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ABSTRACT

Ring, Jeremy Daniel (M.S. Geology [Department of Geologic Sciences])
Petrophysical evaluation of lithology and mineral distribution with an emphasis on
feldspars and clays, middle and upper Williams Fork Formations, Piceance Basin,
Colorado.

Thesis directed by Professor Matthew J. Pranter

Understanding accessory mineralogy occurrence and distribution is critical to
evaluating the reservoir quality and economic success of tight-gas reservoirs, since the
occurrence of iron-rich chlorites can decrease resistivity measurements and the
occurrence of potassium feldspar increases gamma-ray measurements, resulting in
inaccurate water saturation and net-to-gross calculations, respectively. This study was
undertaken to understand the occurrence and distribution of chlorite and potassium
feldspar in the middle and upper Williams Fork Formations of the Piceance Basin at
Grand Valley Field.

Eight lithofacies are identified in core based on grain-size, internal geometry, and
sedimentary structures. Four architectural elements (channel fill, crevasse splay,
floodplain, and coal) were determined from lithofacies relationships, and then
associated with well-log responses. Logs and models were used to determine the
occurrence and distribution of lithology, architectural elements, chlorite and potassium
feldspar, as well as the relationships between minerals and lithology and architectural
elements. Net-to-gross ratios vary stratigraphically, from 8% to 88%, with a higher

average in the middle Williams Fork Formation (58.3%) than in the upper Williams Fork



Formation (48.5%). Volumetric proportions vary stratigraphically for both channel fills
(18- 75%) and crevasse splays (1-7%).

The average volume percent of chlorite and potassium feldspars are both <1%,
with Psg values of 1.3% and 7%, respectively. Chlorite is pervasive at the base of the
middle Williams Fork Formation: almost 90% of the sandstones in sand-rich intervals
contain chlorite. The distribution of chlorite did not vary between reservoir architectural
elements, with 70% of both crevasse splays and channel fills containing chlorite.

The results of this study show that, for the middle and upper Williams Fork Formations
at Grand Valley Field, 1) there are eight lithofacies and four architectural-element types
identified from core; 2) the occurrence and distribution of accessory minerals (<10%) of
chlorite and potassium feldspar can be accurately estimated from limited core and well-
log data; 3) chlorite occurrence does not vary significantly between reservoir
architectural elements; 4) the abundance of chlorite near completion intervals and the
occurrence of potassium feldspar in calculated mudstone lithologies indicate a need to
re-evaluate the utilization of saturation models and lithology calculations in reservoir-

quality evaluations.
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INTRODUCTION

The Piceance Basin, located in northwestern Colorado, produces natural gas
from numerous reservoirs of the Upper Cretaceous Mesaverde Group (Figure 1). Most
production is from isolated sandstone reservoirs within the Williams Fork Formation.
The reservoirs are interpreted to be the result of meandering- and braided-river
deposits, separated from each other by floodplain deposits within coastal-plain and
alluvial-plain depositional settings (Johnson, 1989; Hettinger and Kirschbaum, 2002,
2003). Recent research that has focused on evaluating and estimating the spatial
distribution and connectivity of the fluvial sandstone reservoirs, both in outcrop and the
subsurface include Pranter et al., (2007, 2008, 2009), Yurewicz et al., (2008), Hewlett,
(2010), Baytok, (2010), Pranter and Sommer (2011). The high heterogeneity and low
static connectivity of the reservoirs has lead to well spacing being reduced from 20 to 10
ac (933 to 660 ft [284 to 201 m]) (Pranter, et al., 2007; Pranter and Sommer, 2011).

General studies by Pitman et al. (1989), Crossey and Larsen (1992), and Webb
et al. (2004) have focused on controls and quality of petrophysical properties, while
more recent studies have examined the correlation of diagenetic variations of the
Williams Fork Formation with core petrophysics and well-log responses (Ozkan et al.,
2011). These studies have aided in relating mineralogy and diagenesis to reservoir
quality. In particular, chlorite has been observed to be primarily authigenic, based on
textures observed in thin sections (Crossey and Larsen, 1992). Chlorite is found as both
a pore-fill and a coating around quartz grains in Mesaverde sandstones (Pitman et al.,
1989). The relatively small amounts of chlorite are difficult to identify in thin sections, but

X-ray diffraction analysis suggests that most chlorite is iron-bearing (Crossey and
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Figure 1. Location map of the Piceance Basin. Current Mesaverde gas fields are shown
in red and outcrops of the Mesaverde Group that occur on the margins of the basin are

shown in green. The location of the Cascade Creek 697-20-28 well (blue circle) and

study area (blue box) within Grand Valley Field are shown. The Cascade Creek 697-20-

28 well was used to build and calibrate the petrophysical model.From Pranter et al.
(2009). Modified from Johnson (1989), Tyler and McMurry (1995), and Hoak and
Klawitter (1997).



Larsen, 1992). Iron-bearing chlorite is of particular interest as it can lower electric-log
resistivity considerably due to the high conductivity of the iron (Bowen, 2005).

This study focuses on the spatial distribution of lithology, chlorite, and potassium
feldspar within the middle and upper Williams Fork Formations for a portion of Grand
Valley Field. Potassium feldspar and chlorite occurrences were calculated from log
analysis, and their distributions were compared to lithology and architectural-element
type. Because water-saturation calculations rely on accurate resistivity readings, the
suppression of resistivity values by iron-bearing chlorite can result in an over-estimation
of water saturation for sandstones with iron-bearing chlorite (Durand et al., 2001). Some
of the highest reservoir quality in the Williams Fork Formation is observed in the
sandstones with grain-coating chlorite (Ozkan et al., 2011), furthering the need to
accurately model the saturations of these intervals. The interest in potassium feldspar is
due to the increased gamma-ray response caused by the presence of the radioactive
potassium (Ozkan et al., 2011), which can decrease the calculated proportions of
sandstone (net-to-gross ratio) based on the gamma-ray logs.

This study develops a better understanding of the spatial variability of sandstone
deposits of the middle and upper Williams Fork Formations with respect to lithofacies,
fluvial architectural elements, and specific mineralogic constituents. Three key research
questions that are addressed include: (1) What are the key lithofacies, lithofacies
associations, and architectural elements and how are they expressed in log signatures?
(2) What is the occurrence of chlorite and potassium feldspar, and how does it vary
spatially? (3) Is there a relationship between interpreted reservoir architectural-element

types and the distribution of these accessory minerals?



TECTONIC AND STRATIGRAPHIC SETTING

The Piceance Basin is an asymmetrical northwest-southeast-elongated basin
bounded by numerous uplifts which developed during the Laramide Orogeny from Late
Cretaceous through the Eocene (~75-40 Ma): the Axial Arch on the north, the White
River Uplift on the east, the Sawatch Uplift and Elk Mountains on the southeast, the
Gunnison Uplift on the south, the Uncompahgre Uplift on the southwest, the Douglas
Arch on the west, and the Uinta Mountain Uplift on the northwest (Tweto, 1975;
Johnson, 1989). Basement-cored, high-angle reverse-fault uplifts during the Laramide
orogeny partitioned the larger Rocky Mountain Foreland Basin system into the multiple
basins present today (Johnson and Flores, 2003; DeCelles, 2004). Sediments shed
from the Early Cretaceous tectonic uplift of the Sevier highlands in the west were
transported towards the Western Interior Seaway by fluvial systems within alluvial- and
coastal-plain settings (Hettinger and Kirschbaum, 2002, 2003).

The Mesaverde Group was deposited during Campanian time along the western
margin of the seaway (Johnson, 1989), and contains the lles Formation, Williams Fork
Formation, and Ohio Creek Member (Figure 2). Underlying and intertounging with the
Mesaverde Group is the Mancos Shale, a marine shale deposited during major
incursions of the Western Interior Seaway.

The Williams Fork Formation is composed primarily of strata deposited by fluvial
systems in the western portion of the Piceance Basin, with decreasing marine influence
over time and towards the west. The Williams Fork Formation is approximately 5000 ft

(1524 m) thick near the Grand Hogback on the eastern margin of the basin and thins to



Figure 2. Type-log for Grand Valley Field
GM 522-3 Well (AP1 05045102210000)
The type log (on the following page) is shown to associate the various intervals used
throughout the study. The gamma-ray (GR) log is colored based on lithology,

progressing from yellow for sandstone to grey for shale.

GR units are gAPI; Density-Porosity (DPHI) and Neutron-Porosity (NPHI) units are
decimal percent. The petrophysical model tops, ROL+X’, are surfaces X ft above

the Rollins Sandstone Member (ROL).
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approximately 1200 ft (365 m) thick at the Colorado-Utah state line (Hettinger and
Kirschbaum, 2002, 2003).The Williams Fork Formation is divided into the lower
(sandstone-poor), middle and upper (sandstone-rich) Williams Fork Formations (Cole
and Cumella, 2005). The uppermost portion of the Williams Fork Formation includes the
Ohio Creek Member (or Conglomerate), identified as a white kaolinitic zone which may
or may not contain conglomeratic lenses (Johnson and May, 1980). Kaolinite is formed
by weathering or hydrothermal alteration of aluminosilicate minerals, and rocks rich in
feldspar commonly weather to kaolinite. The Ohio Creek Member is separated from the
rest of the Williams Fork Formation by an extensive unconformity, and has been
interpreted as lowstand deposits formed by braided-fluvial rivers (Patterson et al.,
2003).

