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ABSTRACT 
 

TAXONOMIC ASSIGNMENT OF GENE SEQUENCES  

USING HIDDEN MARKOV MODELS 

 

Huanhua Huang 

 

 

Our ability to study communities of microorganisms has been vastly improved by 

the development of high-throughput DNA sequences. These technologies however can 

only sequence short fragments of organism’s genomes at a time, which introduces many 

challenges in translating sequences results to biological insight. The field of 

bioinformatics has arisen in part to address these problems.  

One bioinformatics problem is assigning a genetic sequence to a source organism. 

It is now common to use high-throughput, short-read sequencing technologies, such as 

the Illumina MiSeq, to sequence the 16S rRNA gene from a community of 

microorganisms.  Researchers use this information to generate a profile of the different 

microbial organisms (i.e., the taxonomic composition) present in an environmental 

sample. There are a number of approaches for assigning taxonomy to genetic sequences, 

but all suffer from problems with accuracy. The methods that have been most widely 

used are pairwise alignment methods, like BLAST, UCLUST, and RTAX, and 

probability-based methods, such as RDP and MOTHUR. These methods can classify 

microbial sequences with high accuracy when sequences are long (e.g., thousand bases), 
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however accuracy decreases as sequences are shorter. Current high-throughout 

sequencing technologies generates sequences between about 150 and 500 bases in length.  

In my thesis I have developed new software for assigning taxonomy to short DNA 

sequences using profile Hidden Markov Models (HMMs). HMMs have been applied in 

related areas, such as assigning biological functions to protein sequences, and I 

hypothesize that it might be useful for achieving high accuracy taxonomic assignments 

from 16S rRNA gene sequences. My method builds models of 16S rRNA sequences for 

different taxonomic groups (kingdom, phylum, class, order, family genus and species) 

using the Greengenes 16S rRNA database. Given a sequence with unknown taxonomic 

origin, my method searches each kingdom model to determine the most likely kingdom. 

It then searches all of the phyla within the highest scoring kingdom to determine the most 

likely phylum. This iterative process continues until the sequence cannot be assigned at a 

taxonomic level with a user-defined confidence level, or until a species-level assignment 

is made that meets the user-defined confidence level.  

I next evaluated this method on both artificial and real microbial community data, 

with both qualitative and quantitative metrics of method performance. The evaluation 

results showed that in the qualitative analyses (specificity and sensitivity) my method is 

not as good as the previously existing methods. However, the accuracy in the quantitative 

analysis was better than some other pre-existing methods. This suggests that my current 

implementation is sensitive to false positives, but is better at classifying more sequences 

than the other methods.  

 I present my method, my evaluations, and suggestions for next steps that might 

improve the performance of my HMM-based taxonomic classifier. 
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Introduction 

 
“It is estimated that there are more than 10 million—perhaps 100 million—living 

species on Earth today.” (Zvelebil & Baum, 2008). The vast majority of these species are 

microorganisms. They exist in the extremely cold polar ice cap to the high-temperature 

volcanoes, from the top of mountains to the Earth’s crust, from the bodies of plants to 

those of animals. These microorganisms play an important role in the ecosystem. They 

connect nonliving components of an environment, like water or air with a great variety of 

living organisms.  

When we observe these microorganisms, we see that even though each organism is 

different, they still have similar characteristics, such as appearances or functions. Based 

on Mendel’s genetic theory, these characteristics are inherited from their parent 

organisms. That is, parent organisms pass down information containing characteristics to 

their offspring. This process is very different from other processes, such as the melting of 

ice and the burning of a candle, where the substances only are changed by their form and 

no new attributes are generated. However, living organisms constantly require energy to 

maintain their internal organizations to drive the complex system of chemical processes, 

which is specified by hereditary information. 

 This hereditary information exists in the form of DNA sequences. By using modern 

technologies, like Next-Generation Sequencing (NGS) (Liu, et al., 2012), DNA 

sequences can be extracted in high volume from microorganisms. Because of these 

advanced technologies, we can now collect DNA sequences from unknown 

microorganisms and further classify unknown microorganisms through the analysis of 
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DNA sequences.  Then, we can know the relationships between these microorganisms by 

building a phylogenetic tree based on their taxonomic assignments. There are several 

current methods that can identify a classification for unknown microorganisms, such as 

the BLAST or RDP classifier. However, these often can only classify taxonomic levels 

down to the genus level. Also, these classifiers sometimes assign the wrong taxonomies 

at a certain taxonomic level, and sometimes they can only accurately achieve a higher-

level classification of organism, for example the phylum level. To conquer these 

problems, a breakthrough method is proposed in this thesis, which assigns taxonomies to 

those unknown microorganisms based on the profile Hidden Markov Model. The data 

will show that this method can raise the accuracy of taxonomy assignment. 
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Chapter 1  

Analysis of Microorganisms 

1.1 Introducing microorganisms 

Microorganisms, also known as microbes, are single cellular organisms that 

generally cannot be seen with the naked eye. Microbes span the three domains of life, the 

archaea, bacteria, and eukarya, are found all around our world including the air, soils, 

mountains, lakes, oceans, animals, and in and on human bodies. These microbes play a 

vital role in each of these ecosystems. For example, some microbes decompose dead 

organisms, animal waste, or plant litter to obtain their nutrients. During this process of 

decomposition, carbon, nitrogen, and phosphorous are recycled providing necessary 

nutrients for maintaining life in other species (Department of Health and Human Services, 

2009).  

Some microbes (Harley, 2009) exist at the bottom of the food chain to serve as food 

for other organisms. For example, in the Great Salt Lake several types of cyanobacteria 

(formerly known as blue-green algae) and Dunaliella (free-floating algae), are primary 

producers, generating their energy from sunlight. They become food for primary 

consumers, such as brine shrimps and brine flies. Waterbirds and shorebirds are 

secondary consumers and eat the primary consumers. Without the microbes, the 

waterbirds and shoebirds would not survive. 

Some microbes (Biello, 2010) can have industrial roles, for example in  pollution 

control, because they naturally break down metals, acids, salt, methane, and even 

radioactive waste into other, less problematic chemical structures. Other microbes 
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(Wijffels & Barbosa, 2010) are potential sources of renewable energy by converting 

animal fat into usable fuel. And microbes living in or on human body can have both 

positive and negative effects on our health. For instance, some bacteria that live in the 

human gut break down carbohydrates and provide vitamins, like K and B12. These 

nutrients that are important for our health are of bacterial origin (Department of Health 

and Human Services, 2009). 

 It is estimated that less than 1% of existing microorganisms have been cultured, or 

grown in the lab (Ward, Weller, & Bateson, 1990).  For the remainder, we only known of 

their existence because we have observed their DNA sequences repeatedly using culture-

independent approaches, including high-throughput DNA sequencing, which is the 

primary source of the gene sequences that I present on here.   

 

1.2 Culture-dependent and culture-independent analysis of 

microbial communities 
 

The traditional method of identifying microorganisms includes five steps, which are 

inoculation, incubation, isolation, inspection, and identification. Each of these procedures 

take place in the laboratory (Talaro, 1999).  

First, microorganisms are collected from an environmental source, such as water, 

soil, or sewage, and injected into a container filled with nutrient media. The nutrient 

media is used to create a growth environment for the samples. This process is called 

inoculation. Then, containers are put into an incubator, which provides the proper growth 

temperature for hours, days, or weeks. During this time, ideally, microbes will grow and 

reproduce in the medium. This process is called culture. If the observation of an 

individual microbe is desired, the next step is to isolate cells from the microbial species 
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of interest from the others. A single cell will reproduce, creating a discrete mound of cells, 

which is called a colony. The colony then goes to the inspection stage in order to observe 

the growth characteristics, such as size, color, or texture which could be useful in 

identifying the organisms and biochemical tests. Finally, if sufficient information is 

obtained in the inspection stage, the taxonomy of microbes can be determined (Talaro, 

1999).  

Each of these can be very challenging. For example, isolation can be difficult or 

impossible because one species of microbes can have complex associations with other 

species of microbes in natural environment, including parasitism and mutualism. It may 

therefore be impossible to observe either or both species separately. Additionally, when 

attempting to grow a certain species of microbe in a laboratory setting, undesired 

microbes might be introduced by accident into the experiment, which can cause 

contamination and misidentification. This can occur because they are so small, so easily 

dispersed, and prevalent everywhere. Finally, it can be difficult to know what nutrients a 

microbe will require to grow. So designing the nutrient media can require large amounts 

of trial and error. These are only a few of the challenges that microbiologists face when 

attempting to grow microbes in isolated cultures. This culture-based methodology has 

given microbiologists a perspective with which to study species of organisms. However, 

the challenges cited above have led to another approach, culture-independent analysis, 

can be utilized to complement the culture-based methods (Talaro, 1999). 

