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Abstract

Heliostat Field Layout Optimization for a Central
Receiver

S.L. Lutchman

Department of Mechanical and Mechatronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Mechanical)

December 2014

There are two methods generally used for heliostat field layout opti-
mization: the field growth method and the pattern method. A third, less
commonly used method also exists: the free variable method. Each of
these three methods offers its own set of advantages and disadvantages.
The purpose of this study is to explore the subject of heliostat field lay-
out optimization and to examine the free variable method. In order to
achieve this objective, optimization was conducted using the free variable
method. To perform optimization, a technical model of the heliostat field
was constructed using approximating functions from literature and geomet-
ric analysis. Results of this study indicated that the free variable method
is possible using a gradient-based optimization algorithm. The free vari-
able method was applied to redesign the field of a commercial plant, PS10,
located in Spain. The original plant was improved by 1.2% in annual in-
tercepted energy. The study has demonstrated some of the characteristics,
advantages and pitfalls of the free variable method and has proved useful
in contributing to the understanding of heliostat field layout optimization.
The free variable method requires more research and development before it
may be used commercially.
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Uittreksel

Heliostaatveld-uitlegoptimering vir ’n Sentrale
Ontvanger

S.L. Lutchman

Departement Meganiese en Megatroniese Ingenieurswese,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Meganies)

Desember 2014

Daar word oor die algemeen twee metodes gebruik om ’n heliostaatveld se
uitleg te optimeer: die terreinvermeerderingsmetode (field growth) en die
patroonmetode (pattern). ’n Derde, minder algemeen gebruikte metode
bestaan ook: die vrye veranderlike metode (free variable). Elkeen van hi-
erdie drie metodes bied sy eie voordele en nadele. Die doel van hierdie studie
is om die onderwerp van heliostaat veld uitleg optimalisering te verken en
die vrye veranderlike metode te ondersoek. Ten einde te hierdie oogmerk
te bereik, is die optimalisering uitgevoer met gebruik van die vrye veran-
derlike metode. Om optimalisering uit te voer, is ’n tegniese model van
die heliostaat veld gebou met behulp van benader funksies van letterkunde
en geometriese analise. Resultate van hierdie studie het aangedui dat die
vrye veranderlike metode moontlik is deur gebruik te maak van ’n gradiënt-
bebaseerde optimeeringslagoritme. Die vrye veranderlike metode is ook
aangewend om die terrien van ’n kommersiële aanleg, PS10 in Spanje, te
herontwerp. Die oorspronklike aanleg is in jaarlikse onderskep energie ver-
beter met 1.2%. Die studie het sommige van die eienskappe, voordele en
slaggate van die vrye veranderlike metode getoon en het nuttige bewys
om by te dra tot die begrip van heliostaat veld uitleg optimalisering. Die
vrye veranderlike metode vereis meer navorsing en ontwikkeling voordat dit
kommersieel gebruik kan word.
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Chapter 1

Introduction

Renewable energy technology makes it possible to generate power in a man-
ner that has a significantly lower environmental impact than conventional
energy technology. Heliostat field layout optimization for central receivers
forms part of the research that is being conducted in the area of renewable
energy technology. The following sections describe how this study fits into
renewable energy technology research, what the objective of this study is
and what has been done in this study to meet this objective.

1.1 Background

There are various renewable energy resources available for power generation
including solar, wind, hydro and geothermal energy. This study is directed
at a technology used in the conversion of solar energy to electrical energy.

1.1.1 Central Receiver Systems

Concentrating solar power (CSP) is a method of harnessing the energy from
the sun, which uses mirrors that are placed in such a way that they can
reflect light from the sun to a centralized area. The sun’s rays, instead
of being absorbed by the earth, are reflected to that particular area. The
central receiver system is an application of CSP technology. In this system,
several mirrors, often hundreds, called heliostats, are used to reflect the
sun’s rays onto a receiver tower. The energy received by the tower can
be transferred to a heat transfer fluid. This heat then can be used to
generate steam for powering a steam turbine for electric power generation.
An example of this technology is shown in Figure 1.1.

1
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: The Gemasolar central receiver system [1]

CSP is of significance globally, as there is a move towards renewable
energy electricity generation motivated by a concern for the environment.
Amongst the available methods for renewable energy electricity generation,
CSP emerges as a promising method due to its ability to provide power
when there is no direct sunlight. This is made possible by its characteristic
thermal inertia and the thermal storage for which it allows.

In the South African context, CSP is favorable since South Africa ranks
high globally in terms of its available solar resource. However, due to insuf-
ficient knowledge and experience in the field of CSP, and more specifically
central receiver systems, uptake of the technology into the South African
electricity market is somewhat barred. To aid in relieving this issue, re-
search into the field of CSP is essential. Hence the current work.

1.1.2 Heliostat Field Layouts

The design of central receiver-type CSP plants includes a design of the
heliostat field. Since the heliostat field contributes significantly (up to 50%)
to the overall cost of the plant, it is beneficial to ensure that the field layout
is the most optimal at collecting energy from the sun. For this reason,
among others, heliostat field optimization is an active research field.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

For the heliostat fields of central receiver systems, a number of different
field layouts have been proposed and tested. These layouts range from bio-
mimetic layouts which mimic natural shapes, to rectangular grids of mirrors
in straight rows. The layout chosen will influence the overall performance
of the field, including the extent of blocking, shading and cosine losses—
optical characteristics of the field that affect the amount of energy reaching
the receiver.

The choice of a field shape and the actual placing of the heliostats,
therefore, has a direct influence on the performance of the plant. Heliostat
field optimization is thus crucial to plant optimization.

1.2 Objective

The objective of this research is to understand more clearly the task of
heliostat field layout optimization. Thus, given a site and the available de-
sign resources, a plant designer may be able to perform optimization of a
heliostat field insightfully. The current work seeks to meet this objective
through the development of a central receiver system model adequate for
optimization, a study of the optimization methods available and by per-
forming optimization.

Furthermore, multivariate gradient-based optimization in the context
of heliostat placement is explored. It was stated at commencement of the
study as a preferred optimization method to be considered, even if not
used before, with the purpose of understanding how this more classical
optimization method would be suitable in this research area.

1.3 Scope

This thesis is primarily concerned with the optical efficiency of the heliostat
field of central receiver plants. A model of the plant is developed and
compared with ray tracing to determine its accuracy. Optimization is then
performed by means of an available optimization algorithm. To add to the
body of knowledge in this research area, the optimization method used in
this study is one that is not commonly used in the practice of field layout
optimization.

This study is not a comprehensive study of all the heliostat field layout
optimization methods available, nor is it a study of optimization itself or the
different applicable algorithms. It is a study of heliostat field layout opti-
mization through the development of a technical model, a review of existing

Stellenbosch University  http://scholar.sun.ac.za
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field placement methods and the application of an in-house gradient-based
optimization code known for handling a large number of variables and con-
straints. The field of heliostat field layout optimization is vast. Yet, even
slight probing into this area provides deep insights and invaluable learning.

1.4 Overview

This thesis is organized as follows. First a literature survey is presented de-
scribing the aspects of heliostat field optimization relevant to the objective
and how field layout optimization fits into the broader field of central re-
ceiver systems and renewable energy technology. A review of optimization
techniques is presented as well as the common methods of heliostat field
layout optimization.

A heliostat field analysis model is presented. This is followed by a
description of the validation exercises carried out to determine the accuracy
of the model. The optimization that was conducted is then presented,
including a redesign of a commercial plant, PS10. Thereafter a section is
included which gives a description of the insights gained by the optimization
conducted. Finally, conclusions and recommendations are presented.
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Chapter 2

Literature Survey

The literature survey in this chapter contains highlights from the literature
studied in this research project. It places heliostat field layout optimization
in the context of the broader subject of renewable energy technology and
describes some of the current work in this area.

2.1 Renewable Energy Technology

According to Scheer [2], the traditional energy system, which relies largely
on fossil fuels, will soon be unable to sustain modern society. The author
suggests that the use of fossil fuels for power generation should be replaced
by renewable energy sources for the benefit of the environment, the economy
and society.

Visagie and Prasad [3] state that economic growth usually happens at
the expense of environmental degradation, but the adoption of renewable
energy technology makes it possible to benefit both the environment and
the economy. Scheer [4] asserts that power generation solely by renewable
energy resources is not only attainable, but necessary for the continuation
of modern living.

Renewable energy technology makes it possible to utilize renewable en-
ergy sources such as wind, solar, hydro, biological and geothermal energy
for electricity generation [4]. Stine and Geyer [5] describe the workings and
applications of solar thermal energy technology—the technology used for
converting radiation from the sun into thermal energy. The authors also
describe an enhancement of this technology—CSP—which involves concen-
trating the solar radiation to a smaller area to achieve high temperature
thermal energy.

5
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Figure 2.1: Integration of CSP collectors into a conventional power cycle [7]

2.2 Concentrating Solar Power

According to Pitz-Paal [6], CSP collectors can be used as the thermal energy
supplier in a conventional power cycle as opposed to combustion of coal.
This is illustrated in Figure 2.1. The thermal energy is supplied from col-
lectors which concentrate solar energy to provide high-temperature thermal
energy to the power block. The author mentions that CSP is most suited
for centralized power production in areas that have a high solar resource.

CSP systems include linear Fresnel, parabolic trough, central receiver,
and dish Stirling systems [8]. Linear Fresnel and parabolic trough systems
are known as line-focus systems because they focus radiation from the sun
to a line that extends along the length of the collectors [9].

Mehos [10] highlights the potential of CSP systems to contribute signif-
icantly to power generation by means of renewable energy resources. The
author also mentions the ability of such a system to provide power beyond
the daylight hours due to its potential for thermal storage. Kuravi et al.
[8] mention that thermal energy storage is more efficient and cost-effective
than mechanical and chemical storage technologies.

2.3 Central Receiver Systems

Schell [11] states that central receiver systems perform significantly better
than other CSP systems, such as line-focus systems. Yogev et al. [12] men-
tion that this is due to the high energy flux densities and, consequently, the
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high temperatures that may be realized by these systems. Danielli et al.
[13] attribute the performance advantage to the dual-axis tracking system
that is characteristic of heliostats, the collector mirrors in CSP systems.
The author reports that this allows a more uniform optical efficiency over
the course of a year.

2.4 Heliostat Fields

When considering both material costs and labor costs, Kolb et al. [14] report
that the heliostat field is the “largest single capital investment” in a central
receiver system. The authors further report that the greatest method for
reducing the total cost of a central receiver plant significantly (in terms of
capital equipment cost), is by improving the efficiency of the heliostat field.

Optical efficiency of the heliostat field is determined by the layout of the
heliostats, the surface of the reflective facet surface (the coating used) and
the methods of keeping the reflective surface clean [14]. An improvement
in any of these parameters will result in an improved heliostat field optical
efficiency.

2.5 Heliostat Field Analysis

Garcia et al. [15] divide the methods for measuring the strength of a helio-
stat field into categories based on the underlying mathematical algorithm.
Two categories of algorithms are presented by Garcia et al. [15]. The first is
the Monte Carlo ray tracing algorithm upon which the codes MIRVAL and
SolTRACE are built. The second category includes the algorithms based
on so-called “convolution” methods. Convolution methods, as the name
implies, are combinations of functions that approximate reality [15]. For
this reason, the author also refers to them as approximation methods.

Shuai et al. [16] describe ray tracing as a method of tracking the paths
that rays from the sun are most likely to follow as they interact with surfaces
in the system being analyzed. The surfaces include the heliostats and the
receiver. The properties of each surface, especially the reflectivity, are well-
defined so that interaction between ray and surface is representative of
reality. Each ray carries a certain amount of energy, state Bode and Gauché
[17], and the energy intercepting a surface can be determined by summing
the number of rays that hit that surface.

Garcia et al. [15] mention that ray tracing is more computationally ex-
pensive than the approximation methods and thus discourage the use of ray
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Figure 2.2: Schematic of proximity analysis [20]

tracing techniques for optimization. Ray tracing is mainly used for optical
analysis, but results of the ray tracer can be used as part of a higher-level
plant analysis [18].

Garcia et al. [15] note that many codes are highly accurate and thus
require a large amount of computational resources. Leonardi and Aguanno
[19] suggest that highly accurate codes are unnecessary and that simpler, ap-
proximate methods would require less time while still providing satisfactory
results. Garcia et al. [15] state that such simplifications are plausible since
errors are usually much higher in the models of the other components—such
as turbine and storage—than in the optical model.

Leonardi and Aguanno [19] describe a convolution method for account-
ing for all the geometrical quantities in one unique function. This function
considers all the geometrical qualities of the field as optical efficiency eval-
uations. The efficiency can be determined at each hour and combined to
determine annual efficiency.

In determining the losses experienced by a field, Noone et al. [20] state
that blocking and shading are computationally expensive and for this rea-
son, very few codes calculate these without introducing approximations.
The author also provides a simplified model for determining blocking and
shading. The heliostat face is divided into a grid, and the blocking and
shading potentials are determined for each grid element.

Noone et al. [20] explain that the blocking and shading computational
expense can be reduced by first determining the blocking and shading po-
tential of a pair of heliostats by a proximity calculation, and then only
calculating the extent of blocking if the heliostats are in close proximity.
This is illustrated in Figure 2.2. Some codes neglect shading altogether,
for, as Collado [21] mentions, the effect of blocking far exceeds the effect of
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shading. Others assume that blocking and shading rarely happens between
multiple heliostats. That is, only one heliostat will block or shade another
heliostat [20].

Macro evaluations are also available. Among these are the “quick eval-
uation” presented by Collado [22], and the “model for high-level decision
making” by Gauché et al. [23]. These methods approximate the strength of
a heliostat field without taking individual heliostats into consideration.

2.6 Optimization

Optimization is the process of determining the parameters that minimize
an objective or fitness function [24]. A number of optimization methods
exist. The methods relevant to this research project are described below.

2.6.1 Gradient Methods

Gradient methods make use of information about the gradient of the func-
tion to find the optimum [25]. Gradients can be determined by differen-
tiation of the objective function. If the function cannot be differentiated
analytically, as is the case with complex computer programs, gradients can
be determined by finite difference calculations or by automatic differentia-
tion if the source code of the objective function is available [26].

Venter [25] mentions that gradient methods are able to solve problems
with large numbers of design variables. The author also states that the al-
gorithms usually do not require a lot of adjustment for the specific problem.
However, they have the disadvantage of converging to local minima.

2.6.2 Modern Methods

Modern methods of optimization include the evolutionary algorithms that
have become very prominent in the last 20 years [25]. Modern methods
take their inspiration from processes and phenomena existing in nature [24].
The genetic algorithms [27], for example, mimic the evolutionary process of
random change and natural selection. Particle swarm optimization mimics
the social behavior and motion of a flock of birds or swarm of insects as
they search for food [28].

Evolutionary methods are able to perform global optimization, states
Venter [25]; given a multimodal objective function they are less prone to
converging to local minima. However, they are limited in terms of the
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number of design variables and the size of problem that can be solved.
Furthermore the constraint-handling abilities are poor.

2.6.3 Sequential Approximate Optimization

Often in engineering design problems, the objective function that is to be
minimized is not expressed in terms of the design variables. That is, the
objective function may be an involved analysis or simulation, such as fluid
mechanics or thermodynamic analysis, that takes in the design variables as
inputs.

Nakayama et al. [29] metion that these analyses are usually highly time-
consuming; it requires a considerable amount of computational time to
obtain a value of the objective function. The authors mention sequential
approximate optimization (SAO) as an optimization method that aids in
relieving the computational burden by minimizing the amount of analyses
of the objective function. Groenwold et al. [30] mention that SAO is the
preferred method when computationally demanding models are used for the
objective function.

To minimize the number of objective function analyses, SAO methods
firstly predict the form of the objective function and construct an approx-
imate model (or metamodel) of the function based on this prediction and
then, secondly, optimize the predicted objective function. Prediction of
the objective function is done using methods of computational intelligence
[31]. This predicted form of the objective function is less computationally
demanding.

Nakayama et al. [29] further state that the problem that then arises is
finding a good approximation of the objective function using as little sample
data as possible. Barthelemy and Haftka [32] provide an overview of the
approaches that have been proposed to perform this operation.

SAO is a gradient-based method and therefore suffers from the drawback
of converging to local minima. However, as with all gradient-based methods,
it is efficient in terms of the number of function evaluations required to find
the optimum and is able to solve problems with a large number of design
variables [25].

2.7 Field Optimization Methods

Heliostat field layout optimization is generally done using one of two meth-
ods: the field growth method and the pattern method. These are described
below.
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Figure 2.3: Field growth method procedure

2.7.1 Field Growth Method

Sánchez and Romero [33] employ what is known as the field growth method.
This method starts with an empty field. Every point in the field is evaluated
to find the best position for one heliostat to be placed, and a heliostat
is assigned in this position. Then every point in the field is once again
evaluated to find the best position for a second heliostat to be placed, and
a second heliostat is placed in this position. This process is repeated for
heliostats three and four and so on until the field size is able to meet the
system requirements. This procedure is illustrated in Figure 2.3.

Sánchez and Romero [33] evaluate each point in the field to determine
how much energy can be collected from that point over a year if a heliostat
were to be placed there. The authors call this the “yearly normalized en-
ergy surface” (YNES). A heliostat is placed at the best location. The yearly
normalized energy surface is determined again, this time with the first he-
liostat placed taken into consideration. The second heliostat is placed at
this point. This procedure is repeated until the heliostat field meets the
required power output.

For the first evaluation, blocking and shading are not considered since
there are no other heliostats in the field. Only once the first heliostat
has been placed are the field points evaluated with blocking and shading
considerations. The number of points in the field that are evaluated can be
varied to improve or decrease accuracy and, consequently, computational
time.

A simple search algorithm can be used, and discontinuities—such as
streams, holes or restricted areas where heliostats cannot be placed—can
easily be incorporated into the optimization. However, since each helio-
stat is to be evaluated at all possible locations, the time to determine the
location of each successive heliostat rises as the optimization progresses.
This is because, with each added heliostat, another blocking and shading
calculation is added to the search, and these operations are the most time-
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Figure 2.4: Heliostat field layout patterns [20]

consuming of all the field evaluations [20]. The search time drops again
once the possible locations have diminished sufficiently.

In addition, each heliostat allocation is dependent on the preceding al-
location. This leaves little space for parallelization of the optimization; it
is not possible to place heliostats simultaneously. Parallelization can be
employed during the search phase, though; that is, for a single heliostat
placement, each possible location can be evaluated simultaneously through
parallelization.

