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Abstract 

 

Core Level Thermal Estimation Techniques for  

Early Design Space Exploration 

 

Darshan Dhimantkumar Gandhi, M.S.E. 

The University of Texas at Austin, 2014 

 

Supervisor:  Lizy Kurian John 

Co-supervisor: Andreas Gerstlauer 

 

The primary objective of this thesis is to develop a methodology for fast, yet ac-

curate temperature estimation during design space exploration. Power and temperature of 

modern day systems have become important metrics in addition to performance. Static 

and dynamic power dissipation leads to an increase in temperature, which creates cooling 

and packaging issues. Furthermore, the transient thermal profile determines temperature 

gradients, hotspots and thermal cycles. Traditional solutions rely on cycle-accurate simu-

lations of detailed micro-architectural structures and are slow. The thesis shows that the 

periodic power estimation is the key bottleneck in such approaches. It also demonstrates 

an approach (FastSpot) that integrates accurate thermal estimation into existing host-

compiled simulations. The developed methodology can incorporate different sampling-

based thermal models. It achieves a 32000x increase in simulation throughput for tem-

perature trace generation, while incurring low measurement errors (0.06 K- transient, 

0.014 K- steady-state) compared to a cycle-accurate reference method. 
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Chapter 1: Introduction 

Power and temperature of modern day systems have become important metrics in 

addition to performance. Recent advancements in electronics, such as handheld devices 

and wearable electronic devices have promoted power efficient designs over performance 

oriented designs. This paradigm shift is mainly attributed to technology scaling, limited 

power supplies on small, mobile devices and lack of efficient cooling solutions. These 

devices primarily operate using power from lithium-ion batteries, which is a limited and 

expensive power source. Therefore, it is required to use the power supply sparingly, lead-

ing to minimal power consumption while providing maximum possible performance. 

Krisztian Flautner, a researcher from ARM Holdings remarks that, “Everyone wants a 

supercomputer in their pocket that is always on, communicating and never requires a 

charge.” 

The channel length of semiconductor devices is shrinking rapidly, to keep up with 

Moore’s law [18] [34]. Beyond 11 nm length, quantum phenomena in the transistor can 

affect transistor operation substantially. At small process technologies, the effects of elec-

tro migration, hot carrier injection, negative-bias temperature instability (NBTI) and 

leakage current become more pronounced. These effects are influenced by the device 

temperature. In order to perform an accurate quantitative study of such effects, thermal 

characterization of the hardware becomes very important. 

Cooling and packaging solutions directly impact heat dissipation capability of the 

integrated circuits (ICs) [24] [25]. But, the transistor density on semiconductor devices is 

also increasing rapidly. Designing the cooling mechanism for the worst case temperature 

scenarios has become extremely costly. Moreover, the popular solutions, such as heat 



2 

 

sinks and cooling fans are either not applicable to mobile devices or can only be used to 

the minimal effect due to form factor limitations. In addition, wearable electronic devices 

often place stricter constraints on the thermal responses of these systems, because of the 

surrounding surfaces include human skin or equivalent live medium. A system without a 

proper mechanism for power and thermal management is deemed to be poor. These ef-

fects require chip architects to design a system, which is power and thermal aware and 

can change its behavior accordingly. Therefore, chip architects explore run time hardware 

and software-based dynamic thermal management (DTM) techniques [26] [27]. An accu-

rate analysis of the thermal response of the processors can be used to guide upcoming 

cooling/packaging approaches and study effects of DTM policies. 

In the early stage of design exploration, detailed information about power and 

thermal characteristics of the system is not available. As outlined above, the need for ac-

curate and early thermal estimation motivates the development of power and thermal 

simulation frameworks. Moreover, such simulations can provide quick tradeoff analysis 

during early design phase. A typical solution in architecture domain is to use a repre-

sentative model of the chip, a power estimator tool and a thermal estimation tool in order 

to characterize the temperature. The representative model (usually an instruction set sim-

ulator (ISS)) can provide access/occupancy statistics, quantifying the activity factor of 

various components. This information is used by an approximated power estimation tool 

(examples, [1] [9] [23]) to calculate dynamic and leakage power. A periodic repetition of 

power estimation for different time intervals creates a specific form of power trace, which 

essentially denotes power consumption in modeled chip components over time. A ther-

mal estimator tool (examples, [14] [16] [17]) is finally deployed to find out transient and 

steady-state temperature profiles of the chip for a given application. 
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Development of an effective thermal management scheme is inherently an itera-

tive and time consuming task. Multiple benchmarks are run using detailed simulation to 

understand behavior across a range of optimizations. Along with rapid advancements in 

computer architecture, the benchmarks to compare upcoming processors are becoming 

complex and large. For example, the SPEC CPU 2006 [20] benchmark suite consists of 

29 benchmarks with dynamic instruction counts in the hundreds of billions [28]. Similar-

ly, a mobile computing benchmark suite, such as MiBench [6] [11] has millions of dy-

namic instructions per benchmark. Simulating these applications for accurate thermal 

characterization may take multiple days and huge compute resources. Hence, there is a 

need for a quick, accurate and integrated approach for thermal analysis.  

The objective of this thesis is to develop a novel thermal estimation methodology 

called FastSpot, to improve the temperature estimation approach. Many architectural lev-

el temperature estimation tools [14] [16] [17] that accept an existing power trace have 

been developed in the research community, but there has been limited support for an in-

tegrated methodology. This thesis shows that the primary bottleneck in an integrated set-

up is periodic estimation of power to be fed into temperature estimation tools. The 

FastSpot methodology leverages host-compiled back-annotation approaches [2] [29] [30] 

to create approximate and online models for computing power traces. When these com-

putation models are integrated with available thermal models, power estimation overhead 

during benchmark execution is reduced, resulting in significant speedup in simulation.  

This thesis is organized as follows. Chapter 2 describes previous work that has 

been done in three major relevant areas, namely thermal estimation models, integrated 

simulation methodologies and host-compiled approaches. Chapter 3 describes the 

FastSpot methodology in details. The back-annotation setup, thermal models and their 
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integration is discussed in the chapter. The reference methodology, developed to evaluate 

FastSpot is described in Chapter 4. Chapter 5 elaborates on the evaluation setup for ex-

periments and shows speed and accuracy tradeoffs of the proposed methodology. One 

important application of FastSpot is characterization of hotspots during design space ex-

ploration. Comparisons regarding hotspot estimation are provided in Chapter 6. Chapter 7 

lists several directions on extending the work and Chapter 8 concludes the findings of this 

thesis. 
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Chapter 2: Related Work 

Various research groups have provided important contributions to mitigate ther-

mal simulation complexities during past few years. The contributions are classified in 

three major categories, as described below. 

