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A common challenge in materials science is the “inverse design prob-

lem,” wherein one seeks to use theoretical models to discover the microscopic

characteristics (e.g., interparticle interactions) of a system which, if fabricated

or synthesized, would yield a targeted material property. Inverse design prob-

lems are commonly addressed by stochastic optimization strategies like simu-

lated annealing. Such approaches have the advantage of being general and easy

to apply, and they can be effective as long as material properties required for

evaluating the objective function of the optimization are feasible to accurately

compute for thousands to millions of different trial interactions.

This requirement typically means that “exact” yet computationally

intensive methods for property predictions (e.g., molecular simulations) are

impractical for use within such calculations. Approximate theories with ana-

lytical or simple numerical solutions are attractive alternatives, provided that

they can make sufficiently accurate predictions for a wide range of microscopic

interaction types.
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We propose a new approach, based on the fine discretization (i.e., ter-

racing) of continuous pair interactions, that allows first-order mean-spherical

approximation theory to predict the equilibrium structure and thermodynam-

ics of a wide class of complex fluid pair interactions. We use this approach

to predict the radial distribution functions and potential energies for systems

with screened electrostatic repulsions, solute-mediated depletion interactions,

and ramp-shaped repulsions.

We create a web applet for introductory statistical mechanics courses

using this approach to quickly estimate the equilibrium structure and thermo-

dynamics of a fluid from its pair interaction. We use the applet to illustrate two

fundamental fluid phenomena: the transition from ideal gas-like behavior to

correlated-liquid behavior with increasing density in a system of hard spheres,

and the water-like tradeoff between dominant length scales with changing tem-

perature in a system with ramp-shaped repulsions.

Finally, we test the accuracy of our approach and several other integral

equation theories by comparing their predictions to simulated data for a series

of different pair interactions. We introduce a simple cumulative structural

error metric to quantify the comparison to simulation, and find that according

to this metric, the reference hypernetted chain closure with a semi-empirical

bridge function is the most accurate of the tested approximations.
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Chapter 1

Introduction

Effective interactions between suspended colloids or nanoparticles can

be experimentally tuned (e.g., by changing the properties of the solvent, through

physical or chemical modification of the particles, or via external fields) so

that macroscopic properties of the corresponding complex fluids can be en-

gineered from the “bottom up” [17, 27, 46, 72]. Statistical mechanics pro-

vides a formal quantitative framework that links microscopic properties to

macroscopic behavior, in principle allowing for computational inverse design

of interparticle interactions to achieve desired material characteristics (e.g.,

specific structural features or other targeted properties via structure-property

relations) [7, 14, 20, 23, 25, 26, 29, 40, 41, 63, 67].

In practice, successful inverse design strategies rely upon on accurate

and efficient means for solving a forward version of the problem at hand.

Molecular simulations or sophisticated integral equation theories–otherwise

well suited for the forward calculation of equilibrium behavior from microscopic

interactions–currently require computational resources that are prohibitive for

use in most optimization strategies. Simple analytic liquid-state theories are a

potentially attractive alternative, but they are unfortunately limited in terms
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of the types of pair potentials that they can accurately treat [31].

In Chapter 2, we develop a simple and general analytical strategy for

predicting the equilibrium structure and thermodynamics of complex fluids

by terracing continuous pair interactions in order to apply first-order mean-

spherical approximation theory. Specifically, we implement a version of this

approach to predict how screened electrostatic repulsions, solute-mediated de-

pletion attractions, or ramp-shaped repulsions modify the radial distribution

function and the potential energy of reference hard-sphere fluids, and we com-

pare the predictions to exact results from molecular simulations.

In Chapter 3 we present a web applet designed for classroom use or

as a guide to experiment, which uses the discretization strategy described in

Chapter 2 to quickly and semi-quantitatively estimate the equilibrium radial

distribution function and related thermodynamic properties of a fluid from

knowledge of its pair interaction. We present a detailed description of the

applet’s features and intended workflow, followed by a description of how the

applet can be used to illustrate two (of many possible) concepts of interest for

introductory statistical mechanics courses: the transition from ideal gas-like

behavior to correlated-liquid behavior with increasing density and the tradeoff

between dominant length scales with changing temperature in a system with

ramp-shaped repulsions. The latter type of interaction qualitatively captures

distinctive thermodynamic properties of liquid water because its energetic bias

toward locally open structures mimics that of water’s hydrogen-bond network.

Since finely terraced potentials can accurately represent their continu-
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ous counterparts, in Chapter 4 we assess the utility of several integral equa-

tion theories for predicting the structure of fluids with pair interactions of

this type. We use molecular dynamics simulations to test the accuracy of

fluid structure predictions made using simple and computationally efficient

closures (including Percus-Yevick, hypernetted chain, reference hypernetted

chain with an analytical bridge function, first-order mean spherical approxi-

mation, and a modified first-order mean spherical approximation,) for eight

different piecewise-constant pair interactions comprising a hard core and a

combination of two shoulders and/or wells. To quantify the comparison to

simulation, we introduce a simple cumulative structural error metric which

qualitatively predicts thermodynamic accuracy. For equilibrium fluid state

points of these models, we find that the reference hypernetted chain closure is

the most accurate of the tested approximations as characterized by this metric.
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Chapter 2

Fine discretization of pair interactions and an

approximate analytical strategy for predicting

equilibrium behavior of complex fluids

In this chapter, we explore whether fine discretization (i.e., terracing)

of the pair interaction can allow one to use analytical theories in a new way

to predict the behaviors of a broader range of model complex fluids, ren-

dering these analytical methods more powerful as tools for materials design.

In other contexts, theoretical studies have characterized the thermodynamics

of terraced potentials comprising a limited number of square wells or shoul-

ders [11, 37, 62]. Fine discretization of continuous pair interactions has also

been utilized in order to take advantage of efficient event-driven simulation

algorithms [10, 70].

Our proposed strategy comprises three parts: (1) fine discretization

of a short-range, continuous pair potential into a terraced representation, (2)

application of an approximate, analytical liquid-state theory capable of accu-

This chapter first appeared as “Kyle B. Hollingshead, Avni Jain, and Thomas M. Truskett.
Communication: Fine discretization of pair interactions and an approximate analytical
strategy for predicting equilibrium behavior of complex fluids. The Journal of Chemical
Physics, 139(16):161102, 2014.” Avni Jain performed Monte Carlo simulations, and Thomas
Truskett supervised the work.
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rately predicting the finely sawtoothed radial distribution function (RDF) of

the terraced model, and (3) smoothing of the sawtoothed RDF to recover a

continuous prediction for the pair correlation function of the fluid with the

original potential.

To test the performance of this discretization-and-smoothing based ap-

proach, we compare its predictions to exact (within numerical precision) re-

sults from molecular simulations. Specifically, we study the accuracy of its

predictions for how short-range screened electrostatic (Yukawa) [19, 21, 33]

repulsions, solute-induced depletion (Asakura-Oosawa) [8, 58] attractions, or

ramp-shaped [24, 39, 71] repulsions modify the equilibrium structure and ther-

modynamics of a hard-sphere fluid.