The lower Williams Fork Formation was deposited within anastomosing to
meandering river systems within a coastal-plain setting (Lorenz, 1987; Johnson, 1989;
Hemborg, 2000; Patterson et al., 2003; Cole and Cumella, 2005). In the southeastern
Piceance Basin near Mamm Creek Field, the lower Williams Fork Formation consists of
offshore, distal to proximal lower shoreface and upper shoreface strata deposited during
multiple transgressive-regressive cycles (Shaak, 2010). The middle and upper Williams
Fork Formations are interpreted as having been deposited by a low-to-moderate
sinuosity braided river system within an alluvial-plain setting (Patterson et al., 2003;
Cole and Cumella, 2005; German, 2006). This interpretation has primarily been based
on the low-to-moderate range of paleocurrents, the paucity of sandstones with distinct
lateral accretion surfaces, and the relatively higher net-to-gross ratio for the middle and

upper Williams Fork Formations as well as the observations that the sandstones are



highly amalgamated and sheetlike with high width-to-thickness ratios (8:1-100:1;
average: 34:1) (German, 2006). Keeton (2012) recognized deposits in outcrop (Plateau
Creek Canyon) that support dividing the upper Williams Fork formation into a lower
meandering-fluvial system (Flaco interval) and an overlying braided-fluvial system (Ges
interval).

The Piceance Basin is a basin-centered gas system as defined by Law (2002): a
regionally pervasive gas accumulation that is gas saturated, abnormally pressured,
lacks a downdip water contact, and has low-permeability reservoirs. The high pressures
created during hydrocarbon generation forced water out of the pores of the sandstones,
resulting in an inversion of fluid contacts compared to those encountered in
conventional reservoirs: gas-saturated sandstones are located down-dip of gas-water
transition zones and water-saturated sandstones (Yurewicz, 2005). The inversion of

fluid contacts is an important consideration in saturation and petrophysical modeling.

DATASET AND METHODOLOGY

Grand Valley Field is located in the central area of the Piceance Basin in western
Colorado, north of the town of Parachute. The area of interest for this study consisted of
approximately 8 mi? (20.7 kmz) within Grand Valley Field (Figure 3). This location was
selected due to the availability of core and subsurface data, which was utilized for
stratigraphic and mineralogical analysis. A 329-well database of logs was analyzed to
determine the distribution of lithology and architectural elements. Additional well logs
from a 27-well subset were used in conjunction with x-ray diffraction data and core to

analyze the occurrence and distributions of potassium feldspar and chlorite.
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To understand the sedimentary deposits of the middle and upper Williams Fork
Formations at Grand Valley Field, 354 ft (107.9 m) of core from the Cascade Creek 697-
20-28 well were described to determine lithology, lithofacies and lithofacies associations
(architectural elements). Core observations were compared to their corresponding shale
volume (v-shale) logs to determine characteristic log signatures for lithology and
architectural elements. The v-shale log measures the proportion of shale, derived from
a linear relationship to the normalized gamma ray log.

In order to investigate the stratigraphic distribution of minerals, specifically
chlorite and potassium feldspar, petrophysical lithology and saturation models were
developed and analyzed. The well-log calculations and subsequent petrophysical
(mineralogical) modeling were accomplished using standard industry processes and
software.

The petrophysical model was developed for the Cascade Creek 697-20-28 well,
which was the closest cored well (6.5 mi; 10.4 km away) to the Grand Valley field study
area. The measured weight percent of chlorite and potassium feldspar from the core
were compared to the modeled mineral percentages, and the model’s input parameters
were adjusted until the percentages matched to within a 3% range. The input
parameters were subsequently used to model petrophysical properties in the 27 wells
within the study area, and mineral proportions and fluid saturation values were
calculated for each well.

Three-dimensional (3-D) models were developed in order to understand the
stratigraphic variability of lithology and architectural elements within the middle and

upper Williams Fork Formations. Additionally, 3-D models of chlorite and potassium



feldspar constrained to the petrophysical model results (chlorite and potassium-feldspar
proportion logs) were produced to understand the relationships between architectural
elements and the occurrence of chlorite and potassium feldspar.

Using sequential-indicator simulation, a lithology model was created to evaluate
the spatial distribution of lithology within the middle and upper Williams Fork
Formations. The distributions of both chlorite and potassium-feldspar percent were also
modeled and constrained independently to the lithology model and upscaled
architectural-element logs. As both minerals of interest in this study are generally <10%
of the total rock volume, the models were further refined using cutoff values to highlight
the areas where a greater relative concentration of each mineral existed within the
reservoirs, with higher concentrations of the minerals defined as anything above their
Pso distribution value. Volumetric calculations for the “high concentration” models were

subsequently completed to quantify the significance of the minerals.

LITHOFACIES AND ARCHITECTURAL-ELEMENT ANALYSIS
Types, Characteristics, and Occurrences

Lithofacies, lithofacies associations, and architectural elements were determined from
core observations to understand the sedimentary deposits of the middle and upper
Williams Fork Formations. Eight lithofacies are identified in the core: contorted
mudstone (F¢), laminated mudstone (F), contorted sandstone (S¢), planar-laminated
sandstone (S.), ripple-laminated sandstone (Sr), wavy-laminated sandstone (Sw.)
structureless sandstone (Ss), and coal (C) (Table 1). The eight lithofacies identified in
the core are grouped into four lithofacies associations (architectural elements).

Lithofacies associations (architectural elements) include channel fill, crevasse splay,
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Figure 4. Fining-upward succession of deposits from the upper Williams Fork interval of the
Cascade Creek 697-20-28 well, including core description, lithology, and interpretation of
lithofacies and architectural elements.
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Figure 5. Coarsening-upward succession of deposits from the middle Williams Fork interval
of the Cascade Creek 697-20-28 well, including core description, lithology, and interpreta-
tion of lithofacies and architectural elements.



floodplain, and coal (Table 2, Figures 4 and 5). Channel fill refers to the undifferentiated
sands interpreted to have been deposited by fluvial processes within the levees of the
channel. There was no further interpretation made to define depositional style of these
sands.

Overall, the core primarily consists of the S| and M, lithofacies (38.6% and 28%,
respectively), with channel-fill architectural elements (52.3%) being much more

prevalent than crevasse splays (15%) (Figure 6).

Correlation to Well-log Signatures

The stratigraphic variability of lithology and fluvial deposits (architectural
elements) within the middle and upper Williams Fork Formations was evaluated by
calibrating well-log responses of fluvial sandstones to the lithofacies and architectural
element analysis of the core and outcrop statistics. Core from the Cascade Creek 697-
20-28 well and characteristics and statistics of fluvial sandstone-bodies were used to
establish v-shale well-log cutoffs and log signatures corresponding to lithology and
architectural elements (Appendix C: Cole and Cumella, 2005; Pranter et al., 2009;
Pranter and Sommer, 2011). Once criteria were established, lithology logs were
calculated and architectural-element logs were interpreted within sandstone intervals.
Sandstone was calculated using a v-shale cutoff of < 0.25, mudrock having values of 2
0.25, and coal having values of normalized gamma-ray < 70 gAPI units, deep resistivity
values of > 40 ohm-m and normalized bulk density of less than 2.2 g/lcm® (Jon Cantwell,
personal communications, 2010). Cut-off values for sandstone and mudstone were
created based on comparison of the v-shale log values to a gamma-ray value of 85

gAPI units and core.



A 48% 4.2% 6.9%

D Contorted Mudstone/Siltstone
DPIanar-Laminated Mudstone
.Contorted Sandstone
.PIanar-Laminated Sandstone
. Ripple-Laminated Sandstone

28.0%

.Wavy-Laminated Sandstone
D Structureless Sandstone

Figure 6. Proportions of (A) lithofacies and (B) architectural elements observed in the
Cascade Creek 697-20-28 core (354 ft (107.9 m)), compared to the (C) architectural
elements interpreted in well logs (463,348 ft (141,228 m)).



Channel fills and crevasse splays were interpreted using criteria similar to Cole
and Cumella (2005), Pranter et al. (2009), Pranter and Sommer (2011), and Hewlett
(2010) and originally discussed by Rider (2002). Channel fills were interpreted for the
sandstone portions of the middle and upper Williams Fork Formations based on the
following criteria: a v-shale value of < 0.25, either a blocky or fining-up, “bell-shaped”
(Rider, 2002) v-shale response, a sharp basal contact, and thickness range of 2-30 ft
(0.6-9 m) (Pranter et al., 2009; Hewlett 2010) (Figure 7A).

Crevasse-splays were interpreted as having a v-shale value of < 0.25 with
coarsening-up or “funnel-shaped” (Rider, 2002) v-clay log responses. Thickness ranges
were between 0.7 and 15 ft (0.2 and 4.5 m), and commonly were 10 ft (3 m) or less in
thickness (Figure 7B).

The calculated lithology logs and interpreted architectural-element logs were
used to evaluate the stratigraphic variability of lithology and architectural elements
through vertical proportion curves (VPC’s). The VPC’s show the proportion of lithology
or architectural elements versus depth. Vertical proportion curves were created for both
the lithology and architectural element logs from the base of the middle Williams Fork
Formation to the top of the Mesaverde Group, approximately 1,300 to 1,520 ft (396 to
463 m) (Figure 8). The lithology VPC was analyzed to determine intervals of higher and
lower net-to-gross ratio, resulting in eight intervals of high net-to-gross ratios and seven
intervals of low net-to-gross ratios, relative to the average net-to-gross (~70%) of the
total interval. Overall, the VPC’s for both the lithology and architectural elements display
similar stratigraphic variability (net-to-gross ratio) for the proportion of mudrock versus

sandstone. The net-to-gross ratio over the entire interval varies from 18 to 78%, with the
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middle Williams Fork Formation exhibiting a higher, narrower range (43-78%) of
stratigraphic variability than that of the upper Williams Fork Formation (18-70%).

