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A Collaborative Approach to IR Evaluation

Aashish Sheshadri, M.S.Comp.Sci.

The University of Texas at Austin, 2014

Supervisors: Kristen Grauman

Matthew Lease

In this thesis we investigate two main problems: 1) inferring consensus from dis-

parate inputs to improve quality of crowd contributed data; and 2) developing a

reliable crowd-aided IR evaluation framework.

With regard to the first contribution, while many statistical label aggrega-

tion methods have been proposed, little comparative benchmarking has occurred

in the community making it difficult to determine the state-of-the-art in consen-

sus or to quantify novelty and progress, leaving modern systems to adopt simple

control strategies. To aid the progress of statistical consensus and make state-of-

the-art methods accessible, we develop a benchmarking framework in square1, an

open source shared task framework including benchmark datasets, defined tasks,

standard metrics, and reference implementations with empirical results for several

popular methods. Through the development of square we propose a crowd sim-

1ir.ischool.utexas.edu/square
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ulation model that emulates real crowd environments to enable rapid and reliable

experimentation of collaborative methods with different crowd contributions. We

apply the findings of the benchmark to develop reliable crowd contributed test col-

lections for IR evaluation.

As our second contribution, we describe a collaborative model for distributing

relevance judging tasks between trusted assessors and crowd judges. Based on prior

work’s hypothesis of judging disagreements on borderline documents, we train a

logistic regression model to predict assessor disagreement, prioritizing judging tasks

by expected disagreement. Judgments are generated from different crowd models

and intelligently aggregated. Given a priority queue, a judging budget, and a ratio

for expert vs. crowd judging costs, critical judging tasks are assigned to trusted

assessors with the crowd supplying remaining judgments. Results on two TREC

datasets show significant judging burden can be confidently shifted to the crowd,

achieving high rank correlation and often at lower cost vs. exclusive use of trusted

assessors.
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Chapter 1

Introduction

1.1 Background

We first introduce and motivate the need for statistical consensus in the context of

crowdsourcing and human computation to improve the quality of aggregated crowd

labels. We then introduce building test collections for IR evaluation and motivate

the need for developing scalable evaluation methodologies.

1.1.1 Statistical Consensus

Crowdsourcing platforms have enabled modern day systems to benefit either from

the availability of an on-demand human computation resource [48, 8] or from the

crowd as a scalable and parallelized annotation resource [1, 57, 61]. A quality

concern is ubiquitous in the use of such a diverse resource, composed of individuals

of varying quality and commitment.

Prior work has shown better task design to improve quality of crowd contri-

bution, especially through multi-stage approaches like find-fix-verify [8]. However,

crowd enabled data collection to improve data quality has often adopted the ap-

proach of eliciting redundant responses due to its task and domain-independent
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applicability. Consequently, statistical aggregation has been one of the most heavily

investigated approach to improve quality of crowd contributions.

While many consensus algorithms have been proposed, relatively little bench-

marking has occurred. As a consequence it has become increasing difficult to de-

termine the current state-of-the-art in consensus. This has been further aggravated

by in-domain development of consensus methods, lessening awareness of techniques

across communities. Many researchers in other communities simply want to know

the best consensus method to use for a given task, lack of a clear answer and refer-

ence implementations has led to predominant use of simple majority voting as the

most common method in practice.

1.1.2 IR Evaluation

Relevance judgments provide the foundation for assessing Cranfield-based evaluation

of IR systems [15]. While it is known that insufficient judgments can compromise

evaluation [66], it has become increasingly challenging to manually judge so many

documents as collection sizes have grown. Consequently, there has been tremendous

interest in developing more scalable evaluation methodology. While commercial

search engines infer implicit judgments from search logs [28], they reportedly still

use many human editors for expert judging as well. Another direction of work has

explored inferring judgments by retrieval popularity [59], though this fails to accu-

rately distinguish strong vs. weak outlier systems. Pseudo-test collections cleverly

simulating relevance judgments [2] or queries [6] show promise but have not been

established as a general alternative.

Potential for crowdsourcing methods to improve cost, speed, ease, scalabil-

ity, and/or diversity of judging vs. traditional use of trusted assessors has been

established over several studies [1, 7, 9, 13, 16, 24, 34]. Bailey et al. [7] hint at col-

laborative approaches by showing the to be adept at identifying documents which
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are not relevant to a topic and hence can be useful to make a first pass and have

experts only judge documents marked as relevant.

Another line of research has devised techniques by which reliable ranking of

IR systems can be achieved using many fewer trusted judgments than with tradi-

tional pooling [4, 10, 12, 23, 45, 52]. However, the prevalence of these findings when

using noisy crowd judgements is an open question. But these methods present a

solution in determining the relative importance of judging documents to the end

evaluation.

1.2 Contributions

In this thesis we make two main contributions. As our first contribution we present a

comparative evaluation of aggregation methods through square (Statistical QUality

Assurance Robustness Evaluation) in Chapter 2. square is a benchmarking frame-

work with defined tasks, shared datasets, common metrics, and reference implemen-

tations with empirical results for a number of popular methods. The goal of the

benchmark is to ease comparative analysis of consensus methods for the commu-

nity to drive innovation and make state-of-the-art methods accessible. Through the

benchmark datasets we learn different crowd properties to inform simulation and

quantify the benefit of intelligent aggregation.

Following our general investigation of consensus across domains through the

benchmark, we inform our study to build crowd aided systems in the context of IR

evaluation. Specifically, we investigate building test collections for the evaluation of

IR systems using the crowd.

As our second contribution, we bring together two lines of research, one inves-

tigating the applicability of crowds and the other investigating minimalistic judging,

through an evaluation framework that enables collaboration between different judg-

ing resources (NIST TREC (expert) assessors and crowd workers).
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Based on Lesk and Salton’s hypothesis of judging disagreements on borderline

documents [42], also studied by Voorhees [65], we propose a logistic regression model

to predict disagreement and induce a prioritized order for judging enabling effective

crowd and expert collaboration. We realistically simulate crowd judgements from

observed crowd properties across the benchmark datasets considered in square.

We present our end to end IR evaluation framework, from building a test

collection to evaluating systems on standard metrics in Chapter 3. Through the

switchable design of our proposed framework we enable rapid experimentation across

different crowd types and aggregation methods contextualized as cost, quality and

speed. In the end we show resilience in benefit either in cost saving or coverage

or both of the collaborative approach across crowd types when using intelligent

aggregation.

4



Chapter 2

SQUARE: A Benchmark for

Research on Computing Crowd

Consensus

2.1 Introduction

Nascent human computation and crowdsourcing [50, 40, 41] is transforming data

collection practices in research and industry. In this chapter, we consider the popular

statistical aggregation task of offline consensus: given multiple noisy labels per

example, how do we infer the best consensus label? Work in this chapter was

published in [53] and additional benchmarking results from the participation at the

MediaEval workshop can be found in [54].

While many consensus methods have been proposed, relatively little com-

parative benchmarking and integration of techniques has occurred. A variety of

explanations can be imagined. Some researchers may use consensus methods to

improve data quality for another research task with little interest in studying con-

sensus itself. A natural siloing effect of research communities may lead researchers
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to develop and share new consensus methods only within those communities they

participate in. This would lessen awareness of techniques from other communities,

especially when research is tightly-coupled with domain-specific tasks. For whatever

reason, it has become increasingly difficult to determine the current state-of-the-art

in consensus, to evaluate the relative benefit of new methods, and to demonstrate

progress.

In addition, relatively few reference implementations or datasets have been

shared. While many researchers in other communities simply want to know the

best consensus method to use for a given task, lack of a clear answer and reference

implementations has led to predominant use of simple majority voting as the most

common method in practice. Is this reasonable, or do we expect more sophisticated

methods would deliver significantly better performance?

In a recent talk on computational biology, David Tse[63] suggested a field’s

progress is often driven not by new algorithms, but by well-defined challenge prob-

lems and metrics which drive innovation and enable comparative evaluation.

To ease such comparative evaluation of statistical consensus methods, we de-

velop square1 (Statistical QUality Assurance Robustness Evaluation), a bench-

marking framework with defined tasks, shared datasets, common metrics, and ref-

erence implementations with empirical results for a number of popular methods.

Public shared implementations and/or datasets are used when available, and we

provide reference implementations for other methods.

We focus here on evaluating consensus methods which do not require feature

representations for examples. This requires consensus to be computed purely on the

basis of worker behaviors and latent example properties, excluding hybrid solutions

which couple automatic classification with human computation. In addition to mea-

suring performance across datasets of varying scale and properties, square varies

1ir.ischool.utexas.edu/square
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the degree of supervision. Beyond empirical analysis, examining multiple techniques

in parallel further helps us to organize and compare methods qualitatively, charac-

terizing distinguishing traits, new variants, and potential integration opportunities.

We envision square as a dynamic and evolving community resource, with new

datasets and reference implementations added based on community needs and in-

terest.
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Figure 2.1: Top: a histogram shows the distribution of worker accuracies across
nine of the datasets considered. Bottom: a histogram shows examples labeled per
worker.

2.2 Datasets

We begin by identifying and describing a number of public datasets that are on-

line and provide the foundation for square 1.0. An early design decision was to
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include only datasets containing real crowd judgments, thereby increasing validity

of experimental findings. While synthetic data can also be useful for sanity checks,

carefully controlled experiments, and benchmarking, relatively little synthetic data

has been shared. This likely stems from its lesser perceived value and a belief that

it can be easily re-generated by others (provided that the generation process is fully

and aptly described, and that reproduction does not introduce errors). As Paritosh

notes[49], reproducibility is both important and challenging in practice, and we posit

such reproducibility is essential as a foundation for meaningful benchmarking and

analysis. GLAD [71] and CUBAM [69] valuably not only provide source code for

the methods evaluated, but also for generating the synthetic data used in reported

experiments. Most recently, Nguyen et al. [47] present a different benchmarking

study and framework based on synthetic data.

