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Abstract 

 

Direct shear wave polarization corrections at multiple offsets for 

anisotropy analysis in multiple layers 

 

Jacqueline Patrice Maleski, M.S. Geo. Sci 

The University of Texas at Austin, 2014 

 

Supervisor:  Robert Tatham 

 

Azimuthal anisotropy, assumed to be associated with vertical, aligned cracks, 

fractures, and subsurface stress regimes, causes vertically propagating shear waves to 

split into a fast component, with particle motion polarized parallel to fracture strike, and a 

slow component, with particle motion polarized perpendicular to fracture strike. 

Determining the polarization of each split shear wave and the time lag between them 

provides valuable insight regarding fracture azimuth and intensity. However, analysis of 

shear wave polarizations in seismic data is hampered by reflection-induced polarization 

distortion. Traditional polarization analysis methods are limited to zero offset and are not 

valid if implemented over the full range of offsets available in typical 3D seismic data 

sets. Recent proposals for normalizing amplitudes recorded at non-normal incidence to 

values recorded at normal incidence may provide an extension to correcting offset-

dependent shear wave polarization distortion. Removing polarization distortion from 

shear wave reflections allows a larger range of offsets to be used when determining shear 

wave polarizations. Additional complexities arise, however, if fracture orientation 
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changes with depth. Reflections from layers with different fracture orientations retain 

significant energy on off-diagonal components after initial rotations are applied. To 

properly analyze depth-variant azimuthal anisotropy, time lags associated with each 

interval of constant anisotropy are removed and additional iterative rotations applied to 

subsequent offset-normalized reflections. Synthetic data is used to evaluate the success of 

these methods, which depends largely on the accuracy of AVA approximations used in 

the correction. The polarization correction effectively removes SV polarity reversals but 

may be limited in corrections to SH polarizations at very far offsets. After the 

polarization correction is applied, energy calculations including incidence angles up to 

20° more effectively compensates individual SV and SH reflection components, allowing 

for more faithful polarization information identification of the isotropy plane and the 

symmetry axis. The polarization correction also localizes diagonal component energy 

maxima and off-diagonal component energy minima closer to the true orientation of the 

principal axes when a range of incidence angles up to 20° is used. 
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Chapter 1:  Introduction 

1.1 AZIMUTHAL ANISOTROPY 

Vertical, aligned cracks, fractures, and subsurface stress regimes are predominant 

causes of azimuthal anisotropy (Figure 1.1). Many low porosity, low permeability 

carbonate and shale reservoirs contain natural fractures, which impact fluid flow during 

production (Aguilera, 1980; Nelson, 1985). In shales and tight sandstones that also have 

low matrix porosity and permeability, anisotropy due to parallel bedding is less 

significant compared to fracture-related anisotropy for near-vertical shear-wave 

propagations (Li, 1997). Proper characterization of fracture geometry and distribution is 

key to the successful development of both conventional and unconventional naturally 

fractured reservoirs. Failure to account for the presence and effect of natural fractures can 

lead to irreparable loss of recovery, primary recovery patterns that are inappropriate for 

secondary recovery, inefficient capital expenditure during development, drilling of 

unnecessary in-fill wells, and improper assessment of economic opportunities (Nelson, 

1985). Determining preferred subsurface stress directions can also help to minimize 

borehole stability problems in well drilling plans (Thomsen et al., 1999). Assessing the 

effects of natural fractures and subsurface stress conditions in reservoirs is of primary 

importance so that proper planning and evaluation can be implemented from the 

beginning. 



 2 

 

Figure 1.1: Vertical, aligned cracks, fractures, and subsurface stress regimes are 

common causes of azimuthal anisotropy. 

Crack and fracture orientation and magnitude might vary with depth if remnants 

of a paleostress regime have been preserved, despite conditions of the current stress 

regime, through cementation or crystallization processes (Lynn and Thomsen, 1986). 

Additionally, the orientation and magnitude of the maximum horizontal stress might vary 

with depth in the proximity of major stratigraphic discontinuities or faulting (Winterstein 

and Meadows, 1991a, b).  Hickman et al. (1988) suggest that combinations of fault-

normal compression and traditional strike-slip stress configuration may vary locally, 
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leading to changes in stress magnitude and orientation that modify the geometry of fluid-

filled microcracks and fractures. Haacke et al. (2009) attribute vertical changes in the 

direction of maximum horizontal stress to a transition from a gravitational, slope-related 

stress regime in shallow sediments to transform-related stress regime in deeper 

sediments. Warpinski and Teuful (1991) observed up to 45° degree changes in stress 

orientation between interlayered tuffs of varying mechanical strength. Their results show 

that stress magnitudes in adjacent layers can be relatively independent of each other, 

whereby stiff layers of hard, brittle rock support regional stresses, and softer beds 

decouple into separate, disjointed stress fields. Beckham (1996) observe three changes in 

azimuthal anisotropy orientation across fractured carbonates in Oklahoma. 

1.2 SHEAR-WAVE SPLITTING 

A shear wave propagating vertically through azimuthally anisotropic media will 

split into two orthogonally polarized components (Figure 1.2). Particle motion of the fast 

shear wave (S1) is oriented parallel to the maximum horizontal stress or fracture strike, 

i.e., in the stiffest direction. Particle motion of the slow shear wave (S2) is oriented 

parallel to the most compliant direction, and perpendicular to S1. The time delay between 

each component is related to the length of the raypath within the anisotropic medium as 

well as the magnitude of anisotropy along that specific raypath. Anisotropy caused by 

vertical, aligned fractures, microfractures, or isolated microcracks decreases the velocity 

of the slow shear wave but not the fast shear wave. The reduced slow shear wave velocity 

causes a relative change in impedance contrast for fast and slow modes, and differential 

normal-incidence reflectivity of fast and slow shear modes can thus provide a qualitative 

estimate of lateral fracture variability. 
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Figure 1.2: A shear wave propagating vertically through azimuthally anisotropic media 

splits into two components with orthogonal polarizations. Particle motion of 

the fast shear wave (S1) is oriented parallel to the maximum horizontal 

stress or fracture strike, i.e., in the stiff direction. Particle motion of the slow 

shear wave (S2) is oriented parallel to the compliant direction, and 

perpendicular to S1. Adapted from Tatham and McCormack (1991). 

In the presence of depth-variant azimuthal anisotropy, each pure shear mode will 

progressively split into two modes aligned according to the anisotropy system in each 

new layer it encounters on both down-going and up-going raypaths (Figure 1.3). The fast 

and slow modes in each pair of arrivals polarize according to the most recent anisotropy 

system encountered along the raypath. In reflection surveys, this corresponds to the 

shallowest layer. Information about anisotropy within deeper layers is obscured by the 

anisotropic overburden. Moreover, if the path length is short or the magnitude of 

anisotropy is small, split shear wave arrivals will interfere deconstructively, obscuring 

interpretations about polarization, delay time, and the normal incidence reflection 

coefficient. 
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Figure 1.3: A medium in which the principal axes of anisotropy change within finite 

intervals at different depths causes each pure shear mode to split 

progressively into two modes aligned according to the anisotropy system in 

each new layer they encounter on both down-going and up-going paths. 

Adapted from Thomsen et al. (1999). 

Shear-wave splitting has been confirmed in many sedimentary basins of interest 

to hydrocarbon exploration. This splitting has been confirmed from converted P-to-S 

waves in surface-to-surface measurements (Harrison and Stewart, 1993), converted P-to-

S waves in surface-to-borehole measurements (Garotta and Granger, 1988; Lefeuvre and 

Queen, 1992), pure S-waves in surface-to-surface measurements (Alford, 1986; Davis 

and Lewis, 1990; Lynn and Thomsen, 1990; Mueller, 1991) and pure S-waves in surface-

to-borehole measurements (Cliet et al., 1991; MacBeth and Crampin, 1991; Winterstein 

and Meadows, 1991a, b; Lefeuvre et al., 1992, 1993; Queen et al., 1992). Therefore, it is 

important to evaluate what information can be extracted reliably from shear-wave data 

and to establish consistent processing sequences to extract such information. In this 

study, I will deal solely with direct shear-wave sources. 

Liu and Crampin (1990), Liu et al. (1990), Yardley and Crampin (1991) and 

Yardley et al. (1991) investigated the variability of shear-wave polarizations and 

amplitudes in synthetic multicomponent VSPs and reflection profiles. Alford (1986), 

Thomsen (1988), Li and Crampin (1993), and Winterstein and Meadows (1991a, b) 

developed techniques for extracting shear-wave attributes such as polarization, time 
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delay, and amplitude variation in VSPs and 3D multicomponent reflection data. The 

results of these studies, among many others, have shown that information contained in 

shear-waves, such as polarization, delay time, and normal incidence reflection 

coefficients enables more effective characterization of natural anisotropy systems than P-

waves alone. By using direct shear-sources for characterization of anisotropy with 

polarization consideration, we can limit any negative effects of inhomogeneity by 

employing a single ray-propagation path for the analysis. However, the abovementioned 

studies have also drawn attention to the many complexities inherent to the transmission 

and reflection of transversely polarized waves at internal interfaces and the free surface. 

The proposed polarization corrections allow for a reduction in these complexities at 

reflective interfaces. 

1.3 SHEAR WAVE POLARIZATION DISTORTION 

Booth and Crampin (1985) identified a “shear wave window” of about 30°, 

outside of which a recorded shear wave incident upon a free surface exhibits significant 

phase and polarization distortion, even in isotropic media. Liu and Crampin (1990) 

adopted the shear wave window concept to assess the effects of polarization distortion 

upon transmission across an internal interface and again found that shear wave 

polarizations become increasingly distorted at larger angles of incidence.  In further 

studies, Liu et al. (1990) observed the 180° phase reversal from emitted source 

polarizations of reflected shear waves at incidence angles near 20° for an isotropic-

isotropic interface. The authors concluded that such large variations in shear-wave 

polarizations weaken shear-wave reflections in stacked common depth point (CDP) 

gathers. Moreover, if the shear wave source polarization is not parallel to receiver 

orientation, shear wave reflections will be recorded as a vectorial combination of their 
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true source polarizations. Further, even if the shear source polarization and receiver 

orientation are aligned, but the source-receiver azimuthal direction is not aligned, 

polarization will not be properly represented. Field data must be transformed into proper 

radial and transverse coordinates according to the angle between each source-receiver 

pair in order to analyze individual vertically or horizontally polarized shear waves. Until 

data are represented in radial and transverse components, and the differences in 

reflectivity for the SV- and SH- components reconciled, the presence of anisotropy 

cannot be properly validated. 