The VPC for architectural elements shows that most of the sandstone in the
middle and upper Williams Fork Formations is comprised of channel-fill deposits. Only a
minor percentage of the net-to-gross ratio is interpreted to be associated with crevasse
splays. The occurrence of crevasse splays has a narrow, low range (1-7%) when
compared to channel-fill deposits (18-75%). The middle Williams Fork Formation
averages 37% channel fill and 20% crevasse splays, while the upper Williams Fork
Formation averages 68% channel fill and 10% crevasse splays, resulting in an increase
in the ratio of channel fills to crevasse splays (CF:CS) from 1.9:1 in the middle Williams

Fork Formation to 6.7:1 in the upper Williams Fork Formation.

QUANTITATIVE MINERAL ANALYSIS
Stratigraphic Variability

Petrophysical lithology and saturation models were developed in order to analyze
the stratigraphic distribution of minerals, specifically chlorite and potassium feldspar.
Two sets of data were required to develop the model: 1) a triple-combo well-log suite
consisting of gamma-ray (GR), resistivity (RILD), neutron-porosity (PHIN), bulk density
(RHOB), and photoelectric factor (PE) logs in digital format and 2) x-ray diffraction data
of mineralogical volumes from core (in volume %). The petrophysical model can be
conceptually explained through a diagram (Figure 9) representing the total bulk volume
of a rock divided into a hierarchy of the various constituents, with the goal to accurately

model specific mineral volumes and fluid saturations from log responses.
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The petrophysical methods used in this study are well documented (Crain, 1986),
though elaboration is necessary on key points where less common methods were used.
The gamma-ray (GR) and neutron-porosity (PHIN) logs were normalized against
standard wells to compensate for log variations due to differences caused by variations
in vendor tool, calibration, and data processing. No other curve data was normalized, as
the process of log normalization changes the actual data values for a given log, and as
such, was used sparingly and only on well-logs which exhibited large data ranges
relative to the standard well. The standard well used for normalization of the gamma-ray
logs was selected based on evaluation of histogram distributions of gAPI units, for all
wells in the study area. The standard well, Williams GM 43-36 (APl 05045141350000),
is located in the southeast quarter of section 36 in the study area (Figure 3). The
gamma-ray well-log histogram showed two distinct peaks in the frequency distribution of
the data, one at approximately 60 gAPI and the other at approximately 120 gAPI. The
peak around 60 gAPI represents the log responses caused by sandstones while the
peak at 120 gAPI represents the log responses caused by shale. This bimodal
distribution of gAPI values are common in wells drilled in locations dominated by quartz
sandstones and shales as in the Piceance basin (Marc Connolly, personal
communication, 2011).

The standard well for neutron-porosity-log normalization was selected in a similar
manner. A histogram distribution of porosity values, in percent, for each well was
evaluated, and the standard well was selected from the data set. The neutron-porosity
histograms display a single peak, or mode, at approximately 0.12 decimal porosity. This

matches historical values and trends of the neutron-porosity in the area indicating good
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quantity data (Marc Connolly, personal communication, 2011). These values and trends
are observed in the Federal GM 432-35 well (AP1 05045116090000), located in the
northeast quarter of section 35 in the study area (Figure 3).

Calculated logs include coal indicator flags (COAL), temperature gradient
(TEMP), chloride gradient (NACL), and shale volume (v-shale) logs. Cross-plot analysis
was used to determine formation water-resistivity (Rw), total porosity (PHIND),
apparent-grain-density (RHOMAND), and clay volume (v-clay) logs.

Formation water-resistivity (Ry) gradients were developed from analysis utilizing
Pickett plots. The Pickett plot is a graphical representation of the Archie equation, which
calculates water saturation (S,y) from formation-water resistivity (Ry), porosity (¢), true
formation resistivity (R¢), and empirical factors derived from formation evaluation: The
tortuosity factor (a) represents the pore geometry of the rock. The cementation
exponent (m) is interpreted as the rate of change of the connectedness with porosity
and connectivity. The saturation exponent (n) represents the relationship between

water saturation and resistivity:

1
ax*R, ]n

¢™ * Ry

o |

A Pickett plot is a cross plot of porosity (Y-axis) vs. resistivity (X-axis), both on
logarithmic scales. In this study, log data used are density porosity (PHID) and deep
induction resistivity (RILD). Water saturation (S,,) can be determined based on an
analysis of the Pickett plot data and application of the Archie equation. A water
saturation (Sy) grid can be created on the Pickett plot and is dimensionally controlled by
the coefficients in the Archie equation, where the tortuosity factor (a) controls the y-

intersection for the 100% water saturation line, the cementation exponent (m) controls
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the slope of the lines of equal water saturation, and the saturation exponent (n) controls
the spacing between the lines of constant water saturations. Due to the lack of core
data necessary for experimental determination of the coefficients, values of a=1, m=2,
and n=2 were used as reasonable approximations for the study area (Asquith et al.,
2004). Formation porosity and resistivity both control water saturation on the Pickett
plot, with the highest water saturations being calculated from the lowest porosities and
resistivities and the lowest water saturations being calculated from the highest
porosities and resistivities.

Pickett plots were built for three 1000-ft (304-m) stratigraphic intervals. The three
intervals, from deepest to shallowest, are: 1) Rollins to ROL+1000’, 2) ROL+1000’ to
ROL+2000’, and 3) ROL+2000’ to ROL+3000’ (Figure 2). The surfaces are named such
that ROL+X’ refers to a location X feet above the top of the Rollins Sandstone member
(ROL). This was done in order to examine vertical trends in formation water-resistivity.
Water saturation values were obtained by identifying a trend in each Pickett plot that
represented either 100% water-saturation in water-saturated intervals or irreducible
water saturation in gas-saturated intervals. In this study, the trends on the Pickett plots
demonstrate that the lower two intervals (Rollins to ROL+1000’ and ROL+1000’ to
ROL+2000’) are primarily gas-saturated, and the upper interval (ROL+2000’ to
ROL+3000’) is water-saturated.

In the upper interval, the 100% water saturation trend was interpreted where the
density of data points on the Pickett plot began to decrease as the porosity (PHID) and
resistivity (RILD) reached their smallest measured values. The water saturation grid was

overlain on the Pickett plot, with the line representing 100% water saturation aligned
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along this 100% water saturation trend. The R, value for the interval was interpreted as
being equal to the resistivity value (x-axis) where the 100% water saturation line
intersected the 100% porosity value (y-axis) (Figure 10).

The technique for determining formation water-resistivity was modified for the
lower two intervals where there are no sands having 100 percent water saturation. If the
irreducible water saturation value is known, a trend for it can be identified on the Pickett
plot, and water saturation and formation water-resistivity can still be calculated.
Because clay-bound water accounts for approximately 25% of the total water saturation
in reservoirs like those in the Piceance Basin (Cluff and Byrnes, 2010), data points on a
Pickett plot can be interpreted as being in a fully gas-saturated interval where
irreducible water saturation (Syir) equals 25% (or 0.25). The irreducible water-saturation
trend was interpreted where the density of data points on the Pickett plot began to
decrease as the porosity (PHID) and resistivity (RILD) reached their largest measured
values, as data along this trend exhibits higher gas saturations and immovable water
saturations (Figure 11). The water-saturation grid was overlain on the Pickett plot, with
the line representing 25% water saturation aligned along this irreducible water-
saturation trend. The Ry, value for the interval was interpreted as being equal to the
resistivity value (x-axis) where the 100% water-saturation line intersected the 100%
porosity value (y-axis).

Results from Pickett plot analysis indicate formation-water resistivity decreases
with depth. In descending stratigraphic order, average formation-water-resistivity values

of 0.12, 0.085, and 0.060 ohm-m were determined for the three intervals. The data
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points and the stratigraphic distance between intervals (1000 ft [304.8 m]) were used to

develop a linear gradient to calculate Ry, at a given depth above the Rollins:

Rw = (Measured Depth of Rollins — Given Depth) * 0.0003 + 0.045

The equation coefficient represents the slope (0.0003 ohm-m/ft), and the constant
represents the y-intercept (0.045 ohm-m) of a linear regression through the three R,
data points.

V-shale and v-clay logs were calculated and used to define the relative
proportions of shale- and clay-sized particles at a given depth, identify the intervals
dominated by shale and clay, and exclude those intervals from subsequent modeling.
The v-shale log is the volume of shale at a given depth expressed as a decimal fraction
or percentage and is a linear calculation from the normalized gamma-ray log (Crain,
1986; Asquith et al., 2004). To calculate the v-shale log, gamma-ray values
representing 100% shale (GR_shale) and 0% shale (GR_sand) are established based
on histogram analysis of the normalized gamma-ray logs. This analysis was done for
each of the twenty-seven wells, and the following average values were used for all
subsequent v-shale calculations: GR_sand = 43 gAPI| and GR_shale = 135 gAPI units.
V-shale logs were then calculated for each well from the normalized gamma-ray

(GR_NM) log using the equation:

V-shale = (GR_NM — GR_sand) / (GR_shale — GR_sand).
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Any gamma-ray reading lower than the GR_sand value or higher than the GR_shale
value defaulted to a v-shale value of 0% or 100% shale, respectively. As a final step, a
coal flag was then used to exclude the intervals of coal. Anywhere that coal was
calculated was assigned a null value for shale. An interval was flagged as coal when the
density (RHOB) log was between 0 and 2 g/cc and the resistivity (RILD) log was greater
than 20 ohm-m.

