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An Empirical Study of the Influence of Compiler
Optimizations on Symbolic Execution
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Compiler optimizations in the context of traditional program execution

is a well-studied research area, and modern compilers typically offer a suite of

optimization options. This thesis reports the first study (to our knowledge)

on how standard compiler optimizations influence symbolic execution. We

study 33 optimization flags of the LLVM compiler infrastructure, which are

used by the KLEE symbolic execution engine. Specifically, we study (1) how

different optimizations influence the performance of KLEE for Unix Coreutils,

(2) how the influence varies across two different program classes, and (3) how

the influence varies across three different back-end constraint solvers. Some

of our findings surprised us. For example, KLEE’s setting for applying the 33

optimizations in a pre-defined order provides sub-optimal performance for a

majority of the Coreutils when using the basic depth-first search; moreover, in

our experimental setup, applying no optimization performs better for many of

the Coreutils.
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Chapter 1

Introduction

Researchers have extensively studied compiler optimizations, i.e., se-

mantics preserving program transformations that are designed to make pro-

gram execution faster [1]. Modern compilers, such as gcc [2] and LLVM [3],

support a number of basic as well as aggressive optimizations, and allow the

users to manually select a suitable optimization level for their applications.

Some recent research projects have addressed the problem of automatically

identifying combinations of optimizations for given applications to achieve

likely optimal benefits across a number of different axes, e.g., time, memory,

and program size, using heuristics [4] [5].

While the area of compiler optimizations in the context of traditional

program execution is well-studied, their use in the context of symbolic execu-

tion – a popular, systematic analysis technique for checking program behaviors

using path exploration – has received much less attention. To our knowledge,

the KLEE symbolic execution engine is the only tool to explicitly support

compiler optimizations in the context of symbolic execution. KLEE ’s foun-

dation on the LLVM infrastructure [6] allows KLEE to directly access dozens

of optimizations that the LLVM compiler provides.
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Given the semantics preserving and performance optimizing nature of

the program transformations that compiler optimizations perform by construc-

tion, it can be natural to simply reason that compiler optimizations offer ob-

vious benefits for symbolic execution similar to their benefits for traditional

execution [7] However, such reasoning is complicated by the fact that sym-

bolic execution relies on an SMT solver [8] that is used to check for each

path explored, the satisfiability of its path condition, which represents condi-

tions on inputs required to execute that path, such as branch conditions and

in-bounds load/store conditions. The issue that complicates applying a com-

piler optimization to symbolic execution is that while it is easier to predict

that eliminating instructions, removing redundant computations, or enabling

other optimizations typically reduces program runtime in standard execution,

a similar reduction is not so obvious in symbolic execution because the main

bottleneck for symbolic execution is the SMT solving time and moreover, the

SMT solver is used as a black-box. In fact, some optimizations are simply irrel-

evant to the path conditions (and thus have no impact on SMT solving time),

and others like transforming loop variables to promote further loop optimiza-

tions might even generate path conditions that are harder for the solvers to

handle. To our knowledge, previous research has not rigorously studied the

relation between compiler optimizations and symbolic execution.

This thesis presents our study of 33 compiler optimizations imple-

mented by the LLVM compiler and used by KLEE . Our choice of KLEE

is driven by its industrial strength implementation and basis on the advanced
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compilation infrastructure of LLVM. Specifically, we study three core research

questions. One, we study how different optimizations influence the perfor-

mance of KLEE for Unix Coreutils. Coreutils are a set of programs that

KLEE handles very well. The initial embodiment of KLEE found a number

of previously unknown bugs in several programs in Coreutils [6]. Subsequently,

KLEE was applied to test a number of more recent versions of Coreutils [9].

Two, we study how the influence of compiler optimizations varies across two

different classes of programs: (1) Coreutils; and (2) NECLA benchmarks [10],

which consist of smaller programs that are designed specifically to explore the

strengths and weaknesses of static analyses. Three, we study how the influ-

ence of compiler optimizations varies across three different back-end constraint

solvers that KLEE supports: STP [8], Z3 [11], and Boolector(Btor) [12]. The

STP solver is the primary solver for KLEE . Recent work on KLEE [13] added

support for Z3 and Btor. We conduct our study in the context of using depth-

first search for symbolic execution, which is a deterministic search strategy

employed by a number of standard symbolic execution tools, e.g., Symbolic

PathFinder [14] for Java.

Our main findings are:

• Certain compiler optimizations influence symbolic execution more than

the other optimizations. On average, applying optimizations makes sym-

bolic executions worse for Coreutil programs. Moreover, using a combi-

nation of optimizations makes symbolic execution even worse, and KLEE
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’s default settings are in general not optimal for symbolic execution of

Coreutils programs.

• The influence of compiler optimizations varies across the two program

classes. Specifically, optimizations help symbolic execution of NECLA

benchmarks. Moreover, the optimizations that have the maximum influ-

ence on NECLA benchmarks are a subset of those that have the highest

influence on Coreutils. Furthermore, applying more optimizations does

not necessarily make symbolic any better, regardless of the order, even

for NECLA benchmarks.

• The influence of compiler optimizations is similar across the three solvers.

Moreover, the relative performance of the solvers is similar across differ-

ent programs even in the presence of compiler optimizations; specifically

STP performs better than Z3 and Btor.

We hope our study provides a useful first step in motivating new re-

search on investigating compiler optimizations for symbolic execution.
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Chapter 2

Motivating Examples

This section presents two small examples to demonstrate that compiler

optimizations can sometimes reduce and sometimes increase the number of

SMT queries.

Our first example uses loop fusion, which consists of combining loops

that have statements in common to avoid redundant computations across the

loops. Figure 2.1 shows the example code before and after the loop fusion

optimization. We mark the change in grey.

In this example loop fusion helps symbolic execution because the branch-

ing conditions that are present at the lower level representation of the code

are reduced as the second loop is removed. The number of queries sent to the

solver is 208 before the optimization and 106 after the optimization, which is

expected given that two similar loops are converted into one.

Next, we present an example that uses aggressive dead code elimination,

which assumes all instructions are dead unless proven otherwise and tries to

eliminate dead statements within loop computations. The code before and

after the optimization is shown in Figure 2.2. We mark the change in grey.

In this case, symbolic execution before the optimization requires 63

5



1 int main() {
2 int a;
3 klee_make_symbolic(&a,

sizeof(a), "a");
4 klee_assume(a > 0);
5 klee_assume(a < 51);
6 int x = 0;
7 int y = 0;
8 int i;
9 for (i=0;i<a+1;i++)

10 x = x + 3;
11 for (i=0;i<a+1;i++)
12 y = y + 4;
13 return x + y;
14 }

1 int main() {
2 int a;
3 klee_make_symbolic(&a,

sizeof(a), "a");
4 klee_assume(a > 0);
5 klee_assume(a < 51);
6 int x = 0;
7 int y = 0;
8 int i;
9 for (i=0;i<a+1;i++) {

10 x = x + 3;
11 y = y + 4;

12 }
13 return x + y;
14 }

Figure 2.1: A compiler optimization example that reduces SMT queries for
symbolic execution.

queries whereas it requires 154 queries afterwards. This can be explained by

the fact that the starting condition of the first loop gets more complicated

after the optimization to avoid doing the redundant computations. Although

this is favorable in terms of execution time, the resulting path conditions in

the context of symbolic execution are harder to analyze.
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1 int main() {
2 int N;
3 int i;
4 klee_make_symbolic(&N,

sizeof(N),"N");
5 klee_assume(N>0);
6 klee_assume(N<10);
7 int a[10];
8 for(i=0;i<N;++i) {
9 a[i]=i;

10 }
11 for(i=0;i<N-3;++i) {
12 a[i]=0;
13 }
14 int sum=0;
15 for(i=0;i<N;++i)
16 sum+=a[i];
17 return sum;
18 }

1 int main() {
2 int N;
3 int i;
4 klee_make_symbolic(&N,

sizeof(N),"N");
5 klee_assume(N>0);
6 klee_assume(N<10);
7 int a[10];
8 for( i=N-3 ;i<N;++i) {
9 a[i]=i;

10 }
11 for(i=0;i<N-3;++i) {
12 a[i]=0;
13 }
14 int sum=0;
15 for(i=0;i<N;++i)
16 sum+=a[i];
17 return sum;
18 }

Figure 2.2: A compiler optimization example that increases SMT queries for
symbolic execution.
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Chapter 3

Background

This section gives background on symbolic execution, the KLEE tool,

and compiler optimizations.

3.1 Symbolic Execution

Symbolic execution [15] treats user inputs as symbolic values instead of

concrete values, so that the execution to be performed covers many potential

concrete executions at the same time. To do so, the conditions to reach the

different control points in the program are maintained together with sanity

checks (such as array indices in bounds). Conceptually, branching instructions

create a fork in the symbolic exploration, which considers the execution when

the branch is false as well as when it is true. Symbolic execution requires

solving the path conditions to check their feasibility and avoid exploration

of known infeasible paths. Thus, the complexity of the path conditions is in

practice a key bottleneck for the scalability of symbolic execution.

8



3.2 KLEE and LLVM

KLEE is a symbolic execution engine built on top of the compilation

framework LLVM[16]. LLVM grew as an academic project to focus efforts on

implementing a strong compiler back-end that was independent of the front

end. One of LLVM’s best features is its well-defined intermediate representa-

tion(IR), over which the back-end operates. The main idea is that multiple

front-ends can be plugged into the compiler as long as they produce the cor-

rect IR, and similarly, the optimizations and target-generation plugins can be

developed independently as long as they can handle the input IR. Ultimately,

it has become a widely used compiler, being competitive in performance with

GCC. The IR is based on single-static assignment form (SSA)[17], which means

that, when possible, variables are defined only once among any execution path.

This allows for easier tracking of the values of variables, and hence code that is

easier to analyze at compile-time, and benefiting the application of optimiza-

tions.

KLEE supports test input generation with respect to given input bounds.

It has been shown to provide excellent program coverage in general, over 90%

in average of the coreutils benchmarks, and has been able to find bugs in these

programs that remained undetected for many years. KLEE ’s error reporting

provides useful information for fault localization during debugging. The exist-

ing version of KLEE allows either the application of the entire set of compiler

optimizations in LLVM or no application of transformations.

9



3.3 Compiler Optimizations

Compiler optimizations transform the source program into a more ef-

ficient (i.e. faster, smaller, less power-consuming) target program to be ex-

ecuted. Since KLEE is built on top of LLVM, we study the effect of the

LLVM optimizations in symbolic execution. These optimizations are mostly

loop transformations, conversion of memory operations to register operations,

simplifications of computed expressions and elimination of redundant instruc-

tions. These are all transformations that are well defined over lattices using

the data flow analysis framework[18]. They have a natural implementation as

a fix-point computation algorithm. These optimizations or similar ones have

been described in traditional textbooks and dissertations [1][19][20].

10



Chapter 4

Experimental Study

In this section we will first define our research questions. Given these

question we will then describe our design of a series of experiments, including

independent and dependent variables. Then we will present and analysis the

results and give our answer to the defined questions and our explanation in

Section 5

4.1 Research Questions

We study the following research questions in this thesis:

RQ1: How do LLVM compiler optimizations influence KLEE’s per-

formance for Coreutil programs?

Given the above motivative examples, we would like to study more about how

LLVM compiler optimizations influence symbolic execution with respect to

the Coreutil programs. More specifically, first we want to know if compiler

optimizations are generally good or bad to symbolic execution for Coreutils.

Also, we would like to find out whether there are any specific optimization flags

that have great impact on symbolic execution. Moreover, we want to observe if

11



adding more optimization flags, or having a combination of optimization flags,

leads to better or worse results, and if KLEE ’s default compiler optimization

settings are optimal for Coreutils or not.

