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Abstract 

 

Mining of Identity Theft Stories to Model and Assess 

Identity Threat Behaviors 

 

Yongpeng Yang, M.S.E. 

The University of Texas at Austin, 2014 

 

Supervisor:  Kathleen Suzanne Barber 

 

Identity theft is an ever-present and ever-growing issue in our society. Identity 

theft, fraud and abuse are present and growing in every market sector. The data available 

to describe how these identity crimes are conducted and the consequences for victims is 

often recorded in stories and reports by the news press, fraud examiners and law 

enforcement.  To translate and analyze these stories in this very unstructured format, this 

thesis first discusses the collection of identity theft data automatically using text mining 

techniques from the online news stories and reports on the topic of identity theft. The 

collected data are used to enrich the ITAP (Identity Threat Assessment and Prediction) 

Project repository under development at the Center for Identity at The University of 

Texas. Moreover, this thesis shows the statistics of common behaviors and resources used 

by identity thieves and fraudsters — identity attributes used to identify people, resources 

employed to conduct the identity crime, and patterns of identity criminal behavior. 

Analysis of these results should help researchers to better understand identity threat 

behaviors, offer people early warning signs and thwart future identity theft crimes. 
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Chapter 1:  Introduction 

Identity theft is an ever present issue in our society, where almost all aspects of 

our lives are digital. According to the National Institute of Justice [1], “Identity theft has 

perhaps become the defining crime of the information age, with an estimated 9 million or 

more incidents each year.” Over the past decade, the Federal Government and most states 

have passed legislation to impose criminal sanctions on identify thieves. Efforts to 

combat identity theft have been hampered, however, by the elusiveness of the definition 

and its overlap with the elements of many other crimes. Additionally, the long-term and 

multi-jurisdictional nature of identity theft, as well as the looming question as to whether 

law enforcement agencies or financial institutions are better equipped to combat it, add to 

the inability to fully contain the problem. Despite all stakeholders’ awareness that there is 

a problem, it appears that no one is quite sure who should take ownership in solving it. 

Likewise, little time has been spent researching how identity theft actually occurs. There 

are best practices and prevention tips from security companies and government agencies 

available. What is void, however, is aggregated data about the process involved in 

stealing someone’s identity. Most information available centers on reactive measures, 

which are helpful once your identity is stolen, but bring us no closer to ending or 

increasing the difficulty of future thefts. The consumers are typically several steps behind 

the identity theft. 

To better understand the business process used by identity thieves and fraudsters, 

the Center for Identity at The University of Texas at Austin is developing a repository of 

relevant knowledge. The aim is to understand the criminal’s business process, the 

vulnerabilities that allow the crime to take place, the resources that facilitate it and what 

can be done to prevent it. Armed with this knowledge, a shift in the definition and use of 
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credentials may be explored to decrease identity theft and fraud vulnerabilities. In order 

to better analyze the crimes that steal and use identity information, the Identity Threat 

Assessment and Prediction (ITAP, will be introduced later) tool is piecing together this 

business-like model of criminal methods and techniques. ITAP will allow us to better 

understand a fraudster’s behaviors and inevitably, make connections and visualize 

patterns based on past identity theft and fraud. As more information is funneled into the 

tool, the ITAP will deliver actionable knowledge that is grounded in the study of thefts 

that have actually happened in the past. The big questions are: How are these perpetrators 

gathering information? What resources are being used to overcome security hurdles? 

What process steps are being taken to steal someone’s identity?  

To assess and predict the identity threats, analytical tools like ITAP needs 

sufficient amount of data to conduct analysis and generate reliable results and 

conclusions. However, there is no publicly available repository describing ongoing 

identity theft and fraud, which would require many identity domain experts to derive and 

to subsequently generate well structured models of these criminal behaviors. Initially, the 

identity threat scenarios and data in the ITAP system of Center for Identity were entered 

manually. This data entry method is not sufficient to stay current with the quantity and 

pace of identity theft and fraud crimes. Thus, the biggest problem faced by the research 

team is that much of the identity theft data simply aren’t available, even in semi-

structured form, much less normalized, structured form. Although some government 

organizations have internal databases cataloging identity theft and fraud, almost none of 

them are available to the public or research institutions. The good news is that there are 

dozens of identity theft news stories published on the Internet each month. However, 

these articles are in a raw text format that cannot be analyzed directly to find patterns. 
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One way to collect this data requires many people reading those stories and then entering 

the useful information into the database manually. This process is very time consuming 

and, due to the magnitude of identity theft and fraud, it is difficult to remain current. To 

solve this problem, this thesis proposes an automatic solution that uses text mining, an 

application of natural language processing to extract the useful information from those 

identity theft stories and articles.  

This thesis consists of six chapters including the introduction, conclusion and 

future work. Chapter 2 introduces some background information about the identity 

research domain and the ITAP project, as well as the commonly used text mining and 

natural language processing techniques. Chapter 3 talks about the design of the 

algorithms and the composition of the system. In Chapter 4, the results of the algorithm 

running on the news stories extracted online are shown and analyzed. Chapter 5 

concludes with a summary of the thesis work. The possible future work is discussed in 

Chapter 6.  
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Chapter 2:  Background 

The problem of information extraction from raw text format has been approached 

by numerous research efforts. However, applications of this technique in the identity 

research area is relatively novel. This thesis was based on the ITAP project for the Center 

for Identity at the University of Texas at Austin and some related works in the natural 

language processing research and text mining studies. 

 

2.1 THE ITAP OVERVIEW 

In order to concretely illustrate the ITAP model and its utility, we will first 

closely examine a specific form of identity theft – home equity fraud.  This theft form 

involves multiple players and a series of well-articulated steps, as well as several 

resources and data elements. 

Figure 1 displays a flowchart of a hypothetical home equity fraud scenario. In this 

scenario, the fraudster first became a loan officer in order to learn the inner workings of 

loan processing.  This provided critical knowledge for him that he later utilized to 

perform the fraud. Leveraging this industry knowledge, he was able to collect mortgage 

information about wealthy couples and search for lease and loan documents in public 

databases. Next, he used a readily available graphics editing program called Photoshop 

was used to grab signatures from the loan documents.  Typically, in order to carry out a 

fraud of any magnitude, a profile must be compiled of the intended victim.  The rest of 

the victims’ personal data were compiled via paid searches on skip-tracing sites, credit 

reports run on Experian, and ancestry.com.  The fraudster then called the victims’ bank 

with a resource called SpoofCard which allowed the projected number the financial 

institution viewed on their end, to be any number he chose.  Cleverly, he chose the phone 
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number of the victim and used this to validate his identity when he called the financial 

institution.  He requested wire transfer documents which he then applied the duplicated 

signatures to and faxed back.  Lastly, he worked with several international partners to 

launder the money by sending it internationally and paying his partner to return it minus a 

transaction fee.  