Culture-independent method, for studying or identifying microorganisms generally 

involve the analysis of DNA sequences from communities of microorganisms, so not 

requiring isolation. Currently, the most common procedure is to extract DNA from a 
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sample, then amplify a single “marker gene” by utilizing the polymerase chain reaction 

(PCR). PCR is a method that targets a specific DNA sequence, and then can create 

billions of copies of it in several hours. This technology has been a major breakthrough in 

identifying unknown microbes. Scientists can now identify the microbes present in a 

sample at the same time, without the complexities of culture (Pogacic, Kelava, Zamberlin, 

Dolencic-Spehar, & Samarzija, 2010).       

 

1.3 Using 16S rRNA to study communities of microorganisms  

In culture-based identification of microorganisms, scientists identified 

microorganisms using their phenotypic characteristics, such as shape, size, color, and 

behavior. However, with the invention of PCR and DNA sequencing technologies, 

scientists can now isolate and sequence universally conserved genes, such as the 16S 

rRNA gene, 18S rRNA gene, and 23S rRNA gene, from different microorganisms and 

use the sequence of these genes, which differ between microbial species, to identify 

which organisms a specific gene is derived from. Among these genes, the 16S rRNA 

gene has most widely used because it contains highly conserved regions, meaning that 

regions of the gene sequence are identical or nearly identical across microbial species, 

which is necessary for PCR. In addition, this gene is universally found in the bacteria and 

archaea, which make up the majority of microbial taxa. Finally, in addition to containing 

highly conserved regions, it includes highly variable regions, which allow for the 

identification of different organisms. Therefore, researchers started using the 16S rRNA 

sequence to classify the taxonomy of microorganisms found in a sample, but the best 

approach or approaches for performing this classification is still an area of active research. 
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This approach is very powerful, as it can classify organisms that cannot be cultured and 

therefore makes the remaining 99% of microbial taxa accessible to researchers.  

 

1.4 Limitations of using 16S rRNA for studying communities of 

micro-organisms 
 

Although there are many advantages to using the 16S rRNA sequences mentioned 

above, there are no widely accepted approaches for performing taxonomic assignment of 

16S rRNA sequences. Additionally, making a taxonomic assignment requires the 

existence of a 16S rRNA database, containing 16S sequences and their taxonomic 

assignments. The sequence database is used to search for sequences that are similar to a 

microbial “query” sequences, for example one identified from the environment. But the 

assignments can only be as good as the database, and there is uncertainty in how accurate 

each sequence in the database is, how accurate each taxonomic assignment in the 

database is, and how comprehensive in terms of the taxonomic coverage the database is. 

Some nucleotides in a database or query sequence can be incorrect due to technical errors 

in obtaining them, and some microbial sequences will not be included in the database 

because we still have not surveyed the full extent of microbial life, and it’s unlikely that 

we will anytime soon. These situations will limit the accuracy of identification of 

microorganism from their DNA sequences, regardless of the method used to perform the 

identification (Wu, Lau, Teng, Tse, & Yuen, 2008).  

When it comes to the interpretation of the sequence data, several parameters need to 

be considered before searching a database. These parameters are the length and the 

quality of the sequence data, the choice of an appropriate software package for 

performing the search, and settings for any free-parameters for that software package, 
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including software-specific similarity thresholds for considering matches to the database 

for final sequence assignment.   

Researchers found that the accuracy of taxonomic classification obtained from a 

classification method can vary with features including length of a query sequence, and 

regions of the gene sequence used for classification (since most high-throughout 

sequencing methods cannot sequence full-length genes) (Liu, DeSantis, Andersen, & 

Knight, 2008). In addition, different classified methods differ in their ability to infer the 

taxonomic origin from the same length of a query sequence, so some taxonomic assigners 

may work better on some gene fragments, while others work better on other gene 

fragments. For example, BLAST, RDP, and the Greengens Online classifier are 

similarity–search based methods, and Fitch, FitchAndBack and LCA are phylogenetic 

tree-based methods. The tree-based methods were found to have better overall accuracy 

than similarity-search based methods when searching full-length gene sequences. When 

the performance of classifiers was compared based on gene fragments of 100bases, 250 

bases, 400bases, the tree-based methods performed less well than the similarity search 

methods for some (but not all) of the sequenced gene regions. In the next chapter I will 

introduce some of these methods for taxonomic assignment in more detail.  
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Chapter 2  

Existing Methods for Assigning Taxonomy to 

DNA Sequences  
 

As mentioned previously, most of the microorganisms on earth have yet to be 

discovered, so we do not have a comprehensive database that maps DNA sequences to 

taxonomic origin. Therefore to give a taxonomic classification to an unknown DNA 

sequence, bioinformaticians have developed methods to classify a newly discovered 

genomic sequence by comparing it to sequences from known microorganisms (Koonin & 

Galperin, 2003). When working with a single genetic locus (i.e., region of the genome) 

that is shared across organisms, the similarity and differences between an unknown 

sequence and known sequences can help identify what type of organism a sequence may 

have come from. Therefore, when comparing unknown sequences against a database, the 

greater the similarities between two sequences, the greater the chance that they are 

derived from similar microorganisms. Currently, there are a variety of software tools that 

allow for searching unknown sequences against a database of taxonomically annotated 

reference sequences to determine their most likely taxonomic origin. In this chapter I will 

discuss the methods that have been most widely used for taxonomic assignment of 

microbial sequences.  

 

2.1 An overview of pairwise alignment 
 

Pairwise alignment is a way to identify similarities between two DNA sequences by 

lining up bases that are hypothesized to be homologous. If the two DNA sequences have 
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the same lengths derived from a common ancestral sequence, identical base pairs should 

exist between the two DNA sequences. However, the process of evolution typically 

introduces changes over many eons in the form of mutations, which cause differences in 

present-day sequences that are derived from a common ancestor. That is, over time, some 

nucleotides in are substituted with other nucleotides, some nucleotides are inserted into 

the original sequence, and some nucleotides are deleted from the original sequence. 

These mutations result in different lengths and compositions of sequences that derive 

from a common ancestor. When we align these sequences containing insertions and 

deletions relative to one another, alignment algorithms insert gaps into the shorter 

sequences to make to model these changes, as in Fig. 1 (Zvelebil & Baum, 2008).  

 
Fig.  1 An alignment of two sequences illustrates insertion/deletion events that result in 

gaps in the second of the aligned sequences. 

 

Since there can be many different ways to align any two sequences, the next issue is how 

to objectively estimate the quality of an alignment to determine if one alignment is better 

than another. For example, the above alignment sequences can also be aligned as shown 

in Fig. 2.  

 
Fig.  2 An alternative way to align the two sequences in Fig 1. 

 

To address this problem, alignment algorithms score each match, mismatch, insertion, 

and deletion in the alignment, and use that information to find the optimally scoring 

alignment. For instance, if a base pair are identical, a score of +5 might be assigned to the 

A T C G G G T

A – C – – G T

A T C G G G T

A – C – –G T
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base pair. If the base pair are mismatched, a score of -4 might be assigned to this base 

pair. The insertion and extension of gaps are also scored. Typically, insertion of a new 

gap might be assigned to a score of -10 and any adjacent gaps might be assigned to a 

score of -2. In other words, open a new gap incurs a large penalty, and extending an 

existing gap incurs a smaller penalty. The scores assigned to an alignment will depend on 

the scoring scheme that is implemented.  

 

There are two widely used algorithms for computing and scoring alignments. One is 

called the Needleman-Wunsch algorithm (Needleman & Wunsch, 1970) and the other is 

called the Smith-Waterman algorithm (Smith & Waterman, 1981). The Needleman-

Wunsch algorithm considers the whole length of each sequence and optimizes the 

alignment between the two sequences. This is called global alignment. On the contrary, 

the Smith-Waterman algorithm is a variation of the Needleman-Wunsch algorithm which 

locates only a segment of the sequences that have high similarity and aligns them. This is 

called local alignment. Since it is very difficult to obtain the correct alignment of low 

similarity regions when attempting to align two distantly related sequences using the 

Needleman-Wunsch algorithm, and because current sequence technologies typically only 

give us short sequence fragments, the Smith-Waterman algorithm has become more 

widely in database searching (as is done for taxonomic assignment). 

