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Abstract 

 

Computation of Near-Field Distribution around Wind Turbines 

 

Xiao Liu, MSE 

The University of Texas at Austin, 2014 

 

Supervisor:  Hao Ling 

 

In this work, two approaches for computing the near-field distribution around 

wind turbines are proposed, including: (1) Huygens Principle and (2) the parabolic 

equation technique. In order to simplify the problem, the cylinder model is utilized to 

represent the wind turbines and transform the problem into a two-dimensional case. To 

make Huygens Principle computationally tractable, several approximations are made 

based on the problem geometry especially modelling the cylinder as a plate. The 

expression of the electromagnetic field radiated by the equivalent magnetic current can be 

analytically solved by the error function. To verify the results, FEKO is utilized to 

simulate the scattering of infinitely long cylinders using periodic boundary condition 

(PBC). In order to solve the problem of multiple cylinders, a modified method is derived. 

For more accurate results, the parabolic equation (PE) technique is utilized to solve this 

problem, which is usually utilized to solve wave propagation problems. In this case, 

wide-angle approximation is used to solve the parabolic equation, which can obtain 

accurate results in a region of up to 45 degrees. Although these two approaches are not 

full-wave simulation, the calculation time is significantly reduced and the error is 



 vi 

acceptable. To further verify the computed results by the parabolic equation technique, 

two commercial transceivers from Time Domain Corporation are used to measure the 

field distribution behind a finite-length metal pole. The frequency-domain results are 

obtained from the measured time-domain results using the fast Fourier transform. It is 

shown that the computed results by the parabolic equation technique agree well with the 

measurement results. 
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Chapter 1:  Introduction 

With the rapid development of wind energy as a non-polluting source all over the 

world, the adverse effect from wind turbines on radar and wireless communications 

systems is raising serious concerns [1-10].  New generation wind turbines are large 

structures that can interact significantly with electromagnetic waves. The reflecting 

surfaces include the spinning turbine blades, the nacelle, and the tower supporting them. 

A number of studies have been conducted on the following two topics – radar clutter and 

electromagnetic transmission interference. Wind turbine clutter is due to the 

backscattered signal from the turbines, in which the spinning turbine blades have an 

adverse effect on the detection of moving targets by a radar system. This topic has been 

well studied to date [11-15]. A less well-studied problem is the electromagnetic 

transmission interference due to blockage and multipath from wind turbine farm. It is 

well-known that there is a region behind a turbine structure where the scattered field 

destructively cancels with the incident field, which is called the shadow region. For a 

wireless communications system, the received signal strength decreases if the receiver is 

in the shadow region. The situation is similar for a radar system if the targets are in those 

regions. Outside the shadow region, the incident field and the scattered field interfere 

with each other constructively or destructively due to multipath, forming a rapid spatial 

oscillation, which also affects wireless systems.  

Obviously, electromagnetic simulation software can be utilized to simulate the 

wind turbine farm and obtain the near-field distribution around it. However, full-wave 

simulation of a large wind farm by commercial software is usually time-consuming and 

has a large computational burden. Several studies have been conducted experimentally or 

theoretically on the characterization of the propagation interference problem. On one 
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hand, this problem can be studied by doing measurement directly [16, 17]. But the 

measurement problem involves a bistatic transmitter/receiver configuration which is 

more difficult to realize. On the other hand, numerical methods can be utilized. As shown 

in [3], a standard and simple computational methodology for estimating the shadow 

region can be derived based on the Fresnel zone argument. The radar cross section 

concept [18, 19] and physical optics method [20] have also been utilized. In [21], full-

wave analysis is applied to analyze the shadow region. However, near-field computation 

with numerous sampling points is still computationally demanding.  

In order to make this problem computationally tractable, a simplified model for 

this problem is needed. As shown in [22], for the transmission interference problem, 

several assumptions can be made, among which there are three important ones for further 

study. Firstly, the scattering of wind turbine is assumed to be dominated by the tower 

structure, compared to the blades and nacelle structures. Based on this assumption, we 

can use a perfectly conducting cylinder to model the wind turbine. Secondly, for the 

turbine whose height is much larger than the cross section, the scattering process can be 

assumed to be a two-dimensional case for observers close to the turbine. Finally, the 

individual turbines are assumed to be excited under the incident excitation while 

neglecting the interactions from others. Based on these assumptions, the original 

propagation problem becomes a two-dimensional scattering problem of multiple 

cylinders with infinite length. By utilizing the cylinder model, the computation of the 

near-field distribution is simplified, which makes the fast computation of this scattering 

problem possible. 

In this thesis, two approaches based on the simplified model above are proposed. 

The first one is to utilize Huygens Principle for this problem and derive a corresponding 

analytical solution using the error function. In this method, the model is simplified further 
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in order to make Huygens Principle computationally tractable. To verify the computation 

results, the commercial electromagnetic package FEKO [23] is used. For more accurate 

computation results, a second approach based on the parabolic equation technique is 

implemented. A wide-angle approximation is used for solving the equations and perfectly 

absorbing layers are selected as the boundary condition to truncate the computation 

region. The near-field distribution around an infinitely long PEC cylinder is obtained. In 

addition to verification by FEKO simulation, we also utilize the Channel Analysis Tool 

of the transceiver designed by Time Domain Corporation to measure the field distribution 

behind a metal pole. 

The thesis is organized as follows. In Chapter 2, the cylinder model is further 

simplified to the plate model. The equivalent problem is constructed from Huygens 

Principle and the analytical solution is derived using the error function. Simulation in 

FEKO is done to verify the results. In Chapter 3, the parabolic equation technique is 

discussed and utilized for the wind turbine problem. The forward and backward 

propagation is discussed respectively. The scattering computation of a cylinder under the 

incidence of an infinitely long line source by the parabolic equation technique is also 

derived. In Chapter 4, in order to verify the computed results from the parabolic equation 

technique, measurement of a metal pole is done by using two commercial transceivers 

from Time Domain Corporation. The result is compared with that from the parabolic 

equation technique. Finally, Chapter 5 concludes this work and discusses potential future 

work. 
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Chapter 2:  Huygens Principle Solution 

As is shown in [22], the three-dimensional propagation interference problem of a 

wind turbine can be simplified to the two-dimensional scattering problem of a cylinder, 

which is much easier to be solved by numerical methods. In this chapter, we will first 

simplify the cylinder model further to a plate model and construct an equivalent problem 

by using Huygens Principle. Then, by using the error function, the analytical solution of 

this problem can be obtained. This method can also be modified and tailored for the 

multiple turbine problem. The computed results from this approach are compared with 

the results from FEKO simulation. 

