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Abstract

Perpendicular And Parallel Field

Magnetoresistance In Molecular Beam Epitaxy

Grown Bi2Te3

by

Rik Dey, M. S. E.

The University of Texas at Austin, 2014

SUPERVISOR: Sanjay Kumar Banerjee

The topological insulator Bi2Te3 has been grown on Si(111)-(7 × 7) surface by

molecular beam epitaxy. Reflection high energy electron diffraction, in situ scanning

tunnelling microscopy, x-ray photoelectron spectroscopy and ex situ x-ray diffraction

studies have been performed to analyze the quality of the growth. These analyses

suggest a very good layer-by-layer epitaxial growth of Bi2Te3 on the atomically flat Si

surface. The magnetoresistance of the samples has been studied with magnetic field

perpendicular and parallel to the sample surface, up to 9 T, over a temperature range

of 2 K to 20 K. A sharp dip at low fields (0 T − 1 T) and near-linear behavior for

high fields (> 4 T) have been observed in the perpendicular field magnetoresistance.

The low field dip is due to weak antilocalization that agrees well with the simplified

Hikami-Larkin-Nagaoka model. It has been demonstrated that both the low field dip

and the high field near-linear behavior can be explained by the original Hikami-Larkin-

Nagaoka formula alone in a system with strong spin-orbit coupling. From the fitting of

the perpendicular field magnetoresistance the phase coherence length, the mean free

path and the spin-orbit relaxation time have been estimated. The phase coherence

length shows power law dependence with temperature indicating two dimensional na-

ture of the transport. The power law also suggests electron electron interaction as
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the prominent dephasing mechanism. The out-of-plane spin-orbit relaxation time is

determined to be small and the in-plane spin-orbit relaxation time is found to be com-

parable to the momentum relaxation time. The estimation of these charge and spin

transport parameters is useful for topological insulator based magneto electric device

applications. It also has been shown that the strong spin-orbit coupling suppresses

the Zeeman contribution in perpendicular field magnetoresistance. The logarithmic

divergence of perpendicular field magnetoresistance with temperature for low temper-

ature range (2 K − 20 K) at high fields shows the presence of Coulomb interaction in

the spin singlet channel. For magnetoresistance with the field parallel to the sample

surface, the observed magnetoresistance has parabolic dependence for small fields (0

T − 0.6 T) and logarithmic dependence for large fields (> 3 T), which is due to

the Zeeman effect. It is found that the data are inconsistent with only the Maekawa

and Fukuyama theory of non interacting electrons with Zeeman contributions to the

transport, but are consistent with theory if one also takes into account the electron

electron interaction and the Zeeman splitting term in the electron electron interaction

theory of Lee and Ramakrishnan. The Zeeman g-factor and the strength of Coulomb

scattering due to electron electron interaction have been estimated from fitting of

the parallel field magnetoresistance. The magnetoresistance also shows anisotropy

with respect to the field directions. The angle dependent anisotropic magnetoresis-

tance can be fitted well by the original HLN theory alone. The anisotropy can have

potential application in anisotropic magnetic sensors.
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1

Introduction

1.1 Topological Insulators: Overview

Topological insulators (TIs) are exciting novel materials exhibiting unique quantum-

mechanical properties and have gained considerable attention in recent research in

condensed matter physics. Band theory divides solids into metals and insulators:

metals are those with no band gap and insulators have a non-zero band gap. TIs

are unique in having a gaped bulk and gapless surface states with a well-defined spin

texture [1, 2, 3, 4, 5, 6, 7, 8, 9]. The surface states have a Dirac cone dispersion relation

and the spin of the Dirac fermions are perpendicularly locked to the momentum. Such

property of the TIs are very useful in spintronics applications where manipulation of

the spin current by the charge transport is a central aim. The study of TIs is also

motivated by theoretical prediction of many exotic phenomenon such as existence of

Majorana fermions in close proximity of a superconductor and existence of magnetic

monopoles [10, 11].
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1.2 Topological Insulators: Properties

Most of the exotic and unique quantum-mechanical properties of TIs are a direct

consequence of the band structure of the edge states of two dimensional (2D) TIs or

the surface states of three dimensional (3D) TIs. The fermions in the edge states or in

the surface states behave like relativistic, mass-less particles around the Dirac point

with spin-momentum helical locking. This peculiar nature of the Dirac fermions in

a TI gives rise to potential novel application of TI materials in spintronics, magnetic

sensors and memory devices [2, 3, 4, 5, 6, 7, 12, 13, 14, 15].

1.2.1 Schematic band structure of TIs

Figure 1.1: Edge states of a 2D TI: (a) 1D edge state of a 2D TI in real-space, (b)
1D Dirac cone dispersion relation represnting the edge states.

Figure 1.1 shows edge states of a 2D TI and Figure 1.2 shows surface states of a

3D TI, both having a Dirac dispersion relation with spin-momentum locking. Fig-

ure 1.1(a) and Figure 1.2(a) show a schematic of real-space picture of one dimensional

edge states in a 2D TI and 2D surface states in a 3D TI respectively. Figure 1.1(b)

2



and Figure 1.2(b) correspondingly show the band structure of a 2D and 3D TI, re-

spectively. The spin and momentum are helically locked in the 2D surface states of a

3D TI, which is shown in Figure 1.2(b). The spin-momentum helical locking is pro-

tected by time-reversal symmetry (TRS). Only magnetic perturbation can break the

TRS and induce gap in the surface states of TI. Due to the helical spin polarization,

back scattering is also prohibited in the surface states.

Figure 1.2: Surface states of a 3D TI: (a) 2D surface state of a 3D TI in real-space,
(b) 2D Dirac cone dispersion relation representing the surface states.

The existence of metallic surface states has been theoretically predicted and ex-

perimentally verified in Bi2Se3, Bi2Te3, Sb2Te3 and many more [6, 7, 8, 9]. These

materials have strong spin-orbit coupling (SOC) due to the heavy metal element.

These materials have been long known for their thermoelectric behavior and well

studied [16]. The existence of surface states has renewed interest in synthesizing and

characterizing such materials.
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Figure 1.3: Crystal structure of Bi2X3 (X = Se, Te) showing quintuple layer (taken
from [7]): (a) Three primitive lattice vectors t1,2,3 and a QL are shown, (b) Top view
of the crystal, (c) Side view of the crystal.