Figure 1 Home Equity Fraud Process 

Perhaps the most unsettling part of this scenario is that the fraudster did not begin 

the fraud with a wallet, access to a bank account or a credit card number.  He began with 

nothing.  Through the manipulation of various vulnerabilities, online databases, 

knowledge of the inner workings of loans and financial institutions, and specific 
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2.2 ITAP MODEL   

This section describes the ITAP model representation and each component, and 

then articulates how the data in each scenario are stowed in the ITAP for further analysis. 

 

2.2.1 Identity Theft as a Business Process 

A business process is defined as a collection of related, structured activities or 

tasks that produce a specific service or product for a particular customer or customers. It 

often can be visualized with a flowchart as a sequence of activities with interleaving 

decision points or with a process matrix as a sequence of activities with relevance rules 

based on data in the process [3]. The process of committing identity theft mirrors a 

typical business process where each step serves a particular goal in the overall theft. 

 Resources as well as input and output data elements allow the fraudster to advance from 

one step in the process to the next.  As with any business process, if a critical step is 

missing or cannot be completed, the business process as a whole is halted.  By viewing 

identity theft as a business process, ITAP provides a better insight and understanding of 

how the identity thieves conduct the crime step by step.  This enables us to find the most 

critical part of the whole process, i.e. the most vulnerable step, and come up the 

countermeasures to prevent it.  Like any other business process, without all of the 

necessary components, the process cannot be carried out.  Below, each piece of the ITAP 

model is discussed in detail, and in conjunction, create the identity theft business process.  

 

2.2.2 Model Representation 

The ITAP model consists of several components, which are used to describe the 

different parts of the whole identity theft process and to analyze it. These components 
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fraudster needed to complete the background search prior to being able to access the 

credit report.  Now clear connections can be made on how the information is flowing and 

what the dependencies look like between certain steps.  This type of pattern detection will 

will prove invaluable in predicting future identity theft scenarios. 

 

2.3 TEXT MINING  

Text mining usually refers the process of gleaning the meaningful information 

from natural language text. The goal is to analyze the text and extract the useful 

information for a specific use [4]. It is essentially an application of natural language 

processing to transform the natural text into directly usable data. Unlike the well-formed 

data stored in a database, natural language text is unstructured and difficult to understand 

by computers. Thus text mining usually requires transforming the natural language text 

into a structured format, detecting lexical and syntactic usage patterns, and finally 

evaluating and analyzing the generated data. Typical text mining research includes text 

clustering, text categorization, entity extraction, sentiment analysis, entity relation 

modeling and so on. Text mining techniques have been used in many areas to help 

process large amount unstructured data, such as biomedical applications (e.g. association 

of gene clusters and identification of biological entities), social network applications (e.g. 

social network hashtag trends), marketing applications (e.g. customer relationship 

management), and sentiment analysis (e.g. customer sentiments on movies) [5].  

This section briefly introduces some text mining techniques used by common text 

mining systems, especially those methods used or planned for use in this thesis. Some 

methods not used in this thesis but used by other text mining applications are also 

described here.  
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2.3.1 Text Preprocessing 

Before actually analyzing the natural language text, “preprocessing” is usually 

done to eliminate the language-dependent factors so that the language structure becomes 

more clear [6]. Tokenization is one of the most common techniques used for text 

preprocessing.  

Tokenization refers to the process of splitting a text stream, such as a sentence, 

into tokens, such as phrases, words, symbols or other kind of elements. In the text mining 

field, a token usually means a sequence of characters that are classified together as a 

group to represent a meaningful semantic unit for processing [7]. There are plenty of 

ways to tokenize a text stream into meaningful tokens. One simple approach would be 

just split the text or sentences based on the white spaces, punctuation, or other special 

symbols between words.  

After tokenization, stop-word removal and stemming (lemmatization) may apply 

for further preprocessing [8]. Stop-words refer to high frequency words in a language that 

don’t carry any significant meaning, such as the articles ‘the’, ‘a’, ‘an’, etc. For a specific 

application domain, one can also create stop-word lists by applying statistical measures to 

remove the less informative words.  Removing these stop-words helps to reduce noise 

and to select meaningful textual features. 

Stemming (lemmatization) is the process of reducing inflected words into a stem 

or base form so that the number of phrases or words with similar meaning can be 

reduced. For example, English words like ‘look’ can be inflected with a morphological 

suffix to produce similar words such as ‘looks’, ‘looking’ and ‘looked’. These words all 

share the same stem ‘look’. It is usually beneficial to map all inflected forms into the 

stem. However, some experimental results show that sometimes stemming can have a 

negative effect on a text classifier [9]. The stemming process can become complicated for 
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some words or phrases which have many exceptional cases, such as ‘be’ and ‘was’, ‘see’ 

and ‘saw’. In the identity research area, words such as ‘social security number’, ‘SSN’, 

and ‘social security card’ refer to the same identity attribute. Thus, by combining these 

words into the stem, ‘social security number’, will reduce the complexity. The most 

commonly used stemmer is the Porter Stemmer, which transforms a word into its base 

form based on a set of language specific rules [10]. 

 

2.3.2 Features Extraction 

In addition to text preprocessing, feature extraction is also an important step 

before the natural language text can be analyzed by text mining techniques. The text 

document is often too large, as well as redundant, to be processed by some mining 

algorithms, thus a set of features is produced to represent the text document that reduces 

its dimensionality [11]. This process is called feature extraction. The features yielded by 

this process are also referred as feature vectors.  

Feature vectors could be primarily lexical and character features as well as other 

semantic or higher-level features [12]. Primarily lexical and character features are the 

most widely used ones, which are word–based features that can be observed directly in 

the text, such as word frequencies, n-grams, noun phrase, vocabulary richness, and 

character n-gram, etc [13]. The major advantage of low-level features is that they can be 

extracted easily in an automatic fashion. Also, these features are easier for humans to 

understand and reason about. On the contrary, semantic features or higher-level features 

are extracted from the surface level lexical features by using statistical techniques, such 

as singular value decomposition (SVD), topic modeling, and random projection, etc. The 
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higher-level features can capture more semantic information in a text document and thus 

are great for performing tasks like classification, clustering and so on. 
 

2.3.2.1 N-Grams 

An N-Gram is a subsequence of n items from a given sequence. In the context of 

text mining, a word constitutes an item. Two commonly used N-grams, unigrams and 

bigrams, are illustrated as examples below. 

Unigrams are N-Grams of size one, i.e. one single word. They are usually made of 

all the single words that consist of the text document after preprocessing. The set of 

unigram features are also known as the “bag of words” feature sets. Although the 

unigram model is quite simple, it has achieved success in text classification and word 

sense disambiguation [14]. Bigrams are N-Grams of size two, which are a consecutive 

sequence of two words, and are usually used as the basis for simple statistical analysis of 

text. Bigrams captures more underlying information of the text structure than unigrams, 

which might be beneficial for tasks like text classification and clustering.  

For example, the unigrams generated from two sequences “He likes basketball 

and hates football.” and “He likes football and hates basketball” are identical. However, 

by using bigrams, “likes basketball” and “hates football” generated from the first 

sequence express completely contrary meaning from “hates basketball” and “likes 

football” generated from second sequence. Thus these features can be used to distinguish 

two sequences.  
 