2.1 Methods

2.1.1 Discretization Strategy

We consider isotropic, pairwise interparticle interactions ϕ(r) that con-

sist of a hard-core exclusion for separations less than a particle diameter

(r < σ) plus a continuous, short-range contribution φ(r) that decays to zero

by a cut-off rc,

ϕ (r) =


∞ r < σ
φ (r) σ ≤ r < rc
0 r ≥ rc

. (2.1)

We discretize the continuous potential into a terraced representation of

M steps, each with a constant energy

εi = (λi − λi−1)−1
∫ λi

λi−1

φ (r) dr, (2.2)
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Figure 2.1: Schematic of potential terracing and RDF smoothing. (a) The
continuous potential of interest βϕ(r) (blue, solid) and the corresponding ter-
raced version (red, dashed) are shown, with parameters εi and λi determined
from Eq. 2.2 as described in the text. (b) The sawtoothed RDF gST(r) (red,
dashed) associated with the terraced potential is computed using Eq. 2.3. It
is smoothed using Eqs. 2.4 and 2.5 to arrive at a continuous prediction (blue,
solid) for the RDF of the fluid with the original potential.
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where λi is the outer boundary of step i (see Figure 2.1a). The values of εi and

λi are determined simultaneously, beginning from rc and working inward, such

that the difference in energies between neighboring steps, ∆εi = εi+1 − εi,

is smaller in magnitude than a specified threshold ∆εmax. This threshold

should be small enough that the terraced representation adequately captures

the shape of the continuous potential. In this work, we set β∆εmax = 0.05,

where β = (kBT )−1, kB is the Boltzmann constant and T is temperature.

A more extensive discussion how our strategy depends on this parameter is

available in Appendix A.

Terraced potentials produce sawtoothed shaped RDFs, gST (r), which

we compute here via an extension of the simple exponential first-order mean

spherical approximation (SEXP-FMSA) proposed by Hlushak, et al. for square-

shoulder systems [36], which itself is a variation of the first-order mean spher-

ical approximation (FMSA) of Tang and Lu [64, 65]. We treat each step in

the discretized potential as an independent perturbation1 to the RDF of the

reference hard-sphere fluid at the same packing fraction η:

gST (r) = gHS (r)
M∏
i=1

exp [−β∆εigFMSA (r, λi, η)] (2.3)

where gHS (r) is the RDF of the hard-sphere fluid, and gFMSA(r, λi, η) is the

FMSA perturbation defined by Eq. 73 of Ref. [65]. The quantity gFMSA(r, λi, η)

depends on λi and η = πρσ3/6, where ρ is the number density. This particular

1This type of approximation is natural for approaches which, like FMSA, assume a linear
dependence of the RDF on the interaction energy.
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approximation is capable of treating terraced potentials with a cut-off rc ≤ 2σ,

a constraint that might be relaxed in future implementations by choosing a

different analytical theory for this step.

To arrive at a continuous prediction for the pair correlations of the fluid

with the original potential, we smooth out the “teeth” in gST(r) by adding a

correction ∆g (r),

g (r) ≡ gST (r) + ∆g (r) , (2.4)

which is a piecewise sequence of linear functions:

∆g (r) ≡
[
gavgi − gST

(
λ−i
)]( r − λi−1

λi − λi−1

)
+
[
gavgi−1 − gST

(
λ+i−1

)](
1− r − λi−1

λi − λi−1

)
for λi−1 < r < λi, (2.5)

with gavgi =
[
gST
(
λ−i
)

+ gST
(
λ+i
)]
/2 .

2.1.2 Model Pair Interactions

As alluded to above, we consider three forms for φ(r) in Eq. 2.1:

screened electrostatic (Yukawa) [19, 21, 33] repulsions, solute-induced deple-

tion (Asakura-Oosawa) [8, 58] attractions, or ramp-shaped [24, 39, 71] repul-

sions.

Screened electrostatic repulsions. The repulsive Yukawa potential can

be expressed as

φY (x) = γx−1 exp [−κ (x− 1)] , (2.6)
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where x = r/σ, γ > 0 is the energy at contact (effective Yukawa charge), and

κ−1 is the screening length. To avoid discontinuities, we adopt a form that is

cut at xc = 2 and shifted

φ(x) = φY (x)− φY (xc) . (2.7)

Depletion attractions. The Asakura-Oosawa (AO) model for non-interacting,

solute-induced depletion attractions can be expressed

βφ (x) = − ηp

(1− x−1c )3

[
1− 3

2

x

xc
+

1

2

(
x

xc

)3
]

(2.8)

for 1 ≤ x ≤ xc and xc = (1 + q). Here, q is the implicit solute to explicit par-

ticle diameter ratio, and ηp is the packing fraction of implicit solute particles.

Ramp-shaped repulsions. In its simplest form, the hard-core plus repul-

sive ramp potential is:

φ (x) = U1 [1− (x/xc)] (2.9)

for 1 ≤ x ≤ xc. Here, U1 is the characteristic energy scale of the ramp, and

we choose xc = 2.

2.1.3 Molecular Simulations

We test the discretization-and-smoothing strategy by comparing its

smoothed RDF and potential energy predictions with exact results from canonical-

ensemble Monte Carlo molecular simulations. We initialized the Monte Carlo

9



simulations with either N = 2744 particles (for systems with Yukawa repul-

sions) or N = 1000 particles (for systems with AO depletion attractions or

ramp-shaped repulsions) in disordered configurations within a cubic simula-

tion box, using periodic boundary conditions. After an initial equilibration

period at the temperature of interest, we collected properties over a period of

106 Monte Carlo cycles.

2.2 Comparison of Analytical Predictions to Simulation
Results

To assess the performance of our proposed theoretical strategy, we in-

vestigate its ability to predict static structure (quantified by the RDF) and

potential energy for the three model systems discussed above.

The predicted RDFs of Eq. 2.4 and those computed from simulations for

a range of packing fractions (η = 0.25–0.45) and potential interaction strengths

are presented in Figure 2.2. Broadly speaking, the predictions capture the

simulated pair correlations of the three systems, despite the fact that each

represent significant–and qualitatively different–departures from the structure

of the hard-sphere fluid. The theoretical strategy predicts the most accurate

structures for higher packing fractions and weaker interactions. The only

qualitative failing appears in the strongly interacting repulsive-ramp fluid at

low density, where the contact value of the RDF is significantly underpredicted.

Potential energies predicted by our strategy and those computed from

simulations as functions of interaction strength and packing fraction are pre-

10
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predictions of Eq. (2.4) (dashed lines) and results of Monte Carlo simulations
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sented in Figure 2.3. In general, the trends track what might be expected

from the RDFs shown in Figure 2.2: very good agreement at high packing

fractions, except at the highest potential interaction strengths, and also good

agreement for low interaction strengths at all packing fractions (especially for

the fluid with AO depletion attractions). The largest quantitative deviations

of the theoretical predictions from the simulations occur for repulsive Yukawa

fluid and the repulsive ramp model for strong energies of interaction in the

packing fraction range (η < 0.25).

2.3 Conclusion

In summary, the analytical, discretization-based approach we introduce

here can predict the thermodynamic and structural consequences of some of

the diverse types of short-range interactions that naturally emerge in dense,

complex fluids (e.g., suspended colloids). Since good predictive strategies can

provide guidance on how best to tune these systems to achieve desired changes

in macroscopic properties, this approach represents a promising new strategy

for using analytical liquid-state perturbation theories as tools for materials

design.
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Chapter 3

A web-applet for rapidly predicting fluid

structure and thermodynamics

Statistical mechanics provides quantitative links between a fluid’s in-

terparticle interactions and its resulting equilibrium structure and thermody-

namic properties. However, particularly for dense systems or systems with

complex interactions, it can be challenging to find ways for students to ex-

plore these relationships within the framework of a university course due to

the prohibitive amount of time, expertise (either computational or experimen-

tal), and/or resources required to, e.g., numerically solve the Ornstein-Zernike

relation with an appropriate closure [31, 65], construct a molecular simulation

to extract relevant equilibrium data [5, 49, 53], or carry out relevant measure-

ments in a laboratory [33, 73]. As a result, for students to become familiar

with the relevant concepts, additional tools are required that help them to

overcome these technical hurdles.