2.1 THERMAL AND POWER ESTIMATION MODELS 

One important aspect of a thermal measurement methodology is the temperature 

estimation tool. These tools typically accept a certain type of power trace and calculate 

temperature based on various mathematical approaches. The tools also require the user to 

provide details of the material, including its thermal characteristics, ambient conditions 

and a spatial distribution of various power sources.  

One of the pioneering works in this direction is HotSpot [14]. It dynamically 

builds a representative RC model of the chip based on a given floorplan, and it computes 

the temperature profile of the chip over a sequence of time stamps (called sampling peri-

ods) based on a given trace of power dissipation values. It uses numerical analysis meth-

ods (fourth order Runge-Kutta) for calculating temperature. HotSpot requires a structural-

ly accurate power trace over all components in the floorplan at the chosen sampling peri-

od.  

Discrete time temperature evaluation models (DTTEMs) [8] [15] are an approxi-

mated set of equations, which model first order effects of temperature. The equations are 

linear, making them computationally inexpensive. Temperature is modeled as a function 

of current power and current temperature. For sufficiently small sampling periods, such 

methods are expected to yield accurate results. A brief mathematical analysis of such a 

model is presented in Chapter 3.  



6 

 

SESCTherm (SuperESCalar simulator thermal model) [31] is a temperature mod-

eling framework, aiming to include thermal effects of various components of a typical 

semiconductor device. The model establishes the importance of components such as, 

mainboard, package, interconnects and recent manufacturing techniques, such as silicon 

on insulator (SOI). The SESCTherm modeling framework integrates thermal models for 

interconnect, mainboard, package and silicon-on-insulator transistors. In addition to these 

models, a simple model to account for temperature based variations in material properties 

is also integrated. The claim of the research is that if transient temperatures are being 

measured for a long duration, a temperature model built without considering such effects 

is likely to produce far from actual behavior. The example illustrated in the paper demon-

strates a case where simple thermal models will produce an error of 30-40 C with respect 

to actual hardware behavior of the chip due to lack of advanced technology related ther-

mal models. 

The so-called Power blurring (PB) [32] technique can model transient and steady-

state temperature profiles for chips. The PB method attempts to base thermal analysis on 

image blurring methods, used for processing photographic images. In this method, power 

distribution is considered as the raw image and temperature response is assumed to be a 

blurred version of the power map. A commercial tool, ANSYS [33], is used to perform 

finite element analysis (FEA) on the power map to find its impulse response. HotSpot, 

SESCTherm and Power blurring methods are compared for steady-state and transient 

temperature trace generation [17]. The authors conclude that a PB method provides accu-

rate temperature profiles with lower execution time requirement. 

Integrated space and time adaptive chip-package (ISAC) [16] is a dynamically 

adaptive thermal analysis technique. Spatial adaptation is facilitated by hybrid oct-tree 
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data structures, which can be used for efficient management of spatial nodes and their 

processing. A time marching algorithm is employed to achieve adaptation in time, which 

involves iteratively advancing local times while solving a set of partial differential equa-

tions simultaneously. ISAC aims to change time and space granularity to make thermal 

computations faster while minimizing the impact on accuracy. The Fast asynchronous 

time marching technique (FATA) extends the time marching algorithm to allow different 

nodes having their own local time steps for improve speed. 

Time invariant thermal linear system (TILTS) [7] improves temperature estima-

tion speed by a factor of 1300 over HotSpot. It explores opportunities in the power trace 

for performing linear computations, rather than solving for temperature using numerical 

methods at every estimation interval. Redundant integral calculations are replaced with 

linear computations, which results in a considerable speed up. An improved algorithm 

Convolutional TILTS (CONTILTS) is also proposed to overcome unnecessary floating 

point operations, resulting in a 6000x speedup over HotSpot. All the mentioned models 

work on an arbitrary form of a power trace, which is a record of power consumption in 

floorplan components over time. Generation of such power traces and the associated 

complexity is not considered in the abovementioned methods. 

In order to generate a power trace, power consumption of the chip is repeatedly 

calculated using a power estimator. Many industrial and research tools are available to 

address power computation at lower levels, i.e. after floor planning and layout is com-

pleted. Some of the examples are PowerMill
TM

 [21] and QuickPower
TM

 [35].  These tools 

cannot be efficiently used at making decisions during architectural exploration. The need 

for a framework to analyze power at the architectural level has been addressed by various 

research groups. Wattch [1] is one of the pioneering works for integrating a cycle accu-
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rate simulator with power estimation models. It uses the Simplescalar [22] simulator as a 

front end and parses the hardware access counts during an application execution. These 

access counts are used by power models of various types of architectural blocks such as, 

clocking, arrays, associative structures and wiring. The power numbers are reported to be 

within 10% error of the lower level models. 

Orion [23] is a power model for networks on chip (NoCs). It provides models for 

calculating area, dynamic power and leakage power in NoC-based environments. Overall 

chip floorplan details and short circuit power are not modeled in version 2.0. The CACTI 

[36] tool is developed to estimate delays in various configurations. CACTI can model 

uniform and non-uniform cache access and assess hit/miss latencies and other cache met-

rics by breaking down cache hierarchies into small and regular structures, e.g. arrays, 

wires and content addressable memories (CAMs). Multicore power, area and timing 

(McPAT) [9] tool is based on CACTI models. McPAT accepts a configurable XML file 

specifying process, architectural and timing related configurations from the user. Some of 

the typical input arguments are provided in Table 3.1 in Chapter 3. An architectural mod-

el is developed by determining sizes of constituent components of an architectural block. 

Total power consumption is calculated by the following equation [9]: 

Ptotal = Pdynamic + Pshort-circuit + Pleakage  

        = αC * Vdd∆V * Fclk + Vdd * Ishort-circuit   + Vdd * Ileakage 

where α denotes the activity factor of a particular component, which is usually measured 

by detailed architectural simulations. 