With the growth method, a feasible field can be obtained only once the
optimization has been completed. This is unlike the methods that follow,
which can be halted at any time yet still deliver a feasible field. For this
reason, the method is not suitable for large fields when adequate computing
power and time are not available.

2.7.2 Pattern Method

Heliostats in a field can be arranged into elegant geometric patterns. Exam-
ples of these patterns can be seen in Figure 2.4. The patterns have certain
parameters that define them. The radial stagger pattern from Stine and
Geyer [5] for example, shown in Figure 2.5a, is defined by the two param-
eters A and R, which characterize the spacing between the heliostats. To
optimize a pattern, the only variables that need to be optimized are the
defining parameters.

In the case of the stagger pattern, there are only two variables that need
to be optimized. Since this is a very small optimization computationally,
it is simple to add a few more variables that may assist in field design.
These variables could include (amongst other parameters) the tower height,
heliostat size and the position of the first row of heliostats relative to the
tower.
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(a) Radial stagger pattern [5] (b) Phyllotaxis disc heliostat field layout [20]

Figure 2.5: Field layout patterns

Several patterns are available for the pattern method. These patterns
include rows, radially staggered, spirals, and the biomimetic patterns. Bi-
omimetic patterns are patterns that mimic naturally occurring patterns,
such as the phyllotaxis disc pattern employed by Noone et al. [20]. This
pattern is shown in Figure 2.5b.

A drawback of the pattern method is that an optimized pattern does not
necessarily result in an optimal field. Buck [34] has shown that improve-
ments are possible. In the pattern method, it is not the x-y co-ordinates but
the pattern parameters that are being optimized for. The x-y co-ordinates
are dependent on the pattern parameters. The pattern method essentially
determines the best adaptation of the pattern for the problem and not
necessarily the best x-y co-ordinates for optimal plant performance.

In addition, the pattern method is not able to handle elevation variations
and discontinuities within the site efficiently. To use a field optimized by
the pattern method to its full potential, the site needs to be level and
continuous.

2.7.3 Other Methods

Buck [34] applies a method called “non-restrictive optimization”. A field
that has been optimized by a pattern method is further improved by local-
ized gradient-based optimization. This is done by perturbing each heliostat
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Figure 2.6: Zoning in DELSOL [35]

position within a small area around the heliostat to find a better function
value. If a heliostat perturbation does produce a better function value,
the new location is kept. Buck achieved a 0.7% improvement in annual
intercepted energy on the PS10 field.

DELSOL [35], a field design tool developed by Sandia National Lab-
oratories, employs both a field growth method and a pattern method for
heliostat field layout design. Initially, individual heliostats are not taken
into account. The heliostat area surrounding the tower is divided into a
number of zones, and the average field performance at each zone is calcu-
lated. The zoning is shown in Figure 2.6. Once the best zones are selected,
DELSOL places and optimizes a radial stagger pattern heliostat sub-field
inside each zone.

So, the field growth method is used to determine what zones within the
site to use and the pattern method is used to determine where individual
heliostats should be placed inside the chosen zones. The zones are rated by
a performance/cost ratio. Then, starting with an empty field, zone by zone
is added to the heliostat field giving zones with better performance/cost
ratios preference until the total power output required is reached.
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With DELSOL, the optimization variables include not only the pattern
parameters but also the tower height and receiver size. The main inputs
for the design are (1) receiver type (2) a range of possible receiver sizes
(3) a range of tower heights (4) a range of power levels and (5) flux and
land constraints. Using these inputs the code generates the optimal radial
stagger field layout, that is, the radial stagger layout that gives the lowest
energy cost. This is done over the range of receiver sizes and tower heights.
The result is an optimal radial stagger field layout with corresponding op-
timal tower height and receiver size on a performance/cost basis. Further
optional optimization may be done by varying the heliostat density within
each zone.

2.8 Field Optimization Considerations

In optimizing a field, there are a number of considerations that are prevalent
in the literature. These are discussed below.

2.8.1 Objective Function

Buck [34] optimizes for maximum annual intercepted energy. He suggests,
though, that maximum thermal power output of the receiver may be a
promising objective too. Pitz-Paal et al. [36] perform an optimization where
the objective is to reach maximum solar-to-chemical energy conversion ef-
ficiency of a solar thermochemical process used for producing solar fuels.

In their optimization, Sánchez and Romero [33] also pursue maximum
annual intercepted energy as their objective. For this reason, heliostats
are located according to a possible location’s annual intercepted energy
potential. The best positions are allocated first until the field reaches a size
that is able to meet the total power requirements.

According to Kolb et al. [14], one of the main considerations of central
receiver systems is the overall cost of the plant and hence, the levelized
cost of energy from the plant. For this reason, economic considerations
may also be a useful objective in optimization. Schell [11] mentions that
low-cost design and high-volume manufacturing was the main driver for the
eSolar plant field layout. This plant, with its straight rows of heliostats, is
shown in Figure 2.7.

2.8.2 Parameters

Buck [34] uses each co-ordinate of each heliostat as parameters in his opti-
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Figure 2.7: eSolar CSP power plant [37]

mization. However, he optimizes on a local basis—heliostat by heliostat—so
during the optimization there are at most 2 variables at any given time.

In their optimization, Pitz-Paal et al. [36] take field spacing parameters,
geometry of a secondary concentrator and the geometry of the reactor in
their system as optimization parameters. The authors keep all other pa-
rameters fixed and subject them to a sensitivity analysis after optimization.

According to Kolb et al. [14], heliostat facet sizing is a largely unex-
plored parameter for field optimization. Research into heliostat canting
by Landman and Gauché [38] suggests that the facet shape may also be a
possible optimization parameter.

2.8.3 Algorithms

Pitz-Paal et al. [36] do a relatively small optimization and thus note that
modern methods of optimization are favorable for their problem. These
include the genetic algorithm, the Nelder-Mead algorithm and the Pow-
ell algorithm. Due to its poor performance, the authors find the Powell
algorithm least favorable.

Collado [21] mentions that one of the problems of layout optimization
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is determining the initial field from which to start the optimization. The
author notes that HFCAL, a software package for field optimization, starts
with some unknown initial hypothetical field before optimization and sug-
gests a method for determining this initial field, which he denotes the “pre-
liminary design”.

Pitz-Paal et al. [36] state that the field optimization problem is highly
multimodal, making it expensive to find a global optimum. The authors
suggest using a statistical method to determine a reasonably good local
optimum, which can be carried out with reasonable effort.

2.8.4 Other Considerations

Aside from the strength of the heliostat field, Buck [34] mentions that there
are other important aspects to be considered in field optimization. These
include accessibility requirements such as roads for maintenance of mirrors,
as well as area constraints such as site boundaries or restricted areas.

2.9 Software

Bode and Gauché [17] present a review of available software for heliostat
field analysis and optimization. The majority of software is only available
commercially. The other packages are either free to use, open source or
available strictly for academic purposes.

2.10 Summary

The literature survey demonstrates that there are several methods of con-
ducting heliostat field analysis and optimization. There are at least two
different ways of determining the strength of a heliostat field, and there are
numerous objectives that can be pursued. Software for determining helio-
stat field strength and for optimizing is available, but it is also possible to
develop a model using available literature and geometric analysis.

In terms of the heliostat field layout optimization methods, there is a
noted absence in the literature of a method that follows the classical ap-
proach of optimization—a method that starts with an initial layout and
allows each of the heliostats to gravitate freely to an optimal location. The
literature survey also demonstrates the need for an evaluation of the opti-
mization techniques available. The method used to explore some of these
areas is presented in the following chapter.
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Chapter 3

Method

The purpose of this study is to gain a better understanding of heliostat field
layout optimization. The study also seeks to determine the effectiveness of
multivariate gradient-based optimization in heliostat field placement. What
follows is a discussion of the different components of the study and the
resources used to accumulate insight and understanding of the subject.

3.1 Research Design

The objective of this research is a learning objective: an understanding of
heliostat field layout optimization. To achieve this objective, an optimiza-
tion along with the steps needed to be able to do the optimization was
carried out. Preliminary steps included developing a technical model of the
plant, writing the model to a computer code, combining the code with an
appropriate optimization algorithm and preparing the optimization to run
on a high performance computer. The outputs from the optimization were
charts of the layouts generated. The layouts were analyzed and conclusions
drawn from these.

3.2 Methodology

3.2.1 Receiver Plant Model

As part of the optimization process, an objective function is required. In the
area of heliostat field optimization, this objective function should involve
a field strength analysis based on a model of the plant. The objective
function must calculate some characteristic of the plant that can be used

18
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Figure 3.1: Energy balance diagram of a central receiver

to rank plants. It was decided to use the commonly utilized characteristic
of annual intercepted energy.

The intercepted energy is the energy that arrives at the receiver after
optical losses have taken effect. Some of this energy is lost through con-
vection, radiation and reflection. The remainder can be used in the power
conversion processes of the plant to generate electricity. The energy bal-
ance of the receiver is illustrated in Figure 3.1. The intercepted energy is
represented in the diagram as Qfield, that is, the usable energy from the
field.

Qnet = Qfield −Qconvection −Qradiation −Qreflection (3.1)

To assist in optimization and to gain a deeper understanding of the
physics of a heliostat field, a receiver plant model was developed based
on geometric analysis and existing models obtained in the literature. The
model is a convolution method; that is, it is a combination of functions that
approximate various features of the field, specifically, the optical efficien-
cies of each heliostat. These optical efficiencies are the building blocks of
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determining annual intercepted energy.
This receiver plant model was written into a computer code using the

programming languages Octave [39] and Fortran [40]. Octave is an open
source reproduction of the commercial software Matlab [41]. Octave was
used to compile solar resource data, including sun positions, into a useable
form for the Fortran program. The Fortran program contains the actual
receiver plant model.

Fortran was used because of its versatility and because it ran effort-
lessly with the high performance computer used for the optimization. The
optimization algorithm was also written in Fortran. Thus it was simple to
combine the receiver plant model with the optimization code.

3.2.2 Validation

To validate the receiver plant model, validated ray tracing software was
utilized. Ray tracing does not need to calculate all of the efficiencies that are
involved in convolution methods; most of them are implicit. This excludes
atmospheric attenuation, though. Atmospheric attenuation needs to be
calculated explicitly by adjusting the energy value of each ray to account
for this property based on the distance that the ray travels. Figure 3.2
shows a ray tracer model of a heliostat field.

Ray tracing is highly accurate, but as mentioned in the literature survey,
due to computational intensity it is not practical to use ray tracing methods
for optimization. However, since it is based on different principles, it was
thought useful to use ray tracing to evaluate the accuracy of the receiver
plant model.

A number of test cases were carried out using the developed plant model.
These test cases were reproduced with the ray tracing software. The results
of the ray tracing tools were compared with the results of the plant model.

3.2.3 Optimization

The literature survey conducted indicated the prevalent use of two optimiza-
tion methods: the pattern method, done by using field spacing parameters
as optimization parameters, and the field growth method, done by allocat-
ing heliostats one by one to the best positions in a field. These methods
were studied briefly. However, it was discovered that a third method of
heliostat field optimization exists. The current author calls this method
the “free variable method.”

The free variable method follows a more classical approach to optimiza-
tion. Each heliostat in the field is assigned a location. Then, through suc-
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Figure 3.2: Ray tracer model of a heliostat field
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Figure 3.3: The free variable method of heliostat field layout optimization

cessive iterations of sensitivity computations and field analyses, heliostats
are allowed to gravitate freely to points that produce an optimal overall
field performance. Figure 3.3 shows a basic illustration of this method.

This method is uncommon in heliostat field optimization. Little if any
literature exists on the subject. Thus, to gain insight into the subject of
heliostat field optimization as well as to add to its body of knowledge, this
method of optimization was performed.

To perform this method of optimization successfully, an appropriate
optimization algorithm was required. Unlike the growth method and the
pattern method, the choice of an optimization algorithm for the free variable
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method is not straightforward. The reason for this is the large number of
variables and constraints associated with the problem. It was found that
this method required an algorithm capable of large scale optimization where
the number variables is large and the number of constraints outnumber the
variables.

Furthermore, the analysis method used for the objective function was a
highly involved mathematical computer script. For this reason, sequential
approximate optimization seemed attractive.

The co-supervisor of this research project, Prof Albert Groenwold, pre-
viously developed an algorithm that could be used for this optimization
operation: the SAOi algorithm. This algorithm is written in Fortran and
makes provision for any objective function written in Fortran.

The receiver plant model developed was combined with the SAOi code.
Some initial tests were performed to ensure that the receiver plant model
and optimization code were working together properly. Thereafter, the
optimization was prepared for running on the high performance computer.
A number of optimizations were then performed.

The outputs of the optimization runs are lists of variables before and
after optimization. Since the variables used were the x-y co-ordinates for
the heliostats, scatter graphs of the layouts were generated. Conclusions
were drawn from analyzing the graphs.

3.3 Limitations

The validation technique used was a comparison of the model developed
with previously developed and validated models. This does provide a pic-
ture of the validity of the model developed in this research study adequate
for the purposes of this study. However, it may be lacking in terms of pro-
viding an accurate picture of how the model compares with reality. The
data collected in the validation shows some differences with the models. It
is not entirely clear whether, and to what extent, these differences indicate
that the model is more representative of reality or less.

3.4 Summary

The research objective is a learning objective for understanding heliostat
field layout optimization. Learning is pursued by research of literature,
performing an optimization and studying the outputs of the optimization.
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The free variable method, which was chosen for this study, seems to be
absent in the literature. This optimization method appears to be powerful
but may pose a challenge in terms of computational requirements.

Preliminary steps in optimization involve the compilation of an objective
function. The objective function used here is based on an approximation
model of the field and determines the annual intercepted energy. This model
is the subject of the next chapter.
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Chapter 4

Receiver Plant Model

A method of evaluating the strength of a field is required as part of the
field optimization process. For this, a model of the plant is required. This
section describes such a model. The model calculates the amount of energy
that can be collected by a heliostat field over a year. It is not an exact
calculation; it is an approximation. Yet, it is adequately accurate for the
purpose of this study as will be demonstrated. It is an adaption of the
function used by Leonardi and Aguanno [19].

4.1 Intercepted Energy

The sun emits a large amount of energy. However, only a fraction of this
energy reaches the earth. Also, since the earth is rotating, any collecting
device situated on earth can only harvest energy from the sun for a portion
of the day. Usable solar radiation is further reduced by the presence of the
atmosphere and by the inefficiencies of the collecting device [5].

In central receiver systems, the collector consists of the array of helio-
stats in the field and the central receiver to which the sunlight is reflected.
The amount of energy that the heliostat field delivers to the receiver is
known as the intercepted energy. In field analysis, the effectiveness of the
heliostat field in harvesting the energy from the sun is evaluated. The
analysis, therefore, requires a model of the field characteristics.

The intercepted energy at each hour of the year can be determined by
multiplying the effective area of each heliostat by the available direct normal
irradiation (DNI) at that hour [19]. The effective area can be expressed as
the total area of the heliostats multiplied by the optical efficiency of each
heliostat. The following equation, adapted from Leonardi and Aguanno

24
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[19], illustrates this:

I = A

8760∑
h=1

DNIh

(
m∑
i=1

ηci,hηaiηspiηbi,hηsi,h

)
(4.1)

I is the intercepted energy and A is the reflective surface area of a single
heliostat. The equation assumes that all heliostats have the same areas.
The subscript, h, represents the hour being considered and i is the helio-
stat number. The cosine, atmospheric attenuation, spillage, blocking and
shading efficiencies are represented by each of the η terms respectively. So
ηci,h , for example, is the cosine efficiency of heliostat i at hour h.

The optical efficiencies of each heliostat, which include blocking, shad-
ing, cosine, attenuation and spillage, can be modeled by geometric analysis,
taking into account the x and y co-ordinates of the heliostat within the field.
The following sections describe how this is done. As previously mentioned,
each of the functions that make up the model are approximations and not
exact calculations.

Because the inteded use of this model is heliostat field layout optimiza-
tion, it is necessary to express the different losses of the heliostats in terms
of each heliostat’s location in the field. From iteration to iteration of the
optimization process, the location of the heliostats will change albeit by
very minute amounts. Thus, the model must be generalized such that each
of the losses can be calculated based on individual heliostat locations.

4.2 Sun Vector

To utilize the solar resource for solar powered electricity generation, it is
important to account for the changes in solar resource caused by the sun’s
apparent motion through the sky [5]. Cosine, blocking and shading efficien-
cies are all dependent on the orientation of the heliostats. The orientation
of each heliostat, in turn, is dependent on the sun vector—the vector point-
ing from the heliostat to the sun. This vector gives an indication of the
angle of the sun’s rays with respect to a horizontal surface at the location
of the heliostat.

For the sun’s rays to be reflected to the target, the heliostat normal must
bisect the sun vector and the target vector—the vector from the heliostat
to the target. To determine the sun vector, the zenith angle, θz, and the
solar azimuth angle, γs, need to be calculated. These angles are indicated
in Figure 4.1.
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Figure 4.1: Sun vector with associated sun angles

The sun vector, as a unit vector, for each hour of evaluation is deter-
mined using the following procedure adapted from Duffie and Beckman
[42]:

The solar time is determined as follows:

Solar time = Standard time + [4(Lloc − Lst) + E]/60 (4.2)

where Lst is the longitude on which the time zone is based at the location
and Lloc is the longitude of the actual location. Standard time and solar
time are in units of hours. E, in units of minutes, is the equation of time
given by the following:

E = 229.2(0.000075 + 0.001868 cosB − 0.032077 sinB

− 0.014615 cos 2B − 0.04089 sin 2B)
(4.3)

where B is an angle corresponding to the day of the year. B is calculated
as follows:

B = (n− 1)
360

365
(4.4)

and n is the day of the year.
Next, the hour angle is calculated. The hour angle gives an indication

of the position (east or west) of the sun with respect to the local meridian
and is calculated as follows:

ω = [(Solar time)/24− 0.5]× 360 (4.5)
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The angle of declination is then calculated. The declination angle is the
sun’s angular position at solar noon with respect to the plane made by the
equator. It is determined, in units of radians, as follows:

δ = 0.006918− 0.399912 cos(B) + 0.070257 sin(B)

− 0.006758 cos(2B) + 0.000907 sin(2B)

− 0.002679 cos(3B) + 0.00148 sin(3B)

(4.6)

The zenith angle can now be calculated. The zenith angle is indicated
in Figure 4.1 and is the angle between the sun vector and the vertical or
zenith. The sun vector is the line of incidence of the sun’s rays. By making
use of the previously calculated parameters, the zenith angle is calculated:

θz = cos−1[cos(φ)× cos(δ)× cos(ω) + sin(φ)× sin(δ)] (4.7)

where φ is the latitude of the location with respect to the equation, with
north positive and south negative.

