

A = 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
2
+ πmr0

V 2
0

0 0 0 0

0 ρ
2
+ πmri

V 2
0

0 0 0

0 0 ρ
2

0 0

0 0 0 ρ
2
+ πmK0 0

0 0 0 0 ρ
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λm
0 (k)− ρP̃m

0 (k)

−μm
0 (k)− ρQ̃m

0 (k)

−ω̂m
0 (k)− ρṽm1 (k)

−ζm+ (k)− ρP̃m
0+(k)

−ζm− (k)− ρP̃m
0−(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡⎢⎣ − r0
1000V 2

0
− x0

1000V 2
0
−1 0 0

1 0 0 −1 1

⎤⎥⎦

d =

⎡⎢⎣ −1
0

⎤⎥⎦
F.3.3 i = N

xm
N(k+1) = argmin{λ̂m

N(k)(P̃
m
N−1(k)−P̂m

N−1)+μ̂m
N(k)(Q̃

m
N−1(k)−Q̂m

N−1)+ωm
N (k)(ṽ

m
N (k)−vmN )

+ ηmN (k)(p̃cN (k)− pmcN ) + θmN (k)(q̃
m
gN
(k)− qmwN

) +
ρ

2
[(P̃m

N−1(k)− P̂m
N−1)

2 + (Q̃m
N−1(k)− Q̂m

N−1)
2

+ (ṽmN (k)− vmN )
2 + (p̃cN (k)− pmcN )

2 + (q̃mwN
(k)− qmwN

)2]} (F.15)

where xm
N(k + 1) = [P̂m

N−1, Q̂
m
N−1, v

m
N , p

m
cN
, qmwN

]T subject to

−P̂m
N−1 + pmcN − wm

N = 0 (F.16)

−Q̂m
N−1 +

√
1

PF2
N

− 1pmcN − qmwN
= 0 (F.17)
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A = 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
2

0 0 0 0

0 ρ
2

0 0 0

0 0 ρ
2

0 0

0 0 0 ρ
2

0

0 0 0 0 ρ
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ̂m
N(k)− ρP̃m

N−1(k)

−μ̂m
N(k)− ρQ̃m

N−1(k)

−ωm
N (k)− ρṽmN (k)

−ηmN (k)− ρp̃mcN (k)

−θmN (k)− ρq̃mgN (k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

⎡⎢⎣ −1 0 0 1 0

0 −1 0
√

1
PF2

N
− 1 −1

⎤⎥⎦

d =

⎡⎢⎣ wm
N

0

⎤⎥⎦
F.4 z-update

First we will assume that ui(p̃ci) = −Kui
(p̃ci − pmax

ci
)2 therefore we can minimize the Lagrangian.

F.4.1 i = 1, 2, ..., N − 1

zi(k+1) = argmin{Kui
(p̃ci−pmax

ci
)2+

M∑
m=1

[λm
i (k)(P̃

m
i −Pm

i (k+1))+ λ̂m
i (k)(P̃

m
i −P̂m

i (k+1))

+μm
i (k)(Q̃

m
i −Qm

i (k+1))+μ̂m
i (k)(Q̃

m
i −Q̂m

i (k+1))+ωm
i (k)(ṽ

m
i −vmi (k+1))+ω̂m

i (k)(ṽ
m
i −v̂mi (k+1))

+ηmi (k)(p̃ci−pmci (k+1))+θmi (q̃
m
wi
−qmwi

(k))+
ρ

2
[(P̃m

i −Pm
i (k+1))2+(P̃m

i −P̂m
i (k+1))2+(Q̃m

i −Qm
i (k+1))2
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+(Q̃m
i −Q̂m

i (k+1))2+(ṽmi −vmi (k+1))2+(ṽmi (k)−v̂mi (k+1))2+(p̃ci−pmci (k+1))2+(q̃mwi
−qmwi

(k+1))2]]}
(F.18)

where zi(k + 1) = [P̃i, Q̃i, p̃ci , ṽi, q̃wi
]T

and where P̃i, Q̃i, ṽi, q̃wi
are vectors collecting all the samples. subject to

pmin
ci
≤ p̃ci ≤ pmax

ci
(F.19)