Here, we present a web-based applet that helps to accomplish this

through use of the analytic integral equation-based method for equilibrium

fluids in three dimensions described in Chapter 2. The applet provides rapid

and semi-quantitative graphical predictions of structural and thermodynamic
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quantities from knowledge of the pair interaction and parameters that de-

scribe the thermodynamic state (i.e., density and temperature). Apart from

awareness of a few practical constraints, detailed knowledge of the internal

calculations is not required to make productive use of the applet as a peda-

gogical tool or as an experimental guide. Because of its efficiency and accessible

layout, students are empowered to interactively experiment with a fluid’s pair

potential or its thermodynamic state and extract meaningful relationships and

trends [13, 16, 45, 66, 69].

3.1 Internal Calculations

The applet accepts as inputs a pairwise potential ϕ(r) as a function

of interparticle separation r, the temperature T , and the number density ρ,

and it approximately calculates the corresponding unique radial distribution

function (RDF) [35] as well as other related thermodynamic quantities. The

applet requires that the interactions be isotropic, consisting of a hard core

of diameter σ plus an arbitrary short-ranged contribution εφ(r), where ε is a

characteristic energy scale, that decays to zero by r = 2σ,

ϕ(r)

ε
=


∞ r < σ,
φ(r) σ ≤ r ≤ 2σ,
0 r > 2σ.

(3.1)

As we showed in Chapter 2, by choosing different functions for φ(r), this

generic form encompasses many different types of effective model interactions

routinely used to describe the thermodynamics and structure of complex flu-

ids. Two possible choices–a bare hard-sphere potential, for which φ(r) = 0,
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that models excluded-volume interactions in fluids and a repulsive ramp po-

tential, for which φ(r) = 2− r/σ, that qualitatively captures some distinctive

properties of liquid water–are discussed explicitly in this chapter. Other possi-

ble model interactions include, but are not limited to, Yukawa potentials that

model screened electrostatic interactions in colloidal suspensions and dusty

plasmas [19, 21, 33] and the Asakura-Oosawa potential [8, 58] that models

polymer-mediated depletion interactions between suspended colloids.

3.1.1 Radial Distribution Function

To enable the desired predictions, the applet first decomposes the con-

tinuous potential interaction into a “terraced” representation of M = 100

equally-spaced discrete steps, each with an outer range

λi
σ

= 1 +
i

M
(3.2)

and a constant energy

ϕi
ε

= (λi − λi−1)−1
∫ λi

λi−1

φ(r) dr. (3.3)

The integration in Eq. (3.3), and other integrations for the applet are carried

out via the trapezoidal rule.

A terraced potential yields a jagged or “sawtoothed” RDF, gST (r),

which is computed via the extension of the simple exponential first-order mean

spherical approximation [36] described in Chapter 2. Then, to arrive at a con-

tinuous RDF prediction that corresponds to the original continuous potential,
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the “teeth” are smoothed by computing a series of linear corrections to gST(r)

such that adjacent pieces of the smoothed RDF, g(r), have equal values at

each intersection, i.e. g(λ−i ) = g(λ+i ), where the superscripts − or + indicate

limiting values approaching each λi from the left or right, respectively. (See

Chapter 2 for details).

3.1.2 Thermodynamic Properties

The applet calculates several thermodynamic properties that are di-

rectly accessible via the pair potential and the RDF. The internal energy per

particle u is [31]

u =
3kBT

2
+ 2πρ

∫ ∞
0

ϕ(r) g(r)r2 dr, (3.4)

where kB is the Boltzmann constant, T is temperature, ρ = N/V , N is total

number of particles, and V is volume. The compressibility factor Z is [9]

Z =
βP

ρ
= 1 +

2πρ

3

M∑
i=0

λi
3
[
gST(λ+i )− gST(λ−i )

]
, (3.5)

where β = (kBT )−1, P is the pressure, and λi is given by Eq. (3.2). Note that

the excess Helmholtz free energy of the fluid (and other properties of interest

through standard thermodynamics relations) can subsequently be obtained

from knowledge of the density and temperature dependence of Z, i.e., the

equation of state [31]. The two-body contribution to molar excess entropy s(2)

is also directly computable from the RDF [14, 42, 52],

s(2)

kB
= −2πρ

∫ ∞
0

[g(r) ln g(r)− g(r) + 1] r2 dr. (3.6)
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This last quantity–the entropy cost of pair correlations (relative to a structure-

free ideal gas)–is of interest because it is known to correlate with dynamic

properties (e.g., self diffusivity) in a wide class of fluid systems [14, 22, 42, 52,

56, 57].

3.2 Using the Applet

The applet is written in Java using the Swing library,1 which ensures

portability across different operating systems and allows the applet to be em-

bedded in a web page. Graphs are created with the JFreeChart library2 to al-

low for easy visualization, manipulation, and analysis of series data. A system–

comprising the pair potential, the thermodynamic state (kBT/ε and ρσ3), and

the calculation parameters–can be saved to a file on the user’s computer and

reloaded later within the applet. All numerical data can also be exported as

tab-separated value (.tsv) text files.

3.2.1 System Information

Half of the interface is dedicated to receiving user input and displaying

information about individual systems (see Fig. 3.1). This half of the interface

features five sections: (a) controls for opening, closing, saving, or loading

systems; (b) user input parameters; (c) a tabular pair potential; (d) buttons

to trigger calculations; and (e) plots of the specified potential and its terraced

1Available online at <http://docs.oracle.com/javase/tutorial/uiswing/index.
html>.

2Available online at <http://www.jfree.org/jfreechart/>.
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Figure 3.1: The system window in the applet for a selected example. (a)
Systems can be loaded from and saved to local files; multiple system tabs
can be present simultaneously and compared. Each system can be named
descriptively. (b) Input parameters include the dimensionless temperature
kBT/ε, the number density ρσ3 or packing fraction η = ρπσ3/6, and the outer
range of the calculation, rmax/σ. (c) Each system’s short-ranged contribution
to the interaction potential can be input as a series of [r/σ, φ(r)] points, or
loaded from a .csv file. (d) The terracing and RDF calculations are triggered
with buttons, and calculation progress is displayed by the progress bar. (e)
Both the continuous and terraced representations (see text) of the interaction
potential are plotted for inspection.
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representation.

Opening, closing, and naming systems. Each system has a nickname

which appears throughout the applet. The applet begins with a single bare

hard sphere system with the default nickname “System 1.” The user can

provide a new name in the Nickname field, then press Set. When multiple

systems are open, the tabs at the top of the panel can be used to switch

between the systems.

Through the Systems menu, the user can create additional empty sys-

tems or close the currently focused system tab. Through the Store/Load

menu, the user can store the current system in a local file or import a previ-

ously saved system.