1.2.2 Crystal structure of Bi2Se3 and Bi2Te3

Bi2Se3 and Bi2Te3 both crystallize in tetradynamite structure (rhombohedral crystal

structure consisting of 5-atom unit cell) belonging to the D5
3d(R3̄m) space group [7].

The crystal has 3-fold rotational symmetry along the z axis, 2-fold rotational symme-

try along the x axis and a yz reflection plane. Figure 1.3 shows the crystal structure

of Bi2X3 (X=Se, Te) with the three primitive lattice vectors and the quintuple layer

(QL). A QL is the primitive unit cell thickness consisting of five atomic layers. In a

QL (X-Bi-X-Bi-X), there are two equivalent Bi atoms Bi1 and Bi1′, two equivalent

X atoms X1 and X1′ and a third X atom X2 as shown in Figure 1.3(a). The QLs
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are stacked in A-B-C-A-B-C- manner, with the atomic positions A, B, C as shown in

Figure 1.3(b). The third X atom X2 is the inversion center for the inversion operation

by which Bi1 goes to Bi1′ and X1 goes to X1′. Existence of inversion symmetry allows

eigenstates of the system to have definite parity. The other important symmetry of

the system is the TRS. The material is a layered material as the couplings between

atoms of two neighboring QLs are van-der Waals interactions, but within Ql the in-

teractions between the atoms are stronger to hold the atoms together in a QL. The

side view of a QL is shown in Figure 1.3(c).

1.2.3 Band structure of Bi2Se3 and Bi2Te3

Figure 1.4: Schematic band structure of Bi2Se3 showing constant energy contour in
the Dirac cone (adapted from [17]): (a) E-k diagram for Bi2Se3, (b) Constant energy
surface for Bi2Se3 is almost spherical.

The topological surface state of these 3D Z2 invariant tetradynamite structure are

mainly centered around Γ point in reciprocal space. The complicated band structure

can be simplified to an effective Hamiltonian of the system to characterize the low
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energy and long wavelength excitations. The effective Hamiltonian can be written in

the basis of the molecular pz orbitals (atomic pz orbitals of Bi and Se form molecular

orbitals) closest in energy to the Fermi energy [7]. There are four spin-orbitals due

to a two pairs of spin degenerate orbitals, one pair for the Bi atom and another pair

for the Se atom. The 4 × 4 effective Hamiltonian matrix in this four orbital basis

can be projected onto the subspace of the surface states which are the normalized

solutions of the effective Hamiltonian in z > 0 half infinite space around the Γ point

(i.e. kx = 0 and ky = 0 point). The Hamiltonian projected onto the subspace of

surface states then reads as [7]:

H = E0 + ~vF (kxσy − kyσx). (1.1)

Here ~ is the reduced Planck constant, E0 is the energy of the Dirac point (reference

of the energy), vF is the Fermi velocity and σx, σy are the Dirac matrices. The

Hamiltonian in Equation 1.1 represents a linear Dirac cone with spin-momentum

helical locking between momentum and spin orientation. The dispersion relation is

given by,

E(k) = E0 + ~vFk, (1.2)

where k =
√
k2x + k2y. For Bi2Se3, the actual Dirac cone is almost linear with slight

curvature [7, 17] and the surface can be described by such a Hamiltonian given in

Equation 1.1. The Dirac point also lies in the bulk band gap in the case of Bi2Se3,

and the constant energy surface in the Dirac cone of Bi2Se3 is spherical, as shown in

Figure 1.4(a) and Figure 1.4(b) respectively.

For Bi2Te3, the actual surface states are complicated and the Dirac point lies

below the bulk valence band [17]. The constant energy surface in the Dirac cone of

6



Figure 1.5: Schematic band structure of Bi2Te3 showing constant energy contour in
the Dirac cone (adapted from [17]): (a) E-k diagram for Bi2Te3, (b) Constant energy
surface for Bi2Te3 has hexagonal warping effect.

Bi2Te3 is not spherical and has hexagonal warping [13, 18] due to cubic Dresselhaus

spin orbit coupling. The surface state Hamiltonian with hexagonal warping has the

form [18]:

H = E0 + ~vF (1 + αk2)(kxσy − kyσx) +
k2

2m∗
+
λ

2
(k3+ + k3−)σz, (1.3)

where k± = kx±ky, σz is the Dirac matrices, λ is the strength of Dresselhaus spin-orbit

interaction and α, m∗ are for higher order corrections. Figure 1.5(a) and Figure 1.5(b)

shows the E-k diagram and the constant energy contour for Bi2Te3, respectively.

Gap opening in thin films

For an ultrathin film, the 3D TI reaches a 2D limit in which the two surfaces are

coupled producing a energy gap ∆ opening about what would otherwise be the Dirac

point (i.e Γ point in k-space), and the nominally bulk states also become quasi-2D
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[19, 20, 21, 22, 23, 24, 25]. The band structure of the TI in this limit depends on

the layer thickness, i.e. the number of QLs. This 2D limit of TIs has been observed

experimentally in Bi2Se3, Bi2Te3 by ARPES [21, 22, 23, 24, 25] and transport studies

[26, 27]. The Hamiltonian for a gapped surface near the Dirac point with a energy

gap opening ∆ is given by [19],

H = E0 + ~vF (kxσy − kyσx) +
∆

2
σz. (1.4)

The E(k) relationship for a thin TI is approximately,

E(k) = E0 +
√

(~vFk)2 + (∆/2)2. (1.5)

The Berry phase of a normal linear Dirac surface state is equal to π, but for a gapped

surface state the Berry phase changes to π(1 − ∆/2EF ) [19, 28] (where EF is the

Fermi energy). For a TI film as the thickness increases the gap vanishes, the Dirac

cone remains linear around the Dirac point and the two surfaces become decoupled.

1.3 Topological Insulators: Synthesis

To study the properties of the surface states of TI, thin films of high purity with

low defects are desirable. There are several methods including exfoliation from a

bulk crystal grown by Bridgman method, or direct growth of thin film on a suitable

substrate using chemical vapor deposition (CVD) or molecular beam epitaxy (MBE).

