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ABSTRACT 

Using Bayesian networks to identify control topography between cancer processes and immune 

responses via metagene constructs. 

 

Cancer arises from a deregulation of both intracellular and intercellular control systems.  

Understanding the architecture of these control systems and how they are changed in diseases 

could present opportunities for therapeutic targets to restore normal control.  However, since 

intercellular control structures only appear in intact systems, it is difficult to identify how these 

control structures become altered using in vitro models and it can be difficult to determine if an 

in vivo model system appropriately replicates what occurs in human disease.  In order to 

overcome this, we use the diversity in normal and malignant human tissue samples from the 

Cancer Genome Atlas database of human breast cancer to identify intercellular control topology 

in vivo.  To improve the underlying biological signals from the noisy gene expression data, we 

constructed Bayesian networks using metagene constructs, which represented groups of genes 

that are concomitantly reported with different immune and cancer states.  From these directional, 

acyclic graphs, we found opposing relationships between cell proliferation and epithelial-to-

mesenchymal transformation (EMT) with regards to macrophage polarization.  Furthermore, we 

also found that it was possible to identify the relationship between EMT and macrophage 

polarization with fewer datasets when the Bayesian network was generated from malignant 

samples alone, while it was possible to identify the relationship between proliferation and 

macrophage polarization with fewer samples when the samples were taken from a combination 

of the normal and malignant samples.  When the same technique was applied to other cancers, 

we found a common result that proliferation was associated with a type 1 cell-mediated anti-

tumor immunity and EMT was associated with a pro-tumor anti-inflammatory response.  All 

together, these networks give us an understanding of what relationships are occurring in human 

cancer progression, and this knowledge can be used to help identify model system that more 

closely mimic human disease progression.  
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1 Introduction  

 Homeostasis is a basic requirement for life, and can be observed existing at many levels 

in multi-cellular organisms, including at the cellular level (such as ion pumps maintaining an ion 

gradient between the cell and its environment), at the tissue level (such as angiogenesis as a 

means to maintain oxygen and nutrient delivery)1, and at the organism level (such as by 

maintaining the internal temperature of the body).  Tumorogenesis, in many ways, represents a 

rewiring of and subversion of normal cellular circuitry resulting in an alteration of the normal 

dynamic processes that would act to maintain homeostasis in the tissue microenvironment2,3.  

These subversions can be  rewiring that occur entirely within the cancer cell (such as achieving 

replicative immortality and conversion of cells to more invasive phenotypes) or can include 

alterations that change the tissue in which the cancer cells are growing (such as promotion of 

angiogenesis)3. 

 A key aspect to understanding tumor progression is to understand that a tumor is 

governed by the same evolutionary principles that control all life.  While the idea that 

evolutionary principles can be applied to tumorogenesis is not a new one4,5, it is becoming more 

evident that cancer needs to be viewed as a evolutionary, dynamic process.  However, it should 

be noted that cancer growth represents somatic and not Darwinian evolution.  This distinction 

has several implications for how a cancer can evolve.  First, since the evolution is occurring in 

the somatic cells, individual mutations can be passed down to subsequent cancer cells, giving 

rise to a heterogeneous population of cells.  These mutations, while random and normally 

negative for the cell, are selected by the same evolutionary forces that act on any organism (can 

it acquire resources, avoid predation, and replicate itself)3.  Somatic evolution also has 

implications with regards to the time scale at which this evolutionary selection is taking place – 
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we have evolved methods to combat cancer on a generational timescale, whereas the tumor 

evolves in a single individual.  As such, the person is effectively static from the view of the 

cancer.  This, along with the fact that malignant cells begin as normal somatic cells, gives the 

tumor the potential to not just adapt to its environment, but to adapt the environment to its own 

needs6.  This combination of normal evolutionary forces along with the ability of the cancer to 

manipulate its environment drives cancer progression and helps give rise to hallmarks of cancer.  

For example, it has been shown, both in biological and computational models, that unequal 

nutrient distributions within an environment would select for more mobile forms of cancer7–10.  

We have known about some of these alterations for a while, though a lot of the earlier research 

focused on how the tumor manipulated itself for survival, as can be seen by the original 

hallmarks of cancer, which focused almost entirely on intracellular alterations required for 

cancer progression.11.  This can be contrasted to the new enabling and emerging hallmarks, 

which lists certain forms of inflammation as an enabler of tumor progression (sometimes through 

increased genetic damage, and also through predation of certain forms of cancer3,12,13), and 

eventual escape of the immune system as a hallmark of cancer (either through a change in the 

cancer itself to make itself less immunogenic14,15, or by biasing the immune system to an 

unproductive response16).   

Identification of these changes in control remains a challenge.  Part of the difficulty is 

due to current laboratory techniques.  Most cell based techniques were developed as a means to 

observe and manipulate processes within a cell, and while some of these techniques can be 

modified to observe certain interaction between cells – such as through co-cultures17 - they are 

mostly limited to identifying intercellular phenomena.  Furthermore, this analysis requires an a 

prior assumption about which cells and environmental conditions are needed in order to observe 
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the physiologically significant relationships, and while it does make it possible to determine what 

events are occurring within the culture, it does not offer a means to verify if these interactions are 

biologically relevant.  Finally, most conventional experimental designs are fairly focused, and 

require the assumption that you are already looking for the relevant interactions.  More 

complicated interactions can be observed by the use of in vivo models, such as through 

xenografts, the use of established cancer cell lines, or the use of genetically engineered mice 

(GEM).  Xenografts, while they can use human cancers that have arisen naturally and can be 

useful for general observation of human cancers, are not ideal when trying to identify 

interactions between the tumor and the host, as the species gap can mask the interactions, and 

there is no guarantee that the same processes are relevant in both species18.  Use of an established 

mouse cancer cell line or GEM mice gets around the species problem, but results in studying the 

a mouse disease in mice, which, even if they contain the conserved genes and proteins, may 

result in a fundamentally different response when the same phenomenon is viewed in 

humans19,20. 

These problems affect more than just cancer research, and as high throughput sample 

processing is becoming more cost efficient, along with the subsequent increases in available 

genetic, mRNA, and protein expression data available, people are turning more towards a 

systems view of disease21.  One source of data that can be used to identify such interactions is 

analysis of human cancer biopsy data.  These tissue samples contain malignant cells and 

infiltrating immune cells, which enables insight into the nature of the local immune response that 

is occurring with the tumor.  It is also biologically relevant, as it is using human data, and since it 

comprises multiple cell types, it can be used to help generate an influence diagram that would 

help in observing the overall control mechanisms. 
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Along with the advent of high throughput data is the potential to utilize probabilistic 

inference methods to identify relationships out of the data that could not be observed using 

simpler statistical techniques22.  One of the methods that can be used to identify the topology of 

an in influence diagram in an unbiased method is through the use  of algorithms that identify 

Bayesian networks21.  Bayesian networks are a type of directed acyclic graphs (DAG), where 

each node represents a random variable and each edge represents a causal relationship between 

two nodes.  Bayesian networks have previously been used to model signaling pathways within 

cells23, correctly identifying the known DNA repair networks in E. coli using microarray data24 

and simple phosphorylation cascades in T lymphocytes using flow cytometry data25,26.  The use 

of Bayesian networks with flow cytometry data is particularly powerful, as it allows each cell to 

viewed as an individual event, and possible extreme cases, which are useful in identifying 

Bayesian networks, are not lost through averaging25. 