RQ2: Is the influence of compiler optimizations on symbolic execu-

tion consistent across different program classes?

Different programs may behave differently even for the same setup. Therefore,

it might be not very convincing if we only conduct experiments on Coreutil

programs. We want to see if we could address something in common from

benchmarks with different characteristics and different sizes, and therefore we

choose another suite of benchmarks to compare the effect of compiler opti-

mizations on symbolic execution and observe the variation.

RQ3: How do different solvers influence the performance of different

optimizations?

Even if we apply the same optimizations on the original program before sym-

bolic execution, different constraint solver may also have influences on the

result of symbolic execution and give different results. We would like to com-

pare the performance of symbolic execution with different solvers after apply-

ing different optimizations to see if the behaviors of different optimizations are

consistent among different solvers.

RQ4: How robust are different solvers with respect to different com-

12



piler optimizations?

Another dimension that we want to study for constraint solvers is how robust

the solvers are. In other words, we want to know if the best solver is always

the best for different programs. A robust solver should perform good most

of the time regardless of different optimizations, and we will compare the ro-

bustness for different solvers. Note that while RQ3 studies the influence of

different solvers for compiler optimizations, here RQ4 focuses on the influence

of different compiler optimizations for various solvers.

4.2 Experiment Setup

We modified KLEE so that it can take an extra flag specifying which

optimization flag(s) to apply before symbolic execution. We use our modified

version for all our experiments. For other options of KLEE we use the ones

similar to KLEE documentation [21]. The main changes that we have made

for the setup is that we use DFS search heuristic instead of KLEE ’s default

random search heuristic in order to have more deterministic results. Also,

we disable the caching of KLEE for all experiments in order to exclude the

influence of caching on symbolic executions.

4.2.1 Independent Variables

Different flags. LLVM has a rich set of optimization flags, and the

number is still increasing as LLVM is evolving. Among all of them we choose

all 33 flags that KLEE uses inside its –optimize option. This option is the

13



Program ELOC GLOC Program ELOC GLOC
base64 3989 105 nice 4010 59

basename 4026 39 nl 10037 211
chcon 4343 195 od 4463 711
cksum 3983 62 paste 3837 187
comm 3997 98 pathchk 3857 132

cut 4195 296 printf 4251 257
dd 4734 561 readlink 4154 50

dircolors 4093 190 rmdir 3892 72
dirname 3889 31 setuidgid 3878 77

du 5790 302 sleep 4199 46
env 3937 45 split 4428 217

expand 3916 151 sum 4068 95
expr 9565 338 sync 3919 20
fold 3891 113 tee 3966 69

groups 4002 37 touch 4744 145
link 3829 28 tr 4150 659

logname 3902 25 tsort 3856 203
mkdir 4213 66 unexpand 3903 194
mkfifo 3959 47 unlink 3865 25
mknod 3840 80 wc 4075 262

Table 4.1: List of all Coreutil programs that we use in our experiment.

optimization option comes with KLEE . It applies 33 different optimization

flags provided by LLVM in a certain order. The set of these 33 flags contains

most commonly used flags in compiler optimization. We study the effect of

each of them, and some of their combinations. In later part of this thesis we

will refer the –optimize option that comes with KLEE as ALL optimization.

Different programs. We study two different sets of programs, Unix

Coreutils 6.11, and the NECLA Static Analysis Benchmarks (necla-static-

small) [10]. Many researches on symbolic execution use KLEE as the symbolic

14



execution tool to run their experiments against Coreutils. This experiment

was originally proposed by the authors of KLEE [6]. We conduct studies

with similar setup as the one that used by most researchers and select 40

different Coreutils programs for experimental subjects, with the changes of

search heuristic option mentioned above. Table 4.1 lists of all of the Coreutil

programs studied in this work with their ELOC and GLOC. ELOC shows the

size of the programs in terms of the number of executable lines of code [22],

while GLOC shows the lines of code excluding library and head code, e.g., the

lines of code directly traced by gcov, which is a tool used in conjunction with

GCC to test code coverage in programs [23]. The NECLA benchmarks [10]

are a traditional set of C benchmarks to test the performance of compilers.

Normally they are of small sizes, loop intensive and they perform operations

with integer variables and arrays. We modified some of them by changing some

variables inside them to symbolic variables, and adding some nondeterministic

bounds to these variables inside the program to make them compatible with

KLEE .

Different solvers. The latest version of KLEE support three different

types of solvers: STP, Z3 and Btor [13]. The STP solver is the native solver

integrated with KLEE , and the other two are recently supported. We would

like to study and compare the effect of all of them together with different

compiler optimizations

15



4.2.2 Dependent Variables

For different experiments we would like to measure different dependent

variables according to the property of each experiment design. Specifically

there are two types of experiments, and we list the dependent variables for

each of them.

Limited time. For all Coreutil programs, since they are normally

large and complicated, we will limit the execution time and halt the execution

when the specified time reaches. For different setups we will choose 5, 10,

20 or 30 minutes execution time. We measure both line and branch coverage

after the execution stops. By comparing different coverage numbers using the

same execution time but different optimizations, we could see the performance

difference between different optimization flags.

Unlimited time. For the NECLA benchmarks, the program size is

usually very small and they do not require complicate inputs as the Coreutils

need. Therefore for these program we let the program finish execution. In

this case, we measure number of instructions, time needed for execution and

number of solver calls. When program finish execution, normally they will

give the same coverage. Therefore we can compare the execution time and

also the number of solver calls. With the same coverages shorter time and less

number of solver calls means that symbolic execution performs better.
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Chapter 5

Result Analysis

We design different experiment to address different research questions.

We will describe them here in more detail, present the experiment results, and

give our analysis and explanation.

5.1 RQ1: Influence of optimizations on symbolic exe-
cution

The main question we would like to answer is how compiler optimiza-

tions influence symbolic execution for Coreutil programs. Specifically, we

would like to know whether compiler optimizations are generally good or bad

for symbolic execution. Also, we believe that among all optimization flags,

there are some flags which has more influences than the others, and we would

like to verify if our assumption is correct. Moreover, we want to know whether

a combination of optimization flags makes symbolic execution better or worse,

and if KLEE ’s optimization setting is optimal for symbolic execution of Core-

util programs.

With these questions, we design several experiments. We will present

them in the following sections.
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5.1.1 Finding the determining flags

We combine all the 40 studied Coreutils programs with each of the 33

optimization flags mentioned in Section 4.2.1 , plus no optimization (NO) and

klee’s optimization option (ALL) that comes with KLEE . We limit each run

to 5 minutes and record the line coverage for each run. Then, we simply divide

the line coverage after each optimization by the line coverage of NO, and get a

ratio. We consider it as a change if the ratio is not equal to 1, which means the

line coverage after applying certain optimization is different from not applying

any optimization. All flags we use and the number of changes that make are

shown in Table 5.1, and the raw data is shown in Figure A.1 in Appendix A.

From Table 5.1 we can see that among all 33 optimization flags and the

ALL flag, many of them only make changes for less than 10 programs. From

the actual raw data we can observe that there are some programs whose result

will be changed after applying almost every single flag, and these programs con-

tributes a lot to those changes with small numbers. However, there are certain

flags that make significant changes to most programs. The ALL flag makes

most of the changes to the program, because it applies all other optimiza-

tion flags in a certain order. We also observe that InstructionCombining(IR)

makes the second most changes to the programs. Also, IndVarSimplify(IVS),

PromoteMemoryToRegister(PMTR) and LoopRotate(LR) makes more than or

about half of the programs to change.

We could further separate the above changes into two categories: the

ones that making symbolic execution better (ratio greater than 1) and the ones

18



Optimization Changes Optimization Changes
ALL 34 LoopUnroll 5
InstructionCombining 29 ArgumentPromotion 4
IndVarSimplify 20 DeadStoreElimination 4
PromoteMemoryToRegister 19 DeadTypeElimination 4
ScalarReplAggregates 19 FunctionAttrs 4
LoopRotate 11 IPConstantPropagation 4
AggressiveDCE 8 LoopDeletion 4
GVN 8 MemCpyOpt 4
SCCP 8 PruneEH 4
LoopUnswitch 7 RaiseAllocation 4
StripDeadPrototypes 7 TailCallElimination 4
CondPropagation 6 CFGSimplification 3
FunctionInlining 6 DeadArgElimination 3
JumpThreading 6 GlobalDCE 3
ConstantMerge 5 GlobalOptimizer 3
LICM 5 Reassociate 3
LoopIndexSplit 5 SimplifyLibCalls 3

Table 5.1: Number of changes caused by applying individual flag.

-­‐30	
  

-­‐25	
  

-­‐20	
  

-­‐15	
  

-­‐10	
  

-­‐5	
  

0	
  

5	
  

10	
  

Or
igi
na
lOp
0m
iza
0o
n	
  

Ins
tru
c0
on
Co
mb
ini
ng
	
  

Ind
Va
rSi
mp
lify
	
  

Pro
mo
teM

em
ory
To
Re
gis
ter
	
  

Sca
lar
Re
plA
gg
reg
ate
s	
  

Lo
op
Ro
tat
e	
  

Ag
gre
ssi
ve
DC
E	
  

GV
N	
  

SC
CP
	
  

Lo
op
Un
sw
itc
h	
  

Str
ipD
ea
dP
rot
oty
pe
s	
  

Co
nd
Pro
pa
ga
0o
n	
  

Fu
nc
0o
nIn
lin
ing
	
  

Jum
pT
hre
ad
ing
	
  

Co
ns
tan
tM
erg
e	
  

LIC
M	
  

Lo
op
Ind
ex
Sp
lit	
  

Lo
op
Un
rol
l	
  

Ar
gu
me
ntP
rom

o0
on
	
  

De
ad
Sto
reE
lim
ina
0o
n	
  

De
ad
Ty
pe
Eli
mi
na
0o
n	
  

Fu
nc
0o
nA
Rr
s	
  

IPC
on
sta
ntP
rop
ag
a0
on
	
  

Lo
op
De
le0
on
	
  

Me
mC
py
Op
t	
  

Pru
ne
EH
	
  

Ra
ise
All
oc
a0
on
	
  

Ta
ilC
all
Eli
mi
na
0o
n	
  

CF
GS
im
pli
fic
a0
on
	
  

De
ad
Ar
gE
lim
ina
0o
n	
  

Glo
ba
lDC
E	
  

Glo
ba
lOp
0m
ize
r	
  

Re
ass
oc
iat
e	
  

Sim
pli
fyL
ibC
all
s	
  

Figure 5.1: The influence of different compiler optimization flags to programs
under test.
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making symbolic execution worse (ratio smaller than 1). Figure 5.1 illustrates

this separation. The x-axis represents different optimization flags. The bar

above x-axis represents positive changes and below means negative changes.

From this figure we could have a very interesting observation that a single

flag tends to make symbolic execution worse rather than better, since for most

programs the light gray area below x-axis is larger than the dark area above x-

axis. This observation makes us think that, although compiler optimization is

good for normal execution, it might be bad for symbolic execution in general

even for a single flag. Then we designed more experiments to study if our

assumption holds.

We consider the above top five flags as the "determining flag" for our

setup, since they contribute the most in making symbolic execution different

from applying no optimization. We will further study the effect for these flags

in later experiments.

5.1.2 Analyzing the determining flags

Using the five determining flags from Section 5.1.1, we study more on

the effect of them to symbolic execution. We run KLEE using NO, ALL and

these five determining flags one by one, on all 40 Coreutils listed in Table 4.1,

and limit the time to 5, 10, 20 and 30 minutes accordingly using DFS heuristic.

