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Action Selection in Modular Reinforcement Learning

Ruohan Zhang, M.S.Comp.Sci.

The University of Texas at Austin, 2014

Supervisor: Dana H. Ballard

Modular reinforcement learning is an approach to resolve the curse of dimension-

ality problem in traditional reinforcement learning. We design and implement a

modular reinforcement learning algorithm, which is based on three major compo-

nents: Markov decision process decomposition, module training, and global action

selection. We define and formalize module class and module instance concepts in

decomposition step. Under our framework of decomposition, we train each mod-

ules efficiently using SARSA(λ) algorithm. Then we design, implement, test, and

compare three action selection algorithms based on different heuristics: Module

Combination, Module Selection, and Module Voting. For last two algorithms, we

propose a method to calculate module weights efficiently, by using standard devia-

tion of Q-values of each module. We show that Module Combination and Module

Voting algorithms produce satisfactory performance in our test domain.
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Chapter 1

Introduction

Reinforcement learning (RL) is an active research field in machine learning and

cognitive science. Reinforcement learning is a class of problems, where a learning

agent interacts with its environment, receives feedback, and learns to maximize

cumulative reward by systematic trial and error. In most cases, we assume the

feedback is delayed. Markov Decision Process (MDP) is a common model for such

a problem.

General machine learning algorithms fall into two categories: supervised learn-

ing and unsupervised learning. Reinforcement learning algorithm is considered to

be a type in between [22]. It is different from unsupervised learning since feedback

is provided to the agent. But unlike supervised learning, where the feedback is

instructive, the feedback in RL is evaluative [22]. Such property provides reinforce-

ment learning certain advantages over other machine learning methods, especially

when it is difficult for the agent’s designer to instruct exactly how to accomplish

a task, but easy to evaluate agent’s performance. For this reason, reinforcement

learning is more common than supervised learning for intelligent creatures in the

nature. Much effort has been spent to understand its biological mechanism, and

to develop biologically inspired computer algorithms.

1 Markov Decision Process

First we introduce Markov Decision Process (MDP), the basic model of reinforce-

ment learning problem. An MDP can be defined formally as a tuple 〈S,A, T,R, γ〉[11],

where:

• S is a finite set of environment states.

• A is a finite set of agent’s available actions.

• T is the state transition function, which describes the probability P (s′|s, a),

i.e., the probability of entering state s′ when agent takes action a in state s.

• R : S 7→ R is a reward function. R(s, a) denotes scalar reward received of
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taking action a in state s.

• γ ∈ [0, 1) is a discount factor. We assume the agent values future rewards

less than immediate reward, therefore future rewards are discounted by parameter

γ.

• π : S 7→ A is called a policy of the agent, which specifies which action to

choose in each state. The purpose of the agent, is to find an optimal policy that

maximizes its cumulative reward.

2 Reinforcement Learning Algorithms

Any method attempts to solve reinforcement learning problem can be considered

as a reinforcement learning algorithm [22]. These algorithms can be roughly cate-

gorized into two classes, policy search and value function estimation. The former

searches directly in the policy space, such as policy gradient method [23]. While

value function approach estimates the utility function of a state [22]:

V π(s) = E[R|s, π] (1)

is called state-value function, which gives expected value of following policy π in

state s.

Qπ(s, a) = E[R|s, a, π] (2)

is called action-value function, which gives expected value of taking action a in

state s, and following policy π afterwards.

The optimal policy is defined as the policy that obtains maximum value at

each state [22]:

V ∗(s) = max
π

V π(s) (3)

Q∗(s, a) = max
π

Qπ(s, a) (4)

Hence, to find the optimal policy for a finite MDP, the agent should first

calculate optimal state-value or action-value function. Temporal difference (TD)

learning, based on recursive Bellman equation, is a popular class of algorithms to

estimate value functions. The idea is to use temporal difference error to update

estimated action-value function during learning. Two TD algorithms, SARSA [16]
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and Q-learning [28] are widely used in different reinforcement learning problems.