At the same time, there are limitations to using flow cytometry data when trying to 

construct a Bayesian network.  For example, analyzing cells via flow cytometry severely limits 

the amount of proteins that can be observed at a single time26, which proves to be a significant 

limitation when trying to understand networks that involve potentially hundreds of genes and 

proteins.  Furthermore, most studies thus far have focused on identifying intracellular events that 

occur over a relatively short timeframe – on the order of minutes or hours. Our objective is to 

identify long term changes that occur in conjunction with disease progression - a process that 

occurs over months or years and that is reflected in changes in cell populations within a tissue 

and cellular development processes. In particular, we are looking at the interplay of processes 

that are commonly associated with oncogenesis and immune surveillance.  Microarray data, on 

the other hand, loses some of the diversity found in flow cytometry data, but if obtained from a 
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complex sample can provide insight into cellular composition within a tissue.  It is limited, 

though, by the computational expense associated with identifying a Bayesian network.  While 

Bayesian networks can handle noisy data, which microarray data normally is, the time required 

to generate the network increases greatly as the number of nodes increases27.  Given our study 

objective and the limitations of computational methods, we combined Bayesian network analysis 

with metagene constructs to identify relationships between oncogenic processes and immune 

surveillance.   

 The purpose of this study is to see if we can identify causal evidence of crosstalk between 

events associated with local cellular immune-surveillance during breast cancer oncogenesis 

given pre-existing microarray data, metagene constructs, and Bayesian networking.   In short, we 

found that cellular proliferation and EMT had opposing relationships with macrophage 

polarization in invasive breast cancer, with increased proliferation being associated with 

classically activated macrophages (M1) and EMT being associated with alternatively activated 

macrophages (M2).  We found that sample size and complexity affected the resulting Bayesian 

networks, with smaller sample sizes resulting in less complex networks, while changes in the 

composition of the sample influenced the relationships that were seen.  When we expanded this 

study to other forms of cancer, we saw that overall increases in proliferation went along with 

increases in cell mediated anti-tumor immunity whereas increases in EMT resulted in decreases 

in cell mediated anti-tumor immunity. 
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2 Methods 

2.1 Data Acquisition 

Gene expression values in normal and malignant tissues were obtained as part of the Cancer 

Genome Atlas (TCGA)28.  In short, homogenized samples taken from primary tumors after 

diagnosis but before treatment or from matched normal tissue samples were analyzed using on 

the Agilent G4502A 07 microarray chip.  Gene expression was determined, and genes were 

normalized to a log2 scale using the RMA (Robust Multichip Average) method29, with negative 

numbers representing lower gene expression and positive numbers representing greater gene 

expression.  Level 3 tissue microarray data were downloaded for the invasive breast carcinoma 

samples (BC, tumors = 599, normals =  65), glioblastoma multiform (GBM, tumors = 482, 

normals = 10), lung squamous cell carcinoma (LUSC, tumors = 155, normals = 0), and colon 

adenocarcinoma (COAD, tumors = 174, normals = 9) samples.  In this case, normals represent 

microarray data from normal, non-cancerous tissue.  Genes of interest were identified, and 

samples missing any of the genes were eliminated from the study.   

2.2 Metagene calculations 

To represent cellular processes, we used metagene constructs. A metagene is the expression and 

aggregation of individual genes observed by microarray data, and can represent either cell 

infiltration, cell polarization, or a cellular process.  Each metagene is defined a priori by genes 

that are either known to be uniquely upregulated or downregulated during a cellular process or 

during cell differentiation.  These metagene constructs serve two purposes in this study.  First, it 

simplifies the data, bringing it together in such a way that it can more easily understood.  A DAG  
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Metagene  Genes  Ref. 

#  

Proliferation  DNMT3B, MCM6, CDC25A, PFAS, MCM4, XRCC5, FAM29A, CXXC6, IGF2BP1, 

PLAA, DEPDC1B, TEX10, CCDC99, MSH6, DLG7, SKIV2L2, CENPE, CHEK2, 

SOHLH2, CCNB1, RRAS2, PRIM1, PAICS, CCNA2, CPSF3, NUSAP1, LIN28B, 

IMP5, KIF11, BMPR1A NDC80, BCAT1, CCNG1, ASCC3, FANCB, MCM10, 

HMGA2, SKP2, TRIM24, ORC1L, HDAC2, HESX1, C1orf45, INHBE, C21orf45, 

DCUN1D5, POLE2, MRPL3, CENPH, MYCN, CCDC5, GDF3, TBCE, RIOK2, 

BCKDHB, RAD1, C5orf13, ADH5, PLRG1, ROR1, RAB3B, DBC1, KIF23, DIAPH3, 

GNL2, FGF2, TARDBP, NMNAT2, ZNF167, KIF20A, CENPI, DDX1, C3orf21, 

GPR176, FBXO22,  BBS9, C14orf166, FAM44B, CDC123, SNRPD3, FAM118B, 

PDH3, EIF2B3, KDELC1, APLP1, DACT1, PDHB, C14orf119, DTD1, SAMM50, 

CCL26, CCDC9-B, MED20, UTP6,  RARS2, KIAA0020, ARMCX2, RARS, 

MTHFD2, DHX15, HTR7, HIST1H4C, MTHFD1L, ARMC9, XPOT, IARS, HDX, 

ARPM1, ERCC2, GARS, KIF7, HIP2, SLC25A3,  ICMT, UGCGL2, ATP11C, 

SLC24A1, EIF2AKA, ALX1, DC2, TRPC4, HAS2, FZD2, TRNT1, SNX8, CDH6, 

HAT1, SEC11A, DIMT1L, TM2D2, FST, GBE1  

30 

EMT  SNAII2, COL5A2, FAP, POSTN, COL1A1, COL3A1, FBN1, TNFAIP6, MMP2, 

GREM1, BGN, CDH11, SPOCK1, DCN, COPZ2, THY1, PLOCE, PRRX1, PDGFRB, 

SPARC, INHBA, COL6A3, FN1, ACTA2, COL11A1, THBS2, COL10A1, COL5A2, 

LRRC15, COL5A1, MMP11, ADAM12, LOX, AEBP1, SULF1, ASPN, CTSK, HNT, 

EPYC, PLAU, OLFML2B, LUM, LOXL2, MXRA5, MFAP5, NUAK1, RAB31, 

TIMP3, CRISPLD2, ITGBL1, TMEM158, SFRP4, SERPINF1, C7orf10, NOX4, 

EDNRA, RCN3, C1QTNF3, COMP, LGALS1, COL6A2, GLT8D2, NID2, AXIN2, 

PITX2, MITF, NRCAM, TCF4, LGR5, FST, LEF1, FN1, FGF4, MMP7, RHOU, 

CLDN1, FGF18, MYC, MYCBP, JUN, FZD7, PPARD, WISP1, CTLA4, TNFRSF19, 

EN2, SP5, HNF1A, FOSL1, STRA6, VEGFA, ID2, WNT1, WNT10A, WNT10B, 

WNT11, WNT16, WNT2, WNT2B, WNT3, WNT3A, WNT4, WNT5A, WNT5B, 

WNT6, WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B  

31,32 

T-cell  CD247, CD3D, CDD3E, CD3G, ITGAL, ITGB2, ICAM1, CD2, CD28, THY1, 

PTPRC  

33 

Natural 

Killer Cells  

KLRC1, KLRC2, KLRC3, KLRD1  34 

Macrophages  CD14, MRC1, CPM, ITGAM, NOS2, HLA.DRA, HLA.DMA, HLA.DOA, 

HLA.DPA1, HLA.DQA1, HLA.DQA2  

35 

Th1  CD4, IFNG, IL10, FASLG, EOMES, TBX21   36 

Th2  CD4, IL4, IL5, IL10, GATA3 36 

Th17  CD4, IL17A, IL17F, RORA, RORC  36 

Treg  CD4, TGFB1, IL10, IL12A, EBI3, RORC, FOXP3, TBX21, CCR6, MYB  36 

Macrophage 

1  

IDO1, IL23A, IL12B, CCL17, IL1B  35 

Macrophage 

2  

ARG1, TIMP2, LYVE1, KLF4, CD163, STAB1  35 

Table 1: Gene list of Metagenes 
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containing  fourteen nodes is much easier to make sense of then a DAG containing nearly three 

hundred nodes and is much more computationally traceable27.  The reduced computational 

expense enables one to test hypothesis related to network topology via simulations, for instance, 

the statistically significance of an edge can be obtained by comparing how often an edge is 

inferred from the TCGA data relative to a dataset that has no information – that is, a null 

hypothesis.  Secondly, it serves as a means of helping to eliminate error.  Microarray data is 

noisy, with the result given being the summation of both the true gene expression as well the 

noise inherit to the assay (i.e., lab variability, experimenter skill, sensitivity of the machine, and 

batch of reagents used)24.  The metagene helps eliminate this error as it averages across several 

genes.  The genes that make up each metagene are identified in Table 1. 