In the case of an isotropic-anisotropic interface, if the principal axes of the 

underlying anisotropy system are not aligned parallel to the incident shear wave 

polarizations, the wave will polarize into alignment with the underlying anisotropy 

system upon reflection (Campbell and Tatham, 2013). This change in polarization is 

much like shear-wave splitting upon transmission through anisotropic media, though no 

time lag accumulates. The change in polarization results from a difference in reflection 

coefficients for a wave parallel and perpendicular to the isotropy plane of the lower 

layer’s anisotropy system (i.e., crack strike, maximum horizontal stress). Thus, when 

azimuthal anisotropy is present, the preference is to transform field data into alignment 

with the coordinates of the natural anisotropy system. These coordinates correspond to 

the fast and slow components of each split shear wave. After identifying individual fast 

and slow shear wave components, quantitative analysis of shear wave attributes such as 

polarization, time delay, and differential normal incidence reflectivity can be performed 

to assess anisotropy characteristics such as maximum horizontal stress or fracture strike, 

fracture intensity, and lateral variability. 
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1.4 CORRECTING SHEAR WAVE POLARIZATIONS 

Much of the analysis of direct shear-shear reflections has been limited to near-

offsets and near-normal incidence angles. Shear wave polarization and phase distortion 

reported by Booth and Crampin (1985), Liu and Crampin (1990), and Liu et al. (1990) 

hampers use of an increasing range of offsets and larger incidence angles beyond critical 

angles available in many modern 3D seismic surveys.  

Lyons (2006) proposed a method to correct shear-wave polarization distortion in 

isotropic media, allowing extension (Campbell and Tatham, 2013) of traditional rotation 

algorithms (Alford, 1986) to non-normal angles of incidence. Campbell and Tatham 

(2012, 2013) further extended the concept to include the case of a single isotropic-

anisotropic interface. The efficacy of these methods has yet to be assessed in the presence 

of depth-variant azimuthal anisotropy, where anisotropic-anisotropic interfaces occur in a 

series of layers. To analyze changes in shear-wave polarization with depth, a layer-

stripping (Winterstein and Meadow, 1991a, b) approach must be implemented in 

conjunction with traditional rotation algorithms. I present synthetic data to evaluate the 

effectiveness of previously proposed shear-wave polarization corrections in the presence 

of depth-variant azimuthal anisotropy using non-normal incidence angles. 
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Chapter 2: Background Information 

2.1 SHEAR WAVES IN ISOTROPIC MEDIA 

2.1.1 Reflectivity 

Zoeppritz (1919) derived mathematical expressions for elastic plane wave 

reflectivity at a welded interface between two half-spaces with differing elastic properties 

in the late nineteenth and early twentieth centuries. Aki and Richards (2002) provide a 

comprehensive representation of the P-, SV-, and SH-wave reflection coefficients as a 

function of incidence angle originally derived by Knott and Zoeppritz. Particle motions 

for P- and SV-waves are contained within the same plane, and their reflection strengths 

are, therefore, mechanically coupled in the reflection-refraction-mode conversion 

process. 

Figure 2.1 summarizes 16 possible waves that can result from a P- or SV- wave 

incident upon a welded interface between two solid half-spaces with different elastic 

properties.  Down-ticks denote downward travelling waves, and up-ticks denote upward 

travelling waves. The reflection, transmission, and conversion coefficients of an incident 

P- or SV- wave can be organized into a 4x4 scattering matrix, 

 

(

 ̀ ́  ̀ ́  ́ ́  ́ ́
 ̀ ́  ̀ ́  ́ ́  ́ ́
 ̀ ̀  ̀ ̀  ́ ̀  ́ ̀
 ̀ ̀  ̀ ̀  ́ ̀  ́ ̀

)            2.1 

 

The first column in Equation 2.1 defines reflected, mode converted, and refracted 

waves resulting from a downward travelling P-wave incident on the interface depicted in 

Figure 2.1a. The second column in Equation 2.1 defines reflected, mode converted, and 
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refracted waves resulting from a downward travelling SV-wave incident on the interface 

depicted in Figure 2.1b. The third column in Equation 2.1 defines reflected, mode 

converted, and refracted waves resulting from a upward travelling P-wave incident on the 

interface depicted in Figure 2.1c. The fourth column in Equation 2.1 defines reflected, 

mode converted, and refracted waves resulting from a upward travelling SV-wave 

incident on the interface depicted in Figure 2.1d. 

 

Figure 2.1: Reflected, transmitted, and converted waves for incident P- and SV-waves 

at an interface between two solid half-spaces with different elastic 

properties. Short arrows show the direction of particle motion. Adapted 

from Aki and Richards (2002). 
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This system of equations can be further expressed as a combination of elastic 

properties and incidence angles to solve for reflection, transmission, and conversion 

coefficients of all possible scattered waves shown in Figure 2.1. The matrices   and   

given in equation 2.1 may be represented in terms of the velocities α1, α2, β1, β2, and the 

ray parameter,  , 

 

  
     

  
 

     

  
 

     

  
 

     

  
      2.2 

 

  

(

 

                   
                  

     
                   

           
                  

    

           
         

                 
          

       )

    

2.3 

 

  

(

 

                  
                    

     
                   

           
                  

    

          
          

                  
         

       )

     

2.4 

 

In two-dimensions, SH-waves are not mechanically coupled to either P- or SV-

waves, so SH-wave reflectivity behavior is, therefore, significantly simplified. Reflection 
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and transmission coefficients for SH-waves can now be organized into a 2x2 scattering 

matrix: 

 

    ( ̀ ́  ́ ́
 ̀ ̀  ́ ̀

)     2.5 

 

where column one defines reflected (row one) and transmitted (row two) waves resulting 

from a downward travelling SH-wave incident upon the interface. Column two defines 

transmitted (row one) and reflected (row two) waves resulting from an upward travelling 

SH-wave incident upon the interface.  The reflected SH-wave can be represented as a 

combination of elastic properties and incidence angles 

 

 ̀ ́  
                   

                   
      2.6 

 

where the elements are the same as in equation 2.1, 2.2, and 2.3. 

Reflection coefficients as a function of incidence angle in degrees are shown in 

Figure 2.2 for vertically (SV) and horizontally (SH) polarized pure shear waves reflected 

from an interface with properties defined in Table 2.1. SH-SH reflection coefficient 

values do not vary significantly from normal-incidence values across a large range of 

incidence angles, up to about 20°. Beyond 20° incidence angle, reflection coefficient 

values begin to increase, approaching a polarity reversal at about 40°. At this angle, only 

energy polarized normal to the incident plane (i.e., SV energy) is reflected, and SH 

reflections are not observed. Beyond 40° incidence angle, SH-SH reflection coefficient 

values increase rapidly. 
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 VP (km/s) VS (km/s) Density (g/cm
3
) 

Layer 1 4 2 2.2 

Layer 2 5 2.5 2.4 

Table 2.1: Isotropic model parameters used for approximations to Zoeppritz equations. 
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Figure 2.2: Zoeppritz reflection coefficients as a function of incidence angle in degrees 

for vertically (SV) and horizontally (SH) polarized pure shear waves. SH-

SH reflectivity remains consistent with normal incidence values across a 

large range of incidence angles, up to about 20°, where reflection coefficient 

values begin increasing and eventually undergo a polarity reversal at about 

40°. However, SV-SV reflectivity diverges from normal incidence values at 

relatively modest incidence angles. SV reflection coefficient values increase 

rapidly as the curve approaches a polarity reversal at approximately 20°. 

Due to complex coupled interactions between SV and P modes, the SV-SV 

reflectivity exhibits unstable behavior across not only the polarity reversal at 

about 20°, but near three critical angles, at 24°, 30°, and 53°as well. Beyond 

the critical angle at 53°, both SV and SH reflection coefficients increase 

rapidly as each wave undergoes total internal reflection. 
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SV-SV reflectivity behaves more erratically than SH-SH reflectivity, diverging 

from normal incidence values at a much faster rate. This behavior is related to complex 

coupled interactions between SV and P modes, which cause three critical angles to occur 

for a single SV wave incident upon an interface with increasing impedance. The first 

critical angle occurs as the incident SV wave is converted to a P wave upon transmission 

through the interface. This critical angle can be observed at a relatively modest incidence 

angles, approximately 24° (sin
-1

(VS1/VP2)), and corresponds to the limit of transmitted 

mode-converted P waves. For incidence angles beyond the smallest critical angle, 

coefficients of the previously real transmitted wave become complex. An additional 

critical angle occurs as the incident SV wave is converted to an internal P wave reflection 

at the interface, observed at 30° (sin
-1

(VS1/VP1)) in Figure 2.2. This angle corresponds to 

the limit of reflected, mode-converted P waves. The last critical angle occurs at 

approximately 53° (sin
-1

(VS1/VS2)) incidence angle and marks the limit of transmitted 

shear waves. Beyond this critical angle, all incident shear waves undergo total internal 

reflection. 

Shear wave critical angles also correspond to points where the incident wavelet 

phase shows abrupt and significant deviations in phase. Again, SV waves show 

considerably greater variation in phase at much smaller angles of incidence relative to SH 

waves (Figure 2.3). At the first critical angle, ic1, at 24°, the SV wave begins approaching 

minimum phase until reaching the second critical angle, ic2, at 30°. At this point, a local 

maximum is observed, but SV phase remains negative. SV phase then decreases phase 

until reaching the third critical angle, ic3, at 53°. At this critical angle, which marks the 

onset of total internal reflection, both SV and SH phase show wide variation from zero 

phase. 
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Figure 2.3: Phase of SH (red) and SV (blue) reflected energy in degrees as a function of 

incidence angle in degrees. Beyond the first SV critical angle, ic1, at 24°, the 

phase of the incident wave begins to deviate from zero-phase up to a 

maximum phase of about 35°. Near the third critical angle, ic3, which marks 

the onset of total internal reflection, both SV and SH phase vary 

significantly from zero-phase. 

The important features of shear wave reflectivity in regards to this work are their 

reflection amplitudes at normal incidence. As the angle of incidence increases, the 

reflectivity curves diverge from their normal incidence values. Given that the reflectivity 

behavior of SV and SH waves is quite different over a wide range of incidence, the 

results of CDP stacking also differ for each wave mode. SV amplitudes and polarizations 

observed beyond 20° incidence angle will be of comparable strength to amplitudes and 

polarizations observed below 20° incidence angle, but possess the opposite polarity. The 

SV wave polarity reversal that occurs near 20° incidence angle may thus have 
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deconstructive consequences, weakening or possibly canceling post-stack SV reflection 

events. In contrast, SH waves behave more consistently over a larger range of incidence 

angles, and stacking would not have such deleterious effects. 