COMPUTATION REGION 

First, the computation region is divided into two parts according to the position of 

the cylinder and the direction of the incident wave, as is shown in Figure 2.1. The region 

ahead of the cylinder is called the backward propagation region while the one behind the 

cylinder is called the forward propagation region. For a cylinder centered at (0,0) and an 

incident wave propagating along the positive x-axis, the forward propagation region is 

where x>0 while the backward region is where x<0. 

 

Figure 2.1: Forward and backward propagation region. 



 5 

SIMPLIFIED MODEL 

The original problem is shown in Figure 2.2(a), which is a two-dimensional 

scattering problem of an infinite-length PEC cylinder with a diameter of a . In order to 

use Huygens Principle to construct an equivalent problem which is computationally 

tractable, we need to make a few approximations to simplify this problem further. First, 

we simplify the circular cross section of the cylinder as a strip whose width is equal to a , 

with infinitesimal thickness, as shown in Figure 2.2(b). Then, the infinite-length PEC 

cylinder in the original problem is simplified into an infinite-length plate. 

 

 

Figure 2.2: Simplification of the Cylinder Model. (a) Original Model. (b)Simplified 

Model 

As shown in [24], along the forward propagation direction (the positive x-

direction here), the scattering width of a PEC plate with a width of a  can be expressed 

as 
2

2

2
D plate

a



   (2-1) 

while the one of a PEC cylinder with a diameter of a  is  

20
2 (2)

0 0

( / 2)4
| |

( / 2)

n
D cylinder

n

J k a

k H k a








   (2-2) 

where
0k is the wavenumber in free space. As is shown in Figure 2.3 (in dB scale), when 

0k a  is increased, the difference of scattering width along forward propagation direction 
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between plate and cylinder becomes smaller. Thus, here we assume that the 

electromagnetic field in the forward propagation region of the plate is almost the same as 

the cylinder. According to geometrical optics, this is not a good approximation for the 

backward propagation region since the reflecting facets are different, as shown in Figure 

2.4. 

 

Figure 2.3: Scattering Width of PEC Plate and Cylinder along forward propagation 

direction. 

 

Figure 2.4: Reflecting surfaces of different cross section. (a) Cylinder. (b) Plate. 
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EQUIVALENT PROBLEM BY HUYGENS PRINCIPLE 

Using the above approximation, the original problem becomes a two-dimensional 

scattering problem of a PEC plate, which is infinitely long along the z-axis, as shown in 

Figure 2.5(a). We are interested in the region on the right side of y-axis. First, we draw an 

equivalent surface   along y-axis and remove the impressed source (as the incident 

plane wave here), as shown in Figure 2.5(b). Along the imaginary surface   there must 

exist the equivalent sources 

2 1
ˆ ( )sJ n H H    (2-3) 

2 1
ˆ( )sM E E n    (2-4) 

Since we are not interested in the region on the left side of  , we assume the field in 

that region is zero. On the right side, 2E  and 2H  are the fields we want to compute, 

which are equal to E  and H  in Figure 2.5(a). It is well-known that the tangential 

electric field along the PEC plate is zero, so along the plate the equivalent magnetic 

current is zero, as shown in Figure 2.5(b). 

 

Figure 2.5: Huygens Principle. (a) Original problem. (b) Equivalent problem. 

Then the equivalent problem in Figure 2.5(b) reduces to that of Figure 2.6(a) with 

equivalent current densities equal to 
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ˆ
sJ n H   (2-5) 

ˆ
sM E n   (2-6) 

Since on the left side of   the field is zero everywhere, we fill that region with 

infinitely large PEC plane, as shown in Figure 2.6(b). Using image theory, the equivalent 

problem becomes that of Figure 2.6(c). 

 

Figure 2.6: Construction of an equivalent problem. 

Thus, the problem in Figure 2.5(a) reduces to that of Figure 2.7, where 

ˆ2sM E n   (2-7) 

in which sM  is divided into two parts, one starts from y= / 2a  and extends to positive 

infinity while the other one starts from y= / 2a  and extends to negative infinity, as 

shown in Figure 2.7. 
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Figure 2.7: Equivalent problem. 

The next step is to compute the radiation of the magnetic surface current for 

region x>0. As is shown, the direction of sM  is related to the total field at  . We 

assume that along the surface   the total field is equal to the incident field (except the 

region between / 2a  and / 2a ) 

0 0| |x in xE E   (2-8) 

Then the equivalent magnetic current is related to the incident electric field, whose 

direction is decided by the polarization of the incident field. The problem will be 

discussed in two cases respectively: TE polarization and TM polarization. 

TE CASE 

For an incident plane wave of TE-polarization, the direction of equivalent 

magnetic current is along z-axis, as shown in Figure 2.8. 
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Figure 2.8: Equivalent problem for TE polarization. (a) Original Problem. (b)&(c) 

Equivalent problem 

It should be noted that sM  is infinitely long in z direction (as shown in Figure 

2.8(c)). Thus, the electric field radiated by an infinitely long magnetic current along z-

axis is given by [24] 
0

(2)0 0
1 0( )

4 8

jkfar field

m m

k jk e
E jI H k I



 
 



     (2-9) 

Therefore the electric field at point (x,y) radiated by an infinitely long magnetic current 

mI  located at (0,y’) (as shown in Figure 2.9) can be expressed as 

2 2

00

2 24

exp( ( ') )

8 ( ')
m

jk x y yjk
E I

x y y




  
 

 
 (2-10) 

The electric field in Cartesian coordinates can be expressed as 
2 2

00

32 2
2 2 4

exp( ( ') )'
( ')

8( ') ( ( ') )

x m

jk x y yjky y
E E I y y

x y y x y y




  
    

   

 (2-11) 

2 2

00

32 2
2 2 4

exp( ( ') )

8( ') ( ( ') )

y m

jk x y yjkx
E E I x

x y y x y y




  
   

   

 (2-12) 
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Figure 2.9: Radiation of an infinite magnetic line source 

In order to simplify the expression of the field, we make two approximations: 

(1) Using Taylor expansion to express the square-root term in the numerator 
2

2 2 ( ')
( ')

2

y y
x y y x

x



      (2-13) 

while the error is zero at y’=y. This approximation only generates errors in phase. 