 
2.3.2.2 Noun Phrases 

Noun phrases (NP) refers to units whose first or principal word is a noun, pronoun 

or other noun –like words, which can be modified by words such as adjectives [15]. Noun 
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phrases are the main carriers of the content of a text document and can be used to extract 

more informative features and meaningful information than a single word. For example, 

‘social security number’ is a noun phrase. 

Proper nouns, which are a subset of noun phrases, are to the nouns that represent 

unique entities [16], such as San Francisco, LeBron James, or Miami Heat. These words 

are distinguished from the common nouns that refer to a class of entities or non-unique 

instances of a certain class such as person or these persons. 

 

2.3.2.3 Singular Value Decomposition 

Singular Value Decomposition is a matrix factorization approach that has been 

used in many applications. The key idea of SVD is to replace the original feature-

document matrix with a newly generated but much smaller matrix. The features in the 

new matrix represent the latent features and maintain the characteristics of the original 

features approximately. The latent feature represents certain properties of the objects that 

have not been observed directly, or represents the hidden causes that could explain the 

observed properties [17]. For example, several features of an object may always show up 

together. Instead of using all of them, using a latent feature to represent this characteristic 

will reducing the complexity. Thus SVD is also regarded as a feature reduction. It can be 

used to reduce the dimension of a complicated file and represent it in a simpler way 

without losing the essential information.  

In text mining, SVD has been used in LSA (Latent Semantic Analysis), which is a 

well known technique to map the high-dimensional count vectors, such as the ones 

occurring in vector space representations of the text documents, to a latent semantic 

space, which is a reduced dimensional representation[18].  
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 2.3.3 Document Representation 

Natural text documents are usually too large and hard to deal with. Therefore the 

documents are often transformed to N-dimensional vector. Each dimension represents a 

characteristic of the document. The characteristic could be a feature extracted from the 

text as described earlier, such as words, phrases or some other elements, which are 

weighted according to the importance [19]. 

 

2.3.3.1 Vector space model 

A common way of representing the document in text mining is to use a vector 

space model, which uses a multi-dimensional vector. Each dimension exhibits a feature 

extracted from the natural text [20]. The vector space model is typically used to compare 

the similarity between two document vectors. This comparison is made by calculating the 

cosine of the angles between two vectors. It can also be used to answer queries about the 

text documents.  The similarity can be calculated using the formula below: 

,ଵܦሺݕݐ݅ݎ݈ܽ݅݉݅ݏ ଶሻܦ ൌ 	 cos ߠ ൌ 	
ଵܦ ∙ ଶܦ

‖ଶܦ‖‖ଵܦ‖
 

Where ܦଵ and ܦଶ are two vectors that represent two documents. The cosine is the 

normalized for product of the two vectors. A zero similarity means that the two 

documents do not share any common features in this vector space because the angle 

between the two vectors is 90 degrees (orthogonal). 

 

2.3.3.2 Term Weighting (࢚ࢌ െ  (ࢌࢊ࢏

In vector space, different features are assigned different weights. A higher weight 

of a feature means that it has greater impact on the cosine similarity. Thus the more 

important feature should be given a higher weight. How to decide whether a term 
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(feature) is important or not? The three most commonly used major factors that affect the 

importance of a term are the term frequency factor (݂ݐ), inverse document frequency 

factor (݂݅݀), and document length normalization factor [21]. The term frequency factor 

refers to the frequency with which a term occurring in a document. The simplest 

calculation is just counting the frequency of a term in a document by using the formula: 

ݐ ௧݂,ௗ ൌ ௧݂,ௗ 

Where ௧݂,ௗ is the frequency of a term ݐ occurring in a document ݀. 

Inverse document frequency measures a term’s scarcity across the document 

collection. It can be calculated by dividing the total number of documents by the number 

of documents containing that term, and then taking the logarithm of the quotient. The 

formula to compute the ݂݅݀ is: 

݅݀ ௧݂ ൌ log ൬
ܰ
݊௧
൰ 

In this formula, ܰ is the total number of documents in the collection and ݊௧ is the number 

number of documents that contains term ݐ. 

The document length normalization factor normalizes the effect of document 

length on the document ranking by adjusting the term frequency or the relevance score. 

The ݂ݐ െ ݂݅݀ weight (term frequency–inverse document frequency) is the most 

commonly used term weighting method in text mining.  It measures the relative 

frequency of a given term in a particular document compared to the inverse proportion of 

the term over the entire document corpus. In other words, it calculates how relevant a 

given term is in a specific document [22]. ݂ݐ െ ݂݅݀ weighting can be calculated using the 

the formula below: 

ሺ݂ݐ െ ݂݅݀ሻ௧,ௗ ൌ 	 ݐ ௧݂,ௗ 	ൈ ݅݀ ௧݂	 
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2.3.4 Named Entity Recognition 

Named entities are phrases that contain the names of persons, organizations 

locations, expressions of times, monetary values and so on.  

For example: 

James watched an NBA game last night. 

This sentence contains three named entities: “James” is a person, “NBA” is an 

organization and “last night” is time.  

Named entity recognition (NER) is an important task in information extraction 

(IE), which locates and classifies the words or phrases into predefined categories [23]. 

NER systems have been implemented by using a variety of models, such as Hidden 

Markov models (HMMs), Maximum Entropy Markov models (MEMMs) and 

Conditional Random Fields (CRF) [24]. Stanford’s NLP research group has developed a 

new approach that incorporates non-local structure to augment an existing CRF-based 

information extraction system with long-distance dependency models, which reduces the 

error up to nine percent over state-of-the-art systems [25].  

 

2.3.5 Part-Of-Speech Tagging 

Part-Of-Speech Tagging (POS Tagging) is a process that assigns a word or a 

phrase in a corpus (text) to a corresponding POS tag, such as noun, verb, adjective and so 

on.  This process is based on both the definition of the word as well as its context, which 

means the same word could have different tags with different adjacent or related words. 

For example, the word ‘record’ could be a noun or a verb depending on the particular 

context. POS taggers have been developed by many research groups using various 

models. The most common two approaches are rule-based and learning-based. The rule 
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based approach is based on human crafted rules using lexical and other linguistic 

knowledge. The learning-based approach trains the model based on human annotated 

corpora such as the Penn Treebank [26]. The learning-based approach has proven to be 

more effective considering the devoted human effort and expertise. Stanford POS tagger 

used in this thesis is built by the Stanford NLP group, which combines multiple features 

with a Cyclic Dependency Network that has 97.24% accuracy on the Penn TreebankWSJ, 

reducing the error by 4.4% compared to the best previous single automatically learned 

tagging result [27].  

 

2.3.6 Typed Dependency   

There are two common ways to represent the structure of sentences. The first 

approach is using phrase structure parsing, which is based on the constituency relation 

and represents the sentence structure as nested constituents. In contrast, the other method, 

known as typed dependency parsing, represents the dependencies between individual 

words. Typed dependency parsing also describes the grammatical relations between 

different words, such as subject or indirect object [28]. 