2.1.2 Shear wave AVO approximations 

The complexity of the full Zoeppritz equations has given rise to numerous 

simplifying approximations. Spratt et al. (1993) developed one such approximation for 

SV-wave AVO under the assumption of small velocity and density contrasts across an 

interface: 
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where  ̀ ́   SV reflectivity,  ̅ is the average shear wave velocity, p is the ray parameter, 

 ̅ the average density, θ is the incident angle,    is the shear velocity contrast, and    is 

the density contrast. For small incident angles (less than 30°) and a VP/VS ratio equal to 2, 

the above approximation simplifies to 
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Using this approximation, SV-wave reflectivity can be expressed with two terms whose 

individual contributions to near- and far-offset components are easily identified: 
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controls near-offset reflectivity and 
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controls far-offset reflectivity. Figure 2.4 shows Zoeppritz (solid) and Spratt (dashed) 

reflection coefficients for an SV wave incident on an interface with medium properties 

described in Table 2.1. The zero crossing occurs at the same location, approximately 20°, 

for both the Zoeppritz and Spratt reflection coefficients. The Spratt approximation 

exhibits very similar behavior as the full Zoeppritz reflection coefficient over a large 

range of incidence angles, but it varies somewhat from the full Zoeppritz reflection 

coefficient values approaching 40° incidence angle. 
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Figure 2.4: Zoeppritz (solid) and Spratt approximation (dashed) reflection coefficients 

for an SV wave incident on an interface with medium properties described 

in Table 2.1. The zero crossing occurs at the same location, approximately 

20°, for both the Zoeppritz and Spratt reflection coefficients. The Spratt 

approximation exhibits very similar behavior as the full Zoeppritz reflection 

coefficient over a large range of incidence angles, only differing somewhat 

beyond 30° incidence angle. 

Lyons (2006) proposed a similar approximation for SH-wave reflection 

coefficients: 
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Similar to the expression for SV-reflectivity, this approximation can be decomposed into 

terms that represent near- and far-offset contributions: 



 20 

 

 ̀ ́            ,     2.14 

 

where 

 

           2.15 
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controls far-offset reflectivity. Figure 2.5 shows Zoeppritz (solid) and Lyons (dashed) 

reflection coefficients for an SH wave incident on an interface. The red lines are 

calculated using medium properties described in Table 2.1. The blue and black lines are 

calculated with incremental decreases in shear wave velocity contrast across the interface. 

For all models, the Lyons approximation provides a very close fit to the true Zoeppritz 

equations up to about 30° incidence angle. The Lyons approximation provides a closer fit 

to the original Zoeppritz equations to increasingly larger incidence angles as the shear 

wave velocity contrast across the reflection interface decreases. For the blue line, there is 

sufficient agreement between the original Zoeppritz equations and the Lyons 

approximation up to 35° incidence angle. For the black line, representing the smallest 

contrast in shear wave velocity, the Lyons approximation provides an excellent fit to 

incidence angles as large as 55°. However, for large shear wave velocity contrasts, 

modeled with the red line and calculated with properties in Table 2.1, the agreement is 

poor beyond 30° incidence angle. The zero crossing locations of the red lines occur at 42° 

incidence angle when using the original Zoeppritz equations and at 50° incidence angle 

when using the Lyons approximation. As the shear wave velocity contrast across the 

interface decreases, the zero crossing locations converge. The zero crossing locations of 

the blue lines occur at about 47° incidence angle when using the original Zoeppritz 

equations and at about 52° incidence angle when using the Lyons approximation. The 

zero crossing location of the black lines, representing the smallest shear wave velocity 

contrast, occur at about 57° incidence angle when using the original Zoeppritz equations 

and at about 59° incidence angle when using the Lyons approximation 
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Figure 2.5: Zoeppritz (solid) and Lyons (dashed) reflection coefficients for an SH wave 

incident on an interface with medium properties described in Table 2.1. The 

Lyons approximation provides a very close fit to the true Zoeppritz 

equations up to about 30° incidence angle for all models, but agreement 

between the Lyons and Zoeppritz calculations deteriorates beyond 30° 

incidence angle. As the shear wave velocity contrast across the interface 

decreases, the Lyons approximation provides an increasingly improved fit to 

the original Zoeppritz equations and the location of respective zero 

crossings converge. 

Zoeppritz SH reflection coefficient Lyons SH reflection coefficient 

Zoeppritz SH reflection coefficient Lyons SH reflection coefficient 

Zoeppritz SH reflection coefficient Lyons SH reflection coefficient 

Vs2=2.5 km/s 

Vs2=2.3 km/s 

Vs2=2.1 km/s 
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The Spratt et al. (1993) and Lyons (2006) approximations provide a sufficient fit 

to the original Zoeppritz equations. Because of their intuitive simplicity, they will be 

employed in polarization corrections later presented in the discussion of methods in 

Chapter 3. 

2.1.3 Implications for shear wave polarization 

Shear wave reflection coefficient behavior at non-normal incidence angles has 

significant implications for polarization analysis. At near-vertical incidence, reflected 

shear-wave polarizations are equal to the source polarization. As offset increases, 

however, reflected shear-wave polarization begins to deviate from the original source 

polarization. For example, Crampin (1985) notes that phase distortion of 180°, or a phase 

reversal, arises from and corresponds to the zero crossings of each shear mode’s 

reflection coefficient. The SV polarity reversal typically occurs near an incidence angle 

of approximately 20° (24° in Figure 2.4). SV polarizations become increasingly distorted 

and SV amplitudes decrease significantly in strength as incidence angles approach the 

point of the polarity reversal. At 15° incidence angle, the SV reflection coefficient in 

Figure 2.4 is almost half the value observed at normal incidence. SH-wave polarizations, 

on the other hand, do not exhibit significant polarization distortion until much larger 

offsets. SH-wave reflection coefficient values remain fairly constant up to incidence 

angles of about 20°. Beyond 20° incidence angle, SH-wave reflection coefficient values 

begin to decrease by as much as half the normal incidence value at 35° as they approach 

the zero-crossing at 40° incidence angle. SH-wave polarization distortion, therefore, 

becomes significant beyond 30° incidence angle, and continues as such through and 

beyond the angle of the zero-crossing. SH-wave polarization distortion does not present 

as large of a concern as SV-polarization distortion because data beyond 30° incidence 
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angle is rarely available for analysis. Further, due to the differences in SV and SH 

reflectivity (Campbell, 2013) significant polarization distortion at relatively modest 

offsets is also noted. This leads to changes in the polarization of the reflected shear wave 

other than a simple phase change. 

To illustrate these shear-wave polarization effects, consider a typical 3D direct 

shear survey with the geometry shown in Figure 2.6. The x-axis of the acquisition grid is 

defined as 0°, and angles increase in a counter-clockwise direction. The source is located 

at the origin, in the center of the aerial distribution of receivers. Maximum offset along 

each axis is 2000 m. Angles ψ and ϕ are the source polarization and source-receiver 

azimuth, respectively. P is the actual polarization of the reflected shear wave, i.e. the 

particle motion detected at the receiver. SV and SH are the vertically and horizontally 

polarized components of reflectivity. For an isotropic medium described in Table 2.2, 

reflection polarization, P, can be estimated based on the geometry presented in Figure 

2.6. 
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Figure 2.6: Schematic of a 3D survey geometry with a multicomponent source and 

multi-component receivers. Positive source-receiver angles (ϕ) are measured 

counterclockwise. For an x-oriented source, ψ =0° or a y-oriented source, ψ 

=90° (ψ is the source polarization). P shows the observed polarization of the 

reflected shear wave, which is recorded on both the x and y horizontal 

receiver components. 

 

 VP (m/s) VS (m/s) Density (g/cm
3
) Thickness (m) 

Layer 1 3000 1500 2.0 2000 

Layer 2 4000 2000 2.2 half space 

Table 2.2: Isotropic model properties used to demonstrate polarization distortion upon 

reflection. 

Figure 2.7 shows a map view of polarizations of the reflected shear wave for a 

single-shear-source oriented due east (orange arrow), for a reflection from an interface 

between two isotropic media described in Table 2.2. Maximum offset along each axis is 

4000 m. Reflector depth is at 2000 m. The length and orientation of each vector indicates 

the amplitude and polarization, respectively, of the reflected shear wave calculated from 
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Zoeppritz reflection coefficients. A blue dashed circle denotes the offset at which 

reflections incident upon the reflector at 20° are recorded. Within the blue dashed circle, 

reflected polarizations are consistent with the source polarization. From 0°-24°, the SV 

and SH reflection coefficients are negative, and reflected polarizations pictured in Figure 

2.7 point in the opposite direction of the source polarization. Outside of the blue dashed 

circle, reflected shear wave polarizations become increasingly distorted, varying from the 

source polarization by up to 180°. This corresponds to the SV polarity reversal that was 

observed at 24° in computed reflectivity curves of Figure 2.2. A red dashed circle denotes 

the offset that corresponds to reflections recorded from an incidence angle of 40°. 

Reflected polarizations again show erratic behavior, varying by up to 180° across the red 

dashed circle. This corresponds to the SH polarity reversal that was observed at 40° in 

computed reflectivity curves of Figure 2.2. 
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Figure 2.7: Map view of reflected polarizations for a single shear-source oriented due 

east (orange arrow) for isotropic media with properties defined in Table 2.2. 

Maximum offset along each axis is 4000 m, and reflector depth is at 2000 

m. The length and orientation of each vector indicates the amplitude and 

polarization, respectively, of the reflected shear wave. Note that as offset 

increases, reflected polarizations become increasingly distorted. Both the 

SV and SH polarity reversals can be observed at approximately 20° and 40° 

and are denoted by blue and red dashed lines, respectively. Adapted from 

Campbell and Tatham (2013). 
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2.2 SHEAR WAVES IN ANISOTROPIC MEDIA 

2.2.1 Anisotropic symmetry systems 

A medium that is transversely isotropic has a single axis of rotational symmetry. 

A vertically transverse isotropic (VTI) medium has a vertical axis of symmetry (Figure 

2.8). Any layered media inherently possesses VTI properties. Common geologic causes 

of VTI include large-scale sedimentary layering and fine-scale sedimentary laminations, 

aligned rock fabrics due to depositional setting, and preferred mineral orientations, often 

observed with flat clay platelets. The stiffness matrix of VTI media can be represented 

with five independent stiffnesses: 
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Figure 2.8: Vertical transverse isotropy (VTI) has a vertical axis of symmetry. This 

representation is useful when describing geologic characteristics such as 

large-scale sedimentary layering and fine-scale sedimentary laminations, 

aligned rock fabrics due to depositional setting, and preferred mineral 

orientations, often observed with flat clay platelets. VTI has a first order 

effect on seismic velocity. The velocity of a seismic wave in VTI media will 

vary depending upon the angle between the symmetry axis and the direction 

the wave is propagating. 

Thomsen (1986) recognized the prevalence of anisotropy among sedimentary 

rocks and its implications for wave propagation. Motivated by the difficulty of expressing 

the magnitude of anisotropy and its effect on the seismic response in cij notation, 

Thomsen proposed the use of the following dimensionless parameters for VTI media: 
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The velocity of a seismic wave can be directly related to specific coefficients in 

the stiffness matrix. Velocity of a vertically travelling P- and S- wave can therefore also 

be represented using two independent stiffness coefficients: 
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If the symmetry axis is rotated 90° to lie within the horizontal plane, the medium 

becomes a horizontally transverse isotropic medium (HTI) (Figure 2.9). HTI commonly 

manifests as azimuthal anisotropy in geologic contexts. Vertical, aligned, cracks, 

fractures, and subsurface stresses are common causes of azimuthal anisotropy and are 

prevalent among many exploration targets. With proper indicial substitution, the stiffness 

matrix for HTI media can likewise be represented with five independent stiffnesses: 
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Figure 2.9: HTI media has a horizontal axis of symmetry. HTI commonly manifests as 

azimuthal anisotropy in geologic contexts, which may be caused by vertical, 

aligned, cracks, fractures, or subsurface stresses. Seismic velocities are 

directly related to coefficients in the stiffness matrix, and HTI thus has a 

first order effect on seismic velocities. This direct relation causes the 

velocity of the seismic wave to vary according to the angle between the 

symmetry axis and the direction the wave is propagating. 