 

2.2 Alignment-based approaches 
 

“Basic Local Alignment Search Tool”, or BLAST, is a tool that uses local alignment 

to identify pairwise sequence similarity when searching for homologous nucleotide or 

amino acid sequences in a database (Altschul, Gish, Miller, Myers, & Lipman, 1990). To 
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summarize, the BLAST algorithm uses local alignment to identify known database 

sequences that are similar to a query sequence by locating small regions (usually less than 

10 bases) in the database that match corresponding subsequences within the query 

sequence, and align these high scoring segment pairs. In order for one of these segment 

pairs to be included in the full alignment, their similarity score must be above a certain 

threshold score, defined as T. T is an arbitrary number that is chosen by the user. From 

simulations of different chosen scores of T, when the length of the sub-sequence 

extracted from a query sequence was three and the score of T was eleven, BLAST could 

find 99% segment pairs that had maximum similarity scores determined by local 

alignment similarity calculation methods. All segments that satisfy the T threshold are 

extended until their score does not continue to increase (the query sequence no longer 

matches the database sequence). The segment pair with the highest similarity score is 

termed the maximum segment pair (MSP) and its similarity score is defined as S. S is the 

cutoff similarity score for an MSP.  

The details of the three steps that make up the BLAST algorithm are as follows. First, 

a word list containing all possible subsequences with the length w is created from the 

query sequence. W is an arbitrarily chosen number, although three is often used. The 

similarity between these words and the original full-length query sequence are then 

calculated. If the score of the alignment is greater than T, the word will be collected into 

a new query word list. Otherwise, the subsequence will be discarded (Fig. 3). The words 

in the new query word list are called w-mers. Second, the w-mers in the list are scanned 

through the database to identify which sequences in the database have the potential to 

become MSPs, as described above. The sequences from the word list containing the most 
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matching w-mers are selected as in Fig. 4. These represent the sequences most likely to 

align well to the query sequence. Third, the w-mers from the selected sequences are 

extended with pairwise alignment against the query sequence until they are MSPs. This 

step is repeated until segment pairs with a score greater than or equal to 𝑆 are found. 

Finally, the output lists all MSPs that have scores of at least 𝑆. These are the segment 

pairs with the largest values of S, and are expected to be the database sequences that are 

most similar to the query sequence. When BLAST is used to assign taxonomy to a 

sequence, the taxonomic of the best database match is assigned to the query sequence.  

 

Query

A query word list

w Score > T

Score < T

 
Fig.  3 The process of query words chosen from a list of words containing all possible 

words. 

 

 
Fig.  4 Each query word corresponds to a group of sequences containing its query word. 

 

The BLAST algorithm can be very time consuming, since each sequence in the 

database is scanned several times depending upon the number of query words. The uclust 

algorithm (Edgar, 2010) was developed to expedite this process.  
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The process of matching sequences with uclust is similar to using BLAST. Each 

sequence in a database is scanned to see if it shares short words with a query sequence. 

However, the difference between BLAST and uclust lies in the method of the alignment 

after sequences with similar word composition are identified. BLAST uses local 

alignment to match subsequences from query words to known sequences in a searched 

database, and then calculate their similarity. The uclust algorithm uses global alignment 

to search for the target matching sequences in a database with whole query sequences. 

When calculating the similarity between the query and target sequences, the similarity 

defined by uclust is defined as “identity”, which is the number of matches in a global 

alignment divided by the length of the shorter sequence. If the identity is over a certain 

arbitrary threshold, then the target sequence will be “accepted”. Otherwise, it will be 

“rejected”. 

When using uclust to search a query sequence against a database, uclust does not 

compare the query sequence to the entire database, but instead to representative 

sequences collected from different clusters at a certain chosen similarity score. These 

database sequences are then sorted based on the number of unique words of any length 

(typically a minimum length of three) in common between the query sequence and the ith 

database sequence. When starting to search for target sequences in the database, the 

database sequences are compared to the query sequence in order of this list. If the query 

sequence is matched to the first database sequence in the list, this query sequence will be 

assigned to the corresponding cluster, and uclust will stop searching for the next possible 

match sequence. However, if the query sequence is not matched to the first database 

sequence in the list, that database sequence will be rejected. The uclust algorithm will 
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continue to search against the next database sequences, in order of the list, until a target 

sequence is found. Once the number of “rejected” is over a certain number, for example, 

8, the remaining sequences in the database will no longer be searched by uclust, as the 

words further down the list have fewer unique words in common between the query and 

the database sequence. This algorithm can dramatically decrease the run time for 

searching a database for sequences similar to a query sequence, as far fewer sequences in 

the database are searched when compared with the BLAST algorithm.  

 

2.3 The Naïve Bayes classifier  
 

The Naïve Bayes classifier is a probabilistic classifier, which uses Bayes’ theorem to 

classify unknown microbial marker gene sequences. The classifier identifies microbial 

genomic sequences from a database belonging to a certain taxonomic level, based on 

probability scores using Bayes Theorem. The widely used Naïve Bayes classifiers are 

RDP (Ribosomal Database Project) classifier (Wang, Garrity, Tiedje, & Cole, 2007) and 

MOTHUR (Schloss, et al., 2009). The Ribosomal Database Project is a software package, 

which provides the data, tools, and services related to the 16S rRNA sequences. The RDP 

classifier used in the RDP package assigns taxonomies to microbial sequences. 

MOTHUR, a software package for microbial community analysis written in C++, 

incorporates pre-existing algorithms with some additional features, such as visualization 

tools and an increase in efficiency.  

For the Naïve Bayes method, the sequences in the database are first clustered based 

on sequence similarity at different taxonomic levels, for instance, kingdom or phylum. A 

word list (𝑊) is then created from a set of words (𝑤1, 𝑤2, … , 𝑤𝑛) that are extracted from 
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query sequences, as in the BLAST and UCLUST algorithms. The default length of each 

word is 8 bases. 𝑛(𝑤𝑖) is defined as the number of sequences containing a word 𝑖. If the 

total number of sequences is 𝑁, the probability that a sequence that contains a word 𝑖 is  

𝑃𝑖 =
𝑛(𝑤𝑖) + 0.5

𝑁 + 1
, 

 

where the values of 1 in the denominator and 0.5 in the numerator are used to make the 

value of  𝑃𝑖  between 0 and 1. Given a query sequence 𝑆, the probability that this sequence 

is a member of one of the clusters, 𝐺, at a given taxonomic level, is defined as  

 

𝑃(𝐺|𝑆) =
𝑃(𝑆 ∩ 𝐺)

𝑃(𝑆)
 

 

Based on Bayes’ theorem, the probability of the intersection of the query sequence 𝑆 and 

the cluster 𝐺, which is 𝑃(𝑆 ∩ 𝐺) in the above equation, can be replaced with 𝑃(𝑆|𝐺) ×

𝑃(𝐺). The above equation then becomes 

𝑃(𝐺|𝑆) =
𝑃(𝑆|𝐺) × 𝑃(𝐺)

𝑃(𝑆)
, 

 

where 𝑃(𝐺) represents a prior probability of  a sequence being a member of a cluster and  

𝑃(𝑆) is an overall probability of the query sequence found in the database. 𝑃(𝑆|𝐺) cannot 

be calculated directly, however it can be estimated. The query sequence 𝑆 contains a set 

of words 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑓} ⊆ 𝑊, If the dependence between each word is ignored here, 

the probability of each word in a word set 𝑉 that is a member of 𝐺 at the same time can 

be calculated with  ∏ 𝑃(𝑖=1,…,𝑓 𝑣𝑖|𝐺) . For the cluster 𝐺  with 𝑀  sequences, let 𝑚(𝑤𝑖) 

represent the number of sequences in the cluster 𝐺 containing a word 𝑤𝑖. The probability 

of a word  𝑤𝑖 is a member of the genus cluster 𝐺, and formula is   
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𝑃( 𝑤𝑖|𝐺) =
𝑚(𝑤𝑖) + 𝑃𝑖

𝑀 + 1
 

 

Assuming that 𝑃(𝑆) and 𝑃(𝐺) have equal probabilities over all taxa, they can be ignored 

in the equation 𝑃(𝐺|𝑆). Since the values of 𝑃(𝑆) and 𝑃(𝐺) do not change, the Naïve 

Bayes formula is reduced to 𝑃(𝐺|𝑆) = 𝑃(𝑆|𝐺), which determines the score of each query 

sequence in order to identify the cluster at a taxonomic level. Therefore, to identify the 

taxonomy of a given query sequence, each taxon in the taxonomy is determined by a 

cluster with the highest probability score at each taxonomic level.  