We also include only datasets with ground-truth gold labels for evaluation.

We are agnostic here about the provenance of these gold labels and refer the reader

to the source descriptions for more details. Nevertheless, the possibility of varying

gold purity [36] should be considered in interpreting benchmark results. Not all

studies creating gold labels report inter-annotator agreement statistics, and errors

in gold could impact the comparative evaluation of methods considered [18].

Table 2.1 provides summary statistics for each dataset. Figure 2.1 plots a

histogram of worker accuracies for nine of the datasets, above a histogram of the

number of examples labeled per worker. Often, simulation based studies assume

a normal distribution over worker properties which is clearly invalidated by the

histograms. Further it is evident that there often exists a large group of adversarial

(mis-informed or ill intentioned) workers who exhibit close to zero accuracies. While

AC2 shows the oft-discussed exponential distribution of a few workers doing most of

the work [22], SpamCF and WVSCM show strikingly different work distributions.

NLP Datasets. The five Natural Language Processing datasets described

8



Dataset Categories Examples Workers Labels MV Acc.

AC2 4 333 269 3317 88.1
BM 2 1000 83 5000 69.6
HC 3 3275 722 18479 64.9
HCB 2 3275 722 18479 64.8
RTE 2 800 164 8000 91.9
SpamCF 2 100 150 2297 66.0
TEMP 2 462 76 4620 93.9
WB 2 108 39 4212 75.9
WSD 3 177 34 1770 99.6
WVSCM 2 159 17 1221 72.3

Table 2.1: Public datasets used in the square benchmark.

below span three tasks: binary classification (BM, RTE, and TEMP), ordinal re-

gression (AC2), and multiple choice selection (WSD).

AC2 [27] includes AMT judgments for website (ordinal) ratings {G,PG,R,X,B}.

BM [46] contains negative/positive sentiment labels {0, 1} assigned by AMT

workers to tweets.

RTE, TEMP, and WSD [57] provide AMT labels. RTE includes binary

judgments for textual entailment (i.e., whether one statement implies another); ex-

pert interannotator agreement studies on gold have been reported to be 91% and

96% by prior work.

TEMP includes binary judgments for temporal ordering (i.e., whether one

event follows another).

WSD includes ternary multiple choice judgments (not multi-class classifica-

tion) for selecting the right sense of word given an example usage.

Other Datasets.

WVSCM [71] includes AMT binary judgments distinguishing whether or

not face images smile. Gold labels were assigned by two certified experts in the

Facial Action Coding System, however it is not clear is an adjudication process was

9



adopted.

WB [69] has AMT binary judgments indicating whether or not a waterbird

image shows a duck.

SpamCF [26] includes binary AMT judgments about whether or not an

AMT HIT should be considered a “spam” task, according to their criteria; Gold

labels were manually judged on the same criteria.

HC [11, 62] has AMT ordinal graded relevance judgments for pairs of search

queries and Web pages: not relevant, relevant, and highly-relevant. HCB conflates

relevant classes to produce only binary labels [29, 30]. Gold labels were assigned by

trusted NIST assessors.

2.3 Models & Algorithms

Many models and estimation/inference algorithms have been proposed for offline

consensus. Algorithms predominantly vary by modeling assumptions and complex-

ity [44], as well as degree of supervision. Since many workers label only a few items,

more complex models are particularly susceptible to the usual risks of poor estima-

tion and over-fitting when learning from sparse data. To limit scope, we currently

exclude online methods involving data collection, as well as methods performing

spammer detection and removal. We also exclude consideration of ordinal regres-

sion methods [39], though multi-class classification methods are applicable (if not

ideal). Finally, we do not consider open-ended tasks beyond multiple choice [43].

While the space of proposed algorithms is vast (far beyond what space con-

straints permit us to cite, describe formally, or evaluate), we consider a variety of

well-known methods which provide a representative baseline of current practice. In

particular, we include models which vary from ignoring worker behavior entirely,

modeling worker behavior irrespective of the example, and modeling varying worker

behavior as a function of example properties.

10



We briefly summarize and discuss each method below. Complementing em-

pirical analysis presented in Section 2.4, our conceptual review of methods below

emphasizes relationships between them, distinguishing traits, and possible variants.

2.3.1 Majority Voting (MV)

MV represents the simplest, oft-applied consensus method which often performs

remarkably well in practice.

MV assumes high quality workers are in the majority and operate indepen-

dently, and it does not model either worker behavior or the annotation process. It is

completely task-independent with no estimation required, provides lightening-fast

inference, and trivially generalizes from binary classification to multi-class classifi-

cation and multiple-choice. However, this simplicity may come at the cost of lower

label quality.

While many alternative tie-breaking strategies might be used (e.g., using

an informative class prior), our formulation follows the usual practice of unbiased,

random tie-breaking. Similarly, while MV assumes high quality workers dominate, a

lightly-supervised variant (not reported) could detect helpful vs. adversarial workers,

filtering the latter out, or with binary labeling, exploit anti-correlated labels by

simply “flipping” them [38].

2.3.2 ZenCrowd (ZC)

A natural extension to MV is to weight worker responses intelligently, e.g., by the

worker’s corresponding reliability/accuracy. Demartini et al. [21] do so, using Expec-

tation Maximization (EM) to simultaneously estimate labels and worker reliability.

Their approach appears to be derived from first principles rather than earlier EM

consensus methods [20, 56], or [57]’s passing mention of such a simplified model.

Like MV, ZC makes simplifying assumptions of workers acting independently and

11



without modeling varying worker behavior as a function of each example’s true class

assignment. The modeling of one parameter per worker is more complex than MV

but simpler than estimating a full confusion matrix per worker. This single param-

eter per worker also enables detection and handling of adversarial workers, which

MV cannot do without additional light supervision. An advantage of having worker

reliability as the only free parameter, besides reduced model complexity for sparse

data, is that the model trivially generalizes to multi-class or multiple choice tasks

with no increase in complexity (though by the same token may be less effective with

increasing classes or choices).

While ZC is unsupervised as proposed, it can be fully-supervised by clamping

known probability estimates during maximum-likelihood (ML) iterations, lightly-

supervised by only providing an informative class prior.

2.3.3 Dawid and Skene (DS) & Naive Bayes (NB)

Dawid and Skene’s [20] classic approach models a confusion matrix for each worker,

using EM with class priors to simultaneously estimate labels and worker confusion

matrices. Snow et al. [57] adopt the same model but assume the availability of

true confusion matrices, computed from supervised data with Laplacian (add-one)

smoothing. Like MV and ZC, workers are assumed to operate independently [67].

Confusion matrices let DS/NB capture differential worker error behavior as

a function of each example’s true class. While modeling worker reliability can en-

able detection of adversarial workers, it is insufficient to model bias/class-expertise.

Workers can be adept at labeling specific class instances or they may be biased in

their responses. Such parameterization is enabled by representing each worker with

a class confusion matrix, where the main diagonal encodes expertise and the off

diagonal values encode confusion. While this greater modeling power can exploit

more specialized statistics, sparsity can be more problematic. Also, while confusion

12



matrices easily generalize to the multi-class labeling task, they do not generalize to

the multiple choice selection task, where available choices are independent across

examples.

Like ZC, DS can be generalized to light-supervision with informed class pri-

ors. A variant estimation procedure can distinguish correctable bias vs. unrecover-

able noise [67]. Whereas MV is agnostic of worker behavior, and ZC models worker

behavior as irrespective of the input, DS/NB model varying worker behavior given

an example’s true underlying class. Moreover, whereas ZC models a single parame-

ter per worker, DS/NB model one free parameter per class per worker.

2.3.4 GLAD

Like ZC, GLAD [71] models only a single parameter per worker (the expertise α),

with similar tradeoffs in modeling complexity; Note that unlike DS/NB, GLAD does

not model worker bias. Worker expertise α, is modeled to vary from (−∞,+∞) in-

stead of the more traditional range of [0, 1]. GLAD additionally models example

difficulty 1/β for each example, capturing observed label disagreement among work-

ers; Example difficulty is modeled to vary in the range [0,∞]. Likelihood of an

observed label being the true class is modeled as a sigmoid parameterized by the

product of α and β, making the chosen parameter space meaningful. However, the

unusual ranges of modeled parameters makes prior assignments unintuitive.

Like ZC/DS, GLAD uses unsupervised model estimation via EM, but es-

timation is more complex, requiring gradient ascent in each M-step, since label

probability is modeled as a sigmoid parameterized by the product of α and β.

An extension to multi-class is described (but not found in their public im-

plementation). Like MV and ZC, GLAD easily generalizes to multi-choice selection.

Like ZC and DS, gold data may be used for supervision when available (e.g., fixing

known labels in EM). Light-supervision too can be enabled by assigning informed

13



priors from observed data.

2.3.5 Raykar 2010 (RY)

DS and NB both estimate a confusion matrix, while DS imposes a class prior and NB

uses Laplacian (add-one) smoothing. Raykar et al. [51] propose a Bayesian approach

to add worker specific priors for each class. In the case of binary labels, each worker

is modeled to have bias toward the positive class αi (sensitivity) and toward the

negative class βi (specificity). A Beta prior is assumed for each parameter. As

with ZC, DS, and GLAD, an unsupervised EM method is derived to simultaneously

estimate labels and model parameters (like GLAD, involving gradient ascent).