Thomsen’s parameters for VTI media can be represented in an equivalent manner 

for HTI media using proper indicial substitution. Thomsen’s parameters, defined with 

respect to the vertical for HTI media are: 
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Seismic velocities of vertically travelling P- and S- waves can again be 

represented using specific coefficients in the stiffness matrix. Two S-wave velocities are 

necessary to describe waves polarized parallel and perpendicular to the isotropy plane. 
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Seismic velocities in anisotropic media vary according to their direction of 

propagation. A P-wave propagating at any direction within the isotropy plane will travel 

at the same velocity for any direction contained within the isotropy plane. A P-wave 

propagating within the isotropy plane does, however, travel faster than a P-wave 

propagating along the symmetry axis or at any path that is not entirely within the isotropy 

plane. Shear wave velocities also exhibit directional variations within anisotropic media. 

Shear wave velocities in anisotropic media depend not only on the direction of 

propagation, but the direction of polarization as well. For propagation within the isotropy 

plane, shear waves that are polarized parallel to the isotropy plane travel faster than shear 

waves that are polarized perpendicular to the isotropy plane (i.e. parallel to the symmetry 

axis). For propagation along the symmetry axis, all transverse polarizations are contained 
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within the isotropy plane, and consequently, shear wave velocity does not depend on the 

direction in which the wave is polarized. Cumulatively, a shear wave propagating within 

the isotropy plane travels faster than a shear wave propagating along the symmetry axis. 

White (1983) provides phase velocities of P-, SV-, and SH-wave modes as a function of 

phase angle, θ, measured from the vertical symmetry axis and five independent stiffness 

coefficients: 
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where 

 

  √                                                        2.34 

Expressing seismic velocities as a function of stiffness coefficients, as in 

equations 2.31, 2.32, and 2.33, are convenient for numerical computations, but are not 

easily adapted to analysis of surface seismic data. Independent stiffness coefficients 

cannot be readily extracted or interpreted from seismic data, making it difficult to 

understand the magnitude of anisotropy and its effects on the seismic response. It is much 

simpler to consider phase velocities near vertical, and Thomsen’s parameters, therefore, 

provide a more intuitive framework to assess the magnitude of anisotropy.   can be 

physically interpreted as the fractional difference between the horizontal and vertical P-
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wave velocity.   is the fractional difference between the velocities of SH-waves 

propagating the fast and slow (horizontal and vertical) SH-wave velocity.  , which 

arguably has a less intuitive meaning, is a measure of variation in P-wave velocity with 

phase angle for near vertical propagation. Average values for  ,  ,   are not well 

constrained. Thomsen (1986) reports a “silty limestone” with  =0.056, δ=-0.003, and 

 =0.067, a pair of “limestone-shales” with a range of  =0.134-0.169,  =0.000, and a 

range of  =0.156-0.271, a “limestone-anisotropic shale” with  =0.169,  =0.000, and 

 =0.271, and a gypsum-weathered material with  =0.1161,  =-0.140, and  =0.2781. 

2.2.2 Shear wave reflectivity in HTI media 

The convenience of Thomsen’s parameters has enabled significant advancements 

in representing and understanding wave propagation in anisotropic media. One particular 

case of concern to this study is the Ruger (2002) estimation of shear wave reflectivity in 

HTI media. Considering a 2D survey carried out on a profile along the fracture strike (i.e. 

within the isotropy plane shown in Figure 2.10), the velocity of the S
||
-wave propagating 

within the fracture plane with polarization within the plane (SV) can be expressed as 
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and the velocity of the S
┴
-wave propagating with polarization normal to the plane of 

propagation within the fracture plane (SH) can be expressed as 
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Using the previously defined anisotropy parameter,  ,    can be expressed in terms of 

      :  

 

   
 

√    
             2.37 

 

   

  ̅̅ ̅̅  
  

 ̅
             2.38 

 

Reflection coefficients for shear-waves traveling in the fracture plane (isotropy plane) 

can now be expressed as 
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where β is the fast shear-wave velocity and ZS is the shear wave impedance (βρ) for the 

vertically incident fast S-wave. 

In a similar fashion, reflection coefficients for shear-waves traveling in the 

symmetry-axis plane, 
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where      and      are Thomsen’s anisotropy parameters defined with respect to a 

vertical symmetry axis. 
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Figure 2.10: Sketch of an HTI model adapted from Ruger (2002) and used in 

approximations of shear-wave reflectivity in HTI media. Shear waves 

polarized perpendicular and parallel to the isotropy plane travel at different 

velocities and require unique representations. 

2.2.3 Zero-crossing sensitivity analysis 

Figure 2.11 demonstrates the sensitivity of SV and SH zero-crossings to changes 

in shear wave velocity for reflection coefficients in HTI media calculated using Ruger 

(2002) approximations. The initial model is defined in Table 2.3 where the shear wave 

velocity provided is the fast shear wave velocity, and  ,  , and   are Thomsen’s weak 

anisotropy parameters.  Incremental increases and decreases to the interface contrast are 

introduced by increasing and decreasing the shear wave velocity in layer two, 

respectively. The zero-crossing remains relatively constant, near 20° for the SV mode. 

For minimal interface contrasts, the SH mode also remains relatively constant, near 50°. 

However, as the reflectivity contrast across the interface increases, greater variability 
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(~4°) can be observed in the SH wave zero-crossing. In this example, all γ values are 

greater than 10%. 

 

 

 VP (m/s) VS1 (m/s) ρ (kg/m
3
)       

Layer 1 4000 2000 2.2 0.15 0.0 0.14 

Layer 2 5000 2500 2.4 0.15 0.0 0.14 

Table 2.3: Medium properties used to demonstrate anisotropic zero-crossing 

sensitivity. Reported shear wave velocity is the fast shear-wave velocity.  , 

 , and   are Thomsen’s weak anisotropy parameters. 
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Figure 2.11: Sensitivity of anisotropic reflection coefficient Ruger (2002) zero crossings 

to shear wave velocity contrasts for an (a) SH wave with a source oriented 

in the isotropy plane, (b) SH wave with a source oriented in the symmetry-

axis plane, (c) SV wave with source oriented in the isotropy plane, and (d) 

SV wave with source oriented in the symmetry-axis plane. The initial model 

is described in Table 2.3. Incremental increases and decreases to the 

interface contrast are introduced by increasing and decreasing the shear 

wave velocity in layer two, respectively. The zero-crossing remains 

relatively constant, near 20° for the SV mode and near 54° for the SH mode. 

 

a) b) 

c) d) 

10% decrease 

VS-fast,2=2,250 m/s 

 

20% increase 

VS-fast,2=3,000 m/s 
10% increase 

VS-fast,2=2,750 m/s 

 

Initial model 

VS-fast,2=2,500 m/s 

 20% decrease 

VS-fast,2=2,000 m/s 
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 Figure 2.12 demonstrates the sensitivity of SV and SH zero-crossings to changes 

in shear wave splitting parameter,  , for reflection coefficients in anisotropic media 

calculated using Ruger (2002) approximations. The initial model is defined in Table 2.3. 

Incremental increases and decreases to the interface contrast are introduced by increasing 

and decreasing the shear wave splitting parameter in layer two, respectively. The SV 

mode zero-crossing is entirely unaffected by changes in  , consistently occurring near 

20° for all perturbations. The SH mode is minimally affected by changes in  , not to as 

large of an extent as was observed for equivalent changes in interface velocity contrast.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 41 

a)      b) 

 
c)      d) 

 
 

 

Figure 2.12: Sensitivity of Ruger (2002) anisotropic reflection coefficient zero crossings 

for an (a) SH wave with a source oriented in the isotropy plane, (b) SH wave 

with a source oriented in the symmetry-axis plane, (c) SV wave with source 

oriented in the isotropy plane, and (d) SV wave with source oriented in the 

symmetry-axis plane. The initial model is described in Table 2.3. 

Incremental increases and decreases to the interface contrast are introduced 

by increasing and decreasing the shear wave splitting parameter,  , in layer 

two, respectively. The SV-mode zero-crossing is entirely unaffected by 

changes in γ, occurring at 20° incidence angle for all model perturbations. 

The SH-mode is minimally affected by changes in  . All values of   in this 

example were greater than 10%. 

10% decrease 

γ2=0.126 

 

20% increase 

γ2=0.168 
10% increase 

γ2=0.154 

 

Initial model 

γ2=0.14 

 20% decrease 

γ2=0.112 
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2.2.4 Shear wave polarizations in anisotropic media 

When a shear wave enters an anisotropic medium, shear-wave splitting occurs. As 

previously discussed, the fast component has particle motion aligned parallel to the 

isotropy plane, and the slow component has particle motion aligned perpendicular to the 

isotropy plane. In the case of vertical, aligned cracks or fractures (HTI media), particle 

motion of arbitrarily polarized SV waves will “split” and align parallel to the isotropy 

plane (i.e. fracture strike) orientation, which arrives as the fast shear wave. Particle 

motion of SH waves remains perpendicular to the isotropy plane (i.e., fracture strike) 

orientation, and arrives as the slow shear wave. Although particle motion of each shear 

wave component is aligned according the orientation of the anisotropy system of 

individual layers in the subsurface, polarization distortion is still a key concern. To 

extract information about the anisotropy characteristics of a layer in the subsurface, the 

polarizations of the shear waves from shallow layers must be fully understood. That is, 

reliable polarization information of the waves reflected from the top of the layer must be 

available to extract the anisotropy parameters of deeper layers.  
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Chapter 3: Methods 

3.1 CORRECTING OFFSET-DEPENDENT SHEAR WAVE POLARIZATION DISTORTION 

Lyons (2006) and Campbell and Tatham (2011, 2012, 2013) have shown that 

offset-dependent shear-wave polarization distortion can be corrected by normalizing 

amplitudes on individual SV-SV and SH-SH components of non-normal incidence traces 

to zero offset values. Using the previously discussed approximations for SV- and SH-

wave AVO, 

 

                    3.1 

 

                    3.2 

 

a correction based on incidence angle can be derived for each shear-wave reflection 

coefficient. Observed amplitudes of reflected SV and SH waves can be divided by the 

two-term reflection coefficient expressions to minimize post-critical shear-wave 

polarization distortion. To preserve undistorted near-normal incidence polarization 

information, however, the value of A must be set to unity. 