Again, we first apply NO for different time limits and get the line and branch

coverage for each run as the "base". Then we apply either ALL optimization

or a single optimization flag to get the line coverage and branch coverage after
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5min 10min 20min 30min
ALL 0.826 0.827 0.837 0.835
IVS 0.968 0.993 1.017 0.982
IC 0.898 0.899 0.910 0.881
LR 0.972 0.976 0.971 0.969

PMTR 0.974 0.969 0.960 0.956
SRA 0.974 0.972 0.965 0.957

Table 5.2: Average line coverage ratio of each optimization flag.

optimization. Then we divide the new number by the "base" to get the ratio.

All the raw data in this experiment is shown in Figure A.1-A.8 in Appendix A,

and Table 5.2 and 5.3 list the average ratio of line and branch coverages for

all Coreutil programs after applying each optimization flag. Here a number

greater than 1 means it performs better than not applying any optimizations

for a given time limit, and worse otherwise. We also list the the box plots of the

actual line and branch coverage for this set of experiment in Figure 5.2 and 5.3.

In each figure, the four sub-figures are box plot of the coverage running KLEE

for 5, 10, 20 and 30 minutes, and each box is the result of applying one of the

optimization flags mentioned above for the corresponding time. We mark the

results come with KLEE (NO and ALL) as gray and other five individual flags

(IVS, IC, LR, PMTR and SRA) as red.

From the above two tables and corresponding box plots, we can make

some interesting observations:

First, although the performance for an individual optimization on sym-

bolic execution varies from program to program according to the box plot, the
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Figure 5.2: Box plot for line coverage of the Coreutil experiment.
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Figure 5.3: Box plot for branch coverage of the Coreutil experiment.
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5min 10min 20min 30min
ALL 0.847 0.861 0.860 0.860
IVS 0.955 0.973 1.007 0.965
IC 0.910 0.908 0.927 0.897
LR 0.967 0.977 0.977 0.965

PMTR 0.960 0.963 0.959 0.946
SRA 0.960 0.965 0.962 0.946

Table 5.3: Average branch coverage ratio of each optimization flag.

average result shows the trend that compiler optimization is in general making

symbolic execution worse for Coreutils programs. In both tables, most of the

average ratios is smaller than 1, which indicates that the average coverage of

applying optimizations is not as good as not applying any optimizations. Sim-

ilar observations can be made in the box plots, where NO gives better average

coverage for all time limitations than all the other single compiler optimization

flags and the ALL optimization. This result is pretty surprising to us, since

KLEE ’s documentation[7] says the following:

"We can help with that problem (and others) (note from author: low

coverage) by passing the –optimize option to KLEE. This will cause KLEE to

run the LLVM optimization passes on the bitcode module before executing it;

in particular they will remove any dead code. When working with non-trivial

applications, it is almost always a good idea to use this flag. Here are the

results from running again with –optimize enabled"

It seems that the authors of KLEE simply applies compiler optimiza-

tions without a very deep understanding about how exactly those optimization
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will work for symbolic execution. In any case, our experiment result does not

support the previous quote.

Second, from the result we can observe that among all the optimization

flags that we choose, the ALL flag performs worse than all single flags for both

line and branch coverage, which is even more surprising. Take line coverage

and 30 minutes as an example, the ALL flag only gives an average ratio of

0.835, while the ratio for all single flags are grater than it. The worst single

flag, IC, gives a ratio 0.881, and all the others give a ratio greater than 0.9. We

could also easily make similar observations in the box plot since the boxes for

ALL flag are always lower than the others. As mentioned above, KLEE is using

a traditional order of optimization which in general helps with program execu-

tion. However, according to the experiment result the ALL optimization that

KLEE uses is the worst optimization for symbolic execution in our settings.

Therefore, we can conclude that KLEE ’s default setting for optimization is

not optimal for symbolic execution, at least for our experiment setup. This

observation leads us to think about maybe it is possible that combination of

more optimization flags will make symbolic execution even worse. In the next

section we will use a new set of experiments to explore this question.

5.1.3 Study on different optimization combinations

In order to study the effect of compiler optimization combination on

symbolic execution, we first come up with four different combinations based

on our knowledge. We combine the determining flags that we find out from
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Name Flags
TRAD PMTR, SRA, IVS, LR, IC,

PMTR
EXTR PMTR, IC, SRA, IC, LR, IC,

IVS, IC, SRA, IC, PMTR
C3 PMTR, IC, SRA, IC
C4 LR, IVS, PMTR, IC, SRA, IC

Table 5.4: List of different combinations.

previous experiments in different orders. One flag may appear more than once.

The first combination(TRAD) is an arrangement according to the tra-

ditional compiler optimization order. The idea is from the famous "Dragon

Book" of compiler[1]. It suggests a normal order of applying optimizations that

is good for program execution in general. The second combination (EXTR) is

extracted from KLEE ’s original optimization only using the determining flags,

with the same order and number of occurrences. The third and fourth combi-

nations (C3 and C4 ) are based on our understanding of compilers. Table 5.4

lists all of them.

We first run KLEE using NO and ALL. After that we apply these

combinations one by one. Each run in this section takes 10 minutes. Similar

to previous experiments, we calculate the ratio between the line coverage or

branch coverage of the optimized execution to the original execution with NO

and put the results in Table 5.5. We also put the result of the worst single

flag, IC, in this table in order to make further comparison. For the average

coverage line and branch coverage, we also draw similar box plots in Figure 5.4.
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Figure 5.4: Box plot for line and branch coverage of the Coreutil experiment
for different combinations.

Line Coverage Branch Coverage
ALL 0.843 0.855

TRAD 0.849 0.864
EXTR 0.844 0.859

C3 0.843 0.855
C4 0.827 0.861
IC 0.899 0.908

Table 5.5: Average line and branch coverage ratio of each flag combination
and each individual flag.

We mark NO and ALL that come with KLEE in gray, our four combinations

TRAD, EXTR, C3 and C4 in red, and the worst single flag IC in blue. All the

raw data for this experiment is shown in Figure A.9 and A.10 in Appendix A.

From Table 5.5 we can see that none of the optimization gives an av-

erage ratio greater than 1, which indicates that applying a combination of

optimizations tends to make symbolic execution worse. From Figure 5.4 if we
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compare the box of ALL with the other combinations that we have, we could

see that they are almost the same. This observation shows the effectiveness

of the chosen determining flags, that the combinations of the five determining

flags have similar effect to ALL. Also, if we compare all the combinations in-

cluding ALL with the worst single flag IC, we could observe that all of them

are worse than the worst single flag, and even worse than NO. Therefore we

can conclude that applying more optimization flags within a given time limit

tends to make symbolic even worse than applying no optimization or a single

optimization.

To sum up, in this experiment setup we have the following findings:

First, on average, given limited time and using DFS search heuristic,

compiler optimizations are making symbolic execution for Coreutil programs

worse if we measure line coverage and branch coverage.

Second, there are several determining flags which have greater influ-

ences on symbolic execution. According to our experiment setup the top five

flags are IC, IVS, PMTR, SRA and LR. They have most influences to symbolic

execution among all optimization flags that we choose, and the combination

of them provides similar result to the ALL flag that comes with KLEE .

Third, applying a combination of optimizations is not a good choice.

According to our experiment, applying more optimizations tends to make sym-

bolic execution even worse, and the most complicated ALL flag gives the worst

result. Therefore, KLEE ’s default compiler optimization settings is not opti-
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mal for Coreutil programs.

5.2 RQ2: Result consistency across different program
classes

In section 5.1 we studied the effect of compiler optimizations on sym-

bolic execution based on the Coreutil programs, which is a set of real-world

programs and usually with complicated structure. In this section we will con-

duct similar experiments on another class of programs. We choose a small set

of NECLA Static Analysis Benchmarks [10]. These benchmarks are C based

programs that are often used to test the performance of compilers. Many of

them are loop intensive and they perform integer and array operations for

most of the time.

For all the following experiments in this section we use similar options

as those for Coreutil programs. We use DFS search heuristic and we disable

caching of KLEE . However, because NECLA are very simple programs that

KLEE can finish symbolic execution soon and give the same coverage, in this

experiment we let KLEE finish executing instead of specifying a time limit.

We record the number of instructions, time for each execution, and number of

solver calls. Again we use our modified version of KLEE so that it can take a

certain optimization flag or flag combinations as an argument.
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Flag ex2 ex3 ex8 ex9 ex30 ex34

In
st
rs

NO 12423 6077 5189 11511 6851 5381
ALL 2174 1884 1888 2216 1945 1929
IC 5188 5895 5153 5285 5234 5232

PMTR 8505 4014 3334 8592 4369 3436
SRA 8505 4014 3334 8592 4369 3436

T
im

e

NO 1.44 0.14 0.04 0.94 0.33 0.15
ALL 0.2 0.02 0.05 0.14 0.07 0.09
IC 0.06 0.12 0.05 0.07 0.06 0.09

PMTR 1.34 0.13 0.03 0.96 0.32 0.15
SRA 1.36 0.13 0.03 0.95 0.32 0.15

Q
ue
rie

s

NO 528 42 16 273 122 19
ALL 52 6 17 36 30 19
IC 19 33 17 18 25 19

PMTR 528 42 16 273 122 19
SRA 528 42 16 273 122 19

Table 5.6: Symbolic execution result for applying single optimization on several
NECLA benchmarks.

5.2.1 Single optimization flag

We first apply NO, ALL, and all 33 individual optimization flags with

similar setup as the previous experiments, and record the result for each of

them. However, among all 33 optimization flags that KLEE has used, we

notice that only three flags, IC, PMTR and SRA, make a change between the

optimized program and original program in either execution time, number of

solver calls or number of instructions. In order to save space and show only

meaningful results, we only list the result of applying NO, applying ALL, and

applying these three individual flags in Table 5.6.

From Table 5.6 we can observe that, different from the previous Core-
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util experiment, the ALL optimization, in many of the programs, helps with

symbolic execution by significantly reducing the execution time and number

of solver calls while giving the same coverage. This result contradicts with our

previous results that compiler optimization makes symbolic execution worse.

However, we believe that both results are understandable because these two

experiment are of two different program classes. All the NECLA programs are

very small and are intentionally designed to test the performance of compilers,

so there is a lot of space left for optimizations. However, for the real-life Core-

utils, the program size is usually very large and the they do more realistic jobs

other than array operations and they use more complicated data types and

data structures. Therefore, the space left for optimization is very narrow and

applying some optimizations might even make the program structure more

complicated.

Another observation we can make is that the behavior of IC is very

similar to ALL, which indicates that for this experiment setup IC might be

the most significant determining flag. The other two optimizations only change

the number of instructions, while all the remaining flags that are not listed in

Table 5.6 do not change anything. Also, another very interesting observation

is that, all the three flags that we list for this experiment are a subset of

the determining flags that we get from the previous Coreutil experiment. This

observation may indicate that there might be several determining optimization

flags in common across different program classes, which have more influence

on symbolic execution than the others. This observation could encourage us
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Flag ex2 ex3 ex8 ex9 ex30 ex34

In
st
rs

I+P 3380 3926 3352 3465 3389 3386
I+S 3380 3926 3352 3465 3389 3386
P+I 3380 3926 3352 3465 3389 3386
P+S 8505 4014 3334 8592 4369 3436
S+I 3380 3926 3352 3465 3389 3386
S+P 8505 4014 3334 8592 4369 3436

T
im

e

I+P 0.07 0.13 0.06 0.11 0.08 0.12
I+S 0.06 0.11 0.07 0.07 0.07 0.1
P+I 0.06 0.13 0.05 0.06 0.07 0.09
P+S 1.33 0.13 0.04 0.97 0.31 0.15
S+I 0.07 0.19 0.05 0.07 0.06 0.11
S+P 2.13 0.16 0.04 1.05 0.39 0.17

Q
ue
rie

s

I+P 19 33 17 18 25 19
I+S 19 33 17 18 25 19
P+I 19 33 17 18 25 19
P+S 528 42 16 273 122 19
S+I 19 33 17 18 25 19
S+P 528 42 16 273 122 19

Table 5.7: Symbolic execution result for two optimization flags on several
NECLA benchmarks.

to do further study.