RY’s novelty lies in using an automatic classifier to predict labels, but this

classifier also requires a feature representation of examples. However, when such

a representation does not exist, as here, the method falls back to maximum-a-

posteriori (MAP) estimation on DS, including priors on worker bias to each class.

The multi-class extension is made possible by imposing Dirichlet priors, on each

worker’s class bias, and the class prior itself. However, the presence of class spe-

cific parameters prevents extension to multi-choice, where the available choices are

independent for each example.

2.3.6 CUBAM

Methods above model annotator noise and expertise (GLAD, ZC), annotator bias

(DS,NB,ZC), and example difficulty (GLAD). Welinder et al. [69] incorporate all

of these along with a normalized weight vector for each worker, where each weight

indicates relevance to the worker. Like prior assignments in RY, a Bayesian approach

adds priors to each parameter. Worker labels are determined by an annotator-

specific threshold τj on the projection of the noisy/corrupted input xi and worker

specific weight vector wj .
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The worker specific vector wj can be assumed to model worker bias or other

worker specific properties, while τj captures the expertise of the worker. This rep-

resentation is more general than the confusion matrix enabling greater modeling

freedom in representing a worker. The noise in the observed vector xi captures

example difficulty.

Probability of label assignments is maximized by unsupervised MAP estima-

tion on the parameters, performing alternating optimization on xi (example specific)

and worker-specific parameters < wj , τj > using gradient ascent. Apart from label

estimates, the surface defined by projection wT τj enables viewing worker groupings

of bias and expertise. CUBAM can generalize to multi-class classification but not

multi-choice selection. No direct supervised extension is apparent.

2.4 Experimental Setup

This section describes our benchmarking setup for comparative evaluation of con-

sensus methods (Section 2.3). We vary: 1) the dataset used and its associated task;

2) the degree of supervision.

1. Data and Task. All experiments are based upon real-world crowdsourc-

ing datasets. We use the naming convention introduced in Section 2.2 throughout

this work.

2. Degree of supervision. We evaluate unsupervised performance and 5

degrees of supervision: 10%, 20%, 50%, 80%, and 90%. In each case, we use cross-

fold validation, i.e. for the 10% supervision setting, estimation uses 10% train data

and is evaluated on the remaining 90%, this procedure is repeated across the other

nine folds, finally, average performance across the folds is reported. We report unsu-

pervised performance on the 10-fold cross-validation setup, using 90% of examples

in each fold for estimation (without supervision) and report average performance.

Prior assignments for unsupervised estimation assumes default generic values, see
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Section 2.4.1 for additional details.

In the unsupervised setting, uninformed, task-independent hyper-parameters

and class priors are unlikely to be optimal. While one might optimize these parame-

ters by maximizing likelihood over random restarts or grid search, we do not attempt

to do so. Instead, with light-supervision, we assume no examples are labeled to aid

estimation, but informative priors are provided (matching the training set empirical

distribution). Finally, full-supervision assumes gold-labeled examples are provided.

To evaluate ZC, RY, DS and GLAD methods under full-supervision, labels

are predicted for all examples (without supervision) but replaced by gold labels on

training examples at each EM iteration.

Evaluation metrics. Presently the benchmark includes only accuracy and

F1 metrics. While a wide variety of different metrics might be assessed to valuably

measure performance under alternative use cases, a competing and important goal

of any new benchmark is to simplify understanding and ease adoption. This led us

to intentionally restrict consideration here to two simple and well-known metrics.

Significance testing is performed using a two-tailed, non-parametric permutation

test [55].

Implementations. We used existing public implementations of DS, GLAD

and CUBAM algorithms. We provide open source reference implementations in

square for the other methods considered: MV, NB, ZC, and RY.

2.4.1 Experimental Details of Methods

A variety of important implementation details impact our evaluation of methods.

We discuss these details here.

ZC in its proposed form does not impose priors on parameters [21]. Our im-

plementation does impose priors on both the label category distribution and worker

reliabilities. A Beta prior was assumed for worker reliability, and a Dirichlet prior
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was imposed on label categories. In each experimental setup, the workers were

assigned the same prior distribution. In the unsupervised setup, the prior distri-

bution on worker reliability had a mean of 0.7 and a variance of 0.3 (as with RY

below) and the label categories were assumed to be uniformly distributed. In the

lightly-supervised and fully-supervised setups, both the worker reliability and label

category prior parameters were estimated from the train split.

NB was implemented to learn each worker’s full confusion matrix, with

Laplacian (add-one) smoothing [57]. The algorithm was extended for multi-class

using a one-vs-all approach. Since NB strictly depends upon training data, it was

used only in the fully-supervised setting.

RY was implemented for binary labeling [51]. Beta priors were imposed on

worker specificity, sensitivity and positive category prevalence.

When unsupervised, the worker sensitivity prior was set to have mean 0.7

and variance of 0.3 (as with ZC above), the same distribution was assumed for

specificity, and the label categories were assumed to be uniformly distributed. The

lightly-supervised and fully-supervised settings had the prior parameters set to com-

pute average ML estimates for each worker from the train split. Since RY was

implemented for binary labeling, results are limited to datasets with two categories.

CUBAM, DS, and GLAD. Lacking supervision, CUBAM hyper-parameters

were assigned default priors from the the implementation. Only the unsupervised

case was evaluated since the hyper-parameters associated with distributions model-

ing question transformation, worker competence cannot be inferred from the train

splits used.

DS predicts labels without any priors. Under the lightly-supervised and fully-

supervised settings, category (class) priors were assigned ML estimates inferred from

the training fold.

GLAD is assigned uniform class label likelihood, with priors of 1 for task
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difficulty and 0.7 for worker expertise. Under the lightly-supervised and fully-

supervised settings, class priors were set by ML estimates inferred from the training

fold. Worker expertise was set as the average worker accuracy inferred from the

training set, and as in the other implementations, the same prior was assigned to

all workers. Finally the prior on task difficulty were set to 1.

Both CUBAM and GLAD implementations support only binary class esti-

mation, hence results from the algorithms are reported only on datasets with binary

labels.

-‐0.15	  

-‐0.1	  

-‐0.05	  

0	  

0.05	  

0.1	  

0.15	  

BM	   HCB	   SpamCF	   WVSCM	   WB	   RTE	   TEMP	   WSD	   AC2	   HC	   ALL	  

Unsupervised	  Label	  Es1ma1on	  Accuracies	  
DS	   ZC	   RY	   GLAD	   CUBAM	  

Figure 2.2: Unsupervised performance of consensus methods, as measured across
seven binary labeled real datasets. Accuracy is plotted relative to a Majority Vote
(MV) baseline. Average performance of methods across all datasets is shown at the
right. On multiple choice WSD and multi-class AC2 and HC, results are reported
only for DS and ZC.
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2.5 Results

This section presents benchmarking results of methods across datasets and tasks,

following the experimental setup described in Section 2.4. Statistical significance

testing is limited to results in Table 2.3.

Unsupervised. Figure 2.2 plots performance of each method across each

dataset, showing relative accuracy in comparison to the baseline accuracy of ma-

jority vote (MV). Average performance across datasets is reported both for relative

accuracy to MV (Figure 2.2 far right), and for actual accuracy and F1 in Table 2.2.

Classic DS achieves top average performance for both metrics. Each method except

RY and ZC also outperforms the others on at least one dataset. More strikingly,

on SpamCF and TEMP datasets, methods show no improvement over baseline MV.

Evaluation of the methods under the unsupervised setting, when averaged across all

binary labeled datasets, showed DS to outperform the rest of the methods, both on

avg. accuracy and F1 score; Table 2.2 tabulates results on all the methods.

Light-supervision. Figure 2.3 plots MV relative performance for each

dataset. The effect of varying supervision is shown in a separate plot for each

dataset. Table 2.2 presents average results across all datasets under varying super-

vision. DS is seen to outperform other methods with 10%-50% supervision on avg.

accuracy and F1 score, but RY performs best at 90% supervision. 80% supervision

has RY and DS marginally outperforming each other on avg. accuracy and F1 score

respectively.

Performance on each individual dataset, as observed in the unsupervised

setting, did not highlight any individual method consistently performing best. Ob-

servations made earlier in the unsupervised case with regard to SpamCF and TEMP

also carry-over here, with no improvement over MV for the first two.

Full-Supervision. As with previous light-supervision results, Figure 2.4

plots MV relative performance for each dataset. The effect of varying supervision is
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shown in a separate plot for each dataset. Table 2.2 presents average results across

all datasets under varying supervision.

RY outperforms other methods with 50% or more supervision, contrasting

earlier results where DS was consistently best. Note that DS outperformed the other

methods for 10% and 20% supervision, but bettered RY only slightly. While NB

was expected to outperform other methods with increasing supervision, DS and RY

were seen to perform better.

Performance on individual datasets follows the same trend as in the aver-

aged results, with the exception of WVSCM, where GLAD was superior. As with

no supervision and light-supervision, TEMP shows similar trends, though MV out-

performed DS and NB on SpamCF.