Dynamic power consumption is a function of activity factor, output capacitance, 

voltage and frequency of operation. McPAT uses ITRS projections to correlate technolo-

gy process to operating voltage [34]. Therefore, voltage does not appear as a configurable 
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option in the XML file.  The activity factor is calculated as the ratio of accesses to a par-

ticular component in a defined cycle window. For example, 10 accesses to the ALU block 

in 100 cycles achieve an activity factor of 10/100 or 0.1. Out of three power components, 

the thesis targets dynamic power consumption for temperature calculations.  

2.2 SIMULATION METHODOLOGIES 

Researchers have looked into developing an integrated methodology for tempera-

ture estimations. The methodologies aim to facilitate fast architectural exploration for 

classifying temperature effects.  

Integrated thermal estimation procedures are useful in exploring scheduling and 

layout techniques in multi core processors [3]. The authors of [3] use Multi2Sim, a multi-

core architectural simulator, in conjunction with McPAT and HotSpot tools to set up a 

methodology for hotspot determination. As the focus of their research is in design space 

exploration, bottlenecks in this integrated methodology are not quantified. This thesis 

adopts a reference (cycle-by-cycle) methodology from this work for bottleneck study and 

comparisons.  

System level thermal emulator (SLTE) [15] is an approach that looks for better 

task allocation, binding and scheduling problems from a thermal perspective. The aver-

age power consumption and average case execution time is characterized for a piece of 

software on any given core. The power traces are generated from a segment-based power 

model, which can annotate power values for a task level timetable. SLTE approximates 

temperature evaluation to the first order, in order to improve system responsiveness. This 

methodology is deployed at higher abstraction levels. The details of average power calcu-

lation are not described in the work. 
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The need to power and thermal aware design space exploration has been ad-

dressed in [19]. Again, the objective of the research work is to look at various design 

tradeoffs involving L2 cache features, number of cores, issue width, etc. The experi-

mental setup follows a similar infrastructure, where a CMP microarchitecture simulator 

(SESC), a set of power models (Wattch, Orion, CACTI) and thermal models (HotSpot) 

are bound together to generate thermal traces. The method of obtaining transient tempera-

ture trace for a set of benchmarks is fundamentally the same, where a power estimator 

periodically estimates dynamic power and feeds it to HotSpot.  

2.3 HOST-COMPILED APPROACHES 

FastSpot leverages concepts of host-compiled simulations in order to provide a 

fast and accurate methodology. Host-compiled models have emerged as an alternative to 

ISS-based approaches. In ISS-based models, micro architectural or instruction level mod-

els of computation are developed to describe the processor or the system. Such models 

are slow because of detailed computation structures. When a system-level model is being 

developed, there is a possibility to increase the level of abstraction from instructions to 

basic blocks or functions. Additionally, the communication also can be viewed at the lev-

el of words or messages, rather than at cycle granularity. A higher abstraction level re-

sults in faster simulation speed. Host-compiled models describe functional models in the 

form of source code itself, such that fast simulation speed is obtained by native compila-

tion and execution. System-interactions are modeled through transaction level modeling 

(TLM), which can reduce unnecessary overhead for simulation of communication during 

early estimations. Performance and power metrics are obtained through simulations and 

fed into the host-compiled models. Features of host-compiled models and challenges are 

described in [5]. 
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Abstract system level models using the host-compiled approach are developed in 

[37]. Application level back-annotation of timing is performed using micro architectural 

description language (uADL) models, and McPAT is used for power calculations. These 

models are integrated with abstract models of processors and real time operating system 

(RTOS), where communication is defined by TLM backplanes. With such integrated ap-

proaches, time spent in complete design space exploration (DSE) was shown to be six 

times lower. 

The retargetable back-annotator (RBA) [2] tool demonstrates the speed and accu-

racy tradeoffs in timing and energy estimation with respect to traditional ISS-based ap-

proaches. The details of the back-annotation process, including basic block characteriza-

tion for timing and energy are provided in [2]. RBA achieves very high simulation speeds 

(~2000 MIPS), which are on the order of pure functional simulations. The errors in 

measurement of energy and timing are less than 1%, when compared to ISS-based ap-

proaches. The errors are introduced because a basic block characterization phase cannot 

accurately identify all dynamic scenarios during actual application execution. Actual exe-

cution latency of a basic block is not only dependent on its predecessor, but on predeces-

sors of predecessors, register and memory values, etc. The lack of such knowledge during 

characterization adds to measurement errors.  

The proposed FastSpot methodology extends the RBA tool for transient and 

steady-state temperature measurements. It leverages back-annotation and characterization 

concepts, as they can expedite transient temperature generation at low loss in accuracy. 

The thesis explains steps in the back-annotation process in section 3.1. 
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Chapter 3: FastSpot Methodology 

In this section, the overall flow of the proposed FastSpot methodology is demon-

strated. Some of the prominent features of host-compiled simulation [2] that this work 

extends on are also explained. Figure 3.1 shows the block diagram of the proposed ap-

proach. 

Figure 3.1: FastSpot Methodology Diagram. 
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The underlying concept of FastSpot is back-annotation at the intermediate repre-

sentation (IR) level. Application source code is passed through a compiler to translate 

code into an IR that accurately reflects front-end optimizations. Following this, basic 

blocks (BBs) in the IR are annotated with their execution latency and energy, obtained 

using a retargetable, cycle-accurate ISS and McPAT models, respectively.  

During trace analysis of ISS output, a set of access statistics is collected and sub-

sequently fed into McPAT. McPAT provides dynamic power dissipation of each compo-

nent using the activity information. Finally, the power dissipated during a block execu-

tion is converted into energy and annotated in the IR code. This is called the characteriza-

tion phase, which includes a pair-wise characterization of each basic block with all its 

possible predecessors in order to accurately account for path- and history-dependent ef-

fects on latency and energy. 

Temperature estimation tools, such as HotSpot and DTTEM are incorporated in 

the flow. Typically, thermal estimation tools require a form of power trace, which indi-

cates power consumption in various components of the floorplan of a chip over time. 