The zenith angle is used to calculate the solar altitude angle αz indicated
in Figure 4.1. Since θz and αz are complementary angles, the calculation is
simply the following:

αz = 90◦ − θz (4.8)

The solar azimuth angle, γs, is shown in Figure 4.1 and is is calculated
thus:

γs = sign(ω)

∣∣∣∣cos−1

(
cos θz sinφ− sin δ

sin θz cosφ

)∣∣∣∣ (4.9)

Finally, the three components of the sun vector are determined:

s = [sE, sN, sz]
T (4.10)

The subscripts E, N and z refer to directions east, north and zenith, respec-
tively. These components are determined as follows:

sE = cos(αz)×− sin(γs)

sN = cos(αz)×− cos(γs)

sz = sin(αz)

(4.11)

As mentioned, the sun vector is to be calculated for each hour of eval-
uation; thus it is referred to using the subscript h indicating the hour: sh.
The sun vector is assumed to be the same over the entire heliostat field
at any moment. A sample calculation of the sun vector is included in Ap-
pendix A.2.
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4.3 Target Vector

The target vector is the vector that points from the heliostat to the tower.
The target vector is defined as follows:

Ti =

 xT − xi
yT − yi
zT − zi

 (4.12)

where (xT , yT , zT ) are the co-ordinates of the target and (xi, yi, zi) are the co-
ordinates of heliostat i. This vector is unitized by dividing each component
of the vector by the magnitude of the vector:

ti =
Ti

‖Ti‖
(4.13)

A sample calculation of the target vector is included in Appendix A.3.

4.4 Heliostat Normal

The heliostat normal is calculated by adding the target vector to the sun
vector. This gives a resultant vector that bisects the angle between the sun
vector and the target vector allowing for reflection. The resultant vector is
unitized by dividing each component of the vector by the magnitude of the
vector:

Ni,h = sh + ti (4.14)

ni,h =
Ni,h

||Ni,h||
(4.15)

A sample calculation of the heliostat normal is included in Appendix A.4.

4.5 Cosine Efficiency

Maximum intercepted energy occurs when a collector is perpendicular to
rays from the sun. Any deviation from this position results in a reduced
intercepted energy proportional to the cosine of the angle of deviation. This
is known as the cosine effect. The cosine effect is illustrated in Figure 4.2.

Using the cosine effect, an associated cosine efficiency can be calculated
using the Law of Reflection as stated by Noone et al. [20]:

ηci,h = sh · ni,h (dot product) (4.16)
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Figure 4.2: Illustration of the cosine effect [5]

where sh is the sun vector at hour h, and ni,h is the normal vector of heliostat
i at hour h. A sample calculation of the cosine efficiency is included in
Appendix A.5.

4.6 Attenuation Efficiency

As light travels through the atmosphere, various particles in the atmosphere
cause some of the light to be scattered. This reduces the amount of energy
that can be collected by a collector intercepting the radiation from a ra-
diation source. This effect is called atmospheric attenuation. The extent
atmospheric attenuation is dependent on the distance through which the
radiation travels. This is also true in the case of light emitted from the
sun; energy is scattered by particles in the atmosphere as the light travels
towards a heliostat.
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d

Figure 4.3: Illustration of distance used in attenuation efficiency calculation

The resultant energy that is intercepted by a heliostat, after the effect
of atmospheric attenuation has been considered, is known as the resultant
transmitted energy. The resultant transmitted energy, as a proportion of
the the total energy, can be referred to as the attenuation efficiency. Using
the effect of atmospheric attenuation, an expression for attenuation effi-
ciency can be formulated. Attenuation efficiency is thus calculated using
the following relation from Noone et al. [20]:

ηai = 0.99321− 0.0001176 · d+ 1.97× 10−8 · d2
T (4.17)

where d is the distance of the heliostat to the target, illustrated in Figure 4.3
and calculated as:

d = ‖(xi, yi, zi)− (xT , yT , zT )‖ (4.18)

and (xT , yT , zT ) are the co-ordinates of the target.
A sample calculation of the attenuation efficiency is included in Ap-

pendix A.6.

4.7 Spillage Efficiency

Heliostats reflect radiation from the sun to the central receiver. The re-
flected radiation that falls within the perimeter of the collector apperture
is used for power generation. The reflected radiation that falls outside of
this perimeter is lost. This effect is known as spillage.

Each heliostat casts an image onto the receiver. Spillage efficiency is
determined by approximating how much larger (if at all) the image is than
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9.3 mradSun

Earth

Figure 4.4: Angle subtended by the sun

Image spread
9.3 mrad

Figure 4.5: Reflected image of the sun from a heliostat

the receiver. This calculation is done differently depending on the type of
receiver being considered. Two receiver types are considered here: external
cylindrical and flat receivers.

The rays of sunlight coming from the sun are not parallel. The rays
emitted from the sun subtend an angle of approximately 9.3 mrad [5], as
is illustrated in Figure 4.4. Thus, when the suns rays hit a flat heliostat
and are reflected, the image spreads outwards by this angle. This is shown
in Figure 4.5. This outward spread is the minimum spread that will be
caused by a heliostat. The spread angle also increases due to heliostat
imperfections and slope errors.
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4.7.1 External Cylindrical Receivers

The spillage efficiency for external cylindrical receivers is calculated as fol-
lows:

The distance, d, from the heliostat to the target is determined. It is
the same as is calculated for the atmospheric attenuation calculation. The
image size is determined using the following equation, a modification of the
arc length equation:

Dimage = dλ+ w (4.19)

where Dimage is the diameter of the reflected image at d, the distance of the
heliostat from the receiver determined in the previous step. The angle, λ,
is the angle which the sun subtends when viewed form the earth and w is
the largest dimension of the heliostat (width or height). Stine and Geyer
[5] give this angle as 9.3 mrad.

The size of the vertical axis of the elliptical image cast onto the receiver
is then calculated. By using the equation in the previous step to calculate
the image size at the receiver, it is assumed that the image would be a
circular sun disc if the target was normal to the target vector. Because the
target is not normal to the target vector, an ellipse is formed on the target.

For a cylindrical receiver, the ellipse will have its two axes, horizontal
and vertical, aligned with the horizontal and vertical of the receiver. The
horizontal axis of the ellipse will be equal in length to the image size, Dimage,
at this point. The vertical axis will be lengthened somewhat based on the
distance of the heliostat from the tower.

The lengthening is determined by dividing the image size, Dimage, by
the sinusoid of the angle between the target vector and the receiver. That
is,

Lv =
Dimage

sinα
(4.20)

where Lv is the length of the vertical axis of the elliptical image cast on the
receiver. The angle α is the angle at which the image is cast. This angle is
determined as follows by the following equation:

α = sin−1 dxy
d

(4.21)

where dxy is the distance, in the xy-plane (the ground) from the heliostat
to the receiver. This applies only to an external cylindrical receiver since
each heliostat effectively sees a rectangular target.

The image is compared with the receiver dimensions to determine how
much of the image is spilled. If either the length of the vertical axis, Lv,
or the length of the horizontal axis, Dimage, of the elliptical image is larger
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Dimage

α

Lv

Figure 4.6: Calculation of vertical length of image

than the vertical and horizontal dimensions of the receiver, respectively, the
size of area outside the receiver area is calculated. This is the size of the
spilled area and is calculated as follows:

The total area of the actual image is calculated using the standard
equation for determining the area of an ellipse:

Atotal =
π

4
LvDimage (4.22)

The difference in length between the receiver width and the image diam-
eter, Dimage, is calculated. This is multiplied by the image vertical length,
Lv, to give a representative rectangle of the spilled area. This is illustrated
in Figure 4.7. Similarly, the difference in length between the receiver height
and the image vertical length, Lv, is calculated. This value is multiplied by
the image diameter, Dimage, to give a representative rectangle of the spilled
area.

This rectangular area in each case is then divided by a factor of 1.284
to give the actual area outside of the receiver area. The area of a rectangle
is a factor of 4/π, or 1.273, larger than an ellipse of the same dimensions.
The factor of 1.284 used in this model is slightly larger. This accounts
well for the distortion of the ellipse within the representative rectangle. It
was determined empirically using an example case where the image area,
receiver area and heliostat locations were known.

The total ineffective area then is the sum of the ineffective area in the
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vertical axis

1/2 representative rectangle

Receiver

Image

1/2 representative rectangle

horizontal axis

Figure 4.7: Representative rectangle of image spilled in vertical direction

horizontal and vertical directions:

Aineffective = Aineffectivev + Aineffectiveh

=
(Lv −HReceiver) ·Dimage

1.284
+

(Dimage −DReceiver) · Lv

1.284

(4.23)

where HReceiver and DReceiver are the height and the diameter, respectively,
of the receiver.

This then gives a value for the area of the image that is ineffective. The
effective image area is:

Aeffective = Atotal − Aineffective (4.24)

Finally, the effective area is compared with the total area to give a value
for the spillage efficiency:

ηsp =
Aeffective

Atotal

(4.25)

A sample calculation of the spillage efficiency calculated for a cylindrical
receiver is included in Appendix A.7.

4.7.2 Flat Receivers

The spillage efficiency for flat receivers is calculated in the same way that
it is calculated for external cylindrical receivers with one exception: the
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Figure 4.8: Image cast onto a flat receiver

angle, α, that the reflected sunlight makes with the receiver is calculated
differently. This is illustrated in Figure 4.8a. It is also illustrated by the
photon map of the model created in Tonatiuh [43] in Figure 4.8b. Since
a flat receiver is effectively a rectangular target facing one direction, α is
calculated as follows:

α = sin−1 ∆y

d
(4.26)

where ∆y is the distance from heliostat to receiver in the direction that
the receiver is facing. As defined above, d is the direct distance from the
heliostat to receiver.

A negative value for α would mean that the heliostat is behind the re-
ceiver. For the flat receiver this means that no sunlight reaches the receiver
and so a negative value for α will produce a spillage efficiency of zero.

The image on the receiver will once again be an ellipse. However, the
horizontal and vertical axes of ellipse will be slanted at an angle β, shown
in Figure 4.8a, from the horizontal and vertical axes of the receiver. This
angle can be calculated as follows:

β = tan−1 ∆x

∆z
(4.27)
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where ∆x is the distance from heliostat to the vertical axis of the receiver
in the direction parallel to the face of the receiver, and ∆z is the height of
the center of receiver above the heliostat center (i.e., the distance from the
heliostat to the horizontal axis of the receiver in the direction parallel to
the face of the receiver).

Using the calculated value of α, the diameter, Dimage, vertical length, Lv,
and all the areas are calculated as they are for external cylindrical receivers.
Spillage efficiency is then calculated also using the total and effective areas
as it is for the external cylindrical receiver.

4.8 Blocking Efficiency

Blocking occurs when something lies in the path of the heliostat and the tar-
get [15]. The blocking could be caused by another heliostat or by the pylon
upon which the heliostat is mounted. Here, only blocking by heliostats will
be considered. The method used here for determining the extent of block-
ing (as well as shading in the next section) is based on the discretization
concept used by Noone et al. [20].

To calculate how much blocking the heliostat under consideration will
experience, two questions are asked:

1. Is the potentially blocking heliostat close enough to the target vector
line of the heliostat under consideration to cause blocking?

2. Is the potentially blocking heliostat closer to the tower than the heli-
ostat under consideration?

If the answer to either of these questions is negative, blocking is not calcu-
lated and the blocking efficiency for the heliostat under consideration is set
to unity.

From Stewart [44], the equation of a line in three dimensional space may
be expressed as follows:

r = r0 + tv (4.28)

where v is a vector parallel to the line and r0 is a vector from the origin to
any point on the line. At this point, the scalar parameter t is equal to zero.
Any value of t greater than zero defines a point on the line in the direction
of the vector. Any value of t less than zero defines a point on the line in
the opposite direction of the vector. This is illustrated in Figure 4.9a.
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(a) Line in 3 dimensions (b) Distance from a point to line

Figure 4.9: Blocking and shading geometric considerations [45]

Also, the shortest distance, d, from any point, p = (xp, yp, zp), in space
to the line may be expressed as follows:

d =
|a× b|
|a|

(4.29)

where a is a vector parallel to the line (which may be v), and b is a vector
from the point where the scalar parameter, t, is equal to zero to the point, p.
These parameters are shown in Figure 4.9b. Since the shortest distance is
being found, there is an associated connecting line extending from the point
to the original line perpendicular to the original line. This line intersects
the original line at a certain value of the parameter, t, given as follows from
Weisser:

t =
b · v
|v|2

(4.30)

with b and v as defined above. This expression if found by differentiating
an expression of the distance from the point to the line and setting it equal
to zero.

These expressions are used as follows to answer the two questions stated
above with regards to whether or not blocking will occur: A co-ordinate
system is defined such that the center of the heliostat under consideration
is at its origin. The equation of the line from the heliostat to the target can
be formed. Since the heliostat center is at the origin, the equation may be
expressed as:

r = tT (4.31)

where T is the vector from the heliostat to the target. T is found using
the co-ordinates of the target relative to the center of the heliostat under
consideration. At the origin, or the center of the heliostat, the scalar pa-
rameter, t, is equal to zero. The shortest distance, d, from a potentially
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blocking heliostat to this line is determined by applying equation 4.29 as
follows:

d =
|T×R|
|T|

(4.32)

where R is the vector from the center of the heliostat under consideration
to the center of the potentially blocking heliostat. If this distance is greater
than some critical distance, dc, blocking will not occur. This distance is
taken to be the length of the diagonal of the heliostat:

dc = (H2
w +H2

h)
1
2 (4.33)

where Hw and Hh are the width and height of the heliostat respectively. If
d is less than dc, the answer to the first question is positive, and the next
question must be evaluated.

The scalar parameter, t, associated with the co-ordinates of the poten-
tially blocking heliostat and its shortest line of connection, is determined
by applying equation 4.30 as follows:

t =
R ·T
|T|2

(4.34)

If t is less than or equal to 0, the potentially blocking heliostat is not closer
to the tower than the heliostat under consideration; it is behind or next to
the heliostat under consideration and cannot block it. If t is greater than
0, blocking will occur.

Once it has been confirmed that blocking will occur, the extent of block-
ing is determined. To determine the extent of blocking, two assumptions
are made:

1. A heliostat close enough to cause blocking has the same orientation
as the heliostat it is blocking.

2. The geometry of the image being blocked is the same as the geometry
of the heliostat from which it is reflected.

The extent of blocking is determined by an adaptation of the discretiza-
tion method as described by Noone et al. [20]. To do this, firstly 9 nodal
points are mapped out evenly over the face of the heliostat being blocked.
The number of points used will determine the accuracy of the model as well
as the computation effort required to do the calculation. A larger number of
points will improve the model accuracy but will also increase computational
expense.
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δw

δh

Figure 4.10: Schematic of discretization of heliostat face

Blocking and shading are the most computationally demanding calcu-
lations of all the calculations necessary in heliostat field analysis. It is vital
to ensure that these computations are done only as necessary. As will be
demonstated in a subsequent section, the number of points used here results
in a model sufficiently accurate for the purpose of this study.

The points are separated along the height of the heliostat by a distance
δh calculated as:

δh =
Hh

3
(4.35)

where Hh is the height of the heliostat, and along the width of the heliostat
by a distance δw calculated as:

δw =
Hw

3
(4.36)

where Hw is the width of the heliostat. A schematic of the discretization is
show in Figure 4.10.

The central node is at the center of the heliostat and will have the co-
ordinates (0, 0, 0) in the local co-ordinate system. All the other points are
assigned 3-dimensional co-ordinates with respect to the central node.

Next, 9 points are mapped out evenly over the blocking heliostat. Each
of the points are assigned 3-dimensional co-ordinates with respect to the
(0, 0, 0) point on the heliostat being blocked.

A line is projected from each of the points on the heliostat being blocked
along a line parallel to the target vector extending from the point (0, 0, 0)
to the target. For canted heliostats, the lines from each point can be con-
structed using a unique target vector from that point to the target.

The shortest distance from each of the points on the blocking heliostat to
each of the lines extending from the heliostat being blocked, is determined.
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If the line comes within a certain critical distance, d′c, of any of the points,
the line has intersected the interior of the blocking heliostat. The critical
distance used here is:

d′c =

(√
δ2
h + δ2

w

)
/2 (4.37)

The number of lines that have intersected the interior of the blocking
heliostat are added up and the blocking efficiency is then determined as
follows:

ηb = 1− Number of intersecting lines

9
(4.38)

since 9 is the total number of lines. A sample calculation of the blocking
efficiency is included in Appendix A.8.

4.9 Shading Efficiency

Shading occurs when something lies in the path of the sun’s rays and the
heliostat [15]. To calculate how much shading the heliostat under consid-
eration will experience two questions are again asked:

1. Is the potentially shading heliostat close enough to the vector line
connecting the sun and the heliostat under consideration to cause
shading?

2. Is the potentially shading heliostat closer to the sun than the heliostat
under consideration?

If the answer to either of these questions is negative, shading is not calcu-
lated and the shading efficiency for the heliostat under consideration is set
to unity.

To determine shading efficiency, the same expressions as those used in
determining blocking efficiency are employed with slight adaptation. A
co-ordinate system is defined such that the center of the heliostat under
consideration is at its origin. The equation of the line from the heliostat
to the target can be formed. Since the heliostat centre is at the origin, the
equation may be expressed as follows:

r = tS (4.39)

where S is the vector from the heliostat to the sun. S is determined in the
solar resource model. At the origin, or the center of the heliostat, the scalar
parameter, t, is equal to zero.
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The shortest distance, d, from a potentially shading heliostat to this line
is determined by applying equation 4.29 as follows:

d =
|S×R|
|S|

(4.40)

where R is the vector from the center of the potentially shading heliostat
to the center of the heliostat under consideration. If this distance is greater
than the critical distance, dc (defined in the previous section), shading will
not occur. If d is less than dc, the answer to the first question is positive
and the next question must be evaluated.

The scalar parameter, t, associated with the co-ordinates of the poten-
tially shading heliostat and its shortest line of connection, is determined by
applying equation 4.30 as follows:

t =
R · S
|S|2

(4.41)

If t is less than or equal to 0, the potentially shading heliostat is not closer
to the sun than the heliostat under consideration; it is behind or next to the
heliostat under consideration (in relation to the sun) and cannot shade it.
If t is greater than 0, shading will occur, the extent of which is determined
in the next step.