The presence of T cells, Natural Killer cells, and macrophages in the tumor microenvironment 

were represented by immune infiltrate metagenes33.  The value for an immune infiltrate 

metagene were calculated according to the formula: 

𝑣 = ∑ 𝑦𝑗/𝑛

𝑛

𝑗=1

 

where n represents the number of genes in the metagene and 𝑦𝑗 equals the expression of gene j  

in the metagene. 

The EMT31,32 and proliferation30 metagenes were calculated according to the formula: 

𝑣 =
𝑛

∑ ((𝑦𝑗 −𝑛
𝑗=1 (�̅�𝑗 + 3𝜎𝑗))/(𝜎𝑗))2,
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where n represents the number of genes in the metagene, 𝑦𝑗 equals the gene expression of the jth  

gene in the metagene, �̅�𝑗 represents the mean of gene 𝑦’s expression in the dataset and 𝜎𝑗 equals 

the standard deviation of the gene.    

Polarization of T cells into one of four subsets and of macrophages into one of two subsets35,36 

were calculated according to the equations below 

𝑣𝑖 =  ∏(𝜎𝑗/(𝑦𝑗 − (�̅�𝑗  ± 3𝜎𝑗)))2

𝑛

𝑗=1

, 

𝑃(𝑀𝑖|𝑌) =
𝑣𝑖

∑ 𝑣𝑘
𝑚
𝑘= 1

, 

where 𝑦𝑗 equals the gene expression of the jth  gene in the metagene, �̅�𝑗 represents the mean of 

gene 𝑦’s expression in the dataset and 𝜎𝑦 equals the standard deviation of the gene.   The 

standard deviation is either added or subtracted from the mean depending on whether the gene is 

upregulated or down regulated in the polarization, with upregulated genes being added and down 

regulated genes being subtracted. 𝑃(𝑀𝑖|𝑌) is the probablilty of polarization state 𝑖 given the data 

Y, and 𝑚 represents the total number of possible polarizations. Products were used as we 

assumed the expression of the genes to be mutually inclusive, with a polarization only being 

considered when all of the genes for it were upregulated when compared to the gene expression 

of the alternative polarizations.  All calculations were performed in R37. 
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2.3 Bayesian Networks 

Bayesian networks were generated from the metagene data using an Incremental Associated 

Markov Blanket (IAMB) as described by Tsamardinos38 and implemented in R.  In short, IAMB 

is made up of two phases – a forward stage where a network is generated in such a way that it 

maximizes the conditional independence of the nodes, and a backwards phase where it is 

removes any remaining conditionally independent connections. This results in the construction of 

a Markov blanket.  A Markov blanket of a node is defined as the set of other nodes that contains 

all the information in the data set that can aid in predicting the value of the node of interest.  A 

simple way to think of a Markov blanket is to take a set that contains all of the nodes that are 

related to the node of interest, then remove any nodes from that set that are conditionally 

independent, and add in any nodes that are conditionally dependent.  Conditional independence 

is the situation where two variables that are partially dependent on each other when viewed in 

isolation become independent when combined with a third variable.  This can be explained using 

a simple example – the genetic information of a child, their father, and their paternal 

grandmother.  The genome of the child is correlated with that of their grandmother (as would be 

expected, 1/4th of their genes came from the paternal grandmother).  However, the child is 

conditionally independent of their paternal grandmother if we know the genome of the father – 

since any genetic information shared between the grandmother and the child would need to go 

through the father, nothing more can be inferred about the child’s genome knowing both the 

father’s and paternal grandmother’s genome than can be inferred if you know just the fathers 

genome.  Note that the reverse is not true – a child is not conditionally independent of their 

parent given the grandparent, we can still infer more about the child’s genome.  In a sense, 

identification of conditional independence allows for the identification of intermediates – the 
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genetic information of the paternal grandmother was transported to the child through the father.  

Another concept that goes along with conditional independence is conditional dependence – 

where two variables that are independent of each other when observed in isolation become 

dependent with the addition of a third variable.  To carry the example from earlier further, the 

genome of the mother is independent of the genome of the father, meaning you can’t infer 

anything about the mother’s genome by knowing the father’s genome.  However, the two 

genomes become dependent if the child’s genome is known – you can infer more about the 

mother’s genome if you know the genome of both the child and the father than if you knew the 

genome of just the child.  Thus, the Markov blanket for the father includes the father’s parents, 

his child, and his wife, but would not include the father’s grandparents, siblings, or 

grandchildren.  It should also be noted that reversed networks are functionally equivalent.  This 

distinction is important when it comes trying to define causal relationships; while from a 

Bayesian network standpoint a → b → c is functionally the same as c → b → a, it does not make 

sense to say that a child’s genome influences their father’s genome, which in turn influences the 

grandparent’s genome39.  To get around this limitation, one of two things must be done: first, one 

of the directional relationships needs to be defined a priori or second, the dataset used to 

generate the network needs to include temporal data40.   

 Confidence for the node edges was calculated using a bootstrap resampling method that 

included 100,000 replications39.  For each replicate, patient data was randomly sampled with 

replacement n times, where n is the starting number of patients in the dataset, and a network was 

generated from the new dataset.  Lines were only included if they had a p-value of less than 0.01.  

Bayesian networks were generated for all cancer sets.  To assess how the complexity of the 

TCGA study samples influenced network generation, we also generated networks for smaller 
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subsets of in data, including the tumor samples only or a percentage of the entire dataset (75%, 

50%, 25%).  These percentage subsets were generated by sampling without replacement from the 

entire cohort.  Model generation and averaging were performed in R using the boot.strength() 

and the average.network() methods from the bnlearn package.  Since temporal data from a single 

patient was not available, we used matched normals and various patients to simulate temporal 

data. We assume these cross-sectional samples from normal and diseased tissue represents 

random samples from a common temporal trajectory associated with oncogenesis. 

2.4 Statistics 

Expression data for only the genes of interest were analyzed in R, and heatmaps were generated 

using the heatmap.2() function.  Patients and genes were clustered using the ward method.  

Principal component analysis was performed on the data using the prcomp() function, with scale 

set to false, and rotational data for the genes were returned.   Differences in node connectivity 

and average Markov blanket size were compared using two way ANOVA’s.  Distributions 

between cancer group 1 and cancer group 2 were compared using the Mann-Whitney-Wilcoxon 

test.  P-values for the Mann-Whitney-Wilcoxon test that were less than 0.01 were considered to 

be statistically significant.  
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3 Results 

3.1 Identification of patient subtypes and metagenes 

While the genes we used to identify the different metagenes were identified and created 

using human data, we wanted to verify their usefulness, both in their use to distinguish between 

patients, and also to see if they did, in fact, vary together.  To see if the genes selected could 

distinguish cancer and non-cancer patients, hierarchical clustering was performed on the genes 

used in the metagenes (fig. 1), and the patients were divided into three groups.  The patients, 

with a couple of exceptions, divided into three groups, one normal group and two cancer groups.  

This suggests that the patients, at least, can be separated by the genes chosen for the metagenes, 

with normal samples being separated from the tumor samples, and the tumor samples being split 

into two groups, one of which more closely resembles the normal samples.  