The v-clay log is the volume of clay expressed as a decimal or percentage, and
was calculated based on a normalized neutron-porosity (PHIN_LSN) versus bulk-
density (RHOB) cross plot (Figure 12). A clay volume grid was created by selecting
three data points on the neutron-density cross plot, with each data point establishing a
boundary condition for the grid. Two data points, referred to as the sandstone points
represent 0% clay. A line defined by the two sandstone points is the sandstone line
where any point along or above the line has 0% clay. The two sandstone points were
PHIN_LSN=0, RHOB=2.5 and PHIN_LSN=0.15, RHOB=2.25, which were selected
using known points from the Schlumberger chart book (2009). PHIN _LSN values are in
decimal or fraction and RHOB values are in g/cm3,

The clay point represents neutron porosity and density values representative of
average clay values found in the Williams Fork formation (Marc Connolly, personal
communication, 2011; Debra Patskowski, personal communication, 2011). A line
running parallel to the sandstone line and through the clay point, referred to as the clay
line defines the 100% clay line of the grid, where any location along or below the line
has 100% clay. The clay point was at PHIN_LSN=0.35, RHOB=2.5, determined from

clay point parameter estimations (Schlumberger, 2009). The v-clay grid was then
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created between the sandstone line and clay line, with v-clay increasing linearly from
0% at the sandstone line to 100% at the clay line. All values on the neutron-density
cross plot were then assigned a clay volume percentage based on their location relative
to the grid, resulting in a v-clay log for each of the 27 wells in the study area.

The neutron-density cross-plot porosity (PHIND) logs and apparent-grain-density
(RHOMAND) values were assigned using the same methodology as the v-clay log: the
data points were plotted on a cross plot of neutron-porosity versus density and assigned
values for both PHIND and RHOMAND were established based on the known
distribution of values on the cross plot (Figure 13). The primary difference in
methodology from the v-clay log is the non-linear relationship of PHIND and RHOMAND
to the cross plot. Every data point was assigned both a neutron-density value and
apparent grain density value based on their location within the cross plot. These values,
along with the depth log, were used to generate the neutron-density-porosity and
apparent-grain-density logs.

In developing the petrophysical model for the Cascade Creek 697-20-28 well
(Figure 14), the core-measured x-ray diffraction values of chlorite and potassium
feldspar were used to calibrate the calculated mineral proportions (volumes) of the
petrophysical model. The main controls in calibrating the mineral proportions were the
matrix densities (RHOMA, g/cm?®) and cross-sectional photoelectric values (UMA,
barns/cm?®) for each mineral. The RHOMA and UMA values do not represent the true
values for each mineral, but rather the apparent values that the well logs have recorded.
Therefore, these values were adjusted individually and the petrophysical model was

iterated until a combination of all UMA and RHOMA values was found where the
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calculated values for the minerals closely matched the core measured values (Chlorite
volumes had a correlation coefficient (R?) of 0.865 after removal of two shale
measurements (VSH>80%) at 4810’ and 4820’).

A blind study was completed to validate the parameters of the model. The MWX
(Multi-Well Experiment) public dataset was utilized for this blind study, specifically logs
and point-count measurements from the MW X-2 well (AP1 0504560011) were used,
courtesy of The Discovery Group Inc. Chlorite volumes were calculated using the same
apparent RHOMA and UMA values determined from the Cascade Creek 697-20-28 well
in seven intervals with point-count and Photoelectric (PE) log measurements. The
chlorite log volumes correlated to the chlorite point-count results with a correlation
coefficient (R?) of 0.896, after removal of one measurement in shale (VSH >80%) at
5846’ (Appendix M).

The RHOMA and UMA input parameters were calibrated to the cored well
(Cascade Creek 697-20-28), and then applied to the 27 wells in the study area. Mineral
proportions and fluid saturations were calculated throughout each well. No additional x-
ray diffraction data or mineralogy measurements were available within the study area,
so no further calibration of the calculated results could be accomplished. It is important
to note that this modeling technique resulted in a non-unique solution, such that other
combinations of RHOMA and UMA could give similar, reasonable results.

The range of calculated mineral proportions was 0-30% for potassium feldspar,
and 0-21% for chlorite. Calculated proportions for both the chlorite and potassium
feldspar increased stratigraphically, from 0% at the base of the Williams Fork Formation

up to their respective maximums near the top of the Mesaverde Group.
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SPATIAL DISTRIBUTION OF CHLORITE AND POTASSIUM FELDSPAR

Three-dimensional lithology models were developed to investigate the spatial
distribution of chlorite and potassium feldspar, and architectural-element logs were used
to investigate the distribution of these minerals among architectural elements. The area
of the model encompasses the eight-section study area (Figure 3). The thickness of the
model varies from 1,300 to 1,520 ft (396 to 463 m), and the interval includes the middle
and upper Williams Fork Formations. The fourteen intervals defined from the
stratigraphic-log correlations and analysis of the vertical proportion curves were used in
constructing the framework of the model, resulting in a three-dimensional model with
fourteen zones: seven zones representing sandstone-rich intervals and seven zones
representing relatively sandstone-poor intervals within the middle and upper Williams
Fork Formations (Figure 15).

Upscaled discrete logs (i.e., lithology and architectural element) and continuous
logs (i.e., potassium feldspar and chlorite) were treated as hard data and honored in the
three-dimensional models. Lithology vertical proportion curves and percentages were
used as vertical constraints in the three-dimensional lithology models to honor the
stratigraphic changes in the lithology percentages, based on the upscaled lithology logs.

An average lithology model was created from thirty lithology realizations. The
average lithology model approximates the mapped distribution of lithology based on
kriging. Each of the 14 zones was modeled independently, using a corresponding
vertical proportion curve specifically generated on a zone by zone basis, while coal was
modeled deterministically.

Sequential indicator-based simulation (SIS) was utilized to build these models.

SIS is a cell- or pixel-based modeling method that simulates the spatial distribution and
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Model Framework with
Sand-Rich Zones (SRZ)
and
Sand-Poor Zones (SPZ)

1,520 ft (463 m)
V.E. =7.5x

Figure 15: Three-dimensional model framework from the base of the middle Williams
Fork formation to the top of the Mesaverde Group. (A) Location of 329 wells intersecting
the model, with no vertical exaggeration. (B) Model consists of 14 zones, denoted as
either Sand-Rich (SRZ) or Sand-Poor (SPZ) zones. The model is approximately 9.4 sq
mi (24.3 sq km) and varies in thickness from 1,300 to 1,520 ft (396 to 463 m). The
model contains 350 proportional layers that are each approximately 4 ft (1.2 m) thick.
Cell dimensions are 40 by 40 ft (12.2 by 12.2 m) aerially, resulting in 57.3 million cells.
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continuity of discrete and continuous data (e.g., lithology or v-clay, respectively) through
the use of variograms to control any trends in the distribution of the data. All layers and
zones were modeled using the same isotropic, spherical variogram (dip of 0, nugget of
0, major and minor ranges of 5000, and a vertical range of 1). Indicator-based
simulations populate the model, cell by cell, by first assigning well data (lithology based
on the v-clay log) to the grid cell closest to the well (Deutsch and Journel, 1998). A
random order of cells is established in which every cell is visited once, and is assigned
a simulated value based on the conditional probabilities (the stratigraphic lithology
percentages derived from the VPCs) (Deutsch and Journel, 1998). Nearby data and
previously simulated values, starting at the well, are evaluated, and the conditional
probabilities are constructed by kriging. The resulting three-dimensional model will
honor the input data, global proportions of the property, and variograms, if established
(Deutsch and Journel, 1998).

Average models for chlorite and potassium feldspars were also created from
thirty realizations of each. The models were conditioned to the chlorite and potassium
feldspar proportion logs as well as frequency histograms of the mineral volume
percentages based on the upscaled logs. The models were further refined using cutoff
values of chlorite and potassium feldspar to highlight the areas where a greater relative
concentration of each mineral (chlorite or potassium feldspar) existed within the model,
resulting in discrete-mineral-concentration models for chlorite and potassium feldspar.
The modeled Psp values of both chlorite (Pso = 1.3%) and potassium feldspar (Pso = 7%)
were used as the cutoff values for areas of higher concentrations of the minerals. Any

area with a volume percentage equal to or greater than the P5y value was considered to
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be a high concentration, while any area with a volume percentage less than the Ps
value was considered to be a low concentration. Volumetric calculations for the
discrete-mineral-concentration models were subsequently completed to quantify the
significance of the minerals.

The values of the discrete-mineral-concentration models were extracted and
used to create pseudo-well logs along the 327 wellbores in which architectural element
logs had previously been interpreted. These pseudo-well logs of mineral concentrations
were then used to analyze the distribution of the mineral concentrations as they related
to the interpreted architectural elements.

Analysis of the lithology model shows how the distribution of sandstone varies
spatially within the middle and upper Williams Fork Formations (Figure 16A). The
highest net-to-gross ratios in the middle and upper Williams Fork Formations are
statistically similar (84% versus 88%, respectively). The lowest net-to-gross ratios are
much more contrasting (36% versus 8%, respectively). The average net-to-gross ratio
for the middle Williams Fork Formation is 58.3%, while the average net-to-gross for the
upper Williams Fork Formation is 48.5%, with a combined net-to-gross ratio of 50.2%.