In calculating the extent of shading, only one assumption is necessary:

1. A heliostat close enough to cause shading has the same orientation as
the heliostat it is shading.

Using the same discretization method as is used for blocking, the number of
lines intersecting the potentially shading heliostat is determined. Shading
efficiency is then determined as:

ηs = 1− Number of intersecting lines

9
(4.42)

4.10 Topography

The center of each heliostat has co-ordinates (x, y, z). These co-ordinates
are used for the computation of all the efficiencies accounted for in the
model. The topography of the site is accounted for by defining the elevation,
z, given x and y. Thus, for a flat site, z = 0 for all x and y. As an illustration
of this, consider Figure 4.11. Suppose that this contour diagram represents
a site where heliosats are to be placed. The numbers along each contour
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A

B

Figure 4.11: Heliostat field topography consideration

line represent the height of the physical site above sea level. Each (x, y)
co-ordinate on the site has an associated height above sea level given by
the contour lines. Point A, for example, whatever its co-ordinates are, will
have a height of around 1300 m above sea level.

Suppose that during optimization, a heliostat moves from point A to
point B, the (x, y) co-ordinates of the heliostat will change because of the
optimization procedure. However, the height of the heliostat, or z-value, is
dependent on the topography of the site given by the contour diagram of
Figure 4.11. Thus the z-value is a function of the x and y values. Table 4.1
indicates expressions that can be used for topography considerations. More
complex topography can be accounted for by expressing the site elevation,
z, in terms of x and y or by writing lookup tables that represent the contour
diagrams of a site.

During optimization, the heliostat co-ordinates, x and y, are variables
subject to change as the optimization proceeds. The elevation, z, of the

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. RECEIVER PLANT MODEL 43

Table 4.1: Site topography expressions

Site Topography Elevation Expression

Slope down 1m/100m East to West z = − x
100

Slope down 1m/100m North to South z = − y
100

heliostat is redefined by a topography expression (such as those in Table 4.1)
after each iteration, given the new x and y co-ordinates. Thus, topography
can be accounted for in the optimization process.

4.11 Flux limit

The amount of energy that may be delivered to the receiver is a function
of the material properties of the receiver. In practice, the flux limit is
never exceeded to prevent thermal failure of the receiver material. This is
achieved by defocussing some of the heliostats [46].

Table 4.2 shows typical values for the flux limit. The table also indicates
that this value has been increasing over the years. Provision to include such
a limit was added to the model. A limit may be set by simply setting the
maximum amount of energy that can be collected at any hour to the flux
limit of the material being used.

Table 4.2: Incident flux limitations on central receivers [46]

Project Solar Two Solar Tres Solar 50 Solar 100

In service date 1996 2004 2006 2008
Receiver peak incident
flux [MW/m2] 0.8 0.95 1.2 1.4

4.12 Computer Code

The model was programmed for processing on a computer using Octave and
Fortran. The sun vector model was programmed in Octave. The Octave
script calculates the sun position in vector format at each hour of the year.
The output is a text file containing all the data. This data is then used in
the Fortran code, which calculates the annual intercepted energy.
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To determine the sun vector at each hour, the Octave code requires the
following input parameters:

1. The longitude on which the time zone is based at the site, Lst

2. The longitude of the site, Lloc

3. The latitude angle, φ

The Fortran code uses the sun vector information from the Octave code,
along with the solar resource information for the site, to calculate the annual
intercepted energy of the system using the model presented in this chapter.
The Fortran code requires the following input parameters:

1. Mirror type (flat or canted)

2. Field direction (Southern or Northern hemisphere)

3. Tower height

4. Heliostat height

5. Heliostat width

6. Number of heliostats

7. Number of hours for calculation

8. Receiver width or height

9. Receiver x co-ordinate

10. Receiver y co-ordinate

11. Receiver type (external cylindrical or flat)

The Fortran code uses these inputs and calculates the annual intercepted
energy following the steps of the model presented in this chapter. Both
codes, Octave and Fortran, are included in Appendix B. A sample calcula-
tion is also included.
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4.13 Summary

The intercepted energy from each heliostat can be calculated by geometric
analysis, which can be done at each hour. The results of these hourly
calculations can be summed up to give an annual total. All the necessary
effects are taken into account without much difficulty. As predicted by the
literature, blocking and shading calculations are the most lengthy.

Computer scripts have been written for computation of each of the ef-
fects. Various fields can be modeled and analyzed by appropriate inputs to
the scripts.

In the next chapter, the accuracy of the model is examined by compar-
ison with ray tracing.
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Chapter 5

Model Validation

To determine the validity of the receiver plant model, the model was com-
pared with results of simulations done by three validated ray tracing soft-
ware programs. One was developed by Bode and Gauché [17], referred to
herein as “Bode’s ray tracer”. A second, called “Tonatiuh”, was developed
by Blanco et al. [43] and a third “SolTrace” [47], developed by the National
Renewable Energy Laboratory (NREL) based in the USA. This chapter
describes the simulations performed and the results obtained.

5.1 Single-heliostat Test Cases

A simulation of heliostats laid out in a field was done as depicted in Fig-
ure 5.1. The interception efficiency (the product of the individual optical
efficiency values) for each heliostat was determined using the Fortran model
for four different hours of the year in Upington. Further details of the test
are summarized in Table 5.1.

Table 5.1: Single-heliostat test case specifications

Location Heliostats Receiver

Latitude 28◦26′S Count 5 Tower Height 15m
Longitude 21◦15′E Height 1m Type External cylindrical
Site width 40m Width 1m Diameter 3m
Site length 40m Geometry Flat Height 3m

The interception efficiencies were compared with interception efficiencies
obtained by simulating the same field using Bode’s ray tracer. The results
are shown in Figure 5.2. The analysis model correlates closely with Bode’s

46
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Figure 5.1: Layout of single heliostat test case

ray tracer. The mean error of the 20 cases is a 0.79% under-prediction with
a standard deviation of 0.3%. This correlation between the two data sets
indicates the validity of the solar resource model which calculates the sun
position, and the cosine efficiency model.

5.2 Two-heliostat Test Cases

The interaction between two heliostats causes blocking and shading. Two
heliostats placed close enough to each other to cause blocking were simu-
lated to determine the intecepted energy over the course of a spring day in
Upington. Figure 5.3 shows the comparison in efficiencies predicted by the
Fortran model and SolTrace. The mean error between the Fortran model
and SolTrace for these 12 data points was determined to be 0.45% with a
standard deviation of 3.1%.

To determine the accuracy of the model on a system level with the ef-
fects of blocking included, the intercepted energy from the two-heliostat
field onto a flat receiver was determined and compared with SolTrace. The
receiver was specified to be large enough to deactivate the effects of spillage.
DNI at each hour was taken as 1000 W/m2. Figure 5.4 shows the compari-
son between the Fortran model and SolTrace in predicting the intercepted
energy at each hour of the day. The figure also gives the amount of power
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Figure 5.2: Interception efficiency of single heliostat test cases

that was blocked by the heliostat causing the blocking. The blocked power
was calculated in SolTrace.

Over the 12 hour day, the mean error between the Fortran model and
the SolTrace model was 0.3% with a standard deviation of 1.0%.

These results also give an indication of the effectiveness of the shading
efficiency calculation. Blocking and shading calculations are similar. The
only difference is the vector that is used to construct the interception lines
from the heliostat potentially being blocked or shaded.

5.3 Spillage Test Cases

To determine the validity of the spillage model, a single heliostat placed at
varying distances from the receiver was simulated. The spillage efficiency
of the heliostat was determined using the Fortran model and then using the
ray tracing software Tonatiuh [43]. The comparison of the two data sets is
depicted in Figure 5.5.

The mean difference between the model and Tonatiuh is 2.1% with a
standard deviation of 6.7%. The model is less accurate at distances closer
to the target. To understand the reason behind this, photon maps of the re-
ceiver were constructed in Tonatiuh. These images are shown in Figure 5.6.
The images show the difference in images cast by heliostats close to the
receiver and far away from the receiver.
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Figure 5.3: Comparison of blocking efficiencies predicted by Fortran model and
SolTrace
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Figure 5.4: Comparison of Fortran model with SolTrace with blocking effects
included
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Figure 5.5: Spillage efficiencies from Tonatiuh and Fortran model

(a) Image caused by distant heliostat (b) Image caused by near heliostat

Figure 5.6: Spillage at different distances
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The thin, elongated image caused by the close heliostat indicated in
Figure 5.6b, is due to the elliptical shape caused by the angle that the
image makes with the receiver. The further heliostat, Figure 5.6a, causes
an image that is more spread-out, and the image is spilled over all sides of
the receiver.

These results indicate that the spillage model used is more accurate at
predicting the spillage efficiency of heliostats further away. The model tends
to “penalize” heliostats that are close to the receiver tower. In optimization,
this would mean that the model will tend to move the heliostat away from
the receiver tower if they are close. The model, however, is a reasonable
approximation of the effect of spillage for the objective of this study.

5.4 System Validation

To determine the validity of the model on a system level, a hypothetical
plant was created and evaluated with the Fortran model and with the ray
tracing software SolTrace. The plant consisted of 100 randomly located
heliostats. The field is shown in Figure 5.7. The performance of the plant
was evaluated over the course of a day. The comparison with the ray tracer
is indicated Figure 5.8. Further details about this simulation is included in
Table 5.2.

The average difference between the SolTrace model and the Fortran
model was 0.4% with a standard deviation of 3.3%. The intercepted en-
ergy collected by this field over the course of the day was calculated to be
148 kWh with SolTrace, and 147 kWh with the Fortran model. The For-
tran model under-predicted the intercepted energy, relative to SolTrace, by
0.4%. A similar accuracy would be expected for the annual intercepted
energy.

During ray tracing the number of rays used was 100 000. To get a
good representation of the system, either a large number of rays should be
used or the mean of a sufficiently large population of ray traces should be
determined. Making use of the latter method, 30 traces were done for a
chosen hour and a statistical analysis of the data was performed. From this
analysis it was found that there was a 95% confidence level that any value
from the ray tracer would be within 0.4% of the mean of a population of
ray traces.
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Figure 5.7: Random field used for system validation
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Figure 5.8: Comparison of Fortran and SolTrace system performance evaluation

5.5 Summary

The receiver plant model correlates well with ray tracing in its calculation of
the sun position and cosine efficiency, as well as with blocking calculations.
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Table 5.2: System validation field specifications

Location Heliostats Receiver

Latitude 28◦26′S Count 100 Tower Height 50m
Longitude 21◦15′E Height 2m Type Flat
Site width 50m Width 2m Width 1m
Site length 50m Geometry Flat Height 1m

Spillage efficiency calculations are less accurate. For heliostats that are far
from the receiver, the spillage calculation is more accurate and less so for
heliostats that are close to the receiver. On a system level the accuracy
level is also sufficient, and the model shows the necessary trends needed for
purpose of this study. The model can thus be used for optimization.

In the following chapter, the model is combined with an optimization
algorithm and optimization is conducted using the model. Ray tracing is a
far better analysis tool and can be used to determine the actual intercepted
energy of a heliostat field. This model can be used as a driver for the
optimization and the results can be analyzed with a ray tracer to determine
the final intercepted energy.
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Chapter 6

Optimization

This chapter describes how the receiver plant model is cast as an optimiza-
tion problem and how the optimization was conducted using an optimiza-
tion algorithm that is suitable to the form of the optimization problem.
For the optimization conducted, an optimization algorithm developed by
Groenwold and Etman [48], denoted SAOi, was used. The description of
the algorithm given herein is adapted from this source.

6.1 The Optimization Problem

To formulate the plant model into an optimization problem, the model
is written as a function of its variables. As presented in Chapter 4, the
intercepted energy is calculated as follows:

I = A
192∑
k=1

DNIk

(
n∑

i=1

ηci,kηaiηspiηbi,kηsi,k

)
(6.1)

Note that the number of hours has been reduced from 8760 to 192. This has
been done to reduce the computational expense of the problem. Duffie and
Beckman [42] suggest that 12 typical days of the year (1 day per month)
can be used when doing an annual analysis. The dates suggested by the
author have been employed. Furthermore, only the 16 daylight hours of each
day were considered. Solar irradiation occurs only during the day time, so
the night time would have no influence on the total intercepted energy of
the plant. Including the night hours would only result in an unnecessarily
higher computational overhead.

Since each efficiency contained in the model is dependent on the location
of each heliostat within the field relative to the tower, the annual intercepted
energy is a function of the co-ordinates of the heliostats. The expressions

54
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vary depending on other plant characteristics such as the receiver type and
heliostat shape. Stated as a function of the design variables, the annual
intercepted energy may be expressed as follows:

f(x) = −I = −A
192∑
k=1

DNIk

(
n∑

i=1

ηci,kηaiηspiηbi,kηsi,k

)
(6.2)

The reason for the negatives will be clarified in a subsequent section. To
evaluate the annual intercepted energy of a field, the function requires as
input the vector x. This vector contains the x and y values of the heliostats’
positions within the field. Thus, for a field with m heliostats, x has n = 2m
dimensions. Other plant characteristics such as tower height, receiver size
or aperture area, receiver inclination, etc. may also be added to the input
vector as design variables. Each added plant characteristic will increase
the variable count by 1. Thus, with, for example, 3 more design variables,
x will have 2m + 3 dimensions. In the present model, these other plant
characteristics have not been included; only the heliostat locations have
been used as design variables.

For a pattern method of optimization, the vector x is itself a function
of the parameters that define the pattern [34] and is, therefore, dependent
on them. During optimization, from iteration to iteration, only the pattern
variables are altered. Altered pattern parameters produce different x and
y values in the vector x. Intercepted energy then, in effect, becomes a
function of the pattern parameters. The objective then of the optimization
is to determine the optimum values for these pattern parameters. Optimum
pattern parameters define an optimum input vector x, which then is the
optimal adaptation of the pattern for the problem. The resulting vector x
delivers the best value for the function that can be obtained by that pattern.
As Buck [34] has pointed out, and as will be shown here, this resulting field
may not necessarily be optimal in terms of individual heliostat locations.

For the optimization method used herein, a free or non-restricted method,
similar to what is presented by Buck [34], is applied. That is, the vector x
is independent. There is one key difference though. Whereas Buck allows
freedom within a small area surrounding the heliostat, the free variable
method allows for complete freedom of the variables; variables may take on
any value within the site boundary. This is done so that optimal values for
individual heliostat locations may be obtained.

The freedom of variables has an effect on the computational complexity
of the problem. Each of the x and y values contained in the vector are
considered design variables and, thus, may be varied independently from
iteration to iteration to determine the optimal location of each heliostat
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within the field for maximum annual intercepted energy. This means that
the number of design variables in the optimization is extremely large com-
pared to, for instance, the pattern method.

Evaluation of the function in equation 6.2 from iteration to iteration
can be done by constructing a computer script which evaluates each of the
efficiencies, given the vector x. Such a script was constructed in Fortran
for the present problem.

6.2 Constraints

Essentially, there are two constraints that need to be considered in the
optimization. Stated in plain terms, the two constraints are as follows:

� Each heliostat must be a certain minimum distance from the next
heliostat to prevent collision between the heliostat surfaces during
operation

� Each heliostat must be a certain minimum distance from the central
receiver to prevent collision between the heliostats and the receiver
tower

Though these constraints are two in essence, both need to be imposed onto
every heliostat. Thus, for m heliostats, the actual number of constraints is,
for the first constraint

(m2 −m)/2 (6.3)

and for the second
m (6.4)

giving a total of
(m2 −m)/2 +m (6.5)

The subtraction by m in equation 6.3 is to exclude the heliostat being
evaluated. That is, a heliostat must be a certain minimum distance from
every other heliostat, itself excluded. The division by 2 is due to the fact
that only one permutation of this constraint is needed. In other words, the
distance from heliostat 1 to heliostat 2 is the same as the distance from
heliostat 2 to heliostat 1.

The minimum distance that each heliostat must be from every other
heliostat as well as from the tower can be taken as the length of the diagonal
of the heliostat surface. This will ensure that heliostats do not interfere
with each other during operation. Thus, the constraints can be expressed
as follows, for the first constraint
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>=a >=b
Figure 6.1: Constraints [49]

||(xi, yi)− (xj, yj)|| ≥ a

or
−||(xi, yi)− (xj, yj)||+ a ≤ 0 (6.6)

i = 1, 2, . . . ,m− 1 and j = i+ 1, i+ 2, . . . ,m

and for the second constraint

||(xi, yi)− (xR, yR)|| ≥ b

or
−||(xi, yi)− (xR, yR)||+ b ≤ 0 (6.7)

i = 1, 2, . . . ,m

where the subscript R refers to the receiver. The constant a is taken to be
the length of the diagonal of a heliostat and b is half the diagonal plus half
the width of the receiver tower. The constraints are depicted in Figure 6.1.

It was found necessary to include all the constraints represented in equa-
tion 6.6 to prevent heliostats on opposite ends of the field from gravitating
towards each other during optimization. This will be demonstrated in a
subsequent section.

The result is a large number of constraints. Pattern methods have these
constraints implicit in their definition. Thus, in the optimization of a pat-
tern, these constraints are redundant. Other constraints may also be added
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to these, for example, to make provision for roads. Each additional require-
ment will raise the constraint count by m.

It is vital to select an appropriate optimization method for the problem
due to the large number of variables and constraints.

6.3 Optimization Method

The model presented above is cast as an inequality constrained nonlinear
optimization problem, PNLP of the following form:

min f0(x)

subject to fj(x) ≤ 0 j = 1, 2, . . . , w (6.8)

x̌i ≤ xi ≤ x̂i i = 1, 2, . . . , n

where f0(x) is a real valued scalar objective function, and fj(x), j =
1, 2, . . . , w are w inequality constraint functions. f0(x) and fj(x) depend
on the n real (design) variables x = {x1, x2, . . . , xn}T ∈ X ⊂ Rn, which
define the x̌i and x̂i respectively as the lower and upper bounds on variable
xi. In a typical field optimization problem, the lower and upper bounds
would represent the site boundaries.

Note that in the problem, x1, x2, . . . , xm are the x values of the positions
of each of the heliostats and xm+1, xm+2, . . . , xn are the y values. Also, the
objective is to minimize the function, hence the negatives in equation 6.2.
By minimizing the function, f(x), in the optimization, the annual inter-
cepted energy is maximized.

The constraint functions, fj(x), j = 0, 1, 2, . . . , w, are known to be
differentiable using either finite differences or, preferably, automatic dif-
ferentiation. It is also known that f0 and fj require a fairly expensive
computational simulation. In addition, it is known that the number of de-
sign variables and constraints are high, which effectively disqualifies zeroth
order methods.