Light-Supervision Full-Supevision
Method Metric No Supervision 10% 20% 50% 80% 90% 10% 20% 50% 80% 90% Count

MV
Acc 79.2 79.2 79.2 79.2 79.3 79.3 79.2 79.2 79.2 79.3 79.3 0
F1 77.5 77.5 77.5 77.2 78.0 78.1 77.5 77.5 77.2 78.0 78.1 0

ZC
Acc 77.2 76.3 77.1 78.4 78.9 78.9 76.8 77.6 78.7 80.4 80.8 0
F1 76.4 74.2 75.7 76.8 77.7 77.7 75.4 76.1 77.0 79.2 79.6 0

GLAD
Acc 78.7 78.1 78.0 78.2 78.9 78.0 78.3 78.5 79.2 79.8 80.3 0
F1 77.3 76.8 76.7 77.0 78.6 77.6 76.9 77.1 77.6 79.0 79.5 0

NB
Acc - - - - - - 80.3 80.7 80.5 80.7 80.5 0
F1 - - - - - - 79.1 79.0 78.5 78.5 78.9 0

DS
Acc 82.2 82.3 82.2 82.0 80.4 79.5 82.2 82.2 82.1 81.8 81.9 6
F1 80.2 80.2 80.0 79.4 78.9 77.9 80.1 80.0 79.6 79.2 79.9 7

RY
Acc 80.9 81.6 81.6 81.5 80.5 80.1 81.9 82.0 82.5 82.3 82.3 5
F1 79.1 79.6 79.5 79.2 78.8 78.8 79.8 79.9 79.9 80.4 80.4 4

CUBAM
Acc 81.5 - - - - - - - - - - 0
F1 79.8 - - - - - - - - - - 0

Table 2.2: Results on unmodified crowd datasets. Accuracy and F1 results
when averaged over all seven binary datasets (BM, HCB, RTE, SpamCF, TEMP,
WB, and WVSCM) for varying supervision type (none, light, and full) and amount
(10%, 20%, 50%, 80%, and 90%). Maximum values for each metric across methods
in each column are bolded (Accuracy) and underlined (F1). As a simple summary
measure, the final column counts the number of result columns (out of 11) in which
a given method achieves the maximum value for each metric. Results of statistical
significance testing (50% condition only) appear in Table 2.3.

Discussion. CUBAM, with relatively weaker assumptions, was expected to
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perform best. This was seen on HCB, one of the noisier datasets considered (see

Figure 2.1 for its worker accuracy histogram). However, on SpamCF, a dataset with

a similar noise profile to HCB, all methods perform comparably to MV. A possible

explanation is that SpamCF is far smaller than HCB, challenging estimation. On

the flip side, on TEMP and RTE datasets, where workers are mostly accurate, MV

appears sufficient, with more complex models providing little or no improvement.

Across experimental setups, GLAD consistently performed best on WVSCM

but was outperformed on other datasets. ZC performed similarly, and both model

accuracy while bias is ignored. This highlights the usual value of using available do-

main knowledge and tuning hyper-parameters intelligently. Of course, increasingly

complex models make estimation more difficult, and beyond the estimation chal-

lenge, performance is also ultimately limited by modeling capability. For datasets

in which its sufficient to model worker accuracies (i.e., there exists a close to optimal

positive worker weight configuration), GLAD and ZC perform well with informed

priors or supervision. But they appear to be less robust on datasets with biased or

adversarial workers, where methods with weak assumptions like CUBAM appear to

thrive. The consistent performance of RY, across datasets, when priors were well

informed or when further consolidated with minimal gold standard, suggests suffi-

ciency in model complexity to generalize over most of the real datasets considered.

Consistent performance of DS, which is similar to RY (except for the inclusion of

worker priors) further corroborates this analysis.

2.6 Conclusion and Discussion

One of the motivations of square was to determine the state-of-the-art in offline

consensus. While we did not find the one best method across datasets and task

objectives, we observed in our benchmark tests that MV was often outperformed

by some other method. More importantly the fact that each method was seen to
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Dataset Metric Best Method-Types Best Methods

BM
Acc 5f, 5l, 6lf, 7u 5-7
F1 5f, 5l, 6lf, 7u 5-7

HCB
Acc 6f, 5u, 7u 5-7
F1 4f, 5ulf, 6lf, 7u 4-7

RTE
Acc 4f, 2ulf, 3ul, 5uf, 6ulf 2-6
F1 4f, 2ulf, 3ul, 5uf, 6ulf 2-6

SpamCF
Acc 7u 7
F1 7u 7

TEMP
Acc 6l, 1u, 2ulf, 3ulf, 6u, 7u 1-3,6,7
F1 6l, 1u, 2ulf, 3ulf, 6u, 7u 1-3,6,7

WB
Acc 4f, 5ulf, 6lf, 7u 4-7
F1 4f, 5ulf, 6lf, 7u 4-7

WV SCM
Acc 3l, 3uf, 2ulf, 5ulf, 6ulf 2,3,5,6
F1 3l, 3uf, 2ulf, 5ulf, 6ulf 2,3,5,6

Table 2.3: Statistical significance. For each (unmodified) binary dataset (BM,
HCB, RTE, SpamCF, TEMP, WB, and WVSCM) and quality metric (Accuracy and
F1), we report all (tied) methods achieving maximum quality according to statistical
significance tests (Section 2.4). Methods are indicated by number (1=MV, 2=ZC,
3=GLAD, 4=NB, 5=DS, 6=RY, and 7=CUBAM) and supervision type by letter
(u=none, l=light, and f=full). For each dataset-metric condition, the top scoring
method-type pair is shown first in bold, followed by all tied method-type pairs
according to significance tests. Given space constraints, statistical significance is
reported only for the 50% supervision amount condition. The final column ignores
supervision type distinctions.

outperform every other method in some condition seems to validate the need both

for producing a diversity of approaches, and for multi-dataset testing in making

stronger claims of improvement and generalizable performance.

We also observed method sensitivity to hyper-parameter assignments, vali-

dated by the failure to observe consistent improvement with increasing light-supervision.

While investigation of more powerful models should certainly continue, we must also

remain mindful of varying data conditions. Intuitively, models with few assumptions

have more difficulty modeling quirks in worker behavior, over-estimating or under-

estimating worker capability. However, in modeling worker bias, the classic DS and
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its extension RY (which effectively just adds priors on parameters) performed re-

markably well across our tests. The benefit from modeling the annotation process

was not observed across datasets. Better recognizing such cases through bench-

marking can help us to better direct future work to specific conditions with greater

opportunity for empirical improvement.

Qualitative comparison of techniques helped us to characterize distinguishing

traits, new variants, and integration opportunities. Like other open source bench-

marks, we envision square as dynamic and continually evolving, with new tasks,

datasets, and reference implementations being added based on community needs

and interest. In an independent and parallel effort, [47] recently released another

open source benchmark, based on synthetic data, which implements or integrates a

subset of methods found in square plus ITER [32] and ELICE [35].

24



Chapter 3

Collaborative Evaluation

3.1 Introduction

In Chapter 2, we investigated statistical consensus methods to leverage quality in

crowdsourced data. In doing so we built the square benchmark enabling access

to consensus algorithms representative of current practice and access to different

crowd and task types. In this chapter we propose a collaborative judging model

that combines judgments from expert NIST assessors and crowd workers. To enable

rapid experimentation across different crowd types we develop a realistic crowd

simulation model which emulates crowd types investigated in square . We further

extend findings on the utility of consensus methods through experimentation on the

simulated data. This is joint work with Ivan Oropeza. Ivan Oropeza contributed in

implementing the evaluation component of the developed framework.

Relevance judgments provide the foundation for assessing Cranfield-based

evaluation of IR systems [15]. While it is known that insufficient judgments can com-

promise evaluation [66], it has become increasingly challenging to manually judge

so many documents as collection sizes have grown. Consequently, there has been

tremendous interest in developing more scalable evaluation methodology. While
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commercial search engines infer implicit judgments from search logs [28], they re-

portedly still use many human editors for expert judging as well. Another direction

of work has explored inferring judgments by retrieval popularity [59], though this

fails to accurately distinguish strong vs. weak outlier systems. Pseudo-test collec-

tions cleverly simulating relevance judgments [2] or queries [6] show promise but

have not been established as a general alternative.

One fruitful line of research has devised techniques by which reliable ranking

of IR systems can be achieved using many fewer trusted judgments than with tra-

ditional pooling [4, 10, 12, 23, 45, 52]. Another stream of research has investigated

potential for crowdsourcing methods to improve cost, speed, ease, scalability, and/or

diversity of judging vs. traditional use of trusted assessors [1, 7, 9, 13, 16, 24, 34].

In this chapter, we bring together both lines of research into a combined experi-

mental framework, enabling us to investigate both approaches in parallel and their

interacting effects.

Figure 3.1 shows our system architecture. Given a set of document retrieval

lists from IR systems to be evaluated, we first prioritize retrieved {topic,document}

pairs into a judging queue [25]. Inspired by recent work of Webber et al. [68], we

enable this prioritization by ordering documents by probability of disagreement as

predicted by our method described in Section 3.3.

Following findings from the square benchmark developed in Chapter 2,

Section 3.4 describes a method for inducing a realistic crowd model conforming to

statistical properties of each crowd dataset (Section 2.2) and compares the bench-

marked consensus algorithms for aggregating judgments from each crowd model.

Given a judging budget, a ratio for expert vs. crowd costs, and a crowd

quality model, critical judging tasks are assigned to trusted assessors (as determined

by the prioritization component), with remaining tasks delegated to the crowd. Each

retrieval list is then scored for a given a ranking metric based upon our expert-crowd
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hybrid judgments, with IR systems then ranked accordingly. Finally, we measure

correlation between system rankings according to our hybrid qrels vs. use of original

NIST qrels.