 

2.4 The RTAX classifier 
 

The RTAX classifier (Soergel, Dey, Knight, & Brenner, 2012) has slight differences 

from the uclust method. Uclust uses only one short read extracted from a 16S rRNA gene 

sequence. However, RTAX uses two short reads at either end of a 16S rRNA gene 

sequence to perform taxonomic classification, as are generated in paired end sequence (a 

common output of current DNA sequences). The advantage is that more sequences can be 

used in taxonomic assignment, so that when ambiguous information (such as an equal 

scoring match to database sequences with different taxonomies) occurred there is more 

information available to make an assignment.  When RTAX searches for a database with 

the two short reads, each short read is queried against the database using uclust algorithm, 

as described above. If a query sequence matches to one of sequences in a reference 

database, it is called a hit. Each hit is based on the minimum percent identity (%id) 

threshold to see if a hit is accepted or rejected and to be outputted as a result.  

RTAX classifier uses different %id values as thresholds to iteratively filter database 

sequences with different %id values. First, the RTAX uses a stringent %id threshold to 
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find the good matching sequences. The sequences, where %id values do not reach the 

stringent %id threshold, are collected into another list. Then, the uclust runs this list with 

a lesser %id threshold to generate a list of hits. Those sequences that do not have good 

matches form a list and are ran through uclust again until either a good match is found or 

the lowest %id threshold is exceeded. Finally, when hits are found, database matches are 

outputted from each job. Then, RTAX interprets the results by intersecting the results 

from the uclust jobs. The matching sequences found in the match lists generated from 

each job are compared between each other. If the identical matching sequences are found 

in both of match lists, the average %id is computed from both identical matching 

sequences. The target sequences are selected when the average %id of matching 

sequences is less than 0.5% compared to the highest %id of the matching sequence.   

RTAX using two %id threshold, which one is the highest threshold and one is the 

lowest threshold, is to find some database sequences that are not easily to be matched 

with the query sequences by only using a high similarity threshold.  If the stringent value 

is too high, it could make some distant match sequences that can cause information to be 

classified at a higher taxonomic level and could be filtered out from the hit list. If the %id 

value is set too low, some imperfect match sequences could pass to the hit list. When 

taxonomy coverage in a database is biased towards some taxa, these imperfect match 

sequences will be regarded as not correctly identified sequences and then cause a 

decrease in the accuracy of taxonomic classification. Therefore, two identity thresholds 

ensure no distant related match sequences can be excluded, also ensure imperfect 

sequences can be filtered out from match lists. 
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Chapter 3  

Taxonomic Classification of DNA Sequences 

using Profile Hidden Markov Models 
 

A profile Hidden Markov Model is a Hidden Markov Model that is built from a family of 

biological sequences. Here, I apply it in microbial community analyses to assign 

taxonomy to microbial sequences. This approach does not use the traditional method of 

assigning taxonomies by using pairwise alignment. Instead, it adopts a probabilistic 

method, profile Hidden Markov Models, to build and search a database for homologs of 

DNA sequences. Profile Hidden Markov Models are usually used to identify the 

relationships between each individual biological sequence in a family, since they have the 

same or related functions. The main reason for using the profile Hidden Markov Models 

is that they can capture the position-specific information for nucleotide sequences. 

Currently, there is a software tool called HMMER (Eddy & Wheeler, 2013) that can 

perform the profile analysis for multiple alignment sequences using Hidden Markov 

Models, which makes it possible to search query sequences against the database. To 

further understand what the Hidden Markov Models are, the next several sections will 

introduce an overview and discuss how the profile Hidden Markov models are applied to 

the database. 

 

3.1 An overview of Hidden Markov Model 
 

The Hidden Markov Models (HMMs) (Rabiner & Juang, 1986) are a statistical 

method capable of generating hidden state transition paths based on transitional 
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probabilities as they relate to observable output. For the purposes of this thesis, the HMM 

parameters are defined as: 

 𝑇 = the length of an observed sequence. 

 𝑁 = the number of states in a model. 

 𝑀 = the number of observed symbols in a model. 

 𝑆̅ = {𝑠1, 𝑠2, … , 𝑠𝑁}, which is a set of all possible states.  

 𝑄̅ = {𝑞1, 𝑞2, … , 𝑞𝑇} is a sequence of state transitions and 𝑞𝑇 ∈ 𝑆̅. 

 𝑋̅ = {𝑥1, 𝑥2, … , 𝑥𝑇} is a collection of observed outputs. 

 𝑉̅ = {𝑣1, 𝑣2, … , 𝑣𝑀} is a collection of possible symbol observations.  

 𝛩 = {𝜋, 𝐴, 𝐵} is a set of parameters. 

- 𝜋: a vector of the prior probabilities. This is the probability that each state 𝑠𝑖 

is the first state of a state of a sequence. 

- 𝐴: a matrix of transition probabilities between state 𝑠𝑖  and state 𝑠𝑗  is {𝑎𝑖,𝑗}, 

where {𝑎𝑖,𝑗} = 𝑃(𝑞𝑡+1 = 𝑠𝑗|𝑞𝑡 = 𝑠𝑖). 

- 𝐵: a matrix of emission probabilities that characterize the likelihood of an 

observation 𝑥  is {𝑏𝑖,𝑗} , if the model is in state 𝑠𝑗 , where {𝑏𝑖,𝑗} = 𝑃(𝑥𝑡 =

𝑣𝑘|𝑞𝑡 = 𝑠𝑗).  

For example, if a DNA sequence is sequenced from an organism, each time only one 

nucleotide is read by the DNA sequencer, and finally the observer will see the whole 

DNA sequence. In fact, the process of determining each nucleotide in a DNA sequence 

can be described as in Fig. 5. The states of the HMMs are 𝑠1, 𝑠2, 𝑠3, and 𝑠4. The observed 

output of each state is {A, T, C, G}. The transition probabilities and emission 

probabilities are as labeled: 



 

21 
 

 

 
Fig.  5 An example of a Hidden Markov Model. 

 

There are three key problems that will be considered in real world applications when 

using the Hidden Markov Model. These three problems are: 

1. What is the probability of the observed outputs  𝑥1, 𝑥2, … , 𝑥𝑇 given the model  

𝛩? That is, what is 𝑃(𝑥1, 𝑥2, … , 𝑥𝑇|𝛩)? 

2. Given the observed outputs 𝑥1, 𝑥2, … , 𝑥𝑛, which sequence of states has the largest   

probability? That is, what is 𝑃(𝑞1, 𝑞2, … , 𝑞𝑇|𝑥1, 𝑥2, … , 𝑥𝑇 , 𝛩)? 

3. How do we adjust the parameters of a HMM model, such as 𝜋, 𝐴, 𝑜𝑟 𝐵 to  

maximize 𝑃(𝑥1, 𝑥2, … , 𝑥𝑇|𝛩)? 

For the first problem, the most straightforward way to calculate the 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑇|𝛩) is to find the probability of every possible state that would generate 

the observed outputs 𝑥1, 𝑥2, … , 𝑥𝑛,  and determine the sum of these probabilities. 

Therefore, the likelihood of an observed sequence for a given model can be described by 

the summation of joint probability of an observed output X and a path Q over every 

possible Q as follows: 

                            𝑃(𝑋|𝛩) = ∑ 𝑝(𝑋, 𝑄|𝛩)𝑒𝑣𝑒𝑟𝑦 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑄                                                (1) 
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The joint probability of X and Q can be separated into a product of two quantities defined 

as follows: 

                             𝑝(𝑋, 𝑄|𝛩) = 𝑝(𝑋|𝑄, 𝛩) × 𝑝(𝑄|𝛩)                                                      (2)      

For a given model and every fixed state sequence Q = 𝑞1, 𝑞2, … , 𝑞𝑇, the probability of the 

observed sequence is  𝑝(𝑋|𝑄, 𝛩), where  

                  𝑝(𝑋|𝑄, 𝛩) = ∏ 𝑝(𝑇
𝑡=1 𝑥𝑡 = 𝑣𝑘|𝑞𝑡 = 𝑠𝑖, 𝛩) =  𝑏𝑞1,𝑥1

∙ 𝑏𝑞2,𝑥2
∙ ⋯ ∙ 𝑏𝑞𝑇,𝑥𝑇

        (3) 

The probability of each fixed state sequence for a given model is 𝑝(𝑄|𝛩), where 

     𝑝(𝑄|𝛩) = ∏ 𝑃(𝑞𝑡+1 = 𝑠𝑗|𝑞𝑡 = 𝑠𝑖)
𝑇
𝑡=1 = 𝜋𝑞1

∙ 𝑎𝑞1,𝑞2
∙ 𝑎𝑞2,𝑞3

∙ ⋯ ∙ 𝑎𝑞𝑇−1,𝑞𝑇
               (4) 

Equations (2), (3), and (4) can be substituted into the first equation (1), where  

 𝑃(𝑋|𝛩) =  ∑ 𝜋𝑞1
∙ 𝑏𝑞1,𝑥1

∙ 𝑎𝑞1,𝑞2
∙ 𝑏𝑞2,𝑥2

∙ 𝑎𝑞2,𝑞3
∙ ⋯ ∙ 𝑎𝑞𝑇−1,𝑞𝑇

∙ 𝑏𝑞𝑇,𝑥𝑇𝑞1𝑞2,⋯,𝑞𝑇  
              (5) 

The above equation (5) can be interpreted at the initial time (t=1) where we are in the 

state 𝑞1 with the probability 𝜋𝑞1
, and generate the symbol 𝑥1 with the probability 𝑏𝑞1,𝑥1

. 