The B-coefficient can now be estimated for a single known amplitude and 

incident angle, such as zero-amplitude at the zero-crossing. Lyons (2006) and Campbell 

and Tatham (2011, 2012, 2013) demonstrated that a uniform zero-crossing exists for both 

SV and SH reflections under a wide range of density and velocity contrasts. The 

consistency of SV and SH zero-crossings for anisotropic material was further addressed 

in Chapter 2. This circumstance is ideal in which to estimate the B-coefficient, 
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more simply, 
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where j is the incident angle at which the zero crossing occurs. Meaningful corrections 

cannot be applied in the region near angle j because the dividing by zero in equations 3.5 

and 3.6 introduces instability. 

Corrected SV and SH components can now be expressed as 
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where RSV-corrected and RSH-corrected are the corrected SV and SH amplitudes, RSV and 
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RSH are the SV and SH data, BSV and BSH are variables dependent upon SV and SH zero 

crossings, and θ is incident angle. 

Figure 3.1 shows an example of the polarization correction applied to full 

Zoeppritz SH-SH and SV-SV reflection coefficients for medium properties described in 

Table 3.1. Where the reflection coefficient reverses polarity, the correction introduces 

instability and cannot be applied. SH-SH reflectivity exhibits relatively consistent 

behavior across a large range of incidence angles, up to about 40°. However, due to 

complex coupled interactions between SV and P modes, the SV-SV reflectivity exhibits 

unstable behavior across not only the polarity reversal, near a modest 20°, but across the 

additional critical angle, near 30°, as well. Note, however, that the only information 

required for this correction is an estimate of the zero-crossing for the pure SV-SV and 

SH-SH reflectivity. Figure 3.2 shows the polarization correction applied to Ruger (2002) 

anisotropic reflection coefficients for an SH wave with the source oriented in the isotropy 

plane (a), an SH wave with the source oriented in the symmetry-axis plane (b), an SV 

wave with the source oriented in the isotropy plane (c), and an SV wave with the source 

oriented in the symmetry-axis plane (d). Medium properties are described in Table 3.2 

Similar to the isotropic case, the correction cannot be applied within the immediate 

vicinity of the zero-crossing because it would introduce instability. Nonetheless, the 

correction is quite successful for the anisotropic case. Once polarization distortions 

associated with AVA have been removed from all receiver locations associated with a 

given source position, traditional Alford (1986) rotation analysis can be applied at non-

normal angles of incidence. 
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 VP (m/s) VS1 (m/s) ρ (kg/m
3
) 

Layer 1 4000 2000 2.2 

Layer 2 5000 2500 2.4 

Table 3.1: Medium properties used to demonstrate the effectiveness of the polarization 

correction in isotropic media 

 

 VP (m/s) VS1 (m/s) ρ (kg/m
3
) ϵ δ γ 

Layer 1 4000 2000 2.2 0.15 0.0 0.14 

Layer 2 5000 2500 2.4 0.15 0.0 0.14 

Table 3.2: Medium properties used to demonstrate the effectiveness of the polarization 

correction at an anisotropic-anisotropic interface. Reported shear wave 

velocity is the fast shear-wave velocity. ϵ, δ, and γ are Thomsen’s weak 

anisotropy parameters. 
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a)      b) 

 

 

 

Figure 3.1: Original and corrected Zoeppritz (a) SH and (b) SV reflection coefficients. 

Where the reflection coefficient reverses polarity, the correction introduces 

instability and cannot be applied. SH-SH reflectivity exhibits relatively 

consistent behavior across a large range of incidence angles, up to about 

40°. However, due to complex coupled interactions between SV and P 

modes, the SV-SV reflectivity exhibits unstable behavior across not only the 

polarity reversal, near a modest 20°, but across the additional critical angle, 

near 30°, as well. Note that the only information required for this correction 

is an estimate of the zero-crossing for the pure SV-SV and SH-SH 

reflectivity. 

 

 

 

 

 

 

Original SH reflection coefficient Original SV reflection coefficient 

 
Corrected SH reflection coefficient Corrected SV reflection coefficient 
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a)      b) 

 

c)      d) 

 

 

Figure 3.2: Original (blue) and corrected (green) Ruger (2002) anisotropic reflection 

coefficients for an SH wave with the source oriented in the isotropy plane 

(a), an SH wave with the source oriented in the symmetry-axis plane (b), an 

SV wave with the source oriented in the isotropy plane (c), and an SV wave 

with the source oriented in the symmetry-axis plane (d). Where the 

reflection coefficient reverses polarity, the correction introduces instability 

and cannot be applied. Nonetheless, the correction is quite successful for the 

case of an anisotropic-anisotropic interface. 

Original reflection coefficient Corrected reflection coefficient 
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3.2 ROTATION ANALYSIS 

Alford (1986) developed a multi-source/multi-receiver tensor rotation technique 

to determine the principal direction of anisotropy from shear wave data.  This is achieved 

by computationally rotating source and receiver components to minimize off-diagonal 

component energy in a 2x2 shear wave data matrix. Considering a 1-D elastic wave 

generated by a set of orthogonal unit vector sources oriented within the natural isotropy 

(fracture strike) plane and symmetry-axis plane of an azimuthally anisotropic medium, 

Alford (1986) describes propagation along the z-axis, perpendicular to the unique axis of 

an azimuthally anisotropic medium, the matrix notation is 

 

 

 E U = S I, Eq. 3.9 

 

where E represents the equations of motion, U represents the fundamental solutions, S 

represents the source space-time variation, and I represents the identity matrix indicating 

the direction of the sources. E, U, S, and I are all 2 x 2 matrices, whose components 

correspond to source-receiver geometry as follows: 

 

 

 [
    
    

], Eq. 3.10 

 

where rows contain the components for the two sources and columns contain the 

components for the two receivers. X refers to the in-line direction, and Y refers to the 
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cross-line direction. XX and YY therefore represent acquisition for the in-line source–in-

line receiver and cross-line source–cross-line receiver orientations, respectively. 

Similarly, XY and YX represent acquisition for the cross-line source–in-line receiver and 

in-line source–cross-line receiver orientations, respectively. 

The orientation of azimuthal anisotropy is generally not known prior to data 

acquisition, or it is difficult to design a survey that conforms to the constructs of 

mathematical convenience presented above. The acquisition geometry of a 3-D seismic 

survey alone precludes the simplicity of considering ray paths confined strictly within the 

isotropy and symmetry-axis planes. It is therefore desirable to find a solution, V, for a set 

of sources and receivers oriented in an arbitrary acquisition system that can be related to 

the solution, U, of the natural anisotropy system by an angle θ. This can be achieved by 

defining an orthogonal rotation matrix, 

 

 

      [
        
         

], Eq. 3.11 

 

which produces a clockwise rotation by the angle θ upon left-multiplication with another 

matrix. 

A solution for a set of sources oriented in the acquisition system can now be 

defined from the solutions for the natural anisotropy system by right multiplying equation 

3.9 by R(θ , 

 

 

 E{UR(θ } =   R(θ , Eq. 3.12 
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where the term in brackets is the new solution for source components in the natural 

coordinate system. The new solution, V, can be expressed in terms of the acquisition 

coordinates by 

 

 

 ER(θ  {R
T
(θ UR(θ } =  R(θ , Eq. 3.13 

 

  (θ  = R
T
(θ UR(θ , Eq. 3.14 

 

which is equivalent to a clockwise rotation of the natural coordinates through the angle θ. 

The term in brackets allows field data to be expressed in the simpler solutions associated 

with the natural anisotropy system. Unsplit solutions can be obtained from V, the field 

data, through a simple inverse to the rotation operation, 

 

 

 U = R(θ  (θ R
T
(θ , Eq. 3.15 

 

where the field sources and geophones have been rotated counter-clockwise through the 

angle θ. The field data has been transformed into the solutions of the natural anisotropy 

system. 

For the purpose of this work, the initial field coordinate system is denoted as the 

X-Y coordinate frame, composed of X and Y source – receiver pairs, illustrated in Figure 
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3.3. The post-rotation S-polarization coordinate system is denoted as the X’-Y’ 

coordinate frame. In the isotropic case, the post-rotation coordinate system is composed 

of radial and transverse source – receiver pairs. In the anisotropic case, the post-rotation 

coordinate system is composed of fast and slow source – receiver pairs. The angle at 

which off-diagonal component energy is minimized and diagonal component energy is 

maximized corresponds to the principal axes of the natural anisotropy system. At this 

angle, each fast and slow mode arrives as a single event on respective diagonal 

components. 

 

a)     b)    c) 

 

Figure 3.3: Field coordinates expressed as (a) X and Y source – receiver pairs, (b) 

transformation into radial and transverse coordinates of the survey 

geometry, and (c) fast and slow coordinates of the natural anisotropy 

system. 

This method allows for the estimation of subsurface fracture orientation, but it is 

restricted to normal-incidence reflections (Thomsen, 1988). Furthermore, the method 

assumes a time-invariant rotation angle, which implies a constant polarization angle for 

all depths. Shear-wave splitting is cumulative, so the presence of depth-variant anisotropy 
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can complicate rotation analysis unless it is removed. When shear wave polarization 

changes with depth, the off-diagonal components of the 2x2 S-wave data matrix become 

distorted and the matrix cannot be diagonalized. Systematic errors in calculated 

polarization angles will result because the signal on XY components differs from the 

signal on YX components (Winterstein and Meadows, 1991a). 

3.3 LAYER STRIPPING 

In order to apply Alford rotation to the case of depth-variant azimuthal 

anisotropy, a layer-stripping approach must be implemented. The goal of layer-stripping 

is to transform the reflection traces, as recorded, into a new set of traces that correspond 

to a purely isotropic overburden. Further, if non-normal incidence angles are to be 

included in the analysis, corrections to the polarizations of the reflected shear-waves at 

each interface must also be applied. Layer stripping operates under a number of key 

assumptions. First, S-wave polarizations are assumed to remain constant within a single 

layer, generally defined by the anisotropy parameters. Changes in polarization occur 

discontinuously at layer boundaries, thereby providing a benchmark from which to 

subtract time lags. Additionally, both layer thickness and the degree of anisotropy must 

be large enough to cause significant birefringence from which polarization and time lag 

can be observed. Lastly, it is assumed that wave propagation is along the symmetry axis 

or plane within each HTI layer. This is necessary for the rotation of sources and receivers 

by a single angle to adequately diagonalize the 2x2 S-wave matrix (Winterstein and 

Meadows, 1991a). 

Working under the assumptions stated above, layer stripping is performed by first 

rotating source and receiver axes into alignment with the natural anisotropy system of the 

uppermost anisotropic layer, defined by the polarization of the fast S-wave. After the data 
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are transformed into the orientation of the natural anisotropy system, the time delay 

between the diagonal component fast mode, which has travelled up and down as the fast 

mode, and slow mode, which has travelled up and down as the slow mode, is removed by 

shifting traces of the diagonal component slow mode forward in time. Time delays must 

also be removed from both off-diagonal components (Thomsen et al., 1999). Each off-

diagonal arrival has travelled either downward or upward through the anisotropic layer as 

a fast mode one way and a slow mode the other way and, therefore, arrives with half the 

time delay of the diagonal component slow mode. 