Section 3.2 introduces our flexible and extensible open source system archi-

tecture we develop in which system components by design are easily varied and

replaced. One can vary how: 1) judgments are statically or dynamically prioritized;

2) how crowd judgments are generated or collected; 3) how crowd judgments are

aggregated; 4) judging budget; 5) expert vs. crowd cost function; 6) ranking metric;

7) rank correlation metric; and 8) test collection being studied.

Finally, our main experiments evaluate TREC 6 and WebTrack 2011 partic-

ipating systems using expert-crowd collaborative judging with varying budget. In

comparison to accepted system rankings according to full NIST assessment, we mea-

sure the correlation of alternative system rankings according to Kendall’s Tau and

Yilmaz et al.’s APCorr [72]. Figure 3.7 and Figure 3.8 shows correlation achieved

for WebTrack 2011 and TREC 6 respectively, varying crowd quality, distribution of

expert vs. crowd judging, and the relative cost ratio between groups.

Results show significant judging burden can be confidently and scalably

shifted to the crowd while maintaining high rank correlation, and often doing so

at lower cost vs. traditional practice of using only trusted assessors. However, re-

sults suggest high sensitivity to quality of the overall crowd [37]. With less accurate

workers, while we can still delegate a significant portion judging burden to the crowd

and maintain high rank correlation, the cost of doing so may exceed the cost of ex-

clusively using trusted experts. In such cases, the speed, ease, scalability, and/or

diversity of crowdsourcing may still recommend it, but not cost savings.
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3.2 System Architecture

Our open source experimental framework is shown in Figure 3.1 and available

for download. Our design is intended to allow system components to be easily

exchanged or replaced for rapid experimentation under varying conditions.

Prioritizing Judging. Given a set of document retrieval lists from IR

systems to be evaluated, we first prioritize {topic,document} pairs into a priority

queue for judging (Section 3.3). We investigate two static ordering methods; dy-

namic schemes (cf. [3, 12, 45]) could also be used to re-order the priority queue as

judging progresses. Based on Lesk and Salton’s hypothesis of judging disagreements

on borderline documents [42], also studied by Voorhees [65], we prioritize judging

tasks by expected disagreement, as predicted by a logistic regression model. Such

an ordering easily extends itself to incorporating crowd judges to judge documents

with small probabilities of predicted disgareement, since making relevance judge-

ments can have valid disagreements for which adopting the judgement of the topic

originator may be the right choice and crowd judging can introduce disagreements

due to varying expertise which can be corrected by intelligent aggregation. In addi-

tion, we also compare to ordering documents by average rank in retrieval lists.

Modeling Crowds. Given a set of real-world crowd datasets (Section 2.2),

we learn a custom crowd model for each which defines a probability distribution

over some 400 worker archetypes (Section 3.4). On one hand, we firmly believe

crowdsourcing studies should use real data collected from crowds to ensure validity

and realism of findings. On the other hand, simulation studies permit free, rapid,

and more controlled studies over a wider range of possible crowd conditions. Our

goal in building and sharing this crowd simulator is to balance these competing

needs for realism vs. range of experimentation, letting us better study the potential

and limits of crowdsourcing [16] across realistic conditions.

Aggregating Crowd Judgments. Quality is leveraged from redundant

29



relevance judgments elicited from crowd workers by applying benchmarked con-

sensus algorithms from square (See Chapter 2). Our system architecture allows

alternative aggregation schemes to be easily compared to one another (Section 3.4.3).

Distributing Judging Assignments. Inspired by Bailey et al.’s study [7],

suggesting use of Bronze judges as pre-filters to reduce judging effort of Gold and

Silver judges, our expert-crowd collaboration model assigns the most important

judging tasks to trusted assessors, while delegating the burden of remaining judging

to the crowd (Section 3.5). Given a priority queue over judging tasks, a budget, and

a ratio of expert vs. crowd costs, we vary the relative proportion of work delegated

in determining judging assignments. The output of our collaboration model is a set

of collaborative expert-crowd judgments for evaluating IR systems.

Evaluating Systems and System Rankings. The objective of Cranfield-

style system evaluation [15] is to reliably measure system effectiveness given a set

of relevance judgments. As in many prior studies, we vary the total number of

judgments used, seeking to reduce effort and cost by using fewer judgments [4,

10, 12, 23, 45, 52]. More central to this work, we compare multiple sources of

relevance judgments: trusted NIST assessors vs. crowds of varying quality. While

any ranking metric can be used, we focus particularly on BPref [10] due to its

robustness for evaluating systems with incomplete judgments. We adopt Soboroff’s

revised BPref [58], which supersedes the original formulation [10].

Measuring Rank Correlation. An evaluation metric enables a total or-

dering of systems. The goal of measuring rank correlation is to measure how reliably

we rank IR systems under our reduced, expert-crowd collaborative judgments, vs.

the ranking of systems under full NIST assessment of a judging pool. We adopt

both the oft-reported Kendall’s Tau and Yilmaz et al.’s more recent APCorr [72].

Assuming it is most important to correctly order the top-n best performing sys-

tems, Kendall’s Tau is oft-criticized for equally penalizing all swaps, regardless of
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rank position. Various corrections have been proposed, of which we adopt APCorr.

3.3 Prioritized Judging

Given a set of document retrieval lists from IR systems to be evaluated, we be-

gin by prioritizing {topic,document} pairs into a priority queue for judging [25].

Based on Lesk and Salton’s hypothesis of judging disagreements on borderline doc-

uments [42], also studied by Voorhees [65], we learn an extensible logistic regression

model to predict assessor disagreement using overlapping assessments and retrieval

lists from past TREC evaluations (Sections 3.3.1 and 3.3.2). We train the model on

TREC 4 (Section 3.3.3) and evaluate prediction accuracy on TREC 6 (Section 3.3.3).

Finally, we prioritize judging tasks by expected disagreement and compare to or-

dering documents by average rank in retrieval lists. Kendall’s Tau and APCorr [72]

rank correlation with respect to full NIST judging is reported for WebTrack 2011

and TREC 6 ad hoc tasks (Section 3.3.4).

3.3.1 IR System Evaluation Datasets

WebTrack 2011. The ad hoc task used 50 topics. Each system submitted up to

3 ranked lists of 10K documents each. Judging was limited to a pool depth of 25,

formed over all 62 submissions. In total, 19,381 documents were judged for 5-point

graded relevance, which we binarize. Following Voorhees and Harman’s estimate of

assessors making two judgments per minute [64], judging 8 hours a day would still

require over 20 person days of work.

TREC 6. The ad hoc task used 50 topics. Each system submitted up to 3 ranked

lists of 1K documents each, with 74 total submissions. Judging was limited to a

pool depth of 100, using only one retrieval list per system. A total of 72,270 binary

judgments were made, requiring over 75 person days of work, per Voorhees and

Harman’s estimate [64].
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Data Alternate Assessor Precision Recall

TREC 4
A 81.3 52.8
B 81.9 61.8

TREC 6 A 64.5 43.0

Table 3.1: Assessor agreement statistics for TREC 4 [65] and TREC 6 [17] ad hoc
tasks. Agreement is shown in each case with respect to the original NIST assessor
for each topic.

3.3.2 Assessor Disagreement Datasets

TREC 4. Secondary judgments were made by two alternate assessors [65]. Based

upon original judgments, 200 relevant and 200 non-relevant documents were ran-

domly selected for secondary judging. Table 3.1 shows the precision and recall of

secondary judgments vs. the original assessor.

TREC 6. U. Waterloo provided secondary judging [17]. Interactive search by

reissuing queries yielded a new document set that was judged by an single alternate

assessor. Table 3.1 shows precision and recall of alternate judgments.

3.3.3 Predicting Assessor Disagreement

Our approach to predicting assessor disagreement is inspired by the approach pro-

posed by Webber et al. [68]. However we look at the consequence of disagreement

in a different light. Because the primary assessor defines the topic, we treat the

primary assessor as the topic authority against which secondary assessors should

be compared (rather that treating all assessors as exchangeable). Voorhees [65] re-

ported less than 3% disagreement on judgments originally judged non-relevant, also

showing that unanimously relevant documents had higher average rank than other

documents. Consequently, with three judges (TREC 4), we distinguish unanimous

agreement of all three judges vs. any disagreement.

The current feature space is comprised of two features:
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1. Meta-AP. Meta-AP [5] weights Average Precision (AP). Evaluating AP at

depth N imposes a weight on document at rank k as 1+HN−Hk, where Hn is

the nth harmonic number. When k is greater than N , the weight is 0. Meta-

AP implicitly assigns greater weight to documents higher in retrieval order

across runs. Meta-AP is computed on each retrieval list and then averaged.

We use typical depth of N = 1000.

2. Weighted Avg. Retrieval Score. To counter Meta-AP’s sharp drop-off, we

impose a gradually varying weighting function computed by C1 · NS1 + C2 ·

NS2 +C3 ·NS3, where NS1, NS1, NS3 are the number of systems retrieving

the document at rank 0 − 10, 11 − 100 and 101 − 1000, respectively. We use

weights C1 = 10, C2 = 5 and C3 = 1, tuned on development data.

While we do not report feature-analysis experiments, introducing the second feature

substantially improved modeling accuracy. Because these features span the entire

ranking, we also experimented with histogram features using bins over narrower

rank position ranges, but we did not see any improvement and so omitted these

features for parsimony.

For each TREC 4 topic, we learn a topic-specific disagreement model. Model

parameters, including prediction threshold, were tuned over 100 random trials of

a 70%-30% train-tune split of documents judged for the given topic. Erring on

the side of caution, so that judging tasks are routed to trusted assessors whenever

disagreement seems plausible, we use prediction threshold 0.3 to favor higher recall.