In order to better understand how the different metagenes explained the variance samples 

observed, Principal Component Analysis was performed.  It was found that a large percentage of 

the variance was explained in the first four principal components (fig. 2a, 54%), and that the 

genes associated with EMT and proliferation were separated by principal component 1 (fig. 2b – 

fig 2d).  This can be observed by looking at the distribution of the genes, with most of the 

proliferation metagenes grouping towards the far right on PC1, whereas the EMT genes tended 

towards the center and left portions.  This also means that since the behavior of 256 genes can be 

simplified to 4 dimensions, that many of the genes are varying consistently with each other.  It 

should be noted that there are several genes that cluster near the origin in all 4 principal 

components – these genes could potentially be removed, as they are uninformative with regards 

to the breast cancer, but were not excluded in this case as they could be informative in other 

cancers.  
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Figure 1: Hierarchical clustering of breast cancer patient data separates the patients into cancer 

and non-cancer patients. Hierarchical clustering of the patient gene signatures separate the patients 

into three groups, two cancer groups and one normal group.  Hierarchal clustering was performed 

on patient data for the genes listed in Table 1.   Patients were colored based on whether the sample 

came from normal breast tissue (blue) or tumor breast tissue (red)  and were grouped into three 

groups, group 1 (black), group 2 (purple), and group 3 (green).  Genes were color coded based on 

metagene grouping, EMT (black), Proliferation (grey), T cell infiltration (green), NK cell 

infiltration (red), Macrophage Infiltration (orange), T cell polarization (yellow), and Macrophage 

polarization (blue) 

Cancer or Normal 
Grouping 
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Since both of these metagenes informed principal component 1, we looked to see how the 

distribution of these metagenes differed between the two cancer groups and the normals.  As 

would be expected, it was found that expression of the proliferation metagene was increased in 

both cancer group 1 and cancer group 2 when compared to the normal group, although the two 

cancer groups did not have identical distributions (fig. 3b).  However, it was observed that 

expression of the EMT metagene was increased primarily in cancer group 1, with cancer group 2 

and the normal group having a very similar distribution (fig. 3a).  Similar to the group 

differences in proliferation the macrophage polarization was very different between the cancer 

and normal patients, with the cancer patients exhibiting a shift from the M2 to the M1 

polarization, with group 2 exhibiting a much stronger bias(fig 3c).  This is of interest, as both 

polarization play different and opposite roles in cancer immunology.  This is not surprising, as 

the M1 macrophage, also known as the classically activated macrophage, is activated via 

inflammation while the M2 mostly plays a role in wound healing.  As such, the two cancer 

metagenes can mostly separate the patients into the three groups found in the hierarchical 

clustering - at least in regards to explaining the overall variance seen in the gene expression - 

with the proliferation metagene primarily showing whether the biopsy came from a normal or 

tumor, and the EMT metagene seemingly mostly distinguishing between different cancers.  Due 

to the role that EMT plays in invasiveness41, however we could not identify a relationship 

between EMT expression and existing distal metastasis.  This may be due to the fact there was a 

very low number of patients who had metastasized (n = 8, Supplemetal Table 8). 
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Figure 2: Most of the variability in the gene data can be captured in the first four principal 

components.  Principal component analysis was performed on the data from fig.1, and the amount of 

variability explained by each component was graphed (a).  Genes were color coded based on metagene 

grouping, EMT (black), Proliferation (grey), T cell infiltration (green), NK cell infiltration (red), 

Macrophage Infiltration (orange), T cell polarization (yellow), and Macrophage polarization (blue), 

and a rotational graph representing the role of each gene in principal components 1, 2, 3, and 4 were 

generated (b). 

 



17 
 

 

 

 

  

Figure 3:  The distribution of the EMT (a), the proliferation (b), and the M1 macrophage polarization (c) 

were calculated and the group averages were displayed as a solid vertical line.  Groupings were based on 

figure 1, with black representing cancer group 1, purple representing cancer group 2, and green representing 

normals. 
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3.2 Use of Bayesian networking as a means to identify topology of extracellular control 

networks 

After confirming that the genes naturally cluster into the different metagenes, we asked 

whether we could observe evidence of crosstalk between the cancer and immune metagenes.  To 

accomplish this, a Bayesian network of the metagenes was generated using an IAMB algorithm.  

Although Bayesian networks can be used to identify causal relationships between data points, 

causality can only be inferred if there is either temporal data, or the direction of the edges are 

known a priori.  Since we could not analyze multiple cancer biopsies from a single patient from 

across time, we used the whole dataset along with the matched normals as a means to simulate 

temporal disease progression40.   The generated network represented the averaging of 100,000 

generated networks, a process that had previously been shown to be a fairly conservative method 

of identifying edges39.  When the analysis was performed on the whole data set of invasive breast 

cancer, it was observed that the EMT metagene and the proliferation metagene had reciprocal 

effects on macrophage polarization, with EMT seemingly being associated with increases in 

macrophage type 2 polarization (M2) and proliferation being associated with macrophage type 1 

polarization (M1) (fig 4a).   This is of interest, as macrophage polarizations are thought to play 

opposing roles in cancer immunosurveillance.  The M1 polarization is the classical macrophage, 

which serves to scavenge cell debris and is generally pro-inflammatory42.  In contrast, the M2 

polarization is associated with wound healing, suppression of inflammation, and is considered to 

promote tumor growth43,44.  These relationships are captured in the generated network, with an 

M1 polarization also being associated with an increase in overall T cell infiltration and M2 being 

associated with a decrease in T cell infiltration.   When the analysis was repeated using only gene 

expression values derived from tumor samples of invasive breast cancer cohort, the relationships 
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between EMT and macrophage polarization, as well as the relationship between macrophage 

polarization and T cell infiltration persisted (fig 4b).  However, the relationship between 

macrophage polarization and proliferation was lost.   This implies that the relationship between 

macrophage polarization and proliferation was mostly informed by the change from normal to 

cancer.  It is also worth noting that not all relationships with proliferation were lost with the 

change from using all samples to only using cancer samples.  For instance, the relationship 

between proliferation and the T helper Type 1 cells (Th1) polarization was maintained, and the 

confidence was, in fact, increased (p-value = 1.45E-20 vs. p-value = 7.0E-15).  This suggests that 

the relationship between the Th1 polarization and proliferation is a relationship inherent to 

invasive breast cancer, and not simply representing a change from normal to cancer. 

Since EMT and proliferation played opposing roles in the Bayesian networks with 

regards to macrophage polarization, we next wanted to see whether their overall distribution was 

different in the two cancer groups.  It was found that the two groups did differ significantly with 

regards to their average EMT metagene expression, with group 1 having a higher average 

expression (p value < 0.001, Mann-Whitney Wilcox, Supplemental Figure 1i).  Surprisingly, 

though the means were much closer together, the difference between the two groups in the 

average proliferation metagene expression was statistically significant, with group 2 having a 

higher expression (p value =  2.95e-7, Supplemental Figure 1j).  As would be expected from the 

Bayesian network, it was found that the two groups did differ significantly with regards to their 

macrophage polarization, with group 2 having higher levels of M1 polarized macrophages (p 

value = 9.40e-15, Supplemental Figure 1h).  As would be expected with the changes in 

macrophage polarization, group 1 also had a statistically significant increase in Th2 and Treg 

polarizations, with Treg being anti-inflammatory and Th2 being commonly opposed to Th1, and 
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Figure 4: Bayesian networks reveal cross-talk among polarized immune subsets and inverse relationships 

between the proliferation and EMT metagene with regards to macrophage polarization.  Bayesian networks 

were generated for BC data using either the whole data set (a) or just the cancer dataset (b).  In both cases the 

network was generated using an IAMB algorithm, with the network representing the average of 100,000 

generated Bayesian networks.  Black lines represent positive relationships while red lines represent negative 

relationships.  The line thickness is proportional to the negative log of the confidence in the connection, with 

thicker lines representing a higher confidence.  Confidence p values are given in the supplemental table 1. 
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Th1 polarization being higher in group 2.  These interactions, however, did not appear to be 

direct effects as indicated by the Bayesian network inference results.  