As Bi2Se3 and Bi2Te3 are layered material, graphene like mechanical exfoliation of

thin flakes from a bulk crystal is possible on a SiO2/Si substrate [29, 30, 31]. The bulk

crystal can be grown by Bridgman method [17]. In Bridgman method, the growth

is done in a sealed evacuated quartz glass tube with a certain temperature gradient.
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High purity source materials are evaporated at the hot end, and the crystal grows

gradually once solidification of the compound material starts at the cold end. In MBE,

source material are co-evaporated with a certain flux ratio to form the compound in

a heated substrate. By MBE, growth of defect free high quality epitaxial thin films is

possible on different substrate such as GaAs(001) [32], GaAs(111) [33], sapphire(0001)

[34], SrTiO3 [35], Si(111) [36, 37, 38, 24] etc. Thin films of Bi2Se3 have been grown by

the CVD technique too [39, 40], but the film quality of MBE grown films are better

than CVD grown films.

1.4 Topological Insulators: Transport

The quantum transport properties of the surface states of TIs also have been stud-

ied by various magneto-transport experiments such as Aharonov-Bohm oscillations

[15, 41], Shubnikov-de Haas oscillations [42, 43], quantum conductance fluctuations

[44, 45], and weak antilocalization (WAL) effects [46, 47, 48, 49, 50, 51, 52, 53, 54].

Although investigating transport in the surface states by such experiments is chal-

lenging because of significant bulk conduction, reduction of bulk conduction can be

achieved by fabricating ultrathin TI films that increase the surface-to-volume ratio.

If the bulk becomes sufficiently insulating and the Fermi level lies in the bulk band

gap, then only the surface states will contribute to the transport. The nature of the

surface state can be probed by sample-size dependent transport phenomenon, such as

elucidating the π Berry phase in quantum oscillations in quantum Hall effect and/or

in weak antilocalization measurement or by probing the spin-momentum helical lock-

ing. Such measurements also help to differentiate the contribution from the Dirac

fermions and fermions in a trivial 2D gas accumulated at the surface.
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1.4.1 Quantum Hall Effect

Figure 1.6: Quantum Hall Effect showing LL splitting and SdH oscillations: (a) LL
splitting is shown at low and high magnetic field. Splitting is more at higher field. N
is the LL index, where N = 0 is pinned at the Dirac point. (b) Oscillations in Rxx

and Rxy in an applied magnetic field B is shown [55]. The inset shows BF/B with N
(where BF is the associated oscillation frequency).

In an applied magnetic field, the energy states of the 2D system becomes quan-

tized, which is called the Landau quantization and the discrete energy levels are called

Landau Levels (LLs). Due to Landau quantization, the density of states (DOS) be-

comes periodically modulated with magnetic field. Oscillations occur in both the

longitudinal resistance (Rxx) and the transverse resistance (Rxy), such oscillations

are called Shubnikov-de Haas (SdH) oscillations. Figure 1.6(a) shows the effect of

magnetic field on the LL splitting and DOS. Figure 1.6(b) shows the observed SdH

oscillation in longitudinal resistance (Rxx) and transverse resistance (Rxy) in a Bi2Se3

film [55]. Such SdH oscillations help to differentiate transport quantitatively from

the 2D surface states and the 3D bulk. Also the effect of π Berry phase is directly

reflected on the phase factor of the SdH oscillations, which further differentiates trans-

port from the fermions in a 2D Dirac cone and fermions in a trivial 2D Fermi gas.

SdH oscillations have been observed experimentally in Bi2Se3 [55] and Bi2Te3 [42].
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Figure 1.7: Weak localization in a normal metal without any magnetic field and sup-
pression of weak localization in an applied field: (a) With no magnetic field applied:
for each path that brings the particle back to origin, there is a time reversed path,
and the two paths interfere constructively if TRS is preserved. (b) With non-zero
magnetic field applied: The field breaks the TRS and there is phase difference be-
tween the two paths. The phase difference depends on the magnetic flux enclosed by
the closed contour.

1.4.2 Weak Antilocalization Effect

Localization is a quantum mechanical phenomenon due to wave nature of electrons

in a metallic material. In normal metals without spin orbit coupling, electronic wave

functions between two time reversed path interfere constructively, enhancing the prob-

ability of finding an electron in a certain spatial position, as shown in Figure 1.7(a).

In other words, the electron becomes localized in space. This localization effect re-

duces the probability of transmission of electrons, thus reduces the current and the

resistance increases from the Drude resistance. This localization of electrons in a

normal metal is called weak localization (WL). As shown in Figure 1.7(b), in an

applied magnetic field the TRS is broken and the different time reversed paths ac-

quire different phase factors in the electronic wave functions, which no longer interfere

11



constructively. Thus the probability of transmission increases and the resistance de-

creases. So application of a magnetic field destroys the localization effect and produce

a negative magnetoresistance.

Weak antilocalization effect is just the opposite of weak localization, and in WAL

the resistance without a magnetic field is less than the Drude resistance. The WAL

effect associated with the Dirac fermions is due to an additional π (the π Berry phase)

phase shift of the electronic wave functions along a closed loop [12, 49, 53, 56, 57, 58].

So destructive interference occurs between wave functions in the two time reversed

path, which reduces the probability of localization and enhances the transmission or

the current. This effect of reduced localization is called antilocalization. The resis-

tance increases with application of a magnetic field as TRS is broken and destructive

interference between the two paths is destroyed in a magnetic field. WAL can also

occur in a strong SOC system, where the electrons acquire an additional phase π by

scattering from impurity. Due to strong coupling of spin to momentum, the spin also

changes as the momentum changes by scattering. Similar destructive interference

occurs and antilocalization happens. In an applied magnetic field, the magnetoresis-

tance is similarly postie. In case of TIs, if the Fermi energy lies deep in the bulk-state

band structure due to unintentional doping, a WAL effect can still be observed in

the topologically non-trivial 2D electron system as long as the SOC is strong enough

[49, 53, 24, 59, 60]. Although a clear-cut separation of the two contributions is chal-

lenging, for both cases the observed WAL effect has a characteristic dip in low fields,

which has been explained using simplified Hikami-Larkin-Nagaoka (HLN) theory un-

der strong SOC and the low field limit [46, 47, 48, 49, 50, 51, 52, 53, 54, 61]
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1.4.3 Electron Electron Interaction Effect

WAL in perpendicular field magnetoresistance of TI films has been widely reported

in the literature [46, 47, 48, 49, 50, 51, 52, 53, 54, 61]. In the non-interacting elec-

tronic regime, WAL predicts a metallic ground state as the Dirac fermions can not be

localized even in the presence of arbitrarily strong disorder [62, 63]. But the observa-

tion of an insulating ground state in resistance vs temperature plot of Bi2Se3 [50, 51]

creates an interesting puzzle. Figure 1.8(a) shows the logarithmic divergence of resis-

tance with temperature for Bi2Se3 of different thickness [50]. Figure 1.8(b) shows the

logarithmic decreases of conductance with decrease of temperature for Bi2Se3 with

a zero and non-zero magnetic field [51]. This puzzle can be resolved by considering

the Coulomb interactions between the Dirac fermions. The Coulomb interaction is

retarded and long ranged in a 2D diffusive system. Thus the electron electron inter-

action (EEI) is strong enough and can not be screened immediately. This EEI causes

a reduction of density of states at the Fermi energy and a logarithmic divergence with

temperature is observed in the resistivity.