The update rule for SARSA is:

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (5)

The update rule for Q-learning is:

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (6)

where α is learning rate, and terms (r+γQ(s′, a′)−Q(s, a)) and (r+γmaxa′Q(s′, a′)−

Q(s, a)) are temporal difference errors. The difference here makes SARSA an on-

policy learning algorithm, which means it learns action-value function of its cur-

rent policy. In contrast, Q-learning is off-policy, which means it learns action-value

function of the greedy policy.

3 Curse of Dimensionality

Plain SARSA and Q-learning algorithms do not scale up well to many practical

problem with large state space. One reason is that plain reinforcement learning

algorithms suffer from the problem called curse of dimensionality, a term first

coined by Richard Bellman: computational cost grows exponentially as number

of state variables grows [3, 22]. Although RL theories guarantee convergence and

optimality of plain RL algorithms, due to this problem, they are often practically

too slow to converge to the desired results. RL community has spent much effort

to study heuristics and develop approximation algorithms to increase computa-

tional efficiency of RL algorithms.

The overall research purpose of this thesis is to develop a computationally

efficient reinforcement learning algorithm, which can achieve satisfactory perfor-

mance in a RL problem with large state space. We propose to take a modular

reinforcement learning approach, which we will discuss in Chapter 2.

4 Thesis Organization

The rest of thesis is organized as follows: Chapter 2 summarizes related reinforce-

ment learning research to resolve curse of dimensionality problem, and proposes
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research goals for the thesis. Chapter 3 introduces a test domain, and demon-

strates our modular reinforcement learning algorithm. In Chapter 4, we present

two alternative algorithms, and show experimental results for comparison. At last,

Chapter 5 we conclude and discuss potential future works.
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Chapter 2

Literature Review

As we mentioned earlier, reinforcement learning is ”bedeviled by curse of dimen-

sionality” [2]. One approach to this problem is value function approximation. This

approach has achieved remarkable performance in large state reinforcement learn-

ing problem, such as very large 2D grid world [4], robot navigation and recharge

[14], Backgammon game [25], and job-shop scheduling [29].

Another way to resolve curse of dimensionality problem is to use divide-and-

conquer strategy. We break original reinforcement learning problem into manage-

able sub-problems. This strategy is embedded in modular reinforcement learn-

ing and hierarchical reinforcement learning, two different but closely related ap-

proaches.

Modular reinforcement learning [7, 10, 12, 20] decomposes original RL prob-

lem into modules. The global task goal is divided into subgoals and one module

is responsible for achieving one subgoal. Each module is a sub-MDP with its

own state space, but action space is shared among modules. Since sub-MDPs

are much smaller, modules can be trained using plain reinforcement learning al-

gorithm. However, a centralized arbitrator is required to combine trained mod-

ules and form global policy. Humphrys and Karlsson both explore this approach

[10, 12], and their work is further extended by Sprague and Ballard [20]. An al-

gorithm similar to Karlsson’s is used in Russell and Zimdars’s Q-Decomposition

algorithm [17]. The difference between Humphrys and Karlsson is how arbitrator

forms global policy, a topic we will discuss later.

Evidences from neuroscience studies also support a modular model in human

reinforcement learning [13]. Neuroimaging and lesion study results suggest that,

human brain modularizes a complex learning problem to make it more computa-

tionally tractable. Activities of important brain areas that are responsible for

learning, are found to be correlated to mechanisms in machine reinforcement

learning, such as reward estimation in Markov decision making process, temporal-
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difference error, and discount factor [9, 13]. In addition, modular reinforcement

algorithms have been applied to several practical domains, such as wheel robot

soccer playing [26], a simple driving task [12], pendulum swing-up task [7, 18],

and fungus eater game [8]. These successful results suggest modular reinforce-

ment learning might be a promising approach to curse of dimensionality problem.