(2) For the denominator, assume that 

2 2 2( ')x y y x    (2-14) 

which is also accurate when y’=y. We make this approximation in order to make the 

denominator a constant when computing the field at point (x, y). The error becomes 

larger when |y’-y| is larger. However, when y’ is far away from y, the contribution from 

that current tis small, we will see later that this error is acceptable. By applying the 

approximations, the Eqn. 2-11 and 2-12 yield 

2

0
0

3

2

1
exp( ( ( ') ))

2 ( ')
8

x m

jk x y y
jk xE I y y

x


  

    
(2-15) 

2

0
0

1
exp( ( ( ') ))

2

8
y m

jk x y y
jk xE I

x

  

   

(2-16) 
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Assume the incident electric field is equal to 

0
ˆexp( )inE jk x y    (2-17) 

Then sM  can be expressed as 

0
ˆ ˆ2 | 2s in xM E n z    (2-18) 

Then 

2

0
0

3

2

1
exp( ( ( ') ))

22 ( ')
8

x

jk x y y
jk xE y y

x


  

    
(2-19) 

2

0
0

1
exp( ( ( ') ))

22
8

y

jk x y y
jk xE

x

  

   

(2-20) 

Since the total electric field at point (x,y) is equal to the sum of field radiated by mI  

located at different positions, it can be expressed as an integral at 

( , / 2) ( / 2, )a a     , as shown below 

2 2

0 0
0 2

3 3

22 2

2

0
2 20 2

3

22

22

1 1
exp( ( ( ') )) exp( ( ( ') ))

2 2( , ) 2 ( ( ') ' ( ') ')
8

exp( ( ))
22 ( exp( ' ') ' exp( ' ') '

8

'exp( ' ')

a

ax

a

a

a

jk x y y jk x y y
jk x xE x y y y dy y y dy

x x

y
jk x

jk x y Ay By dy y Ay By dy

x

y Ay By





 

 

 

 





     

    

 

      

  

 

 

2

2

' 'exp( ' ') ')ady y Ay By dy



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(2-21) 

2 2

0 0
0 2

2

2

0
2 20 2

2

1 1
exp( ( ( ') )) exp( ( ( ') ))

2 2( , ) 2 ( ' ')
8

exp( ( ))
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8
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a

a

jk x y y jk x y y
jk x xE x y dy dy

x x

y
jk x
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x





 

 

 

 

     

  

 

      

 

 

 (2-22) 

where 0 0,
2

jk jk y
A B

x x
  . 
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ERROR FUNCTION 

In order to compute the field, we need to give a solution of the integral term. 

Obviously, we can use a brute-force integration to get the numerical solution. But we can 

also obtain the analytical solution of the integral faster by using the error function. The 

analytical solution of the integrals used here can be expressed as 
2

2 1 2
exp( ) exp( )(1 ( ))

42 2

X B B AX
Ax Bx dx Erf

AA A





     (2-23) 

2
2 1 2

exp( ) exp( )(1 ( ))
42 2X

B AX B
Ax Bx dx Erf

AA A


 
     (2-24) 

2

3

2

2

1
exp( ) ( 2 exp( ( ))

4

2
exp( )(1 ( )))

4 2

X

x Ax Bx dx A X B AX

A

B B AX
B Erf

A A



    


 


 

(2-25) 

2

3

2

2

1
exp( ) (2 exp( ( ))

4

2
exp( )(1 ( )))

4 2

X
x Ax Bx dx A X B AX

A

B B AX
B Erf

A A




   


 


 

(2-26) 

where ( )Erf x  is the error function defined as 

2

0

2
( ) exp( )

x

Erf x t dt


   (2-27) 

which can be solve by numerical software such as MATLAB. Then we can obtain the 

solution of electric field at point (x,y) for the TE polarization. 

TE COMPUTED RESULTS 

Using the method above, we compute the scattering of a PEC plate located at 

(0,0) with a width of 4 meters under a TE-polarized incident wave at 500MHz and 

compare the results with the simulation of the same PEC plate by FEKO. The results are 

shown in Figure 2.10 and 2.11 (in dB scale) where the error is defined as 
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10

|| | | ||
Error=20log ( )

| |

com sim

in

E E

E


 (2-28) 

where comE  is the computed result by using the method above, simE  is the simulation 

result from FEKO and inE  is the incident field whose amplitude is equal to one in this 

case. Thus, the error here compares the difference between the computed result and 

simulation result, normalized by the strength of the incident field.  

 

Figure 2.10: Amplitude of xE component for TE polarization. (a) Computed result by 

Huygens Principle. (b) Simulation result by FEKO. (c) Error 
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Figure 2.11: Amplitude of yE component for TE polarization. (a) Computed result by 

Huygens Principle. (b) Simulation result by FEKO. (c) Error 

It is shown that compared with yE , the amplitude of xE  is pretty small and can be 

neglected when computing the total field. For both xE  and yE , the error is less than -

20dB almost over the entire region when compared with the incident field. 

As shown before, there are several approximations made to simplify the original 

question: 

(1) Approximate the cylinder as a plate 

(2) Assume the total electric field E  at x=0 is equal to the incident field incE  

(3) Use the far-field solution of an infinitely long magnetic current to compute the near-

field region 

(4) Use Taylor expansion to express   in the numerator 

(5) Use x-coordinate of observation point to approximate   in the denominator 

Due to the second approximation made here, the equivalent magnetic current is a 

constant at ( , / 2) ( / 2, )y a a      . In other words, we know the expression of the 
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current and then solve the problem using the method above. However, if we cannot 

obtain the expression of equivalent current, this method does not work. For example, as 

shown in Figure 2.12(a), there are two plates located at different position. The first is still 

located at (0,0) while the second one is at (x’,y’). Assume the region between 0 and x’ is 

called Region 1 and the region where x>x’ is Region 2. If we are interested in the field of 

Region 2, we can draw the equivalent magnetic current along x=x’. It can be found that 

some part of sM  is in the shadow region of the first plate. Although we can assume the 

second plate has no influence on the field along x=x’ (except where it is located) and 

compute the field using the method above, the expression of equivalent current along 

x=x’ already has a term including the error function. We cannot obtain an analytical 

solution of it so this method cannot be used. 

 

Figure 2.12: Problem of two plates. (a) Original problem. (b) Equivalent problem. 
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MODIFIED EQUIVALENT PROBLEM FOR TE 

As is shown, the method derived above cannot solve the scattering problem of 

multiple plates. In order to solve this problem, a modified method is needed to compute 

the field by using the error function in which the exact expression of the equivalent 

current in the shadow region is not required. We derive this modified method starting 

from the one-plate case shown in Figure 2.8(a). The scheme of the method we used above 

is shown in Figure 2.13(a), where the infinitely long equivalent magnetic current is 

distributed along ( , / 2) ( / 2, )y a a      . As is shown, it can be regarded as a 

combination of the radiation problem shown in Figure 2.13(b) and Figure 2.13(c). In 

Figure 2.12(b), the magnetic current in the same direction is distributed along 

( , )y    while the current in Figure 2.13(c) is distributed along ( / 2, / 2)y a a    

and it is in the opposite direction. Since the current shown in Figure 2.12(a) is equal to 

the sum of the currents in Figure 2.13(b) and Figure 2.13(c), the original equivalent 

current in Figure 2.13(a) can be replaced. And then the field we are interested in can be 

expressed as the sum of the fields generated by the new equivalent currents 

1 2E E E   (2-29) 

It can be shown that the problem of Figure 2.13(b) is just an equivalent problem of the 

case where the width of plate is equal to zero. In other words, there is only an incident 

wave without any scatterers as shown in Figure 2.14(a). Therefore the electric field 1E  

is equal to the incident field 

1 0
ˆ exp( )inE E y jk x     (2-30) 
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Figure 2.13: Modified equivalent problem for TE polarization. (a) Original equivalent 

problem. (b)&(c) Modified equivalent problem. 