FastSpot extends existing back-annotation approaches [2] [29] such that the annotated 

energy dissipation values in the intermediate representation of the source code can be 

used by the host-compiled model to generate a structurally accurate power trace. In order 

to model the spatial distribution of temperatures, estimation tools also require the area 

and placement of components of a chip. Such area and placement estimates of various 

blocks are obtained using McPAT and the hotfloorplan [14] utility. Combined, the power 

trace and the floorplan can be utilized by the integrated thermal model to generate the 

thermal profile over time. 
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A back-annotated intermediate representation of the source code, when integrated 

with the functional implementation of a thermal model results in FastSpot, a host-

compiled model for temperature estimation. FastSpot achieves speedups due to faster 

power trace generation and application of light-weight temperature models, such as 

DTTEM. In the following, three aspects of FastSpot approach are discussed in more de-

tails: (1) organization of the back-annotation process, (2) employed thermal models and 

(3) integration of thermal models, making FastSpot a comprehensive temperature simula-

tion methodology. 

3.1 BACK-ANNOTATION PROCESS 

The back-annotator tool works on the interfaces as shown in the figure 3.2. 

Figure 3.2: Back-annotator Tool Interface 

Back-annotation process involves identification of granularity for annotation, 

which in this case is a basic block. The application is passed through a compiler and in-

structions that can change the control flow (branch, calls etc.) are identified. The entire 

control flow graph (CFG) is then segmented in basic block sets, which consist of prede-
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cessor and successor pairs. The basic block characterization process involves running 

each unique basic block pair in the application CFG on reference models which can pro-

vide detailed trace of basic block execution and related metrics, such as timing and ener-

gy. It is important to note that the predecessor basic block is used to set up the internal 

pipelines of the ISS, so that accurate timing and resource information can be obtained. 

Access statistics and timing numbers do not involve the usage by predecessor blocks. The 

back-annotator tool maintains structures to store varying path dependent effects. 

Execution latency (timing) of the basic block is obtained by simulating it on a cy-

cle-accurate ISS, generated from uADL models from Freescale [4]. The instructions con-

stituting a basic block are obtained from the object file of the cross-compiled application. 

The ISS accepts machine code of instructions and then executes them functionally, gen-

erating a detailed trace of internal pipeline stages of the architecture and the resultant reg-

ister and memory values. Moreover, the input of the ISS can also include initial values of 

register and memory. These inputs are gathered from the output trace of the preceding 

basic blocks. The overall process is explained in figure 3.3. 

Figure 3.3: Latency Analysis Procedure 
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Energy consumption in various floorplan components is obtained using McPAT. 

McPAT uses an XML interface to feed required structural, operational and resource utili-

zation statistics. The major knobs used in FastSpot setup are listed in Table 3.1. The out-

put file is parsed to calculate dynamic power consumption and calculate energy dissipa-

tion using latency and operating frequency details. 

Category Parameters 

Structural features Machine width, Fetch/Issue/Decode width, 

Pipeline depth, Number of functional units, 

Registers, ROB size, Memory ports 

Operational features Technology node, Operating frequency, 

Ambient temperature 

Resource utilization Total cycles, Total instructions, Register 

accesses, Memory and integer instructions  

Table 3.1: McPAT Input Parameters 

Figure 3.4: Sample Intermediate Representation 
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The characteristic information about basic block pair is back annotated in the in-

termediate representation (IR) of the application. Figure 3.4 describes a sample structure 

of an application IR. The back-annotation process uses a script based framework to iden-

tify predecessors of the basic block. If there is a single predecessor, characterized infor-

mation is appended as shown in figure 3.5. If there are multiple predecessors, script is 

responsible to generate an intermediate code that caters to all possible entry points to the 

basic block in CFG. A basic block with two predecessors will have a similar structure as 

figure 3.6 after being back-annotated. In figure 3.6, BB_x and BB_y represent the prede-

cessors to the basic block BB_i. In each basic block, two string identifiers get updated 

namely, current basic block identifier (curr_BB) and predecessor identifier (pred_BB). 

Pred_BB is used to condition the shown if statement and is updated with curr_BB value 

after the ‘if-statement’ execution. Overall, this method is used to clearly identify prede-

cessors of a basic block so that relevant information is used during run time. 

Figure 3.5: Annotated IR (Single Predecessor) 
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Figure 3.6: Annotated IR (Multiple Predecessors) 

One important problem in back-annotation is discrepancy between IR and the bi-

nary CFG. The back-annotator tool analyzes binary CFG and attempts to correlate char-

acterized information in the IR. Due to compiler backend optimizations, IR and the bina-

ry may have different control flow graphs and some basic blocks may not have one to one 

mapping. One simple way to tackle the problem is to turn off back end optimizations, 

which will lead to poor performance. Another solution is to create a mapping table to 
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identify correlated basic blocks in the binary and the IR by inspection, which is slow and 

tedious process. FastSpot uses cost based optimization approach, as described in [2] to 

automatically map basic blocks in binary to basic blocks in the IR. 

3.2 MONITORING FUNCTIONS 

The annotated metrics are used by monitoring functions (increment_latency() and 

increment_energy()), as shown in Figure 3.7. These functions track and process elapsed 

cycles and dissipated energy for the application, as it progresses in time. The function 

increment_energy() simply increments a global array current_energy[] by the compo-

nent-specific energy_values[] (obtained through characterization) of the current basic 

block. The function increment_latency() does similar updates for cycle counts. Moreover, 

the latter function is responsible for temperature estimation. Whenever elapsed cycles 

reach a multiple of the predefined sampling period, the function calculates energy dissi-

pated in the previous sampling period by taking a difference of current_energy and pre-

vious_energy arrays. It also converts energy difference to power dissipation using 

knowledge of the sampling period length and operating frequency (function calcu-

late_power_array()). The power values are used by calculate_temperature() in order to 

generate a temperature trace. This function is specific to the thermal model integrated in-

to the flow. Section 3.3 describes two implementations of this function for the considered 

thermal models. 

The back annotated application, along with the models is compiled on the host 

machine. When executed, it provides accurate functional results as well as interfaces 

characterization details, such as latency and energy dissipation information for target ar-

chitecture with the thermal model to generate temperature traces.  
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Figure 3.7: Monitoring Functions 

3.3 DESCRIPTION OF THERMAL MODELS 

In the following, prominent features of the thermal models which are integrated 

into the host-compiled simulation are described. They are used to generate transient and 

steady-state thermal profiles, and evaluate speed/accuracy tradeoffs in the process. 

3.3.1 HotSpot 

HotSpot [14] dynamically builds a representative RC model of the chip based on 

a given floorplan, and it computes the temperature profile of the chip over a sequence of 

time stamps (called sampling periods) based on a given trace of power dissipation values. 