Figure 3.2 shows the 12 topics retained after training, as well as the within-topic

predictions results for each topic.

To make predictions on another test collection, we must match a given test

topic to one of the 12 models learned from TREC 4. In practice, we predict dis-

agreement using all 12 models, then select the model which best agrees with a prior

model, a beta distribution with α = 1.4 and β = 4 parameters, tuned over 100 trials
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Figure 3.2: Topic-specific logistic regression model learned for each TREC 4 topic.
For each of 100 trials, we make a random 70/30 train/test split of judged documents
for each topic. Topics on which we fail to achieve at least 0.15 average recall are
discarded; we favor recall to conservatively flag any topic on which assessor disagree-
ment is plausible. The 12 retained, best performing models shown here will be used
to predict disagreement on TREC 6 and WebTrack 2011. TPR = true positive rate
(i.e., recall), PPV = positive predictive rate (i.e., precision), TNR = true negative
rate (i.e., recall of negative class examples), and NPV = negative predictive value
(i.e., precision of negative class predictions).

on a 70%-30% train-tune split across the 50 TREC 6 topics. We select the TREC 4

topic whose prediction minimizes Root Mean Squared Error (RMSE) vs. predictions

made by the prior distribution.

Our proposed approach differs from the disagreement model developed by

Webber et al. [68] in the following: 1) while they require a priori knowledge of the

primary assessor’s judgment in order to predict disagreement, we predict disagree-

ment using only retrieval list features; 2) they limit their feature space to Meta-AP,

we add an additional feature to counter the sharp drop in Meta-AP values; 3) while

they train and test their model on the same topic (and the train/test division of

documents is unspecified), we train our model on one test collection and test on
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another; and 4) unlike us they do not evaluate prediction accuracy, instead using

their model to perturb the original assessor’s labels in order to simulate realistic sec-

ondary judgments, we evaluate classification performance directly (Section 3.3.3),

as well as measuring the evaluation benefit of prioritizing judging tasks by expected

disagreement (Section 3.3.4).

Figure 3.3 shows results of predicting assessor disagreement on TREC 6. A

boxplot is shown for each of 4 evaluation metrics.

TPR PPV TNR NPV 

Figure 3.3: Evaluation of disagreement prediction on TREC 6 for each of 4 evalua-
tion metrics: true positive rate (i.e., recall), positive predictive rate (i.e., precision),
true negative rate (i.e., recall of negative class examples), and negative predictive
value (i.e., precision of negative class predictions). Each metric’s boxplot shows
its median value and score distribution across topics. For non-relevant documents
(TNR and NPV), prediction is most accurate and consistent across topics, with
mean TNR = 0.78 and NPV = 0.96. Mean precision (PPV) was both far lower
(0.11) and less consistent, due to our favoring recall over precision, and predictions
for relevant documents being more difficult. Mean recall (TPR) across topics was
0.62. Recall also exhibited the highest variance across topics, due to a widely vary-
ing number of relevant documents per topic and high variance in disagreement itself,
indicating some topics were far easier to judge.
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3.3.4 Prioritizing Judging by Disagreement

Figure 3.4 plots Kendall’s Tau and Yilmaz et al.’s APCorr [72] rank correlation

achieved on WebTrack 2011 and TREC 6 ad hoc tasks. On WebTrack 2011, ordering

by expected disagreement outperforms the average rank ordering consistently on

Kendall’s Tau and reaches the highest correlation on both correlation measures.

With 32% judging, disagreement ordering achieves substantially better APCorr as

well. On TREC 6, disagreement ordering shows improvement for judging 8% and

above. With prior work often regarding 0.9 Kendall’s Tau as acceptable correlation

(cf. [65]), we see disagreement ordering achieve this using only 16% judging.

0.7$

0.75$

0.8$

0.85$

0.9$

0.95$

1$

4%$ 8%$ 16%$ 32%$ 64%$

R
a
n
k
%C
o
rr
e
la
+
o
n
%

Percentage%Judged%

AvgRank$(APCorr)$ AvgRank$(Tau)$ Disagreement$(APCorr)$ Disagreement$(Tau)$

0.7$

0.75$

0.8$

0.85$

0.9$

0.95$

1$

2%$ 4%$ 8%$ 16%$ 32%$

R
a
n
k
%C
o
rr
e
la
+
o
n
%

Percentage%Judged%

AvgRank$(APCorr)$ AvgRank$(Tau)$ DM$(APCorr)$ DM$(Tau)$

0.7$

0.75$

0.8$

0.85$

0.9$

0.95$

1$

2%$ 4%$ 8%$ 16%$ 32%$

Ra
nk

%C
or
re
la+

on
%

Percentage%Judged%

AvgRank$(APCorr)$ AvgRank$(Tau)$ DM$(APCorr)$ DM$(Tau)$

WebTrack 2011 TREC 6 

% Pool Judged 

R
an

k 
C

or
re

la
tio

n 

Figure 3.4: We compare prioritizing judging by the disagreement model (DM) vs.
ordering documents by average rank in retrieval lists. The percentage of the original
pool judged is indicated on the x-axis. TREC 6 judging percentage is varied between
2-32% by powers of 2. Since WebTrack 2011 was only judged to a depth of 25 with
many fewer judgments (Section 3.3.1), judging percentage is varied here from 4-64%
by powers of 2. Judgments are sampled from original NIST assessments. Partici-
pating systems are evaluated by BPref [10], due to its robustness with incomplete
judgments. We adopt Soboroff’s revised [58] formulation of BPref.
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3.4 Judging with Crowds

A recent surge of studies have begun investigating the potential of online crowds to

improve the cost, speed, ease, scalability, and/or diversity of relevance judging vs.

traditional assessors [1, 7, 9, 13, 16, 24, 34]. However, with reliability of crowd data

heavily dependent on quality task design (cf. [1, 9, 34]), data quality in practice

can vary greatly. Different crowds may also exhibit systematic biases based on

background, training, or task design [33, 60].

While we firmly believe crowdsourcing studies should use real crowd data

to ensure validity and realism of findings, simulation studies remain valuable tools

for free, rapid, and more controlled experimentation over a wider range of possible

conditions. To balance these competing needs for realism vs. range of experimenta-

tion, we develop in this work (and share) a realistic crowd simulator which models

crowds based on worker behavior statistics extracted from real-world crowd datasets.

A wide diversity of real crowd behaviors are induced from the varying datasets used.

Section 3.4.1 summarizes the datasets considered, while Section 3.4.2 describes our

method of inducing crowd models from these datasets.

To enable benefit from crowd contributions as evident from findings in 2, it is

essential to impose offline or online quality assurance methodologies [24, 34]. Section

3.4.3 measures benefit of applying statistical consensus methods from square. We

also discuss how different aggregation methods impact rank correlation for IR system

evaluation.

3.4.1 Crowd Datasets

We use public datasets identified for the square benchmark in Chapter 2 and an

additional dataset MediaEval which is a record of fashion relevance judgements for

images [54]. We only consider datasets that are applicable to our simulation frame-

work discussed in Section 3.4.2. We follow the convention of naming datasets as
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introduced in Section 2.2 as BM, HCB, RTE, TEMP, WB, WVSCM and finally

MediaEval. Of these, only HCB comes from the IR community, specifically the

TREC 2010 Relevance Feedback track [11]. Diversity of the datasets is evidenced

through their origins from natural language processing, machine vision, and multi-

media research communities.

Figure 2.1 plots histograms of crowd worker accuracies and percentage of

examples judged across datasets, highlighting dataset diversity. Table 3.2 shows

participation, scale, and quality of each crowd dataset, as well as the quality of our

crowd model’s Majority Vote (MV) aggregated judgments for each dataset. It is

particularly important with IR to consider class imbalance, with many fewer rele-

vant documents and accuracy providing a less meaningful metric of label quality.

Moreover, false positives (non-relevant documents erroneously judged relevant) are

known to degrade evaluation reliability more than false negatives (relevant docu-

ments mislabeled as non-relevant). Table 3.2 shows that recall can be high with

low precision, evidencing such false positives. We also see that some crowds per-

form better on the majority class, corresponding here to the easier task of judging

non-relevant documents.

Crowd E W L R P SPC NPV

BM 1000 83 5000 67.2 96.7 99.6 94.0
HCB 3275 722 18479 94.2 31.0 59.1 98.1
MediaEval 3532 202 1373 98.2 96.0 99.2 99.6
RTE 800 164 8000 98.0 66.1 90.2 99.6
TEMP 462 76 4620 94.7 63.1 89.2 98.9
WB 108 39 4212 74.7 70.1 93.8 95.0
WVSCM 159 17 1221 93.2 49.2 81.2 98.4

Table 3.2: Traits of 7 public crowd datasets used. E/W/L denote the total number
of examples/workers/labels, respectively. Quality of majority vote worker labels vs.
gold labels are measured by accuracy, recall, precision, specificity (recall of negative
class examples), and the negative predictive value, NPV (precision of negative class
predictions).
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3.4.2 Modeling Crowds

To realistically simulate a worker to make highly imbalanced relevance judgments,

two key properties are essential: True Positive Rate (TPR, or recall) and the True

Negative Rate (TNR, or specificity). Regarding amount of work performed by each

worker, prior work has consistently reported worker contribution to follow a power

law distribution. Capturing this property is therefore also essential to faithfully

emulate a real crowdsourcing environment. Note that while this model is rather

limited in that it does not take into consideration task specific dynamics such as

instructions, design, cost and worker demographics, it is general enough to represent

crowd data from any system. Our goal is to enable a sufficiently abstract crowd

representation from crowd data which is representative of a specific task design and

worker moderation. However, we do note that failure to model example properties

such as example difficulty is a shortcoming of the model.