It is then necessary to identify where measurable changes in shear-wave 

polarization occur, if at all. In practice, polarization directions and any changes in 

polarization direction are most reliably determined from VSP data (Winterstein and 

Meadows, 1991a, b). The CVU-200 VSP, acquired in an injection well in the Central 

Vacuum field, shows two characteristic features that are distinctive of changes in shear-

wave polarization with depth. A gradual drift in polarization with depth and abrupt 

changes in delay time slope are evident in Figure 3.4. The changes in delay time slope 

serve as an indicator of where shear-wave polarizations are changing and thus where 

layer stripping needs to be performed. 

In seismic data, initial rotations performed on the uppermost layer fail to 

minimize energy on the X’Y’ and Y’X’ components beyond depths at which the shear 

wave polarization changes. Performing additional Alford rotations is necessary, followed 

by appropriate static time shifts, to minimize off-diagonal component energy in 

subsequent layers and analyze variations in anisotropy with depth (Winterstein and 

Meadows, 1991a). 
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Figure 3.4: Cumulative polarizations and delay times from the CVU-200 vertical 

seismic profile (VSP) in the Vacuum field from Mattocks (1998). A gradual 

drift in polarization with depth and abrupt changes in delay time slope serve 

as an indicator of where shear-wave polarizations are changing and thus 

where layer stripping needs to be performed. 
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Chapter 4: Results 

4.1 SYNTHETIC DATA 

Synthetic 3-D, 9-C data are generated using a Fourier frequency-wave number 

numerical modeling method (Mallick and Frazer, 1987) for the case in which the 

orientation of the anisotropy system changes with depth, described in Table 4.1. 

Thomsen’s weak anisotropy parameters are used to describe the anisotropy system and 

are modeled after values reported at the CVU-200 VSP in Mattocks (1998). The isotropy 

plane orientation is measured counterclockwise relative to the positive x-axis (0°). The 

3D survey geometry used for all synthetic data is shown in Figure 4.1. Maximum offset 

along each axis is 4000 m, and receivers are spaced 50 m. The source wavelet is a zero-

phase Ricker wavelet with a central frequency of 45 Hz. The model source consists of 

three-components, representing a vertical, radial, and transverse impulse.  Each geophone 

records three-components of motion, resulting in a nine-component record. All primary 

P- and S-reflections are modeled, including mode-conversions. The direct wave and any 

P- or S-multiples are not included in the model. 
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Layer 
Thickness 

(m) 

VP 

(m/s) 

VS 

(m/s) 

ρ 

(kg/m
3
) 

Thomsen 

parameters 

Isotropy plane 

orientation 

Interface 

1 1000 2000 1000 2.0 isotropic - 
 

A 

2 1000 3000 1500 2.1 isotropic -  

 

B 

3 1000 4000 2000 2.2 

ϵ=0.15 

δ=0.0 

γ=0.14 

60°  

 

C 

4 1000 5000 2500 2.4 

ϵ=0.15 

δ=0.0 

γ=0.14 

0°  

 

D 
5 1000 6000 3000 2.5 isotropic - 

 

Table 4.1: Properties of a depth-variant azimuthally anisotropic medium used to model 

3D-9C seismic data. Isotropy plane orientation is measured 

counterclockwise relative to the positive x-axis (0°).  

 

 

Figure 4.1: Schematic of 3D survey geometry used for all synthetic 9C data. Maximum 

offset along each axis is 4000 m and receiver spacing is 50 m. Positive 

angles are measured counterclockwise. 
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Figure 4.2 shows synthetic shot gathers computed from the model in Table 4.1 for 

(a) XX, (b) XY, (c) YX, and (d) YY source and receiver components along the x-axis 

(0°) prior to rotations or polarization corrections. The direct P-wave reflection from the 

first interface arrives at 1000 ms. This reflection appears strongest on the XX component, 

does not appear on off-diagonal components, and only appears at middle offsets on the 

YY component. The PS-mode-converted reflection from the first interface arrives at 1500 

ms. Again, this reflection appears strongest on the XX component, does not appear on 

off-diagonal components, and only appears at middle-to-large offsets on the YY 

component. The direct shear wave reflection from the first interface (A) an isotropic-

isotropic interface, arrives at 2000 ms on the diagonal XX and YY components. This 

reflection does not appear on the off-diagonal components because inline and crossline 

sources and receivers are properly oriented in radial and transverse coordinates, and 

shear-wave splitting does not occur. 

Significant energy can be seen on the off-diagonal components for all subsequent 

direct shear wave reflections (B, C, and D), caused by the presence of anisotropy.  The 

shear wave reflection B arrives at approximately 3300 ms on all four components. This 

event appears on all four components because the underlying anisotropy system polarizes 

the incident shear waves into the principal axis directions upon reflection. However, there 

is no time lag between their arrivals because they have not yet travelled through any 

anisotropic media. 

Similarly, the shear wave reflection from interface C, an anisotropic-anisotropic 

interface, arrives at approximately 4300 ms on all four components. The source shear 

wave polarizations have realigned in accordance with the anisotropy system’s principal 

axes and are separated by the time delay accumulated in this layer. The response to the 

shear wave splitting that occurred in the third layer is mixed among all four components. 
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Interference between fast and slow modes causes the third interface reflection to arrive as 

multiple peaks and troughs, rather than a single waveform. The shear wave reflection 

from the fourth interface (D), an anisotropic-isotropic interface, arrives at approximately 

5050 ms in a similar fashion. Recording multiple shear arrivals from a single interface is 

a defining feature of shear wave splitting and can lead to complicated tuning effects and 

misguided interpretations if each of the fast and slow shear wave arrivals is not analyzed 

individually. Furthermore, individual characteristics of SV and SH reflectivity cannot be 

distinguished because distorted energy from each shear mode is combined on any single 

component. 

Figure 4.3 shows synthetic shot gathers for (a) XX, (b) XY, (c) YX, and (d) YY 

components for a shot record with a source-receiver angle of 45° prior to rotations or 

polarization corrections. The same shear wave reflection from the first isotropic-isotropic 

interface (A) appears on all four components because source and receiver coordinates are 

misaligned with respect to the source-receiver aazimuth. Subsequent shear wave 

reflections from the second (B), third (C), and fourth (D) interfaces exhibit similar 

behavior as observed in Figure 4.2, caused by the presence of azimuthal anisotropy. 

However, the presence of azimuthal anisotropy cannot be evaluated until receiver 

coordinates are rotated into alignment with source coordinates and off-diagonal energy 

from all isotropic-isotropic interfaces is eliminated. 
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a)     b) 

 

 c)     d) 

 

Figure 4.2: Synthetic shot gathers for (a) XX, (b) XY, (c) YX, and (d) YY components 

along the x-axis (0°) from the five layer model prior to rotations or 

polarization corrections. The shear wave reflection from the interface A, an 

isotropic-isotropic interface, does not appear on the off-diagonal 

components because the source coordinates are aligned with the receiver 

coordinates. Significant energy can be seen on the off-diagonal components 

for all subsequent shear wave reflections (B, C, and D), which results from 

either isotropic-anisotropic or anisotropic-anisotropic interfaces.  Individual 

characteristics of SV and SH reflectivity cannot be distinguished because 

energy from each shear mode is mixed across all components. 
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 a)     b) 

 

 c)     d) 

 

Figure 4.3. Synthetic shot gathers for (a) XX, (b) XY, (c) YX, and (d) YY components 

for a line at a source-receiver azimuthal angle of 45° prior to rotations or 

polarization corrections. A shear wave reflection from an isotropic-isotropic 

interface (A) appears on all components because source and receiver 

coordinates are misaligned with respect to the source-receiver azimuth. 

Reflections from azimuthally anisotropic layers (B, C, and D) cannot be 

evaluated until receiver coordinates are rotated into alignment with source 

coordinates. 
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4.2 ROTATION ANALYSIS 

The data are incrementally rotated (Alford, 1986) through a range of angles from -

90° to 90°. Energy is calculated as an RMS-type average, squaring amplitudes and 

summing over time windows centered about each flattened reflection and across multiple 

traces. Energy calculations span a time window from 3324 ms to 3344 ms for the second 

shear wave reflection (interface B, Figure 4.4), 4100 ms to 4500 ms for the third shear 

wave reflection (interface C, Figure 4.5), and 4900 ms to 5300 ms for the fourth shear 

wave reflection (interface D, Figure 4.6). The time window for energy calculations for 

the second shear wave reflection is smaller than the time window for the third and fourth 

shear wave reflections because a time delay between each shear wave polarization has 

not yet accumulated. Energy calculated over a 0° to 5° range of incidence angles includes 

the ten nearest traces and offsets up to 500 m. A 0° to 10° range of incidence angles 

includes the twenty nearest traces and offsets up to 1000 m. A 0° to 15° range of 

incidence angles includes the thirty nearest traces and offsets up to 1500 m. A 0° to 20° 

range of incidence angles includes the 40 traces and offsets up to 2000 m. The angle at 

which a maximum ratio of diagonal to off-diagonal component energy is observed 

corresponds to the orientation of the natural anisotropy system. 

Results of rotation analysis performed on the reflection from interface B (Figure 

4.4), an isotropic-anisotropic interface, show that energy in off-diagonal component 

source-receiver pairs is minimized within 5° (near offsets) of the underlying isotropy 

plane orientation, 60°, and exhibits symmetric behavior about the principal axes. 

Diagonal component maxima occur at orthogonal rotation angles, approximately -30° on 

the XX component and 60° on the YY component. However, the distinct off-diagonal 

component minima successfully maximize the ratio of diagonal to off-diagonal 

component energy for incidence angles near normal incidence (0°-5°, blue line). This 
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behavior is consistent with the normal incidence assumptions of traditional Alford 

rotation. As a larger range of incidence angles are included in the energy calculations, the 

computed energy maxima and minima drift further from the orientation of the true 

anisotropy system, illustrating the shortcomings of applying typical Alford rotation at 

non-normal incidence angles. Although the shear wave has not yet travelled through an 

anisotropic medium at this point, the underlying anisotropy system polarizes incident 

shear waves into the principal axis directions upon reflection, as demonstrated in detail 

by Gumble and Gaiser (2006), and Campbell and Tatham (2012, 2013). 
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a)      b) 

 
c)      d) 

 
Incidence angle 

 

Figure 4.4: Energy calculated on (a) XX, (b) XY, (c) YX, and (d) YY components from 

the interface B reflection for a range of rotation angles from -90° to 90° and 

an increasing range of incidence angles. The shear wave has not yet 

travelled through anisotropic media, but the underlying anisotropy system 

polarizes shear waves into the principal axis direction (60°) upon reflection. 

Diagonal component maxima occur at orthogonal rotation angles, 

approximately -30° on the XX component and 60° on the YY component. 