The volumetric proportion of chlorite ranges from 0 to 21% of all model cells,
while only averaging 1% distribution across the entire model. The proportion of
potassium feldspar ranges from 0% to 30% of all model cells, and also averages 1%
distribution for the entire model. Statistically, zone 10 had the highest average chlorite
proportion (2%) while zones 2 and 10 had the highest average potassium feldspar
proportion (3%). The Psg values for chlorite and potassium feldspar are calculated as

1.3% and 7%, respectively.
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Figure 16: Stratigraphic cross-section of lithology and chlorite distribution models. (A)
Lithology constrained to the sandstone-rich intervals. (B) Occurrence of chlorite con-
strained to sandstones. (C) Occurrence of high-concentration chlorite (>1.3%). See

Figure 3 for location of cross-section. APIs of wells intersected (1-15) are
05045128320000, 05045095550000, 05045079000000, 05045078880000, 05045077140000,
05045104650000, 05045103760000, 05045114250000, 05045115020000, 05045079780000,

05045124900000, 05045144680000, 05045144690000, 05045073710000, and

05045133370000.
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The distribution of the chlorite did not vary significantly between reservoir
architectural elements when compared for the three concentration ranges evaluated
(Table 3). Within the crevasse splays, 31.4% had no chlorite, 27.6% contained low
chlorite concentrations (<P5p), and 41.1% had high chlorite concentrations (>Psp). The
distribution for the channel fills was very similar, with 29.4% lacking chlorite, 29.9%
having low chlorite concentrations and 40.7% having high chlorite concentrations. When
compared against lithology, high concentrations (above 1.3%) of chlorite were found in
41.0% of the sandstones, while the low concentrations were in 30.5%. There were
28.5% of the sandstones that lacked chlorite. The occurrence of high concentrations of
chlorite varied stratigraphically, from 0.1% in Zone 2 to 60.4% in Zone 10, with an
increasing-downward trend from Zone 1 through Zone 5 (Figure 16C). There was no
discernible pattern of occurrence below Zone 5. High concentrations (27%) of
potassium feldspar were only shown to exist in 0.36% of the sandstones, and the low
concentrations (< 7%) were only in 0.19%. The potassium feldspar concentrations were
not analyzed stratigraphically or by architectural-element type, due to such low

occurrences.

KEY RESULTS AND DISCUSSION

The eight key lithofacies and three main architectural elements observed are
similar to those previously documented in the basin (Cole and Cumella, 2005; Pranter et
al., 2009; Hewlett, 2010; Sloan, 2012). The sandstone proportions (net-to-gross ratios)
are within previously-observed ranges: middle Williams Fork Formation net-to-gross is
58.3%, compared to 50-80%, and upper Williams Fork Formation net-to-gross is 48.5%,

compared to 15-60% (Hewlett, 2010). Crevasse-splay and channel-fill architectural
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elements can be identified from wells logs, with crevasse splays showing a general
upward-coarsening in the gamma-ray or v-shale logs, and channel fills showing a
general upward-fining in the same logs. The stratigraphic variations in architectural
elements were also comparable to previously established ranges: crevasse splays
comprised 1-7% (compared to 1-20%) and channel fills comprised 18-75% (compared
to 15-65%) of the total proportions (Hewlett, 2010). This additional dataset of net-to-
gross ratios and architectural elements variations may allow for trend comparisons
across fields, but data from additional fields within the basin are necessary to
adequately characterize basin-wide trends. The decrease in observed crevasse splays
from 20% in the middle Williams Fork Formation to 10% in the upper Williams Fork
Formation and the increase in channel fills from 37% to 68% are both indications of a
change in depositional style. There is possibly a transition from a
meandering/anastamosing fluvial system with low aggradation to a braided fluvial
system. However, determining depositional style was outside of the scope of this study
and more work would be needed to conclusively determine such a change.

The two minerals investigated, chlorite and potassium feldspar, both averaged
1% within the overall study area, while having rare local measurements of up to 30%,
calculated from the petrophysical model. These high proportions are not seen in the
core data, and may be an artifact of limitations due to the petrophysical modeling or
tool-measurement sensitivity. The highest percentages for chlorite (8.9%) and
potassium feldspar (10%) from the cores were used as upper limits for subsequent
modeling. Further investigation shows that 49.8% of the potassium feldspar from the

petrophysical results (and contributing to the P55, value) occurs in the mudstone regions
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of the lithology model. These regions were excluded from the distribution modeling
based on their v-clay log responses, and this exclusion is likely the cause of the low
proportions calculated when compared to the Psy values. Adjusting the controls for
calculating the v-shale in the intervals where potassium feldspar occurs as sand grains
may result in more accurate lithology and proportion calculations in subsequent
analysis.

The lowest stratigraphic zones of sand (zones 12 and14) were of particular
interest in this study as they are directly above the completed intervals within the wells,
and are possible targets for recompletions pending reevaluation of petrophysical
models. When compared to the other zones, they exhibited the two highest percentages
of sandstones containing chlorite: 84.5% of the sandstones in zone 12 and 96.5% of the
sandstones in zone 14 had chlorite (Figure 16B). This is significant as relatively small
amounts of iron-bearing chlorite increase water saturation calculations from well logs,
and may indicate low-resistivity pay (Bates et al., 2004). This interval of the Williams
Fork Formation has generally been considered part of the transition zone (<100% gas-
saturated), and not historically completed due to higher calculated water saturations
(Marc Connolly, personal communications, 2011). The transition zone could be an
interval with bypassed pay in both existing and new wells if petrophysical and water-
saturation models were not properly calibrated for low-resistivity minerals such as
chlorite.

Although the architectural elements have different depositional controls, they are
found in the same stratigraphic interval, and were subjected to the same post-

depositional environment in terms of pressures and diagenetic fluids. As previously
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stated, there was no significant variation of chlorite distribution between channel-fill and

crevasse-splay architectural elements. The lack of variation in distribution indicates that

the chlorite is authigenic in nature, as has been previously suggested (Pitman et al.,

1989; Crossey et al., 1992).

CONCLUSIONS

1.

Eight lithofacies are identified in the middle and upper Williams Fork Formations
from the core of the Cascade Creek 697-20-28 well: contorted mudstone (F¢),
laminated mudstone (F_), contorted sandstone (Sc), planar-laminated sandstone
(SL), ripple-laminated sandstone (Sg), wavy-laminated sandstone (S ) structureless
sandstone (Ss), and coal (C). Examination of the core indicates that each lithofacies
has distinct grain size, sedimentary structures, and contact styles.

Four architectural elements are identified in the core, each exhibiting distinct
assemblages of lithofacies: channel fill, crevasse splay, floodplain, and coal. Each of
the architectural elements indicates a different environment of deposition.
Net-to-gross ratios vary stratigraphically, from 8% to 88%. There is a higher average
ratio in the middle Williams Fork Formation (58.3%) than in the upper Williams Fork
Formation (48.5%). The proportions of crevasse splays (1-7%) and channel fills (18-
75%) vary stratigraphically, and the ratio of channel fills to crevasse splays (CF:CS)
is much lower in the middle Williams Fork Formation (1.9:1) than in the upper
Williams Fork Formation (6.7:1). The control for the variations in both net-to-gross

and CF:CS ratio is interpreted to be a change in depositional style.

. The occurrence and distribution of chlorite and potassium feldspar can be estimated

from limited core and well-log data. While the average proportions of chlorite and
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potassium feldspars are both <1%, with Psy values of 1.3% and 7%, intervals of
higher concentrations in the middle Williams Fork Formation exist directly above
completed intervals. Saturation models in these intervals need to account for the
occurrence of chlorite in order to correct for adverse effects on calculated water
saturations such as artificially high calculations of water saturation and artificially low
calculations of gas saturation.

. Chlorite does not vary significantly between reservoir architectural elements,
specifically channel fills and crevasse splays.

. The occurrence of almost 50% of the potassium feldspar in mudstones indicates a
need to re-evaluate the use of gamma-ray logs for lithology calculations, especially
in intervals where the potassium feldspar occurs as sand-sized grains instead of clay
particles. Doing so will result in more accurate shale and sand volume calculations.

. The overall bottom-up increase in formation water resistivity (Ry) suggests an overall
decrease in formation salinity, indicative of a landward shift in the depositional
environment, where the formation water resistivity is less influenced by saltwater and
more influenced by fresh water.

. The results of this study demonstrate that petrophysical analysis of a reservoir

should focus on factors that could artificially influence saturation models.
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Appendix A
Expanded Discussion of Tectonic and Stratigraphic Setting

The paleogeography of the region which is now the Piceance Basin was
controlled primarily by Cordilleran orogenic activity, beginning in late Jurassic time due
to the Pacific oceanic plate subducting under the North American continental plate
(DeCelles, 2004). The Cordilleran orogeny included the formation of the Sevier thrust
belt, an area of active uplift in central Utah and southwestern Wyoming from Jurassic
through early Cenozoic time (Tweto, 1977). The Sevier Thrust Belt was approximately
185 mi (300 km) wide in northern Utah, and extended from southern California to
Alaska, coincident to the convergent margin along western North America (DeCelles,
2004). Thin-skinned, low-angle thrust faults decoupled Paleozoic and Mesozoic strata
from basement rocks and created the highlands in central Utah during the Sevier
Orogeny from Early Cretaceous into Eocene time (DeCelles, 2004). The Williams Fork
Formation is composed of sediments from the Sevier highlands (Hemborg, 2000;
Hettinger and Kirschbaum, 2002, 2003).

The Piceance Basin is an asymmetrical northwest-southeast-elongated basin
bounded by numerous uplifts which developed during the Laramide Orogeny from Late
Cretaceous through the Eocene (~75-40 Ma): the Axial Arch on the north, the White
River Uplift on the east, the Sawatch Uplift and Elk Mountains on the southeast, the
Gunnison Uplift on the south, the Uncompahgre Uplift on the southwest, the Douglas
Arch on the west, and the Uinta Mountain Uplift on the northwest (Appendix B) (Tweto,

1975; Johnson, 1989). Basement-cored, high-angle reverse-fault uplifts during the
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Laramide orogeny partitioned the larger Rocky Mountain Foreland Basin system into the
multiple basins present today (Johnson and Flores, 2003; DeCelles, 2004).