1.4.4 Zeeman Effect

In a magnetic field, there is an additional energy called the Zeeman energy that is

due to splitting of spin singlet and spin triplet channel. Zeeman spin splitting is also

important in magnetoresistance of TIs and has been considered for Bi2Se3 [50, 51].

The contribution of the Zeeman energy is due both to the theory of localization and

the theory of EEI. The HLN theory [64] does not consider the Zeeman energy, but

the theory of Maekawa and Fukuyama [65] does consider the Zeeman spin splitting

in localization of non-interacting electrons. Similarly, the theory of Lee and Ramakr-

ishnan [66] for EEI takes care of the Zeeman term via the Hartree-Fock calculation.
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Figure 1.8: Observation of insulating ground state in Bi2Se3. (a) The resistance R
increases with decreasing temperature. The resistance is fitted with a logarithmic
dependence of temperature for different QL thickness (taken from [50]). (b) The
conductance G decreases as the temperature decreases. The conductance is fitted
with a logarithmic dependence with temperature for both cases, i.e. with and without
a magnetic field (taken from [51]).

This Zeeman contribution has been discussed in details in this thesis.

1.5 Thesis organization

The thesis presents the perpendicular and parallel field magneto-transport studies

on epitaxially grown Bi2Te3 topological insulator thin films on Si(111). The films

have been grown by molecular beam epitaxy and characterized by reflection high en-

ergy electron diffraction, scanning tunnelling microscopy, x-ray photoelectron spec-

troscopy, x-ray diffraction and magneto-transport studies. Chapter 2 gives a short

introduction on epitaxial growth methods and different growth modes, the growth

system, and different characterization systems. The detailed description of growth

and structural characterizations are given in Chapter 3. Chapter 4 discusses about the

transport measurements and analysis of the experimental data with various theories.

The analysis of the thesis is summarized in Chapter 5.

14



2

Overview of growth and

characterization techniques

2.1 Growth technique

Excellent material quality, homogeneity and uniformity of growth, and precise control

over the film thickness are some of the essential criteria required in modern day

technology. A film grown on a substrate may be amorphous, polycrystalline or single

crystalline. The crystallinity of the grown film depends on the material of the film

and the substrate, the substrate temperature and the growth technique. To grow

single crystalline film with good quality, epitaxial techniques are suitable among other

various methods.

2.1.1 Epitaxial growth

Epitaxy is ordered growth of a crystalline film on a pre-existing single crystalline

substrate [67, 68]. The term epitaxy has Greek origin, epi meaning above and taxis

meaning an ordered manner. So epitaxy could be translated as arrange upon. The
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film, which is deposited on the substrate, is called the epitaxial film or epitaxial

layer or epilayer. In epitaxial growth, the epitaxial film takes the lattice structure

identical or similar to the substrate, and the epilayer becomes locked into one or more

crystallographic direction of the substrate that acts like a seed layer. Epitaxy of the

grown film can be on a substrate of same composition, the process is then termed as

homoepitaxy. Otherwise, if the composition of the deposited film and the substrate

is different, the process is called heteroepitaxy.

There are various epitaxial growth techniques, the main difference being in the

supply of the source material: the film may be grown from gaseous, liquid or solid

precursors. In the last few decades, modern techniques like chemical vapor deposition,

metal-organic chemical vapor deposition, molecular beam epitaxy (MBE) etc. have

been developed. A brief description of the MBE technique, that has been used for

this work, is given below.

2.1.2 Molecular Beam Epitaxy

Molecular beam epitaxy is one of the most popular and simplest growth technique,

where under ultra high vacuum (UHV) condition extremely-pure source materials are

evaporated thermally or by ion-beams and are deposited in a controlled rate onto a

substrate maintained at a fixed temperature [69, 70]. The UHV pressure in an idle

growth chamber in MBE is in ∼ 1 × 10−10 mbar range, and the UHV condition is

maintained by combination of pumps such as turbo molecular pump, ion pump and

titanium sublimation pump. The UHV condition allows growth of very high quality

epitaxial films with a very low deposition rate. The UHV maintains the source fluxes

in the molecular flow region, where the mean free path of the molecules is much larger

than the system geometry, and the molecules of the source material do not collide or
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react before reaching the substrate. The MBE growth chamber is also equipped with

a in-situ reflection high energy electron diffraction system which helps monitoring the

growth process as the epilayer is built up one atomic layer at a time.

Figure 2.1: Schematic diagram of a typical MBE chamber showing its main compo-
nents (taken from [68]).

Figure 2.1 is a schematic sketch showing the components of a typical MBE growth

chamber. The material source is either a Knudsen type effusion cell (thermal evap-

orator) or e-beam evaporator. The source material is kept in an inert crucible, and

the crucible is heated either by radiation from a heater coil in a Knudsen type cell

or by bombarding with an electron beam in an e-beam evaporator. The cell opening

(aperture) is covered by a tantalum shutter which can be opened or closed from out-

side to control the effusion of material from the cell through the aperture. The vapor

pressure of the material can be controlled by setting the temperature of the cell for a

Knudsen cell or by setting the voltage and current of the e-beam in an e-beam evapo-

rator. To monitor the vapor presser of the molecular beam, an ion-gauge-based beam

flux monitor (BFM) is kept in the path of the molecular beam near the substrate

but not obstructing the substrate. The growth rate and thickness of the epilayer is

determined from a quartz thickness monitor that senses the change in frequency of

the quartz crystal when material is deposited on it. The uniformity in thickness and
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the composition of the film depend on the uniformity of the molecular fluxes, the

ratio of the fluxes for a compound growth, and the distance between the cell and the

substrate. The substrate is kept in the center which is at an equal distance from all

the cells. In some systems, there is an option for rotation of the substrate with a

constant angular velocity around the axis perpendicular to its surface. This rotation

enhances uniformity in thickness and homogeneity in composition. There is a heater

in the substrate for holding the substrate temperature to a desired value through

resistive heating. There is also a direct heating wire connected to the substrate which

passes direct current through the substrate.