5.2.2 Multiple optimization flags

Similar to the previous experiment, we also want to explore the effect of

different flags combinations for the small benchmarks. Since this time we only

have 3 determining flags, we simply combine every two of them in different

order, and list the result in Table 5.7. Note that in this table, for simplicity

we use I for IC, P for PMTR and S for SRA.
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Table 5.7 shows the result after a combination two out of the three

determining flags. There are two observations that we could make for this

case. First, applying one more flag on the most significant determining flag

(which is IC in our case) does not help any more in symbolic execution. For

example, in ex2 applying I+P gives almost the same result as applying IC

only. Second, the order of flags does not change the execution results. Take

ex2 as an example again, applying IC before PMTR gives the same result as

applying PMTR before IC. We believe that all above behaviors are due to the

fact that IC is very effective for our selected benchmarks, since they are share

similar characteristics and it is possible that one optimization in our case will

outperform all other flags for our selected benchmarks.

Since all these small programs are used to test the functionally of com-

pilers and finding compiler bugs and their sizes are usually small, they do not

resemble the real-life programs, and the conclusion we get for this experiment

might or might not be applicable to real life programs. That is the main reason

why some of the results in this experiment is not in accordance to the results

from the Coreutils experiment. Actually, even for the Coreutil experiments

there are some cases where compiler optimizations help with symbolic execu-

tion. Therefore, we cannot yet claim that compiler optimization is good or bad

for symbolic execution for a specific program, since the program itself is still an

important factor. However, we think in future works if we could characterize

different programs into different categories, and study the effect of different

optimizations on each categories, it is very possible that we could get some

33



more concrete observation and generalize the effect of certain optimizations to

the result of symbolic execution of certain kinds of programs.

5.3 RQ3: Influence of solvers on optimizations

All previous results are based on the STP solver which comes with

KLEE . We also want to see the effect of different solvers working together with

different optimization flags. Recently Palikareva et al. proposed a new infras-

tructure for KLEE which make it to support different constraint solvers [13].

This infrastructure provides us a good opportunity to study the effect of mul-

tiple solvers, together with compiler optimizations, on symbolic execution.

We use the same 11 Coreutils and same setup as the authors used in

their paper for multi-solver support forKLEE [13]. Again, we use our modified

version of KLEE so that it can take one or more optimization flags. Using

the same determining flags that we mentioned above (NO, ALL and the five

determining optimization flags), we execute KLEE for 10 minutes for each run

and record the line and branch coverage for each program-optimization-solver

tuple. We disable caching in this experiment in order to get the result close

to the traditional symbolic execution. One thing to point out is that these 11

programs is not the same set as the above Coreutil examples, therefore we may

see the difference average coverages against previous Coreutil experiments.

The raw data is in Figure B.1 and B.2 in Appendix B.

First we want to study the influence of different solvers on different opti-

mizations, and to see if the performance of different optimizations is consistent
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NO ALL IVS IC LR PMTR SRA
STP 62.06 50.52 58.51 50.55 63.69 63.50 63.50
Z3 61.02 49.71 51.30 49.51 60.62 61.13 61.47

Btor 56.49 45.28 54.40 45.76 56.82 58.66 58.66

Table 5.8: Average line coverage of each optimization solver pair for all pro-
grams.

NO ALL IVS IC LR PMTR SRA
STP 74.05 60.85 69.87 60.94 74.59 75.24 75.24
Z3 73.97 59.65 62.12 59.83 73.37 73.20 74.01

Btor 65.32 50.91 62.44 52.42 65.59 67.89 67.89

Table 5.9: Average branch coverage of each optimization solver pair for all
programs.

across different solvers. From the data that we have, we calculate the average

line and branch coverages of all 11 programs, for each optimization-solver pair,

and list them in Table 5.8 and 5.9.

From Table 5.8 and 5.9 we can see that the behavior of different opti-

mization flags are slightly different working with different solvers, because the

coverages for the same optimization are different for different solvers. How-

ever, their relatively behavior are still the same. Same as previous Coreutil

experiments, if we horizontally compare the result for each optimization flag

for different solvers, we can see that the ALL optimization still performs the

worst compared with any single flags for branch coverage for all three solvers.

Also, we cannot observe a specific optimization-solver pair that gives abnor-

mally low or high coverage. Therefore, we can conclude that the performance

35



of different optimization is consistent among different solvers.

5.4 RQ4: Robustness of solvers to optimizations

Using the same data from section 5.3, we also want to study the perfor-

mance of different solvers for symbolic execution, and to see whether the result

of the solver changes a lot or not after applying different optimizations. In par-

ticular, we want to know how "robust" different solvers are. In other words,

we want to know for the same program whether the best solver is always the

best or not across different optimizations.

In Table 5.10 we calculate the average line and branch coverage for

each program-solver pair for different optimization flags. We also take the

average coverage for each solver and put that at the bottom of the table.

From these two tables, if we take a look at both the average line and branch

coverage, on average STP gives the best coverage compared with Z3 and Btor.

The results here are consistent with the findings mentioned in [13]. In their

work they showed that STP performs the best, or is more robust, among the

three solvers given unlimited time, and in our experiment we can show similar

result given limited time. Therefore we can strengthen the result that STP is

currently the known best solver for symbolic execution. Also, since there is

one solver already performs good, if we could find out the inner interaction

between symbolic execution and constraint solvers, it is very possible to design

better solvers specifically for symbolic execution.

Another observation we can make here is that although STP performs
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Line Coverage Branch Coverage
Program STP Z3 Btor STP Z3 Btor
base64 45.58 43.13 41.90 50.16 45.08 43.49
chmod 60.45 58.96 57.89 70.63 69.83 68.49
comm 70.41 64.43 63.26 87.35 86.12 86.12
csplit 38.38 38.38 45.79 41.74 41.74 50.48

dircolors 73.76 63.91 34.51 83.57 70.71 28.57
echo 67.13 66.99 67.68 74.39 74.39 74.39
env 77.14 77.14 77.14 96.10 96.10 96.10

factor 66.10 67.38 58.21 85.71 88.09 50.00
join 17.49 14.25 33.04 20.37 17.24 34.75
ln 65.24 59.50 58.03 72.03 69.77 69.47

fifo 66.26 66.26 53.50 89.14 89.14 77.71
Average 58.90 56.39 53.72 70.11 68.02 61.78

Table 5.10: Average line and branch coverage of each program-solver pair for
all optimizations.

the best on average, there are cases where other solvers performs better. For

example, for csplit, STP and Z3 are not as good as Btor. Again, the actual

result of symbolic execution really depends on the program executed. Different

programs have different characteristics and may result in different behaviors for

a specific optimization or solver. Therefore, in the future if we could categorize

programs according to their characteristics, and find the best optimization flags

and solvers for those characteristics, it is very likely that we could have a more

effective way to make symbolic execution performs much better for a certain

class of programs.

5.5 Threats to Validity

Threats to external validity. The main threat to external validity
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of our study is that our findings may not be generalizable for other subject

programs, symbolic execution tools, or compiler optimizations. To reduce this

threat, we studied two different set of subjects, each of which has been widely

used in software testing and analysis research. In addition, to make our re-

sults replicable, we used the widely used KLEE tool with the deterministic

DFS search heuristic, and the LLVM framework with 33 popular compiler op-

timizations. However, our results may still suffer from the threats to external

validity. Further reduction of these threats to external validity requires ad-

ditional studies using different symbolic execution tools with different search

strategies, more compiler optimizations, as well as more experimental settings,

e.g., longer time limitations for each symbolic execution run.

Threats to internal validity. The main threat to internal validity

of our study is that there may be potential faults in the studied symbolic

execution and compiler optimization techniques, as well as in our code for

data analysis. To reduce this threat, we used the mature symbolic execution

tool, KLEE and the compiler optimization flags in the widely used LLVM

framework. In addition, we reviewed all the code that we produced for our

experiments before conducting the experiments.

Threats to construct validity. The main threat to construct valid-

ity is the metrics that we used to assess the efficiency of symbolic execution

under different compiler optimizations. To reduce this threat, for our large

subjects, we limit the experimentation time and then check the statement and

branch coverage that symbolic execution with certain compiler optimizations
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can achieve. For our small subjects, we record the number of solver calls and

time taken by each configuration of symbolic execution to achieve full branch

and statement coverage.
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Chapter 6

Discussions and Future Work

Our experimental study investigates the relationship between compiler

optimization and symbolic execution. The following sections list the limita-

tions for our current work as well as the dimensions that our current work can

be extended.

6.1 Discussions
6.1.1 Search heuristics

All of our pervious experiments are based on the DFS search heuristic

in KLEE . We choose that in order to remove the nondeterminism as much

as possible. However, it turns out that DFS is not the best search heuristic

for symbolic execution. For example, if a program contains a loop, DFS tends

to go into the loop and symbolic execution might stuck inside the loop, and

therefore gives a low coverage. In fact, KLEE by default uses random search

heuristic instead of DFS. It is more practical and may give better coverage

since it could avoid the problem that we have mentioned above. However,

when we try the random search KLEE gives significantly different results ev-

ery time even if we use exactly the same setup and arguments. There is a
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tradeoff between which heuristic to use, to get better coverage or less non-

determinism. Since we would like to study the difference between different

compiler optimizations, the nondeterminism of each run must be as low as

possible, and that is why we choose DFS for our experiment.

6.1.2 Execution time

Another possible thing to do is to increase the time that we choose to

run symbolic execution. For each run, we use 5 minutes to find the determining

flag, 10 minutes to get the result for combination of flags and different solvers,

and for individual determining flags we use 5, 10, 20 and 30 minutes for all 40

coreutils. We have to admit that the time is not long enough for some cases.

However, since the scale of our experiments is very large, we cannot afford an

hour for each run given limited time. For example, if we want to explore all

coreutils to get the result for one hour execution, it will take 40 hours, plus

the time to generate test cases and outputs, for one single flag, and we have

to do the same thing for each time interval and each individual flag. In the

future, we plan to evaluate symbolic execution using more and longer time

constraints.

6.1.3 Number of optimizations and programs

The optimization flags that we explored are from the source code of

KLEE , and it is a list of all optimization flags that KLEE has used for its

own optimizations. LLVM has more optimization flags than our list, and it
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is possible that some flags not included in our list will have some impact on

symbolic execution as well. There are two reasons why we do not include a

full list of optimizations. First, similar to what we mentioned above, the time

constraint is a concern to us. More optimizations means more experiments,

and due to the time limitation we cannot afford that. Also, some of the non-

added optimization flags are rarely used even for modern compilers, or they

have many preconditions in order to be applied. Given more time we could do

the same experiment for the full optimization list. However, in the scope of this

empirical study we prefer not to use all of them, and we think it is a reasonable

tradeoff to choose. For the coreutil programs that we have chosen, the way

we choose coreutils is based on related researches and we use the programs

that other people uses. By doing this we can guarantee that our experiment

result is not biased and we can also compare our result with previous ones as

we did for the multi-solver study. Again, in the future we plan to explore all

the coreutils that KLEE supports, but we think our current choice is enough

for this study.