The maximum extent of the Western Interior Seaway was reached during the
early portion of the Late Cretaceous (~94-89 Ma) at which time the shoreline was
located as far west as central Utah (Appendix C). During late Cretaceous time (97-95
Ma), the study area was located east of the Sevier Orogenic Belt, along the western
shoreline of the Western Interior Seaway, within the Rocky Mountain Foreland Basin
(Appendix D) (Hettinger and Kirschbaum, 2002, 2003). Sediments shed from the Sevier
highlands in the west were transported towards the seaway by fluvial systems within
alluvial- and coastal-plain settings (Hettinger and Kirschbaum, 2002, 2003).

The Mesaverde Group was deposited during Campanian time along the western
margin of an epeiric seaway bisecting North America, running from northern Canada to
the Gulf of Mexico (Johnson, 1989), and contains, in stratigraphic order, the lles
Formation, Williams Fork Formation, and Ohio Creek Member (Figure 2). Underlying
and intertounging with the Mesaverde Group is the Mancos Shale, a marine shale
deposited during major incursions of the Western Interior Seaway. The Mesaverde
Group was deposited in an overall regression of the Western Interior Seaway as clastic
sediments began to fill the basin, pushing the shoreline eastward (Johnson, 1989).
Higher-order transgressive-regressive cycles are observed within the Mesaverde strata
through detailed outcrop work and well-log analysis (Hettinger and Kirschbaum, 2002;
Cole and Cumella, 2005; Shaak, 2010).

The lles Formation is composed of multiple regressive marine sandstones of the

Corcoran, Cozzette, and Rollins sandstone members, separated by tongues of the
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Mancos Shale (Young, 1955; Johnson, 1989; Hettinger and Kirschbaum, 2002). The
Williams Fork Formation, overlying the lles Formation, is composed primarily of strata
deposited by fluvial systems in the western portion of the Piceance Basin, with
decreasing marine influence over time and towards the west. The Williams Fork
Formation is approximately 5000 ft (1524 m) thick near the Grand Hogback on the
eastern margin of the basin and thins to approximately 1200 ft (365 m) thick at the
Colorado-Utah state line (Hettinger and Kirschbaum, 2002, 2003).The Williams Fork
Formation is divided into the lower (sandstone-poor), middle and upper (sandstone-rich)
Williams Fork Formations (Cole and Cumella, 2005). In certain localities within the
basin, the lower Williams Fork Formation is further subdivided into the Bowie Shale
Member and the unconformably overlying Paonia Shale Member (Lee, 1909). The
uppermost portion of the Williams Fork Formation includes the Ohio Creek Member (or
Conglomerate), identified as a white kaolinitic zone which may or may not contain
conglomeratic lenses (Johnson and May, 1980). The Ohio Creek Member is separated
from the rest of the Williams Fork Formation by an extensive unconformity, and has
been interpreted as lowstand deposits formed by braided-fluvial rivers (Patterson et al.,
2003).

The lower Williams Fork Formation was deposited within anastomosing to
meandering river systems within a coastal-plain setting (Lorenz, 1987; Johnson, 1989;
Hemborg, 2000; Patterson et al., 2003; Cole and Cumella, 2005). In the southeastern
Piceance Basin near Mamm Creek Field, the lower Williams Fork Formation consists of
offshore, distal to proximal lower shoreface and upper shoreface strata deposited during

multiple transgressive-regressive cycles (Shaak, 2010). The middle and upper Williams
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Fork Formations are interpreted as having been deposited by a low-to-moderate
sinuosity braided river system within an alluvial-plain setting (Patterson et al., 2003;
Cole and Cumella, 2005; German, 2006). This interpretation has primarily been based
on: (1) the low-to-moderate range of paleocurrents, the paucity of sandstones with
distinct lateral accretion surfaces, and the relatively higher net-to-gross ratio for the
middle and upper Williams Fork Formations as well as the observations that the
sandstones are highly amalgamated and sheetlike with high width-to-thickness ratios
(8:1-100:1; average: 34:1) (German, 2006). Keeton (2012) recognized deposits in
outcrop (Plateau Creek Canyon) that support dividing the upper Williams Fork formation
into a lower meandering-fluvial system (Flaco interval) and an overlying braided-fluvial

system (Ges interval).
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Appendix B

A) Generalized map of the Cretaceous Epeiric Seaway, Sevier orogenic belt, and
Piceance Basin during the late Cretaceous. Modified from Johnson (1989) B) Generalized
structural map of the Laramide tectonic elements in the eastern Utah and western Colorado

Modified from Grose (1972) and Patterson et al. (2003). Black box denotes study area.
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Appendix C
Late Cretaceous (~75 Ma) paleogeography of Western North America. Maximum

extent of the Western Interior coastline during the early Late Cretaceous (~94-89 Ma) is
shown in red, and study area is shown by red box near shoreline. Modified from Blakey
(2010) and Baytok (2010).
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Appendix E
List of select geophysical logs for the 27 wells
used in the petrophysical modeling.

Well logs were measured (Blue) or calculated (Green).
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Appendix F
List of select geophysical logs for the 329 wells used in the lithology and architectural
element modeling. Logs were provided by Occidental Petroleum Company (Blue) or