 

Figure 12 Phrase Structure Parse Tree 
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For the simple sentence “James shot the ball”, a phrase structure parse tree is 

shown as Figure 12. S, sentence, is the top-level structure in this example. N stands 

for noun. The leftmost N, “James”, is the subject of the sentence. The second one is 

the object of the sentence. VP, verb phrase, serves as the predicate. V, verb, is a transitive 

verb “shot” here. NP, noun phrase, is “the ball” here. D, determiner, is the definite 

article “the” in this example.  

 A typed dependency parse tree of the same sentence is shown as Figure 13. This 

parse tree does not have the phrasal categories (S, VP, and NP) seen in the Phrase 

structure parse tree above. The other notations are the same as the ones described 

previously. 

 

 

Figure 13 Type Dependency Parse Tree 
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Chapter 3:  Algorithms and Design 

The previous chapter briefly described the ITAP project as well as some 

preparatory work and common techniques used in text mining. This chapter will explain 

the algorithms and design that are used to mine the news articles/stories gathered from 

the Internet. The idea is to design a pipelined system that takes identity theft news stories 

from the Internet as input and generates the analytics that help us better understand the 

identity theft process as output. 

 

3.1 HYPOTHESIS 

The hypothesis follows. Online ‘identity theft’ related news stories represent a 

reasonable sampling and description of the identity theft, including when, where and how 

it happens, the resources involved in the theft, and the loss caused by the theft to some 

extent. The ideal circumstance is that the accurate identity theft report provided by the 

investigation agency is available. However, even the investigation agency may not have 

the accurate information due to victim’s obliviousness or lack of knowledge regarding the 

criminals’ processes. By representing each news story using an identity theft record, the 

identity theft can be evaluated in a more detailed way and the analysis can reveal insights 

about the crimes and criminals. An identity theft record in this thesis refers to a 

predefined representation of an identity theft or fraud crime in the ITAP. 

The data for some entries in the identity theft record representation are missing 

due to the nature of the news story. Thus this representation is not a complete one to 

reflect an actual identity theft and fraud. However, as mentioned before, even the original 

source document gathered by the investigation agency is not complete. Also, the news 

media tends to report stories that are considered as ‘newsworthy’ [29]. Quantifying such 



 27 

bias and its influence on the data set generated from the news articles is difficult. For 

example, an identity theft resulting in a small monetary loss may not be considered as 

‘newsworthy’ so this data is not reported and not included when calculating the averaged 

loss for each incident.  Thus, the average calculated losses maybe higher than the ground 

truth value. Possibilities for evaluating the influence of such bias in the future are 

mentioned in the last chapter.  

Although there are some limitations, news stories have several important 

characteristics that are beneficial in the ITAP analysis: 

1. There is a tremendous amount of identity theft news stories. The news media 

publishes large numbers of news stories every day.  

2. They are publicly available. One of the problems in the identity research area 

is that it is difficult to obtain well-formatted source data from the government 

or corporations. However, the information published in a news story is 

publicly available. Therefore, researchers do not need to worry about 

protecting the Personally Identifiable Information attributes associated with 

reported victims. 

3. Mostly reliable. Although some information published in the Internet is not 

accurate or even false, most news stories are reliable and trustworthy since the 

news media is responsible to the public for providing accurate information. 

  

3.2  PIPELINED SYSTEM MODEL 

The designed pipelined system model is shown in Figure 14. The system first 

obtains the news stories from the Internet. Then the story text is preprocessed and 

irrelevant and unnecessary information is eliminated. After that, the named entities are 
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extracted by using the named entity recognizer. These named entities are then categorized 

into different types, such as location, time, loss, etc, which together form an identity theft 

record. This record is then used to conduct analysis about different aspects of the identity 

theft. At the same time, the system analyzes the typed dependency for each sentence in 

the story. The typed dependency is then used to generate the sequence diagram. 

 

Figure 14 Pipelined System Model 

 
3.3  NEWS ARTICLES COLLECTION 

The first step in the data collection process is to get the news articles’ links from 

the Internet. The links are gathered using Google search engine and other news feeds to 
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search a set of key words that are highly related to ‘identity theft.’ Some links are also 

extracted from the publicly available annual identity theft reports [30]. The next step is to 

retrieve the news articles based on the previous links. The main text content of the 

articles is exported to a single text file where the clutters around the main content in a 

web page are removed. 

To extract news articles from the published format(usually HTML), the boilerpipe 

library is used to obtain the main content of the news stories and remove irrelevant 

content, such as format labels, navigation lists, advertisements and so on [31]. Moreover, 

sometimes the links points to PDFs that contain the article instead of a HTML file. To 

address this problem, a PDF extractor, developed based on the PDFBOX library [32], is 

used in such circumstance to extract the stories and stores the content in a text file. Links 

pointing to an invalid URL address are just simply discarded. 

In order to keep track where the source comes from, the original links to the 

articles are stored along with the stories. 

 

3.4 DEFINE PII ATTRIBUTE 

A pre-existing list of Personally Identifiable Information (PII) attributes is defined 

manually by selecting the commonly used identity attributes by the identity thieves. This 

list will be enriched during the ITAP data collection and analysis as more and more 

attributes appear in the new stories. These attributes will be used to build the “bag of 

words” model [20]. The words in the pre-existing attributes list are compared against the 

words in the news articles and the matched words will be stored into the corresponding 

identity theft story record. For example, the attribute ‘social security number’ is a 

predefined PII attribute. The system will look up ‘social security number’ in the articles 
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when processing the new stories and count the frequency of occurrence of it. Such 

information will be stored and used later to conduct further analysis. 

 

3.5 TEXT MINING 

This section will describe the ITAP algorithms and approach used to mine the 

news stories gathered from the Internet.  After processing, each story is represented by a 

DAT file, which stores all the useful information related to the original story. Each DAT 

file is essentially a java HashMap object, which consists of the "Victim", "Organization", 

"Location", "Date", "Cost", "Resource", "Actions", "SourceLink" and so on. This DAT 

file servers as an identity theft record and will be used as the data input to the statistical 

program. 

 

3.5.1 Article Text Processing 

Before actually processing the news stories, “preprocessing” is first done to 

eliminate some unused language-depend factors (like space in English, some language 

doesn’t have space). The preprocessing step used in this thesis is tokenization, which is 

implemented based on PTBTokenizerAnnotator from the Stanford CoreNLP library [33]. 

The PTBTokenizerAnnotator is a PTB (Penn Treebank) style tokenizer. The news article 

is tokenized and each token’s character offset in the article is saved. The Stemming 

(lemmatization) will be done when analyzing the data and will be described later.  

The news article is then parsed by again using the Stanford CoreNLP library 

which enables the named entity recognition (NER) and part-of-speech (POS) tagger 

function. Each named entity (words or phrases) in the news stories is assigned to a 

corresponding category, such as people, organization, money, time and so on. These 
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named entities are candidates for the features to represent this news story. The next step 

is to analyze these named entities and determine if it is a valid attribute and store the 

valid ones into the DAT file. The POS tagging for the words will be used later in the 

identity theft sequence generation. 