6.2 Future Work
6.2.1 Finding the best flag combination

As our experiment result shows, in general adding more optimization

flags may make symbolic execution worse. However, that is only a average

statistical observation and for certain programs there are some optimization

combinations which could make the symbolic execution better. We have tried
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several algorithms to dynamically search for the best single individual flag,

and tried to add more flags on the previous best one(s). However, these algo-

rithms turn out to be not as effective as we expected if we use the DFS search

algorithm given short execution time, and it will be too expensive for longer

time. We think if we can find a way to perform a static analysis of the pro-

gram, it is possible to get some information and generate a better combination

of optimization for a certain program.

6.2.2 Mutation testing

Due to its capability of simulating real faults, mutation testing has

been widely used to evaluate testing techniques. Since our execution time is

relatively short and we are using DFS search algorithm, KLEE cannot generate

a lot of test cases. We tried to perform mutation testing using the test cases

generated after running KLEE using DFS for 20 minutes, but only few test

cases kill the mutants. We think DFS is the main reason why KLEE cannot

explore many paths of the program and generate effective test cases, and it is

also possible that the mutation testing score will be better if we run KLEE

long enough. In any case, in the future we would expand the dimension of this

study to include mutation testing.

6.2.3 Deeper reasoning

All previous experiments are just empirical studies without knowledge

about compiler optimization nor the program itself. The results give the trend
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of the impact compiler optimizations have on symbolic execution, without

very deep reasoning. In the future for some cases where compiler optimiza-

tion makes symbolic execution better or worse, we would try to reason why

certain improvements or decrements happen by looking into the program and

the optimization itself. If we could find something in common for similar be-

haviors, it is possible to draw some conclusion based on that. For example,

loop intensive programs may behave very differently from program without

loops, and we can summarize the characteristics for program with loops and

try to find out the best optimization(s) for program with this characteristic.

Furthermore, with more knowledge about these characteristics, we can even

design a better solver or a better optimization for symbolic execution, since

from our experiment the overall performance of different solvers are different.

If any of the above two possibilities can be further explored, it is very likely

that the performance of symbolic execution can be greatly increased.
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Chapter 7

Related Work

While traditional work on compiler optimizations defined optimizations

and studied their effect [1], a focus of some recent research projects on compiler

optimizations has been the problem of selecting a likely optimal set of com-

piler optimizations for faster, smaller and less power-consuming object code. A

multi-objective optimization formulation of the problem was proposed in[24].

A machine-learning approach using performance counters with machine learn-

ing that takes in consideration the underlying hardware was presented in[25].

Their work was enhanced to be included as part of the gcc compiler[26]. These

are the so-called iterative compilation frameworks, where single flags are be-

ing added with the purpose of minimizing runtime of the benchmarks. The

work in [24] tries to optimize many objectives simultaneously by exploring the

search space instead of resorting to local search by adding flags iteratively. A

manual mechanism to select the best set of flags for Java was presented in

[27]. We are not aware of any study of the effect of compiler flags in symbolic

execution.

Our study of the influence of compiler optimizations on symbolic exe-

cution is driven by our overarching goal of making symbolic execution more
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efficient. To our knowledge, KLEE’s –optimize flag is the only previous work

that uses compiler optimizations in an attempt to achieve better performance.

There exist a number of other techniques for optimizing symbolic execution.

A couple of recent research projects proposed parallel symbolic execu-

tion [28–30]. Static partitioning [28] uses an initial shallow run of symbolic

execution to minimize the communication overhead during parallel symbolic

execution; the key idea is to create pre-conditions using conjunctions of clauses

on path conditions encountered during the shallow run and to restrict sym-

bolic execution by each worker to program paths that satisfy the pre-condition

for that worker’s path exploration. ParSym [29] parallelizes symbolic execu-

tion dynamically by treating every path exploration as a unit of work and

using a central server to distribute work between parallel workers. While this

technique implements a direct approach for parallelization [31, 32], it requires

communicating symbolic constraints for every branch explored among workers,

which incurs a higher overhead. Ranged symbolic execution [30] represents the

state of a symbolic execution run using a just concrete test input to provide a

lightweight solution for work stealing.

Compositional techniques for symbolic execution, introduced by PRE-

fix and PREfast [33], can handle large code bases but they do not handle

properties of complex data, such as heap-allocated data structures. Godefroid

et al.’s work on must summaries [34] also enables compositional symbolic exe-

cution [35] as well as compositional dynamic test generation [36] by statically

validating symbolic test summaries against changes. These techniques use
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logical representations for the summaries for sequential code.

Incremental techniques for symbolic execution utilize previous runs of

symbolic execution to optimize the current run. DiSE [37] uses a static anal-

ysis to determine the differences between two program versions and uses this

information to guide the execution of symbolic paths towards exercising that

difference. Memoise [38] builds a tree-based representation to store path con-

ditions and path feasibility results during a run of symbolic execution on one

program version and enables re-use of those results during a future run of sym-

bolic execution on a newer program version. The idea of caching constraints in

symbolic execution was first introduced by KLEE [39]; doing so allows KLEE

to achieve orders of magnitude speed-up because there are often many redun-

dant constraints during symbolic path exploration. The recently developed

Green solver interface [40] wraps every call to the solver to check if the result

is already available in its database of previous solver calls.
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Chapter 8

Conclusion

This thesis reported the first study (to our knowledge) on how standard

compiler optimizations influence symbolic execution. We studied 33 optimiza-

tion flags of the LLVM compiler infrastructure, which are used by the KLEE

symbolic execution engine. Specifically, we studied (1) how different opti-

mizations influence the performance of KLEE for Unix Coreutils, (2) how the

influence varies across two different program classes, and (3) how the influence

varies across three different back-end constraint solvers. Some of our findings

surprised us. For example, KLEE’s setting for applying the 33 optimizations

in a pre-defined order provides sub-optimal performance for a majority of the

Coreutils when using the basic depth-first search; moreover, in our experimen-

tal setup, applying no optimization performs better for many of the Coreutils.

This is because existing compiler optimizations, which have been tailored for

decades to effectively generate faster code, display the inconvenient side-effect

of altering its (typically branching) structure in a way that makes the pro-

gram harder to analyze. Nevertheless, we believe compiler optimizations have

an important role to play in symbolic execution. In future work, we plan to

explore the problem of defining effective compiler optimizations that are de-

signed in the specific context of symbolic execution and perhaps fine-tuned
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with respect to specific program constructs, such as branch conditions, and

control-flow structures, such as loops.
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Appendix A

Raw data for Coreutil experiments
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NO ALL IVS IC LR PMTR SRA
base64 40 14.29 36.19 63.81 40 40 40

basename 79.49 79.49 79.49 79.49 79.49 79.49 79.49
chcon 43.59 10.77 44.62 12.31 43.59 43.59 43.59
cksum 80.65 80.65 80.65 80.65 80.65 80.65 80.65
comm 73.47 46.94 69.39 55.1 59.18 58.16 58.16

cut 48.65 48.99 47.64 48.65 48.65 48.65 48.65
dd 10.34 9.63 10.34 9.8 10.34 10.34 10.34

dircolors 73.68 56.84 70 67.89 73.68 73.68 73.68
dirname 48.39 48.39 48.39 74.19 48.39 48.39 48.39

du 49.34 55.3 49.34 41.72 49.34 59.6 59.6
env 77.78 51.11 82.22 82.22 82.22 82.22 82.22

expand 41.06 44.37 41.06 49.01 41.06 39.07 39.07
expr 41.12 40.83 41.12 41.42 41.12 40.83 40.83
fold 64.6 47.79 45.13 49.56 64.6 41.59 41.59

groups 81.08 62.16 81.08 59.46 81.08 81.08 81.08
link 64.29 35.71 64.29 64.29 64.29 64.29 64.29

logname 56 52 56 56 56 56 56
mkdir 57.58 34.85 54.55 34.85 50 50 50
mkfifo 68.09 36.17 74.47 55.32 68.09 68.09 68.09
mknod 30 35 27.5 23.75 40 40 40

nice 50.85 57.63 50.85 50.85 42.37 42.37 42.37
nl 51.18 43.6 44.08 54.5 51.18 41.71 41.71
od 50.21 34.04 50.21 29.96 31.93 31.65 31.65

paste 67.38 45.45 48.13 37.43 67.38 67.91 67.91
pathchk 62.88 31.06 59.85 31.06 47.73 47.73 47.73

printf 28.79 35.41 27.63 67.7 12.84 42.02 43.58
readlink 76 54 76 46 76 76 76

rmdir 43.06 27.78 43.06 27.78 43.06 43.06 43.06
setuidgid 38.96 23.38 23.38 23.38 32.47 32.47 32.47

sleep 45.65 43.48 45.65 45.65 45.65 45.65 45.65
split 44.7 35.02 37.33 42.86 44.7 44.7 44.7
sum 86.32 85.26 86.32 85.26 86.32 86.32 86.32
sync 100 100 100 100 100 100 100
tee 75.36 59.42 75.36 75.36 75.36 75.36 75.36

touch 54.48 51.72 52.41 30.34 54.48 57.93 57.93
tr 25.34 34.45 39.91 4.7 34.29 34.14 34.14

tsort 6.9 6.9 6.9 6.9 6.9 6.9 6.9
unexpand 46.91 48.45 48.45 56.7 46.91 44.85 44.85

unlink 60 60 60 60 60 60 60
wc 59.16 51.91 53.44 52.29 59.92 58.78 58.78

Table A.1: Line coverage of different optimizations on different Coreutils for
5 minutes.
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NO ALL IVS IC LR PMTR SRA
base64 44.76 14.29 36.19 73.33 44.76 44.76 44.76

basename 79.49 79.49 79.49 79.49 79.49 79.49 79.49
chcon 46.67 10.77 47.69 12.31 46.67 46.67 46.67
cksum 80.65 80.65 80.65 80.65 80.65 80.65 80.65
comm 74.49 54.08 73.47 55.1 62.24 61.22 62.24

cut 48.65 48.99 47.64 48.65 48.65 48.65 48.65
dd 10.34 9.63 11.05 9.8 10.34 10.34 10.34

dircolors 73.68 71.05 70 67.37 73.68 73.68 73.68
dirname 74.19 48.39 100 100 74.19 74.19 74.19

du 56.29 59.27 56.29 42.05 56.29 59.6 59.6
env 77.78 51.11 82.22 100 82.22 82.22 82.22

expand 41.06 44.37 43.71 49.01 41.06 39.07 39.07
expr 48.52 48.22 41.72 48.22 42.31 42.01 48.22
fold 64.6 46.9 45.13 49.56 64.6 41.59 41.59

groups 81.08 62.16 81.08 59.46 81.08 81.08 81.08
link 64.29 42.86 67.86 64.29 64.29 64.29 64.29

logname 56 52 56 56 56 56 56
mkdir 56.06 34.85 65.15 34.85 56.06 50 50
mkfifo 74.47 36.17 74.47 55.32 74.47 74.47 74.47
mknod 43.75 33.75 51.25 25 43.75 50 50

nice 50.85 57.63 50.85 50.85 42.37 42.37 42.37
nl 51.18 45.02 44.08 60.66 51.18 46.92 46.92
od 50.21 38.82 50.21 29.96 31.93 31.65 31.65

paste 67.91 45.45 48.13 37.43 67.91 68.98 68.98
pathchk 64.39 31.06 60.61 31.06 47.73 47.73 47.73

printf 38.52 64.98 39.69 71.6 42.41 43.97 42.8
readlink 78 54 78 46 78 78 78

rmdir 43.06 27.78 43.06 27.78 43.06 54.17 54.17
setuidgid 40.26 23.38 40.26 23.38 32.47 32.47 32.47