 

Figure 2.14: Equivalent problem for TE-polarized plane wave without any scatterers. (a) 

Original problem. (b) Equivalent problem. 

For the electric field 2E , it can be expressed as 
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where 0 0,
2

jk jk y
A B

x x
  . 

And the integrals used here can also be solved by the error function 
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(2-34) 

And then the total field can be expressed as 
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which can obtain the same answer as the scheme shown in Figure 2.7, which is shown in 

Figure 2.15 
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Figure 2.15: Computed results for modified equivalent problem of TE polarization. (a) 

xE component. (b) yE component. 

SOLUTION TO PROBLEM OF TWO PLATES 

Using this modified method, we can solve the two-plate problem shown in Figure 

2.12(a). As is shown, it is equal to the combination of Figure 2.16(a) and (b). The electric 

field we are interested in at Region 2 can be expressed as 1 2E E E  , where 1E  is 

radiated by the infinitely long magnetic current in Figure 2.16(a) and 2E  is radiated by 

the finite magnetic current in Figure 2.16(b). If we assume the effect on the field along 

x=x’ from the second plate is pretty small, then Figure 2.16(a) is just an equivalent 

problem of Figure 2.17(a). As is shown, there is only one plate located at (0,0) and we 

want to solve the electric field 1E  in Figure 2.17(a). Using the method shown in Figure 

2.13, we can get that 

1 0 3
ˆ exp( )E y jk x E     (2-37) 

where 3E  is the electric field due to the magnetic current '

sM  in Figure 2.17(b). Then 

the electric field in Region 2 of Figure 2.12(a) can be expressed as 
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0 3 2
ˆ exp( )E y jk x E E      (2-38) 

where 
2E  is radiated by the equivalent magnetic current 

sM  in Figure 2.16(b). If the 

two plates are far away from each other in y-direction, we can assume that the equivalent 

current in Figure 2.16(b) can be expressed by the incident field 

' 0
ˆ ˆ2 | 2exp( ')s in x xM E n jk x z     (2-39) 

In other words, this approximation is only suitable for problems in which the second plate 

is far away from the shadow region of the first one. If the second plate is in or close to the 

shadow region, the method we use here is not suitable. Figure 2.18 shows the computed 

result of yE  component for the two-plate case. The first plate is located at (0,-100m) 

while the second is at (200m,100m). Both of them have a width of 4 meters. It is shown 

that the result by Huygens Principle is good except for the region ahead of the second 

cylinder, which is due to the backward propagation scatter field we do not consider here. 

         

Figure 2.16: Modified equivalent problem of scattering for two plates (I) 
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Figure 2.17: Modified equivalent problem of scattering for two plates (II) 

 

Figure 2.18: Amplitude of yE component for two plates (TE). (a) Computed result by 

Huygens Principle. (b) Simulation result by FEKO. (c) Error  
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TM CASE 

For an incident plane wave of TM-polarization, the direction of equivalent 

magnetic current is along y-axis, as shown in Figure 2.19. In this model, the equivalent 

magnetic is infinitely long in z-axis and there is a gap between -a/2 and +a/2 along y-axis. 

 

Figure 2.19: Equivalent problem for TM polarization. (a) Original Problem. (b)&(c) 

Equivalent problem 

Since the equivalent magnetic current shown in Figure 2.19 is not z-directed, there should 

be an additional sin  term for computing the field in this case as shown in Figure 2.20, 

compared to the one of TE-polarization case. 

 

Figure 2.20: Radiation of a magnetic current directed along y-axis 
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Therefore the electric field at point (x,y) radiated by an infinitely long magnetic current 

mI  located at (0,y’) can be estimated as 
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(2-40) 

Using same approximations in TE case, the electric field at (x,y) can be expressed as 
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(2-41) 

where 0 0,
2

jk jk y
A B

x x
  . It can be shown that this solution is same to the yE  

component of TE case except here the sign is positive.  

TM COMPUTED RESULTS 

Figure 2.21 shows the computed results of the computation and the corresponding 

error. Compared with the TE case, for the region close to x=0 the error is larger in TM 

polarization, due to the approximation made previously. 
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Figure 2.21: Amplitude of zE component for TM polarization. (a) Computed result by 

Huygens Principle. (b) Simulation result by FEKO. (c) Relative error 

MODIFIED EQUIVALENT PROBLEM FOR TM 

For TM case, we can also utilize the modified equivalent problem as shown in 

Figure 2.22, where the field we want to compute is 1 2E E E  . 1E  is equal to the 

incident field while 2E  is radiated by the surface magnetic current shown in Figure 

2.23. Figure 2.24 shows the computed result, which is equal to the one of Figure 2.20(a). 
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Figure 2.22: Modified equivalent problem for TE. (a) Original equivalent problem. 

(b)&(c) Modified equivalent problem 

 

Figure 2.23: Radiation of a surface magnetic current oriented to y-direction 
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. 

 

Figure 2.24: Computed results for modified equivalent problem of TM polarization. 

BACKWARD PROPAGATION REGION 

For the backward propagation region, we can still use Huygens Principle to 

construct an equivalent problem, as shown in Figure 2.25 (for TM case as example). 

Since the plate model is not a good approximation of the original cylinder problem for 

the backward propagation region, we will not discuss it in detail. 
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Figure 2.25: Construction of equivalent problem for backward propagation region using 

Huygens Principle 

COMPARISON WITH CYLINDER MODEL 

Figure 2.26 shows the comparison between the computation for a plate model 

using Huygens Principle and the simulation of a cylinder model using FEKO, both under 

TM polarization incidence at 500MHz.  The result is reasonable in the shadow region 

(less than -16dB), although it is not satisfactory at large propagation angle (larger than -

10dB), which is due to the simplified model and far-field approximation used here. Thus, 

using the plate model solved by Huygens Principle can give a reference result in studying 

the shadow region of the wind turbine farm. In Chapter 3, we will use a different 

approach to try to get a better solution. 
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Figure 2.26: Comparison between plate model and cylinder model. (a) Computation of 

plate model using Huygens Principle. (b) Simulation of cylinder model 

using FEKO. (c) Relative error between (a) and (b) 
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Chapter 3: Parabolic Equation Solution 

In Chapter 2, it is shown that Huygens Principle with the error function can 

provide a good computed result for the plate model. However, for the cylinder model 

which is much closer to the original wind turbine problem, other methods are needed for 

more accurate results. In this chapter, a parabolic equation approach is implemented to 

solve the two-dimensional scattering problem of the cylinder model.  