interpreted (Green).
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X X X X X X X T-TVIAND| 0000028057050
X X X X X X VE-ZVEND|  0000v0T80570S0
X X X X X X VE-ZYND|  0000E0T80SY0S0
X X X X X X VE-CEEND| _ 000020T8057050
X X X X X X X VE-YZTND|  00008208057050
X X X X X X X EE-8TCAD| _ 00006008057050
X X X X X X X ¥SZCTND|  000020080S70S0
X X X X X X X 7-9STND| 0000166057050
X X X X X X Z-LSTND| 0000867057050
X X X X X X X ZvSTND|  0000T967057050
X X X X X X X 9E-EEEND| 0000616057050
X X X X X X X 9E-BECIND| _ 00008T6057050
X X X X X X X EE-EESND|  0000v060570S0
X X X X X X X EEVESND| 0000206057050
X X X X X X X EE-EEVIND| 0000006057050
X X X X X X X EEVPYIND| 0000888057050
X X X X X X X EEYPSND| 0000988057050
X X X X X X EEVEVIND| _ 0000V88Z0SP0S0
X X X X X X X EE-EVVIND| 0000188057050
X X X X X X X EE-EVSND| 0000088057050
X X X X X X X SE-EVIND| _ 0000558Z0570S0
X X X X X X X SE-EEND| 0000158057050
X X X X X X X EEVTND|  0000EEBOSY0S0
X X X X X X X TSTOVIND| _ 0000TEBZ0SY0S0
X X X X X T-vZEND|  000008ZZ0S70S0
X X X X X X X VE-TEND|  000095//057050
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X X X X Y-TrrIND 0000£0Z0TS70S0
X X X X P-CvSIND 000090¢0TS¥70S0
X X X X P-€EEND 0000¢8T0TSY0S0
X X X X P-€EVIND 0000T8TOTS0S0
X X X X 7-CESND 000094T0TS0S0
X X X X €-VESIND 0000€€TOTSY0S0
X X X X X E€-VEVIND 0000ZETOTS70S0
X X X X €-VEEND 0000SCTOTS70S0
X X X X X €-¥TSIND 00000¢TOTS0S0
X X X X €-VTEWD 00006T1TOTST0S0
X X X X E-VTIVIND 00009TTOTSY0S0
X X X X X X X €-vTIND 0000€TTOTSY0S0
X X X X ¢-7CSIND 0000020015050
X X X X C-YTVIND 00000T0O0TS¥70S0
X X X X €-CTVIND 0000£000TS0S0
X X X X €-CTEND 0000900015050
X X X X €-CTISIND 0000S000TSt70S0
X X X X €-TTVIND 0000466051050
X X X X €-TTEND 00009/660517050
X X X X X X X €-TTISIND 00005£6605t7050
X X X X €-vPrIND 0000660517050
X X X X €-VPEND 0000€££660517050
X X X X X €E-TEVND 0000¢£6605t7050
X X X X X €E-TESND 0000T/6605t7050
X X X X €-vVSIND 00000£660517050
X X X X X €€-9TCND 0000496605050
X X X X €-EVEND 0000076605050
X X X X €-EVPIND 00006€660517050
X X X X €-TESIND 00005£8605t050
X X X X €-CEVIND 0000t/.8605t050
X X X X ¢-VTISIND 0000T08605%7050
X X X X C-VTIVIND 000000860517050
X X X X T-vCZSIND 0000££5605t7050
X X X X T-¥TvND 0000£9560517050
X X X X €E€-CCSND 0000955605t7050
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X X X X €-TZEND 00008980T5170S0
X X X X P-TZEND 0000T980TS¥70S0
X X X X 7-TZSIND 00000980TS0S0
X X X X 7-TZvIND 00006580TS170S0
X X X X €-€TEIND 0000¢t90TSt0S0
X X X X €-€TVIND 0000T¥90TSt0S0
X X X X X X €-€TSIND 00000%90TSt0S0
X X X X 9¢-TTEND 00006€£90TS70S0
X X X X SE-TVIND 0000S€90TS0S0
X X X X €-VZSND 00006¢S0TS170S0
X X X X €-VTVIND 00008¢S0TS70S0
X X X X €-VCEND 0000£¢S0TS0S0
X X X X X X T-TTSND 0000%810TS0S0
X X X X X X X T-CTVIND 0000€8170TS0S0
X X X X VE-¥ESND 0000£9%0TS¥0S0
X X X X VE-VEVYIND 000099t0TS170S0
X X X X VE-EETND 0000590157050
X X X X X X T-TZSIND 0000¢8€0TS0S0
X X X X X X T-CEEND 0000T8€0TS0S0
X X X X X X T-TTVIND 000008€0TS0S0
X X X X X VE-EV9ND 0000£LE€0TSY0S0
X X X X X X X YE-YETIND 00009£€0TSt0S0
X X X X VE-EVSND 0000S£€0TSt70S0
X X X X VE-EVYND 0000%7££0TS0S0
X X X X X X T-€TSIND 0000S720TS0S0
X X X X X X T-€TVIND 0000%%20TS0S0
X X X X €-CTEND 0000€¢2T0TS0S0
X X X X €-CTYND 0000¢¢c0TS170S0
X X X X €-CCSIND 0000T¢c0TS0S0
X X X X €-ECSIND 00004£T¢0TS0S0
X X X X X X €-ETVIND 00009TZ0TS0S0
X X X X €-ECEND 0000STZOTSY0S0
X X X X C-7ESIND 0000¥7TZ0TSY0S0
X X X X C-VEVIND 0000€TCOTSI0S0
X X X X P-CvEND 000060¢0TSt70S0
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X X X X X X X ETPPIND| _ 0000569T157050
X X X X SE-TYEND|  0000CT9TTSY0S0
X X X X SE-CVEND|  0000TTITTSPOSO
X X X X X X X YSE-CTAD|  TO000TITISHOSO
X X X X X X X SE-CEVIND|  0000609TTS70S0
X X X X SETEEND|  0000S09TTSYOSO
X X X X X X X SE-CYYIND|  0000V09TT570S0
X X X X X X X SE-EVPIND|  0000E09TTSYOSO
X X X X SE-EVEND| _ 0000C09TTSP0S0
X X X X X X X SE-EVSIND|  0000T09TTSP0S0
X X X X X X X SE-EEVIND|  0000009TTS70S0
X X X X SE-CEEND|  000066STTSY0SO
X X X X SE-EEEND|  000086STTSY0S0
X X X X ZTISND|  000090STTSY0S0
X X X X CTIVIND 0000S0STTSY0S0
X X X X ¢-TZYIND 0000€0STTST0S0
X X X X X X Z-€STND|  000020STTSP0S0
X X X X SEVTSND|  0000LCHTTSY0SO
X X X X SEVTPIND|  00009¢HTTSY0S0
X X X X X X SEYTOND|  0000SCHTTISY0S0
X X X X X X X 9E-TZVIND| _ 000000¥TTSY0S0
X X X X X X X 9E-CTVIND| _ 000066€TTSP0S0
X X X X X X X 9E-ZTSIND| _ 000086€TTSP0S0
X X X X X X X 9E-CCVIND|  0000Z6€TTSV0S0
X X X X X X X 9€-TISND| 0000961157050
X X X X X X X VE-CTYIND| _ 0000SOETTSYOS0
X X X X X X X VE-CISIND| _ 0000V9ETTSPOS0
X X X X X X X VE-CTEND|  0000E9ETTSPOSO
X X X X X X VE-ETYIND| _ 0000Z9ETTSP0S0
X X X X X X X VE-ZEVND|  0000v760157050
X X X X X X X VE-CESND| _ 0000EC601570S0
X X X X X X X VE-CVSIND|  00002C60TSY0S0
X X X X X X VE-CYIND| _ 0000TC60TSY0S0
X X X X 9E-CTEND|  0000¢/80TSV0S0
X X X X X X X 9€-CZND|  0000TZ80TSV0S0
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X X X X X X X €E-YTrIND 00006¢8¢TS0S0
X X X X €E-VCEND 00008¢8CTS70S0
X X X X €E-VTEND 0000£28TTS¥0S0
X X X X 7-TEVIND 0000%8L¢TS170S0
X X X X 7-TvvND 0000€8L¢TS0S0
X X X X X X X SE-vPSIND 0000999¢TSt0S0
X X X X SE-VEND 0000%99¢1S170S0
X X X X SE€-LTTND 0000£99CTS70S0
X X X X X X X SE-EV9ND 0000¢99¢TS170S0
X X X X X X X V-veEVIND 0000S6¥¢TSt0S0
X X X X X X X -y IND 0000¥6tC¢TSY0S0
X X X X C-TvPIND 000006¥¢TSt0S0
X X X X ¢-CYPIND 000068tC¢TS70S0
X X X X C-TVSIND 000088157050
X X X X C-TEVIND 0000£8%7CTS¥0S0
X X X X C-CESND 0000981¢TS170S0
X X X X 7-CTvND 000099¢¢TSt0S0
X X X X X X X 7-CTSIND 000059¢¢TS0S0
X X X X P-CTEND 0000%9¢CTS70S0
X X X X V-CZEND 0000€9CCTS70S0
X X X X X X X SE-ETIND 00009€TCTS0S0
X X X X SE-VTEND 0000SETCTSI0S0
X X X X X X X SE-vTrIND 0000v€TCTSY0S0
X X X X X X X SE-¥CSIND 0000€€TCTSY0S0
X X X X C-€TVIND 00006/0CTS70S0
X X X X C-TTYIND 00008£0CTS¥70S0
X X X X C-€TVIND 00009TOCTSY0S0
X X X X C-€TSND 0000STOCTS10S0
X X X X P-EvVIND 00008S6TTS0S0
X X X X V-EVEND 00004S6TTS0S0
X X X X P-€ESIND 00006£6TTS70S0
X X X X V-CEVIND 0000LE6TTS0S0
X X X X X X X €-EEEIND 0000%¢6TTS0S0
X X X X €-EEVIND 00006T6TTS170S0
X X X X €-TVYSIND 0000969TTSt0S0
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X X X X 9E-VYEND| _ 000029T¥TSH0S0
X X X X X X T-TvPIND|  0000T9¢¥TSY0S0
X X X X X X X 9E-VEVIND| _ 0000ZETFISPOSO
X X X X X X X 9E-PYIND| _ 00009€THTSP0S0
X X X X X X X 9E-EVIND| _ 0000SETYTISVOSO
X X X X X X X 9E-EEVIND| _ 0000VETVISPOSO
X X X X 9E-VYIND|  0000EETPISYOSO
X X X X X X X 9E-ETSIND| _ 0000Z86ETSY0S0
X X X X 9€-SCCND|  0000T86ETSPOS0
X X X X X X X 9E-vZYIND| _ 0000086ETSPOSO
X X X X X VE-CZVIND|  00006VSETSHOSO
X X X X X VE-8ZZIND|  00008YSETSYOSO
X X X X X X T-ZhSND|  0000S/VETSPOSO
X X X X X X T-ZvyIND|  0000VZYETSY0S0
X X X X X X T-€VSIND| _ 0000CPVETSPOSO
X X X X X T-EVVIND|  0000TYYETSPOSO
X X X X T-vVSIND|  0000BEEETSHOSO
X X X X X X X T-vPEND|  0000ZEEETSPOSO
X X X X T-v¥bIND|  000D09EEETSHOSO
X X X X X X X 9E-TTVIND| _ 0000Z80ETSY0S0
X X X X SE-TEND|  0000980ETSPOSO
X X X X X X X 9E-TYYIND| _ 0000ELOETSPOSO
X X X X 9¢-TVEIND 0000¢L0ETSY0S0
X X X X X X X 9E-ZEVIND| _ 0000TZOETSPOSO
X X X X 9E-CVEND|  00000ZOETSY0S0
X X X X X X X 9E-TEVIND| _ 0000690£TSY0S0
X X X X X X X 9E-CYYIND|  0000Z90€TSY0S0
X X X X 9¢-TVSIND 0000990€TS170S0
X X X X X X X 9E-TESND|  0000S90ETSPOS0
X X X X X X X SE-TYSND|  0000CSOETSPOS0
X X X X 9E-TZEND|  00000SOETSY0SO
X X X X X X X 9E-TZSIND|  00006V0ETSY0S0
X X X X 9E-TCND| _ 00008Y0ETSY0S0
X X X X X X X EE-TISND|  0000C€8ZTSP0S0
X X X X X X X EE-TTVIND|  00000€8ZTSY0S0
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X X X X X X X YE-TTPIND]  00000TCZTISYOSO
X X X X X X X EE-CEEND|  0000602Z1SP0S0
X X X X X X X €E-CVEND|  000080ZZTSP0S0
X X X X X X X €€-CESND|  0000Z07ZTSP0S0
X X X X X X X €E-TYVIND| _ 0000907ZTSP0S0
X X X X X X X €E-CYVIND| _ 0000SOZZTSP0S0
X X X X X X X EE-CEVIND|  0000v0ZZTSP0S0
X X X X X X X 9E-ETYIND| _ 0000V69%1SP0S0
X X X X X X X 9E-6ECND|  0000E69VTSPOSO
X X X X 9E-€CEND|  0000769%TSP0S0
X X X X X X X 9E-€CVIND| _ 0000T69%TSP0S0
X X X X X X X T-€CVIND| 000069157050
X X X X X X X T-CTSND|  000089YTSY0S0
X X X X X X X T-TTVND|  0000Z9v¥1SP0S0
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Appendix G
Description for the Cascade Creek 697-20-28 core

Modified from Core Labs
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Grain Size and Grain Size and
Sedimentary . _ Sedimentary . _
Structures ‘g 3 ‘g @ Structures *g;‘) 3 g )
W o = C w“— ‘© = C
Sand Mud = 8 g e Sand Mud g 8 g e
ES <) = £ ESS 9] = E
£ ) s | £ |58 e % 8 | £ |52
5 gl o© o S -3 5 gl © o Sl -
S o i > T O &
8, 2/t 25 8 2Lz 25
s|i|>|3 |30 =|ic|>|3 5|0
5,180 %— 5,236
5,188 —L 5244
|
5,192 f
5,196