Input parameters. The user must specify the system’s dimensionless tem-

perature kBT/ε, either the number density ρσ3 or packing fraction η = ρπσ3/6,

and the range of the calculation, rmax/σ. Care should be taken to ensure that

oscillations in the RDF have decayed before rmax/σ. The theoretical approach

from Chapter 2 that the applet relies upon, similar to most theories of simple

liquids [31], loses accuracy near a critical point or in systems with very high

density (e.g., ρσ3 & 1) or very low temperature (e.g., kBT/ε . 0.05), with the

details depending on the chosen interaction. For most state points away from

the critical point of the fluid, the default choice of rmax/σ = 10 is conservative.

When either η or ρσ3 is changed, the other field updates automatically.
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Interparticle pair potential. The short-ranged addition to the pair po-

tential φ(r) can be provided either by editing a table within the applet or by

loading the data from an external .csv file. For simple pair potentials con-

structed from line segments, like a ramp or Jagla potential [39], it is sufficient

to specify only the end points of each segment. For more complex interactions,

however, it is often more convenient to prepare the potential in a separate file

using, e.g., a spreadsheet editing program, then press the Load button in the

applet to import the pair potential data.

Performing calculations. Once inputs have been provided, the user may

click either Terrace φ(r)/ε or Calc RDF to view the terraced pair potential

or begin calculation of the radial distribution function, respectively. The user

may proceed directly from providing inputs to calculating the RDF, but it is

recommended that the terraced potential be generated and inspected before

beginning the more intensive RDF calculations. The bar to the right of these

buttons depicts the progress of the RDF calculation.

Plot of pair potentials. The continuous and terraced pair potentials are

presented graphically for easy inspection. The continuous curve is updated in

real-time as the pair potential is edited; the terraced representation is added

when either of the calculation buttons is pressed. By default, the plot shows

the full data sets; to focus on a region of interest, the user can click and

drag a rectangle, or edit the values in the boxes along the axes to specify an
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exact window. If desired, the chart can be reproduced in a separate window

by pressing the Popout button. Many more charting options, built into the

JFreeChart library, are available by right-clicking the plot.

3.2.2 Comparing Structure and Thermodynamics

The second half of the applet interface allows the user to view the cal-

culated RDFs and compare them across multiple systems. This half contains

sections for (a) selecting which systems and system data to compare; (b) plots

of the selected RDF predictions; and (c) tabulated numerical data for the

selected systems (see Fig. 3.2).

Selecting systems. Once a system’s RDF calculation is complete, the user

can choose to inspect the resulting gST(r) or g(r) data by selecting the ap-

propriate checkboxes. Multiple data series can be selected simultaneously so

the user can compare different systems and analyze, e.g., the impact of the

smoothing algorithm or the differences in RDF structure between two systems.

Plot of radial distribution functions. The selected radial distribution

functions are presented graphically for immediate comparison. This plot func-

tions identically to the pair potential plot described earlier.

Data tables. Numerical intermediate data are available in tabular form for

all of the active systems, including continuous and terraced ϕ(r) represen-

tations, and sawtoothed and smoothed RDFs. An additional table, labeled
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Figure 3.2: The sawtoothed and smoothed radial distribution functions for
all systems currently calculated are available for comparison. (a) Each curve
can be toggled on or off to facilitate comparisons between specific systems.
The radial distribution functions are both (b) plotted graphically, for visual
inspection, and (c) available as data series, to precisely compare specific values.
The data series can also be exported as a .tsv file.
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Comparisons in the drop-down box, contains all of the data series correspond-

ing to the current state of the RDF plot. Any data in these data tables can be

copied and pasted; or, the user can press the Export button to save the selected

table as a tab-separated value (.tsv) file, which can then be manipulated with

a text editing or spreadsheet program.

The Thermodynamics tab, not pictured, contains a table with the ther-

modynamic properties described in Section 3.1.2—average configurational en-

ergy, average internal energy, compressibility factor, and two-body excess

entropy—calculated for each system. It also features togglable data series

and can be used in the same ways as the RDF data tables described above.

3.3 Teaching Examples

This applet offers many pedagogical opportunities to teachers and stu-

dents of classical statistical mechanics. Most simply, it can illustrate the effects

of changing temperature, density, or interactions on the fly, e.g. during a lec-

ture. The applet can also be used to prepare example figures through the use

of the plot saving functionality available within the applet, or by exporting

the calculated data and plotting in a preferred environment. Because of its

ability to save and load states, an example “initial state” could be prepared for

further manipulation during a lecture, or distributed as part of a homework

assignment. Students are also able to experiment freely by modifying the at-

tractions or repulsions, changing the density or temperature, etc., to develop

an intuition for complex fluid phenomena, without needing a simulation suite
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or more advanced statistical mechanics coding knowledge.

Here we provide examples of how our applet might be used to illustrate

two fundamental ideas.

3.3.1 Emerging Coordination Shell Structure with Density

The hard sphere (HS) fluid—whose particles have no interaction other

than a volume exclusion to prevent interparticle overlap, e.g. φ(r) = 0 in

Eq. (3.1)—is a canonical reference model for the structure of dense liquid

and colloidal systems, and it is one of the simplest models of a non-ideal

gas. Because the interaction potential is either infinite or zero, its structure

is independent of temperature (as are its energies and dynamics, apart from a

trivial scaling related to particle velocities) [31]. Despite their simplicity, hard

sphere fluids (like atomic liquids and particle suspensions) develop nontrivial

structure (e.g., interparticle correlations) as density increases. At η ≈ 0.494,

the HS fluid experiences a purely entropy-driven freezing transition to form

an FCC crystal [31].

In Fig. 3.3, we have used the applet to plot the radial distribution func-

tions of HS fluid systems at η = 0.01, 0.15, 0.30, and 0.45. As the packing

fraction is increased, several trends can be readily observed: first, the range

of the correlation increases from slightly beyond r/σ = 1 to nearly r/σ = 5

as coordination shells of nearest, next-nearest neighbors (and so on) develop;

second, the magnitude of the first peak in the radial distribution function in-

creases from g(r) ≈ 1 to g(r) ≈ 5, indicating that particles are contacting
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Figure 3.3: The amount of structure increases with increasing packing fraction
in a hard sphere fluid; shown are packing fractions η = 0.01 (red), where almost
no correlations are present beyond the hard core; η = 0.15 (blue); η = 0.30
(green); and η = 0.45 (orange), where correlations extend to nearly six particle
diameters and a large population of particles are in contact.
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one another with greater and greater frequency; and third, the period of the

oscillations (once they are present) shrinks as the coordination shells become

more condensed. These structural trends with increasing density, also com-

monly seen in simple liquids, result in an increased pressure and reduced excess

entropy–both of which are readily verifiable in the applet.

3.3.2 Temperature Effects in a Two-Length-Scale Fluid

In liquids more complex than hard spheres, multiple length scales can

be present within the pair potential. For example, in a repulsive ramp system

where

φ(r) = 2− r

σ
, (3.7)

there are relevant length scales at r/σ = 1, at the edge of the hard core, and at

r/σ = 2, at the outer limit of the interaction (see Fig. 3.4). For an interaction

of this form, one might expect that at high temperatures (kBT � ε), the energy

associated with the finite repulsion outside r = σ would be negligible relative

to the thermal energy of the system; therefore, the hard core length scale

might be most relevant (i.e, the system approaches hard-sphere-like structure).

Conversely, at low temperatures (kBT � ε), contributions from the finite

repulsion would be more significant, leading the r = 2σ (more open, low

density) length scale to dominate.