Then, we make transitions from the state 𝑞1 to the state 𝑞2 with the probability 𝑎𝑞1,𝑞2
 and 

generate the symbol 𝑥2 with the probability 𝑏𝑞2,𝑥2
. After that, the next several similar 

transitions will be continued until the last state 𝑞𝑇 is reached, which will generate the 

symbol 𝑥𝑇 with the probability 𝑏𝑞𝑇,𝑥𝑇
. 

When considering the computation time of the equation (5), if we calculate it by 

using the direct way of finding the probability of the observed sequence for each given 

path of state sequences, it will have the order of 2𝑇𝑁𝑇  time complexity (( 2𝑇 −

1)𝑁𝑇 multiplications and (𝑁𝑇 − 1) additions), which will result in longer running time. 

To overcome this time issue, a forward algorithm will be applied instead. This dynamic 

programming algorithm breaks the problem down into several sub-problems, and then 

solves each sub-problem in order. The advantage of this is to store the solutions of each 
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sub problem into a memory. If the repeated sub-problems need to be solved the next time, 

the solutions already stored in the memory can be accessed. Therefore, forward procedure 

calculates the probability of the partial observed sequence (until time t) and the state 𝑞𝑖 at 

time t for a given model, which is defined as: 

                                  𝛼𝑡(𝑖) = 𝑝(𝑥1,𝑥2, … , 𝑥𝑡,𝑞𝑡 = 𝑠𝑖|𝛩)                                             (6) 

𝛼𝑡(𝑖) can be solved by several steps, which are as follows: 

1. Initially,  

𝛼1(𝑖) = 𝜋𝑞𝑖
∙ 𝑏𝑞𝑖,𝑥1

,       1 ≤ 𝑖 ≤ 𝑁                                             (7) 

2. Induction: 

𝛼𝑡+1(𝑗) = [∑ 𝛼𝑡(𝑖) ∙ 𝑎𝑖,𝑗
𝑁
𝑖=1 ] ∙ 𝑏𝑞𝑗,𝑥𝑡+1

,   1 ≤ 𝑗 ≤ 𝑁 𝑎𝑛𝑑 𝑡 = 1, … , 𝑇 − 1                   (8) 

3. Finally, 

𝑝(𝑋| 𝛩) = ∑ 𝛼𝑇(𝑖)𝑁
𝑖=1                                                                   (9) 

The first step initializes the probability of the observed sequence and state 𝑞𝑖 at time t=1 

(1 ≤ 𝑖 ≤ 𝑁). After the initialization, the probability 𝛼𝑡+1(𝑗) that the next state at time t+1 

generates the observed symbol x will be obtained by summing every possible transition 

from state i to state j with the previous accompanying partial observed sequence and then 

multiplying them with probability 𝑏𝑞𝑗,𝑥𝑡+1
. This process will be repeated until time 𝑇. 

Finally, the sum of every variable 𝛼𝑇(𝑖) will get 𝑝(𝑋| 𝛩). If we examine the computation 

time, the order of time complexity of the algorithm is 𝑁2𝑇. This is much lower than the 

order of 2𝑇𝑁𝑇time complexity.  

To answer problem 2, which attempts to find the optimal state sequences with respect 

to an observed sequence and a model, the highest probability of a single best path along 
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the observed sequence ending in state 𝑠𝑖 at time t for a given model will be calculated. 

This can be expressed as  

𝛿𝑡(𝑖) = 𝑚𝑎𝑥𝑞1,…,𝑞𝑡−1
𝑝(𝑞1𝑞2 … 𝑞𝑡−1, 𝑞𝑡 = 𝑠𝑖, 𝑥1𝑥2 … 𝑥𝑡|𝛩) 

To solve this equation, the Viterbi Algorithm, which is similar to the forward method, is a 

good choice to recursively find the state sequences at time 𝑡  that have the highest 

probability. Besides, another variable is needed to keep track of the best path ending in 

state 𝑠𝑖  is 𝜑𝑡(𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑞1,…,𝑞𝑡−1
𝑝(𝑞1𝑞2 … 𝑞𝑡−1, 𝑞𝑡 = 𝑠𝑖, 𝑥1𝑥2 … 𝑥𝑡|𝛩) . That is, 𝜑𝑡(𝑖) 

can tell us which state at time (𝑡 − 1) will result in the highest probability of 𝛿𝑡(𝑖) at 

time t. Therefore, by applying the Viterbi Algorithm, 𝛿𝑡(𝑖) will be broke down into four 

parts: 

1. Initially: 

𝛿1(𝑖) = 𝜋𝑖 ∙ 𝑏𝑖,𝑥1
,       𝑖 = 1, … , 𝑁 

2. Induction: 

𝛿𝑡(𝑗) = 𝑚𝑎𝑥1≤𝑖≤𝑁 [𝛿𝑡−1(𝑖) ∙ 𝑎𝑖𝑗] ∙ 𝑏𝑗,𝑥𝑡
,       2 ≤ 𝑡 ≤ 𝑇 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑁 

𝜑𝑡(𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑁 [𝛿𝑡−1(𝑖) ∙ 𝑎𝑖𝑗],       2 ≤ 𝑡 ≤ 𝑇 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑁 

3. Termination: 

𝑝∗(𝑋|𝛩) = 𝑚𝑎𝑥1≤𝑖≤𝑁  𝛿𝑇(𝑖) 

𝑞𝑇
∗ = 𝑚𝑎𝑥1≤𝑖≤𝑁  𝛿𝑇(𝑖) 

4. Backtracking: 

𝑄∗ = {𝑞1
∗, … , 𝑞𝑇

∗}  𝑠𝑜 𝑡ℎ𝑎𝑡 𝑞𝑡
∗ = 𝜑𝑡+1(𝑞𝑡+1

∗),    𝑡 = 𝑇 − 1, 𝑇 − 2, … ,1 

The third problem, mentioned above, is obtaining the best probability of observed 

sequences given an HMM model and the associated parameters. The best parameters can 

be determined through a procedure that makes iterative adjustments. Among the current 
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iterative procedures, the Baum-Welch method will be discussed here. When re-estimating 

HMM parameters, several variables must be defined. The first variable is 𝛾𝑡(𝑖), which is 

the probability of being in state 𝑠𝑖 given the observed sequence and the model. It can be 

defined as  

𝛾𝑡(𝑖) = 𝑝(𝑞𝑡 = 𝑠𝑖|𝑋, 𝛩) 

The second variable, 𝛿𝑡(𝑖, 𝑗), is the probability of being in state 𝑠𝑖 at time 𝑡 and making a 

transition to state 𝑠𝑗 at time 𝑡 + 1 for a given observed sequence. It can be defined as  

𝛿𝑡(𝑖, 𝑗) = 𝑝(𝑞𝑡 = 𝑠𝑖, 𝑞𝑡+1 = 𝑠𝑗|𝑋, 𝛩) 

To create a relationship between 𝛾𝑡(𝑖)  and 𝛿𝑡(𝑖, 𝑗) , we sum 𝛿𝑡(𝑖, 𝑗)  over 𝑗 , which is 

defined as  

𝛾𝑡(𝑖) = ∑ 𝛿𝑡(𝑖, 𝑗)

𝑁

𝑗=1

 

Since the Baum-Welch method is an iterative procedure, the initial rough approximation 

parameters in the model are 𝜋, 𝑎𝑖𝑗 , 𝑏𝑖𝑥𝑗
, respectively, and we define the initial model as 𝛩. 