HotSpot requires a structurally accurate power trace over all components in the floorplan 
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at the chosen sampling period, which is generated using the extended back-annotation 

approach described in the previous section. HotSpot provides two modes for temperature 

estimation: using block-based or grid-based models. The block model is chosen for com-

putation of transient temperature profiles of a chip due to its advantage of higher speed 

during design space exploration. 

HotSpot accepts a structurally accurate floorplan, representing each component by 

its coordinates in X-Y direction. This floorplan can be generated by ‘hotfloorplan’, one of 

the utilities provided by HotSpot. Input arguments to this utility are 1) area in mm
2
 for 

each component, 2) desired aspect ratio for each component and 3) average power con-

sumption of floorplan component. 

3.3.2 Discrete Time Temperature Evaluation Model 

DTTEM [8] [15] uses similar concepts as HotSpot for temperature estimation. 

This model requires conductance (G) and capacitance (C) matrices, which are character-

istic of a chip floorplan. To maintain consistency between DTTEM and HotSpot thermal 

models, without loss of generality, RC representations from HotSpot are extracted and 

used by MATLAB to generate the parameters required by DTTEM. Any assumption or 

approximations made during generation of RC models in HotSpot are thus retained by 

DTTEM, making the comparisons easier. 

The primary difference between DTTEM and HotSpot is the temperature evalua-

tion mechanism. DTTEM assumes that, with sampling of power values at small and con-

stant time intervals, transient temperature evaluation can be discretized. This assumption 

leads to a simplified solution of the basic first-order heat transfer differential equation, 

which is integrated into this flow to achieve faster temperature estimation. The solution to 

the differential equation is given as [8] [15]: 
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T [k+1] = e
-A ∆t

 T [k] + A
-1 

(I - e
-A ∆t

) B P[k], 

where A = C
-1

G, B = C
-1 

and ∆t is the sampling time interval. 

It can be observed that the temperature estimation is a linear function of the cur-

rent temperature of the nodes in the circuit and the power dissipation in the time interval. 

Moreover, the exponential term e
-A ∆t

 can be pre calculated for a chosen sampling inter-

val. Temperature for the next time interval can be calculated by considering two matrix 

multiplications and one matrix addition, reducing the evaluation time when compared to 

numerical approaches. 

DTTEM can be used to estimate steady-state temperatures in a chip as well. The 

steady-state temperature reflects the thermal profile of the chip when the chip and envi-

ronment are in equilibrium, i.e. when the benchmark is run repeatedly over and over on 

the same chip. Across such multiple iterations, power consumption in a particular interval 

can be calculated as average power consumption of the entire benchmark. Therefore, 

Steady-state power consumption is noted as Paverage. Solving the above equation with T 

[k] = T [k+1] for all values of k under steady-state assumptions yields 

T [k] = e
-A ∆t

 T [k] + A
-1 

(I - e
-A ∆t

) B Paverage, 

 (I - e
-A ∆t

) T [k] = A
-1 

(I - e
-A ∆t

) B Paverage , 

 Tss  = A
-1 

B Paverage , 

 Tss = G
-1

 C C
 -1

 Paverage , 

 Tss = G
-1

 Paverage  

TSS = G
-1

Paverage, 

Figure 3.8 shows how both these thermal models are implemented in FastSpot 

setup.  
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Figure 3.8: Thermal Model Implementations 

3.4 INTEGRATION OF THERMAL MODELS 

Figure 3.8 represents two implementations of the thermal evaluation function for 

HotSpot and DTTEM, respectively. For a HotSpot-based thermal model, power values 

are then written to a Unix pipe (function write_power_array()) created at the start of exe-

cution of the host-compiled model. HotSpot setup has been modified to accept data 

streamed through a pipe and interpret the written power values to calculate the tempera-
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ture. This process, repeated every sampling period, generates a transient thermal trace of 

the original application. 

For a DTTEM-based thermal model, the evaluation function implements the nec-

essary matrix operations to generate the transient temperature at the end of current sam-

pling period. The coefficient matrices are obtained by dumping parameters of the RC 

network constructed by HotSpot. Other matrix related computations are done in 

MATLAB, and a header file defining the coefficients (matrices T_coefficient[][] and 

P_coefficient[][]) is generated. This is a one-time procedure for a given floorplan and 

consumes a small amount of time. 

After the temperature computation, T_next[] is fed to the output file/screen and 

T_current[] is populated with T_next[] for the next iteration. The function prepro-

cess_power_values() rearranges and populates other nodes of the RC model for which 

power_values[] are not obtained in the host-compiled model. It should be noted that the 

number of nodes in the RC equivalent of the floorplan will be higher than the number of 

components, but the nodes acting as variable power sources (assuming point power 

sources at the center of the component) will be the same as the components. 

The thermal model header file defines a variable estimate_steady_state, which 

can be used by the functional description of the model to evaluate steady-state tempera-

ture. In the case of HotSpot, it simply adds an argument to the HotSpot run command for 

steady-state estimations using the block-based model. For DTTEM, the variable enables 

steady-state thermal evaluation (function generate_steady_state()) using the formula not-

ed earlier. 

Back-annotated function calls are an overhead to the original application binary 

and ultimately result in a slowdown compared to pure functional execution of the appli-
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cation. Therefore, the primary objective is to keep the function definitions simple and as 

small as possible. As described above, the functions do not contain many branch condi-

tions (e.g. if statements) and the operations are mainly additions/multiplications. This re-

flects an objective to minimize overhead. Another issue in the HotSpot-based thermal 

model is a very high data transfer rate between the host-compiled model and HotSpot. 

The size of each data transfer depends on the number of floorplan components of the chip 

in consideration. Moreover, latency of the complete execution of the application and the 

sampling period dictates the number of such data transfers. Usage of files or print state-

ments may slow down the thermal trace generation process considerably. Instead, 

FastSpot uses pipe calls, such as popen/pwrite in order to minimize impacts of the operat-

ing system. A DTTEM-based approach requires no such transfers, and such problems are 

not encountered in a DTTEM-based thermal estimation process. 
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Chapter 4: Reference Methodology 

The reference flow developed for comparison is similar to the one developed in 

[3]. The methodology uses the uADL reference ISS from Freescale [4] to produce laten-

cy, energy and temperature traces. The front end in the reference flow is very straight-

forward, where a cross-compiled binary is executed on the ISS and an output trace is ob-

tained. Using similar scripts as in the back-annotation flow, the methodology identifies 

latency information and access statistics for different sampling intervals. For each sam-

pling interval, McPAT is invoked to obtain power values, and the dynamic power trace is 

fed into HotSpot for temperature trace generation. The floorplan is generated using hot-

floorplan utility, included in HotSpot tool package. It is to be noted that floorplan genera-

tion process is a one-time task for a specific architecture. Figure 4.9 shows the steps in-

volved in temperature trace generation using reference methodology. 