The applet can be used to demonstrate this phenomenon, by simulating

the same ramp potential at a series of different temperatures, kBT/ε = 0.2,

0.4, 0.6, 0.8, and 1.0 (see Fig. 3.5). At all of these temperatures, clear strong
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Figure 3.4: The repulsive ramp potential (red solid curve) has two length
scales: the hard core diameter (a, blue circle), and the outer edge of the ramp
(b, green square). The former is favored at high temperature, while the latter
is favored at low temperature.
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Figure 3.5: Smoothed radial distribution functions of ramp systems (see
Eq. (3.7)) plotted with the applet, where η = 0.2 and kBT = 0.2 (red), 0.4
(blue), 0.6 (green), 0.8 (orange), and 1.0 (magenta).
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peaks corresponding to the two length scales in the pair potential are present

at r/σ = 1 and r/σ = 2. However, as the temperature decreases, so too does

the significance of the inner peak; below kBT/ε = 0.6, the outer peak is taller.

These temperature-dependent trends are analogous to those seen in

network-forming fluids like liquid water, where the hydrogen-bond network en-

ergetically favors low-coordinated, open structures. Due to analogous physics

along isobars, at moderate pressures, such structures dominate in water, lead-

ing the fluid to exhibit negative thermal expansivity (expansion upon cooling)

at low temperature–a thermodynamic property also exhibited by the ramp

model [24, 39, 71]. Similar features occur in other network forming fluids like

silica whose interactions energetically favor locally open structures as well.

3.4 Conclusion

This applet provides new opportunities for students and teachers of

statistical mechanics to explore and develop a deeper conceptual understanding

of the effects of interparticle interactions and the thermodynamic state on the

particle-scale equilibrium structure and thermodynamic properties in a fluid

system.

The applet is freely available for use or download at <http://www.

truskettgroup.com/fluidapp/>, and its source code is available under the

GNU General Public License3 on GitHub.4 The authors encourage any in-

3License text available online at <http://www.gnu.org/copyleft/gpl.html>.
4Available online at <https://github.com/TRP3/FluidRDFApp>.
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terested parties to modify or expand the applet in useful ways. We hope to

expand its functionality in the future, most immediately by adding options for

the use of additional integral equation theory closures in order to treat an even

broader variety of possible pair interactions. We also intend to implement a

calculation of the structure factor,

S(k) = 1 + 4πρ

∫ ∞
0

sin(kr)

kr
[g(r)− 1] r2 dr, (3.8)

which is an experimentally accessible quantity that can offer insight into, e.g.,

freezing transitions via the Hansen-Verlet freezing criterion [32].
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Chapter 4

Predicting the structure of fluids with

piecewise constant interactions: Comparing

the accuracy of five efficient integral equation

theories

For bulk fluids, a key aim for property prediction is to discover the

one-to-one link [35] between g(r), the radial distribution function (RDF) of a

system at a given set of conditions, and ϕ(r), the interparticle pair potential.

Knowledge of these functions of interparticle separation r allows for the di-

rect calculation of the static structure factor, the energy, the pressure, and the

isothermal compressibility [31]. Estimations of other properties can be directly

obtained from knowledge of the RDF as well. One example is the two-body

excess entropy, which is often a good approximation of the total excess en-

tropy [50] for simple liquids. Another is the information-theoretic estimate for

the probability pn(Ω) of observing n particle centers in a molecular-scale sub-

volume Ω, a quantity which characterizes the fluid’s density fluctuations [38].

Excess entropy, its two-body approximation, and p0 have been shown to cor-

relate with various dynamic properties of equilibrium fluids, e.g. diffusivity

or viscosity [1–4, 12, 15, 18, 22, 28, 30, 42, 43, 48, 51, 52, 56, 57, 60]. Mode-

coupling theory also predicts that dynamic phenomena can be directly esti-
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mated from knowledge of the static structure factor [54].

With these considerations in mind, in this chapter we use molecular sim-

ulations to test the accuracy of RDF predictions for five approximate integral-

equation theory closures: Percus-Yevick, hypernetted chain and reference hy-

pernetted chain [31], first-order mean spherical approximation (FMSA) [65],

and a modified exponential version of FMSA [36]. Other more resource-

intensive theories, like the Rogers-Young and hybrid mean-spherical approxi-

mations [55, 75], self-consistent Ornstein-Zernike approaches [31], and thermo-

dynamic perturbation theories [61, 76, 77] are not considered here. We apply

the simpler five theories listed above to a diverse suite of eight pair potentials

previously introduced by Santos et al [59], each composed of a hard core at

r = σ plus two piece-wise constant sections at larger r (i.e. wells or shoul-

ders), that qualitatively mimic some of the features observed in the effective

interactions of complex fluid systems. For each interaction, we investigate four

thermodynamic state points with various combinations of low and high den-

sity and low and high temperature, and we compare the theoretical predictions

for the RDF, the energy, and the two-body excess entropy to data from event-

driven molecular dynamics simulations. To facilitate the RDF comparisons we

introduce a “cumulative squared error” metric, which provides a quantitative

characterization of the overall quality of each theoretical prediction. We also

assess the accuracy of predictions for the potential energy and the two-body

excess entropy.
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4.1 Methods

4.1.1 Integral Equation Theory

Integral equation theories for uniform, isotropic fluids typically involve

solving a system of two equations: the Ornstein-Zernike relation,

h(r) = c(r) + ρ

∫
c (|r′ − r|)h(r′)dr′, (4.1)

which defines the direct correlation function c(r) in terms of the number den-

sity ρ and the total correlation function h(r) = g(r)− 1, and a closure, e.g.,

h(r) + 1 = exp [−βϕ(r) + h(r)− c(r) +B(r)] , (4.2)

which introduces the link to the pair potential ϕ(r), where β = (kBT )−1, T

is temperature, kB is Boltzmann’s constant, and B(r) is the so-called bridge

function.

Two common approximations for B(r) are the Percus-Yevick (PY) clo-

sure,

BPY(r) = ln [h(r)− c(r) + 1]− h(r) + c(r), (4.3)

and the hypernetted chain (HNC) closure,

BHNC(r) = 0. (4.4)

Another is the so-called reference hypernetted chain approximation

(RHNC), which assumes that the bridge function can be accurately approxi-

mated by that of a reference fluid, typically one of hard spheres at the same

density:

BRHNC(r) = BHS(r). (4.5)
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The hard-sphere fluid’s bridge function BHS(r) has been calculated through

careful molecular simulations, and multiple parameterizations for its density

dependence exist [34, 47, 68]. For this work, we employ the analytical param-

eterization proposed by Malijevský and Lab́ık [47] for the RHNC closure.

With B(r) specified by these closures, we solve the coupled equations

(4.1) and (4.2) using a rapidly-converging combination of Newton-Raphson

and Picard root-finding methods developed by Lab́ık et al. [44].