= =
“77—= 5,200

5,204

5,208

5,212

5,216

5,220

5,224

5,228

5,232

Middle Williams Fork Formation

Plate 1 of 2



79

Grain Size and
Sedimentary
Structures

c
Qo

Sand M

Medium
Fine

Silt

Silty Clay
Clay

Depth (feet)

Lithofacies

5,292

5,296

5,300

5,304

5,308

5,312

5,316

5,320

5,324

5,328

5,332

5,336

5,340

5,344

Architectural

Elements

Grain Size and

Sedimentary .
Structures *g;‘)
Q
Sand Mud =
> a
€ o @ o)
= c O [a]
S o ir >
o c %= t? o
21E15(515|8
5,348
5,352
o S
5,356
5,360

Lithofacies

Architectural

Elements

Plate 2 of 2

Middle Williams Fork Formation



Appendix H
Measured Depth (in feet) for Surfaces Modeled

In the Three-Dimensional Study
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Appendix |
Sandstone Proportion Maps by Net-to-Gross Zone

Zones and model area are defined in Figure 15
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Appendix J
Chlorite Proportion Maps by Net-to-Gross Zone

Zones and model area are defined in Figure 15
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Appendix K

Log Normalization and Results

Normalization is an iterative process in which a data-distribution histogram (in
this case, for the gamma-ray and neutron-porosity logs) of a single well is compared to
and, if necessary, adjusted to conform to the distribution of a standard well. The
histogram and cumulative frequency curve are adjusted by first selecting a high and low
reference line, both parallel to the y-axis of the histogram and creating a linear
extrapolation between the reference lines. These reference lines are then individually
moved along the x-axis, adjusting the distribution of the data within the linear
extrapolation. Once a close match between the well and standard data has been
established, a new log is created from the adjusted histogram and the label “*_NM”" is
appended to the log name (GR_NM and PHIN_NM for the normalized gamma-ray and
neutron-porosity logs, respectively). The process of log normalization changes the
actual data values for a given log, and as such, was used sparingly and only on well-
logs which exhibited large data ranges relative to the standard well. In this study, only

the GR and PHIN logs were normalized. No other log data required normalization.
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Appendix L
Equations in Petrophysical Modeling
Modified From
The Log Analysis Handbook (Quantitative Log Analysis Methods)
E. R. Crain
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Calculation 1: Lithology
STEP 1: Calculate shale density and shale capture cross section (a constant for each
zonel 1: RHOBSH = PHIDSH * KD1 + (1 — PHIDSH) * KD2

2: UmaSH = PESH * RHOBSH

NOTE: PHIDSH and DENSSH are constants for each zone, chosen from the density log
in a 100% shale layer.

STEP 2: Convert density porosity to density units for each layer, if necessary:
3: RHOB = PHID * KD1 + (1 — PHID) * KD2
Where: KD1=1.00

KD2 = 2.65 for Sandstone scale

KD2 = 2.71 for Limestone scale
NOTE: Density data is needed in English units (g/cm?®), not fractional units.
STEP 3: Calculate matrix capture cross section for each layer:

4: Uma = (PE * RHOB - Vsh * UmaSH) / (1 — PHle)
STEP 4: Calculate three mineral rock volumes from Uma and RHOMAND:
5: D = (Uma * (RHOMA2 — RHOMA1) + RHOMAND * (UMA1 — UMA2)
+ UMA2 * RHOMA1 - UMA1 * RHOMA2) / (UMA1 * (RHOMA3 — RHOMAZ2)
+ UMA2 * (RHOMA1 — RHOMA3) + UMA3 * (RHOMA2 —-RHOMA1))

6: E = (D * (RHOMA3 — RHOMA1) — RHOMAND + RHOMA1) / (RHOMA1 —
RHOMA2)

7: Min1 = MAX(0, 1 = D — E) / (MAX(0, 1 — D — E) + MAX(0, D) + MAX(0, E))
8: Min2 = MAX(0, E) / (MAX(0, 1 - D - E) + MAX(0, D) + MAX(0, E))
9: Min3 = 1 — Min1 — Min2

Where: RHOBSH = density log reading in 100% shale (g/cm® or Kg/m?®)
PHIDSH = density log reading in 100% shale (fractional)
KD1 = gas correction factor for density porosity (fractional)
KD2 = gas correction factor for density porosity in a sandstone or limestone matrix
(fractional)
UmaSH = photoelectric absorption cross section in 100% shale (barns/cm?®)



PESH = photoelectric log reading in 100% shale (barns/electron)
RHOB = density log reading (g/cm?® or Kg/m®)
PHID = density porosity log reading (fractional)

Uma = computed matrix photoelectric absorption cross section (barns/cm3)
UMA1 = photoelectric absorption cross section of 1st mineral (barns/cm?)
UMAZ2 = photoelectric absorption cross section of 2nd mineral (barns/cm?®)
UMAZ3 = photoelectric absorption cross section of 3rd mineral gbarns/cm3)

PE = effective photoelectric cross section (barns/cm~)
Vsh = shale volume from any method (fractional)
PHle = effective porosity (fractional)
Min1 = volume of Mineral 1 (fractional)
Min2 = volume of Mineral 2 (fractional)
Min3 = volume of Mineral 3 (fractional)
RHOMA1 = density log reading in 1st mineral (g/cm3 or Kg/m3)
RHOMAZ2 = density log reading in 2nd mineral (g/cm?® or Kg/m®)
RHOMAS3 = density log reading in 3rd mineral (g/cm3 or K%/m3)
RHOMAND = calculated matrix density (g/cm® or Kg/m®)
D = intermediate term in equation (unit-less)
E = intermediate term in equation (unit-less)
MAX(a, b) means to take the larger of a or b
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Calculation 2: Porosity

Prior to calculations, convert density to density porosity units, if necessary:
PHID = (RHOB — KD2) / (KD1 — KD2)

Where: KD1 = 1.00 for English units
KD1 = 1000 for Metric units
KD2 = 2.65 for English units Sandstone log scale
KD2 = 2650 for Metric units Sandstone log scale
KD2 = 2.71 for English units Limestone log scale
KD2 = 2710 for Metric units Limestone log scale

KD2 = 2.87 for English units Dolomite log scale
KD2 = 2870 for Metric units Dolomite log scale

NOTE: The choice for KD2 must match the neutron log units — if neutron is in limestone
units, KD2 must be 2.71 for g/cm?® or 2710 for Kg/m® log scale.

STEP 1: Shale correct the density and neutron log data for each layer:

1: PHIdc = PHID — (Vsh * PHIDSH)

2: PHInc = PHIN — (Vsh * PHINSH)

Note: PHIDSH and PHINSH are constants for each zone, and are picked only once.

STEP 2: Check for gas crossover after shale corrections and calculate porosity for each
layer from the correct equation:

3: IF PHInc >= PHIdc, there is no gas crossover
THEN PHIxdn = (PHInc + PHIdc) / 2

If gas is known to be present AND gas crossover occurs after shale corrections, apply
the following gas correction:

4: IF PHInc < PHIdc, there is gas crossover
THEN PHIxdn = ((PHInc * 2 + PHIdc * 2) / 2) # 0.5

The density neutron crossplot porosity, PHIxdn, after all corrections are applied, is
called the effective porosity, PHle.

Where: PHIdc = porosity from density log corrected for shale (fractional)
PHInc = neutron porosity corrected for shale (fractional)
PHID = density log reading (fractional)
PHIDSH = density log reading for 100% shale (fractional)
PHIN = neutron porosity log reading (fractional)
PHINSH = neutron log reading for 100% shale (fractional)
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PHIxdn = porosity from density neutron crossplot (fractional)
PHIle = effective porosity (fractional)
BVWsh = bulk volume of water bound to 100 % shale (fractional)
PHIt = total porosity from any log (fractional)
PHID = density log reading (fractional)
PHIN = neutron porosity log reading (fractional)
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Calculation 3: Material Balance for Porosity

Bad hole, high shale volume, and statistical variations can cause erratic results in both
very low and high porosities. Values from any method used should be trimmed by the
following:
1:IF PHIle <0
THEN PHIle =0

2: IF PHle > PHIMAX * (1 - Vsh)
THEN PHImx = PHIMAX * (1 - Vsh)

AND PHle = Min (PHIe, PHImXx)
Where: PHle = effective porosity (fractional)

PHIMAX = maximum expected porosity in clean rock (fractional)
PHImx = effective porosity from PHIMAX method (fractional)



Calculation 4: Water and Gas Saturation

STEP 1: Calculate water saturation:

1: PHIt = (PHID + PHIN) / 2
2: Rwa = (PHIt* M) *RILD / A
3: SWa = (Rw/ Rwa) * (1/N)

4: Sw = SWa

The water saturation from the Archie method (SWa) is called the effective water
saturation, Sw.

STEP 2: Calculate gas saturation:
5:8Sg=1-Sw

Where: PHIt = total porosity from any log (fractional)
PHID = density log reading (fractional)
PHIN = neutron porosity log reading (fractional)
RWa = apparent water resistivity (ohm-m)
M = cementation exponent
RILD = deep resistivity log reading (ohm-m)
A = tortuosity factor
SWa = water saturation from Archie method (fractional)
Rw= water resistivity at formation temperature (ohm-m)
N = saturation exponent
Sw = calculated effective water saturation (fractional)
Sg = calculated gas saturation (fractional)
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Appendix M

Petrophysical Model and Blind Study Correlation Results

Cascade Creek 697-20-28
Correlation of Chlorite Volumes
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