While the objective of using Bayesian network inference is to identify more complex 

multivariate relationships within the dataset, we also wanted to see if the relationships between 

cancer and immune metagenes could be observed directly.  Since the whole data set was required 

to observe both relationships, we looked to see if there was much of a direct correlation between 

either the EMT metagene or the proliferation metagene and macrophage polarization.  We found 

a very weak but significant correlation between EMT and macrophage polarization (r = -.18, p-

value < .001, fig 5), while the correlation between proliferation and macrophage polarization was 

a bit stronger (r = .34, p-value < .001, fig 5).  This, however, is not too surprising.  First, while 

the proliferation and EMT metagenes exist as a continuum, the macrophage polarization 

metagene is mostly binary.  Secondly, the Bayesian network suggested that the interactions 

between EMT and macrophage polarization was rather subtle, as shown by the larger p-value 

when compared to the p-value for proliferation and macrophage polarization (p value of 5.07e-5 

vs 7.38e-16), which can be considered as a strength of evidence. 
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Figure 5: The relationships between EMT, Proliferation, and M1 Macrophage polarization show subtle 

relationships between themselves.  Below the parallel correlation graphs are shown for the three metagenes.  

Black dots represent data from cancer group 1, purple dots show data from cancer group 2, and green shows data 

from matched normals.  Above the parallel is the correlation coefficient, size scaled to strength of relationship.   
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3.3 The sample size and diversity of a data set influences network generation and 

verification of metagene constructs 

We next determined the overall effect of sample size and diversity of the TCGA dataset 

with regards to the generated networks to assess how this approach could be generalized.  To 

accomplish this, we generated mock datasets that represented 75% (fig 6a), 50% (fig 6b), or 25% 

(fig 6c) of the dataset by drawing randomly without replacement from the whole invasive breast 

cancer data set.  As one would expect, the network appeared to be become progressively less 

complex as the dataset became smaller.  It also appeared that the overall confidence levels 

associated with the edges fell.  Interestingly, when the dataset was reduced to 25%, the 

relationship between EMT and macrophage polarization was lost, although the relationship 

between proliferation and macrophage polarization endured.  This is consistent with our findings 

that the relationship between EMT and macrophage polarization was more subtle, and also 

implies this relationship might not be identifiable with a smaller dataset. 

The relationship between proliferation and macrophage polarization is interesting, as  it 

was lost with the removal of the normal breast tissue samples but persisted in the 75% and 50% 

subsets.  To better examine the impact of the inclusion of normal samples, we repeated the 

experiment using only cancer samples (fig 7).  In this case, the relationship between EMT and 

macrophage polarization was maintained through all datasets.  While the relationship between 

proliferation and macrophage polarization was lost in all subsets, the relationship between 

proliferation and Th1 polarization was also maintained.  It is also interesting to note that these 

datasets generated orphan nodes – nodes that contain no connections to any other.  This suggests 

that the inclusion of normal patient data was required for the identification of the relationship 
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between proliferation and macrophage polarization.  In contrast, the exclusion of normal patient 

data made it easier to identify the relationship between EMT and macrophage polarization. 

In order to get a better idea of the overall effects of changing the complexity and size of 

the dataset used, 10 replicates of the earlier studies were performed, each containing 100,000 

bootstrap samples, and the resulting complexity of the inferred networks was quantified by their 

average node connectivity and Markov blanket size (table 2).  In this particular case, the amount 

of samples drawn from either dataset was equal to the percentage of cancer samples only, since 

we wanted to directly compare the tumor only and tumor and normal datasets to each other 

without the influence of overall difference in number between cancer and combined groups 

influencing the network complexity.  What we found was that average Markov blanket did not 

change between using the entire dataset versus using cancer dataset only, though there was a 

statistically significant difference in average Markov blanket size and node connectivity when 

comparing the smallest dataset (25%) to the largest dataset (75%, p-value  <  .01). There was, 

however, a decrease in node connectivity when the network was generated from cancer dataset 

alone (p-value < .01). 

One potential concern of the model that we are using is that while certain metagenes are 

defined independently of each other (for example, immune cell infiltration, proliferation, and 

EMT), other metagenes, such as immune polarization, are defined as mutually exclusive.  For 

instance, M1 macrophage polarization is defined both by the increased expression of M1 

associated genes and by a decrease in M2 associated genes.  To test our inference approach, we 

tested whether the immune polarization networks were informed by the data or constrained by 

the particular model formulations.  In order to test this, we focused on the T helper cell 

polarizations, and compared the connections generated from real data to the connections derived
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Figure 6: The relationship between EMT and macrophage polarization appears to be subtle, and is lost when the 

network is generated from subsamples of the dataset.  Bayesian networks were generated using random sampling 

without replacement of the whole data set, with subsamples representing 75% (a), 50% (b), or 25% (c) of the 

whole BC dataset. In all cases the network was generated using an IAMB algorithm, with the network 

representing the average of 100,000 generated Bayesian networks.  Black lines represent positive relationships 

while red lines represent negative relationships.  The line thickness is proportional to the log of the confidence in 

the connection, with thicker lines representing a higher confidence. Confidence p values are given in the 

supplemental tables 5, 6 and 7. 
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Figure 7: The relationship between EMT and macrophage polarization is maintained when subsamples 

are taken of only the cancer samples.  Bayesian networks were generated using random sampling without 

replacement of the BC dataset containing only tumor biopsies, with subsamples representing 75% (a), 

50% (b), or 25% (c) of the BC dataset. In all cases the network was generated using an IAMB algorithm, 

with the network representing the average of 100,000 generated Bayesian networks.  Black lines represent 

positive relationships while red lines represent negative relationships.  The line thickness is proportional 

to the log of the confidence in the connection, with thicker lines representing a higher confidence.  

Confidence p values are given in the supplemental tables 5, 6 and 7. 
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from metagenes generated from random genes.  To accomplish this, we scrambled the genes 

associated with each polarization subset and repeated the analysis.  What we found was a 

redirection  in relationships (specifically Th1 no longer having connections to T helper type 17 

(Th17) and T helper type 2 cells) (fig 8).  Furthermore, in the repeated analysis, there was an 

ambiguity in the nature of the relationship between Th1 and Treg, with some models finding a 

positive relationship while other networks identified a negative relationship.  However, the 

overall shape of the graph was consistent across all three gene reshufflings, which suggests that 

the data plays at least some role in determining the final relationships.  Furthermore, prior studies 

had identified a reciprocal role for Th1 and Th17 in human tumor infiltrates45. 
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% of Dataset  

 

Cancer + 

Normals, 

Average node 

connection  

Cancer Only, 

Average node 

connection ** 

Cancer + Normals, 

Markov Blanket 

Size  

Cancer Only, 

Markov Blanket 

Size   ** 

Whole Dataset 2.92 2.46 3.69 3.07 

75%  (n = 399) 2.95 ± 0.06  2.61 ± 0.10  3.67 ± 0.20 3.23± 0.17  

50%  (n = 266) 2.87 ± 0.13  2.43 ± 0.15  3.56± 0.18  3.21± 0.49  

25%* (n = 133) 2.28 ± 0.12  2.15 ± 0.25 2.71± 0.25 2.84± 0.64 

Mean and standard deviation of average node connections and Markov blanket size were calculated for the whole 

invasive breast cancer dataset and cancer only invasive breast cancer dataset.  Percentages were based on the size 

of the cancer only datasets.  2-way ANOVA was performed on the data.  * signifies a difference between that row 

and the 75% row.  ** signifies a difference between that column and the total data set 

 

Table 2: Average connectivity and Markov blanket size of invasive breast cancer subsets 
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Figure 8: The relationships between the T-cell polarizations are defined by the data, and not by the model.  