An alternative strategy is to replace the closure of Eq. 4.2 with separate

expressions. For example, the mean spherical approximation (MSA) assumes

the following relations hold,

gMSA(r) = 0 r < σ,

cMSA(r) = 0 r ≥ σ.
(4.6)

By further assuming first-order expansions in the characteristic dimensionless

energy of the potential βε for both g(r) and c(r)–e.g., gFMSA(r) = gHS(r) +

βεg1(r), where gHS(r) is the pair correlation function for a hard sphere system

at the same density–Tang and Lu closed the equations analytically for several

common pair interactions, including square wells [65]. We refer to this solution

as the first-order mean spherical approximation (FMSA). In principle, FMSA

can be applied to potentials with square shoulders as well. But for strong inter-

actions, FMSA is known to incorrectly predict RDFs with negative values for

some interparticle separations [36]. To resolve this, Hlushak et al. modified the

FMSA to make it equally applicable to wells and shoulders by rearranging the

terms in the series expansion, so that gEFMSA(r) = gHS(r) exp[−βεg1(r)] [36].
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In this work, we refer to this analytical solution as the exponential first-order

mean spherical approximation (EFMSA).

4.1.2 Suite of Two-Step Potentials

Motivated by Santos et al. [59], we examine predictions for fluids from

a set of pair interactions comprising a hard core and two piecewise-constant

steps,

ϕ(r) =


∞ r < σ,
ε1 σ ≤ r < λ1,
ε2 λ1 ≤ r < λ2,
0 r ≥ λ2,

(4.7)

where ε1 and ε2 are the energies of the first and second steps, respectively, and

λ1 and λ2 are the outer edges of the first and second steps, respectively.

Furthermore, as in Santos et al., we restrict the values of εi to the set

{−ε,−ε/2, 0, ε/2, ε}, where ε is a characteristic energy scale. Cases where ε1 =

ε2 or ε2 = 0 reduce to either single square wells or shoulders, or hard spheres,

which have all been studied extensively elsewhere (see, e.g., refs. 1-41 in [74])

and are not considered here. We also exclude cases where max{|ε1|, |ε2|} = ε/2.

Of the cases where ε1 and ε2 have opposite sign, we consider only combinations

where ε2 = −ε1 = ±ε. We choose λ1 = 1.5σ and λ2 = 2σ in order to

provide challenging perturbations to the bare hard sphere system that are still

amenable to molecular simulation and theoretical treatment. After imposing

these restrictions, the remaining eight pairwise interactions shown in Fig. 4.1,

which we refer to as “Type A–H,” form our test suite.

To explore how the accuracy of the various theories varies with den-
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Figure 4.1: The suite of eight pair interactions considered in this study, in-
spired by Santos et al. [59], is topologically exhaustive (e.g., there are no other
qualitative arrangements of two constant pairwise pieces that are not more
appropriately labeled single wells or shoulders).
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sity and temperature, we investigate each interaction at the four state points

comprising combinations of packing fraction η = ρπσ3/6 = 0.15 or 0.45 and

dimensionless temperature T ∗ = kBT/ε = 0.67 or 2.0.

4.1.3 Molecular Simulations

We compare the theoretical predictions for the RDF, the energy, and

the two-body excess entropy to the results of event-driven molecular dynam-

ics simulations performed with the DynamO simulation engine [10]. Periodic

boundary conditions were used, and the simulated systems were sized such

that adequate RDF statistics could be collected for separations up to at least

r = 10σ. In practice, this required N = 4000 particles when η = 0.15, and

N = 8788 particles when η = 0.45. The “bins” for particle counts were

0.005σ wide. Temperatures were set and maintained using an Andersen ther-

mostat [6].

Each simulation was initialized as an FCC lattice of the desired den-

sity at a high temperature, with randomly assigned particle velocities. After

equilibrating for ten million events, the simulations were cooled to the desired

temperature and re-equilibrated for a further ten million events. Then, the

thermostat was removed, and the RDF was measured over the final five million

events.
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4.1.4 Quantifying Error in Predictions

To compare the various RDF theoretical predictions to simulations at

a given state point, we define a metric we call the cumulative squared error,

CSE(r):

CSE(r) =

∫ r
σ

[hsim(r′)− hthy(r′)]2 r′2 dr′∫∞
σ
h2sim(r′)r′2 dr′

. (4.8)

The integrand in the numerator characterizes the squared deviation in

the total correlation function between the prediction of a given theory hthy(r)

and the result of the ‘exact’ simulation hsim(r); the power of two eliminates any

possible cancellation of error, e.g. for cases where a theory both underpredicts

and overpredicts the value of h(r) at different values of r. The denominator

accumulates the total squared correlations in the simulated system, and thus

normalizes the overall function to facilitate comparison between systems with

different degrees of correlation (e.g., between low-density and high-density

systems).

As r approaches infinity, all h(r) curves converge to zero and the CSE

converges to a finite value, CSE∞:

CSE∞ = lim
r→∞

CSE(r), (4.9)

which is a measure of the summed squared correlations as a fraction of the total

squared correlations in the system; thus, a larger value of CSE∞ indicates that

a theoretical prediction deviates more significantly from the “exact” simulation
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results. By construction, CSE∞ has a defined minimum of 0 and, while it does

not have a rigorous maximum, its value is typically less than 1 except in cases

where the theoretical predictions are qualitatively very poor.

We also calculate the potential energy per particle U/ε,

U

ε
=
ρ

2

∫ ∞
0

ϕ(r)

ε
g(r) dr, (4.10)

and the two-body contribution to excess entropy s(2)/kB,

s(2)

kB
= −ρ

2

∫ ∞
0

[g(r) ln g(r)− g(r) + 1] dr, (4.11)

from simulations and theoretical predictions. Both quantities can also be di-

rectly computed from g(r) and thus, the normalized absolute deviation of the

predicted versus simulated values can be used as an indication of the success

of theoretical predictions. However, note that different RDFs can, in principle,

give rise to the same value of U/ε or s(2)/kB. Moreover, U/ε only depends on

correlations within the range of the pair interaction. As a result, we argue

here that since the RDF is weighted differently for each thermodynamic quan-

tity, the CSE metric we introduce–which tests the overall similarity between

predicted and simulated RDFs–represents a more sensitive measure for the

overall predictive quality of a particular theory.

4.2 Results and Discussion

Structural predictions for the Type A pair interaction are compared

to simulation results in Fig. 4.2, along with the corresponding cumulative
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Figure 4.2: Radial distribution functions g(r) = h(r) + 1 and the associated
cumulative squared errors (CSE, see Eq. (4.8)) predicted by the reference hy-
pernetted chain (RHNC), hypernetted chain (HNC), and Percus-Yevick (PY)
Ornstein-Zernike closures [31, 47]; the first-order mean spherical approxima-
tion solution (FMSA) [65]; and the simple exponential first-order mean spher-
ical approximation (EFMSA) [36], for the “type A” pair interaction. Shaded
regions adjacent to each g(r) indicate the difference between the theory and
simulation results.
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squared errors as calculated via Eq. (4.8). For this interaction, the analytic

solutions (FMSA and EFMSA) perform better at higher rather than at lower

equilibrium fluid densities. As density increases, the effect of the excluded

volume captured by the well-modeled hard-sphere RDF, gHS(r), overwhelm

the energetic perturbations from the repulsive steps and dominate the result-

ing structure. Of the tested integral-equation theories with simple numerical

closures, the PY closure tends to perform least well near contact, and for in-

teraction Type A, the RHNC offers the best predictions at all four state points

investigated. Analogous figures for each of the other interactions are presented

for the interested reader in Appendix B.

It is tempting to conclude from a visual comparison of theoretical and

simulated radial distribution functions that all of the theories perform simi-

larly well, especially at the higher temperature (Figs. 4.2d and 4.2h). However,

the resulting CSEs differ by nearly two orders of magnitude from most to least

accurate (Figs. 4.2c and 4.2g), which underscores the utility and sensitivity of

the CSE metric. As discussed below, these differences in the CSE become im-

portant when computing other quantities that depend on the RDF, especially

when one considers that each thermodynamic quantity weights the RDF in a

different way.