Figure 4.9: Reference Methodology 
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This flow is highly influenced by the dynamic instruction count of the benchmark. 

For example, assume that a benchmark has 1 million dynamic instructions with CPI (Cy-

cles per instruction) of 1. The number of cycles required to execute the benchmark on ISS 

will be 1 million. If the power estimation interval is 10,000 cycles, power estimator has to 

work 100 times (= 10
6
/10

4
). The higher the dynamic instruction count, more time will be 

spent in power estimations alone. The run time of the reference methodology is a strong 

function of speed of power estimators and dynamic instruction counts. 

As seen later, the majority of the run time is spent in power calculations by 

McPAT due to periodic and repetitive calculation of power at the granularity of the sam-

pling interval. 
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Chapter 5: Experiments and Results 

In this Chapter, reference methodology and FastSpot are compared against each 

other and speed/accuracy tradeoffs are evaluated. 

5.1 EVALUATION SETUP 

FastSpot integrates the thermal estimation approach into the host-compiled back-

annotation framework from [2]. The FastSpot tool is available for download at [13]. To 

demonstrate the feasibility of the proposed approach and to evaluate the tradeoffs, the 

back-annotation flow is applied to a simplified e200 Z6 (single issue) and e200 Z4 (dual 

issue) PowerPC like architecture. Reference models for the architecture are provided by 

Freescale through their uADL [4] framework. The chosen reference architectures can be 

classified as 32-bit processors having static branch predictors and no MMU, cache or FP 

units. Modeling of such components is considered future work. Although the uADL 

models do not include MMUs or caches, area estimates of McPAT and the floorplan gen-

erated by hotfloorplan model these components. The primary reason is to study a more 

generic floorplan from a temperature variation perspective. Accesses to these otherwise 

unavailable components are always zero. Hence, they do not contribute to dynamic pow-

er. 

The reference methodology and FastSpot are compared on the basis of simulation 

throughput, run time and relative accuracy of results. The benchmarks are chosen from 

the MiBench suite [6] [11] namely, ADPCM (Telecom), CRC32 (Telecom) and SHA 

(Security) - for comparison due to the highly pervasive nature of mobile computing. 

Benchmarks are compiled using gcc with O2 optimizations. Small input datasets are used 

and file I/O operations are converted into array operations. Dynamic instruction counts of 
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benchmarks are obtained by executing them on the cycle-accurate reference ISS, and are 

listed in Table 5.2.  

 

Benchmark Suite  Instruction count Unique BB pairs 

ADPCM Telecom 36,667,034 53 

CRC32 Telecom 12,319,886 7 

SHA Security 14,698,630 88 

Table 5.2: Benchmark Details 

Figure 5.10: Z4 Floorplan 
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A custom application is also written in order to stress different architecture com-

ponents and thus study variations in hotspot generation. The simulations are performed 

on Z6 and Z4 like architectures with a floorplan area (for 90 nm process technology) of 

4.77 mm
2
 and 6.85 mm

2
, respectively. Figure 5.10 and 5.11 show placement of compo-

nents with respect to each other in the generated floorplan for Z4 and Z6 architecture, re-

spectively. 

Figure 5.11: Z6 Floorplan 

The operating frequency is assumed to be 500 MHz and ambient temperature to 

be 318.15K. A sampling period of 10k cycles (unless stated otherwise) has been chosen 

for a good tradeoff between precision and overhead in HotSpot as suggested in [14]. The 
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methodology uses McPAT version 0.8 and the block-based model (unless stated other-

wise) of HotSpot version 5.02. 

5.2 SPEED COMPARISON 

Two metrics are considered for speed evaluations: (1) total run time and (2) simu-

lation throughput. The reason is to quantify combined characterization and simulation 

time in FastSpot. For the reference flow, run time includes ISS execution time, total 

McPAT run time and HotSpot (HS) run time. For the FastSpot (FS) flow, the contributors 

to the run time are characterization time and execution time of the host-compiled model 

implementing the thermal model. For DTTEM-based FastSpot, thermal parameter gener-

ation time is also included in the calculation. 

Figure 5.12: Run Time Comparison 

Figure 5.12 shows the runtime breakdown of the reference flow and the two FS 

methodologies. The runtime improvements are similar in case of the Z4 and Z6 models. 

Overall, McPAT invocations contribute to a majority of the run time (ADPCM- 97.7%, 
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CRC32- 97.8%, SHA- 97.9%) in the reference flow. By contrast, the major bottleneck in 

the proposed methodology is in the back-annotation time. It can be seen that for execu-

tion of a single benchmark with small inputs, time spent in generation and extraction of 

thermal parameters is insignificant and the choice of thermal model (HotSpot or 

DTTEM) does not play a major role. When compared to the run time of the reference 

flow, the run time of the FS flow in case of the Z6 model is 214, 503 and 43 times lower 

for ADPCM, CRC32 and SHA, respectively. In case of the Z4 model, run time of the FS 

flow is 125, 280 and 25 times lower for ADPCM, CRC32 and SHA, respectively. Time 

spent in characterization of the blocks of a benchmark depends on its control flow graph 

complexity. If there are a large number of unique block pairs in an application with low 

dynamic instruction counts, there is less improvement in total run time. The time spent in 

thermal parameter generation is fairly constant across these two architectures.  

Figure 5.13: Simulation Throughput Comparison 

The simulation throughput is calculated as the ratio of the dynamic instruction 

count of a benchmark to the execution time of the host-compiled model. Back-annotation 
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time is not accounted in the calculation of simulation throughput, as this is a one-time 

offline procedure for a given benchmark. After a benchmark has been characterized for 

all blocks, execution time of the annotated binary controls the simulation throughput, e.g. 

for repeated simulations over larger input data sets. Figure 5.13 shows variations in the 

simulation throughput between two different thermal-aware simulations with sampling 

periods of 1 million and 10,000 cycles. Note that simulation throughput increases consid-

erably with an increase in the sampling period. Therefore, the sampling period can be ad-

justed for higher throughput but less accurate temperature profiles. 