INTRODUCTION AND DERIVATION 

The parabolic equation (PE) is an approximation of the wave equation which 

models power propagating in a cone centered on a preferred direction – the paraxial 

direction. It was introduced by Leontovich and Fock in the 1940s [25] and has been 

extensively used in wave propagation modelling since the 1980s.  

First, this method starts with assuming exp( )j t  time-dependence of the fields, 

where 𝜔 is the angular frequency. As shown in last section, we are only concerned with 

a two-dimensional problem where the field is independent of coordinate z. We define the 

field component we are interested as 𝜓 which is only a function of x and y. For TM 

polarization, 

( , ) ( , )zx y E x y   (3-1) 

while for TE polarization, 

( , ) ( , )zx y H x y   (3-2) 

The parabolic equation technique is derived for solving problems where power 

propagates predominantly in the paraxial direction. We select the positive x-direction as 

the paraxial direction, as shown in Figure 3.1. 
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Figure 3.1: The propagation directions constitute the paraxial zone 

For a homogeneous medium without any sources, 𝜓  satisfies the two-

dimensional scalar wave equation 
2 2

2 2

02 2
0k n

x y

 


 
  

 
 (3-3) 

where n is the refractive index and 0k  is the wave number in free space. The reduced 

function is introduced associated with the paraxial direction +x 

0( , ) ( , )
jk x

u x y e x y
  (3-4) 

The reduced function is used because it is slowly varying in range for power propagating 

at angles close to the paraxial direction, giving it convenient numerical properties [26]. 

Then the scalar wave equation in terms of u is 
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which can be factored as 
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where Q is a pseudo-differential operator which is defined as 
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We can split the wave equation into two terms which respectively correspond to forward 

and backward propagating waves 

0 (1 )
u

jk Q u
x


 


 (3-8) 

0 (1 )
u

jk Q u
x


 


 (3-9) 

in which the forward propagation corresponds to a wave propagating along the positive 

x-direction (Eqn. 3-8) and the backward propagation corresponds to the ones along 

negative x-direction (Eqn. 3-9). However, a single solution to Eqn. 3-8 or 3-9 is not, in 

general, for the actual electromagnetic field since both of them neglect the wave 

component propagating along the other direction. In order to get the exact solution of the 

original wave equation, the equations above should be solved simultaneously in a 

coupled system 

u u u    (3-10) 
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So we can solve for energy propagating in a paraxial cone centered on both the positive 

and negative x-direction separately and then sum them up to get the total field. 

STANDARD PARABOLIC EQUATION 

In order to solve Eqn. 3-8 or 3-9, we have to make an approximation for the 

square-root. A simple way is to utilize a Taylor expansion 
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Using the first-order expansion, Eqn. 3-8 yields the following equation 
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which is called the standard parabolic equation (SPE). The performance of the standard 

parabolic equation is limited to small propagation angles away from the paraxial 

direction. For a plane wave propagating at angle   from the paraxial direction +x in 

free space (n=1), the largest neglected term in Taylor expansion is 
2( 1)

8

Q
u


 which is 

proportional to 
2

2

2 2

0

1
( | |)

u

k y




. In free space, the reduced function of a plane wave can be 

expressed as 

0 0 0exp( cos sin )u jk x jk y jk x      (3-15) 

Hence the error is proportional to 4sin  , which goes from 710  at an angle of 1  to 

310  at 10  and over 210  at 20 . Therefore it is also called the 15 -approximation 

[27] since for angle larger than 15  the error is large. This shows that the standard 

parabolic equation is a narrow-angle approximation of the parabolic wave equation, 

whose accuracy is very good for long-range calculations. It can be solved numerically by 

either split-step Fourier techniques or finite-difference methods [26]. 

WIDE-ANGLE SOLUTION 

For problems involving large propagation angles, a more accurate approximation 

of the operator Q should be used. Higher order polynomial expansions cannot be utilized 

due to the instability in numerical schemes produced by it [28, 29]. One choice is to use 

the approach introduced by Claerbout [30]. The Claerbout solution involves a Padé-(1,1) 

approximation of the form 
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Since the Taylor expansion of the right side of Eqn. 3-16 is 
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 (3-17) 
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it is found that when a=0.75, b=0.25, both sides of Eqn. 3-16 have the same Taylor 

expansion of order 2 
21 0.75( 1) 1 ( 1)

1
1 0.25( 1) 2 8

Q Q Q

Q

   
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 
 (3-18) 

Using the Claerbout solution, Eqn. 3-8 yields the following equation 
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According to Eqn. 3-7 and 3-15, 
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Therefore, the error of using Claerbout solution for a plane wave propagating at angle  

  from the x-axis is on the order of 6sin  , which is acceptable for   up to 45 

degrees. Therefore, this approximation is also called the 45 -approximation [27]. 

Finally, the wide-angle parabolic equation for forward propagation becomes 
2 2
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 (3-21) 

FINITE-DIFFERENCE IMPLEMENTATION 

The parabolic equation can be implemented by either the split-step Fourier 

technique or the finite-difference methods. Since the Fourier technique does not have the 

necessary flexibility for boundary modelling, especially for problems including different 

types of boundary conditions [26], we select the finite-difference implementations to 

solve the parabolic equation. The Crank-Nicolson finite-difference scheme we utilize 

here is shown in Figure 3.2, which permits the modelling of arbitrary boundaries. 
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Figure 3.2: Crank-Nicolson finite-difference scheme ( 1

2
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x x
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Using a central finite-difference approximation, the derivative along the x-axis and the 

second order derivative along the y-axis are respectively given by 
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where 1m mx x x     and 1n ny y y    . Using this approximation, Eqn. 3-21 yields 

the following update equation 
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(3-25) 

for 1,2 1m M  . Here we have expressed the values at mx  as a function of values at 

1mx   in the form of a linear system. In matrix form, we can rewrite Eqn. 3-24 in the 

following way 

m m mA U V  (3-26) 

where mU  is a column vector 
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mA  is a tridiagonal matrix 
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and the right-hand side mV  is obtained from 1mU   by the matrix multiplication 
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(3-29) 

INITIAL VERTICAL PLANE 

The computation should start with the field on an initial vertical plane. For the 

forward propagation equation, we can select whichever vertical plane that is ahead of the 

scatterer since the total field propagating along the forward direction (positive x-axis 

here) is only the incident field. For a plane wave incident along the positive x-axis, we 

assume the incident field is 

0( , ) exp( )x y jk x    (3-30) 

and its corresponding reduced function is 

0( , ) exp( ) ( , ) 1u x y jk x x y   (3-31) 

Therefore we can assume that at the initial vertical plane 0x x , the column vector 0U  

is 
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We can then utilize the update equation to compute 1 2 1, MU U U  . 