The genes used to identify each T helper call subtype were replaced with random immune genes used in the 

study, and the probability of the polarizations were recalculated. Bayesian networks were then generated using 

an IAMB algorithm, with the network representing the average of 100,000 Bayesian networks generated from 

resampling.  This was replicated 6 times.  A) represents networks from real data and B) represents data from 

the random data.  Black lines represent positive relationships while red lines represent negative relationships. 

Dual arrows represent were both relationships were observed.   
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3.4 Similar Bayesian networks are identified in other cancers 

One of the advantages of using the TCGA study is that it spans many different cancers 

and samples are processed similarly.  This helps minimize variation in network inference that 

may be introduced by study design.  We wanted to determine if the relationships we observed 

were specific to breast cancer, or if similar relationships could be observed in other cancers.  In 

order to do this, we downloaded complete datasets from the lung squamous cell carcinoma (fig 

9a), colon adenocarcinoma (fig 9b), and glioblastoma multiform (fig 9c) arms of the TCGA 

study.  While glioblastoma technically is not a carcinoma, it had been reported that it does 

undergo a shift towards a mesenchymal state, resulting in an increase in expression of EMT 

genes46.  Overall the generated Bayesian networks for the other cancers were similar but not 

identical to the overall network inferred from the breast cancer dataset.  For example, identical 

relationships between proliferation and macrophage polarization were observed in the colon 

adenocarcinoma and glioblastoma multiform datasets, but were not seen in the lung squamous 

cell carcinoma dataset.  In addition, the relationship between EMT and macrophage polarization 

was observed only in the lung squamous cell carcinoma dataset.  Differences in the Bayesian 

networks were not unexpected, given the size and composition of the datasets (Table 3).  For 

example, the lung squamous cell carcinoma dataset, while small, only contains tumor biopsies, 

and identified the least complex network.  In contrast, the colon adenocarcinoma dataset is small 

but contains a mixture of both normal and tumor biopsies and the inferred network has more 

connection.  The glioblastoma multiform network is interesting as it was the most complex and 

contained more connection than the other cancer networks, but it also represents relationships 

that, unlike all the other networks, arise in an immune privileged area47. 
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Cancer    Average node 

connectivity  

Average Markov 

Blanket Size  

Number of 

Tumor Samples  

Number of 

Normal Samples  

Breast Cancer  2.77 3.69 532  65  

Glioblastoma 

Multiform  

2.92 4.00 467  10  

Lung Cancer  1.85 2.40 154  0  

Colorectal Cancer  2.31 2.46 154  19  

Table 3: Node connectivity and Markov blanket size of all cancer data sets used in study. 

 

Values represent the mean node connectivity and Markov blanket size for the networks generated using the breast 

cancer, glioblastoma multiform, lung cancer, and colorectal cancer datasets.  The total numbers of tumor and 

normal samples used in the analysis are also provided. 
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Figure 9: Bayesian networks of other cancers.  Bayesian networks were generated using the metagenes for the lung 

cancer (a), colon adenocarcinoma (b), and glioblastoma multiform (c) datasets. In all cases the network was generated 

using an IAMB algorithm, with the network representing the average of 100,000 generated Bayesian networks.  

Black lines represent positive relationships while red lines represent negative relationships.  The line thickness is 

proportional to the log of the confidence in the connection, with thicker lines representing a higher confidence. 

Confidence p values are given in the supplemental tables 2, 3 and 4. 
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4 Discussion, conclusions, and recommendations 

The purpose of this study was to identify evidence of alterations in the normal behavior 

of the immune system that are causally related to oncogenic changes, namely an increase in 

proliferation and EMT.  As a means of accomplishing this, we used gene expression data 

obtained from tumor and normal tissue biopsies in conjunction with defined gene signatures, 

called metagenes, which are indicative of immune infiltration, immune polarization, and 

common cancer processes, to infer relationships among these processes via Bayesian 

networking.  We used data from the invasive breast cancer arm of the TCGA to generate directed 

acyclic graphs and used model averaging to establish confidence in the network topology.  As a 

form of external validation, we found that similar network structures were observed in other 

cancers in a manner consistent with the size and diversity of the underlying datasets.  In 

summary, we have outlined a novel method of identifying areas of local crosstalk between 

different cells within the tumor microenvironment using microarray data and prior knowledge of 

gene signatures. 

As the overall objective was to identify relationships among biological processes 

associated with tissue homeostasis and immune-mediated control of multicellular tissues, the 

inferred networks identified some interesting crosstalk among these processes.  In particular, we 

found that an increase in proliferation tended to coincide with increases in cell-mediated immune 

responses that promote cancer destruction while EMT increases tended to coincide with 

increases in cell-mediated immune responses that either did not kill the cancer or which would 

help promote tumor tolerance.  For example, in the lung cancer and glioblastoma multiform 

datasets increased proliferation led to increases in M1 polarized macrophages, the same 

relationship, but in the opposite direction, was identified in the colorectal adenocarcinoma 
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dataset.  Proliferation was also found to be associated with increases in Th1 cells in colorectal 

and breast cancer data sets and with increases in M1 macrophage polarization and natural killer 

cell infiltration in glioblastoma multiform.  A type I cell-mediated immune response is generally 

considered to be the response that has a positive overall impact on cancer survival,45 as it uses 

Th1 polarized CD4 T lymphocytes, CD8 T lymphocytes48 and natural killer49 cells as effector 

cells to help destroy the cancer.  At the same time, increased EMT activity was associated with 

increases in M2 polarization in the lung and breast cancer and appeared to be driven by decrease 

in natural killer cells in glioblastoma multiform.  Of all the cancers analyzed, glioblastoma 

multiform was the most divergent.  However, this could be simply due to the fact that these 

interactions are occurring in an immune-privileged area, with the underlying immune processes 

being different that what would be observed in a non-privileged area. 

These networks provided a topology and directionality of the intracellular networks at 

work in a tumor microenvironment.  However, certain aspects of the directionality remain 

uncertain.  From this study, we had reversed directionality with regards to macrophage 

polarization and EMT if the analysis was performed with either the whole breast cancer dataset 

or just the malignant samples, which begs the question which model most closely reflects what 

occurs within the patient.   While the relationship between macrophage polarization and EMT 

had not been reported before in breast cancer, similar relationships have been observed in other 

forms of cancer, for instance, M2 macrophages are the most common polarization for cancer 

associated macrophages50 and promote EMT in vitro51.  In melanoma, tumor cells induce 

immune-suppression when they undergo EMT52.  Alternatively, M2 polarized macrophages have 

been shown to induce EMT in certain forms of pancreatic cancer53.  Also, feedback loops are a 

common motif in biological systems, but are necessarily removed in the directed acyclic graphs 
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used in our analysis. This would result in the generation of overly simplistic models – for 

example, a positive feedback loop would be interpreted as a straight forward causal relationship. 

It is also important to remember the assumptions that are used in these analyses.  One of 

the larger assumptions is that we can replicate temporal cancer progression using samples from 

different cancer biopsies and that cancer follows a single course.  The temporal aspect of the data 

is limited partially by the fact the biopsies are all taken at diagnosis before treatments has begun.  

As such, we do have access to information from more advanced tumors. Also, while we have 

tumor biopsies and matched normal biopsies, we do not have any data on intermediate data 

between the two, and thus are missing part of the progression.  Finally, we needed to assume that 

there is a common cancer progression, which, as more data is acquired, may not be the case. 