sleep 45.65 43.48 45.65 45.65 45.65 45.65 45.65
split 44.7 44.24 37.33 42.86 44.7 44.7 44.7
sum 86.32 85.26 86.32 85.26 86.32 86.32 86.32
sync 100 100 100 100 100 100 100
tee 75.36 59.42 75.36 75.36 75.36 75.36 75.36

touch 66.21 51.72 65.52 30.34 66.21 66.21 66.21
tr 28.07 34.45 39.91 23.98 34.29 34.14 34.14

tsort 6.9 6.9 6.9 6.9 6.9 6.9 6.9
unexpand 46.91 48.45 48.45 56.7 46.91 44.85 44.85

unlink 60 60 60 60 60 60 60
wc 59.16 51.53 52.67 52.29 59.92 58.78 58.78

Table A.2: Line coverage of different optimizations on different Coreutils for
10 minutes.
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NO ALL IVS IC LR PMTR SRA
base64 44.76 14.29 36.19 73.33 44.76 44.76 44.76

basename 79.49 79.49 79.49 79.49 79.49 79.49 79.49
chcon 46.67 10.77 48.21 12.31 46.67 46.67 46.67
cksum 80.65 80.65 80.65 80.65 80.65 80.65 80.65
comm 74.49 46.94 74.49 55.1 73.47 73.47 73.47

cut 48.65 48.99 47.64 48.65 48.65 48.65 48.65
dd 10.34 9.63 11.05 9.8 10.34 10.34 10.34

dircolors 73.68 71.58 70.53 67.89 73.68 76.32 76.32
dirname 100 100 100 100 74.19 74.19 74.19

du 58.61 55.3 58.61 45.7 58.61 59.6 59.6
env 77.78 51.11 82.22 100 82.22 82.22 82.22

expand 41.06 44.37 43.71 49.01 41.06 39.07 39.07
expr 50.3 60.95 60.95 50 60.95 50 60.65
fold 64.6 46.9 45.13 49.56 64.6 41.59 41.59

groups 81.08 62.16 81.08 59.46 81.08 81.08 81.08
link 64.29 42.86 67.86 64.29 64.29 64.29 64.29

logname 56 52 56 56 56 56 56
mkdir 71.21 34.85 71.21 34.85 65.15 65.15 65.15
mkfifo 74.47 36.17 74.47 55.32 74.47 74.47 74.47
mknod 55 33.75 56.25 25 55 55 55

nice 50.85 57.63 50.85 50.85 42.37 42.37 42.37
nl 51.66 45.02 44.08 60.66 51.66 46.92 46.92
od 50.21 41.21 50.21 29.96 31.93 31.65 31.65

paste 67.91 48.66 48.13 37.43 67.91 68.98 68.98
pathchk 64.39 31.06 60.61 31.06 48.48 48.48 48.48

printf 39.3 66.54 39.3 71.6 42.41 45.14 45.14
readlink 78 58 78 46 78 78 78

rmdir 43.06 27.78 43.06 27.78 43.06 54.17 54.17
setuidgid 49.35 23.38 40.26 23.38 32.47 32.47 32.47

sleep 45.65 43.48 45.65 45.65 45.65 45.65 45.65
split 44.7 44.24 37.33 42.86 44.7 44.7 44.7
sum 86.32 85.26 86.32 85.26 86.32 86.32 86.32
sync 100 100 100 100 100 100 100
tee 75.36 75.36 75.36 75.36 75.36 75.36 75.36

touch 66.9 51.72 66.21 30.34 66.9 66.21 66.21
tr 28.07 34.45 39.91 26.1 34.29 34.14 34.14

tsort 6.9 6.9 89.66 73.4 6.9 6.9 6.9
unexpand 46.91 48.45 48.45 56.7 46.91 44.85 44.85

unlink 60 60 68 72 60 60 60
wc 59.92 50.76 52.67 52.29 59.16 58.78 59.54

Table A.3: Line coverage of different optimizations on different Coreutils for
20 minutes.
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NO ALL IVS IC LR PMTR SRA
base64 44.76 14.29 36.19 73.33 44.76 44.76 44.76

basename 79.49 79.49 79.49 79.49 79.49 79.49 79.49
chcon 46.67 10.77 48.21 12.31 46.67 46.67 46.67
cksum 80.65 80.65 80.65 80.65 80.65 80.65 80.65
comm 73.47 46.94 73.47 55.1 75.51 82.65 82.65

cut 50.68 51.01 49.32 50.68 50.68 48.65 48.65
dd 10.34 9.63 11.05 9.8 10.34 10.34 10.34

dircolors 73.68 71.58 70.53 67.89 73.68 77.89 77.89
dirname 100 100 100 100 100 100 100

du 70.2 55.3 70.2 45.7 70.2 59.6 59.6
env 77.78 51.11 82.22 100 82.22 82.22 82.22

expand 41.06 44.37 43.71 49.01 41.06 39.07 39.07
expr 60.95 60.95 60.95 59.76 60.95 60.65 60.65
fold 64.6 46.9 45.13 49.56 64.6 41.59 41.59

groups 81.08 62.16 81.08 62.16 81.08 81.08 81.08
link 64.29 42.86 64.29 64.29 64.29 64.29 64.29

logname 56 52 56 56 56 56 56
mkdir 71.21 34.85 65.15 34.85 65.15 65.15 65.15
mkfifo 74.47 36.17 74.47 55.32 74.47 74.47 74.47
mknod 57.5 33.75 56.25 25 56.25 55 56.25

nice 50.85 57.63 50.85 50.85 42.37 42.37 42.37
nl 54.98 45.02 44.08 63.51 54.98 46.92 46.92
od 50.21 38.82 50.21 29.96 31.93 31.65 31.65

paste 67.91 48.66 48.13 37.43 67.91 68.98 68.98
pathchk 64.39 64.39 60.61 64.39 48.48 48.48 48.48

printf 73.93 73.93 73.54 76.65 57.59 50.97 51.36
readlink 78 58 78 46 78 78 78

rmdir 43.06 27.78 54.17 27.78 43.06 54.17 54.17
setuidgid 49.35 23.38 40.26 23.38 32.47 32.47 32.47

sleep 45.65 43.48 45.65 45.65 45.65 45.65 45.65
split 44.7 44.24 37.33 42.86 44.7 44.7 44.7
sum 86.32 85.26 86.32 85.26 86.32 86.32 86.32
sync 100 100 100 100 100 100 100
tee 75.36 75.36 85.51 75.36 75.36 75.36 75.36

touch 66.9 51.72 65.52 30.34 66.9 66.21 66.21
tr 34.75 34.45 40.21 28.53 34.29 34.14 34.14

tsort 77.34 73.4 93.1 76.85 77.34 77.34 77.34
unexpand 46.91 48.45 48.45 56.7 46.91 44.85 44.85

unlink 68 72 68 72 68 68 68
wc 59.16 51.53 52.67 53.05 59.16 58.78 58.78

Table A.4: Line coverage of different optimizations on different Coreutils for
30 minutes.
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NO ALL IVS IC LR PMTR SRA
base64 42.22 6.67 44.44 66.67 42.22 42.22 42.22

basename 79.49 79.49 79.49 79.49 79.49 79.49 79.49
chcon 43.59 10.77 44.62 12.31 43.59 43.59 43.59
cksum 80.65 80.65 80.65 80.65 80.65 80.65 80.65
comm 73.47 46.94 69.39 55.1 59.18 58.16 58.16

cut 48.65 48.99 47.64 48.65 48.65 48.65 48.65
dd 10.34 9.63 10.34 9.8 10.34 10.34 10.34

dircolors 81.25 63.75 80 78.75 81.25 81.25 81.25
dirname 80 80 80 100 80 80 80

du 67.37 70.53 67.37 58.95 67.37 71.58 71.58
env 100 72.73 100 100 100 100 100

expand 57.14 55.1 53.06 65.31 57.14 51.02 51.02
expr 53.59 53.59 53.59 53.59 53.59 53.59 53.59
fold 83.56 57.53 57.53 67.12 83.56 54.79 54.79

groups 89.47 89.47 89.47 78.95 89.47 89.47 89.47
link 83.33 66.67 83.33 83.33 83.33 83.33 83.33

logname 75 75 75 75 75 75 75
mkdir 80.65 45.16 80.65 45.16 74.19 74.19 74.19
mkfifo 92 48 100 76 92 92 92
mknod 45.45 54.55 36.36 40 52.73 52.73 52.73

nice 50 65 50 50 40 40 40
nl 60.34 46.55 46.55 66.38 60.34 43.1 43.1
od 59.76 48.05 59.76 42.44 42.2 42.2 42.2

paste 84.25 59.84 62.99 40.16 84.25 84.25 84.25
pathchk 77.89 44.21 77.89 44.21 56.84 56.84 56.84

printf 28.97 34.58 28.97 68.22 7.94 44.39 44.39
readlink 100 100 100 92 100 100 100

rmdir 56.52 39.13 56.52 39.13 56.52 56.52 56.52
setuidgid 50 22.73 22.73 22.73 36.36 36.36 36.36

sleep 44.44 44.44 44.44 44.44 44.44 44.44 44.44
split 62.86 41.43 41.43 62.86 62.86 62.86 62.86
sum 100 100 100 100 100 100 100
sync 100 100 100 100 100 100 100
tee 95.74 80.85 95.74 95.74 95.74 95.74 95.74

touch 70.08 70.08 66.93 48.03 70.08 73.23 73.23
tr 27.45 36.6 45.75 5.01 36.17 36.17 36.17

tsort 5 5 5 5 5 5 5
unexpand 59.7 55.22 55.22 73.13 59.7 52.24 52.24

unlink 80 80 80 80 80 80 80
wc 73.18 59.22 60.34 59.22 73.18 73.18 73.18

Table A.5: Branch coverage of different optimizations on different Coreutils
for 5 minutes.
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NO ALL IVS IC LR PMTR SRA
base64 46.67 6.67 44.44 86.67 46.67 46.67 46.67

basename 100 100 100 100 100 100 100
chcon 54.17 11.11 54.17 23.61 54.17 54.17 54.17
cksum 100 100 100 100 100 100 100
comm 94.29 71.43 94.29 77.14 88.57 88.57 88.57

cut 51.61 52.42 51.61 52.42 51.61 51.61 51.61
dd 11.17 11.17 12.14 11.17 11.17 11.17 11.17

dircolors 81.25 81.25 80 77.5 81.25 81.25 81.25
dirname 100 80 100 100 100 100 100

du 72.63 71.58 72.63 60 72.63 71.58 71.58
env 100 72.73 100 100 100 100 100

expand 57.14 55.1 55.1 65.31 57.14 51.02 51.02
expr 60.22 60.22 53.59 60.22 53.59 53.59 60.22
fold 83.56 60.27 57.53 67.12 83.56 54.79 54.79

groups 89.47 89.47 89.47 78.95 89.47 89.47 89.47
link 83.33 66.67 83.33 83.33 83.33 83.33 83.33

logname 75 75 75 75 75 75 75
mkdir 80.65 45.16 87.1 45.16 80.65 74.19 74.19
mkfifo 100 48 100 76 100 100 100
mknod 52.73 54.55 70.91 40 52.73 70.91 70.91

nice 50 65 50 50 40 40 40
nl 60.34 48.28 46.55 70.69 60.34 46.55 46.55
od 59.76 56.59 59.76 42.44 42.2 42.2 42.2

paste 84.25 59.84 62.99 40.16 84.25 85.83 85.83
pathchk 82.11 44.21 77.89 44.21 56.84 56.84 56.84

printf 38.79 70.09 38.79 71.03 46.26 44.39 44.39
readlink 100 100 100 92 100 100 100

rmdir 56.52 39.13 56.52 39.13 56.52 60.87 60.87
setuidgid 50 22.73 50 22.73 36.36 36.36 36.36

sleep 44.44 44.44 44.44 44.44 44.44 44.44 44.44
split 62.86 62.86 41.43 62.86 62.86 62.86 62.86
sum 100 100 100 100 100 100 100
sync 100 100 100 100 100 100 100
tee 95.74 80.85 95.74 95.74 95.74 95.74 95.74

touch 77.95 70.08 76.38 48.03 77.95 77.95 77.95
tr 27.89 36.6 45.75 23.31 36.17 36.17 36.17

tsort 5 5 5 5 5 5 5
unexpand 59.7 55.22 55.22 73.13 59.7 52.24 52.24

unlink 80 80 80 80 80 80 80
wc 73.18 59.22 60.34 59.22 73.18 73.18 73.18

Table A.6: Branch coverage of different optimizations on different Coreutils
for 10 minutes.