In the case above, we will compute the total field everywhere. We can also 

compute the scattered field instead. Therefore we can also start with the scattered field on 

an initial vertical plane ahead of the cylinder. In this region the scattered field 

propagating along positive x-direction is zero. Then the matrix 0U  becomes 

0

0

0

0

U
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 
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(3-33) 

BOUNDARY CONDITION (I) 

The difference between the process of computing the total field and scattered field 

is that we need to enforce different conditions inside the PEC cylinder. It is known that, 

inside the PEC, the total electric field is zero. So if we compute the total field, we need to 

enforce the following condition at every point (x,y) inside the cylinder, 

( , ) 0u x y   (3-34) 

On the other hand, if we compute the scattered field, the condition to be enforced is 

0( , ) ( , ) exp( ) ( , ) 1s in inu x y u x y jk x x y       (3-35) 

That means after computing the value of any column vector nU , if there is a point (x,y) 

inside the cylinder, we need to enforce its value using Eqn. 3-34 or 3-35. For points along 

the boundary of the cylinder, the conditions is decided by the polarization of the incident 

wave. For the TM polarization,   is the transverse electric field zE  which must be 

zero on the boundary. Therefore the boundary condition can be still expressed as Eqn. 3-
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34 or 3-35. For the TE polarization,   is the transverse magnetic field zH , whose 

normal derivative is zero on the boundary 

0
n





 (3-36) 

where n  is the outer normal to the surface. It should be noted that the boundary 

conditions described here are not exact. This is because when enforcing the boundary 

conditions, we neglect the field propagating towards negative x direction, which is not 

exactly zero. 

BOUNDARY CONDITION (II) 

In order to limit the integration domain in height, we need to enforce boundary 

conditions at the top and bottom boundary. They must be perfectly transparent, letting all 

power coming from below or above the boundary escape to infinity [26]. Here we choose 

the perfectly matched layer (PML) which is adequate for scattering applications. Assume 

the boundaries of the region we are interested in are respectively at 
topy  and boty . The 

PML is above topy  or below boty . We construct the two-dimensional PML by replacing 

the height y with complex coordinate y  given by [31] 

0
( )

y

y y j d      (3-37) 

where 

( ) 0,

( ) 0,

bot top

top bot

z y y y

z y y or y y





  


  

 

Then we extend the wide-angle parabolic equation to the new coordinate 
2 2

02 2

0

2 0
2

u u j u
jk

y x k y x

   
  

   
 (3-38) 

The solution of Eqn. 3-38 coincides with the usual parabolic solution for bot topy y y   

and has the form of a damped wave for topy y  or boty y . In order to implement the 

PML with finite-difference, we rewrite the Eqn. 3-38 as 
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(3-40) 

0

3ln | |

2

R



   (3-41) 

R is a small number and   is the thickness of the one-side PML. Then the update 

equation for the parabolic equation including the PML is 

1 1 1

1 1 1 1

m m m m m m

n n n n n n n n n n n nu a u b u c u d u e u f  

         (3-42) 
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and 

' 0

top top

bot top

bot bot

y y for y y

y for y y y
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(3-44) 

It can be found that for y’ equal to zero, the update equation is the same as the one 

without PML (Eqn. 3-25). 
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COMPUTED RESULTS OF FORWARD PROPAGATION 

Assume there is an infinitely long PEC cylinder located at (0,0) with a diameter of 

4 meters. The incident wave is TM-polarized and the amplitude of electric field is 1 V/m. 

The frequency is 500 MHz and the wavelength   is 0.6 meters. Figure 3.3 shows the 

computed results by the parabolic equation with different sizes of mesh grid (assume 

x y    here). It should be noted that the computation starts from the region ahead of 

the cylinder, which is not shown in the results. 

 

Figure 3.3: Computed result at mesh size equal to 0.5 . (a) parabolic equation. (b) 

FEKO simulation. (c) Error 
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Figure 3.4: Computed result at mesh size equal to 0.25 . (a) parabolic equation. (b) 

FEKO simulation. (c) Error 

 

 

Figure 3.5: Computed result at mesh size equal to 0.2 . (a) parabolic equation. (b) 

FEKO simulation. (c) Error 
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Figure 3.6: Computed result at mesh size equal to 0.1 . (a) parabolic equation. (b) 

FEKO simulation. (c) Error 

 

Figure 3.7: Computed result at mesh size equal to 0.05 . (a) parabolic equation. (b) 

FEKO simulation. (c) Error 

As shown in Figures 3.3(a), 3.4(a) and 3.5(a), when the mesh size is large, the 

interference between the incident field and scatter field cannot be found at large 

propagation angles. As the mesh size is further reduced, the interference pattern is 
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captured even at large propagation angles. From Figures 3.6(c) and 3.7(c), it is shown 

that the largest angle up to which the error is acceptable is about 45 degrees. This is due 

to the wide-angle approximation of operator Q we used here. In order to investigate the 

error further, here we define the percentage RMS error as 
2

2

|| | | ||
%

| |

com sim

sim

E E
RMS error

E






 

(3-45) 

where comE  is the computed result by the parabolic equation while simE  is the 

simulation result from FEKO. The %RMS error is integrated over the triangular region 

shown in Figure 3.8(a), where the propagation angle ( 45 , 45 )   , since the method 

used here cannot obtain the accurate results outside this region. The %RMS errors for 

different mesh sizes are plotted in Figure 3.8(b), with the numerical values shown in 

Table 3.1. Although the %RMS error does not converge at the mesh size equal to 0.1 , 

we can find that by this mesh size, the error in the shadow region is less than -30dB. 

Thus, if we are more interested in the field strength in the shadow region, 0.1   is 

suitable. 