 

Benchmark FS (DTTEM) FS (HS-Block) FS (HS-Grid) 

ADPCM (Z4) 136 MIPS 115 MIPS 99.1 MIPS 

CRC32 (Z4) 385 MIPS 246 MIPS 162 MIPS 

SHA (Z4) 298 MIPS 207 MIPS 154 MIPS 

ADPCM (Z6) 131 MIPS 108 MIPS 96.5 MIPS 

CRC32 (Z6) 373 MIPS 176 MIPS 124 MIPS 

SHA (Z6) 281 MIPS 191 MIPS 119 MIPS 

Table 5.3: Steady-state Simulation Throughput 

For a sampling period of 10,000 cycles, average simulation throughput of the pro-

posed methodology with a HotSpot model across both processors is 11 MIPS, whereas 

the simulation throughput for the reference flow is just 3.1 KIPS, making the former 

around 3600 times faster. When the comparisons are done for the proposed approach with 

DTTEM integration, the simulation throughput is 98 MIPS (a speedup over the reference 
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flow of 32,000x). Overall, a DTTEM model achieves about a 9x speedup over a HotSpot 

based thermal evaluation. 

It is to be noted that FastSpot with DTTEM does not achieve a speedup with re-

spect to HotSpot in the steady-state (SS) estimation process. Table 5.3 summarizes SS 

throughput results. Simulation throughput is of the same order and does not improve sig-

nificantly with a DTTEM-based model. The reason is that the steady-state temperature 

measurement is not affected much by the dynamic instruction count of the benchmarks, 

but transient temperature trace generation is. In the proposed FS methodology, the transi-

ent temperature generation is the primary bottleneck, and this thesis proposes using 

DTTEM to overcome the issue. 

5.3 ACCURACY COMPARISON 

In the following, relative accuracy of the back-annotation flow is compared to the 

reference flow in terms of latency and temperature. The absolute and percentage errors 

for latency match the results obtained in [2]. The average error in latency measurement is 

1.81% for the set of three benchmarks, where the highest error is present for ADPCM 

(5.38%). Errors in latency measurements in the host-compiled simulation are the primary 

source of all temperature errors. Latency deviations get propagated into energy and tem-

perature errors, since power and temperature are calculated from latency information. 

The loss in accuracy for host-compiled latency measurements is mainly because of not 

being able to exactly replicate pipeline states for a basic block when characterizing 

blocks only across immediate predecessors. In addition, as results will show, use of 

DTTEM leads to additional errors stemming from approximations in the temperature 

model. 
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For temperature estimation, there is not a single number to compare as the output 

is a trace over time. Two metrics are developed, (1) transient temperature error and (2) 

steady-state temperature error, for evaluating temperature accuracy of the proposed flow.  

Average values for these absolute errors are calculated using the following equations: 

Average absolute transient temperature error 

= (∑fp∑t |T(fp,t)back-annotation - T(fp,t)reference| ) / (Number_Components * 

Trace_Length) 

For all fp in floorplan components and for all t in Time points. 

Average absolute steady-state temperature error 

= (∑fp |Tss(fp)back-annotation - Tss(fp)reference|) / Number_Components 

For all fp in floorplan components. 

To calculate the transient temperature errors, temperature traces of the reference 

flow and the back-annotation flows are compared for all floorplan components. 

Figure 5.14: Steady-state Temperature Errors (Z6) 
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Figure 5.15: Steady-state Temperature Errors (Z4)  

Figure 5.16: Transient Temperature Errors (Z6) 

Figure 5.14 and 5.15 show errors in steady-state temperature measurement for Z6 

and Z4 architecture, respectively. The measurement error for each floorplan component is 

calculated and absolute values are shown in the graph. Figure 5.16 and 5.17 show errors 
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in transient temperature measurement. The absolute difference between component tem-

peratures is noted and averaged for all estimation intervals. 

 

Figure 5.17: Transient Temperature Errors (Z4) 

 When HotSpot is used as the thermal model for the Z6 architecture, the maxi-

mum error is 0.14 K, whereas the maximum error in case of the DTTEM model is 0.15 

K. Similarly, maximum errors in the Z4 case are 0.09 K and 0.14 K, respectively. The 

average error across all components of all benchmarks is 0.019 K higher than the 

HotSpot-based methodology in case of the DTTEM-based methodology for the Z6 pro-

cessor. Similarly, the DTTEM-based methodology incurs a higher error (by 0.035 K) 

than the HotSpot-based implementation of FastSpot for the Z4 processor. To calculate 

steady-state temperature errors, HotSpot is configured to generate a temperature profile 

using the block-based model. HotSpot reports steady-state temperature for all the compo-

nents of a floorplan, which are compared against the values obtained from DTTEM. This 

metric is useful in practical analysis for studying temperature variation and hotspots.
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 When HotSpot is used as the thermal model, the maximum error is 0.02 K for the 

Z6 processor and 0.05 K for the Z4 processor. The maximum errors in case of the 

DTTEM-based thermal model are 0.041 K and 0.054 K, respectively. 

Table 5.4 summarizes the transient and steady-state temperature errors over all 

floorplan components for both thermal models. In case of the HotSpot based FastSpot, 

the average transient error is 0.05K for the Z6 and 0.014 K for the Z4 architecture. By 

contrast, in case of the DTTEM model, average transient errors are 0.07 K and 0.05 K, 

respectively. The average absolute steady-state errors in both the models are low and us-

age of DTTEM instead of HotSpot increases the average steady-state error only marginal-

ly for the Z6 model (0.014 K versus 0.0047 K for a 0.009 K increase). In case of the Z4 

model, usage of DTTEM increases the average steady-state error from 0.011 K to 0.013 

K for a 0.002 K increase. 