For the next several iterations, each parameter will be re-estimated by using the formulas, 

which are: 

1. 𝜋̅𝑖 = 𝛾1(𝑖),           1 ≤ 𝑖 ≤ 𝑁 

2. 𝑎̅𝑖𝑗 = ∑ 𝛿𝑡(𝑖, 𝑗)𝑇
𝑡=1 / ∑ 𝛾𝑡(𝑖)𝑇

𝑡=1  

3. 𝑏̅𝑗,𝑥𝑗=𝑘 = ∑ 𝛾𝑡(𝑗)𝑇
𝑡=1,𝑥𝑗=𝑘 / ∑ 𝛾𝑡(𝑗)𝑇

𝑡=1  

In the above formulas, 𝜋̅𝑖 is the probability of being in state 𝑠𝑖 at time 𝑡 = 1. 𝑎̅𝑖𝑗 is the 

ratio of the expected number of transitions from state 𝑠𝑖  to state 𝑠𝑗  divided by the 

expected number of transitions from 𝑠𝑖 . 𝑏̅𝑗,𝑥𝑗=𝑘  is the ratio of the expected number of 
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times that 𝑠𝑗 is visited and the observed symbol is k, divided by the expected number of 

times that 𝑠𝑗 is visited. Given these re-estimated parameters, the new estimated model is 

defined as 𝛩̅. To improve the probability of the observed sequence from a given model, 𝛩̅ 

will be replaced with 𝛩  to see whether 𝑝(𝑋| 𝛩̅)  will be greater than 𝑝(𝑋| 𝛩) . If 

𝑝(𝑋| 𝛩̅) > 𝑝(𝑋| 𝛩), the observed sequence is most likely to be produced by the model 𝛩̅ 

instead of the model 𝛩. This process will be repeated until the local maximum point 

value of 𝑝(𝑋| 𝛩̅) is reached.  

 

3.2 Profile Hidden Markov Models 
 

Hidden Markov Models are built for one sequence. However, profile Hidden Markov 

Models are built from a set of family sequences and are used to model what a family of 

sequences looks like. When building a HMM, these sequences must be in alignment with 

each other first in order to identify relationships among different sequences in a family. 

Fig. 6 is an example of multiple alignment of sequences.  

 
Fig.  6 Multiple alignment of DNA sequences. 

 

The profile Hidden Markov Models for this alignment will be built with one “match” 

state for each column, separated by the transitions of probability 1. Each match state 𝑀𝑖 

will emit one nucleotide with the emission probability, which comes from the number of 

occurrences of the nucleotide in the corresponding column. The “dummy” states of 

ACAA

TCAA

ACAC

AGAA
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“begin” and “end” will be added into the model with no output symbols. This profile 

HMM is shown in Fig. 7. 

 

 
 

Fig. 7 Profile Hidden Markov Model with match states. 

 

However, during evolution, sequences in a family diverge from each other, resulting 

in gaps. Insertions and deletions are types of gaps that occur in the sequences when doing 

the alignments. To deal with these gaps, the cases of insertions and deletions must be 

discussed separately. For the insertions case, since some portions of sequences do not 

match with the above model, additional states called “insert” states will be introduced in 

the above model. The model with insertion states 𝐼𝑖  is shown in Fig. 8. The output 

probabilities from the insert state is set to the background probabilities, which means that 

the number of symbol 𝐾  generated by the insert state 𝑖  is divided by the number of 

possible symbols generated by the insert state 𝐼𝑖. Similarly, there will be a transition from 

the match state 𝑀𝑖 to the insert state 𝐼𝑖, a loop transition to itself, and a transition from the 

insert state 𝐼𝑖 to the match state 𝑀𝑗. 

 

 
 

Fig.  8 A Profile Hidden Markov Model with match and insert states. 

M2 M3 M4M1Begin End

Begin End

Insert Insert Insert Isert

M1 M2 M3 M4
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For the deletion case, since some DNA sequences are missing, many transitions will be 

introduced in the model, like in the Fig. 9. However, a symbol is not emitted when there 

is a transition from one state to another, and the transition will skip the middle states 

because some nucleotides are deleted during the evolution. In order to solve this problem, 

“delete” states with no emission probabilities will be introduced in the model, like in the 

Fig. 10. A complete structure of HMM with insertion and deletion states is shown in Fig. 

11.  

 
 

Fig.  9 A Profile Hidden Markov Model with possible deletions.  

 

 
 

Fig.  10 A Profile Hidden Markov Model with match and delete states. 

 

 
 

Fig.  11 A complete structure of the Profile Hidden Markov Model. 
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3.3 The method of assigning 16S rRNA sequences based on the 

profile Hidden Markov Models 
 

The data obtained for the study is from the Greengenes database, where chimeric 

sequences found in public databases, such as NCBI, are filtered out. This insures that 

each DNA sequence will have accurate taxonomy assignments. (DeSantis, et al., 2006). 

The most recent Greengenes database was released in May, 2013 and contains 1,262,986 

16S rRNA sequences belonging to Archaea or Bacteria with 203,452 99% operational 

taxonomy units(OTUs) and 99,322  97% OTUs (Caporaso, et al., n.d.). This experiment 

utilized a cluster of sequences at 97% identity from the Greengenes database.  

To obtain the best taxonomy assignment at each taxonomic level, when a query 

sequence is compared against the Greengene database, database sequences are separated 

into different clusters that are each analyzed by the Hidden Markov Model. For example, 

if only four different microorganisms contained in the black block compose the database 

(Fig. 12), they first will be separated and grouped by taxonomic level, such as kingdom 

and phylum. (Fig. 13). Therefore, some groups of microorganisms belong to Archaea or 

Bacteria on the kingdom level, some groups belong to DHVE, pMC2A15, AC1 or BH1 

on the phylum level, and some groups belong to LC-1 on the class level. Next, these 

groups will be connected based on their taxonomic relationships to build a tree structure 

of the database (Fig. 14). Finally, the HMMs will be applied to each group. Now, if an 

unknown query sequence is searched against the tree structure of the database, the query 

sequence will go to the first level of the two HMMs. Each HMM can find the most likely 

path and return an E-value to the query sequence. The E-value represents the expected 

number of sequences that will produce the same or a better score by chance, given some 

database size. If one of the E-values is smaller than the other, the query sequence will 



 

30 
 

descend from the HMM with the smaller E-value to the next phylum level of the HMMs 

and repeat the search for the best path process to the last level. The query sequence will 

keep repeating the same process until it arrives at the species level, then the database will 

return the taxon at each level, which goes from the species level to the kingdom level.  

 

 
 

Fig.  12 The database contains four different microorganisms. 

 

 
 

Fig.  13 Seven clusters of the microorganisms based on their taxonomic level. 

 

 
 

Fig.  14 A tree structure of the database. 
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Chapter 4  

The Evaluation Framework 
 

The taxonomic assignment framework, presented in (Nicholas A. Bokulich, 2014) 

and which is based on the IPython Notebook (Ragan-Kelley, et al., 2013), is used to 

evaluate the quality of a taxonomic classification. It does this by comparing the observing 

taxonomic assignments with other taxonomic classification methods (BLAST, UCLUST, 

RDP, MOTHUR, and RTAX). In my study, the evaluation framework is used to evaluate 

the HMM method and compare with other current taxonomic classification methods. The 

evaluation framework takes as input a user generated taxonomy file (for instance one 

generated by the HMM program) and a BIOM table containing the known taxonomies of 

data passed to the HMM program. The output of this step is another BIOM table that 

contains the merged data. Then, the evaluation framework compares the user generated 

data with the know taxonomy data, and then compares these annalistic results with the 

other methods.  

The accuracy of a taxonomy-classification method can be measured in terms of 

precision, recall, F-measure, 𝛽  diversity correlation and 𝛽  diversity (the dissimilarity 

among samples). Precision, recall, and F-measure are qualitative measures, which are 

used to identify whether a microorganism is present or not. Precision, which is known as 

specificity, is the fraction of taxonomies retrieved from the database that are correctly 

identified. Recall, which is also known as sensitivity, is the fraction of taxonomies 

retrieved from the database that are identified. F-measure is the harmonic mean of 

precision and recall. Each of these measures is defined below: 

Precision = true positive / (true positive + false positive) 
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Recall = true positive / (true positive + false negative) 

F-measure = 2 × Precision × Recall / (Precision + Recall) 

A true positive represents a taxonomy retrieved from the database that exists in the 

communities of microorganisms. A false positive represents a taxonomy retrieved from 

the database that does not exist in the microbial communities. A false negative represents 

a taxonomy that does not exist in the database, nor does it exist in the microbial 

communities. Usually, precision and recall cannot be discussed in isolation. If the value 

of recall increases, the corresponding value of precision will decrease. This indicates the 

increase in the search range of similar patterns in a database, which tolerates lower 

limitations (higher E-values), however, this will result in a lower precision. On the 

contrary, lower recall will result in a higher precision value.  

𝛽 diversity correlation and 𝛽 diversity are quantitative measures. 𝛽 diversity  is 

used to identify the abundance of microorganisms in a microbial community.  Correlation 

is an indicator that uses abundance to how similar a test group and a known group are. 

Since some factors, like primer bias, can affect the ability of a taxonomic classification 

method by assigning taxa on each taxonomic rank, it could result in poor abundances. 