 

Figure 3.8: %RMS error with different mesh size. (a) Calculation region. (b) %RMS 

error. 
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Mesh Size (Wavelength) %RMS Error 

0.5 10.02% 

0.25 7.81% 

0.2 6.33% 

0.1 3.11% 

0.05 2.47% 

0.025 2.36% 

Table 3.1: %RMS with different mesh size 

BACKWARD PROPAGATION 

For backward propagation equation, we can still use the Claerbout 

Approximation, then Eqn. 3-9 yields 
2 2

2
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2 0
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u u j u
jk k u

y x k y x

   
   

   
 (3-46) 

Considering the PML, it becomes 

2

0 0
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1 1 1 1
( ) ( ( ( ))) 2 0
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u u j u
jk k u
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 (3-47) 

and the parameters for the update equation become 
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(3-48) 

The backward propagating field is obtained with a separate run, marching in the negative 

x-direction. The object is treated as a sequence of reflecting facets which act as sources 

for the backward propagating field [32-34], as is shown in Figure 3.9. In this case, since 

the incident field propagates along the positive x-direction, we can only calculate the 

backward scattered field by using the backward equation. Thus, this simulation starts at a 

vertical plane beyond the scatterer with the initial field equal to zero. Boundary 

conditions on each facet are given by the appropriate polarization-dependent reflection 

coefficients [26]. Since the reflecting facet is PEC, under a TM-polarized incidence, the 

reflection coefficient is equal to -1. In this case, we can assume the backward-

propagating scattered electric field along the reflecting facet is equal to inE  while at 

the rest part of the cylinder it is equal to zero. In contrast, recall the process of the 

forward propagation computation, the forward-propagating scattered electric field inside 

the cylinder is also equal to inE , which makes the two results different. 
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Figure 3.9: Facet Model. (a) Forward Propagation. (b) Backward Propagation. 

COMPUTED RESULTS OF BACKWARD PROPAGATION 

Figure 3.10 shows the computed results for the backward propagation case, with a 

TM-polarized incident wave at 500MHz. It is found that larger mesh size cannot achieve 

acceptable results, so the mesh size here is 0.01 . Due to the very small mesh size, the 

computation time is long. Also, the error outside the small propagation angle is somewhat 

significant. More suitable boundary conditions may need to be found. 

 

Figure 3.10: Computed result for backward propagation at mesh size equal to 0.01 . (a) 

parabolic equation. (b) FEKO simulation. (c) Error 
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COMPUTATION FOR MULTIPLE CYLINDERS 

Consider the problem shown in Figure 3.11, which is a simplified model of a 3x3 

wind farm. There are nine infinitely long PEC cylinders with same radius (2 meters). The 

coordinates of each cylinder is shown in Table 3.2. Using the parabolic equation 

technique, the computed results and corresponding comparison with FEKO simulation 

are shown in Figure 3.12. The error is mainly due to two factors: (1) the backward 

propagation which is not considered here and (2) the large angle propagation which 

always has error due to the approximation of pseudo-differential operator Q. For the 

region where the effect from these two factors is small, the error is about -20dB. Figure 

3.13 shows the field distribution (in dB scale) behind some specific cylinders (No. 4, No. 

7 and No. 9) along the red dash lines shown in Figure 3.11.  It is shown that in the 

shadow region, both the computed results and the simulation results follow the same 

trend, except that in the simulation results the wave oscillation is much stronger. This 

error is mainly due to the backward scattering and wide-angle propagation which is not 

well solved in the parabolic equation solution. Since there is no backward scattering 

behind Cylinder No.9, the wave oscillation shown in Figure 3.13(c) is not as strong as the 

ones shown in Figure 3.13(a)&(b). However, there is some obvious offset shown in 

Figure 3.13(c), which is probably because that the error from both the backward 

scattering and wide-angle propagation is accumulated when the simulation is marching in 

the positive x-direction. As shown in both the computed results and the simulation 

results, Cylinder No.4 is not in the shadow region of any other cylinders, while Cylinder 

No. 7 is located in the shadow region of Cylinder No.2. Thus, in the shadow region of 

Cylinder No.7, the field fade is stronger than the Cylinder No.4. In the shadow region of 

Cylinder No.9, the fade is even stronger since it is in the shadow of both Cylinder No.1 

and No.5.  
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Figure 3.11: Simplified model of wind turbine farm 

Number Coordinates Number Coordinates 

1 (-90,0) 6 (0,-90) 

2 (-45,+45) 7 (+45,+45) 

3 (-45,-45) 8 (+45,-45) 

4 (0,+90) 9 (+90,0) 

5 (0,0)   

Table 3.2: Coordinates of cylinders shown in Figure 3.11 (Unit:m) 
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Figure 3.12: Scattering computation for a wind turbine farm. (a) parabolic equation 

solution. (b) FEKO simulation. (c) Error 
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Figure 3.13: Field distribution behind specific cylinders. (a) Cylinder No.4. (b) Cylinder 

No.7. (c) Cylinder No.9. 

PARABOLIC EQUATION UNDER LINE SOURCE INCIDENCE 

As will be shown in Chapter 4, we use two transceivers to measure the field 

distribution around a metal pole. However, we cannot use the transceiver to generate a 

plane wave incidence. Thus, the excitation in the parabolic equation has to be modified in 

order to be compare with the measurement results. Commonly, the transceiver should be 

regarded as a point source. However, we are solving a two-dimensional problem in this 

chapter, which is not suitable for a point source excitation. So we assume the source is an 
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infinite long current source along z-axis. Then the electric field radiated by it can be 

expressed as [24] 

0exp( )
z

jk
E A






  (3-49) 

where 0
0

8
e

jk
A I


   is a constant decide by the amplitude of the source. Using this 

equation we can get the incident field ( , )in x y  everywhere. Since parabolic equation is 

most accurate for plane wave propagation, computing the total field due to a cylindrical 

incident wave here is not applicable. So here we use parabolic equation to compute the 

scatter field and enforce the conditions 

0( , ) ( , ) exp( ) ( , )s in inu x y u x y jk x x y     (3-50) 

at the points inside the PEC cylinder. Using this approach, the field distribution around a 

PEC cylinder with a radius of 0.15m, under the excitation of an infinitely long current 

source located at (-1.2m, 0), with a frequency of 3.5GHz, is shown in Figure 3.14 (in dB 

scale). Here the backward propagation region is not considered since the measurement is 

only done in the forward propagation region. 

 

Figure 3.14: Field distribution under a line source incidence by parabolic equation 
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In this chapter, we used the parabolic equation technique to compute field 

distribution behind a PEC cylinder. The computed results are more accurate than the 

method of Huygens Principle used in Chapter 2, since here we solved the scattering 

problem of the cylinder model. In Chapter 4, we will do measurement using transceivers 

in order to further verify the results obtained in this chapter. 
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Chapter 4: Measurement Using UWB Transceivers 

In this chapter, two commercial ultra-wideband (UWB) transceivers from Time 

Domain Corporation (model P410) and the associated Channel Analysis Tool software 

are utilized to measure the field distribution around a metal pole. The measured results 

are then compared to the computed results by the parabolic equation approach. Fast 

Fourier transform is utilized to transform the time-domain results from the receiver into 

the frequency domain, since the parabolic equation solution is based in the frequency 

domain. 