−
√

s2wi
− (wm

i )
2 ≤ q̃mwi

≤
√

s2wi
− (wm

i )
2 (F.20)

1− ε ≤ ṽmi ≤ 1 + ε (F.21)

In this case, problem can divide to 5 box-constraint scalar quadratic optimization problems that

can be solved in closed form.

z-update for P̃m
i

The problem is unconstrained as follows:

P̃m
i (k + 1) = argmin{λm

i (k)(P̃
m
i − Pm

i (k + 1)) + λ̂m
i+1(k)(P̃

m
i − P̂m

i (k + 1))

+
ρ

2
[(P̃m

i − Pm
i (k + 1))2 + (P̃m

i − P̂m
i (k + 1))2]} (F.22)

which is equivalent to:

P̃m
i (k + 1) =

−λm
i (k)− λ̂m

i+1(k) + ρ(Pm
i (k + 1) + P̂m

i (k + 1)

2ρ
(F.23)

z-update for Q̃m
i

Q̃m
i (k + 1) =

−μm
i (k)− μ̂m

i+1(k) + ρ(Qm
i (k + 1) + Q̂m

i (k + 1)

2ρ
(F.24)
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z-update for p̃ci

The problem breaks down to

p̃ci(k + 1) = argmin{Kui
(p̃ci − pmax

ci
)2 +

M∑
m=1

[
ηmi (k)(p̃ci − pmci (k + 1)) +

ρ

2
(p̃ci − pmci (k + 1))2

]
}

(F.25)

subject to

pmin
ci
≤ p̃ci ≤ pmax

ci
(F.26)

which is a box constrained scalar optimization problem and the solution is as follows: The deriva-

tive of the objective is:

f ′ = (2Kui
+ ρM)p̃ci − 2Kui

pmax
ci

+
M∑
j=1

[
ηmi (k)− ρpmci (k + 1)

]
(F.27)

Therefore the inverse function of the derivative evaluated at its zero would be:

2Kui
pmax
ci

−
M∑

m=1

[
ηmi (k) + ρpmci (k + 1)

]
2Kui

+ ρM
(F.28)

and now we can explicitly say the update is going to be:

p̃ci(k + 1) = max

⎡⎢⎢⎣pmin
ci

,min

⎛⎜⎜⎝2Kui
pmax
ci

−
M∑

m=1

[
ηmi (k)− ρpmci (k + 1)

]
2Kui

+ ρM
, pmax

ci

⎞⎟⎟⎠
⎤⎥⎥⎦ (F.29)
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z-update for ṽmi

ṽmi (k + 1) = argmin(ωm
i (k)(ṽ

m
i − vmi (k + 1)) + ω̂m

i−1(k)(ṽ
m
i − v̂mi (k + 1))

+
ρ

2
(ṽmi (k)− vmi (k + 1))2 +

ρ

2
(ṽmi (k)− v̂mi (k + 1))2) (F.30)

subject to

1− ε ≤ ṽmi ≤ 1 + ε (F.31)

and

ṽmi (k + 1) = max

[
1− ε,min

(
−ωm

i (k)− ω̂m
i−1(k) + ρ(vmi (k + 1) + (̂v)mi (k + 1))

2ρ
, 1 + ε

)]
(F.32)

z-update for q̃mgi

q̃mgi (k + 1) = argmin(θmi (q̃
m
gi
− qmwi

(k)) +
ρ

2
(q̃mgi − qmwi

(k + 1))2) (F.33)

subject to

−
√

s2wi
− (wm

i )
2 ≤ q̃mwi

≤
√

s2wi
− (wm

i )
2 (F.34)

and we will find:

q̃mwi
(k + 1) = max

[
−
√

s2wi
− (wm

i )
2,min

(−θmi (k) + ρqmwi
(k + 1)

ρ
,
√

s2wi
− (wm

i )
2

)]
(F.35)

90



F.4.2 i = 0

zm0 (k+1) = argmin{λm
0 (k)(P̃

m
0 −Pm

0 (k+1))+λ̂m
1 (k)(P̃

m
0 −P̂m

0 (k+1))+μm
0 (k)(Q̃

m
0 −Qm

0 (k+1))