 

3.5.2 Time Selection 

The time of occurrence for an identity theft is important to produce the correct 

analysis, such as calculating the loss and risk changes related to a timeline. Due to the 

nondeterministic duration of the identity theft and the delay of publishing time of the 

news story, it is hard to get an accurate time of the identity theft. There are two 

approaches to analyze approximate time from the news articles.  

The first method is to choose the time that the articles are published. The problem 

with this approach is that the identity thefts might have happened long before the news 

articles are actually published. And in most cases, the news is published at least some 

time after the theft happened since getting the incident record or interviewing the victims 

are usually several days or weeks or even months later. So this method could extract a 

time that does not accurately reflect when the identity theft really happens.  

The second method is to choose the time obtained from the news story by using 

the named entity recognizer. In this way, the time of each identity theft is decided by the 

contents of each article and highly related to the theft itself. This works in most cases, but 

some special conditions need to be considered. For example, there might be multiple 

dates mentioned in the article since the total process may last for several months. To deal 

with such conditions, the ITAP collects all valid dates as the time the theft happened and 

will weigh equally when used later for further analysis. When an article doesn’t even 
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have a valid time in the main story content, should the date information be marked 

unavailable or just use the date the article was published instead? If the latter one is used, 

will that cause an inconsistency issue? And the tags in the HTML file for storing the date 

are quite different from each other. Also, there is an issue with missing data. Thus the 

first option is chosen here for consistency and simplicity. There might be a better solution 

to handle such circumstances and will be noted in the future work chapter. 

Another issue regarding the time selection is the time format to be used. Since the 

time will be used to label the identity theft and to predict future trends, it is better to get 

the format of the time as specific as possible. However, news stories use various formats 

for the date. Some are more specific than others. It is hard to obtain accurate date 

information for each article. Thus a month and year format is chosen to represent the time 

the identity theft happens.  

Based on the previous discussion, this research obtains the date from the story 

content and a month and year format are chosen for representing the time of the identity 

theft occurrence. 

If a noun phrase is categorized as “Date” by the named entity recognizer, the 

phrase will be transformed to the standard MM-YYYY format and a further check is 

examined to eliminate the obviously invalid date such as May 1845. Then the date will be 

stored into the “Date” entry of the DAT file. 

 

3.5.3 Finding the Location 

The location of the identity theft is also important for the further analysis. 

Location will be used to analyze which states are at most risk for identity theft and the 

accumulative losses in those states. The location obtained by the named entity recognizer 
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is usually accurate and can be directly stored into the “Location” entry in the DAT file. 

Because only the state information is needed for further analysis, only the state name is 

stored. There are some similar problems to the time selection issues, such as multiple 

instances of location and missing location information. These problems are handled in the 

similar way as the time selection. Multiple locations will be weighted equally and the 

location entry for missing locations will be marked as not available. While a more 

accurate location could have been used, this requires the zip code instead of just the 

county and state name because multiple counties may use the same name within a state. 

Thus only the state name is chosen.  

 

3.5.4 Risk Calculation 

Risk is calculated for each identity attribute and based on the frequency of 

occurrence for a particular PII attribute in the news article. The predefined PII attribute 

list described in section 3.4 is used here. However, as mentioned earlier, this PII attribute 

list is not a complete one. Thus, a notion of potential attributes is introduced. A potential 

attribute is a noun phrase identified by the POS tagger, which could be a new PII attribute 

not yet appearing in the existing list. New PII attributes can be found by manually 

examining the potential attributes, or using some data mining techniques to classify the 

potential attributes. 

For each predefined PII attribute, the occurrence is counted as the news story is 

being processed. Every noun phrase in the text is checked to determine if it matches a 

predefined PII attribute in the attribute list. If it is in the predefined list, the count for this 

attribute will increase by one. Otherwise, it will be stored in the potential attribute list. 

The frequency of occurrence for a PII attribute implies the probability this attribute is 
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exposed in the described identity theft. Thus, an attribute with higher frequency of 

occurrence in the news story will have a higher risk of exposure. This reasoning may not 

be true for all the news stories since in some cases, the low frequency of an attribute does 

not mean the risk of exposure is low. For example, in the analysis, the zip code may not 

have a high frequency of occurrence in the story. However since it is so widely used by 

people and easily obtained by the thief, it should have a high overall risk of exposure 

instead of a low risk. Consequently, it is important to explicitly state that the calculated 

risks are limited to the content of included news stories. The possibilities of quantifying 

the correlation between the word frequency and the risk of exposure are mentioned in the 

future work chapter. 

 

3.5.5 Loss Calculation 

Loss is calculated based on the ‘money’ name entity occurrences in the news 

article. The format of the loss obtained by the name entity recognizer could appear in 

several different ways. A format transformation is necessary to get the unified result. For, 

example, a loss of 1 million dollars may be represented as ‘$1,000,000’ or ‘$1000000’ or 

just ‘1 million dollars’ in the news stories. To simplify subsequent calculations, the loss 

will be transformed to the form of pure numbers.  

First, the loss showing up in a single news story is added up and output as a sum 

loss. This sum loss is the loss for this particular story. In order to analyze the loss 

experienced by exposure of a particular PII attribute, some form of weighting is needed. 

Here, only the attributes matched in the predefined list are considered. An attribute with 

higher frequency of occurrence in the news story will have a higher weight. This is based 

on the reasoning that attribute frequency in an identity theft story indicates its importance 



 35 

in the theft process. The formula below is used calculate the weighed loss for each 

attribute. 

௔೔ݏݏ݋ܮ ൌ
௦௨௠ݏݏ݋ܮ ∗ ௔݂೔

∑ ௔݂೔
௡
௜ୀ଴

 

Where ܽ௜ is a PII attribute; ݏݏ݋ܮ௔௜ is the loss caused by a particular PII attribute; ௔݂௜ is 

the frequency of occurrence for a particular PII attribute.   

 

3.5.6 Timeline  

 The previous calculation for loss is only for a single dimension. In order to 

observe the trend of the change of loss, the correlation between the loss and the date are 

introduced. The idea is quite straightforward. Instead of calculating the loss directly, the 

date information of the identity theft occurrence is added to the calculation. In other 

words, for each attribute, the loss is assigned equally to the dates that occur in the news 

story. The new formula for the loss calculation would be: 

௔೔,ௗ೔ݏݏ݋ܮ ൌ
௦௨௠ݏݏ݋ܮ ∗ ௔݂೔

∑ ௔݂௜
௡
௜ୀ଴ ∗ ௗܰ

 

Where ܽ௜ is a PII attribute; ݀௜ is the date related to the news story; ݏݏ݋ܮ௔೔,ௗ೔ is the loss 

caused by a particular PII attribute and assigned for date ݀௜; ௔݂௜ is the frequency of 

occurrence for a particular PII attribute; ௗܰ is the total number of dates in the story. 

 

3.5.7 Theft Sequence Generation 

How does identity theft happen? What steps are taken by the identity thieves? 