TRANSCEIVER AND CHANNEL ANALYSIS TOOL 

We use two Time Domain P410 UWB transceivers (Figure 4.1) and their Channel 

Analysis Tool [35] to measure the electromagnetic field beyond a metal utility pole 

located at the University of Texas Pickle Research Campus. Each platform is connected 

to a broad band antenna that has an isotropic radiation pattern in the azimuth plane. One 

unit is set up as the receiver and it is placed in front of the pole. The other unit is set up as 

the transmitter, which is moved along various positions. The transmitter continuously 

sends very short RF pulses with an equivalent frequency bandwidth from 3.1 to 5.3 GHz 

and centered at 4.3 GHz. They propagate through the environment and is received and 

recorded by the receiver. By geometrical optics, we know that there are several path for 

wave to propagate between the transmitter and receiver. As shown in Figure 4.2, the 

direct path has the shortest delay time, which is recorded as the zero delay time point for 

each scan of the result generated by the Channel Analysis Tool, as shown in Figure 4.3. 

In Figure 4.3, the columns represent the delay time information relative to the direct path 

for each pulse sent by the transmitter. Due to the pole we want to measure, there is a 

multipath, like the “multipath 1” shown in Figure 4.2. Since the length of this multipath is 
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usually close to the direct path, its relative delay time is small. But due to the small length 

difference, the direct path and multipath interfere with each other constructively or 

destructively in the frequency domain when the transmitter is at different position, 

leading to spatial oscillations. There is also some other multipath due to other objects 

around, as shown as the “multipath 2” in Figure 4.2. Usually, the delay time is large, 

which can be found in the results shown in Figure 4.3. Due to the path loss, the field 

strength of multipath is lower than the direct path, which always has the largest 

amplitude. 

 

Figure 4.1: Time Domain P410 UWB transceiver 
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Figure 4.2: Direct path and multipath 

 

Figure 4.3: Measurement result by Channel Analysis Tool 

MEASUREMENT 

Since we need a laptop to record the data received by the receiver, it is more 

convenient to move the transmitter rather than the receiver (by reciprocity, the results are 

the same). We use the transceiver pair to measure the field strength behind a metal pole 
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with a radius of 0.15m at discrete locations, as shown in Figure 4.4. The transmitter is 

moved along the dashed line shown in Figure 4.5. If the transmitter is moved at a 

constant speed, the scan numbers can be directly mapped to position using a constant 

value.  

 

Figure 4.4: Measurement Photos. (a) Metal pole to be measured. (b) Receiver. 

 

Figure 4.5: Scheme of measurement 
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DATA PROCESSING 

As is known, the results given by the Channel Analysis Tool is in the time 

domain. We need to transform it to the frequency domain by a fast Fourier transform. 

First, we need to eliminate the effect from multipath caused by other scatterers. 

Therefore, we only select the data close to the direct path. For example, for the result 

shown in Figure 4.3, we can choose the data between 0 and 20ns. Second, use a fast 

Fourier transform to process the data into the frequency domain and only record the data 

of the frequency we are interested in. The range sampling of the data in time is 61 ps 

which leads to a maximum frequency window of 16.4 GHz. Third, assuming the 

transmitter is moved at a constant speed, we can plot the field at different locations by 

directly mapping the scan numbers to position. 

RESULTS COMPARISON 

The measurements were carried out twice for each vertical cut in Figure 4.5, and 

compared with the computed results from the parabolic equation approach. Due to the 

very close distance between the human body and the transmitter during measurement, 

there is a fading at the center frequency 4.3GHz. Thus, we choose the results of 3.5GHz, 

at which the measured field does not fade, instead of 4.3GHz. The results are summarized 

in Figure 4.6.  It can be observed in both the computation and measurement that the 

shadow region appears in the center of the cuts and its width becomes larger when the 

observation cut is moved further away. Outside the shadow region, both the computed 

results and measurement results show the wave oscillation due to the multipath by the 

pole. Also, the field strength decays when the observation cut is farther away from the 

pole, which is due to the point source used here. For the results of the first four vertical 

cuts we measured, the computed field strength in the shadow region agrees well with the 

measurement (at most -2dB difference). In the region outside the shadow, at some 
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position the error is a little larger, which is probably due to the imperfect measurement 

we made. For the last two cuts, the error becomes larger (-5dB) in both the shadow region 

and outside region. The field strength of the measurement is lower than the computed 

results almost everywhere. One reason is that in the computation by the parabolic 

equation we solved a two-dimensional problem, which is quite different from the 

practical three-dimensional problem. The error may be also due to the multipath by the 

ground. It well-known that when the distance between the transmitter and receiver 

becomes large, the length of the multipath by the ground is very close to the direct path. 

Thus, the time delay of that multipath is quite small, which cannot be filtered from the 

measurement results in time domain. This multipath may lead to the decay of the field we 

measured. 
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Figure 4.6: Comparison between computation and measurement for a metal pole 
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In this chapter, in order to verify the computed results from the parabolic 

equation, the near-field distribution of a metal pole was measured by using two 

transceivers. It was found that when the observation positions were close to the pole, the 

computed results agreed well with the measurement results. When the distance was large, 

the measured field strength was lower than the computed one, which was probably due to 

the multipath by the ground. Although the parabolic equation technique is not accurate 

for field at large propagation angles, it is useful for studying the shape and field strength 

of the wind turbine’s shadow region. 
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Chapter 5: Conclusion 

In this thesis, two approaches for the scattering problem of wind turbine farm 

were investigated. Firstly, the cylinder model of the wind turbine was simplified further 

into the plate model. And the equivalent problem of this model was constructed by using 

Huygens Principle, which can be solved analytically by error function. TE and TM 

polarization was discussed respectively and the results were verified by FEKO 

simulation. As was shown in the results, although using this method can obtain the size of 

the shadow region, the field strength is not exact due to the different shape of the 

scatterer. 

Secondly, parabolic equation technique was introduced and utilized to solve the 

problem for more accurate results. Wide-angle approximation and perfectly matching 

layers were selected and implemented by finite-difference method. The TM-polarized 

incidence case was discussed and solved. Due to the approximation it contains, the 

computed results at large propagation angle were not accurate. However, for small-angle 

propagation this method was applicable. It can compute both the size and field strength of 

the shadow region accurately. 

Lastly, a measurement using Time Domain transceivers was designed. The 

measurement results along several parallel rows behind a metal pole were compared with 

the computed results by parabolic equation under a line source excitation. The results 

coincided well with each other, which showed that the parabolic equation is a good tool 

for solving the shadow problem of wind farms. 

Some problems have also been identified for possible future work. The problem 

of backward propagation is not well solved in this thesis, which at present requires much 

smaller mesh size to obtain a result as accurate as the forward propagation case. Also, the 
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large angle problem for parabolic equation can be studied in the future, such as using the 

Split-step Padé method to solve the parabolic equation.  
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