𝛽 diversity is another measure of abundance, but it is mainly used to distinguish species 

among two samples in a natural community. Bray-Curtis dissimilarity (Bray & Curtis, 

1957) is one of the most well-known ways to quantify the 𝛽 diversity in a naturally 

occurring community. The formula for calculating the Bray-Curtis dissimilarity is 

defined as: 

𝑑𝑖𝑗 =
∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘|𝑛

𝑘=1

∑ (𝑥𝑖𝑘 + 𝑥𝑗𝑘)𝑛
𝑘=1
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In this equation, the number of microorganisms of the species 𝑘  in the sample 𝑖  is 

denoted by 𝑥𝑖𝑘. Likewise, the number of microorganisms of the species 𝑘 in the sample 𝑗 

is denoted by 𝑥𝑗𝑘. 𝑑𝑖𝑗 is the degree of dissimilarity between the sample 𝑖 and the sample 𝑗. 

The result will range between 0 and 1. If all the species in the samples are identical, 𝑑𝑖𝑗 

will be 0 and if all the species are distinct, 𝑑𝑖𝑗 will be 1. Different dissimilarities among 

samples will form a distance matrix. In order to obtain a quick understanding of disparity 

among these samples, Principle Coordinate Analysis (PCoA) can help to visualize the 

dissimilarities of multidimensional data present in the distance matrix (Krzanowski, 

1988). A simple example of a distance matrix and its PCoA plot is shown in Fig. 15. In 

this matrix, 𝑆𝑖 represents a sample 𝑖, which consists of unknown microorganisms. The 

value in the distance matrix between 𝑆1 and 𝑆2 indicates how dissimilar the species in 

these two samples are.  Based on Fig. 15, the species between 𝑆2 and 𝑆3 are far more 

dissimilar than the species between 𝑆1 and 𝑆2 and the species between 𝑆1 and 𝑆3 are more 

similar than the species between 𝑆2 and 𝑆3. When using the distance matrix to see how 

dissimilar samples are, the PCoA plot, which is an intuitive method, can also be used to 

visualize the differences between samples. In the PCoA plot in Fig. 15, the distance 

between  𝑆1 and 𝑆3 is greater than the distance between 𝑆1 and 𝑆2. Therefore, the species 

between  𝑆1 and 𝑆3 are very different.  

 

 
Fig.  15 An example of a distance matrix and its PCoA plot. 
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When two PCoA plots are generated from two different data sets, Procrustes 

analysis can be used to analyze whether the patterns on the of PCoA plots, which are 

based on the Bray-Curtis dissimilarity conclusions, are consistent. Procrustes analysis is a 

technique, which takes two different coordinate sets with corresponding points as input, 

and transforms one of the coordinate sets by rotating, scaling, and translating it to 

minimize the distance between the corresponding points of the two shapes. In order to 

determine how significant the divergence between each shape is, a goodness-of-fit (M2) 

is used to summarize the discrepancy between these shapes. Usually, a smaller M2 has a 

smaller discrepancy between the two shapes. 

The test sequence data used in the calculations described in this framework were 

obtained from the GitHub repository: https://github.com/gregcaporaso/short-read-tax-

assignment/. The sources of the test sequence data came from three different 

communities: a simulated community, a mock community, and a natural community.  

For the simulated communities, “Sequences were extracted from type strains 

contained in the Ribosomal Database Project 16S rRNA database, Genbank, or where 

possible from the exact strain added to the mock communities” (Nicholas A. Bokulich, 

2014). Each of the sequences had all defects removed that were caused by sequencing 

errors and PCR bias errors.  This allowed for the most accurate assessment of a 

taxonomic classification by a classifier.  

The mock communities were constructed from a group of sequences, which were 

extracted from bacteria and fungi. The sequences were generated by an Illumina or 454 

sequencing machine. In this community, taxonomies of microbial sequences we have 

already known.  

https://github.com/gregcaporaso/short-read-tax-assignment/
https://github.com/gregcaporaso/short-read-tax-assignment/
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The sequences in the natural community were bacterial 16S rRNA or fungal ITS 

samples from a range of biological sites (wine, beer, cheese, and soils). Since the 

composition of the mock communities was so simple, the natural communities were built 

to reflect the complexity of the real world of microbial communities. In addition, 

taxonomies of microbial sequences in the natural community are not assigned by 

biologists. For the purpose of this study, only the sequences in the mock communities and 

one natural community were analyzed. 
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Chapter 5  

Experiment Results 
 

The evaluation results for the Hidden Markov Models (HMMs) method are 

presented here with different E-values and different classifiers. E-value is the only 

parameter that would affect the accuracy of the taxonomic classification in the HMMs 

method. In order to observe how the E-value influenced the accuracy of taxonomy 

classification, the range of E-values was adjusted from 100 to 1e-30. Since there are only 

slight differences in the accuracy of the results for qualitative and quantitative measures 

with the E-values between 100 to 1 and 1 to 1e-30, only three E-values are shown below 

with values of 100, 1, and1e-30.   

Table 1 shows the precision, recall, F-measure, and correlation for eight samples 

of mock communities. The E-value used to generate the results was set to 100. The 

values for recall range from 0.1052 to 0.7895 and the average value of it is 0.5478. Since 

the recall value from the Broad-1 sample was lower than the other samples, it was 

excluded from the calculation of the average recall value, which caused the average value 

to go up from 0.5478 to 0.6076. The results indicate that the percentage of unknown 

microbes assigned taxonomies increased from approximately 55% to 61%, which means 

more unknown microbial genes could still be discovered.  

The values for precision range from 0.0718 to 0.2857 and the average value 

equals 0.1579. This average value shows that the number of microbes that were correctly 

identified only account for 15.8%, which is significantly lower than the other methods, 

see Fig. 16. To see the overall qualitative analysis, the range of the F-measure values 

shown in Table 1 is from 0.1271 to 0.3488. Compared to other methods, this range is also 
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significantly lower, see Fig. 18.  For the correlation value in the last column, the lowest 

value is -0.4162 and the highest value is 0.3455. The average value of correlation is 

0.0995. This indicates that the observed abundances that are close to the referenced 

abundances is 9.95%. When the Broad-1 is excluded, the average value rises to 0.1731. 

By excluding the Broad-1 sample, the correlation value improved.   

In order to easily read the tables, the extreme values in each column are bolded. 

To understand if the proposed classifier is good or not, these results are compared with 

other pre-existing methods using box and whisker plots. Box and whisker plots are used 

to show the average values of different classifiers and the gaps between each average 

value. Fig. 16, Fig. 17, Fig. 18, and Fig. 19 represent the box and whisker plots of various 

classifiers with precision, recall, F-measure, and correlation. Here the HMM method is 

called hmmtax. In Fig. 16, 17, and 18, the red line in each box represents an average 

value, the top of each box represents 75% of the data that reached that value, and the 

bottom of each box represents 25% of the data that reached that value. The average 

precision value, the average recall value, and the average F-measure value of the hmmtax 

are all lower than the other methods used, like the RTX, the BLAST, the RDP, and the 

MOTHUR. However, the average correlation value in Fig. 19 is closer to the other 

methods. Therefore, although the qualitative analysis of accuracy of taxonomic 

classification for the hmmtax classifier does not perform as well as the other classifiers, 

the abundances in a sample can still be distinguished to a certain degree by the hmmtax 

classifier. 
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Table 1 8 samples with precision, recall, F-measure, and correlation results when E-value 

is 100.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.  16 The precision results with 

different classifiers when the E-value of 

the hmmtax is 100. 

 

 Fig.  17 The recall results with different 

classifiers when the E-value of the 

hmmtax is 100. 
 

Fig.  18 The F-measure results with 

different classifiers when the E-value of 

the hmmtax is 100. 

 

Fig.  19 The correlation results with 

different classifiers when the E-value of 

the hmmtax is 100.
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Broad-3 0.2238 0.7895 0.3488 0.3455 

S16S-1 0.1373 0.6087 0.224 0.1853 

S16S-2 0.1899 0.6522 0.2941 0.1396 
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Turnbaugh-2 0.0889 0.4444 0.1481 0.1105 

Turnbaugh-3 0.1111 0.5185 0.1830 0.1257 

Average 0.1579 0.5478 0.2164 0.0995 
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0.0718 to 0.2857 and the average precision value is 0.1579. The range of the recall values 

is from 0.1052 to 0.7895 and the average recall value is 0.1052. The range of the F-

measure values is from 0.1271 to 0.3488 and the average F-measure value is 0.2164. The 

range of the correlation values is from -0.4162 to 0.3455 and the average correlation 

value is 0.0995. Fig. 20, Fig 21, Fig 22, and Fig. 23 represent the box and whisker plots 

of various classifiers with precision, recall, F-measure, and correlation. When comparing 

these results with those in Table 1, the accuracy of taxonomic classification did not 

change. 