Figure 2.2: Schematic representation of various surface processes associated with
growth (adapted from [68, 70]).

The temperature of the substrate is very crucial for the quality of the epitaxial film.

During growth the substrate is conventionally kept at moderately high temperature

to improve the crystallinity of the epitaxial film. The effect of heating is diffusion of

ad-atoms, out diffusion of extra atoms and impurities, and migration of atoms in the

lattice sites of the substrate for better arrangement of atoms in the epitaxial film.

The temperature should not be so high as to induce diffusion of atoms between the

substrate and the grown epilayer. Figure 2.2 shows various surface processes such as

re-evaporation or out-diffusion or desorption, adsorption, surface diffusion, nucleation,
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clustering or island formation, direct impingement and incorporation of constituent

ad-atom etc. that are involved in growth. The effect of heating also may give rise

to temperature induced strain in the epitaxial film which determines in turn growth

modes and the epitaxial quality of the grown film. Annealing after growth at the

growth temperature or at a higher temperature than growth temperature also helps

in obtaining a good quality epitaxial film. There are different ways of heating the

substrate, either during growth or after growth. Annealing can be done at a higher

temperature than growth temperature, or growth can be directly performed at a

higher temperature followed by annealing at the growth temperature or an even higher

temperature. There is a another two step method in which the growth is started at

lower temperature, and, without changing the source flux, the substrate temperature

is increased and the growth is completed at elevated temperature along with annealing

at that temperature. Depending on the method, the growth of epitaxial film on the

substrate can be optimized.

2.1.3 Epitaxial growth modes

The quality of the surface of the substrate has great influence on the initial stage

of the growth process of the epitaxial film. The factors that influence the growth

are lattice misfit between the grown film and the substrate, thermal stress due to

elevated substrate temperature during growth, the chemical interaction between the

film and the substrate, any lattice dislocation in the grown film during initial growth

stage, etc. Depending on these factors, there are various growth mechanisms by

which the epitaxial film grows. The three main growth modes [68, 67, 70] are named

after their original investigators: the Frank van-der Merve mode (FM mode) or the

layer-by-layer growth mode, the Volmer Webber mode (VW mode) or the island
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Figure 2.3: Schematic representation of various growth modes in epitaxy for different
monolayer (ML) coverage (adapted from [67, 68, 70]).

growth mode, and the Stranski Krastanov mode (SK mode) or the layer plus island

growth mode. Besides these three growth modes, there are two more possible mode

of epitaxial growth: Columnar Growth (CG) mode and Step Flow (SF) growth mode.

Figure 2.3 shows the schematic of various growth modes.

Three important factor determines the quality of the heteroepitaxial layer: lattice

misfit between the substrate and the heteroepitaxial layer, crystallographic orienta-

tion of the substrate and the surface geometry or surface reconstructions. Lattice

mismatch between the substrate and the epitaxial grown film plays an important

role in inducing strain in the epilayer. The strain energy serves as a driving force in

determining the growth mode. Figure 2.4 shows a strained pseudomorphic growth

of the epilayer in the case of lattice mismatch. Strain is also a dominant source of

imperfections and dislocations in the epilayer. The growth process in a heteroepitaxy

also depends on whether the grown epilayer is coherent or non-coherent with the sub-

strate. In the coherent case, the epitaxial layer adopts the in-plane crystallographic
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Figure 2.4: Illustraion of strain and relaxed dislocation growth in case of lattice
mismatch (adapted from [68, 70]): (a) Lattice mismatch developes strain in the film,
but no dislocation of film crystal happens. (b) There is no strain in the film, but
dislocation at the interface happens due to lattice mismatch.

direction and the lattice constant of the substrate. In the non-coherent case, the

epilayer is free to take any lattice structure and the epilayer adopts that particular

in-plane lattice which minimizes its surface energy.

The surface geometry, surface reconstructions and presence or absence of dangling

bonds in the surface strongly determine the quality of the heteroepitaxial layer. It is

difficult to grow a good epitaxial layer on top of dangling bonds unless there is good

lattice matching between the substrate and the epilayer. However lattice misfitted

material with no dangling bonds provides an excellent hetero epitaxial film on a clean

(reconstructed) surface via van-der Waal’s forces. This type of epitaxy is called van-

der Waal (vdW) epitaxy. It allows fabricating of very abrupt interfaces with very few

defects and a very good quality heterostuctures. This vdW epitaxy is only limited

to quasi-one or quasi-two dimensional materials in which atoms of a unit layer are

attached to each other by strong covalent bond but layers are held together by weak
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vdW forces. So one can easily cleave the two layer without creating any dangling

bonds. With the three dimensional structure, one can passivate the dangling bonds

on a clean surface that should be stable on relative high growth temperature. Thus,

one can create quasi vdW gaps, and vdW epitaxy then can be possible. Figure 2.5

shows the possibility of vdW epitaxy in case of dangling bond, in absence of dangling

bonds or in passivated dangling bonds on the sample surface.

Figure 2.5: Illustration of vdW and quasi vdW epitaxy (adapted from [71]): (a) vdW
epitaxy for no dangling bonds in the surface, (b) quasi vdW epitaxy for passivated
dangling bonds in the surface.

2.2 Characterization techniques

The morphology of the surface, the sharpness of the interface, the quality of the crys-

tals, the compositions of the material are properties that are important to understand

the quality of the epitaxially grown layer. Various structural characterization tech-

niques are used to confirm the material and crystalline quality of the grown film. The

film can be further analyzed by measuring its electrical transport properties. The
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crystalline quality was investigated in situ during growth by reflection high energy

electron diffraction (RHEED), and after growth ex situ x-ray diffraction (XRD) can

be used to confirm the crystalline quality and the thickness of the film. The sur-

face morphology can be analyzed by scanning tunnelling microscopy (STM) and the

chemical compositions of the grown material can be verified by x-ray photoemission

spectroscopy (XPS). Each of the techniques, which has been used in this work, is

discussed in details in the following sections.