Groenwold et al. [30] have proposed to use diagonal quadratic approxi-
mations to approximations based on arbitrary (albeit separable) intervening
variables, rather than an approximation based on a specific intermediate
variable. These formulations have the advantage that a single dual state-
ment may be used to capture the essence of the arbitrary intermediate
variables considered. Only diagonal Hessian information is required. In ad-
dition, since the approximations are (diagonal) quadratic, they may easily
be transformed into quadratic programs (QPs). This makes it possible for
them to be treated by high-quality existing solvers [50; 51].
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6.4 Algorithm SAOi

Algorithm SAOi implements a sequential approximate optimization as a
solution strategy for problem 6.8. Departing from diagonal quadratic func-
tion approximations, SAOi constructs successive approximate subproblems
P [k], k = 1, 2, 3, . . . at successive iteration points, x{k}, that are inexpensive
to evaluate. The solution of subproblem P [k] is denoted x{k∗} ∈ Rn, and
is to be obtained using a suitable continuous programming method. The
minimizer of subproblem P [k] is x{k∗}, which is then ready to become the
starting point x{k+1} for the subsequent approximate subproblem P [k+ 1].
The approximations and subproblems considered in algorithm SAOi are
summarized in the following subsections.

6.4.1 Diagonal Quadratic Approximations

SAOi constructs diagonal approximations, f̃(x), to the objective function,
f0(x), and all the constraint functions fj(x) as

f̃j(x) = f
{k}
j +

n∑
i=1

(
∂fj
∂xi

){k}
(xi − x{k}i ) +

1

2

n∑
i=1

c
{k}
2ij

(xi − x{k}i )2 (6.9)

with f
{k}
j = fj(x

{k}) and c
{k}
2ij

the approximate second order diagonal Hes-
sian terms or curvatures.

To ensure strict convexity of each and every subproblem P[k] to be
considered, it is necessary to invariably enforce

c
{k}
2i0

= max(ε0 > 0, c
{k}
2i0

)

c
{k}
2ij

= max(εj ≥ 0, c
{k}
2ij

) j = 1, 2, . . . ,m
(6.10)

with the εj, j = 0, 1, 2, . . . ,m prescribed and “small” (or zero). In other
words, the approximate objective function f̃0 is strictly convex, while the
approximate constraint functions f̃j, j = 1, 2, . . . ,m are convex or strictly
convex.

6.4.2 Estimating the Higher Order Curvatures

Key to algorithm SAOi is to obtain approximate higher order curvatures
c
{k}
2ij

without the user providing, or the algorithm storing, explicit second
order information. There are many possibilities for doing this, including
the use of finite differences for estimating the diagonal Hessian terms only,
and quazi-Cauchy-updates [52], to name a few.
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The simplest possible strategy, arguably, is to construct a spherical qua-
dratic approximation by selecting c

{k}
2ij
≡ c

{k}
2j

for all i. This requires the

determination of the single unknown c
{k}
2j

, easily obtained by, for example,
enforcing this condition:

f̃j(x
{k−1}) = fj(x

{k−1}). (6.11)

Groenwold et al. [30] provide more details. A detailed description of the
steps of the algorithm is given in Appendix C.

6.5 Fortran Code

The receiver plant model code was combined into the SAOi code for opti-
mization problems. SAOi was written in Fortran. For this reason it was
simple to combine the receiver plant model into the optimization code.

6.6 Results

A number of optimization problems were constructed and carried out for
evaluation of the optimization method. This section describes each of these
attempts and the results obtained. The specifications of the machines used
for these optimization runs are given in Table 6.1. Parallelization was not
utilized.

Table 6.1: Machine specifications

Machine CPUs Memory Operating System

Toshiba Laptop Intel Core i5 M560 4 GB Ubuntu Linux 12.10,
2.67 GHz 13.04, 13.10 (64-bit)

Dell Desktop Intel Xeon 32 GB openSuse Linux
3.73 GHz 11.4 (64-bit)

HPC Intel Xeon E5440 16 GB
2.83 GHz

6.6.1 Hypothetical Plant

A small hypothetical plant was modeled as a test case for optimization. Site
information for Upington was used. The plant aperture area was taken to
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(a) Random field

(b) Optimized field

Figure 6.2: Hypothetical plant optimization
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Table 6.2: Hypothetical plant test case specifications

Location Heliostats Receiver

Latitude 28◦26′S Count 400 Tower Height 15m
Longitude 21◦15′E Height 1m Type External cylindrical
Site width 40m Width 1m Diameter 3m
Site length 40m Geometry Flat Height 3m

be 400 m2 with a site length and width of 40 m each. Further specifications
of the plant are tabulated in Table 6.2.

To start the optimization, a random field was created. This field is
shown in Figure 6.2a. The optimization converged after 100 iterations and
approximately 39 hours. The optimization produced the field shown in Fig-
ure 6.2b. The optimized field is a 21% improvement over the random field
in terms of annual intercepted energy. Upon close inspection of Figure 6.2b,
a pattern can be seen resembling the layout of sunflower petals.

This result indicates, firstly, that the free variable method is possible.
Secondly, as a result of the pattern that is evident, it indicates that there
is rationality in using a pattern for a heliostat field; elegant patterns, that
perhaps resemble natural patterns, are more optically efficient than random
fields.

6.6.2 Receiver Type Effects

To evaluate the effect that the receiver type has on the heliostat field layout,
a similar plant was modeled using different receiver types. Two cases were
modeled. In one case an external cylindrical receiver was assumed, and in
the other case a flat receiver was assumed. Details of the plant are indicated
in Table 6.3.

Table 6.3: Receiver type effects case specifications

Location Heliostats Cylindrical receiver Flat receiver

Latitude 28◦26′S Count 200 Diameter 3m Width 3m
Longitude 21◦15′E Height 2m Height 3m Height 3m
Site width 40m Width 2m
Site length 40m Geometry Flat Tower Height 15m

The initial field used in this optimization was, once again, a random
field. This field is shown in Figure 6.3. The two fields produced by the
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Figure 6.3: Random field

optimization runs are shown in Figure 6.4. The cylindrical receiver caused
a more spread-out, surrounding field; the flat receiver less so.

This result indicates that the free variable method is one that is problem-
oriented as it tends to produce a field that is suited to the characteristics
of other plant components.

This optimization was done with 200 heliostats—half the number used
in the first hypothetical plant presented in the previous section. For this
reason, there was more space available for the heliostats. As a result, the
heliostats tended to move away from the receiver tower as was expected due
to the penalization caused by the spillage model.

6.6.3 Sensible Start

To determine the behavior of the optimization when starting from a sensible
field, an optimization was done starting a field with a staggered pattern.
This field is shown in Figure 6.5a. The tower is located at (10,0). After
optimization, the starting field and the improved field were analysed in
SolTrace over the course of a day. The initial field was able to collect
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(a) Cylindrical receiver

(b) Flat receiver

Figure 6.4: Fields optimized for different receiver types
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824.6 kWh and the improved field 846.6 kWh, an improvement of 2.67%.
The improved field is shown in Figure 6.5b. The SolTrace comparison of
the two fields is shown in Figure 6.6.

6.6.4 Constraint Relaxation

One of the time consuming operations of the optimization is the evaluation
of the constraints. It was shown earlier that there is a large number of
constraints. A test was carried out to determine whether or not the number
of constraints could be reduced. The first basic constraint requires that
each heliostat be a certain minimum distance from every other heliostat.
To reduce the number of constraints, this requirement was relaxed.

By applying this modification, the total number of constraints was re-
duced from (m2 − m)/2 + m to m. The initial field was a random field
with 100 heliostats. Further field specifications for this case are included
in Table 6.4. The random field is shown in Figure 6.7a and the field after
optimization is shown in Figure 6.7b. The tower was located at (25,0).

Table 6.4: Constraint relaxation field specifications

Location Heliostats Receiver

Latitude 28◦26′S Count 100 Tower Height 50m
Longitude 21◦15′E Height 1m Type Flat
Site width 50m Width 1m Width 2m
Site length 50m Geometry Flat Height 3m

The locations of the heliostats in the optimized field are not close enough
to interfere with each other. This means that during optimization, the
blocking and shading heuristics of the technical model kept the heliostats
from moving too close to each other. The exercise reveals that it may not be
necessary to enforce all the constraints. This, however, needs to be tested
to a greater degree. Losses from the cosine effect are usually greater than
losses from blocking and shading [5]. There may be cases where heliostats
move to an area with low cosine loss and trade off blocking and shading
losses for low cosine losses which could then lead to interference.

For comparison, the same field was optimized with all the constraints in
place. The resultant field from this optimization is indicated in Figure 6.8.
This field is different to the field optimized without the constraints, yet
both final fields have similar performance levels. Table 6.5 compares vari-
ous parameters of the two optimization runs. The field optimized without
the constraints performs slightly better than the field optimized with the
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(a) Sensible field

(b) Sensible field after optimization

Figure 6.5: Optimization from a sensible start
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Figure 6.6: Intercepted energy computed in SolTrace before and after optimiza-
tion of a sensible field

constraints. However, given the accuracy of the model and that the initial
field had an annual intercepted energy value of 63.5 MWh, this difference is
insignificant.

As expected, the case with the relaxed constraints required less time to
reach an optimum. Because of the large amount of time required per iter-
ation, the fully constrained case required 20% more time than the relaxed
case albeit with less iterations.

Table 6.5: Comparison of relaxed constraint optimization with fully constrained
optimization

Case Total Average Number of Annual
time time per iterations intercepted

iteration energy
[s] [s] [MWh]

Constraints applied 17898 365 49 83.9
Constraints relaxed 14109 103 135 82.8
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(a) Layout before optimization

(b) Layout after optimization

Figure 6.7: Field optimization with constraints relaxed
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Figure 6.8: Field optimized with all constraints applied

6.6.5 Optimization Validation

The accuracy of the optimization was evaluated by evaluating a field before
and after optimization and comparing the results with the ray tracing soft-
ware SolTrace. The field constructed for evaluation had an initial random
start and consisted of 100 heliostats. This is the same field used for sys-
tem validation in the previous chapter. The specifications of this field are
repeated here in Table 6.6. Images of this field before and after validation
are shown in Figure 6.9.

Table 6.6: Optimization validation field specifications

Location Heliostats Receiver

Latitude 28◦26′S Count 100 Tower Height 50m
Longitude 21◦15′E Height 2m Type Flat
Site width 50m Width 2m Width 1m
Site length 50m Geometry Flat Height 1m

Figure 6.10 shows a comparison of the Fortran model with SolTrace
before and after optimization. As mentioned before, the Fortran model
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(a) Random field

(b) Optimized field

Figure 6.9: Optimization done for validation of optimization
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Figure 6.10: Comparison of Fortran model with SolTrace before and after
optimization

under-predicted the intercepted energy, relative to SolTrace, over the course
of the day by 0.4%. After optimization, the Fortran model under-predicted
once again, relative to SolTrace, by 0.3%. This demonstrates that the
optimization combined with the Fortran model does drive the optimization
adequately towards a better intercepted energy value.

6.7 Summary

The free variable method is a method of heliostat field layout optimiza-
tion that follows a more classical optimization approach where heliostats
are allowed to move freely to an optimal location. The method has the
disadvantage of having a large number of variables and constraints. It is
made possible using a constrained gradient-based optimization algorithm.
The SAOi algorithm, based on sequential approximate optimization, is one
such algorithm.

When starting from a random field, the free variable method tends to
produce pattern-like fields that resemble naturally occurring patterns. The
method generates fields that are suited to other plant characteristics such
as receiver type. The method is time-consuming. This is due to the large
number of variables and constraints. The constraints may not be entirely
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necessary though. The free variable method is also able to improve fields
of sensibly arranged heliostats.

In the next chapter, a commercial central receiver plant, PS10, located
in Spain, is studied to gauge the strength of the optimization presented in
this chapter.
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Chapter 7

PS10 Case Study

In this chapter, a study of the PS10 field, located in Spain, is presented.
The field was analyzed with the plant model presented in Chapter 4 and a
redesign was done using the optimization method presented in Chapter 6.

7.1 The PS10 Field

The PS10 concentrating solar power plant is situated in the city of Seville,
which is in the south of Spain in Andalusia. The plant is operational and
has an electric power rating of 11 MW. The thermal inertia of the plant
allows it to run for 50 minutes at 50% load during cloud transients. The
plant takes up a land area of approximately 55 hectares and has a total of
624 heliostats, each with an aperture area of 120 m2 [53]. Figure 7.1 shows
an image of the plant.

The original PS10 field was designed using the software tool by Sandia
called WinDELSOL1.0 [20]. This code uses a pattern method of optimiza-
tion [35]. This means that a geometric pattern is assumed and the opti-
mization process determines the best values of the parameters that define
the pattern [34]. The optimization provides a field layout that is the best
adaptation of the pattern for the plant requirements.

From the literature, such as Buck [34] and Noone et al. [20], the PS10
field appears to be the field of choice for benchmarking of optimization
techniques. For this reason, the PS10 plant was analyzed using the model
and optimization method presented in previous chapters. The specifics of
the redesign are presented in the following section.

73
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Figure 7.1: The PS10 field [54]

7.2 Redesign

The PS10 field layout was redesigned using the free variable method. The
optimization was performed by starting with the original PS10 field. Iter-
ations required, on average, 3 hours each. Reported here are the results
after 120 iterations. The input values for the PS10 optimization, based on
information from Noone et al. [20], are summarized in Table 7.1.

Table 7.1: PS10 heliostat field data

Location Heliostats Receiver

Latitude 37◦26′N Count 624 Tower height 115m
Longitude 6◦14′W Height 10m Aperture width 14m
Site width 800m Width 12m Type Flat
Site length 800m Geometry Canted Tilt 18◦

PS10’s mirrors are canted; each mirror is shaped such that the focal
length of the mirror is equal to its distance from the target. This means
that the equation described in the model for determining the image size
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needs to be modified. The original equation is as follows:

Dimage = dλ+ w (7.1)

where d is the distance of the heliostat from the target and w is the
largest dimension of the heliostat. Since the mirror is canted, w falls away.
Fernández [55] reports that the PS10 field uses Solucar 120 heliostats. The
author mentions that these heliostats have an effective error of 2.9 mrad.
Incorporating this into the above equation yields:

Dimage = d(λ+ 2.9) (7.2)

The original PS10 field was modeled using the above equation to determine
image sizes on the receiver. To measure the accuracy of the model, the
optical efficiency of the plant at design point was calculated. The mean
annual optical efficiency was also calculated. Optical efficiency is the ra-
tio of energy intercepting the receiver to energy incident on the heliostat
field [13]. The optical efficiency values were compared to published PS10
data from Noone et al. [20]. The values are tabulated in Table 7.2. The
higher annual mean value from the Fortran model may result from the fact
that the Fortran model does not account for shading caused by the receiver
tower.

Table 7.2: PS10 optical efficiency comparison with Fortran model

PS10 Data Fortran Model

Design Point 64.7 63.3
Mean Annual 72.9 79.2

The results of the optimization are summarized in Table 7.3. Because of
time constraints, the optimization was only carried out to 120 iterations. At
624 variables, this optimization consisted of 1248 variables and over 700 000
constraints. The Kuhn-Tucker residual [27] at 120 iterations was still fairly
large—8.3—indicating that substantial improvements are still possible. The
results indicate an improvement of 1.2% on the original PS10 field in annual
intercepted energy.

Figure 7.2 shows the PS10 field before and after the 120 iterations of the
optimization process. Note that these are not converged results. However,
with additional iterations further improvements are to be expected. The
improvements in the intercepted energy could result in higher revenues for
the plant with little or no change in the operation and maintenance costs
of the plant.
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(a) Original PS10 field

(b) Improved PS10 field

Figure 7.2: PS10 redesign from original PS10
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(a) Random field (b) Improved random field

Figure 7.3: PS10 redesign from random start

Table 7.3: PS10 heliostat field data

Field Annual Intercepted Mean Optical
Intercepted Power at Efficiency

Energy Design Point
[GWh] [MW]

Original PS10 Field 111.0 47.6 63.3%
Improved PS10 Field 112.3 48.4 64.4%

The fact that the free variable method is able to improve a pattern
demonstrates, as Buck [34] has, that optimized patterns do not necessarily
result in optimal fields. The free variable method is thus key to obtaining
a wholly optimal field.

This optimization was also performed with a random starting point.
Figure 7.3 shows the random field with the same specifications as PS10 and
the improved random field after 120 iterations of the optimization process.
At this stage, the field had not yet reached the performance levels of the
original PS10 field. While this result does show a 6% improvement over the
random field, it is clear that it is not near an optimal field.

Considering the amount of time taken to reach this point, the case
demonstrates that the optimization method is highly time-consuming. The
method would require significant refinement before being considered as a vi-
able option for heliostat field layout design and optimization from a random
field.

The closeness of the results between the original PS10 field and the
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Figure 7.4: A comparison of the PS10 case study fields

field improved from the original field necessitated the need to compare the
two fields in a raytracer. The fields were thus simulated in SolTrace. A
comparison of the four fields—the original PS10, the field improved from
the original, the random field and the field improved from the random
field—is shown in Figure 7.4.

Results from SolTrace for the day simulated indicated, as did the Fortran
model, a 1.2% improvement by the improved PS10 field from the original
PS10 starting point. The random field appears to be superior in intercepted
energy during the morning and evening hours. This is most likely due to
the fact that the random field is more spread out and thus less susceptible
to shading than a more tightly packed field.

With regards to the practicality of the results, the improved PS10 field
does not have the same regular rows of heliostats that the original PS10
field does. This means that access roads to heliostats would be affected
which, in turn, may have an effect on the maintenance costs of the plant.
An improvement of 1.2% in annual intercepted energy would increase the
revenues obtained from electricity production, but this needs to be weighed
against the negative impact that may be caused by a change in the access
roads to the heliostats.

The free variable method allows for additional constraints to be included
in the optimization to provide for areas where heliostats cannot be placed
such as streams, holes, and restricted areas albeit with an increase in com-
putational time requirements. Thus, access roads to the heliostats can easily
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be included in the optimization as constraints. These were neglected here.
The tower location, and the boundaries of the site were included, however,
demonstrating the functioning of this mechanism.

7.3 Summary

The redesign of the PS10 field demonstrates that the free variable method is
capable of producing wholly optimal fields, contrary to the pattern method.
The free variable method was able to improve on the original PS10 in terms
of annual intercepted energy. The method is highly time-consuming. This is
demonstrated in the redesign performed starting from a random field which
proved to be less than satisfactory. Free variable optimization may possi-
bly be considered in commercial CSP for design only if the computational
overheads can be addressed adequately.