Including a greater range of incidence angles causes computed energy 

maxima and minima to deviate from the true orientation of the natural 

anisotropy system. This behavior demonstrates the shortcomings of applying 

current Alford rotation at non-normal incidence angles. 

0°-5° 0°-10° 0°-20° 0°-15° 
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In Figure 4.5, rotation analysis performed on the reflection from interface C, an 

anisotropic-anisotropic interface, illustrates that energy in off-diagonal component 

source-receiver pairs is minimized within 5° of the isotropy plane orientation in layer 3, 

60°, and again exhibits symmetric behavior about the principal axes. This behavior is 

consistent with the energy transmitting through the anisotropic layer, with dominant 

polarization controlled by that layer on transmission. This propagation effect reorients the 

polarization to the properties of this layer. Absolute maxima occur on diagonal 

components at orthogonal rotation angles, approximately 60° on the XX component and -

30° on the YY component. In comparison to the rotation scan performed on the isotropic-

anisotropic interface reflection, one absolute maximum and one smaller, local maximum 

occur on each diagonal component and result in greater symmetry about the principal 

axes. A very strong imprint of the transmission through the anisotropic layer is observed. 

All peaks and troughs in Figure 4.5 show different magnitude, but occur more or less 

within a few degrees each other. As a larger range of incidence angles are included in the 

energy calculations the computed energy maxima and minima do show some drift, but 

not by more than 5°. 
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a)      b) 

 
c)      d) 

 
Incidence angle 

Figure 4.5: Energy calculated on (a) XX, (b) XY, (c) YX, and (d) YY components from 

interface C, an anisotropic-anisotropic interface, reflection for a range of 

rotation angles from -90° to 90° and an increasing range of incidence angles. 

For smaller ranges of incidence angles (0°-5°, blue line), off-diagonal 

component energy is minimized within 5° of the isotropy plane orientation 

in layer 3, 60°. Absolute maxima occur on diagonal components at 

orthogonal rotation angles, approximately 60° on the XX component and -

30° on the YY component. A very strong imprint of the transmission 

through the anisotropic layer is observed. 

 

0°-5° 0°-10° 0°-20° 0°-15° 



 67 

Rotation analysis performed on the reflection from interface D is shown in Figure 

4.6. Extrema are clear on off-diagonal components in Figure 4.6b and Figure 4.6c, but do 

not occur at the correct location and gradually vary by up to 30° as an increasing range of 

incidence angles are included in the energy calculations. Diagonal components in Figure 

4.6a and Figure 4.6d do not show clear energy maxima, regardless of the range of 

incidence angles included in energy calculations. The orientation of the isotropy plane in 

layer 4 is at 0°, but the time lag accumulated in the overburden invalidates rotation 

analysis results for underlying anisotropy systems regardless of the range of incidence 

angles over which energy is calculated. Pre-existing time delays must be removed before 

shear wave polarizations can be analyzed in subsequent anisotropic layers. 
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a)       b) 

 
c)       d) 

 
Incidence angle 

 

Figure 4.6: Energy calculated on (a) XX, (b) XY, (c) YX, and (d) YY components from 

interface D, an anisotropic-isotropic interface, reflection for a range of 

rotation angles from -90° to 90° and an increasing range of incidence angles. 

Energy minima are clear on off-diagonal components, but occur at the 

wrong locations. Clear energy maxima are not observed on diagonal 

components, which should correspond to the orientation of the isotropy 

plane in layer 4, 0°. The time lag accumulated in the overburden invalidates 

the rotation analysis results for underlying anisotropy systems regardless of 

the range of incidence angles over which energy is calculated. 

 

0°-5° 0°-10° 0°-20° 0°-15° 
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Data are rotated 60° counterclockwise into alignment with the natural anisotropy 

system, as indicated by the rotation analysis performed on the near offsets of reflections 

at interfaces B and C (Figure 4.7). In these data, rotated into the coordinates of the natural 

anisotropy system, individual SV-SV and SH-SH reflectivity characteristics become 

apparent. The SV mode from the interface C reflection  can be distinguished on the Y’Y’ 

component in Figure 4.7d, arriving as the fast shear wave (S1) at approximately 4220 ms. 

A polarity reversal is observed near 1800 m (18° incidence angle) and corresponds to the 

zero crossing predicted by computed reflectivity curves. The SH mode from the same 

reflection is concentrated on the X’X’ component in Figure 4.7a, arriving as the slow 

shear wave (S2) at approximately 4330 ms. The range of offsets in this survey is not large 

enough to observe the SH wave zero crossing. The total lag between the fast and slow 

shear modes is approximately 110 ms. A noticeable amount of energy remains on off-

diagonal components for the third interface reflection even though the data has been 

rotated into the proper coordinate system. This residual off-diagonal energy is a result of 

the immediate underlying anisotropic layer. The situation is similar to the case of an 

isotropic-anisotropic reflection, where the underlying anisotropy system imparts a 

polarization upon incident reflected shear waves. 

Because it is not possible to identify the correct angle at which diagonal 

component energy reaches a maximum and off-diagonal component energy reaches a 

minimum through rotation analysis performed on the interface D reflection (~5000 ms), it 

is also not possible to isolate each shear mode on individual components. Evidence of 

shear wave splitting is still visible in Figure 4.7 for the fourth interface reflection after the 

data has been rotated 60° counterclockwise, into the coordinates overlying anisotropy 

system. This event still appears split because the orientation of the anisotropy system in 

this layer differs from that in the overburden. Again, there is no angle at which each shear 
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wave arrives as a single, unsplit waveform on a single component. This requires a static 

time shift to remove all time delays associated with the shear wave splitting in overlying 

layers. 
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a)      b) 

 
c)      d)

 

Figure 4.7: Shot gathers for (a) X’X’, (b) X’Y’, (c) Y’X’, and (d) Y’Y’ components 

along the x-axis (0°) after a 60° counterclockwise rotation applied over a 

time window from 3200 ms to the end of the record prior to polarization 

corrections. After rotation into layer three’s natural anisotropy system 

coordinates, individual SV-SV and SH-SH reflectivity characteristics are 

apparent in the interface C reflection. The SV mode arrives on the Y’Y’ 

component (d) as the fast shear wave (S1) at ~4220 ms. A polarity reversal 

near 1800 m (18° incidence angle) corresponds to the zero crossing 

predicted by computed reflectivity curves. The SH mode arrives on the 

X’X’ component as the slow shear wave (S2) at ~4330 ms. The interface D 

reflection (green arrow), however, still exhibits effects of shear wave 

splitting because the orientation of anisotropy changes in the fourth layer. 
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4.3 LAYER STRIPPING AND ITERATIVE ROTATION ANALYSIS 

A time lag of 116 ms was removed from the X’X’ component, containing the 

slow shear wave, and a time lag of 60 ms was removed from both the X’Y’ and Y’X’ 

components. Removal of these time lags is the layer stripping process. After all time lags 

are removed, rotation analysis is repeated on the fourth interface. Figure 4.8 shows 

energy calculated from the post-layer stripping rotation analysis. Clear maxima now 

occur at angles of 30° and -60° on X’X’ and Y’Y’ components. Accordingly, X’Y’ and 

Y’X’ components now show minima at angles of 30° and -60°. The isotropy plane 

orientation in layer 4 is at 0°. As all data were previously rotated 60° (counterclockwise), 

a rotation through -60° (clockwise), therefore, corresponds to the orientation of the 

natural anisotropy system at 0° in the current coordinate system. Layer stripping has thus 

allowed for proper identification of the natural anisotropy system for this particular layer. 
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a)      b) 

 
c)      d) 

 
Incidence angle 

 

 

Figure 4.8: Energy calculated on (a) X’X’, (b) X’Y’, (c) Y’X’, and (d) Y’Y’ 

components from the interface D reflection for a range of rotation angles 

from -90° to 90° after layer stripping has removed time delays accumulated 

in the anisotropic overburden. Diagonal component energy maxima and off-

diagonal component energy minima occur at an angle of -60° and 30°. The 

isotropy plane orientation in layer 4 is at 0°. A rotation through -60° 

therefore corresponds to the orientation of the natural anisotropy system in 

the current coordinate system. 

 

0°-5° 0°-10° 0°-20° 0°-15° 
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When time lags are removed for all components for reflection C, all data below 

the third interface reflection are rotated 60° clockwise into the coordinates of the fourth 

layer’s natural anisotropy system, results of which are shown in Figure 4.9. Eliminating 

effects of shear wave splitting from the third layer enables the use of iterative rotations to 

isolate individual fast and slow shear modes on diagonal components for subsequent 

reflections. In Figure 4.9, energy from the interface D reflection (green arrow) is 

contained primarily on the diagonal components after the rotation is performed. The fast 

shear wave (S1) arrives on the Y’’Y’’ (4.9d) component at approximately 4910 ms and 

consists primarily of SV energy. The slow shear wave (S2) arrives on the X’’X’’ (4.9a) 

component at approximately 5010 ms and consists primarily of SH energy. A major 

difference between the results of initial rotations performed on the interface C reflection 

and secondary rotations performed on the interface D reflection is that coherent energy 

from the fourth interface reflection is not visible on the off-diagonal components after 

rotation into the natural anisotropy system coordinates. Residual off-diagonal component 

energy was present after rotations performed on the third interface reflection. This 

residual energy resulted from the influence of the underlying anisotropy system. The fifth 

layer of the model is isotropic, so it does not impose an anisotropic overprint upon 

reflection at the fourth interface. 
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a)       b) 

 

c)       d) 

 

Figure 4.9: Shot gathers for (a) X’’X’’, (b) X’’Y’’, (c) Y’’X’’, and (d) Y’’Y’’ 

components along the x-axis (0°) after time delays are removed and a 60° 

clockwise rotation is applied to the interface D reflection (green arrow). 