57



NO ALL IVS IC LR PMTR SRA
base64 46.67 6.67 44.44 86.67 46.67 46.67 46.67

basename 100 100 100 100 100 100 100
chcon 54.17 11.11 54.17 23.61 54.17 54.17 54.17
cksum 100 100 100 100 100 100 100
comm 94.29 62.86 94.29 77.14 91.43 91.43 91.43

cut 51.61 52.42 51.61 52.42 51.61 51.61 51.61
dd 11.17 11.17 12.14 11.17 11.17 11.17 11.17

dircolors 81.25 81.25 80 78.75 81.25 86.25 86.25
dirname 100 100 100 100 100 100 100

du 73.68 70.53 73.68 62.11 73.68 71.58 71.58
env 100 72.73 100 100 100 100 100

expand 57.14 55.1 55.1 65.31 57.14 51.02 51.02
expr 60.22 67.96 67.96 60.22 67.96 60.22 67.96
fold 83.56 60.27 57.53 67.12 83.56 54.79 54.79

groups 89.47 89.47 89.47 78.95 89.47 89.47 89.47
link 83.33 66.67 83.33 83.33 83.33 83.33 83.33

logname 75 75 75 75 75 75 75
mkdir 93.55 45.16 93.55 45.16 87.1 87.1 87.1
mkfifo 100 48 100 76 100 100 100
mknod 78.18 54.55 78.18 40 78.18 78.18 78.18

nice 50 65 50 50 40 40 40
nl 60.34 48.28 46.55 70.69 60.34 46.55 46.55
od 59.76 57.8 59.76 42.44 42.2 42.2 42.2

paste 84.25 62.99 62.99 40.16 84.25 85.83 85.83
pathchk 82.11 44.21 77.89 44.21 56.84 56.84 56.84

printf 42.52 75.7 42.52 71.03 46.26 49.07 49.07
readlink 100 100 100 92 100 100 100

rmdir 56.52 39.13 56.52 39.13 56.52 60.87 60.87
setuidgid 59.09 22.73 50 22.73 36.36 36.36 36.36

sleep 44.44 44.44 44.44 44.44 44.44 44.44 44.44
split 62.86 62.86 41.43 62.86 62.86 62.86 62.86
sum 100 100 100 100 100 100 100
sync 100 100 100 100 100 100 100
tee 95.74 95.74 95.74 95.74 95.74 95.74 95.74

touch 77.95 70.08 77.95 48.03 77.95 77.95 77.95
tr 27.89 36.6 45.75 26.14 36.17 36.17 36.17

tsort 5 5 98.33 81.67 5 5 5
unexpand 59.7 55.22 55.22 73.13 59.7 52.24 52.24

unlink 80 80 100 100 80 80 80
wc 73.18 59.22 60.34 59.22 73.18 73.18 73.18

Table A.7: Branch coverage of different optimizations on different Coreutils
for 20 minutes.
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NO ALL IVS IC LR PMTR SRA
base64 46.67 6.67 44.44 86.67 46.67 46.67 46.67

basename 100 100 100 100 100 100 100
chcon 54.17 11.11 54.17 23.61 54.17 54.17 54.17
cksum 100 100 100 100 100 100 100
comm 94.29 62.86 94.29 77.14 91.43 94.29 94.29

cut 53.23 55.65 52.42 55.65 53.23 51.61 51.61
dd 11.17 11.17 12.14 11.17 11.17 11.17 11.17

dircolors 81.25 81.25 80 78.75 81.25 88.75 88.75
dirname 100 100 100 100 100 100 100

du 78.95 70.53 78.95 62.11 78.95 71.58 71.58
env 100 72.73 100 100 100 100 100

expand 57.14 55.1 55.1 65.31 57.14 51.02 51.02
expr 67.96 67.96 67.96 65.75 67.96 67.96 67.96
fold 83.56 60.27 57.53 67.12 83.56 54.79 54.79

groups 89.47 89.47 89.47 89.47 89.47 89.47 89.47
link 83.33 66.67 83.33 83.33 83.33 83.33 83.33

logname 75 75 75 75 75 75 75
mkdir 93.55 45.16 87.1 45.16 87.1 87.1 87.1
mkfifo 100 48 100 76 100 100 100
mknod 78.18 54.55 78.18 40 78.18 78.18 78.18

nice 50 65 50 50 40 40 40
nl 63.79 48.28 46.55 70.69 63.79 46.55 46.55
od 59.76 56.59 59.76 42.44 42.2 42.2 42.2

paste 84.25 62.99 62.99 40.16 84.25 85.83 85.83
pathchk 82.11 82.11 77.89 82.11 56.84 56.84 56.84

printf 76.64 78.5 76.64 74.77 59.81 53.74 53.74
readlink 100 100 100 92 100 100 100

rmdir 56.52 39.13 60.87 39.13 56.52 60.87 60.87
setuidgid 59.09 22.73 50 22.73 36.36 36.36 36.36

sleep 44.44 44.44 44.44 44.44 44.44 44.44 44.44
split 62.86 62.86 41.43 62.86 62.86 62.86 62.86
sum 100 100 100 100 100 100 100
sync 100 100 100 100 100 100 100
tee 95.74 95.74 95.74 95.74 95.74 95.74 95.74

touch 77.95 70.08 76.38 48.03 77.95 77.95 77.95
tr 40.09 36.6 46.19 26.14 36.17 36.17 36.17

tsort 83.33 81.67 98.33 81.67 83.33 83.33 83.33
unexpand 59.7 55.22 55.22 73.13 59.7 52.24 52.24

unlink 100 100 100 100 100 100 100
wc 73.18 59.22 60.34 59.22 73.18 73.18 73.18

Table A.8: Branch coverage of different optimizations on different Coreutils
for 30 minutes.
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NO ALL TRAD EXTR C3 C4 IC
base64 44.76 14.29 14.29 14.29 14.29 14.29 73.33

basename 79.49 79.49 79.49 79.49 79.49 79.49 79.49
chcon 46.67 10.77 10.77 10.77 10.77 10.77 12.31
cksum 80.65 80.65 80.65 80.65 80.65 80.65 80.65
comm 74.49 54.08 47.96 55.1 48.98 55.1 55.1

cut 48.65 48.99 48.65 48.65 48.65 48.65 48.65
dd 10.34 9.63 9.63 9.63 9.63 9.63 9.8

dircolors 73.68 71.05 71.58 71.05 71.58 71.58 67.37
dirname 74.19 48.39 100 100 100 100 100

du 56.29 59.27 55.3 55.3 55.3 55.3 42.05
env 77.78 51.11 51.11 51.11 51.11 51.11 100

expand 41.06 44.37 45.03 45.03 43.71 45.03 49.01
expr 48.52 48.22 48.22 48.22 48.22 49.41 48.22
fold 64.6 46.9 46.9 46.02 46.02 46.9 49.56

groups 81.08 62.16 62.16 62.16 59.46 62.16 59.46
link 64.29 42.86 42.86 42.86 39.29 39.29 64.29

logname 56 52 52 52 52 52 56
mkdir 56.06 34.85 34.85 34.85 34.85 28.79 34.85
mkfifo 74.47 36.17 36.17 36.17 36.17 36.17 55.32
mknod 43.75 33.75 33.75 33.75 33.75 33.75 25

nice 50.85 57.63 50.85 57.63 50.85 50.85 50.85
nl 51.18 45.02 50.24 50.24 50.24 50.24 60.66
od 50.21 38.82 41.21 41.21 41.21 41.21 29.96

paste 67.91 45.45 45.45 45.45 45.99 45.99 37.43
pathchk 64.39 31.06 31.06 31.06 31.06 31.06 31.06

printf 38.52 64.98 68.87 68.87 64.2 69.65 71.6
readlink 78 54 54 54 54 54 46

rmdir 43.06 27.78 27.78 27.78 27.78 27.78 27.78
setuidgid 40.26 23.38 23.38 23.38 23.38 23.38 23.38

sleep 45.65 43.48 43.48 43.48 43.48 43.48 45.65
split 44.7 44.24 35.02 35.02 47.47 35.02 42.86
sum 86.32 85.26 85.26 85.26 85.26 85.26 85.26
sync 100 100 100 100 100 100 100
tee 75.36 59.42 59.42 59.42 59.42 59.42 75.36

touch 66.21 51.72 51.72 51.72 51.72 51.72 30.34
tr 28.07 34.45 34.45 34.45 34.14 34.14 23.98

tsort 6.9 6.9 6.9 6.9 6.9 6.9 6.9
unexpand 46.91 48.45 48.45 49.48 49.48 49.48 56.7

unlink 60 60 60 60 60 60 60
wc 59.16 51.53 50.76 50.76 50.76 50.76 52.29

Table A.9: Line coverage of different optimization combinations on different
Coreutils for 10 minutes.
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NO ALL TRAD EXTR C3 C4 IC
base64 46.67 6.67 6.67 6.67 6.67 6.67 86.67

basename 100 100 100 100 100 100 100
chcon 54.17 11.11 11.11 11.11 11.11 11.11 23.61
cksum 100 100 100 100 100 100 100
comm 94.29 71.43 62.86 71.43 65.71 71.43 77.14

cut 51.61 52.42 52.42 52.42 52.42 52.42 52.42
dd 11.17 11.17 11.17 11.17 11.17 11.17 11.17

dircolors 81.25 81.25 81.25 81.25 81.25 81.25 77.5
dirname 100 80 100 100 100 100 100

du 72.63 71.58 73.68 73.68 70.53 70.53 60
env 100 72.73 72.73 72.73 72.73 72.73 100

expand 57.14 55.1 55.1 55.1 55.1 55.1 65.31
expr 60.22 60.22 60.22 60.22 60.22 60.22 60.22
fold 83.56 60.27 60.27 60.27 60.27 60.27 67.12

groups 89.47 89.47 89.47 89.47 78.95 89.47 78.95
link 83.33 66.67 66.67 66.67 66.67 66.67 83.33

logname 75 75 75 75 75 75 75
mkdir 80.65 45.16 45.16 45.16 45.16 38.71 45.16
mkfifo 100 48 48 48 48 48 76
mknod 52.73 54.55 54.55 54.55 54.55 54.55 40

nice 50 65 50 65 50 50 50
nl 60.34 48.28 50 50 50 50 70.69
od 59.76 56.59 57.8 57.8 57.8 57.8 42.44

paste 84.25 59.84 59.84 59.84 59.84 59.84 40.16
pathchk 82.11 44.21 44.21 44.21 44.21 44.21 44.21

printf 38.79 70.09 72.9 72.9 70.09 72.9 71.03
readlink 100 100 100 100 100 100 92

rmdir 56.52 39.13 39.13 39.13 39.13 39.13 39.13
setuidgid 50 22.73 22.73 22.73 22.73 22.73 22.73

sleep 44.44 44.44 44.44 44.44 44.44 44.44 44.44
split 62.86 62.86 41.43 41.43 65.71 41.43 62.86
sum 100 100 100 100 100 100 100
sync 100 100 100 100 100 100 100
tee 95.74 80.85 80.85 80.85 80.85 80.85 95.74

touch 77.95 70.08 71.65 71.65 71.65 71.65 48.03
tr 27.89 36.6 36.6 36.6 36.6 36.6 23.31

tsort 5 5 5 5 5 5 5
unexpand 59.7 55.22 53.73 55.22 53.73 53.73 73.13

unlink 80 80 80 80 80 80 80
wc 73.18 59.22 59.22 59.22 59.22 59.22 59.22

Table A.10: Branch coverage of different optimization combinations on differ-
ent Coreutils for 10 minutes.
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Appendix B