In the next chapter the findings of this study of heliostat field layout
optimization and the free variable method are discussed.
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Discussion

From the experience and insight gained from conducting an optimization,
this chapter describes some of the key findings in the area of heliostat field
layout optimization. A summary of the free variable method explored in
this project is presented. Thereafter, some of the findings with regards to
the characteristics of the analysis method and optimization method used
are described.

8.1 The Free Variable Method

The free variable method is a method of heliostat field optimization that
follows a more classical approach to optimization. This involves iteratively
evaluating some function, determining the gradients of the function with
respect to each variable and then adjusting each variable to follow the gra-
dient at an optimal step length in the direction of a better function value
until a certain objective is achieved [27]. The objective may be the maxi-
mization or a minimization of the function value.

In the case of heliostat field optimization, the function may be any of
the available field analysis methods such as ray tracing or approximation
methods. The objective may be to determine the maximum of the function.
As an example, the function may be a calculation of the optical efficiency
of the field and the objective may be a maximization of this function. The
optimization will keep altering the locations of the heliostats until it can no
longer improve the optical efficiency.

To determine the gradient of the function with respect to each variable,
a differentiated function is required. If a differentiated function is not avail-
able, the gradients may be obtained by finite difference calculations. If, for
example, a ray tracer is used as the function, the gradients may be obtained

80
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either by finding the partial derivatives of the ray tracer function with re-
spect to each variable or by finite difference calculations where the objective
function is evaluated by small perturbations of each variable which, in this
case, is each x and y co-ordinate of every heliostat.

At the start of the optimization, the variables may each be assigned a
sensible or random value. Any number of equality or inequality constraints
can be implemented into the optimization. In heliostat field optimization
this could include site boundary limitations, distances of heliostats to the
tower and distances of heliostats from each other. Furthermore, since he-
liostats are not limited to a pattern, their motion through the field during
optimization is free, which allows for effective consideration of elevation
variations within the site as well as discontinuities.

The main drawback of the free variable method of heliostat field opti-
mization is the complexity of the optimization algorithm needed and, as a
result, the computational expense. As has been shown in a previous chap-
ter, the free variable method requires the number of optimization variables
to be at least double the number of heliostats. It has also been shown that
the number of constraints far outnumber the variables. For this reason, se-
quential approximate optimization was used, which proved to be successful
at handling the large number of variables and constraints.

The pattern method and growth method can be done using a much less
complex algorithm than the constrained gradient-based algorithm required
in the free variable method. This adds to the computational expense of the
method. The computational expense is further heightened if a differentiated
function is not available; finite difference calculations add significantly to
computational expense.

The free variable method is best performed on a high performance com-
puter. The scope for parallelization is vast: obtaining gradient information,
analyzing separate heliostats, blocking and shading calculations, and con-
sidering the constraints, to name just a few. The free variable method
performed on a high performance computer with extensive parallelization
appears to be capable of yielding desirable results.

8.2 Field Analysis

Heliostat field layout analysis is required as part of the optimization. This
can be done either by ray tracing or by an approximation method. An
approximation method was used in this research project due to the reduced
computational requirements of the method as compared to ray tracing.
The approximation model was compared with a ray tracer to determine its
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accuracy. With the level of accuracy achieve, the model was sufficiently
able to drive the optimization towards finding an optimal field.

A disadvantage of the approximation model was that it was constructed
in such a way that made it difficult to differentiate analytically. Thus,
during optimization, differentiation by means of calculating finite differ-
ences was required. This is a computationally demanding process which
added significantly to the computational time. Automatic differentiation,
by means of ADIFOR, was attempted. However, due to the lack of support
from the developers of the software, this exercise was not successful.

8.3 Optimization Attributes

The sequential approximate optimization algorithm used in this research is
a gradient-based method and thus it has the disadvantage of converging to
local minima. As has been shown in a previous chapter, the final layout
of a heliostat field becomes dependent on the starting point as well as the
constraints applied. The final field does usually perform far better than the
initial field, but it still cannot be taken as the optimal layout for a given
set of system requirements.

It may be possible to determine a global minimum by having multiple
starts. A large number of optimization runs could be performed for the
same system using different starting conditions. This can be done easily
on a high performance cluster. Each optimization can be assigned its own
processor. At the end of the exercise the best performing field layout can
be chosen.

The time required per iteration in the optimization process increases as
the number of heliostats, and hence design variables and constraints, in-
creases. The average time per iteration was determined for three cases each
with a different number of heliostats. These are tabulated in Table 8.1.
The results indicate that the computational time requirements increase ex-
ponentially with the number of heliostats.

Table 8.1: Iteration time requirements for different number of heliostats

Number of heliostats Average CPU time per iteration
[s]

100 120
400 1000
624 5000
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Experimentation was done with a high performance computing cluster.
The major advantage of using the cluster was that an optimization could be
set to run independently on a system that does not need to be shut down.
A cluster, however, has a greater advantage that was not utilized in this
project: parallelization. With parallelization, it may be possible to reduce
the computational time required significantly.

8.4 Summary

A study of the free variable method has revealed the unique advantages
of the method as well as some of the pitfalls. The free variable method is
computationally demanding, yet it appears to be promising with regards to
finding optimal heliostat placements. A larger number of heliostats results
in exponentially higher computational time. Parallelization and high per-
formance computing methods were not used to their full potential but may
be useful tools for further research in this area.
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Conclusion

9.1 Findings

This research project has attempted the free variable method of optimiza-
tion, a method for which no prior studies been found. The study has
demonstrated that the method is made possible by the use of a constrained
gradient-based optimization algorithm. The results of the method are com-
parable with results from other methods of heliostat field layout optimiza-
tion. The method itself requires further development before being compa-
rable as an alternative method for commercial heliostat field layout opti-
mization. Other findings are summarized below:

� It is possible to construct an accurate heliostat field model for field
strength analysis from geometric considerations of the field.

� When starting from a random field the free variable method tends to
produce patterns.

� The free variable method is computationally expensive and is best
performed on a high performance computer.

� The constraints enforced in the free variable method are large in num-
ber and this is a cause for the large computational time requirements.
These constraints may not be entirely necessary though.

� Different receiver types result in different field layouts. Optimizations
conducted with cylindrical receivers tend to produce spread-out, sur-
round fields while those done with flat receivers produce one-sided
fields.

84
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� Each of the three optimization methods for heliostat field layouts
provide unique advantages and can be used where fitted. The choice
of method depends on the site conditions as well the computational
resources available.

9.2 Contributions

This thesis has added significantly to the body of knowledge on the free vari-
able method of heliostat field layout optimization. The following research
papers were direct results of this thesis:

� “On using a gradient-based method for heliostat field layout optimiza-
tion” (SolarPACES 2013, Las Vegas)

� “On selecting a method for heliostat field layout optimization” (SASEC
2014, Port Elizabeth)

� “Heliostat field layout optimization for central receiver systems” (EPPEI
Conference 2014, Midrand)

9.3 Recommendations

It is recommended that the free variable method remain an open field of
research. It appears to be a promising research area. A significant amount of
development of this method is needed before it can be applied in industry.
Also, it would be useful to develop an analysis model that can be easily
differentiated. This could significantly reduce computational time.

If a deeper study of the method’s response to different optimization
problems is pursued, it is recommended that little effort be exercised in the
construction of an analysis model. There are mature open source software
packages available for field analysis. DELSOL is one such package that
may be used for this purpose. DELSOL is freely available and can be
incorporated into the SAOi algorithm for optimization. More effort can be
placed on actual optimization and design.

9.4 Further work

This section describes suggestions for further work that could be done in
this field of research should it be continued. Further work can be done on
both the field analysis model and the optimization method.
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9.4.1 Analysis model

A useful addition to the analysis model would be the consideration of differ-
ent shapes of heliostats. This could include circular heliostats, which may
reduce the extent of blocking and shading and allow for a more densely
packed field.

The analysis model could also be modified to determine the strength
of the field in terms of its economic value. A calculation of the levelized
energy cost of the plant could thus become the objective of the analysis.

More variables could be added to the optimization by making the anal-
ysis model a function of these variables. This may include the tower height
and receiver aperture area. In this study, these parameters were taken as
constants.

9.4.2 Optimization

The free variable method appears to be dependent on the starting point of
the optimization. This means that the optimization has the issue of falling
into local minima. It would be valuable to explore this in more depth and
it could be done by having multiple runs of the same problem with different
starting points.

A more quantitative analysis of the different methods is needed. It
would be useful to test each method with the same problem and to note
the differences in performance.
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Appendix A

Sample Calculation

A.1 Sample Calculation Problem

For a sample calculation, a simple case is considered consisting of two he-
liostats. The intercepted energy is calculated for a single hour. The spec-
ifications of the case are tabulated in Table A.1. The co-ordinates of the
heliostats and receiver tower are given in Table A.2 and depicted in Fig-
ure A.1. The goal is to determine the intercepted energy from heliostat 1
at 11am on August 16.

Table A.1: Sample calculation case specifications

Location Heliostats Receiver

Latitude 28◦S Count 2 Tower Height 15m
Longitude 21◦E Height 1m Type External cylindrical
Site width 40m Width 1m Diameter 1.4m
Site length 40m Geometry Flat Height 1.4m

Table A.2: Sample calculation heliostat and tower co-ordinates

x y

Heliostat 1 15 35
Heliostat 2 15 33

Tower 20 0
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Figure A.1: Sample calculation heliostat field

A.2 Sun Vector

First, the day angle is calculated. August 16 is day 228, thus

B = (n− 1)
360

365

= (228− 1)
360

365
= 223.9◦

This value is used to determine the equation of time value:

E = 229.2(0.000075 + 0.001868 cosB − 0.032077 sinB

− 0.014615 cos 2B − 0.04089 sin 2B)

= 229.2(0.000075 + 0.001868 cos(223.9)− 0.032077 sin(223.9)

− 0.014615 cos(2× 223.9)− 0.04089 sin(2× 223.9))

= −4.689

Solar time is calculated:

Solar time = Standard time + [4(Lloc − Lst) + E]/60

= 11 + [4(21− 30) + (−4.689)]/60

= 10.32

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX A. SAMPLE CALCULATION 90

This translates to 10:19:12 since 0.32 of 60 minutes equals 19 minutes and
12 seconds. Using this value, the hour angle can be calculated:

ω = [(Solar time)/24− 0.5]× 360

= [(10.32)/24− 0.5]× 360

= −25.17◦

Since this value is negative, it accurately shows that the sun is slightly east.
The declination angle is then calculated:

δ = 0.006918− 0.399912 cos(B) + 0.070257 sin(B)

− 0.006758 cos(2B) + 0.000907 sin(2B)

− 0.002679 cos(3B) + 0.00148 sin(3B)

= 0.006918− 0.399912 cos(223.9) + 0.070257 sin(223.9)

− 0.006758 cos(2× 223.9) + 0.000907 sin(2× 223.9)

− 0.002679 cos(3× 223.9) + 0.00148 sin(3× 223.9)

= 0.2442 rad

= 13.99◦

The plant is located in the Southern hemisphere. The latitude angle at the
location is −28◦. The zenith angle is then

θz = cos−1[cos(φ)× cos(δ)× cos(ω) + sin(φ)× sin(δ)]

= cos−1[cos(−28)× cos(13.99)× cos(−25.17) + sin(−28)× sin(13.99)]

= 48.56◦

This gives the azimuth angle as

αz = 90− θz
= 90− 48.56

= 41.44◦

The solar azimuth angle is then calculated:

γs = sign(ω)

∣∣∣∣cos−1

(
cos θz sinφ− sin δ

sin θz cosφ

)∣∣∣∣
= sign(−25.17)

∣∣∣∣cos−1

(
cos(48.56) sin(−28)− sin(13.99)

sin(48.56) cos(−28)

)∣∣∣∣
= −146.6◦
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Finally, the three components of the sun vector are determined. The East
component is

sE = cos(αz)×− sin(γs)

= cos(41.44)×− sin(−146.6)

= 0.4127

the north component is

sN = cos(αz)×− cos(γs)

= cos(41.44)×− cos(−146.6)

= 0.6257

and the zenith component is

sz = sin(αz)

= sin(41.44)

= 0.6619

A.3 Target Vector

Since the tower is 15m high, the target’s co-ordinates are (20, 0, 15). The
target vector for heliostat 1 then is

T1 =

 xT − x1

yT − y1

zT − z1

 =

 20− 15
0− 35
15− 0

 =

 5
−35
15


The magnitude of this vector is

||T1|| =
√

(52 + (−35)2 + 152)

= 38.41

thus, the unit vector is

t1 =

 5/38.41
−35/38.41
15/38.41

 =

 0.1302
−0.9113
0.3906


Similarly, for heliostat 2, the target vector is

T2 =

 5
−33
15
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and its unit vector is

t2 =

 0.1366
−0.9018
0.4099


At this point it is necessary to change from the x-y-z co-ordinate system

to the i-j-k co-ordinate system. This is because the sun vector uses this
convection. Any further calculations need to be in the same co-ordinate
system.

In the x-y-z, x and y are positive west and south respectively. In the
i-j-k system, i and j are positive east and north. Thus, to change from the
to the i-j-k system, the signs of the x and y values of the vectors need to
be changed. The target unit vectors become

t1 =

 −0.1302
0.9113
0.3906

 and t2 =

 −0.1366
0.9018
0.4099


A.4 Heliostat Normal

The heliostat normal for heliostat 1 is

N1 = s + t1

=

 0.4127 + (−0.1302)
0.6257 + 0.9113
0.6619 + 0.3906

 =

 0.2825
1.537
1.052


The unit vector for this normal vector is

n1 =
N1

||N1||

=

 0.1499
0.8158
0.5586


Similarly, the unitized heliostat normal of heliostat 2 is

n2 =

 0.1464
0.8098
0.5682


It will be seen later that these two heliostats are close enough to each other
to cause blocking. In blocking, the assumption is made that heliostats close
enough to each other to cause blocking have the same orientation. The
similarity of the normal vectors of the two heliostats illustrates the validity
of this assumption.
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A.5 Cosine Efficiency

The cosine efficiency of heliostat 1 is

ηc = s · n1

= 0.4127× 0.1499 + 0.6257× 0.8158 + 0.6619× 0.5586

= 0.9421

A.6 Attenuation Efficiency

To calculate the attenuation efficiency of heliostat 1, first the distance of
the heliostat from the target is calculated. This is done using the x-y-z
co-ordinates of the heliostat and the tower:

dT = ||(x1, y1, z1)− (xT , yT , zT )||
= ||(15, 35, 0)− (20, 0, 15)||
= 38.41

The attenuation efficiency is then

ηai = 0.99321− 0.0001176 · dT + 1.97× 10−8 · d2
T

= 0.99321− 0.0001176 · 38.41 + 1.97× 10−8 · 38.412

= 0.9887

A.7 Spillage Efficiency

Using the distance, dT , determined in the previous calculation, the size of
the reflected image at the receiver is determined:

Dimage = dTλ+ w

= (38.41)(9.3× 10−3) + 1

= 1.357 m

To determine the angle, α, at which the image intercepts the receiver, the
horizontal distance of the heliostat to the tower is first determined:

dxy = ||(xT , yT , 0)− (x1, y1, 0)||
= ||(20, 0, 0)− (15, 35, 0)||
= 35.36 m
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Using this distance, α is calculated to be:

α = sin−1

(
dxy
dT

)
= sin−1

(
35.36

38.41

)
= 67.01◦

This angle is used to calculate the vertical lengthening of the elliptical
image:

Lv =
Dimage

sinα

=
1.357

sin(67.01)

= 1.474 m

To determine the extent of spillage, the total area of the actual image is
calculated:

Atotal =
π

4
LvDimage

=
π

4
(1.474)(1.357)

= 1.571 m2

The total ineffective area can then be calculated. Since the length of the
image in the horizontal direction does not exceed the diameter of the re-
ceiver, only the ineffective area caused by the vertical length needs to be
determined:

Aineffective =
(Lv −HReceiver) ·Dimage

1.284

=
(1.474− 1.4) · 1.357

1.284
= 0.07821 m2

The effective area is then:

Aeffective = Atotal − Aineffective

= 1.571− 0.07821

= 1.493 m2
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Thus, the spillage efficiency is

ηsp =
Aeffective

Atotal

=
1.493

1.571
= 0.9502

A.8 Blocking Efficiency

To determine whether or not blocking will take place, the necessary vectors
are to be determined. The target vector is the same as what was calculated
above:

T =

 5
−35
15


The vector R, which points from the heliostat under consideration, heliostat
1, to the potentially blocking heliostat, heliostat 2, is

R =

 x2 − x1

y2 − y1

z2 − z1


=

 15− 15
33− 35
0− 0


=

 0
−2
0


The shortest distance, d, from heliostat 2 to the target vector line of helio-
stat 1 is then

d =
|T×R|
|T|

=

∣∣∣∣∣∣
 5
−35
15

×
 0
−2
0

∣∣∣∣∣∣∣∣∣∣∣∣
 5
−35
15

∣∣∣∣∣∣
= 0.8234 m
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Next, the critical distance, dc, is determined:

dc = (H2
w +H2

h)
1
2

= (12 + 12)
1
2

= 1.414 m

Since the distance, d, is smaller than the critical distance, dc, there is a
potential for blocking. It is now necessary to determine whether or not
heliostat 2 is closer to the target than heliostat 1. To do this, the scalar
parameter, t, of the equation of the target vector line is determined:

t =
R ·T
|T|2

=

 0
2
0

 ·
 5
−35
15


∣∣∣∣∣∣
 5
−35
15

∣∣∣∣∣∣
2

= 0.04746

Since this parameter is positive, heliostat 2 is indeed closer to the target
than heliostat 1 and will cause blocking. The extent of blocking can now
be calculated. For this calculation, the heliostat center becomes the origin
of the local co-ordinate system.