A close relative to modular reinforcement learning is hierarchical reinforcement

learning [2, 5, 6, 15], which introduces hierarchy into RL framework. Most hier-

archical RL methods are based on the theoretical work of Sutton, Precup, and

Singh in temporal abstraction and semi-MDP [24], which defines a concept called

option. Options are temporally extended courses of primitive actions [24]. Some

hierarchical RL methods attempt to reduce the original large MDP problem to

be a single smaller semi-MDP problem with options [15, 24]. Another type of

approach is MAXQ value function decomposition [6]. MAXQ decomposes origi-

nal tasks into multiple semi-MDPs, and create a hierarchy upon them [6], which

makes MAXQ more similar to modular RL approach.

Although modular and hierarchical RL methods are shown to be supported by

biological studies or be successful in several practical domains, they raise many

new issues. The first problem of previously mentioned modular reinforcement

learning algorithms is global action selection. Given multiple modules, it is non-

trivial for arbitrator to compose their individual policies and select an action that

maximizes global longterm payoff. One way to do so is to select global action

based on weighted outcome of all modules. Hence, the problem here is to deter-

mine weights for modules who participate in global action selection. Humphrys

shows that module weights can be learned using his W-learning algorithm [10],

but this approach introduces an additional learning problem. Our first goal is to

bypass this learning procedure and find a more computationally efficient method

to determine module weights.

Given multiple modules with their weights, different heuristics are assumed

for global action selection. GM-Q or GM-SARSA [12, 20] and Q-Decomposition

algorithm [17] are based on the idea of maximizing collective happiness, i.e., max-
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imizing the total payoff of all modules. However, Humphrys argues that doing

so may result in a global action that is no good for any of the module, so he

attempts to maximize payoff of a single, most important module at each step [10].

Intuitively, there could be action selection algorithms in between: the algorithm

can favor some important modules more, and attempt to maximize their utility as

its priority. Therefore, the second goal of this thesis is to compare different action

selection heuristics, and explore new methods in between.

The second problem with modules and hierarchies is credit assignment. Sup-

pose the agent observed its reward, it is challenging to decide how to assign credit

to each module. This is known to be the inter-module credit assignment prob-

lem [18]. Hierarchical credit assignment is also challenging. In MAXQ algorithm,

designer must decompose reward function while implement the hierarchy, and rel-

evant responsible subtasks must be marked to solve this problem [6].

The cause for credit assignment problem is that, most modular RL and hi-

erarchical RL algorithms assumes a top-down learning structure. A centralized

arbitrator is responsible for the division of labor, calculating or learning module

weights, combining components to produce global policy, and providing feedback

to each module. With such structure, the agent is trained using the global task,

hence arbitrator needs to perform credit assignment to the modules when giv-

ing them feedbacks. On the contrary, we might choose to use a more bottom-up

approach for modular reinforcement learning. The arbitrator should only define

modules. Modules are trained independently in their own sub-MDPs thus no

global credit assignment is required. It is possible that module weights could be

provided by themselves and passed to the arbitrator, then arbitrator should only

perform very simple decision making to select global action. Hence, the third goal

of this thesis is to develop a bottom-up modular reinforcement learning architecture

to reduce computational costs of the arbitrator.
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Chapter 3

Modular Reinforcement Learning Algorithm

1 Test Domain

Before describing the algorithm, we first introduce a test domain. Our test

domain is a 2D grid world (Figure 1), which is commonly used in reinforcement

learning research. Object position is given by its 2D-position (Row,Column). In

a single experiment trial, the agent (red dot) navigates in the 2D grid world to

collect prizes (yellow circles). A prize will be removed if collected. Once all prizes

are collected, trial terminates (success). The agent needs to keep away from a

predator (black dot), who chases the agent. If agent is captured, current trial

terminates (fail). The predator and agent share the same action space: they can

go up, down, left, or right. They select their actions simultaneously. If agent steps

on an obstacle (blue square), it receives certain amount of penalty. In addition, if

agents navigates for too many steps without being able to collect all prizes, trial

also terminates (fail).

Figure 1: Test domain.

Parameters for our test domain are:

• m : size of the grid world is m by m.
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• nprize : initial total number of prizes.

• nobstacle : total number of obstacles.