Raw Data for Multi-slover Experiment
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Program Solver NO ALL IVS IC LR PMTR SRA
base64 STP 48.57 14.29 46.67 63.81 48.57 48.57 48.57
base64 Z3 44.76 14.29 40.95 63.81 44.76 44.76 48.57
base64 Btor 44.76 14.29 36.19 63.81 44.76 44.76 44.76
chmod STP 70.52 41.04 58.96 41.04 70.52 70.52 70.52
chmod Z3 68.79 41.04 57.23 41.04 67.05 68.79 68.79
chmod Btor 67.05 41.04 56.65 41.04 68.79 65.32 65.32
comm STP 74.49 46.94 74.49 55.1 80.61 80.61 80.61
comm Z3 74.49 46.94 74.49 55.1 67.35 66.33 66.33
comm Btor 73.47 54.08 73.47 55.1 62.24 62.24 62.24
csplit STP 48.26 60.18 11.19 4.22 48.26 48.26 48.26
csplit Z3 48.26 60.18 11.19 4.22 48.26 48.26 48.26
csplit Btor 52.48 51.74 52.84 4.22 52.48 53.39 53.39

dircolors STP 73.68 74.21 73.68 65.26 73.68 77.89 77.89
dircolors Z3 73.68 71.58 13.68 67.37 73.68 73.68 73.68
dircolors Btor 39.47 40 10 33.68 39.47 39.47 39.47

echo STP 66.99 67.96 66.99 66.99 66.99 66.99 66.99
echo Z3 66.99 66.99 66.99 66.99 66.99 66.99 66.99
echo Btor 66.99 67.96 67.96 66.99 67.96 67.96 67.96
env STP 77.78 51.11 82.22 100 82.22 82.22 82.22
env Z3 77.78 51.11 82.22 100 82.22 82.22 82.22
env Btor 77.78 51.11 82.22 82.22 82.22 82.22 82.22

factor STP 65.67 64.18 71.64 64.18 65.67 65.67 65.67
factor Z3 71.64 61.19 71.64 64.18 71.64 65.67 65.67
factor Btor 58.21 58.21 58.21 58.21 58.21 58.21 58.21
join STP 5.44 61.45 5.44 26.98 12.24 5.44 5.44
join Z3 5.44 59.18 5.44 13.38 5.44 5.44 5.44
join Btor 20.86 45.35 20.41 11.79 28.57 52.15 52.15
ln STP 76.8 38.14 77.84 30.93 77.32 77.84 77.84
ln Z3 64.95 38.14 65.98 30.93 64.95 75.77 75.77
ln Btor 64.95 38.14 65.98 30.93 64.95 70.62 70.62

mkfifo STP 74.47 36.17 74.47 55.32 74.47 74.47 74.47
mkfifo Z3 74.47 36.17 74.47 55.32 74.47 74.47 74.47
mkfifo Btor 55.32 36.17 74.47 55.32 55.32 48.94 48.94

Table B.1: Line coverage for each program-solver-flag tuple for 10 minutes.
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Program Solver NO ALL IVS IC LR PMTR SRA
base64 STP 55.56 6.67 55.56 66.67 55.56 55.56 55.56
base64 Z3 46.67 6.67 46.67 66.67 46.67 46.67 55.56
base64 Btor 46.67 6.67 44.44 66.67 46.67 46.67 46.67
chmod STP 85.05 46.73 64.49 46.73 85.05 83.18 83.18
chmod Z3 85.05 46.73 62.62 46.73 81.31 83.18 83.18
chmod Btor 83.18 46.73 62.62 46.73 85.05 77.57 77.57
comm STP 94.29 62.86 94.29 77.14 94.29 94.29 94.29
comm Z3 94.29 62.86 94.29 77.14 91.43 91.43 91.43
comm Btor 94.29 71.43 94.29 77.14 88.57 88.57 88.57
csplit STP 52.22 63.7 13.33 6.3 52.22 52.22 52.22
csplit Z3 52.22 63.7 13.33 6.3 52.22 52.22 52.22
csplit Btor 56.67 58.89 57.04 6.3 56.67 58.89 58.89

dircolors STP 81.25 86.25 82.5 76.25 81.25 88.75 88.75
dircolors Z3 81.25 81.25 11.25 77.5 81.25 81.25 81.25
dircolors Btor 32.5 33.75 6.25 30 32.5 32.5 32.5

echo STP 74.39 74.39 74.39 74.39 74.39 74.39 74.39
echo Z3 74.39 74.39 74.39 74.39 74.39 74.39 74.39
echo Btor 74.39 74.39 74.39 74.39 74.39 74.39 74.39
env STP 100 72.73 100 100 100 100 100
env Z3 100 72.73 100 100 100 100 100
env Btor 100 72.73 100 100 100 100 100

factor STP 83.33 88.89 94.44 83.33 83.33 83.33 83.33
factor Z3 94.44 83.33 94.44 83.33 94.44 83.33 83.33
factor Btor 50 50 50 50 50 50 50
join STP 7.54 71.48 7.54 27.54 13.44 7.54 7.54
join Z3 7.54 68.85 7.54 14.1 7.54 7.54 7.54
join Btor 19.02 49.84 19.02 13.44 25.9 58.03 58.03
ln STP 80.95 47.62 82.01 35.98 80.95 88.36 88.36
ln Z3 77.78 47.62 78.84 35.98 77.78 85.19 85.19
ln Btor 77.78 47.62 78.84 35.98 77.78 84.13 84.13

mkfifo STP 100 48 100 76 100 100 100
mkfifo Z3 100 48 100 76 100 100 100
mkfifo Btor 84 48 100 76 84 76 76

Table B.2: Branch coverage for each program-solver-flag tuple for 10 minutes.

64



Bibliography

[1] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Com-

pilers: principles, techniques, & tools, volume 1009. Pearson/Addison

Wesley, 2007.

[2] GCC, the GNU compiler collection. http://gcc.gnu.org/.

[3] Chris Lattner and Vikram Adve. Llvm: A compilation framework for

lifelong program analysis & transformation. In Code Generation and Op-

timization, 2004. CGO 2004. International Symposium on, pages 75–86.

IEEE, 2004.

[4] Zhelong Pan and Rudolf Eigenmann. Fast and effective orchestration

of compiler optimizations for automatic performance tuning. In Code

Generation and Optimization, 2006. CGO 2006. International Symposium

on, pages 12–pp. IEEE, 2006.

[5] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Jeffrey K

Hollingsworth. A scalable auto-tuning framework for compiler optimiza-

tion. In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE

International Symposium on, pages 1–12. IEEE, 2009.

[6] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. Klee: Unassisted

65

http://gcc.gnu.org/


and automatic generation of high-coverage tests for complex systems pro-

grams. In OSDI, volume 8, pages 209–224, 2008.

[7] KLEE coreutils case study. http://klee.github.io/klee/

TestingCoreutils.html.

[8] Vijay Ganesh and David L Dill. A decision procedure for bit-vectors and

arrays. In Computer Aided Verification, pages 519–531. Springer, 2007.

[9] Paul Dan Marinescu and Cristian Cadar. Katch: high-coverage testing

of software patches. In Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, pages 235–245. ACM, 2013.

[10] NECLA static analysis benchmarks (necla-static-small). http:

//www.nec-labs.com/research/system/systems_SAV-website/

benchmarks.php#NECLA_Static_Analysis_Benchmarks.

[11] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.

In Tools and Algorithms for the Construction and Analysis of Systems,

pages 337–340. Springer, 2008.

[12] Robert Brummayer and Armin Biere. Boolector: An efficient smt solver

for bit-vectors and arrays. In Tools and Algorithms for the Construction

and Analysis of Systems, pages 174–177. Springer, 2009.

[13] Hristina Palikareva and Cristian Cadar. Multi-solver support in symbolic

execution. In Computer Aided Verification, pages 53–68. Springer, 2013.

66

http://klee.github.io/klee/TestingCoreutils.html
http://klee.github.io/klee/TestingCoreutils.html
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php#NECLA_Static_Analysis_Benchmarks
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php#NECLA_Static_Analysis_Benchmarks
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php#NECLA_Static_Analysis_Benchmarks


[14] Corina S Păsăreanu and Neha Rungta. Symbolic pathfinder: symbolic

execution of java bytecode. In Proceedings of the IEEE/ACM inter-

national conference on Automated software engineering, pages 179–180.

ACM, 2010.

[15] James C. King. Symbolic execution and program testing. Communica-

tions of the ACM, 19(7), 1976.

[16] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization.

Computer Science Dept., University of Illinois at Urbana-Champaign,

2002.

[17] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Wegman, Mark N., and

F. Kenneth Zadeck. Efficiently computing static single assignment form

and the control dependence graph. In ACM Transactions on Programming

Languages and Systems, volume 13, pages 451–490, 1991.

[18] G. Kildall. A unified approach to global program optimization. In

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-

guages, volume 1, pages 194–206, 1973.

[19] Keith D. Cooper and Linda Torczon. Engineering a Compiler, volume 2.

Morgan Kaufmann, 2011.

[20] Clinton F. Gross. Machine Code Optimization - Improving Executable

Object Code, volume 1. Computer Science Department Technical Report

No. 246. Courant Institute, New York University, 1986.

67



[21] The KLEE symbolic virtual machine. http://klee.github.io/klee.

[22] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. Steering sym-

bolic execution to less traveled paths. In OOPSLA, pages 19–32, 2013.

[23] The GNU coverage tool. http://gcc.gnu.org/onlinedocs/gcc/Gcov.

html.

[24] Kenneth Hoste and Lieven Eeckhout. Cole: compiler optimization level

exploration. In CGO, volume 6, pages 165–174, 2008.

[25] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael FP

OB́oyle, and Olivier Temam. Rapidly selecting good compiler optimiza-

tions using performance counters. In Code Generation and Optimization,

2007. CGO’07. International Symposium on, pages 185–197, 2007.

[26] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Cham-

ski, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson,

Ayal Zaks, Eric Courtois, Francois Bodin, Phil Barnard, Elton Ashton,

Edwin Bonilla, John Thomson, Christopher K. I. Williams, and Michael

OB́oyle. Milepost gcc: Machine learning enabled self-tuning compiler. In

International Journal of Parallel Programming, volume 39, pages 296–

327, 2011.

[27] K. Ishizaki, K. Kawachiya, T. T. Suganuma, O. Gohda, T. Inagaki,

A. Koseki, K. Ogata, M. Kawahito, T. Yasue, T. Ogasawara, T. Onodera,

68

http://klee.github.io/klee
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html


H. Komatsu, and H. Nakatani. Efectiveness of cross-platform optimiza-

tions for a java just-in-time compiler. In ACM SIGPLAN Conference

on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA), volume 3, pages 187–204, 2003.
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