Generating the sequence of steps which thieves take and analyzing the correlation 

between different steps will help us to answer such questions. 
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3.5.7.1Step Representation 

The first question follows. How should the steps in the identity theft scenario be 

represented? What is most important in the process? The actions the thieves take are 

represented in a graph to describe the sequence of steps in the thieves’ business process 

and the resource/attribute involved at each step. There are two kinds of nodes in this 

graph, which are ‘action’ node and ‘resource/attribute’ node. Here the resource and 

attribute are treated in the same way due to the difficulty in distinguishing those two 

things in many circumstances. 

This research addressed the questions: How should actions be represented? 

Should each unique verb be an action? Or should some sort of abstraction be used to 

represent the verbs? Since the sequence of the criminal’s process steps is going to be 

compared among different identity theft stories, the unique verb representation would 

make it hard to identify the common behaviors the thefts may share. Thus the abstraction 

representation is used.  

An action can be categorized into one of the seven categories: Record, 

Communicate, Decide, Act, Coordinate, Analyze and Collect. These seven categories of 

action are used to label each action. A bag of words that consists of the most frequently 

occurring actions in the identity theft news articles/stories are built and each action in it is 

organized into the corresponding category. Also a dictionary which consists all the tenses 

of those actions is generated to assist the mapping and organization of actions.This is 

done by using Simplenlg [34] which is a simple Java API (Application Programming 

Interface) for natural language generation. This approach uses the stemming which 

reduces the different forms of the same word to the same stem. For example, ‘steals’, 

‘stealing’, ‘stole’, ‘stolen’ are regarded as the same as their stem, ‘steal’, and are all 

categorized as an “Act” action. 
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3.5.7.2 Generating steps   

A story line can be generated by using the typed dependency parser from the 

Stanford’s CoreNLP library to parse the input story sentence by sentence. For each 

sentence, the ‘dobj (direct object of the Stanford NLP)’ is identified. The direct object of 

a verb phrase is the noun phrase which is the object of the verb. For example, consider 

the sentence “He stole my credit card”. After parsing, the dobj, (stole, credit card) is 

identified. ‘stole’ is the action and it would fall in the category of ‘Act’ and ‘credit card’ 

is the noun phrase as well as the resource/attribute. In order to obtain a good abstraction 

of the story, the noun and verb extracted by dobj are checked against a predefined 

dictionary mapping of resources to categories and represented in a sequence graph, which 

is also known as a process diagram [see Section 4.2.7]. The sequence graph will show the 

steps the identity theft takes from the beginning, with little information and resources, to 

the end, stealing the victim’s property. 

 

3.5.7.3 Visualizing steps   

Next, the extracted criminal process steps are input to the Prefuse visualization 

toolkit [35], which is an open source package for creating rich interactive data 

visualizations. A process diagram is created to help visualize the sequence of steps as the 

noun and verb pair abstractions.  SQUARE nodes in the graph represent the action (verb) 

and each such node has an associated TRIANGLE node representing the resource used 

(noun). The nodes are colored according to their categories.  
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Chapter 4:  Results and Analysis 

This chapter will describe the result for running the proposed algorithm on more 

than 3500 identity theft related news stories collected from various news feeds. Also, a 

more in-depth analysis on several different aspects about the results is illustrated. Last, 

but not least, the results and analysis are discussed regarding an understanding of the 

Identity theft process and prediction the identity threat in the future. It is worth 

mentioning that the statistics in this chapter are only based on the data obtained from 

news stories. They don't mean the actual identity theft statistics across the country. 

 

4.1 INPUTS  

The first step is to define a set of key words that are highly related to identity theft 

in order to collect the identity theft news stories. A list of words was chosen from several 

candidate phrases based on manually observation of the samples gathered from searching 

results of the identity theft news stories. Table 1 lists the news Rich Site Summary (RSS) 

URLS obtained by searching the selected words. Each Google news RSS contains 100 

original links to the identity theft news stories, which are used to collect the stories on a 

daily basis. The New York Times News RSS also provides several stories each day. 

However, an obvious problem here is that the links from different RSSs could have 

duplicate ones, which needs to be eliminated from the links set. Thus a “Hashset” is used 

to keep track of all the previous collected news stories links. Due to the duplicate and 

invalid ones, the actual number of the stories collected each day is not as large as it seems 

to be. While about 300 stories are each day on average, only around 40 valid stories are 

obtained after eliminating the duplicate and invalid links. One thing worth mentioning 

here is that some of the news stories collected by this method may not be “identity theft 
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victim reports” as expected. For example, an article talking about how to protect you 

from identity theft could be gathered using this search. These types of articles could be 

eliminated by using a more restricted search. 

The Identity Theft Resource Center [30] is another source for identity theft 

stories. Their breach report consists of data breaches that are gathered from a variety of 

media sources and/or lists from state governmental agencies. The ITRC report is updated 

daily.  

 

NEWS Sources URL 

Google News 
https://news.google.com/news/feeds?q=identity+theft 

&num=100&output=rss 

Google News 
https://news.google.com/news/feeds?q=identity+thieves 

&num=100&output=rss 

Google News 
https://news.google.com/news/feeds?q=identity+fraud&num=1

00&output=rss 

NewYork Times News 
http://topics.nytimes.com/top/reference/timestopics/subjects/i/id

entity_fraud/?rss=1 

Table 1 News RSS URLs Based on Identity Theft Related Keywords 

 

4.2 RESULTS 

Next, the stories are processed by using natural language processing and text 

mining techniques described in chapter 3 to create an identity theft record was generated 

for each story. Although the stories provide a fairly large amount of information, most of 
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Figure 15 presents the estimated numbers of the impacted target in the identity 

theft stories investigated. The news stories are processed using name entity recognition 

and the impacted targets are identified and categorized to the corresponding types. From 

Figure 15, we can see that individuals are most frequently targeted by identity thieves. 

The corporations are also targeted since a successful theft on a corporation could bring 

the thieves significant financial interests. If a corporation is breached and the criminal 

gets individual’s data, both the individual and the corporation are considered as the 

impacted target here. The government agencies are not targeted as often as previous two 

probably because it is difficult to steal money from these government agencies. 

 

4.2.2 PII Attribute Risk Analysis 

Different PII attributes have different risks of exposure. The risk calculation is 

based on the assumption that the risk of an attribute/resource is positively correlated with 

the frequency of it being used. Detecting commonly used resources could help to 

understand how fraudsters are gaining access to sensitive personal information. What are 

the most common attributes/resources being used to commit identity theft and fraud? 

fraud?  Can access to these very common attributes/resources be limited or, at a 

minimum, make the providers or issuers of these attributes/resources aware that they are 

in fact being used in a malicious manner? Could this information be used to educate 

citizens about the importance of these attributes/resources and provide more protection 

for them?  Often times, these attributes/resources are the pinnacle to the completion of a 

step of the whole identity theft process, and ultimately the theft. Therefore the analysis 

done in this area could significantly advance identity theft detection and prevention. The 

statistics generated are shown in Figure 16. The number in the graph indicates the 
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percent of the total thefts investigated. Thus protecting those areas is very important to 

preventing the loss of people’s financial interests.  