• pchase : predator has certain level of randomness in its action selection. With

probability pchase, predator will choose the best action (break tie evenly) to chase

the agent; with probability 1− pchase, it will select a random action instead.

Intuitively, if maze size is fixed, nobstacle and pchase define the difficulty of the

task: the larger these two parameters, the more difficult the task is for the agent.

We also need to establish performance criteria for the test domain. We do not

expect the agent to learn the shortest path to collect all the prizes while avoiding

obstacles and predator. Four criteria we choose are:

• cum reward : cumulative reward received in one trial, including prizes col-

lected, obstacle hit, and being captured by predator.

• success rate : rate of success in multiple trials. A successful trial means that

the agent collects all prizes without being captured by predator. It is OK for the

agent to step on the obstacle.

For all successful trials, we want to know:

• number steps : number of steps to complete a successful trial.

For failed trails, we want to know:

• perc collected : percentage of prizes collected before being captured by preda-

tor, in a failed trial.

It is necessary to discuss the size of state space of this test domain. The state

space is

O(m2m2

(
m2

nprize

)(
m2

nobstacle

)
2nprize) (7)

. The proof is trivial, each factor accounts for one dimension of the state space:

agent position, predator position, possible layout of prizes, possible layout of ob-

stacles, and each prize being collected or not. For a given grid world map, where

prize and obstacle positions are fixed, state space is still

O(m2m22nprize) (8)

The agent encounter the curse of dimensionality problem: state space could be

very large, plain RL algorithms are computationally intractable.
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2 Basic Modular Reinforcement Learning Algorithm

2.1 Defining Module: MDP Decomposition

The first step of modular RL approach is to define a module, which specifies a

formal method to decompose original MDP, referred as meta-MDP, into simpler

sub-MDPs. We give two key definitions for our modular approach:

• A module, or more precisely, a module class defines a module MDP based

on task subgoals and reward sources. In our test domain, we have three module

classes: prize, obstacle, and predator. Each module class i has its own MDP

〈Si, Ai, Ti, Ri, γi〉 .

• An instance of a module class is an object. Every object in the grid world

is an instance of its corresponding module class. For example, in Figure 2, prize

module class has two instances: prizes at (2, 1) and (3, 2); obstacle module class

has three instances; predator module has one instance. Each instance of a module

class has its own state.

Based on these concepts we define module MDPs for prize, obstacle, and

Figure 2: Instances of Module Classes

predator module classes:

• Sprize = prize position − agent position is the set of a single prize’s all

possible relative 2D-positions to the agent. For example, in Figure 2, agent is at

(2, 2), thus prizes at (2, 1) and (3, 2) have states (0,−1) and (+1, 0), respectively.

• Aprize = {Up,Down, Left, Right}.

• Tprize : all actions will succeed with probability 1; except if agent tries to

move out of the boundaries, it stays at its current position.

• Rprize : is numerical reward given to the agent for collecting a prize.
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• γprize ∈ [0, 1) is the discount factor for prize module.

The other two module MDPs are defined in analogy to prize module MDP. An

important property of such definition is that, action space are completely shared

between modules. For reward, we choose Rprize = +10, Robstacle = −10, and

Rpredator = −100.

Notice that, under this modular RL setting, it is intuitive to choose discount

factor γ. We choose γprize = 0.7, γobstacle = 0.0, and γpredator = 0.1.

2.2 Module Training

Decomposed modules have much smaller state space, and can be easily trained

using plain reinforcement learning algorithm. Figure 3 shows the training envi-

ronment for each module. The agent is trained to approach and collect a single

prize, to wander without stepping onto an obstacle, and to escape from a predator.

Algorithm of training the agent in the prize module world is shown in Algorithm 1.

The algorithms for other two modules are very similar except the reward function.

In predator module, pchase = 1.0, i.e., predator is set to always chase the agent in

training.