+ μ̂m
1 (k)(Q̃

m
0 − Q̂m

0 (k + 1)) + ζm+ (k)(P̃m
0+ − Pm

0+(k + 1)) + ζm− (k)(P̃
m
0− − Pm

0−(k + 1))

+
ρ

2
[(P̃m

0 − Pm
0 (k + 1))2 + (P̃m

0 − P̂m
0 (k + 1))2

+ (Q̃m
0 −Qm

0 (k+1))2 + (Q̃m
0 − Q̂m

0 (k+1))2 + (P̃m
0+−Pm

0+(k+1))2 + (P̃m
0−−Pm

0−(k+1))2]}
(F.36)

where zm0 (k + 1) = [P̃m
0 , Q̃m

0 , P̃
m
0+, P̃

m
0−]

T

solving for P̃m
0

P̃m
0 (k + 1) = argmin{λm

0 (k)(P̃
m
0 − Pm

0 (k + 1)) + λ̂m
1 (k)(P̃

m
0 − P̂m

0 (k + 1))

+
ρ

2
(P̃m

0 − Pm
0 (k + 1))2 +

ρ

2
(P̃m

0 − P̂m
0 (k + 1))2} (F.37)

which is unconstrained and is solve as follows:

P̃m
0 (k + 1) =

−λm
0 (k)− λ̂m

1 (k) + ρ(Pm
0 (k + 1) + P̂m

0 (k + 1))

2ρ
(F.38)

solving for Q̃m
0

Q̃m
0 (k + 1) =

−μm
0 (k)− μ̂m

1 (k) + ρ(Qm
0 (k + 1) + Q̂m

0 (k + 1))

2ρ
(F.39)
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solving for P̃m
0+

The objective for P̃m
0+ is

P̃m
0+(k + 1) = argmin{ζm+ (k)(P̃m

0+ − Pm
0+(k + 1)) +

ρ

2
(P̃m

0+ − Pm
0+(k + 1))2} (F.40)

with constraint P̃m
0+ ≥ 0

This can be solved in closed form by:

P̃m
0+(k + 1) = max

(
ρPm

0+(k + 1)− ζm+ (k)

ρ
, 0

)
(F.41)

solving for P̃m
0−

Similarly ,

P̃m
0−(k + 1) = max

(
ρPm

0−(k + 1)− ζm− (k)
ρ

, 0

)
(F.42)

F.4.3 i = N

zmN (k + 1) = argmin{ωm
N (k)(ṽ

m
N − vmN (k + 1)) + ω̂m

N−1(k)(ṽ
m
N − v̂mN (k + 1))

+ θmN (q̃
m
wN
− qmwN

(k))

+
ρ

2
[(ṽmN − vmN (k + 1))2 + (ṽmN (k)− v̂mN (k + 1))2 + (q̃mwN

− qmwN
(k + 1))2]} (F.43)
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subject to

−
√

s2wN
− (wm

N )
2 ≤ q̃mwN

≤
√

s2wN
− (wm

N )
2 (F.44)

1− ε ≤ ṽmN ≤ 1 + ε (F.45)

For q̃mwN

q̃mwN
(k + 1) = argmin{θmN (q̃mwN

− qmwN
(k)) +

ρ

2
(q̃mwN

− qmwN
(k + 1))2} (F.46)

subject to −√
s2wN

− (wm
N )

2 ≤ q̃mwN
≤√

s2wN
− (wm

N )
2

q̃mwN
(k + 1) = max

[
−
√

s2wN
− (wm

N )
2,min

(−θmN (k) + ρqmwN
(k + 1)

ρ
,
√
s2wN

− (wm
N )

2

)]
(F.47)

For ṽmN

ṽmN (k + 1) = argmin{ωm
N (k)(ṽ

m
N − vmN (k + 1)) + ω̂m

N (k)(ṽ
m
N − v̂mN (k + 1))+

ρ

2
(ṽmN − vmN (k + 1))2 +

ρ

2
(ṽmN (k)− v̂mN (k + 1))2} (F.48)

subject to 1− ε ≤ ṽmN ≤ 1 + ε

ṽmN (k + 1) = max

[
1− ε,min

(−ωm
N (k)− ω̂m

N−1(k) + ρ(vmN (k + 1) + v̂mN (k + 1))

2ρ
, 1 + ε

)]
(F.49)
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