2.2.1 Reflection High Energy Electron Diffraction

Reflection High Energy Electron Diffraction is a in situ surface sensitive technique

that is used to examine qualitatively the properties of the epitaxial thin film during

growth. The experimental set up for RHEED consists of an electron gun, a focusing

electrical lense and a phosphorus screen. The electron gun and the focusing lense are

kept at one end and the screen is kept at the opposite end, both the ends being far

apart from the substrate to keep open space for deposition. In a typical RHEED set

up, very high energy (10 keV - 100 keV) electrons are emitted from the gun and are

incident on the substrate with a grazing angle (< 30), the diffracted beam produces

a pattern on the phosphorus screen. The grazing angle incidence allows the electron

beam to penetrate only a few atomic layer near the surface of the sample, which

produces surface sensitivity. The higher the energy of the incident electrons is, the

sharper the features appears on the screen. Thus RHEED features give information

about the sample surface, the crystalline quality of the grown film and the growth

modes.

The RHEED diffraction pattern contains information about the unit cell and the
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Figure 2.6: Ewald sphere construction and diffraction pattern in RHEED (taken from
[68]).

crystal structure. The condition for diffraction satisfy the Laue criteria,

~k − ~k0 = ~Ghkl, (2.1)

where ~k0 is the incident wave vector, ~k is the diffracted wave vector and ~Ghkl is the

reciprocal lattice vector connecting the origin to the reciprocal lattice point (h, k, l).

For elastic scattering, ∣∣∣~k∣∣∣ =
∣∣∣~k0∣∣∣ . (2.2)

The Laue criterion is geometrically visualized by constructing an Ewald sphere, which

is a sphere of radius
∣∣∣~k0∣∣∣ centered at the origin of ~k0. So according to the Laue criteria,
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diffraction occurs for all ~k connecting a reciprocal lattice point on the sphere to the

origin. As RHEED is only surface sensitive, a perfect crystal surface is a 2D lattice

plane as seen by the incident electrons. The associated reciprocal lattice consists of 1D

rods perpendicular to the surface passing through the lattice points. The diffraction

pattern according to the Laue condition by constructing an Ewald sphere, is shown in

Figure 2.6. The reciprocal rods are continuous in the direction normal to the surface,

so each rod satisfies the Laue condition to produces a diffraction pattern on the screen

as shown in Figure 2.6. In Figure 2.6, I is the projection of the origin of the reciprocal

lattice, Ln (n = 0, 1, ...) are the radius of different Laue circles centered at H, G‖

and G⊥ are separation of rods in parallel and perpendicular direction with respect to

the beam respectively.

Figure 2.7: Schematic representation of RHEED pattern for different type of surfaces
(adapted from [68]).

RHEED patterns give information about the crystalline quality of the sample

surface. Figure 2.7 shows different type of RHEED pattern for different surfaces. For

a polycrystalline surface the diffraction pattern will be broad rings called the Debye-

Scherrer rings. For a perfect flat crystal surface the pattern will be spots along a

semicircle. A low roughness (order of one-two monolayer) surface gives sharp streaky

patterns. A surface with a very high roughness (island growth) produces 3D net of
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spots and a tilted surface gives tilted streak pattern. By monitoring the intensity of

the spots on the RHEED pattern during growth, the growth mode can be identified.

For the FM (layer by layer) growth mode , the intensity of a spot oscillate in time (as

the growth proceeds) with same amplitude. For the VW (island) growth mode, the

intensity of a spot sharply decreases with time. For the SK (layer plus island) growth

mode, the intensity oscillate in time with a decreasing amplitude of oscillation. In the

SF (step flow) mode, the intensity first deceases and then increases, no oscillations

are observed as film morphology remains same.

2.2.2 Scanning Tunnelling Microscopy

Scanning tunnelling microscopy has become very popular since the 1986 Nobel Award

winning discovery by Gerd Binning and Heinrich Rohrer. STM is capable of imaging

conducting surfaces directly in the real space at the atomic scale. A block diagram

of STM is shown in Figure 2.8. The main components of an STM consist of an

atomically sharp tip, one scan generator, feedback electronics and computer system.

Apart from these, two important components are the coarse-approach system and the

vibration isolation system.

Figure 2.8: Schematic circuit diagram of a typical STM set up (adapted from [68]).

Scanning tunnelling microscopy is based on quantum mechanical tunnelling of
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electron from the surface to the STM tip via the intermediate space. The tunnelling

probability decreases exponentially as the distance between the surface and the tip

increases. STM takes advantage of this extreme sensitivity to distance. The sharp

metallic STM tip is positioned within a few angstroms of the conducting surface of

the sample. A voltage bias is applied between the tip and the sample surface, near

enough that the wave function of the electron in the STM tip and in the surface

overlapped and couple. The electrons tunnel from the surface to the tip through the

intervening space (the tunnelling barrier) or vice verse depending on the polarity of

the applied bias. The tunnelling current depends on the tunnelling probability. As

the tip is scanned over the surface, the tunnelling current varies along the surface.

There are various modes of operation. In the constant current mode, the STM tip

is moved up and down to hold the current constant, following the contours of the

surface or, more precisely, the electron local density of states (LDOS) on the surface.

In the constant height mode, the current variation is tracked while the height of the

STM tip remains fixed. The computer system registers this variation in height or

tunnelling current, respectively, and processes this information into a topographic

image of the surface. There is also a scanning tunnelling spectroscopy mode where

the above is performed as a function of applied bias between the tip and the surface

to obtain the LDOS as a function of energy.

2.2.3 X-ray Photoemission Spectroscopy

X-ray photoemission spectroscopy is a quantitative technique that determines chem-

ical compositions of a material and electronic states of constituting elements in the

material. XPS is based on the photoelectric effect discovered by Einstein. An usual

XPS set up has a source, an electrical lens, a hemispherical analyzer and an electron
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detector. The source can be monochromatic Al-Kα or non-monochromatic Mg-Kα.