Multiple techniques are used to improve efficiency of module training. First,

Figure 3: Individual module training: prize, obstacle, and predator.

we use TD-learning with eligibility traces. The algorithm is based on SARSA(λ),

with replacing eligibility traces [19] [22]. We choose to use replacing traces rather

than accumulating traces, since several states are revisited before their traces de-

cay to 0, causing these traces to be greater than 1. This is a problem described in
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Algorithm 1 Module Training (Price Module)

Require: maze size m, untrained Q table

Initialize Q(s, a) = 0 and e(s, a) = 0 for all s, a

for agentPos in (range(m),range(m)) do

for prizePos in (range(m),range(m)) do

Place agent at agentPos

Place prize at prizePos

for episode in range(MAX NUM EPISODE) do

calculate initial state s← prizePos− agentPos

select action a from Q(s) using ε-greedy algorithm

while prize not collected and stepCount < MAX NUM STEP do

agent takes action a, calculate new agent position agentPos

s′ ← prizePos− agentPos; calculate reward r

select a′ from Q(s′) using ε-greedy algorithm

δ ← r + γprizeQ(s′, a′)−Q(s, a)

for all s, a do

e(s, a)← 1 + γprizeλe(s, a) for current state s and current action a

e(s, a)← 0 for all other actions of current s

e(s, a)← γprizeλe(s, a) for all other states

end for

s← s′; a← a′

stepCount← stepCount+ 1

end while

end for

end for

end for

return learned Q(s, a)
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[22] and is shown to be improved by replacing traces.

Second, to encourage better exploration of state space, we place agent and

prize at all possible relative locations. In addition, to facilitate convergence of

SARSA learning, we increase exploration parameter ε gradually towards 0 using

rule:

ε = 1− current episode

total # of episode
(9)

We anneal learning rate α gradually towards 0 using the same rule:

α = 1− current episode

total # episode
(10)

2.3 Action Selection: Module Combination

The key question to modular RL approach is how to combine modules to pro-

duce a good global policy. A simple way to approximate global optimality is an

extended version of GM-SARSA algorithm and Q-Decomposition algorithm for

our setting, as we previously mentioned in discusion of [12, 17, 20]. We mod-

ified these algorithms to be our Module Combination algorithm. The global

Q-value is obtained by adding Q-values of all instances of all module classes:

Qglobal(s, a) =
∑n

i Qi(si, a), and the action with highest global Q-value is selected.

The algorithm is shown in Algorithm 2.

This algorithm is executed at every step of agent’s action selection. The

agent first identify its own position, observe all surrounding objects’ positions,

initialize a module instance for all observed objects, then execute the above algo-

rithm to decide its action. Notice we use softmax action selection rule instead of

greedy rule aglobal = argmax
a
Qglobal(s, a). The reason is that, in our preliminary

test, the agent could get stuck in a infinite loop between several positions, due to

map layout and greedy action selection rule. Softmax action selection introduces

randomness into agent’s behavior to avoid this problem, we found it significantly

boosts task success rate.
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Algorithm 2 Module Combination

Require: trained Qmodule tables Qprize, Qobstacle, Qpredator; current agent

position agentPos; list of all prizes/obstacles/predator positions:

{prizePos}, {obstaclePos}, {predatorPos}

Qglobal(s) = [0, 0, 0, 0]

for objPos in {prizePos} ∪ {obstaclePos} ∪ {predatorPos} do

sobj ← objPos− agentPos

for a in {Up,Down, Left, Right} do

read Q(sobj, a) from corresponding Qmodule

Qglobal(s, a)+ = Q(sobj, a)

end for

end for

choose ai with softmax probability e
Qglobal(s,ai)∑
a e

Qglobal(s,a)

return chosen action aglobal

3 Results

The test domain we use is a grid world of m = 9. At the beginning of each trial,

agent starts at the center of the map, while predator starts at upper left corner.

We randomly initialize map cells to contain a prize or an obstacle with probability

pprize and pobstacle. We choose pprize = 0.2. As we mentioned before, pobstacle and

predator chasing action probability pchase define task difficulty. A easy task with

pobstacle = 0.2 and a difficult task with pobstacle = 0.5 are shown in Figure 4.