Removing the effect of the anisotropic overburden allows reflections from 

subsequent layers to be separated into fast and slow shear modes on each 

diagonal component. The fast shear wave (S1) arrives on the Y’’Y’’ (a) 

component at ~4910 ms and consists primarily of SV energy. The slow 

shear wave (S2) arrives on the X’’X’’ (d) component at ~5010 ms and 

consists primarily of SH energy.  
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4.4 POLARIZATION CORRECTION 

With SV and SH energy concentrated on separate diagonal components, the 

polarization correction is applied to its respective X’’X’’ or Y’’Y’’ component (Figure 

4.10). The polarization correction effectively removes the SV-SV polarity reversal on the 

Y’’Y’’ component (Figure 4.10d). However, the correction cannot be applied within the 

immediate range of the zero-crossing (15°-20°), and amplitudes within that range remain 

weak to null. The zero-crossing for the SH-SH wave is outside the range of offsets 

included, and effects of the correction on this mode are less apparent. The tan
2
θ 

approximation used for the polarization correction becomes less accurate beyond 30° 

incidence angle, which may contribute to the amplitude variation that is observed even 

after the polarization correction is applied.  
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a)       b) 

 

c)       d) 

 

Figure 4.10: Shot gathers for (a) X’’X’’, (b) X’’Y’’, (c) Y’’X’’, and (d) Y’’Y’’  

components after iterative rotations, time shifts, and amplitude corrections 

for polarization distortion.  The SV-SV polarization correction, applied to 

the Y’’-Y’’ component removes the polarity reversal beyond ~20° incidence 

angle and normalizes all amplitudes to zero offset. Because the correction 

cannot be applied within the range of the zero-crossing (15°-20°), 

amplitudes within that range remain weak. The zero-crossing for the SH-SH 

wave is outside the range of offsets included, and effects of the correction 

on this mode are less apparent. Amplitudes across the full offset range, 

however, are normalized to zero offset, allowing proper rotation analysis. 
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To examine the effect the polarization correction has on traditional Alford (1986) 

rotation beyond normal incidence, polarization-corrected data are rotated back to original 

coordinates, and the rotation analysis is performed again in terms of energy extrema. The 

use of primes is no longer necessary because all results are presented relative to the 

original coordinate system and coincide with the true anisotropy orientation presented in 

the model described in Table 4.1. The results of the rotation analysis performed after the 

polarization correction, shown in Figures 4.11 and 4.12, differ in number of ways relative 

to results of rotation analysis performed prior to the polarization correction, shown in 

Figures 4.5 and 4.8. 

Figure 4.11 shows the results of rotation analysis performed on the interface C 

reflection after amplitude corrections for polarization distortion have been applied. 

Energy calculations including incidence angles from 0-5° and 0-10° no longer exhibit 

two distinct maxima on each diagonal component and are no longer symmetric about the 

principal axes, as they did in results of rotation analysis performed prior to polarization 

corrections (Figure 4.5a and d). Maxima occur near 60° on the XX component and near -

30° on the YY component. Energy calculations including incidence angles from 0-15° 

begin to show a small secondary local maximum at orthogonal rotation angles (-30° on 

XX and 60° on YY in Figure 4.11a and d), similar to that which was observed prior to 

polarization corrections (Figure 4.5a and d).  

When incidence angles up to 20° are included in the energy calculations, a distinct 

maxima can be observed on the XX component at -30° and the YY component at 60°, 

and each diagonal component again exhibits symmetric behavior about the principal axes 

in Figure 4.11a and d. The location of the absolute maximum across individual XX and 

YY components differs from that which is observed prior to polarization corrections. 

Before the polarization correction, absolute maxima occurred near 60° on the XX 
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component and near -30° on the YY component (Figure 4.5a and d). After the 

polarization correction, absolute maxima occur at -30° on the XX component and at 60° 

on the YY component (Figure 4.11a and d). This difference is important to note when 

distinguishing between the isotropy plane and the symmetry axis. Absolute maxima on 

the YY component, occurring at 60°, correspond to the orientation of the isotropy plane 

and show a much larger increase in computed energy relative to energy calculations 

performed prior to the polarization correction. This is consistent with SV energy, which 

would be largely confined within the isotropy plane, occurring on the YY component 

after rotation into the natural anisotropy coordinates. A large increase in SV mode energy 

is expected because reflection strength of SV-SV waves decreases much faster with 

increasing incidence angles than for SH-SH waves. The polarization correction aims to 

normalize weaker reflections at wider incidence angles to values observed at normal 

incidence. Therefore, the location of the absolute maximum in rotation analysis 

performed on polarization-corrected reflections corresponds to the location of the 

isotropy plane, containing SV energy and the location of the secondary maximum 

corresponds to the location of the symmetry plane, containing SH energy. An additional 

benefit is that for energy calculations including incidence angles up to 20°, the location of 

the absolute maxima on each diagonal component is also closer to the true orientation of 

the principal axes after the polarization correction is implemented in the rotation analysis. 

Off-diagonal component energy calculations from rotation analysis performed 

after the polarization correction is applied (Figure 4.11b and c) show considerably less 

variation from those performed prior to the polarization correction (Figure 4.5b and c) 

because the correction operates primarily on SV-SV and SH-SH energy. The location of 

off-diagonal minima and computed energy values are consistent prior to and after the 

polarization correction is applied for calculations including incidence angles up to 15°. 
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For calculations including incidence angles up to 20°, diagonal component energy 

maxima and off-diagonal component energy minima occur closer to the true orientation 

of the principal axes after the polarization correction is applied. 
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a)      b) 

 

c)      d) 

 
Incidence angle 

Figure 4.11: Alford rotation analysis performed on the interface C reflection after 

amplitude corrections for polarization distortion have been applied. For 

energy calculations including incidence angles up to 20°, the location of the 

diagonal component energy maxima and off-diagonal component energy 

minima are closer to the true orientation of the principal axes compared to 

results of Alford (1986) rotation analysis performed on data that has not 

been corrected for polarization distortion (Figure 4.5). The polarization 

correction also allows individual SV and SH mode energy associated with 

the respective isotropy plane and symmetry axis to be more clearly 

distinguished. 

0°-5° 0°-10° 0°-20° 0°-15° 
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Figure 4.12 shows the results of rotation analysis performed on the interface D 

reflection after layer stripping has removed all time delays and amplitude corrections 

have been applied for polarization distortion. Diagonal component energy maxima and 

off-diagonal component energy minima now occur at 0° and 90°, coincident with the 

orientation of the natural anisotropy system in layer 4. The polarization correction has 

produced similar results to that which was observed in Figure 4.11. After applying the 

polarization correction, energy calculations including incidence angles up to 20° 

distinguish individual SV and SH mode energy associated with the respective isotropy 

plane and symmetry axis. Furthermore, relative to rotation analysis performed before 

polarization corrections (Figure 4.8), energy calculations including incidence angles up to 

20° better localize diagonal component energy maxima and off-diagonal component 

energy minima closer to the true orientation of the principal axes after the polarization 

correction is applied. 

Overall, rotation analysis performed on data that has been corrected for 

polarization distortion results in larger calculated values of energy. As a wider range of 

incidence angles are included in the energy calculations, the total energy computed from 

the polarization-corrected data increases relative to energy computed from uncorrected 

data. This result is consistent with the modus operandi. The correction aims to normalize 

amplitudes, which decrease with increasing incidence angle, to normal-incidence values. 

Thus, it is as expected that the total energy in each component increases after the 

polarization correction is applied. 
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a)      b) 

 

c)      d) 

 
Incidence angle 

Figure 4.12: Alford rotation analysis performed on the interface D reflection after layer 

stripping has removed all time delays accumulated in the anisotropic 

overburden and the polarization correction has normalized all amplitudes to 

normal-incidence values.  Energy calculations including incidence angles up 

to 20° localize diagonal component energy maxima and off-diagonal 

component minima closer to the true orientation of the principal axes 

relative to results of Alford (1986) rotation analysis performed on data that 

has not been corrected for polarization distortion (Figure 4.8). The 

polarization correction also helps to better distinguish individual SV and SH 

mode energy associated with the respective isotropy plane and symmetry 

axis. 

0°-5° 0°-10° 0°-20° 0°-15° 
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Chapter 5: Conclusions 

For the simplicity of this study, horizontal transverse isotropy (HTI) caused by 

vertical, aligned cracks, fractures, and subsurface stresses is considered without regard to 

the presence of vertical transverse isotropy (VTI), a property likely inherent to most 

layered media. To be complete, the combination of HTI and VTI would result in 

orthorhombic symmetry. The mathematical complexities introduced by this order of 

symmetry are beyond the scope of this study and the present state of technology, but they 

would certainly affect the seismic response and may alter the effectiveness of the 

polarization correction. The layered nature of HTI media used in this study certainly 

affects the relative success with which off-diagonal component energy is minimized for 

isotropic-anisotropic, anisotropic-anisotropic, and anisotropic-isotropic interfaces during 

rotation analysis. This effect is apparent in results from the rotation scan analysis and the 

rotations subsequently applied to the seismic data, whereby the underlying anisotropy 

system imparts a degree of its anisotropic character upon the incident reflected wave 

without the wave actually travelling through the underlying anisotropic medium. 

Polarization upon reflection mitigates efforts to eliminate off-diagonal component energy 

for reflections from isotropic-anisotropic and anisotropic-anisotropic interfaces. One way 

to address lower orders of symmetry would be to perform a full 9-component tensor 

rotation. This would require use of not only the S-wave data, but the P-wave data as well.  

Additionally, a single layer with conjugate fractures would also result in 

orthorhombic symmetry. Proper characterization of conjugate fracture sets, which are an 

equally common occurrence, would significantly improve hydrocarbon recovery, 

particularly if only one set of the conjugate fractures is open to fluid flow, while the other 

is cemented. 
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The success of the polarization correction largely depends on the accuracy of 

shear wave reflectivity approximations. The SV reflectivity approximation, which makes 

use of a sin
2
 term, provides a very close fit to the true Zoeppritz equations. The correction 

thus successfully removes the SV polarity reversal, but cannot be applied in the 

immediate range of the zero-crossing. Conversely, the SH reflectivity approximation, 

which makes use of a tan
2
θ term, begins to diverge from the true Zoeppritz equations 

near 30° incidence angle. The location of the zero-crossing differs by as much as 10° 

between the true Zoeppritz equations and the tan
2
θ approximation. The disagreement 

between Zoeppritz reflectivity curves and the tan
2
θ approximation certainly reduces the 

effectiveness of the SH polarization correction.  Use of a higher order approximation by 

including an additional trigonometric term to better fit true SH reflectivity behavior might 

yield better results. 

In a less idealized setting, this process would be limited by both data quality and 

geologic conditions. Significant noise may lead to ambiguous results during rotation 

analysis. Furthermore, if changes in anisotropy orientation do not coincide with the 

impedance contrasts that give rise to continuous reflections, layer-stripping may produce 

misleading results. For example, the time delay accumulated in a thin, highly anisotropic 

layer of weak to no reflectivity would be averaged over the interval between the nearest 

reflections, leading to an incorrect interpretation of thick layers with minimal anisotropy. 

Nonetheless, for the model presented here, iterative rotations, combined with 

subtraction of all slow shear wave time lags, concentrated SV and SH energy on 

individual diagonal components and removed the effects of anisotropic overburden. The 

polarization correction equalized amplitudes across all offsets and eliminates the SV 

polarity reversal, which can have destructive consequences in the stacking process. After 

the polarization correction is applied, increasing the range of incidence angles used in 
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energy calculations to 20° more effectively distinguishes individual SV and SH mode 

energy, allowing for allowing for more distinct identification of the isotropy plane and 

the symmetry axis. Increasing the range of incidence angles used in energy calculations 

to 20° also localizes diagonal component energy maxima and off-diagonal component 

energy minima closer to the true orientation of the principal axes after the polarization 

correction is applied. This allows for more effective characterization of fracture strike, 

intensity, and lateral variability with shear wave attributes derived from 3D-9C seismic 

data such as polarization, delay time, and normal incidence reflection coefficient. 
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