In figure 17, “What you know” refers to the resource/attribute that an individual 

has knowledge about, such as your mother’s maiden name, your home address, your bank 

password. “What you know” is a quite important category of PII and sometimes is only 

known by an individual. Thus if the thieves somehow gets to know something only 

known by an individual, such as one’s bank account password, they can use such 

information to pretend to be that person and obtain benefits and resources.  

The federal government category in Figure 16 refers to the attributes that are 

issued by the federal government, such as social security number, visa, etc. These 

attributes are also valuable since the thieves can use these to forge a new identity. The 

next two market sectors that have highest losses are bank and consumers services. Both 

are highly related to the financial interests of the victim. Bank and consumer services 

refer to all kinds of attributes that are related to the banking and consumer industry. 

These two areas have the third and fourth highest occurring frequencies probably because 

both market sectors are directly related to financial resources.  

 

4.2.4 Location Analysis 

The location where the identity theft and fraud happens is also important to 

explore. Figure 18 below shows the identity theft location-wise distributions in the 

identity theft stories investigated. The figure indicates that the two states with highest 

frequencies are California and Texas, which makes sense because those two states have 

the highest population. They have the most people and thus have a higher frequency of 

identity theft. Frequency per capita would also be interesting to invetigate. However, the 
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data obtained in this approach does not rule out bias in terms of location, it is not very 

useful and accurate to calculate such information. Attempting to collect per capita 

identity theft should be pursued in future work. 

Figure 18 Identity Theft Map 

 

4.2.5 Financial Impact Analysis 

The financial impact of identity thefts is of significant concern. Although the 

identity thieves may use the victim’s identity to commit a serious crime such as launching 

a terrorist attack, most thieves pursuing the financial interest behind the identity. Which 

PII attributes, if compromised, can cost the victim the most financial loss? Is enough 

attention put on such attributes? Should the investment on protecting these attributes be 
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widely being used for authentication for all kinds of financial accounts. The identity 

thieves could use these attributes to pass the authentication and reset the password or 

security questions, which can indirectly get access to those accounts and stealing money. 

 

4.2.6 Timeline Analysis 

The previous analyses are solely based on the frequency or total loss related to a 

particular attribute. What if adding the time as a factor to conduct those analyses? The 

timing information will help us to better understand the trend of the attribute values 

changes. For example, smart phones are becoming more and more popular and people 

start to use these phones to store valuable information and pay for bills. The phone could 

even be used to identify a person now since one could access their bank account by using 

their phone. Many websites also use text messaging confirm one’s identity. Thus the 

phone’s value has increased as time goes.  

Figure 20 presents the monthly loss related to the 5 attributes that cause the most 

losses in the identity theft stories investigated. The figure shows very few losses before 

the year 2011. This is because the news stories are mainly collected from the recent 

year’s news. Only a few of stories describe identity theft story before 2011; therefore, the 

trend before 2011 seems random. There are also several peeks showing up at the end of 

2013 in the figure. One possible reason -- the Target data breach happened in mid 

December 2013. The criminals forced into Target’s system and gained access to guest 

credit/debit card information. A lot of news stories reported the identity theft related to 

the Target data breach. Therefore, the loss around that time has a peak value. However, 

there is no hard evidence indicating that the peak value is caused by the Target data 

breach. This is just a speculation. Further observation about the data and original news 
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story may be helpful to understand the reason of the increase. It is worth noting that many 

points are missing along the timeline, even in recent months. This could be due to that the 

timing information for those stories is missing, which is either because those stories don’t 

have a valid date that can be extracted in a good format or they just simply don’t have a 

date. 

Figure 20 Loss per PII Attribute per Month (Top 5) 

Figure 20 describes the Loss per PII attribute in a monthly view. Figure 21 below 

shows an accumulative view of the same data. The figure indicates that the loss 

associated with these attributes is increasing faster recently. Does this mean that the loss 

caused by the identity theft is increasing? It partially props this perspective. However, 

since the data set being used is biased towards recent thefts. This conclusion cannot be 

made without more in-depth examination. Another thing can be observed from this figure 

is that the trend for each attribute coincides with each other roughly. This implies that 
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these attributes are all used very often during this time period. However, if more 

attributes are included in this figure, such implication may not be true. Some attributes 

are not showing here is because the total loss caused by these attributes is not high 

enough to be in the top five costs. The figure also indicates that the loss caused by a 

phone number increased very fast in recent months, more than other attributes, which can 

help us to predict phone number future value to criminals and should forecast increased 

protection of phone to combat future identity thefts. 

Figure 21 Accumulative Loss per PII attribute (Top 5) 

From the previous two figures, one can clearly see the sparse characteristics of the 

current data set. More stories are needed for a more thorough analysis. The data used for 

this thesis is obtained from gathering the news stories for forty five days on a daily basis 

as well as from the breach report generated by the Identity Theft Resource Center [33]. 
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More data will increase confidence in the results. Also, these timeline figures could be 

used to predict risk and cost trends related to a particular attribute, which can help us 

protect these attributes and get a step ahead of the thieves. 

 

4.2.7 Process Diagram Example Analysis 

How is identity theft implemented? What steps are taken by the identity thieves? 

Generating the sequence of steps, i.e. the process diagram, which the thieves take and 

analyzing the correlation between different steps will help us to answer such questions. 

Figure 22 shows an example of the process diagram for the Home Equity Fraud scenario.  

Figure 22 Home Equity Fraud Process Diagram 

The input article is an identity theft story from the ITAP database called “Home 

Equity Fraud”. The figure shows a simple outline of part of the story and from it one can 
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get a rough idea about the whole process of the theft. Firstly, the fraudster collected 

mortgage information on wealthy couples and searched for lease and loan documents in 

public databases. Then, he used tools to grab signatures from the loan documents and 

built a profile of the victim. Next, he discovered a flaw in the Experian portion of the site 

which is refreshing the browser enough times would reveal the true answer of the security 

questions to access reports. Then he wired money out of the country and had someone 

withdraw the money and redeposit the funds into other account. He would further launder 

the money by depositing it. However, the sequence described by the process diagram 

doesn’t provide all the information about the identity theft story. Also it neglects some 

details compared to the whole story narrated in the second chapter. There are two major 

reasons. First, the article is a story. It is not an investigative report about the identity theft. 

So the article doesn’t have enough details of how the identity thieves committed the 

crime and which tools they use. Secondly, the proposed algorithm doesn’t work well if 

the sentence becomes too complicated and uses a phrasal verbs instead just a single verb. 

In addition, finding out and extracting the tools/techniques the thieves used to steal a 

person’s identity are also a useful but challenging task. But in an article, it is hard extract 

such information given the ways the author used to describe such information -- using a 

verb object phrase or a prepositional phrase, or even worse, the author doesn’t describe 

this information at all. 