Maximum number of steps the agent can navigate is 1,000. After 1,000 steps,

the current trial is counted as failure. We choose pobstacle = [0.0, 0.5] of step size

0.05 (11 values), and pchase = [0.5, 1.0] of step size 0.05 (11 values). We test all

the combinations of selected pobstacle and pchase values (11 ∗ 11 = 121 data points).

For each data point, we randomly generate 300 maps, agent navigates each map

once, and we calculate the average performance of these 300 trials. Total of 36,300

trials of data are collected for this experiment.

The algorithm’s performance on previous defined criteria is shown in Figure 5.

For easiest task pobstacle = 0.0 and pchase = 0.5, the agent is able to complete a trial
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Figure 4: An easy task (left) and a difficult task (right).

successfully at rate 92.5% within 100 steps. With pobstacle = 0.0 and pchase = 1.0,

agent can complete a successful trial even faster with 69.14 steps, but at lower

success rate overall. We observe that agent’s performance degrades as pobstacle and

pchase increase. With pobstacle = 0.5 and pchase = 1.0, success rate is only 2.5%.

However, even for those failed trials the agent is able to collect at least 59.5%

prizes before trial failed. Notice with high pchase, the agent can hardly focus on

anything else other than escaping from predator, and trial often terminates with

failure because agent exceeds maximum number of steps it can navigate.
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Figure 5: Module Combination Algorithm success rate (top), number of steps to

succeed (middle), percentage of prizes collected before failed (bottom).

16



Chapter 4

Action Selection Algorithms

1 Module Weight

We have shown that our Module Training and Module Combination algorithm

produce reasonable performance in given test domain. As we discussed before, we

want to explore and compare different action selection heuristics. Module Combi-

nation algorithm tries to maximize collective happiness for all module instances,

while [10] suggests a winner-takes-all approach. Hence, to determine a winning

module, our next goal is to assign weight, or priority, to each module instance, and

we simply select the module with highest weight. As we mentioned in Chapter

2, we do not want to introduce weight learning. These weights should be easily

computed, and reflects the relative importance of a module instance under its cur-

rent state. The global action selection algorithm should be able to make decision

quickly based on the weights provided by module instances.

2 Flatness of Q-Values as Module Weight

An intuitive way to determine the weight of module instances is the magnitude

of its optimal action’s Q-value in its current state. For example, if Q-values for a

module instance under current state are [10, 0, 0, 0], and another module instance’s

Q-values are [0, 1, 0, 0], the weight for the first module instance should be 10 and

the second should be 1. We hence select the optimal action of first module instance.

However, consider a module instance with Q-values [10, 10, 10, 10] and another one

with [0, 1, 0, 0]. Although the first one’s optimal Q-value has larger magnitude, it

is indifference about its action selection. We should assign second module instance

higher weight.

Our observation for action-value function is that, it not only tells us the optimal

action and its magnitude. Like probability distribution, it can also be analyzed

using statistical properties. For a module instance at a given state, the indifference
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in action selection can be measured by the flatness of Q-values. Such flatness can

be calculated using kurtosis (fourth momentum of a distribution). Since we have

only four values (action values for Up, Down, Left, Right), we can use standard

deviation instead.

The way Q-values are calculated and learned supports this approach. Figure

6 shows Q-values (a) for agent at different states relative to a prize (b). Due to

the fact that discount factor γ is less than 1, as agent moves closer to the prize,

the shape of its Q-values becomes more peaky, the standard deviation becomes

larger, and we assign higher weight to the module instance.

Figure 6: (a) Q-values of actions Up, Down, Left, and Right. (b) agent at different

states. Colors are matched.

3 Module Selection Algorithm

Similar to Humphrys’s algorithm [10], we might choose to maximize the payoff

of a single module instance, rather than total payoff of all module instances. An

algorithm derived from this idea is to select a single module with highest weight

(standard deviation) to take over control at every given global state. We choose

the optimal action of selected module as global action. We refer this algorithm to

be Module Selection, as shown in Algorithm 3.