To determine the extent of blocking, the two heliostat faces must be
discretized, and lines need to be extended from the discretization points.
Firstly, the point separation distances are determined along the height

δh =
Hh

3

=
1

3
= 0.3333 m

and the width

δw =
Hw

3

=
1

3
= 0.3333 m
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With the center of the heliostat at (0, 0, 0), each node will have its own
unique co-ordinates determined by the orientation of the heliostat. For this
example, the co-ordinates of a node to the right of the central node will
be determined. The heliostat is treated as a plane in 3-dimensional space.
The equation of a plane is simply

ax+ by + cz = 0

where 〈a, b, c〉 is a vector perpendicular to the plane. This is the normal
vector that was calculated in a previous step. The vector, which can be
denoted P in the plane of the heliostat and parallel to the horizontal, can
be determined by setting z = 0 in the equation of the plane and giving y
a positive value, of, for example, 1. Using the heliostat as the local x-y-z
co-ordinate system, x can then be calculated as

ax = −by
x = −by/a

= −(−0.8158)(1)/(−0.1499)

= −5.442

Thus, the vector in the plane of the heliostat and parallel to the hori-
zontal is P = 〈−5.442, 1, 0〉. This vector can be used to determine the
co-ordinates of the nodes left and right of the center. This vector can be
unitized by dividing each component by the magnitude of the vector, giving
p = 〈−0.9837, 0.1808, 0〉.

The next vector needed is a vector, q, perpendicular to p and pointing
towards the top of the heliostat. This vector can be used to determine the
co-ordinates of nodes above and below the central node; thus all the nodes
can be mapped out. Since q is perpendicular to p and the normal vector,
n1, q is simply the cross product of n1 and q:

q = n1 × p

=

 −0.1499
−0.8158
0.5586

×
 −0.9837

0.1808
0


=

 −0.1010
−0.5489
−0.8288


The co-ordinates of all 9 nodal points can be determined using the vectors
p and q. To determine the co-ordinates of node in the top right corner of
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the heliostat face, using the center of the heliostat as the origin, a unit of
separation is added to the corresponding component along the appropriate
vector. The top right node is a single step to the right plus a single step
upwards of the center. Its co-ordinates in the local co-ordinate system are: x

y
z

 =

 0
0
0

+ 1× δwp + 1× δhq

=

 0
0
0

+ 1× (0.3333)

 −0.9837
0.1808

0

+ 1× (0.3333)

 −0.1010
−0.5489
−0.8288


=

 −0.3641
−0.1227
−0.2762


Similarly, the local co-ordinates of all the nodes on the heliostat surface can
be determined.

Since the assumption is made that the two heliostats have the same
orientation, the vectors p and q can be used to determine nodal points on
heliostat 2 as well. To do this, the origin of heliostat 2 relative to heliostat
1 is used as the starting point as opposed to 〈0, 0, 0〉 used in the calculation
above. To determine the co-ordinates of the center of heliostat 2 relative
to heliostat 1, the global co-ordinates of heliostat 2 are subtracted from
the global co-ordinates of heliostat 1. Essentially, the co-ordinates have the
same values as the components of the vector R calculated for the blocking
potential check.

After finding the co-ordinates of all the points on both heliostats, the
next step in determining the extent of blocking is to extend lines from each
of the nodes on heliostat 1 and to determine whether or not they intersect
heliostat 2. For this example, a line from the central node of heliostat 1
and the central node of heliostat 2 will be used.

The calculation is basically a line-plane intersection calculation where
the plane is the blocking heliostat, heliostat 2. The value of scalar parame-
ter, t, of the line from heliostat 1 at the point of intersection with heliostat
2 needs to be determined. Weisstein [45] shows that, given three points on a
plane, x1,x2,x3, and two points on a line, x4 and x5, the scalar parameter,
t, along the line at the point of intersection of the line and the plane can
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be determined as follows:

t = −

∣∣∣∣∣∣∣∣
1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1 0
x1 x2 x3 x5 − x4

y1 y2 y3 y5 − y4

z1 z2 z3 z5 − z4

∣∣∣∣∣∣∣∣
Since all the nodes are in the plane of the heliostats, any 3 of these can be
used, along with any two points on the line. The first point on the line can
be the node on the heliostat, and the second point can be determined using
the target vector:

x5 = x4 + T

Substituting the co-ordinates of all the points needed to solve for t, t is
found to be 0.04518. This value for t can now be used to determine the
co-ordinates of the intersection point using the equation of the line:

x′ = x4 + Tt

=

 0
0
0

+

 5
−35
15

 0.04518

=

 0.2259
−1.581
0.6777


This point can now be used to determine the proximity of the intersection
point from the central node of heliostat 2:

d = ||x′ −R||

=

∥∥∥∥∥∥
 0.2259
−1.581
0.6777

−
 0
−2
0

∥∥∥∥∥∥
= 0.8280

A critical distance is now needed to determine whether or not this line is in
close proximity to the node. This critical distance can be taken to be half
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the hypotenuse of the two separation distances of the nodes:

dc =

(√
δ2
h + δ2

w

)
/2

=
(√

0.33332 + 0.33332
)
/2

= 0.2357 m

Since the distance of the intersection point is further than the critical dis-
tance from the node, it cannot be confirmed that this line intersects heli-
ostat 2. However, it might be close enough to one of the other nodes on
heliostat 2. This calculation must therefore be done with all of the nodes
on heliostat 2. If the intersection point comes within the critical distance,
dc, of any of the nodes, the line from heliostat 1 intersects heliostat 2.

After doing the calculation for all combinations of nodes, it is found
that the number of lines from heliostat 1 intersecting heliostat 2 is 6. The
extent of blocking can now be determined:

ηb1 =
Number of intersecting lines

9

=
6

9
= 0.6667

A.9 Shading Efficiency

The shading efficiency calculation proceeds in the same manner that the
blocking calculation does. The only difference is that the sun vector, S, is
used for the equations of all the lines instead of the target vector.

After doing the calculation for shading, it is found that heliostat 2 does
not shade heliostat 1. Thus the shading efficiency at this hour is:

ηs1 = 1

A.10 Intercepted Energy

Having obtained all the efficiencies for heliostat 1, the intercepted energy
from heliostat 1 can be calculated. The DNI at this hour is 955 W/m2.
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Thus, the intercepted energy from heliostat 1 for this hour is

I = A×DNI× ηc1ηa1ηsp1ηb1ηs1
= (1× 1)× (955)× (0.9421)(0.9887)(0.9502)(0.6667)(1)

= 563.5 Wh
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Computer Code

B.1 Fortran Code

1 program test1

2

3 integer u, fdata (12), i

4 parameter (n = 4, u = 20)

5 double precision Field1(n), f, ruser (3 ,600), DNIN

, OptE ,

6 + d4,d5

7

8 !Integers Only!

9 fdata (1) = 1 !Mirror type (1 = flat; 2 =

curved)

10 fdata (2) = 1 !Field direction (1 = south

field; 2 = north field)

11 fdata (3) = 15 !Tower Height

12 fdata (4) = 1 !Heliostat Height (manually

changed in Objective function if non -integer)

13 fdata (5) = 1 !Heliostat Width (manually

changed in Objective function if non -integer)

14 fdata (6) = n/2 !Number of heliostats

15 fdata (7) = 192 !Number of hours

16 fdata (8) = 2 !Receiver Width

17 fdata (9) = 20 !Receiver x-co-

ordinate

18 fdata (10)= 0 !Receiver y-co-

ordinate

19 fdata (11)= 1 !Receiver type (1 = external ,

2 = cavity)

102
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20 fdata (12)= 1 !Pylon Height

21

22 ! Starting Point

23

24

25 c open(u, FILE = ’Field_2.txt’, STATUS = ’OLD’)

26 c do 10 i = 1, n

27 c read(u,*) Field1(i)

28 c10 continue

29 c close(u)

30

31 ! x-co -ordinates

32 Field1 (1) = 15

33 Field1 (2) = 15

34 c Field1 (3) = 20

35 c

36 ! y-co -ordinates

37 Field1(n/2 + 1) = 33

38 Field1(n/2 + 2) = 35

39 c Field1(n/2 + 3) = 130

40

41 d4 = fdata (4)

42 d5 = fdata (5)

43

44 call dsinput(ruser ,fdata)

45

46 call heliostat(Field1 ,n,ruser ,fdata ,f)

47

48 write (*,*) f

49

50 DNIN = 0

51

52 c Optical Efficiency -----------------

53 do 134 i = 1,192

54 DNIN = ruser(1,i) + DNIN

55 134 continue

56 OptE = -f/(DNIN*d4*d5*n/2)

57 write (*,*) ’Optical Efficiency: ’, OptE

58

59

60 stop

61 end

62
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63

64 subroutine heliostat(Field ,n,ruser ,fdata ,Energy)

65 c Variables

66 integer fdata (*), n, n2 , i, j, k, l, q,

67 c Blocking and Shading

68 + t1,q1,r1,pmatx (25),pmaty (25),flag1 ,

69 c Other

70 + flag , Tower (3), flag2 ,

71 c Field data

72 + d1, d2, d3, d6, d7, d8, d9, d10

, d11 , d12

73 c

74 double precision Area(fdata (7)), d4 , d5 ,

75 c Angles

76 + Theta1 , Theta2 ,

77 c Efficiencies

78 + n_at(fdata (6)), n_s , n_b , n_c , n_sp(

fdata (6)), n_tot ,

79 c Vectors

80 + U1(3), Target1 (3), Normal (3), t_mag ,

u_mag ,

81 + n_mag , s_mag , Txy(3), Nxy(3), Sxy(3),

82 c Other

83 + db(4), ds(3), xa(3), sundist ,

84 + b_h , b_w , s_h , s_w , dist2 , diag , temp1 ,

temp2 , temp3 ,

85 c Spillage

86 + distance(fdata (6)), distance2(fdata (6))

, image , image2 ,

87 + alpha1 ,

88 c Blocking and Shading

89 + rc(3), t,ff,this (25,3),that (25,3),thisp

(3), dist ,

90 + thatp (3), thisu

(3), thatu (3), tt_mag , dcw , dch , dcd ,

91 + Td(3), r2,det1 , det2 , pt,

92 c Other

93 + pi, Energy , Field (*), ruser (3 ,600),

Fieldz(n/2),

94 + MAT(4,4),MAT2 (4,4), x5(3)

95

96 c Field Data
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97 d1 = fdata (1) !Mirror type (1 = flat; 2 =

curved)

98 d2 = fdata (2) !Field direction (1 = south field

; 2 = north field)

99 d3 = fdata (3) !Tower Height

100 d4 = fdata (4) !Heliostat Height

101 d5 = fdata (5) !Heliostat Width

102 d6 = fdata (6) !Number of heliostats

103 d7 = fdata (7) !Number of hours

104 d8 = fdata (8) !Receiver Width/Height

105 d9 = fdata (9) !Receiver x-co -ordinate

106 d10= fdata (10) !Receiver y-co -ordinate

107 d11= fdata (11) !Receiver type (1 = external , 2 =

cavity)

108 d12= fdata (12) !Pylon height

109

110 c Non -integer dimesioned heliostats

111 c d4 = 1.4

112 c d5 = 1.4

113 ff = 0

114 c ----Number of Heliostats

115 n2 = n/2

116 pi= 3.14159265359 d0

117

118 c ----Heliostat property

119 diag = d4**2 + d5**2

120 diag = sqrt(diag)

121 dcw = d5/5

122 dch = d4/5

123 dcd = sqrt(dcw**2 + dch **2)

124

125

126 c ----Heliostat Matrix for blocking and shading points

127 r1 = 0

128 do t1 = 1,5

129 do q1 = 1,5

130 r1 = r1 + 1

131 pmatx(r1)=-4+q1

132 end do

133 end do

134

135 r1 = 0

136 do t1 = 1,5
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137 do q1 = 1,5

138 r1 = r1 + 1

139 pmaty(r1)=4-t1

140 end do

141 end do

142

143 c Objective Function ------------

144

145 Tower (1) = d9

146 Tower (2) = d10

147 Tower (3) = d3

148

149 Energy = 0

150

151 call topology(Field ,Fieldz ,n2)

152

153 flag2 = 0 !indication as to whether attenuation

and spillage have been calculated

154

155

156 do 1000 i = 1, d7

157 Area(i) = 0

158 if (ruser(1,i) .gt. 0) then !DNI > 0

159

160 c Sun vector for this hour in ijk format

161 U1(1) = ruser(2,i)

162 U1(2) = ruser(2,i+d7)

163 U1(3) = ruser(2,i+d7*2)

164

165 u_mag = U1(1)**2 + U1(2)**2 + U1(3)**2

166

167 U1(1) = U1(1)/u_mag

168 U1(2) = U1(2)/u_mag

169 U1(3) = U1(3)/u_mag

170

171

172 !Sun Vector in xy co -ordinates

173 Sxy (1) = -U1(1)

174 Sxy (2) = -U1(2)

175 Sxy (3) = U1(3)

176

177 c For each heliostat

178 do 100 j = 1,n2
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179 c Target Vector in ijk co -ordintates

180 Target1 (1) = -(Tower (1) - Field(j))

181 Target1 (2) = -(Tower (2) - Field(j+n2))

182 Target1 (3) = Tower (3) - Fieldz(j)

183

184 t_mag = sqrt(Target1 (1)**2 + Target1 (2)**2 +

185 + Target1 (3) **2)

186

187 c Distance from heliostat to tower

188 c distance = sqrt(Target1 (1)**2 + Target1 (2)

**2 +

189 c + Target1 (3) **2)

190

191 c Normal unit vector

192 Normal (1) = (Target1 (1)/t_mag + U1(1))

193 Normal (2) = (Target1 (2)/t_mag + U1(2))

194 Normal (3) = (Target1 (3)/t_mag + U1(3))

195 n_mag = sqrt(Normal (1)**2 + Normal (2)**2 +

196 + Normal (3) **2)

197

198 Normal (1) = Normal (1)/n_mag

199 Normal (2) = Normal (2)/n_mag

200 Normal (3) = Normal (3)/n_mag

201

202 c Cosine -----------------------

203 n_c = U1(1)*Normal (1) + U1(2)*Normal (2) + U1

(3)*

204 + Normal (3)

205

206

207 if (flag2 .eq. 0) then !attenuation and

spillage need only be calculated once

208 c Distance from heliostat to tower

209 distance(j) = sqrt((Tower (1) - Field(j))**2

+ (Tower (2) -

210 + Field(j+n2))**2 + (Tower (3) -

Fieldz(j))**2)

211

212 c Attenuation ------------------

213 n_at(j) = 0.99321 - 0.0001176* distance(j)

+

214 + 1.97*(10**( -8))*distance(j)**2

215
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216 c Spillage ----------------------

217

218 if (d1 .eq. 1) then

219 image = distance(j)*9.3e-3 + d5

220 endif

221

222 if (d1 .eq. 2) then

223 image = distance(j)*9.3e-3

224 endif

225

226 !External Receiver -------------

227 if (d11 .eq. 1) then

228 distance2(j) = sqrt(( Tower (1) - Field(j

))**2 +

229 + (Tower (2)-Field(j+n2))**2)

230 alpha1 = asin(distance2(j)/distance(j))

231 image2 = image/sin(alpha1)

232

233 n_sp(j) = 1

234

235 if (image2 .gt. d8) then

236 temp1 = image2*image*pi/4

237 temp2 = temp1 - (image2 -d8)*image

/1.284

238 temp2 = temp2/temp1

239 n_sp(j) = n_sp(j)*temp2

240 endif

241

242 if (image .gt. d8) then

243 temp1 = image2*image*pi/4

244 temp2 = temp1 - (image - d8)*image2

/1.284

245 temp2 = temp2/temp1

246 n_sp(j) = n_sp(j)*temp2

247 endif

248

249 if (n_sp(j) .gt. 1) then

250 n_sp(j) = 1

251 endif

252 endif !External receiver --------

253

254 !Cavity receiver ----------------

255 if (d11 .eq. 2) then
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256 n_sp(j) = 1

257

258 distance2(j) = ((-1)**d2)*( Tower (2)-

Field(j+n2)) !negative for south

field , positive for north

259 alpha1 = asin(distance2(j)/distance(j))

260

261 if (alpha1 .le. 0) then

262 n_sp(j) = 0

263 image2 = 0

264 image = 0

265 elseif (alpha1 .gt. 0) then

266 image2 = image/sin(alpha1)

267 endif

268

269 if (image2 .gt. d8) then

270 temp1 = image2*image*pi/4

271 temp2 = temp1 - (image2 -d8)*image

/1.284

272 temp2 = temp2/temp1

273 n_sp(j) = n_sp(j)*temp2

274 endif

275

276 if (image .gt. d8) then

277 temp1 = image2*image*pi/4

278 temp2 = temp1 - (image - d8)*image2

/1.284

279 temp2 = temp2/temp1

280 n_sp(j) = n_sp(j)*temp2

281 endif

282

283 if (n_sp(j) .gt. 1) then

284 n_sp(j) = 1

285 endif

286 endif !Cavity receiver ----------

287

288 !PS10 receiver ----------------

289 if (d11 .eq. 3) then

290 n_sp(j) = 1

291

292 distance2(j) = ((-1)**d2)*( Tower (2)-

Field(j+n2)) !negative for south

field , positive for north
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293 beta1 = atan(Tower (3)/(abs(Tower (2) -

Field(j))))

294

295 alpha1 = asin(distance2(j)/distance(j))

296 alpha1 = alpha1 + (18*pi /180)*sin(beta1

) !PS10 ’s receiver slants 18deg

downwards

297

298 if (alpha1 .le. 0) then

299 n_sp(j) = 0

300 image2 = 0

301 image = 0

302 elseif (alpha1 .gt. 0) then

303 image2 = image/sin(alpha1)

304 endif

305

306 if (image2 .gt. d8) then

307 temp1 = image2*image*pi/4

308 temp2 = temp1 - (image2 -d8)*image

/1.284

309 temp2 = temp2/temp1

310 n_sp(j) = n_sp(j)*temp2

311 endif

312

313 if (image .gt. d8) then

314 temp1 = image2*image*pi/4

315 temp2 = temp1 - (image - d8)*image2

/1.284

316 temp2 = temp2/temp1

317 n_sp(j) = n_sp(j)*temp2

318 endif

319

320 if (n_sp(j) .gt. 1) then

321 n_sp(j) = 1

322 endif

323 endif !PS10 receiver ----------

324

325

326 endif

327

328 c Blocking and Shading -------------

329

330 !Target Vector in xy co-ordinates
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331 Txy(1) = -Target1 (1)

332 Txy(2) = -Target1 (2)

333 Txy(3) = Target1 (3)

334

335 !Generate Points on this heliostat

336 !Normal Vector in xy co-ordinates

337 Normal (1) = -Normal (1)

338 Normal (2) = -Normal (2)

339 !Normal (3) = Normal (3)

340

341 !Plane Vector

342 thisp (1) = -Normal (2) *1/( Normal (1))

343 thisp (2) = 1

344 thisp (3) = 0

345 tt_mag = sqrt(thisp (1) **2 + thisp (2) **2 +

thisp (3) **2)

346 thisp (1) = thisp (1)/tt_mag

347 thisp (2) = thisp (2)/tt_mag

348 thisp (3) = thisp (3)/tt_mag

349

350 !Up Vector

351 thisu (1) = Normal (2)*thisp (3) - Normal (3)*

thisp (2)

352 thisu (2) = -(Normal (1)*thisp (3) - Normal (3)*

thisp (1))

353 thisu (3) = Normal (1)*thisp (2) - Normal (2)*

thisp (1)

354

355 !Points on this heliostat

356 do t1 = 1,25

357 do q1 = 1,3

358 this(t1 ,q1) = 0 + dcw*pmatx(t1)*thisp(q1

) +

359 + dch*pmaty(t1)*thisu(q1)

360

361

362 end do

363 end do

364

365 n_b = 1

366 n_s = 1

367

368 do 40 k = 1,n2
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369 if (k .ne. j) then

370

371 !Relative x and y co -ordinates

372 rc(1) = Field(k) - Field(j)

373 rc(2) = Field(k+n2) - Field(j+n2)

374 rc(3) = Fieldz(k) - Fieldz(j)

375

376 c Blocking ----------------------

377

378 !Point to a line (distance between target

vector line and heliostat k)

379 xa(1) = -rc(1)

380 xa(2) = -rc(2)

381 xa(3) = -rc(3)

382

383 db(1) = Txy (2)*xa(3) - Txy (3)*xa(2)

384 db(2) = -(Txy (1)*xa(3) - Txy (3)*xa(1))

385 db(3) = Txy (1)*xa(2) - Txy (2)*xa(1)

386

387 temp1 = db(1)**2 + db(2)**2 + db(3)**2

388 temp1 = sqrt(temp1)

389 temp2 = Txy(1)**2 + Txy(2)**2 + Txy(3)**2

390 temp2 = sqrt(temp2)

391

392 db(4) = temp1/temp2

393

394 !is this heliostat close enough to the

other heliostat to potentially block?