Workers are represented in a three dimensional space defined by TPR, TNR,

and PC: Percentage Contribution (Figure 3.5). TPR and TNR span [0,1] and PC

spans [0,100%]. TPR and TNR for each worker are learned from worker statistics on

each dataset. Similarly, PC is learned from the distribution of work performed by

each worker. To enable sampling, the worker space is discretized and represented as a

three-dimensional regular voxel grid. Each voxel defines a worker archetype in which

worker properties for that archetype are modeled by the voxel’s own unique multi-

variate Gaussian distribution. The probability distribution over voxels is learned

from the frequency of representative workers matching that archetype in a given

dataset.

Figure 3.5 visualizes this discretized space for two of the crowd models, HCB

and MediaEval, using 10 levels each for TPR and TNR, and only 4 levels of PC (given

the aforementioned power-law distribution of quantity of work performed). Each

crowd model assumes this same three-dimensional representation and discretization,
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but varies in terms of both: 1) the probability distribution over voxels; and 2) the

10 ∗ 10 ∗ 4 = 400 voxel-specific Gaussian models.
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Figure 3.5: A crowd model is defined by a probability distribution over 400 worker
archetypes, letting us generate crowd workers for each model by sampling from this
distribution. A worker archetype is defined by 3 parameters: true positive rate (i.e.,
recall), true negative rate (i.e., specificity); and the proportion of total examples
labeled, percentage contribution (PC). This 3-dimensional parameter space is evenly
quantized into 10 levels each of recall (x-axis) and specificity (y-axis), and 4 PC levels
(z-axis). All crowd models use the same 10∗10∗4 = 400 worker archetypes in varying
proportion. A crowd model for a given crowd dataset is estimated by computing a
3-dimensional histogram over observed worker statistics, i.e., the relative proportion
of workers whose (recall, specificity, PC) lies in a particular bin. The top two 10x10
grids above visualize the 0-25% contribution quanta for HCB (left) and MediaEval
(right). The shade of cells in each grid indicates the % of workers in the given bin,
with darker shade indicating more workers. The lower two grids show the 25-50%
contribution quanta.

To generate a worker, a voxel is sampled according to the crowd model’s
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voxel distribution. Next, a worker is generated from the voxel by sampling from

the voxel’s unique multivariate Gaussian distribution. Each generated worker is

characterized by an unique TPR, TNR and PC.

Though a traditional judging model involves an assessor judging all docu-

ments for a given topic [13], we assume a more typical crowdsourcing setup in which

many workers will not judge so many documents, as determined by the PC parame-

ter. Nonetheless, we do assume that the judging task is setup such that each worker

judges only a single topic (or would finish a topic before beginning work on another).

Crowd judgments are generated by perturbing the original trusted assessor’s

judgment. If the document were originally deemed relevant, the crowd worker makes

the same judgment with probability TPR; if the document were not relevant, then

TNR is used similarly.

Typical to crowd workers tending to be liberal in assigning (possible) rel-

evance, the TNR tended to have higher variation (See Figure 3.5). To improve

aggregate judgment quality, we assume each document assigned to the crowd is

judged by five unqiue workers.

3.4.3 Aggregating Crowd Judgments

Our investigation in Chapter 2 was motivated to find the best method for label aggre-

gation, but on the contrary, findings indicated a more dataset specific performance

bias. Hence, we evaluate five different aggregation methods from square (Sec-

tion 3.4.3) against simple Majority Vote (MV). Unlike the evaluation procedure

followed in 2.4, we limit aggregation to be unsupervised.

Table 3.3 reports recall and precision of all six consensus methods across all

seven crowd models induced from the different datasets. Crowd models for each

dataset are used to generate relevance judgments for WebTrack 2011, aggregated by

each consensus method, and then compared against trusted NIST assessments.
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For recall, MV outperforms other aggregation methods on three crowd mod-

els, however at the cost of poor precision. While no single aggregation method

appears to be a clear winner across crowd models, similar DS and RY models do

outperform all other methods for most crowd models. On HCB, the noisiest of the

considered models, all the methods achieve dismal precision.

Seeing that HCB and MediaEval crowd models lie at opposite ends of the

quality spectrum, we next apply each model to generate crowd judgments for Web-

Track 2011. We compare 5 of the aggregation methods: CUBAM, GLAD, MV,

Raykar, and ZC. The y-axis shows APCorr [72] rank correlation vs. original NIST

assessments. The left-most point in each plot represents rank correlation with no

trusted assessors and 32% of the pool judged by each crowd model. No difference

in aggregation algorithms is observed for the HCB crowd model, while for the Me-

diaEval crowd, ZC vs. CUBAM aggregation varies by roughly 7% APCorr.

3.5 Collaborative Judging

Our over-arching goal is to enable a dependable and scalable approach to test col-

lection construction. At one extreme, judging effort might be delegated entirely

to the crowd, potentially compromising on quality. At the other extreme, we have

traditional practice of using only trusted assessors, with its known scalability limita-

tions. We seek to bridge this divide through enabling effective collaboration between

trusted assessors and crowd judges.

Recall Section 3.3 developed a logistic regression model for predicting assessor

disagreement. Section 3.4 later discussed inconsistency observed across the many

crowd models considered. As in active learning with noisy labels, asking crowd

judges to assess documents having high probability of disagreement seems likely

to introduce noise into estimated ranking of IR systems. Instead, we investigate

assigning such judgments to trusted assessors, and delegating easier judging tasks
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AGGREGATION ALGORITHMS
Crowd Metric MV CUBAM DS GLAD RY ZC

BM
R 67.18 94.46 62.40 66.30 55.31 51.09
P 96.67 43.82 89.06 96.14 98.92 99.20

HCB
R 94.17 87.01 74.12 91.38 94.74 93.35
P 30.93 28.85 24.31 31.25 35.76 35.34

MediaEval
R 98.19 98.42 97.37 97.37 93.85 96.07
P 95.98 54.89 91.03 97.19 99.30 99.05

RTE
R 98.00 94.20 89.04 96.26 91.32 91.80
P 66.14 47.67 83.61 77.35 89.51 91.59

TEMP
R 94.74 93.06 79.38 87.39 87.17 76.31
P 63.06 56.60 92.20 85.58 91.76 88.27

WB
R 74.66 78.21 16.44 71.43 58.70 44.57
P 70.09 66.75 96.65 82.63 90.74 90.95

WVSCM
R 93.16 87.74 44.28 88.79 76.88 58.12
P 49.16 50.63 57.08 61.05 81.28 69.22

Table 3.3: An unique crowd model is induced for each of 7 public crowd datasets [53].
Worker labels are generated according to each crowd model and aggregated under
six different consensus algorithms: majority voting (MV), CUBAM [69], Dawid-
Skene (DS) [20], GLAD [70], Raykar (RY) [51], and ZenCrowd (ZC) [21]. Recall
and Precision of consensus crowd labels vs. gold labels are shown for each dataset.

to the crowd. Note that our experiments here assume the trusted assessor is actually

the topic developer (since we are using NIST qrels, and this reflects their judging

process). As such, our reported findings are conservative in that secondary assessors

would likely be less reliable, in which case we would expect to see even greater

relative benefit from our use of crowds than our results here indicate.

Given the judging queue ordered by expected disagreement, the top k judging

tasks are assigned to trusted assessors, while the rest are distributed among crowd

workers. The depth k parameter is induced by a judging budget, a ratio of expert

vs. crowd costs, and desired evaluation reliability, as measured by APCorr [72] rank

correlation with respect to the correct ranking of systems according to full NIST
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Figure 3.6: Rank correlation achieved on WebTrack 2011 using partial pool judg-
ing by a collaboration of trusted assessors and crowd judges. Assuming 5 crowd
judgments per document for each document assigned to the crowd, we compare 5
alternative algorithms for aggregating crowd judgments (see Table 3.3). Given the
priority queue for judging, the first 0-32% of judgments are assigned to trusted as-
sessors, with the crowd supplying a fixed 32% additional judging. The cost ratio of
1 expert judgment vs. 5 crowd judgments is set at 10:1. The x-axis shows combined
cost of collaborative judging as a fraction of original cost of having the full pool
judged by trusted assessors. APCorr [72] rank correlation is given on the y-axis in
relation to the original ordering of systems with full pool judging by NIST. Beyond
the 40% cost shown at the right extent of each plot, all aggregation algorithms
converge to a single line (not shown).

assessment. Systems are evaluated by BPref to reliably measure performance given

incomplete judgments.

We consider two cost ratios A and B in measuring the combined cost of

collaborative judging. Cost ratio A assumes a cheaper crowd ratio of 10:1 – 1 trusted

judgment costing the same as 10 consensus crowd judgments (each aggregated in

turn from 5 individual worker judgments). The more expensive 5:2 cost ratio B

assumes 2 trusted judgments cost the same as 5 consensus crowd judgments.

To ease analysis and generalize findings, this section reports on only the two

most contrasting crowd models, optimistic MediaEval and pessimistic HCB, with
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performance of other crowd models expected to lie between these two extremes. Sec-

tion 3.5.1 reports effectiveness of our collaborative judging approach on WebTrack

2011, while Section 3.5.2 reports effectiveness on TREC 6. See Section 3.3.1 for

details on test collections.