Notice that, comparing to Module Combination, in which we must sum Q-
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Algorithm 3 Module Selection

Require: trained Qmodule tables Qprize, Qobstacle, Qpredator; current agent

position agentPos; list of all prizes/obstacles/predator positions:

{prizePos}, {obstaclePos}, {predatorPos}

for objPos in {prizePos} ∪ {obstaclePos} ∪ {predatorPos} do

sobj ← objPos− agentPos

weightobj ← standard deviation of Qmodule(sobj)

end for

choose obj∗ with highest weightobj

return aglobal = argmax
a
Qobj∗(sobj∗ , a)

values at each step, weights of Q-values can be precomputed and stored to further

reduce computational costs during navigation.

4 Module Voting Algorithm

An algorithm in between Module Combination and Module Selection is Module

Voting. Instead of selecting a single module instance to make decision, we can

allow each module instance to vote for its optimal action. However, voters are

not equal, we use weighted voting rather than one-man-one-vote system. Like in

shareholder meeting, we value important module instances’ decision more. Hence,

each module instance’s vote on its optimal action is weighted, and we use the same

method to calculate weight as in Module Selection algorithm. The Module Voting

algorithm is shown in Algorithm 4. Although we can use softmax action selection

based on vote count of each action, preliminary results show greedy action selection

produces better performance.

5 Results

We find that Module Selection and Module Voting are slightly faster because

they can pre-calculate and store weights, while Module Combination must sum

Q-values of all module instances at every step.
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Algorithm 4 Module Voting

Require: trained Qmodule tables Qprize, Qobstacle, Qpredator; current agent

position agentPos; list of all prizes/obstacles/predator positions:

{prizePos}, {obstaclePos}, {predatorPos}

V ote Count(s) = [0, 0, 0, 0]

for objPos in {prizePos} ∪ {obstaclePos} ∪ {predatorPos} do

sobj ← objPos− agentPos

a∗obj = argmax
a
Qobj(sobj, a)

weightobj ← standard deviation of Qmodule(sobj)

V ote Count(s, a∗obj)+ = weightobj

end for

return chosen action aglobal = argmax
a
V ote Count(s, a)

In Figure 7, 8, 9, and 10 we show comparative results of Module Combination

(blue), Module Voting (yellow), and Module Selection (red) algorithms on cumu-

lative reward, success rate, number of steps needed to success, and percentage of

prizes collected before failed. All figure (a) show data similar to Figure 5, but

with three algorithms together. Again, each data point is the average of 300 tri-

als, and 36300 trials of data are collected for each module. In all Figure (b) we

convert Figure (a) into 2D to better visualize the relation between task difficulty

and performance, where task difficulty = pobstacle + pchase.

Overall, Module Combination and Module Voting algorithms have better per-

formance than Module Selection algorithm. For cumulative reward in Figure 7,

Module Combination has the highest average reward under most settings. How-

ever, for another important criterion success rate in Figure 8, although Module

Combination (blue) has best performance for easy tasks, Module Voting (yellow)

achieves higher overall success rate, for medium and difficult tasks. Module Se-

lection (red) does the best when pobstacle is very low while pchase is high. Because

in such situation, Module Selection algorithm forces the agent to always focus on

predator module instance, which has highest weight when predator is close to the

agent. Such strategy allows agent to survive in a world without many obstacles,
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but performance deteriorates in a world with more obstacles.

Figure 9 shows average number of steps needed to complete a successful trial.

Module Combination (blue) takes the fewest steps in most situations. However, for

difficult tasks, Module Voting algorithm requires fewer steps. Figure 10 shows in

failed trails, average percentage of prizes collected before being captured by preda-

tor or agent exceeds maximum number of steps. Module Combination collects

more prizes than other two algorithms under most settings. In general, Module

Selection algorithm has the poorest performance in these two performance criteria.
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(a)

(b)

Figure 7: Performance comparison of three algorithms: cumulative reward. Blue:

Module Combination; Yellow: Module Voting; Red: Module Selection.
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(a)

(b)

Figure 8: Performance comparison of three algorithms: success rate. Blue: Module

Combination; Yellow: Module Voting; Red: Module Selection.
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(a)

(b)

Figure 9: Performance comparison of three algorithms: average number of steps

required to complete a trial. Blue: Module Combination; Yellow: Module Voting;

Red: Module Selection.
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(a)

(b)

Figure 10: Performance comparison of three algorithms: in failed trials, average

percentage of prizes collected before failed. Blue: Module Combination; Yellow:

Module Voting; Red: Module Selection.
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Chapter 5

Conclusion

In this thesis we presented a modular reinforcement learning algorithm. Com-

paring to plain RL algorithms, such modular approach aims at developing com-

putationally tractable algorithm to cope with curse of dimensionality problem.