The total cumulative squared errors CSE∞ for all interactions, state

points, and theories are listed in Table 4.1. Six of the total thirty-two combi-

nations of interaction type and state point considered did not produce single-

phase, uniform fluids when simulated. Of the remaining twenty-six systems,
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Table 4.1: Total cumulative squared errors (CSE∞) for all theoretical ap-
proaches, thermodynamic state points, and interactions considered. “R,”
“H,” and “P” are the RHNC [31, 47], HNC [31], and PY [31] closures to
the Ornstein-Zernike relation, respectively. “F” is the FMSA [65], and “E”
is the EFMSA [36]. Italics indicate the lowest value of CSE∞ (and hence the
theory with the most accurate structural prediction) at each combination of
state point and interaction type.

Type A Type B
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.000 0.003 0.002 0.001 0.001 0.011 0.000 0.002
H 0.002 0.043 0.010 0.052 0.001 0.037 0.001 0.057
P 0.225 0.095 0.052 0.038 0.013 0.021 0.005 0.007
F 0.122 0.012 0.014 0.003 0.092 0.053 0.010 0.006
E 0.121 0.010 0.024 0.004 0.082 0.098 0.008 0.011

Type C Type D
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.002 0.010 0.000 0.003 0.079 0.047 0.001 0.004
H 0.003 0.022 0.001 0.059 0.082 0.031 0.002 0.055
P 0.005 0.019 0.001 0.003 0.092 0.203 0.002 0.020
F 0.096 0.082 0.008 0.009 0.168 0.276 0.016 0.018
E 0.184 0.159 0.015 0.016 0.411 0.524 0.040 0.032

Type E Type F
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a –a –a 0.001 –a 0.082 –a 0.004
H –a –a –a 0.067 –a 0.027 –a 0.049
P –a –a –a 0.020 –a 0.255 –a 0.045
F –a –a –a 0.004 –a 0.275 –a 0.026
E –a –a –a 0.002 –a 0.113 –a 0.012

Type G Type H
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a 0.018 0.001 0.006 0.052 0.043 0.004 0.012
H –a 0.011 0.008 0.041 0.063 0.026 0.008 0.029
P –a 0.391 0.007 0.087 0.104 0.820 0.008 0.204
F –a 0.253 0.018 0.038 0.208 0.526 0.032 0.078
E –a 0.196 0.020 0.020 0.750 0.485 0.044 0.048
aSimulated system is not a single-phase, uniform fluid at equilibrium.
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the RHNC offered the most accurate structural predictions for all but four;

however, at three of these four points, the CSE∞ of the RHNC is still within

ca. 65% of the most accurate theory (HNC). All four points are at low tem-

perature (T ∗ = 0.67) and high packing fraction (η = 0.45), and each of the

pair interactions include attractions (types D, F, G, and H).

We also compare CSE∞ against the absolute normalized errors for pre-

dictions of two example thermodynamic quantities, two-body excess entropy

s(2)/kB and potential energy U/ε, in Fig. 4.3. Fig. 4.3a shows that CSE∞ is

generally a good predictor of s(2)/kB accuracy, although there are a handful of

instances where the fractional error in the excess entropy is low while CSE∞ is

higher.The correlation between CSE∞ and the potential energy is weaker, but

still present; this is likely due to opportunities for fortuitous cancellation of

error when pair interactions contain both positive and negative contributions

(e.g., types D and H), when portions of the interactions are zero (types C

and G), or when significant contributions to CSE∞ occur beyond the range of

the pair interaction. Overall, however, it is clear that the accuracies of both

example thermodynamic quantity predictions correlate well with the cumula-

tive squared error. For the interested reader, the values of
∣∣∣(s(2)thy/s

(2)
sim

)
− 1
∣∣∣

and |(Uthy/Usim)− 1| are tabulated in Appendix C. If other thermodynamic

quantities that depend on the RDF in a different way (e.g., the pressure or the

isothermal compressibility) are also of interest, then the necessity to have an

independent structural metric like CSE∞ to assess the quality of the structural

predictions is even more critical.
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4.3 Conclusion

In order to quantify the overall accuracy of theoretical predictions for

fluid structure, we have introduced the total cumulative squared error (CSE∞)

metric, which accumulates squared discrepancies between a theoretical predic-

tion and a reference “exact” result at all separation distances along the total

correlation function and avoids any possible cancellation of error. We find

that this CSE∞ metric is very sensitive and tends to forecast the overall accu-

racy of structure-dependent thermodynamic calculations. As a result, it is an

excellent tool for comparing accuracy between multiple theories, particularly

when differences are difficult to discern by visual inspection.

We have used this metric to test the performance of five integral equa-

tion theory-based approaches for predicting equilibrium fluid structure in sys-

tems with pair interactions comprising a hard core plus two piecewise constant

interactions, and we find that the reference hypernetted chain (RHNC) integral

equation closure offers accurate and efficient predictions across a broad range

of interactions and thermodynamic state points. This kind of analysis, i.e.,

considering the accuracy of various efficient theoretical methods for predicting

the structure consistent with a broad range of possible interactions, will be

particularly important for inverse design problems where the goal is to rather

accurately predict which interaction is consistent with a targeted structure (or

structurally-related property).
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Appendix A

Choosing the maximum energy step size for a

discretized potential

Choosing the maximum energy step size β∆εmax requires some care.

Radial distribution functions and internal energies at the weakest and strongest

interactions for each model are presented below in Figures A.1 and A.2, respec-

tively, for β∆εmax = 0.05, 0.1, 0.2, and 0.5. It can be seen that this strategy’s

predictions converge as β∆εmax is made smaller. The invariance to further

refinement for β∆εmax ≤ 0.2 illustrates that our choice of β∆εmax = 0.05 in

the main text is a conservative one.
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Figure A.1: Radial distribution functions of fluids with particles interacting
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tractions, and ramp-shaped repulsions at packing fractions η = 0.25, 0.35, and
0.45. Shown are predictions of Eq. (4) for β∆εmax = 0.5 (dotted lines), 0.2
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Appendix B

Extended Type B-H Structure Plots

The predicted radial distribution functions g(r) compared against sim-

ulation results, and the resulting cumulative squared errors CSE(r), are shown

for interaction types B through H in Figs. B.1–B.7, respectively.