Benchmark Transient Steady-state 

FS-HS FS-DTTEM FS-HS FS-DTTEM 

ADPCM (Z4) 0.037 K 0.1 K 0.029 K 0.024 K 

CRC32 (Z4) 0.0017 K 0.02 K 0.002 K  0.008 K 

SHA (Z4) 0.002 K 0.022 K 0.0007 K 0.0072 K 

ADPCM (Z6) 0.09 K 0.1 K 0.011 K  0.022 K 

CRC32 (Z6) 0.029 K 0.053 K 0.002 K 0.01 K 

SHA (Z6) 0.033 K 0.057 K 0.001 K  0.01 K 

Table 5.4: Average Absolute Temperature Errors 

Maximum transient errors in a single sampling point range between 0.53 K and 

0.75 K for a HotSpot and 0.55 K to 0.88 K for a DTTEM-based methodology. The high-
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est observed chip temperature is 320.2 K for the Z4 and 319.6 K for the Z6 processor. 

Transient errors are higher in case of DTTEM mainly because of the approximations re-

lated to discretization. The solution to the heat transfer equation is approximated in the 

DTTEM-based approach. For example, it cannot capture the secondary effects of current 

temperature values on the next set of temperatures. 
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Chapter 6: Hotspot Characterization 

In this section, comprehensive analysis of steady-state thermal profile is presented 

between the reference flow and FastSpot using a grid-based model of HotSpot with a grid 

size of 64x64. The grid model of HotSpot divides the floorplan into layers of a grid and 

performs computation on small component cubes. Different benchmarks have different 

characteristics and may produce dissimilar temperature profiles when executed on a mi-

cro architecture. Thermal profile of all the experiments is shown here. ADPCM (Figure 

6.18 and 6.19), CRC32 (Figure 6.20 and 6.21 and SHA (Figure 6.22 and 6.23) bench-

marks have similar thermal profiles. These thermal profiles depict a hotspot over instruc-

tion fetch unit. A manual stressmark was also written to stress various architectural com-

ponents. The stressmark focuses on Complex ALU operations (Mul/Div) and produces 

two hotspots at the instruction fetch block and the Result Broadcast Bus.  

Figure 6.18: Steady-state Profile (Z6) for ADPCM (left- FastSpot, right-Reference) 

 



41 

 

Figure 6.19: Steady-state Profile (Z4) for ADPCM (left- FastSpot, right-Reference) 

Figure 6.20: Steady-state Profile (Z6) for CRC32 (left- FastSpot, right-Reference) 
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Figure 6.21: Steady-state Profile (Z4) for CRC32 (left- FastSpot, right-Reference) 

Figure 6.22: Steady-state Profile (Z6) for SHA (left- FastSpot, right-Reference)  
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Figure 6.23: Steady-state Profile (Z4) for SHA (left- FastSpot, right-Reference) 

Figure 6.24: Steady-state Profile (Z6) for stressmark (left- FastSpot, right-Reference)  
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Figure 6.25: Steady-state Profile (Z4) for stressmark (left- FastSpot, right-Reference)  

It can be observed visually that FastSpot flow accurately tracks high temperature 

hotspot and temperature variations across different benchmarks and that there are only 

minimal differences in steady-state temperature profiles. Furthermore, it does so at signif-

icantly reduced runtime (see Table 5.3).  

In order to quantify thermal profile difference, error profiles are developed on 2-D 

space by subtracting steady-state thermal profiles of FastSpot and reference. Figure 6.26 

and 6.27 provides these profiles for ADPCM benchmark for Z4 and Z6 architecture, re-

spectively. The error profiles for other benchmarks have relatively lower error variations. 

CRC32 benchmark error profiles are shown in figure 6.28 and 6.29, while SHA bench-

mark error profiles are shows in figure 6.30 and 6.31. These graphs are generated using 

mesh graph capability of MATLAB tool. 
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Figure 6.26: Steady-state Error Profile for ADPCM (Z4) 

Figure 6.27: Steady-state Error Profile for ADPCM (Z6) 
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Figure 6.28: Steady-state Error Profile for SHA (Z4) 

Figure 6.29: Steady-state error profile for SHA (Z6) 
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Figure 6.30: Steady-state Error Profile for CRC32 (Z4) 

Figure 6.31: Steady-state Error Profile for CRC32 (Z6) 
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Chapter 7: Summary, Conclusions and Future Work 

In this thesis, a novel simulation methodology for fast and accurate thermal esti-

mations is proposed. This method uses host-compiled simulation instead of conventional 

ISS-based models. During a characterization phase, the source code of an application is 

annotated at block granularity with estimates, such as latency and energy consumption. 

Upon execution, the annotated binary creates a power trace and feeds the same into the 

thermal model. The thermal model operates on this trace and a floorplan to provide a fi-

nal thermal trace and profile. The flexibility and integration capability of the methodolo-

gy is demonstrated by integrating two different thermal models, HotSpot and DTTEM. 

Using DTTEM as the thermal model, a simulation throughput of 98 MIPS is 

achieved, which represents a 32,000x speedup compared to a traditional flow for com-

bined latency, power and temperature characterization. The error in measurement of tem-

perature is very low. The reported errors are 0.06 K and 0.014 K average absolute errors 

in transient and steady-state temperature generation, respectively. The DTTEM-based 

FastSpot methodology has major speed benefits, which come at the cost of increased 

measurement error when compared to the HotSpot-based implementation (which is 

around 9 times slower). The methodology incurs a 0.02 K increase in transient tempera-

ture error and a 0.009 K increase in steady-state temperature error for the Z6 model. Sim-

ilarly, transient and steady-state measurement errors increase by 0.035 K and 0.002 K, 

respectively for the Z4 model. The sampling period can play an instrumental role in re-

ducing the effects of approximations in the DTTEM model. Results demonstrate the con-

sistency and accuracy of FastSpot flow for temperature measurement when compared to 

the reference flow, which indicates its viability for generation of thermal profiles during 

early design space exploration. 
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The FastSpot methodology spends a majority of the execution time in running 

HotSpot for temperature trace generation. FastSpot methodology therefore integrates a 

faster and approximate thermal model (DTTEM) in the approach. Further extensions 

could include investigating implications of other fast thermal estimation methods [7] [10] 

[12] [16]. Evaluation of simulation bottlenecks can be beneficial for further optimiza-

tions. For example, fine-tuning the annotated code being added to the source code can 

reduce overhead and improve simulation throughput. Finally, there is a scope of im-

provement in accuracy and scope, e.g. through modeling of dynamic components, such as 

MMUs, branch predictors or caches that are currently not considered. 
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