 

Table 2 The precision, recall, F-measure, and correlation results along with eight samples 

when E-value = 1. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig.  20 The precision results with 

different classifiers when the E-value of 

the hmmtax is 1. 

 

 
Fig.  21 The recall results with different 

classifiers when the E-value of the 

hmmtax is 1. 

 

hm
m

ta
x

rt
x

bl
as

t

rd
p

m
ot

hu
r0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Method hm
m

ta
x

rt
x

bl
as

t

rd
p

m
ot

hu
r

Method

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

 Precision Recall F-measure Correlation 

Broad-1 0.2857 0.1052 0.1538 -0.4162 

Broad-2 0.1548 0.6842 0.2524 0.1169 

Broad-3 0.2238 0.7895 0.3488 0.3455 

S16S-1 0.1373 0.6087 0.2240 0.1853 

S16S-2 0.1899 0.6522 0.2941 0.1396 

Turnbaugh-1 0.0718 0.5556 0.1271 0.1887 

Turnbaugh-2 0.0889 0.4444 0.1481 0.1105 

Turnbaugh-3 0.1111 0.5185 0.1830 0.1257 

Average 0.1579 0.1052 0.2164 0.0995 
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Fig.  22 The F-measure results with 

different classifiers when the E-value of 

the hmmtax is 1. 

 
Fig.  23 The correlation results with 

different classifiers when the E-value of 

the hmmtax is 1

 

In the last of data, the E-value was adjusted to 1e-30 for precision, recall, F-

measure, and correlation, which are shown in Table 3. The range of the precision values 

is from -1 to 0.2857 and the average precision value is -0.2598. The range of the recall 

values is from -1 to 0.7895 and the average recall value is -0.1019. The range of the F-

measure values is from -1 to 0.3488 and the average F-measure value is -0.2409. The 

value of -1 represents microbial sequences where no taxonomies are assigned. The range 

of the correlation values is from -0.4162 to 0.3455 and the average correlation value is -

0.16. Fig. 24, Fig. 25, Fig. 26, and Fig. 27 represent the box and whisker plots of various 

classifiers with precision, recall, and F-measure.  When comparing these results with 

those in Table 2, the accuracy of taxonomic classification decreases. 

 

Table 3 The precision, recall, F-measure, and correlation results along with 8 samples 

when the E-value = 1e-30 

h
m

m
ta

x

rt
x

b
la

st

rd
p

m
o
th

u
r

Method

0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su

re

h
m

m
ta

x

rt
x

b
la

st

rd
p

m
o
th

u
r

Method

-1.0

-0.5

0.0

0.5

1.0

C
o
rr

el
at

io
n

 Precision Recall F-measure Correlation 

Broad-1 0.2857 0.1052 0.1538 -0.4163 

Broad-2 0.1406 0.4739 0.2169 -0.441 

Broad-3 0.2238 0.7895 0.3488 0.3430 

S16S-1 -1 -1 -1 -0.1865 

S16S-2 0.2 0.2609 0.2264 -0.1157 



 

41 
 

 

 

 

 

 

 

 Fig.  24 The precision results with 

different classifiers when the E-value of 

the hmmtax is 1e-30. 

 

 Fig.  25 The recall results with different 

classifiers when the E-value of the 

hmmtax is 1e-30. 

 
Fig.  26 The F-measure results with 

different classifiers when the E-value of 

the hmmtax is 1e-30. 

 

 
Fig.  27 The correlation results with 

different classifiers when the E-value of 

the hmmtax is 1e-30.

Although the hmmtax did not have better results on the qualitative analysis, it still 

has the ability to detect the abundances in a natural community. Table 4 shows the 𝑀2of 

the Study_449 from the natural community with each classifier and its parameter. As you 

can see, the 𝑀2value for the hmmtax where the E-value=1e-30, is higher than the other 

two E-values of 100 and 1. Also, it is better than the other classifiers, like the RDP with 
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parameters 0.1 and 0.5 and the MOTHUR with parameters 0.1 and 0.5. However, the best 

result for 𝑀2 occured when the E-value was adjusted to 1e-30.  

When the E-value keeps going down to 1e-40 (not shown), the HMMs method 

cannot find any taxonomy in the reorganized Greengenes database. Hence, the 𝑀2 value 

would be larger than any 𝑀2 value listed in the table. The reason behind this could be 

that the sequences in the Greengenes database are at 97% identity. If the HMMs method 

is applied to a database, which consists of sequences at 99% identity, the taxonomic 

coverage will be broader.  Then, the 𝑀2 value will increase with a lower E-value utilized 

in the HMMs method. 

 

Table 4 The 𝑀2 with methods and parameters. 

 

Data set 𝑴𝟐 Method Parameters 

Study_449 0.047 rtax single 

Study_449 0.104 blast 1.0 

Study_449 0.120 rdp 1.0 

Study_449 0.134 Mothur 1.0 

Study_449 0.195 rdp 0.8 

Study_449 0.196 Mothur 0.8 

Study_449 0.211 hmmtax 1e-30 

Study_449 0.234 rdp 0.1 

Study_449 0.235 mothur 0.1 

Study_449 0.237 rdp 0.5 

Study_449 0.240 hmmtax 100 

Study_449 0.240 hmmtax 1 

Study_449 0.250 mothur 0.5 
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Chapter 6  

Conclusions 
 

Hmmtax classifier is a taxonomic classification for microbial gene sequences. It 

searches short 16S rRNA sequence reads of unknown origin against the tree structure of 

the greengenes database, applying Hidden Markov Models at each internal node in the 

tree to determine which potential branch from a given point is most likely to represent the 

taxonomic origin of the sequence. To evaluate the accuracy of the taxonomic 

classification obtained from hmmtax, the metrics applied in this study included 

qualitative analysis, based on precision, recall, F-measure, and quantitative analysis, 

which consists of correlations and 𝛽 diversity. I compared hmmtax to other pre-existing 

classifiers, including BLAST, RDP, RTAX, MOTHUR, and UCLUST, to see if the 

hmmtax classifier could achieve better taxonomic assignments than these methods.  

On most metrics, the hmmtax results are not as good as the other methods. These 

results are shown in Tables 1, 2, and 3. The highest precision value achieved was 0.2857 

and the highest recall achieved was 0.7895. These values are lower than the other 

methods, suggesting that hmmtax is not a useful improvement over other approaches.  

Hidden Markov Models have been primarily used to model protein sequences, 

which composed of 20 amino acids. In nucleotide sequences, there are on four possible 

choices: A, U/T, C, and G. In addition, the profile Hidden Markov Model regards each 

nucleotide as an independent nucleotide in the sequence, which means that there are no 

correlations in the sequence, but the 16S rRNA sequences contain self-complementary 

base-pairs that form the secondary structure of the 16S rRNA molecule.  I suspect that 

these two points might be detrimental for taxonomic assignments of rRNA sequences 
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with Hidden Markov Models because there are not a lot of states (four) and it is possible 

for sequences to have higher similarity, even if they are dissimilar to each other in 

secondary structures, and sequence is probably more important than structure when 

determining the relatedness of a pair of sequences.  

In the future, one possible approach that I might try to improve the accuracy of 

taxonomic classification with Hidden Markov Models is the use of the infernal software 

package for making assignments. This tool is specific to 16S rRNA, which is why I 

didn’t start with it (I wanted a general taxonomic classifier) but not only considers the 

primary nucleotide sequence, but also considers the secondary structure of 16S rRNA 

sequence. I think that incorporating this additional information is likely to improve 

taxonomic assignment beyond what is achieved with a standard Hidden Markov Model. 

Although hmmtax did not perform well in the qualitative analyses, it did achieve 

good performance in correlation analyses when E-value is 100 and 1 and  𝛽 diversity 

analyses. When comparing the value of 𝛽 diversity of hmmtax with other methods, it is 

higher than some of classifiers, meaning that it is better at determining the abundance 

profile of taxa in a sample that the other methods. I suspect that this is because the profile 

Hidden Markov Models were built from many sequences at each taxonomic level  (a 

multiple sequence alignment of all of the 16S belonging to a given taxon), so they are 

better able to recognize diverse sequences that group into the same taxa than the other 

approaches. This translates into better estimations of taxa abundance. Hmmtax in its 

current form may therefore be a useful complement to the other taxonomic assignment 

methods here, and I suspect that future additions (as discussed in the previous paragraph) 

may increase its performance on other benchmarks.  
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