51



0

1

2

3

4

5

g
(r

)

10
-4

10
-3

10
-2

10
-1

C
S

E

RHNC
HNC
PY
FMSA
EFMSA

1 2 3 4 5
0

2

4

6

g
(r

)

1 2 3 4 5 6
r/σ

10
-3

10
-2

10
-1

C
S

E

η = 0.15, T* = 0.67 η = 0.15, T* = 2.0

η = 0.45, T* = 0.67 η = 0.45, T* = 2.0

(a) (c)

(d)(b)

(e) (g)

(h)(f)

Type B

Figure B.1: Radial distribution functions g(r) = h(r) + 1 and the associated
cumulative squared errors (CSE, see Eq. (4.8)) predicted by the reference hy-
pernetted chain (RHNC), hypernetted chain (HNC), and Percus-Yevick (PY)
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the “Type D” pair interaction. Series are as in Fig. B.1.
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Figure B.6: Radial distribution functions and cumulative squared errors for
the “Type G” pair interaction. Series are as in Fig. B.1.
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Figure B.7: Radial distribution functions and cumulative squared errors for
the “Type H” pair interaction. Series are as in Fig. B.1.
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Appendix C

Complete Thermodynamic Error Tables

The absolute normalized potential energy error, |(Uthy/Usim)− 1|, and

the absolute normalized two-body excess etntropy error,
∣∣∣(s(2)thy/s

(2)
sim

)
− 1
∣∣∣, are

tabulated in Table C.1 and Table C.2, respectively.
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Table C.1: Absolute normalized potential energy error, |(Uthy/Usim) − 1|, for
all approaches, state points, and interactions considered. The labels “R,”
“H,” and “P” are the RHNC [31, 47], HNC [31], and PY [31] closures to
the Ornstein-Zernike relation, respectively. “F” is the FMSA [65], and “E”
is the EFMSA [36]. Italics indicate the value closest to zero (e.g., a perfect
prediction) at each combination of state point and interaction type.

Type A Type B
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.000 0.003 0.000 0.000 0.007 0.021 0.001 0.007
H 0.000 0.002 0.001 0.000 0.005 0.028 0.001 0.021
P 0.019 0.006 0.007 0.006 0.006 0.019 0.002 0.008
F 0.097 0.001 0.015 0.002 0.182 0.008 0.018 0.012
E 0.079 0.008 0.019 0.003 0.091 0.043 0.012 0.005

Type C Type D
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.025 0.038 0.004 0.014 0.140 0.113 0.110 0.613
H 0.022 0.048 0.001 0.040 0.135 0.119 0.078 1.698
P 0.002 0.028 0.005 0.007 0.189 0.250 0.080 2.030
F 0.501 0.036 0.020 0.015 0.181 0.610 0.040 0.520
E 0.245 0.143 0.034 0.035 0.472 0.146 0.072 3.431

Type E Type F
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a –a –a 0.002 –a 0.061 –a 0.006
H –a –a –a 0.000 –a 0.039 –a 0.015
P –a –a –a 0.003 –a 0.084 –a 0.011
F –a –a –a 0.005 –a 0.094 –a 0.020
E –a –a –a 0.000 –a 0.013 –a 0.003

Type G Type H
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a 0.005 0.001 0.010 0.073 0.079 0.021 0.041
H –a 0.016 0.002 0.025 0.086 0.129 0.026 0.075
P –a 0.096 0.014 0.042 0.103 0.387 0.016 0.289
F –a 0.026 0.013 0.023 0.140 0.200 0.015 0.029
E –a 0.051 0.015 0.017 0.536 0.110 0.051 0.221
a Simulated system is not a single-phase, uniform fluid at equilibrium.
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Table C.2: Absolute normalized 2-body excess entropy error, |(s(2)thy/s
(2)
sim)− 1|,

for all approaches, state points, and interactions considered. Labels are as in
Table C.1. Italics indicate the value closest to zero (e.g., a perfect prediction)
at each combination of state point and interaction type.

Type A Type B
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.003 0.004 0.002 0.002 0.018 0.047 0.004 0.004
H 0.010 0.008 0.009 0.022 0.014 0.073 0.003 0.015
P 0.024 0.005 0.020 0.005 0.021 0.106 0.022 0.000
F 0.010 0.006 0.005 0.006 0.320 0.048 0.009 0.012
E 0.032 0.011 0.012 0.004 0.012 0.022 0.010 0.047

Type C Type D
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R 0.026 0.019 0.007 0.008 0.215 0.176 0.024 0.010
H 0.024 0.045 0.000 0.025 0.211 0.161 0.018 0.034
P 0.018 0.098 0.013 0.016 0.255 0.287 0.019 0.052
F 0.469 0.054 0.014 0.006 0.161 0.456 0.008 0.031
E 0.152 0.042 0.005 0.062 0.387 0.463 0.040 0.076

Type E Type F
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a –a –a 0.013 –a 0.176 –a 0.036
H –a –a –a 0.021 –a 0.073 –a 0.036
P –a –a –a 0.046 –a 0.117 –a 0.022
F –a –a –a 0.007 –a 0.239 –a 0.045
E –a –a –a 0.004 –a 0.032 –a 0.034

Type G Type H
T ∗ 0.67 2.00 0.67 2.00
η 0.15 0.45 0.15 0.45 0.15 0.45 0.15 0.45
R –a 0.051 0.003 0.040 0.185 0.068 0.012 0.057
H –a 0.032 0.011 0.041 0.192 0.170 0.011 0.039
P –a 0.138 0.020 0.024 0.219 0.161 0.020 0.136
F –a 0.025 0.021 0.036 0.023 0.181 0.014 0.001
E –a 0.181 0.001 0.049 0.533 0.531 0.027 0.066
a Simulated system is not a single-phase, uniform fluid at equilibrium.
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[49] Ángel Mulero, Francisco Cuadros, and M. Pérez-Ayala. Displaying the
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[62] José Ramón Solana. Thermodynamic properties of double square-well flu-

ids: Computer simulations and theory. The Journal of Chemical Physics,

129(24):244502, 2008.

[63] Frank H. Stillinger, Salvatore Torquato, Juan M. Eroles, and Thomas M.

Truskett. Iso-g(2) processes in equilibrium statistical mechanics.

105(28):6592–6597, 2001.

[64] Yiping Tang. On the first-order mean spherical approximation. The

Journal of Chemical Physics, 118(9):4140–4148, 2003.

[65] Yiping Tang and Benjamin C.-Y. Lu. Analytical representation of

the radial distribution function for classical fluids. Molecular Physics,

90(2):215–224, 1997.

[66] Jan Tobochnik and Harvey Gould. Teaching statistical physics by

thinking about models and algorithms. American Journal of Physics,

76(4):353–359, 2008.

[67] Salvatore Torquato. Inverse optimization techniques for targeted self-

assembly. Soft Matter, 5:1157–1173, 2009.

[68] Loup Verlet and Jean-Jacques Weis. Equilibrium theory of simple liquids.

Physical Review A, 5:939–952, 1972.

71



[69] Carl E. Wieman, Katherine K. Perkins, and Wendy K. Adams. Oersted

Medal Lecture 2007: Interactive simulations for teaching physics: What

works, what doesn’t, and why. American Journal of Physics, 76(4):393–

399, 2008.

[70] Limei Xu, Sergey V. Buldyrev, C. Austen Angell, and H. Eugene Stanley.

Thermodynamics and dynamics of the two-scale spherically symmetric

Jagla ramp model of anomalous liquids. Physical Review E, 74:031108,

2006.

[71] Zhenyu Yan, Sergey V. Buldyrev, Nicolas Giovambattista, Pablo G.

Debenedetti, and H. Eugene Stanley. Family of tunable spherically sym-

metric potentials that span the range from hard spheres to waterlike be-

havior. Physical Review E, 73:051204, 2006.

[72] Anand Yethiraj and Alfons van Blaaderen. A colloidal model system

with an interaction tunable from hard sphere to soft and dipolar. Nature,

421(6922):513, 2003.

[73] K. Younge, C. Christenson, A. Bohara, J. Crnkovic, and P. Saulnier. A

model system for examining the radial distribution function. American

Journal of Physics, 72(9):1247, 2004.

[74] Santos Bravo Yuste, Andrés Santos, and Mariano López de Haro. Struc-
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