Despite these limitations, these networks do give us an understanding of what 

relationships are occurring in human cancer progression.  This can be used to help identify and 

verify model systems that more closely mimic human disease progression, resulting in the 

selection of more relevant models.  For example, longitudinal studies using mouse models that 

mimic the metagene signatures associated with oncogenesis may help inform ambiguities in our 

causal networks as well as serve as a relevant model for testing new treatments.  Furthermore, 

these models can be used to identify instances of feedback loops.  As the amount of available 

data increases, it will become possible to create networks for different subsets of cancer 

progression, which in turn could help in the identification of model systems that better replicate 

certain forms of cancer progression.   

One particular strength of this approach is the versatility offered by the use of metagenes. 

Since the generation of a metagene only requires that the relevant cells be in the biopsy and an 
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accepted list of genes that are differentially expressed by the cells of interest, it is possible to 

analyze the relationship between a wide variety of processes.  Furthermore, it would also be 

possible to include other, global measurements as well as analysis of distal tissue, allowing for 

the generation of more systemic models.  In summary, we have used an existing technique in a 

novel method to observe changes in intercellular relationships using data obtained as part of the 

Cancer Genome Atlas.  This technique can be used to help identify more relevant disease models 

and can be applied to a wide range of more complicated diseases that engulf tissues, complicated 

processes associated with tissue development, and regenerative medicine. 
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Supplemental Table 1: Directionality and confidence of invasive breast cancer data,  

Whole Data Set Cancer Only 

Parent Child P-value Relationship Parent Child P-value Relationship 

pM1 pM2 0 - pM1 pM2 0 - 

MPhi Tcell 8.20E-104 + MPhi Tcell 6.75E-103 + 

Tcell NK 3.65E-46 + Tcell NK 1.57E-45 + 

pTH1 pTh2 1.86E-42 - pTH1 pTh2 3.67E-38 - 

pTh2 pTh17 1.67E-36 + pTh2 pTh17 1.04E-31 + 

pTreg pTh2 6.26E-35 - pTreg pTh2 3.02E-32 - 

pM1 Tcell 1.32E-29 + pM1 Tcell 7.33E-20 + 

pM2 Tcell 1.32E-29 - pM2 Tcell 7.33E-20 - 

EMT MPhi 5.43E-22 + MPhi EMT 1.55E-23 + 

CD4 CD8 3.31E-20 +     

Proliferation pTH1 3.14E-17 + pTH1 Proliferation 1.00E-20 + 

Proliferation pM2 7.38E-16 -    - 

pM1 Proliferation 7.00E-15 +     

pTreg pTh17 5.08E-13 - pTreg pTh17 4.06E-12 - 

Tcell CD4 2.16E-06 +     

pTH1 NK 3.21E-06 - pTH1 NK 2.45E-08 - 

EMT pM2 5.07E-05 + pM2 EMT 4.08E-14 + 

pTH1 pTh17 6.43E-05 - pTH1 pTh17 5.25E-05 - 

EMT pM1 0.000585 - pM1 EMT 4.08E-14 - 

  

 

 

Tcell CD8 0.003424 + 

Directionality and confidence of connection as generated from 100,000 bootstrap resamplings of the calculated 

metagene values for breast cancer.  The left graph represents the whole dataset, and the right graph represen3ts 

the cancer samples alone.  Relationship signifies whether the two had a positive or negative correlation. 
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Supplemental Table 2: Directionality and confidence of colon adenocarcinoma  

 

  

 Whole Data Set  Cancer Only 

Parent Child P-value Relationship  Parent Child P-value Relationship 

pM1 pM2 0 -  pM1 pM2 0 - 

Tcell MPhi 5.13E-44 +  Tcell MPhi 6.41E-38 + 

NK Tcell 9.10E-30 +  NK Tcell 1.80E-23 + 

CD8 CD4 1.39E-15 +  CD4 CD8 2.17E-26 + 

pTH1 pTh17 2.36E-15 -  pTh17 pTH1 1.60E-15 - 

pTreg pTh17 9.68E-15 -  pTreg pTh17 1.89E-05 - 

pTH1 pTh2 5.74E-13 -  pTh2 pTH1 9.55E-14 - 

pTreg pTh2 8.13E-13 -  pTh2 pTreg 0.000173 - 

pTh17 NK 1.84E-10 -      

pM1 Proliferation 2.35E-05 +      

Proliferation pM2 2.48E-05 -      

pM1 MPhi 4.78E-05 -      

pM2 MPhi 4.78E-05 +      

  

 

 

 pTh17 Proliferation 0.000149 - 

  

 

 

 EMT pM1 0.000238 - 

  

 

 

 EMT pM2 0.00025 + 

Directionality and confidence of connection as generated from 100,000 bootstrap resamplings of the calculated 

metagene values for colon adenocarcinoma.  The left graph represents the whole dataset, and the right graph 

represents the cancer samples alone.  Relationship signifies whether the two had a positive or negative 

correlation. 
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Supplemental Table 3: Directionality and confidence of lung cancer 

 

  
Parent Child P-value Relationship 

pM1 pM2 0 - 

Tcell MPhi 4.63E-38 + 

NK Tcell 2.59E-27 + 

pTh17 pTreg 3.11E-18 - 

pTh2 pTreg 5.06E-17 - 

EMT Tcell 9.89E-13 + 

pTh2 pTH1 9.23E-06 - 

pTh17 pTH1 0.000663 - 

EMT pM1 0.001161 - 

EMT pM2 0.001205 + 

pTH1 Proliferation 0.00871 - 

NK pTH1 0.017097 + 

Directionality and confidence of connection as generated from 100,000 bootstrap resamplings of the calculated 

metagene values for lung cancer.  Relationship signifies whether the two had a positive or negative correlation. 
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Supplemental Table 4: Directionality and confidence of glioblastoma multiform 

 

  

 Whole Data Set  Cancer Only 

Parent Child P-value Relationship  Parent Child P-value Relationship 

pM1 pM2 0 -  pM1 pM2 0 - 

pTH1 pTh17 3.00E-61 -  pTH1 pTh17 3.04E-59 - 

pTreg pTh17 3.16E-47 -  pTreg pTh17 7.60E-46 - 

Tcell EMT 3.39E-43 +  Tcell EMT 9.73E-49 + 

Tcell MPhi 3.11E-33 +  Tcell MPhi 2.51E-34 + 

MPhi pTH1 6.01E-29 +  MPhi pTH1 4.72E-27 + 

pTh17 pTh2 1.76E-28 +  pTh17 pTh2 4.03E-29 + 

pTH1 pTreg 2.00E-27 +  pTH1 pTreg 2.42E-26 + 

Tcell pTreg 5.65E-25 +  Tcell pTreg 6.74E-24 + 

pM1 MPhi 7.37E-22 -  pM1 MPhi 1.32E-23 - 

pM2 MPhi 7.37E-22 +  pM2 MPhi 1.32E-23 + 

pTreg pTh2 3.92E-17 -  pTreg pTh2 5.65E-16 - 

MPhi Proliferation 2.42E-13 -  MPhi Proliferation 2.15E-12 - 

pTH1 pTh2 2.81E-13 -  pTH1 pTh2 1.89E-12 - 

pTh17 Proliferation 3.05E-13 -      

NK EMT 4.45E-12 -  NK EMT 2.34E-12 - 

Proliferation NK 9.80E-06 +  Proliferation NK 5.24E-07 + 

pM1 Proliferation 0.000487 +  pM2 Proliferation 0.000109 + 

pM2 Proliferation 0.000487 -  pM1 Proliferation 0.000109 - 

  

 

 

 pM2 EMT 5.89E-09 + 

  

 

 

 pM1 EMT 5.89E-09 - 

  

 

 

 pTreg CD4 0.022077 + 

Directionality and confidence of connection as generated from 100,000 bootstrap resamplings of the calculated 

metagene values for colon adenocarcinoma.  The left graph represents the whole dataset, and the right graph 

represents the cancer samples alone.  Relationship signifies whether the two had a positive or negative 

correlation. 
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Supplemental Table 5: Directionality and confidence of invasive breast cancer data, 75% of dataset  