The X-rays emitted from the source are focused on the sample and electrons with var-

ious kinetic energies are generated. The generated electrons are either photo-electrons

(electrons ejected due to a direct transition) or Auger electrons (electrons ejected due

to an indirect transition). These electrons then are focused by the electric lens, and

after passing through the hemispherical analyzer the focused electrons are recorded

in the detector. A typical XPS spectrum shows the number of electrons detected

by the XPS detector versus the binding energy or the kinetic energy of the detected

electrons. The kinetic energy of an ejected electron is related to the binding energy

of the electron in the material by,

Ek = hν − Eb + φs, (2.3)

where h is the Planck constant, ν is the frequency of the X-ray photons, Eb is the

binding energy and φs is the spectrometer work function. A XPS spectra consists

of both the photo-electrons and the Auger electrons. The photo-electrons give sharp

peaks, which are the characteristic peaks at a characteristic binding energy that helps

to identify the elements present on the surface of the material. The Auger electrons

produce a wide peak in the background spectra. These characteristic peaks of photo-

electrons correspond to the electronic configuration of the electrons within the atoms.

In a compound, the characteristic peak of the constituent element gets shifted from

its original position due to oxidation or reduction state of the atom in a chemical

bonding. XPS spectra help to determine chemical bonding from such peak shift of

individual elements. The chemical compositions also can be found from the ratio of

the peak areas.
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2.2.4 X-Ray Diffraction

X-Ray diffraction is a very powerful non-destructive technique to study crystal struc-

ture. Crystalline quality, crystal structure, atomic arrangement, stress and defects in

a crystal are studied using XRD. Film thickness can also be determined from XRD.

The XRD set up consists of three main parts: a fixed source, a rotating sample stage

and a rotating detector. The source is made up of three primary parts: a cathode ray

tube with Cu as the target material, a monochromator which selects Cu-Kα radia-

tion, and a collimator. Inside the cathode ray tube, a filament is heated by passing

current, and electrons are ejected from the heated filament. The electrons are then

accelerated towards the target Cu by applying a voltage. The high energy electrons

then hit the Cu material and characteristic Cu-K alpha radiation is emitted. The

wavelength of the Cu-K alpha radiation is 0.154 nm. The monochromator selects a

narrow wavelength band around that wavelength of x-ray radiation, and the x-rays

are collimated and directed onto the sample. The detector records the x-ray photon

count after the radiation passes through an attenuator attached in front of the de-

tector. The detector can rotate along the incident beam direction (characterized by

a rotation angle 2θ, where 2θ is the angle between incident beam and the diffracted

beam). The direct beam axis is the axis joining source to the detector at the θ = 00

position. The sample stage is also movable. The sample stage can move sideways (in

a predefined local x-y coordinate frame), can rotate around the axis z perpendicular

to the stage (ψ rotation, where ψ is the angle between direct incident beam axis and

the local x axis of the stage), can rotate around the direct incident beam axis (φ

rotation, where φ is the angle measured in perpendicular direction to θ), and can

rotate in the incident beam direction (ω rotation, where ω is the angle of incidence).

The different angles of rotation and axis are shown in Figure 2.9.
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Figure 2.9: Schematic representation of a typical XRD set up showing various angles
and axis.

The incident X-rays are diffracted from the sample and the diffracted rays form

constructive or destructive interference pattern. In a typical 2θ − ω XRD scan, the

stage rotates by an angle ω and the detector rotates an angle 2θ. The X-ray intensity

will vary with the position of the stage and the detector, tracking this interference

pattern. The XRD spectra consists of peaks in the recorded intensity at certain 2θ

angles due to constructive interference of diffracted beams at that position. The

condition for constructive interference is given by the Bragg’s Law,

2dsinθB = nλ. (2.4)

Here, θBis called the Bragg angle, n is the order of diffraction, λ is the wavelength of

the X-ray radiation, and d is the distance between two lattice planes. If the Miller

indices of the lattice plane is given by (h, k, l), then distance between two such plane

is dhkl = 2π/Ghkl, where Ghkl is the length of the reciprocal lattice vector from the
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origin to the (h, k, l) point in the reciprocal space. From the positions of the peak, the

crystal structure can be calculated using Equation 2.4. The peak width and relative

intensities are also important to determine the crystal structure and the quality of

the crystal. The peak intensity varies depending on the structure factor, and some

peaks are not present due to a zero structure factor. The effect of strain and thermal

expansion, grain size, and coexistence of different phases can be determined from the

peak position and broadening. The thickness of the film can also be calculated from

the relative positions of two fringes. The formula to calculate thickness is,

t =
n1 − n2

2(sinθ1 − sinθ2)
, (2.5)

where t is the measured thickness, n1, n2 are order of the fringes from the main peak

(n = 0) and θ1, θ2 are corresponding fringe position in the XRD spectra.

2.2.5 Physical Property Measurement System

The Quantum Design physical property measurement system has two options: DC

and/or AC transport measurement capable of measuring electrical and thermal con-

ductivity, and magnetic measurements using a vibrating sample magnetometer. The

system is capable of doing measurements up to 9T magnetic fields and cooling sam-

ples down to 2 K. The magneto-transport experiments in this work were conducted

using standard van-der Paw geometry in a DC set up.
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3

Growth and characterization of

Bi2Te3 thin film on Si(111)

The Bi2Te3 thin film was grown in a custom-built MBE growth chamber equipped

with in-situ RHEED. The MBE growth chamber is connected to a UHV (pressure

∼ 1×10−10 mbar) surface analysis chamber that is equipped with variable temperature

STM, XPS and other surface analysis techniques. The in-situ surface analysis have

been done in the UHV surface analysis chamber and the XRD has been done ex-situ.

These results have been published in [72].1

1Part of Chapter 3 (section 3.3, 3.4 and 3.5) has been published in Applied Physics Letters 102,
163118 (2013) (reference [72] in this thesis) titled Two-dimensional weak anti-localization in Bi2Te3
thin film grown on Si(111)-(7×7) surface by molecular beam epitaxy by Anupam Roy, Samaresh
Guchhait, Sushant Sonde, Rik Dey, Tanmoy Pramanik, Amritesh Rai, Hema C. P. Movva, Luigi
Colombo and Sanjay K. Banerjee. The contribution of the authors to this paper is as follow: Sanjay
K. Banerjee has conceived, designed and supervised the experiments. Anupam Roy has grown
the sample in MBE and has done the XPS and STM characterizations, with assistance from me,
Sushant Shonde, Tanmoy Pramanik and Amritesh Rai. Luigi Colombo has helped us with his
insightful comments and suggestions on the growth and characterization part. Samaresh Guchhait
has done the XRD and transport measurements with help from me, Tanmoy Pramanik and Hema
C. P. Movva. I and Tanmoy Pramanik have done the transport data analysis. Anupam Roy and I
have written the paper. All authors have discussed and commented on the final manuscript.
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3.1 MBE cell calibration

In the MBE growth chamber, the molecular beams of the constituent elements (Bi

and Te) were thermally generated from Knudsen type effusion cells. The vapor of the

element is generated inside the cell and effuses through the cell aperture to create

the molecular flux. The non-ideality of the cell and other cell parameter result in

dependence of the flux to the cell geometry and amount of element present in the

cell. Thus it is important to calibrate the flux of the constituent element.