395 if (db(4) .lt. diag) then

396 !is "that" heliostat in front of "this"?

397 temp1 = Tower (1) - Field(k)

398 temp2 = Tower (2) - Field(k+n2)

399 temp3 = Tower (3) - Fieldz(k)

400 dist2 = sqrt(temp1 **2 + temp2 **2 + temp3

**2)

401

402

403 if (dist2 .lt. distance(j)) then

404 !Generate points on "that" heliostat

405 do t1 = 1,25

406 do q1 = 1,3

407 that(t1,q1) = rc(q1) + dcw*

pmatx(t1)*thisp(q1)
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408 + + dch*pmaty(t1)*

thisu(q1)

409 end do

410 end do

411

412

413 MAT(1,1) = 1d0

414 MAT(1,2) = 1d0

415 MAT(1,3) = 1d0

416 MAT(1,4) = 1d0

417

418 MAT(2,1) = that (1,1) !x1

419 MAT(2,2) = that (5,1) !x2

420 MAT(2,3) = that (25,1) !x3

421 ! MAT(2,4) = 0 !x4 Specific to the

point on "this" heliostat

422

423 MAT(3,1) = that (1,2) !y1

424 MAT(3,2) = that (5,2) !y2

425 MAT(3,3) = that (25,2) !y3

426 ! MAT(3,4) = 0 !y4 Specific to the

point on "this" heliostat

427

428 MAT(4,1) = that (1,3) !z1

429 MAT(4,2) = that (5,3) !z2

430 MAT(4,3) = that (25,3) !z3

431 ! MAT(4,4) = 0 !z4 Specific to the

point on "this" heliostat

432

433

434 MAT2 (1,1) = 1d0

435 MAT2 (1,2) = 1d0

436 MAT2 (1,3) = 1d0

437 MAT2 (1,4) = 0d0

438

439 MAT2 (2,1) = that (1,1) !x1

440 MAT2 (2,2) = that (5,1) !x2

441 MAT2 (2,3) = that (25 ,1) !x3

442 ! MAT2 (2,4) = 0 !x5 -x4 Specific to the

point on "this" heliostat

443

444 MAT2 (3,1) = that (1,2) !y1

445 MAT2 (3,2) = that (5,2) !y2
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446 MAT2 (3,3) = that (25 ,2) !y3

447 ! MAT(3,4) = 0 !y5 -y4 Specific to the

point on "this" heliostat

448

449 MAT2 (4,1) = that (1,3) !z1

450 MAT2 (4,2) = that (5,3) !z2

451 MAT2 (4,3) = that (25 ,3) !z3

452 ! MAT2 (4,4) = 0 !z5 -z4 Specific to the

point on "this" heliostat

453

454

455 flag1 = 0

456 r2 = 0

457 do t1 = 1,25

458

459 !write this point to the first

matrix

460 MAT(2,4) = this(t1 ,1) !x4

461 MAT(3,4) = this(t1 ,2) !y4

462 MAT(4,4) = this(t1 ,3) !z4

463

464 !compute the first determinant

465 call M44DET(MAT ,det1)

466

467 !find another point on this line

468 x5(1) = this(t1 ,1) + Txy (1)!*0.1 !

x5

469 x5(2) = this(t1 ,2) + Txy (2)!*0.1 !

y5

470 x5(3) = this(t1 ,2) + Txy (3)!*0.1 !

z5

471

472 !write this point to the second

matrix

473 MAT2 (2,4) = x5(1) - this(t1 ,1) !x5

-x4

474 MAT2 (3,4) = x5(2) - this(t1 ,2) !y5

-y4

475 MAT2 (4,4) = x5(3) - this(t1 ,3) !z5

-z4

476

477 !compute the second determinant

478 call M44DET(MAT2 ,det2)
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479

480 !find the intersection point

481 pt = -1*(det1/det2)

482 db(1) = this(t1 ,1) + (x5(1) - this

(t1 ,1))*pt

483 db(2) = this(t1 ,2) + (x5(2) - this

(t1 ,2))*pt

484 db(3) = this(t1 ,3) + (x5(3) - this

(t1 ,3))*pt

485 C db(1) = x4 - (x5 - x4)*t

486 C db(2) = y4 - (y5 - y4)*t

487 C db(3) = z4 - (z5 - z4)*t

488

489

490 do q1 = 1,25

491

492 !determine the distance between the

intersection point and the point on

that helisotat

493 Td(1) = db(1) - that(q1 ,1)

494 Td(2) = db(2) - that(q1 ,2)

495 Td(3) = db(3) - that(q1 ,3)

496

497 temp1 = Td(1)**2 + Td(2)**2 +

Td(3) **2

498 temp1 = sqrt(temp1)

499

500 dist = temp1

501

502 if (dist.le.dcd *0.5) then

503 ! if line(of this point t) comes

close to (that point q)

504 flag1 = 1

505

506 endif

507 end do

508 if (flag1 .eq. 1) then

509 r2 = r2 + 1

510 endif

511 flag1 = 0

512 end do

513

514 n_b = n_b*(1 - r2/25)
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515

516 endif

517 endif

518

519 c Shading ---------------------

520

521 !Point to a line (distance between sun

vector line and heliostat k)

522 db(1) = Sxy (2)*xa(3) - Sxy (3)*xa(2)

523 db(2) = -(Sxy (1)*xa(3) - Sxy (3)*xa(1))

524 db(3) = Sxy (1)*xa(2) - Sxy (2)*xa(1)

525

526 temp1 = db(1)**2 + db(2)**2 + db(3)**2

527 temp1 = sqrt(temp1)

528

529 temp2 = Sxy(1)**2 + Sxy(2)**2 + Sxy(3)**2

530 temp2 = sqrt(temp2)

531

532 db(4) = temp1/temp2

533

534 if (db(4) .lt. diag) then

535 !is this heliostat in from of the other

heliostat?

536 !determine the t parameter of the

parametric equation of the line

537 temp1 = rc(1)*Sxy(1) + rc(2)*Sxy(2) + rc

(3)*Sxy(3)

538 temp2 = Sxy(1)**2 + Sxy(2)**2 + Sxy(3)

**2

539 t = temp1/temp2

540

541 c write (*,*) t

542

543 if (t .gt. 0) then

544 !Generate points on that heliostat

545 do t1 = 1,25

546 do q1 = 1,3

547 that(t1,q1) = rc(q1) + dcw*

pmatx(t1)*thisp(q1)

548 + + dch*pmaty(t1)*

thisu(q1)

549 end do

550 end do
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551

552 flag1 = 0

553 r2 = 0

554 do t1 = 1,25

555 do q1 = 1,25

556 Td(1) = this(t1 ,1) - that(q1 ,1)

557 Td(2) = this(t1 ,2) - that(q1 ,2)

558 Td(3) = this(t1 ,3) - that(q1 ,3)

559

560 db(1) = Sxy (2)*Td(3) - Sxy (3)

*Td(2)

561 db(2) = -(Sxy (1)*Td(3) - Sxy (3)

*Td(1))

562 db(3) = Sxy (1)*Td(2) - Sxy (2)

*Td(1)

563

564 temp1 = db(1)**2 + db(2)**2 +

db(3) **2

565 temp1 = sqrt(temp1)

566 temp2 = Sxy(1)**2 + Sxy(2)**2 +

Sxy (3) **2

567 temp2 = sqrt(temp2)

568

569 dist = temp1/temp2

570

571 if (dist.le.dcd*n_c) then

572 ! if line(of this point t) comes

close to (that point q)

573 flag1 = 1

574 endif

575 end do

576 if (flag1 .eq. 1) then

577 r2 = r2 + 1

578 endif

579 flag1 = 0

580 end do

581

582 n_s = n_s*(1 - r2/25)

583 endif

584

585 endif

586

587 endif ! (k .ne. j)

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX B. COMPUTER CODE 118

588 40 continue

589

590

591 n_tot = n_c*n_at(j)*n_sp(j)*n_b*n_s

592

593 Area(i) = Area(i) + d4*d5*n_tot

594

595

596 100 continue

597 flag2 = 1 !attenuation and spillage need no

longer be calculated

598

599 endif

600

601 !--------------------------------

602

603 Energy = Energy - ruser(1,i)*Area(i)! + ruser(3,i

)

604 !DNI is in ruser (1,:)

605 !losses are in ruser (3,:)

606

607

608 1000 continue

609

610

611 c End of Objective Function ------------

612 c9999 stop

613 return

614 end subroutine heliostat

615

616

617 subroutine dsinput (ruser ,fdata)

618

619 integer fdata (*)

620 double precision Wind (192), Tamb (192),Losses (192)

,

621 + Qconv , Qrad , Pr, rho , em,

622 + Re,

623 + pi, mu, sig , h, k, Nu, A,

624 + ruser (3 ,600)

625

626 !DNI Data:

627 ruser (1,1)=0

Stellenbosch University  http://scholar.sun.ac.za



APPENDIX B. COMPUTER CODE 119

628 ruser (1,2)=0

629 ...

630 ruser (1 ,191) =66

631 ruser (1 ,192)=0

632

633 !Sun Vector Data:

634 ruser (2,1) =0.837245769830

635 ruser (2,2) =0.915963426946

636 ...

637 ruser (2 ,575) =0.074520459253

638 ruser (2 ,576) = -0.129568108675

639

640 !Wind Data:

641 Wind (1) =2.3

642 Wind (2) =2.0

643 ...

644 Wind (191) =3.0

645 Wind (192) =2.7

646

647 !Temperature Data:

648 Tamb (1) =20.2

649 Tamb (2) =20.1

650 ...

651 Tamb (190) =32.0

652 Tamb (191) =31.1

653 Tamb (192) =30.1

654

655 !Losses

656 pi = 3.14159265359 d0

657 Ts = (560+280) /2 !(Tin + Tout)/0.5

658 mu = 1.8d0!*(10**( -5)) !kg/m.s (cengal 884, 4th

Ed.)

659 mu = mu /(100000)

660 Pr = 0.72 !%W/m-K (Cengal 884 - properties of air

4th ed.)

661 rho = 1.2 !%W/m-K (Cengal 884 - properties of air

4th ed.)

662 k = 0.026 !%W/m-K (Cengal 884 - properties of air

)

663 em = 1 !cengal 4th pg. 711

664 sig = 5.670d0 /100000000

665

666 c External cylindrical receiver ------
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667 A = pi*fdata (8)*fdata (8)

668

669 do 110 i = 1, fdata (7)

670 c Convection

671 Re = rho*Wind(i)*fdata (8)/mu

672 Nu = 0.027*( Re **(0.805))*(Pr **(1/3)) !Cengal 4

th ed. pg. 435

673 h = Nu*k/fdata (8)

674 Qconv = h*A*(Ts-Tamb(i)) !cengal 4th ed. pg.

675 c Radiation

676 Qrad = em*A*sig *((Ts +273) **4-( Tamb(i)+273) **4)

!cengal 4th ed. pg.711

677 ruser(3,i) = Qconv + Qrad

678 110 continue

679 c ------------------------------

680

681 return

682 end subroutine dsinput

683

684 subroutine topology(Field ,Fieldz ,n2)

685

686 integer n2

687 double precision x, y, z, Field (*),Fieldz (*)

688

689 do 123 i = 1, n2

690 x = Field(i)

691 y = Field(i+n2)

692 ! Default (No Slope)

693 z = 0

694 ! Slope down 1m/100m East to West

695 ! z = -x/100

696 ! Slope down 1m/100m North to South

697 ! z = -y/100

698 ! Slope down 1m/100 NE to SW

699 ! z = ?

700 Fieldz(i) = z

701

702 123 continue

703

704 return

705 end subroutine topology
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B.2 Octave Code

1 clear Z

2 clear Ys

3 clear Z_deg

4 clear Solar

5 clear E

6

7 %---Inputs --------

8 Ls = 30;

9 Ll = 21;

10 p = 28.433; %negative

11 p = -1*p*pi /180;

12 %-----------------

13

14 %---Data Files ----

15 year_Day

16 hour

17 %-----------------

18

19

20 for i = 1:8760

21 #Day angle ------------

22 B = (Year_Day(i) - 1) *360/365.242;

23 B = B*pi/180;

24 #--------------------

25

26

27 #--Equation of time ---

28 E(i) = 229.2*(0.000075 + 0.001868* cos(B) -

0.032077* sin(B) - 0.014615* cos(2*B) -

0.04089* sin(2*B));

29 #-----------------

30

31

32 #Solar Time --------

33 Solar(i) = Hour(i) + (4*(Ll - Ls) + E(i))/60;

34 #-----------------

35

36

37 #--Hour Angle -----

38 w = (Solar(i)/24 - 0.5) *360;

39 w = w*pi/180;
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40 #-----------------

41

42

43 #--Delta (declination)--

44 d = 0.006918 - 0.399912* cos(B) + 0.070257* sin(B) -

0.006758* cos(2*B) + 0.000907* sin(2*B) - 0.002679*

cos (3*B) + 0.00148* sin(3*B);

45 #------------------

46

47

48 #Zenith Angle ------

49 z = pi/2 - asin(cos(p)*cos(d)*cos(w) + sin(p)*

sin(d));

50

51 %if z > pi/2

52 % Z(i,1) = pi/2;

53 %else

54 Z(i,1) = z;

55 %endif

56 #-----------------

57

58

59 #Azimuth Angle ----

60 ys = sign(w)*abs(acos((cos(z)*sin(p) - sin(d))

/(sin(z)*cos(p))));

61

62 %if ys <0

63 %Ys(i,1) = ys + 2*pi;

64 %else

65 Ys(i,1) = ys;

66 %endif

67

68 Ydeg(i,1) = Ys(i,1) *180/pi;

69 #-----------------

70

71

72 #Sun Unit Vector --

73 alpha(i) = pi/2 - Z(i,1);

74

75 S(i,1) = cos(alpha(i))*(-sin(Ys(i,1))); #S(i-

hat) or Se (e for east)

76 S(i,2) = cos(alpha(i))*(-cos(Ys(i,1))); #S(j-

hat) or Sn (z for north)
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77 S(i,3) = sin(alpha(i)); #

S(k-hat) or Sz (e for zenith)

78 #-----------------

79

80 end
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Optimization Algorithm

A description of the SAOi algorithm procedure is given here. The descrip-
tion is adapted from Groenwold and Etman [48].

Algorithm Procedure

Let k represent an outer iteration counter. Then, using either a dual sub-
problem or a QP subproblem, algorithm SAOi proceeds as follows. For the
sake of brevity and ease, the presentation is superficial; interested readers
are referred to the cited literature for details.

1. Initialization:
Set k = 0.

2. Simulation and sensitivity analysis:
Compute fj(x

{0}), ∇fj(x
{0}), j = 0, 1, 2, · · · ,m.

3. Construct the approximations:
Reinitialize inner-loop specific parameters, and then construct the ap-
proximate functions f̃j(x) at x{k}, j = 0, 1, 2, · · ·m.

4. Approximate optimization:
Construct a local approximate subproblem based on equation 6.9.
Solve the subproblem to arrive at (x{k∗},λ{k∗}).

124
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5. Simulation analysis:
Compute fj(x

{k∗}), j = 0, 1, 2, · · · ,m.

6. Test if x{k∗} is acceptable:
If satisfied, GOTO Step 8; else CONTINUE.

7. Effect an inner loop:
Adjust subproblem [k] such that the likeliness of arriving at an ac-
ceptable solution x{k∗} increases. GOTO Step 4.

8. Move to the new iterate:
Set x{k+1} := x{k∗}.

9. Test for convergence:
If satisfied, STOP; else CONTINUE.

10. Simulation sensitivity analysis:
Compute ∇fj(x

{k+1}), j = 0, 1, 2, · · · ,m.

11. Initiate a new outer loop:
Set k := k + 1 and GOTO Step 3.

It is more precise to use the notation x{k,l}, with l an inner iteration
counter, rather than x{k}. The latter however is retained for the sake of
brevity, and the meaning, at least, is clear.

Step 6 provides the mechanism for global convergence. That is, the so-
lution x{k∗} to subproblem [k] is only accepted to become the new iterate
x{k+1} if sufficient improvement is realized. Typically this improvement is
expressed in terms of a merit function, or in terms of a filter Pareto front,
balancing the contribution of objective function and constraint violation.
If the candidate iterate happens to be unacceptable, subproblem [k] is ad-
justed and re-solved. The adjustment of the subproblem should be such
that it becomes more likely that the solution to the adjusted subproblem
will pass the acceptability test. A well-known approach to effect this, is to
include trust region constraints in the subproblem, and to subsequently re-
duce the trust region in case of failure of the acceptability test. In this paper
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we provide for a filter-based trust-region strategy; see Groenwold and Et-
man [56] for details, and other mechanisms for effecting global convergence
of the sequential approximate optimization loop.
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