One contribution of this thesis is to formalize and distinguish concepts of module

class and module instance, when decompose original MDP problem into module-

MDPs. Such decomposition allows us to train each module class efficiently using

SARSA(λ). Module Training algorithm is finished in prior to the actual naviga-

tion, hence will not affect the efficiency of agent’s action selection algorithm.

The main focus of this research is to select global action from many module

instances. We design and test three action selection algorithms, and compare the

performances on our designed test domain. The first algorithm, Module Combi-

nation, derived from [12, 17, 20], which attempts to maximizes collective payoff of

all module instances, resulted in satisfactory performance.

Another contribution of this thesis is that we develop a fast mechanism to

determine the weights for module instances, by using standard deviation of Q-

values. Then we design our Module Selection algorithm, based on maximizing an

individual module instance’s utility at each step. It performs considerably worse

than Module Combination. At last, we design the Module Voting algorithm, based

on shareholder meeting heuristic. This algorithm yields competitive results, espe-

cially on difficult tasks.

The discussion on maximizing individual module utility versus collective utility

relates our modular reinforcement learning approach to multi-agent reinforcement

learning. Modules with different goals are similar to heterogeneous learning agents

[21]. One research focus of multi-agent system is the cooperation and competition

between agents. Similarly, modules can be cooperative or competitive with other

modules. Research results in multi-agent RL may provide us insights on this topic

in the future.
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Our modular reinforcement learning approach provides us several advantages

over plain reinforcement learning. Module class trainings are off-line so they do

not introduce computational costs to actual experiment. Three action selection al-

gorithms have the same bound on computational costs, which is linear on number

of module instances:

O(nprizes + nobstacles + npredators) (11)

Recall in equation (7) and (8), the size of state space for plain reinforcement

learning algorithm grows exponentially with environment parameters. The major

advantage of our algorithm is its computational efficiency, which allows us to test

it in a world with large state space.

An important feature of our modular approach is that, we can choose different

discount factors γ for different module classes, where in plain reinforcement learn-

ing a global γ is defined. For prize module class, γ is high because we care about

future rewards. For obstacle and predator module class, γ is low because we does

not need to care about an obstacle or a predator far away. Such flexibility allows

us to interpret γ better, and train each module class more efficiently.

Comparing to other modular and hierarchical RL algorithms, our approach

emphasizes bottom-up control structure rather than top-down structure. We re-

solve weight learning and credit assignment problems by letting modules calculate

their weights themselves. Central arbitrator only performs small amount of cal-

culation to determine global action.

One drawback of our algorithm is that, it does not guarantee global optimality

for resulted policy. Modules are trained independently so they cannot account

for the effects of executing other modules. It is computationally impractical to

test how close the policies derived from our algorithms are to the optimal policy

trained by plain reinforcement learning, since plain RL does not scale up to our

test world. We sacrifice theoretical guarantee of optimality for computational ef-

ficiency. One reason is that we hope to apply our algorithm to practical real-time

decision making problems with even larger state space, for example, autonomous

driving. Driving emphasizes fast decision making, and requires a close-to-optimal
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policy. In addition, driving environment is a relatively ’easy’ world, in terms of

pobstacle, and it is also friendly due to the absence of predator. Our algorithms are

shown to achieve high success rate in such an environment. Previous research has

been done on modularizing the driving task [27], and module selection in driving

[1], but not under MDP and reinforcement learning framework. We hope to in-

corporate our modular reinforcement learning approach with these works.
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