What other information needs to be extracted from the news story and from the 

process diagram? First, the research effort is seeking to find the most common data inputs 

required for any given step within a scenario to occur.  Establishing the most common 

data inputs required to complete a capability is critical to understanding and potentially 

thwarting an identity attack. Without this initial piece of data, many attacks would not 
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take place. What information did the thieves already have on hand?  Did the thieves have 

access to your email account?  Were they able to view your place of birth or birth date on 

Facebook?  By understanding what the thieves possess in the beginning, it is possible to 

change the way consumers feel about certain elements of data which they, until now, 

thought to be secure.  Perhaps a mother’s maiden name is no longer a secure method of 

identifying someone since it can be easily discovered by viewing family trees on 

Facebook or Ancestry.com.  With the proper data showing patterns of repeated identity 

theft resulting from a certain data element, the research group can hopefully make the 

general public aware that perhaps a different data element should be used to identify 

themselves.  Most people do not currently feel the need to safeguard their phone number 

or email address.  Based on this research, better education can be provided regarding the 

protection and security of personal identifiable information. 

Second, this research effort wants to understand exactly what the fraudster is after 

in each given scenario.  Showing the most common data output resulting from certain 

steps in the identity thieves’ business process helps us create a full picture of the entire 

business process.  Often, the data output in one capability is a necessary input to the next 

step. What are the most common data outputs?  It is important to ascertain exactly what 

the fraudster hoped to accomplish at each step.  This will provide a better understanding 

of exactly how the criminal is getting their hands on certain pieces of information.  How 

exactly did the Home Equity fraudster end up with the victim’s Mother’s Maiden Name? 

Name?  He was able to Google information and then easily use it as a data input on 

Ancestry.com.  Perhaps it is time to consider different data inputs as a method of 

identifying someone, especially on sites such as Ancestry.com, where the entire purpose 

of the site is information discovery. This shift in our thinking may be especially 
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important if the data being acquired could be potentially detrimental to someone’s 

personal financial, physical or emotional security.  

Furthermore, the research effort aims to detect any repetitive groupings that exist 

between steps in the scenarios.  This could be done by finding patterns from various 

scenarios. Understanding if there are groups of capabilities that often work together, may 

help us visualize patterns emerging once a string of events occur. This is important 

because it could serve as a prediction tool for future identity thefts.  Are there two or 

three steps that typically go together across multiple scenarios?  Could these steps, when 

completed and detected in conjunction, throw a red flag that identity theft may be 

occurring?  It is certainly possible. Because the ITAP make connections between steps, 

the tool can be used to explore what steps commonly work together in the process of 

committing identity theft and fraud.  Does step A typically follow step B?  And how can 

people use knowledge of this to prevent the next step C? 
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Chapter 5:  Conclusion 

The main motivation of this thesis is gather, model and study the data necessary 

to analyze and predict behaviors of identity thieves and fraudsters. This research 

collected news articles from the Internet. Using the text mining techniques, criminal 

behaviors were analyzed and formulated as a basis to predict future trends of identity 

theft and fraud. The whole process was automated after the initial setup stage for the 

predefining PII attributes and categorizing the behavioral actions into seven categories: 

Record, Communicate, Decide, Act, Coordinate, Analyze and Collect. The system is also 

designed in a pipelined fashion where each step can be done separately and integrated 

together to build the system. The proposed algorithm is to identify new attributes for 

enriching the attribute list. This step currently involves human examination and selection 

before new attributes are added to the attribute list.  

This research employed an approach for mining the news stories similar to the 

existing techniques used for mining general text. The first step is to obtain the news 

stories from the Internet. Around 3500 identity theft news stories were gathered.  Story 

text is preprocessed and irrelevant and unnecessary information is eliminated. After that, 

the named entities are extracted by using the named entity recognizer. These named 

entities are then categorized into different types, such as location, time, loss, etc, which 

together form an identity theft record. This record is then used to conduct analysis about 

different aspects of the identity theft, including the groups that have experienced the 

identity theft, the risk for losing a particular PII attribute, the frequency of identity theft’s 

occurrence in different market sector, the location where the identity theft happens, the 

potential financial impact caused by a comprised PII attribute, the changes of such impact 

along with the time. Analysis of these results should help researchers to better understand 
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identity threat behaviors, offer people early warning signs and thwart future identity theft 

crimes. 

Additionally, the sequence generation is done by parsing each sentence and 

finding the typed dependency between different components within a sentence. The 

dependencies are used to generate the process diagram, which can be used to better 

understand the identity theft process.  
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Chapter 6:  Future Work 

Mining identity theft news stories to better understand identity threat is very 

promising. Many aspects of this approach can be studied in more detail. Regarding the 

pipelined approach proposed in this thesis, the following improvements and issues can be 

explored in future work. 

First, the news media are prone to publish news that is “newsworthy”. The 

identity theft with small amounts of loss may not be considered as ‘newsworthy’ and 

these stories are less likely to be shown on the Internet. Therefore, the average loss for 

each incident calculated here may be higher than the true value. The influence of such 

bias on the news stories source may need to be taken into account. How to quantify such 

influence could be further investigated. Another issue is that the same identity theft could 

be reported in multiple news media. How to detect such duplicates and eliminate such 

influence is also worth studying.  

Secondly, the approach to extract timing information from the news story could 

be improved. Currently, the timing information is obtained from the content of the news 

story. Could it be extracted from the HTML tags directly (may not be the time when the 

theft actual happens) or even better to build a hybrid model by combining the two 

approaches? The identity theft or fraud crime may cover several months and the story 

therefore has multiple dates. How the system interprets multiple timing data is also worth 

further studying. Should different date data be combined to generate an “estimated” date, 

or just be assigned with different weights? 

Third, this thesis treats the frequency of a particular attribute’s occurrence as the 

risk of exposure of this attribute. However, the results and analysis indicate that this may 

not be true for all the attributes. Certain attributes just don’t occur often in the identity 
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theft news stories. For example, the zip code does not have a high frequency of 

occurrence in the analysis. However since it is so widely used by people and easily 

obtained by the thief through various ways, it should have a high risk of exposure instead 

of a low risk. Therefore, quantifying the correlation between frequency and the risk of 

exposure and adding it to the calculation of risk may improve the accuracy of the result. 

Fourth, how include the new attributes to enrich the predefined attribute list is a 

hard task. This thesis generates a potential attribute list for each news story. However, it 

still needs to be manually selected from this list to get the new attribute. One automated 

approach to build a model and use the current attribute and news stories to train this new 

model. Then use the new stories as the input and generate an attribute list. Future 

research should also consider the maximum words related to a single attribute as well as 

how the system deals with multi-word phrase. To identify whether a multi-word phrase is 

an attribute is much harder. An N-gram model may help solve this problem. 

Fifth, instead of using the news story, one can use a more informational text as the 

input to the system, such as an identity theft victim stories or law enforcement reports. 

These stories may have more accurate and complete information and offer a more 

structured, sequenced story.  

Last but not least, where else could the data generated by the system be utilized? 

One obvious application is that to use this data to feed the ITAP system. ITAP system 

could improve its model and predict the trend for different aspects related to the identity 

theft. For example, it can be used to predict whether a resource/attribute is at increased 

risk and whether the thieves will use it more often.  
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