3.5.1 Collaborative Judging on WebTrack 2011

To investigate the benefit of using an intelligent aggregation method over naive MV

an experiment is set up to measure APCorr across collaboration levels of 0% to

64% from an expert and a fixed 32% crowd effort. Figure 3.6 plots the result of the

experiment on the two crowd models HCB and MediaEval. On HCB, the noisier

crowd model, at 0% expert assistance RY measured the best correlation. However it

did not outperform the rest of the methods with a large margin, this was expected

as discussed in Section 3.4.3. With increasing expert collaboration, a difference be-

tween the aggregation methods is evident with other methods outperforming MV.

On MediaEval, a cleaner dataset, we observe the simplest aggregation method ZC

to outperform the rest with MV being competitive. This suggests that if an assess-

ment of the participating crowd is available, this information can help choose an

aggregation method. In the absence of such knowledge, consistent with findings of

the square benchmark in Chapter 2, RY is measured to be dependable on noisier

and clean crowds. Another interesting observation is the diminishing benefit from

aggregation methods on rank correlation with expert collaboration levels excess of

32%, while there is still benefit in reduced label noise.

To validate the proposed approach of enabling coverage at a reduced cost

using crowd judgments, an experiment similar in nature to that described in Section

3.3.4 is set up. However, here additional judgments are added from the crowd. The

percentage of contribution from the crowd is varied over the same scale (0% to 64%).

Thus the maximum coverage of the document pool using collaborative judging is
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Figure 3.7: Rank correlation achieved on WebTrack 2011 using partial pool judging
by a collaboration of trusted assessors and crowd judges. Documents assigned to
the crowd for judging are judged independently by five workers and aggregated
via RY. Given the priority queue for judging, we vary the % of trusted assessor
judgments from 0-64% (by powers of 2), with the crowd supplying an additional 0-
64% judgments (by powers of 2, and without exceeding 100% in total). Each plotted
line corresponds to a particular % judged by the crowd, with the solid black 0% line
representing traditional use of trusted assessors only. Following each line from left-
to-right, markers indicate increasing increments of trusted assessor judging, from
0-64%. We omit 4% and 8% crowd lines for WebTrack 2011, which closely track 0%,
and the 4% crowd line for TREC 6. The x-axis shows total judging cost incurred
as a fraction of the original cost with the full pool judged by trusted assessors.
Left plot assumes a liberal cost ratio of 10:1 for 1 expert judgement vs. 5 crowd
judgments, while the right plot assumes a more conservative 5:2 cost ratio. The
top row of plots use the optimistic MediaEval crowd model, while the bottom plots
use the pessimistic HCB crowd model. Correlation with Kendall’s Tau (not shown)
consistently exceeds APCorr results shown, further confirming high correlation at
the right extent of each plot.
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Figure 3.8: Rank correlation achieved on WebTrack 2011 using partial pool judging
by a collaboration of trusted assessors and crowd judges. Refer to Figure 3.7 caption
for plot details.

96%. Figure 3.7 plots rank correlation over the different collaborative efforts for the

two datasets MediaEval and HCB with the two cost models A and B. As discussed

earlier since RY was observed to be dependable across datasets, the figure only plots

aggregation using RY. The following discusses experimental results on the two crowd

models.

MediaEval. The benefit of additional judgments from this crowd type is

clearly evident at all contribution levels and both cost models. A rank correlation

greater than 0.9 is achieved with an expert contribution of 32% and a crowd con-

tribution of 64%. If the cost of judging the whole document pool by an expert is
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considered to be 100%, the cost incurred using the collaborative approach is less

than 40% on cost model A, and enables a 96% coverage. Alternatively, assuming

cost model B incurs a cost of less than 60%. If the judging expense is spent solely

on experts, the rank correlation measured is less than 0.8 with a coverage of only

32%. However, if cost model B is assumed, the spending on the expert allows only

for a 64% coverage but enables a higher rank correlation. A non-improving rank

correlation is observed with an expert contribution 16% and higher and a crowd

contribution of 32%. Crowd contribution levels of 4% and 8% measure similarly on

rank correlation as not using the crowd at all and hence not shown in Figure 3.7.

HCB. As earlier discussed, using only the crowd to evaluate systems resulted

in poor measurements of rank correlation. Interestingly, even as little as 4% contri-

bution from an expert enables better rank correlation across crowd contributions.

Of the different crowd contributions, the contribution level of 32% consistently ei-

ther performed better or equalled the performance of using just expert judgments.

When assuming the cost model A, the benefit also translated to both a saving in

judging resource and better coverage. However, on the more expensive cost model,

the benefit was largely seen in enabling more coverage of the document pool. As

in the case with the previous crowd type, a similar trend of non-improving rank

correlation was observed with increasing expert contribution. Like the other crowd

model, here too crowd contribution levels of 4% and 8% (omitted in Figure 3.7)

compare similarly on rank correlation as not using the crowd at all. With 64%

crowd contribution, increasing expert contribution measures a drop in rank correla-

tion; This suggests the presence of critical documents lower in the prioritized order

that require accurate judging, especially since the pool depth for WebTrack 2011

was only 25.
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3.5.2 Collaborative Judging on TREC 6

The experiment is setup similar to that described in Section 3.3.4, however here

expert judging depth is varied from 2% to 32%. As in the experiment described

in Section 3.5.1, additional judgments are added from the crowd. The maximum

coverage of the document pool using collaborative judging is 64%, i.e., the first 32%

judged by an expert the remaining 32% judged by the crowd. Figure 3.8 plots rank

correlation over the different collaborative efforts for the two datasets, MediaEval

and HCB, and the two cost models; As discussed in Section 3.5.1, this figure too

only plots aggregation using RY. The following discusses experimental results on

the two crowd models.

MediaEval. On this crowd model, a rank correlation greater than 0.9 is

achieved on a collaborative effort of 4% and 32% from expert and crowd respectively.

Further, the cost incurred is less than 10% and 20% (relative cost over an expert

only judged pool) when assuming cost models A and B respectively; Expert only

judging achieves a similar APCorr measure (0.9) on a 32% judged pool, incurring

a cost of 32%. This is a considerable saving of judging resources and time, since a

crowdsourcing task is inherently parallel. Using 32% experts and crowd enables a

coverage of 64% at a cost just above 45% when assuming model B and considerably

lesser on A, however improvement in the rank correlation measure is not observed.

Additional 8% and 16% to the expert judgments shows initial gains in cost and rank

correlation, but with higher expert contribution, benefit is only observed in coverage

at a lower cost. Adding 2% and 4% additional judgments to the did not improve

the rank correlation measure, nor did it diminish it, thus is not shown in Figure 3.8.

HCB. The noisier crowd profile as observed on WebTrack 2011 (See Section

3.5.1) performs poorly with crowd only judgments. However, the addition of just 2%

expert judgments enables a drastic improvement in rank correlation outperforming

the expert only evaluation up to 16%. Increasing expert contribution translates
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into a consistent improvement for crowd pools of 8% and 16%. However, with an

expert contribution of 16% and more, rank correlation does improve relative to the

performance of expert only evaluation. While, this may be true, the crowd pools

still enable significant coverage at a moderate saving in judging cost. Of note, the

collaboration enables a 64% coverage (32% expert + 32% crowd) at a judging cost of

only 35% and 40% when assuming cost model A and B respectively. This motivates

the use of crowds even though rank correlation does not show an improvement.

Crowd contribution levels of 2% and 4% measure similarly on rank correlation as

using only experts and similarly skipped in Figure 3.8.

3.6 Conclusion

We present an end to end framework for rapid experimentation of an IR evalua-

tion framework using crowds and expert assessors. We show merit and motivate

investigation of machine learning techniques to enable prioritized judging orders

which reflect uncertainties in relevance. We present a realistic simulation model

that emulates a variety of real world crowds to aid testing prototypes. We propose

and validate a collaborative approach that enables a considerable saving in judging

effort while still building a scalable and reliable test collection.
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Chapter 4

Conclusion

Our work was motivated to develop a synergic IR evaluation framework that ac-

commodated NIST experts and crowd workers. The goals of the framework was to

reduce cost, increase speed through parallelization and be scalable while still capable

of evaluating IR systems reliably.

To enable reliability from the crowd in Chapter 2 we investigated statistical

consensus methods and developed a benchmark in square to uncover the state-of-

the-art in consensus. On the contrary, we found no single method to accommodate

each crowd and task type. Surprisingly, DS, a method that was proposed in 1979

performed best on average. The investigation of various crowd datasets enabled

developing a realistic crowd simulation model in Chapter 3 to drive rapid experi-

mentation with crowd types in the judging framework.

In Chapter 3 we developed a static ordering of judgements based on expected

assessor disagreement which was progressively resilient to judging noise. Our experi-

ments validated the collaborative approach by measuring reliably on rank correlation

for both the good and noisy crowd type. Results indicated cost savings when using

the 1:10 cost model, while the 1:5 cost model enabled judging coverage and arguably

savings in judging time.
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By building the evaluation framework with switchable components that is

conducive to rapid experimentation across crowd types, we help enable and encour-

age the community to further experiment with different judging orders, evaluation

metrics and aggregation techniques.

Future work will investigate methods that extend our framework to integrate

dynamic judging procedures from IR (cf. [3, 12, 45]) with online, adaptive crowd-

sourcing methods which optimize crowd tasks wrt. an objective metric and a cost

budget [19, 31]. In so doing, we can exploit additional recent advances in both IR

and human computation fields in order to further our goals of enhancing scalability

and reliability of test collection construction using crowds.
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