Whole Data Set Cancer Only 

Parent Child P value Relationship Parent Child P value Relationship 

pM1 pM2 0 - pM1 pM2 0 - 

MPhi Tcell 2.03E-81 + MPhi Tcell 1.17E-89 + 

Tcell NK 3.82E-56 + Tcell NK 3.85E-61 + 

pTH1 pTh17 8.90E-30 - pTH1 pTh17 2.68E-52 - 

pTh17 pTh2 2.44E-28 + pTh17 pTh2 1.04E-28 + 

pM2 Tcell 3.53E-25 - pM2 Tcell 1.15E-17 - 

pM1 Tcell 3.53E-25 + pM1 Tcell 1.15E-17 + 

CD4 CD8 4.31E-19 +     

pTreg pTh2 1.54E-14 - pTreg pTh2 9.38E-13 - 

pTh17 pTreg 2.28E-14 - pTreg pTh17 4.10E-41 - 

EMT MPhi 3.01E-14 + MPhi EMT 7.95E-23 + 

Proliferation pTH1 1.62E-13 + pTH1 Proliferation 1.93E-17 + 

Proliferation pM1 4.07E-12 +     

Proliferation pM2 4.30E-12 -     

pTH1 pTh2 3.83E-09 - pTH1 pTh2 1.89E-10 - 

Tcell CD4 1.81E-05 +     

EMT pM1 0.00047 - pM1 EMT 9.94E-12 - 

EMT pM2 0.000477 + pM2 EMT 9.94E-12 + 

  

 

 

CD8 Proliferation 0.001114 + 

  

 

 

Tcell CD8 0.004646 + 

Directionality and confidence of connection as generated from 100,000 bootstrap resamplings of the calculated 

metagene values for 75% of the invasive breast cancer dataset.  The left graph represents the whole dataset, 

and the right graph represents the cancer samples alone.  Relationship signifies whether the two had a positive 

or negative correlation. 
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Supplemental Table 6: Directionality and confidence of invasive breast cancer data, 50% of dataset 

  

Whole Data Set Cancer Only 

Parent Child P value Relationship Parent Child P value Relationship 

pM1 pM2 0 - pM1 pM2 0 - 

CD8 CD4 0 +     

MPhi Tcell 1.62E-56 + MPhi Tcell 8.70E-60 + 

Tcell NK 9.20E-43 + Tcell NK 1.35E-23 + 

pTh17 pTreg 8.76E-14 - pTh17 pTreg 1.74E-17 - 

EMT MPhi 9.60E-13 + MPhi EMT 1.91E-19 + 

pTH1 pTh2 2.52E-11 - pTh2 pTH1 1.02E-25 - 

pTH1 Proliferation 2.86E-11 +     

Proliferation pM1 1.11E-10 +     

Proliferation pM2 1.19E-10 -     

pTh2 pTreg 1.32E-10 - pTh2 pTreg 3.81E-14 - 

pM1 Tcell 5.48E-10 + pM1 Tcell 9.34E-12 + 

pM2 Tcell 5.48E-10 - pM2 Tcell 9.34E-12 - 

Tcell CD4 3.80E-07 +     

EMT pM1 0.001047 - pM1 EMT 4.95E-08 - 

EMT pM2 0.001068 + pM2 EMT 4.95E-08 + 

pTh2 pTh17 0.007238 -     

    pTh17 pTH1 4.71E-34 - 

  

 

 

pTH1 Proliferation 1.46E-10 + 

  

 

 

pTH1 NK 2.80E-05 + 

  

 

 

CD8 Proliferation 0.000486 + 

  

 

 

Tcell CD8 0.032026 + 

 Directionality and confidence of connection as generated from 100,000 bootstrap resamplings of the 

calculated metagene values for 50% of the invasive breast cancer dataset.  The left graph represents the whole 

dataset, and the right graph represents the cancer samples alone.  Relationship signifies whether the two had a 

positive or negative correlation. 
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Supplemental Table 7: Directionality and confidence of invasive breast cancer data, 25% of dataset 

  

Whole Data Set Cancer Only 

Parent Child P value Relationship Parent Child P value Relationship 

pM1 pM2 0 - pM1 pM2 0 - 

MPhi Tcell 2.31E-26 + MPhi Tcell 1.96E-26 + 

Tcell NK 3.31E-19 + Tcell NK 3.39E-20 + 

pTh17 pTH1 5.80E-14 - pTH1 pTh17 7.06E-09 - 

pTh2 pTH1 6.94E-13 -     

pTh2 pTreg 2.70E-09 - pTh2 pTreg 1.09E-08 - 

pTh17 pTreg 6.65E-09 - pTh17 pTreg 7.28E-10 - 

MPhi EMT 1.01E-08 +     

pM2 Tcell 2.44E-08 -     

pM1 Tcell 2.44E-08 +     

pTH1 Proliferation 2.80E-05 + pTH1 Proliferation 2.36E-06 + 

Proliferation pM1 0.000235 +     

Proliferation pM2 0.000247 -     

Tcell CD8 0.000594 +     

Tcell CD4 0.011028 +     

    CD8 CD4 1.42E-30 + 

    EMT MPhi 2.23E-05 + 

    pM1 EMT 0.000132 - 

    pM2 EMT 0.000132 + 

Directionality and confidence of connection as generated from 100,000 bootstrap resamplings of the calculated 

metagene values for 25% of the invasive breast cancer dataset.  The left graph represents the whole dataset, 

and the right graph represents the cancer samples alone.  Relationship signifies whether the two had a positive 

or negative correlation. 
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Supplemental Table 8:  Breast Cancer Summary Data  

 Whole Dataset Group 1 Group 2 

Gender F = 572, M = 6 F = 304, M = 4 F = 219, M = 2 

Age at Diagnosis 57.88 57.57 58.34 

Metastasis Code  M0 = 374, M1 = 10, MX = 

10, Null = 139 

M0 = 224, M1 = 6, MX = 

6, Null = 70 

M0 = 148, M1 = 4, MX = 

4, Null=69 

Cancer Stage I N = 42, A = 23, B = 2 N = 26, A = 13, B = 1 N = 15, A = 10, B = 1 

Cancer Stage II N = 0, A = 136, B = 84 N = 0, A = 76, B = 50 N = 0, A = 59, B = 34 

Cancer Stage III N = 0, A = 60, B = 12, C = 

14 

N = 0, A  = 42, B =5, C = 

8 

N = 0, A = 18, B = 5, C = 

6 

Cancer Stage IV 8 6 2 

Cancer Stage X 11 9 2 

Table represents all data with regards to gender distribution, age at diagnosis, metastasis code and cancer stage 

for whole invasive breast cancer dataset as well as cancer group 1 and group 2 available when data was 

initially downloaded. 
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Supplemental Figure 1: The cancer groups differ in their expression of the EMT metagene, proliferation 

metagene, and macrophage polarizations.  The distribution of the T cell metagene (a), the macrophage 

metagene (b), the NK metagene (c), pTh1 metagene (d), pTh17 metagene (e), pTh2 metagene (f), the pTreg 

metagene (g), the pM1 macrophage metagene (h), the EMT metagene (i), and the proliferation metagene (j) 

were generated and separated by grouping, with black representing cancer group 1 and yellow representing 

cancer group 2.  * represents a p-value of less than .01. 

 



52 
 

 

Supplemental Figure 2: Multidimensional Scaling as principal coordinate analysis was preformed.  Genes 

were color coded based on metagene grouping, EMT (black), Proliferation (grey), T cell infiltration (green), 

NK cell infiltration (red), Macrophage Infiltration (orange), T cell polarization (yellow), and Macrophage 

polarization (blue).  Scaling was performed using the cmdscale() function. 

 