The vapor pressure Pc of a material inside the cell is related to the cell temperature

Tc by [73],

Pc = Ae−B/Tc , (3.1)

where A and B are material dependent constant. The flux density of the molecular

beam effusing from the cell can be calculated using theory of ideal gas and is given

by [73],

j =
a

πr2
cosθ

Pc√
2πmkBTc

,

where a is the area of cell aperture, r is the distance between cell aperture and

substrate, θ is the angle at which the cell aperture is oriented with respect to the

substrate, m is the mass of the molecule and kB is the Boltzmann constant. So

equivalently it can be written as,

j = A′e−B/Tc/
√
Tc, (3.2)

where A′ depends on the particular material, cell and chamber geometry.

The growth rate is proportional to the molecular flux effused from the cell aperture.

One way of calibration is to get the growth rate from the quartz thickness monitor.

The thickness is determined from the change in frequency of the quartz crystal due
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to the added mass. The actual thickness is calculated from the recorded one using

the following formula,

Actual thickness = Displayed thickness× Density given to monitor

Actual Density of material deposited

× 100

Tooling factor in %
.

(3.3)

For better precision in display monitor, lowest value possible for density is given to

the thickness monitor control. The tooling factor can be calculated from system

geometry. In this case the tooling factor is taken to be 100% because of nearly same

distance of the thickness monitor and the substrate from the cells.

The other way to calibrate the cell is by using beam flux monitor (BFM) to get

the beam equivalent pressure (BEP). BEP is the reading of the beam flux monitor

exposed to a molecular beam minus the base pressure of the chamber, i.e.,

BEP = BFM pressure - Base pressure. (3.4)

The flux monitor is calibrated for N2 gas in room temperature TR. One needs to

convert the recorded BEP correctly to an actual vapor pressure. The BEP of a

material is given by [73],

BEP = I
TR
Tc

a

4πr2
Pc,

where I is the ionization cross section. So one can write

BEP = A′′e−B/Tc/Tc, (3.5)

where A′′ is another parameter which depends on the particular material, cell and
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chamber geometry.

It is interesting to note that the temperature dependent part of vapor pressure

differs from flux by a factor of
√
Tc (Equation 3.1 and Equation 3.2) and the tem-

perature dependent part of flux differs from BEP by a factor of
√
Tc (Equation 3.2

and Equation 3.5). However, the exponential dependence on temperature is same

for vapor pressure, flux and BEP. So for a given material, in a log-linear plot with

respect to inverse temperature, all of them give straight lines parallel to each other

for small range of temperatures [73]. Also the plot between flux and BEP is linear in

the temperature range of interest and the proportionality factor (depends on system

geometry) needs to be calibrated once for a given material.

Figure 3.1: Calibration of Bi: (a) Experimental data and theoretical fitting of Vapor
pressure and BEP for Bi. (b) Experimental data and theoretical fitting of growth
rate for Bi.

Bi powder of high quality (99.99 %) was thermally evaporated from the effusion

cells. Figure 3.1 shows the calibration data for BEP and growth rate of Bi for temper-

ature range of 450K − 560K. Variation of vapor pressure and BEP of Bi are plotted

against inverse of the cell temperature in a log-linear plot and shown in Figure 3.1(a),

where the green line is the original vapor pressure and the red line is the fit to the
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data points for BEP. The original vapor pressure of Bi obeys:

PBi (in mbar) = e19.93−2.29×10
4/T . (3.6)

The formula after fitting the BEP data is obtained to be:

BEPBi (in mbar) = e2.099−1.59×10
4/T . (3.7)

The growth rate is similarly plotted in in Figure 3.1(b) with inverse of temperature

in a log-linear plot and the straight line is the fit to the data. The growth rate (GR)

can be fitted by:

GRBi (in angstrom/s) = e23.58−2.11×10
4/T . (3.8)

Figure 3.2: Calibration of Te: (a) Experimental data and theoretical fitting of Vapor
pressure and BEP for Te. (b) Experimental data and theoretical fitting of growth
rate for Te.

Te was also evaporated from effusion cell filled with Te powder of high quality

(99.99 %). Figure 3.2 shows the calibration data for BEP and growth rate of Te

for temperature range of 240K − 340K. Variation of vapor pressure and BEP of Te

are plotted against inverse of the cell temperature in a log-linear plot and shown in
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Figure 3.2(a), where the green line is the original vapor pressure and the red line

is the fit to the data points for BEP. Similarly the growth rate is also plotted in

Figure 3.2(b) and a fit is obtained. The formula for vapor pressure of Te is:

PTe (in mbar) = e23.058−1.771×10
4/T . (3.9)

The fitting for BEP of Te is obtained as:

BEPTe (in mbar) = e14.22−1.755×10
4/T . (3.10)

Similarly the growth is fitted and the temperature variation is given by:

GRBi (in angstrom/s) = e31.37−1.90×10
4/T . (3.11)

Figure 3.3: Calibration of growth versus BEP: (a) Experimental data and theoretical
fitting of growth vs BEP for BI. (b) Experimental data and theoretical fitting of
growth rate vs BEP for Te.

There is a linear relationship between the growth rate and BEP for a given mate-

rial. Figure 3.3 shows the relationship between growth rate and BEP for Bi and Te.

The data are also fitted to a straight line. The fitting to data for Bi in Figure 3.3(a)
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produces

GRBi (in angstrom/s) = 3.646× 106 × BEPBi (in mbar). (3.12)

Similarly growth rate for Te, shown in Figure 3.3(b), obeys:

GRTe (in angstrom/s) = 2.574× 106 × BEPTe (in mbar). (3.13)

3.2 Substrate selection

In literature, Bi2Te3 has been studied in either bulk crystal form, or exfoliated

flake from bulk crystal or has been grown in MBE on different substrate such as

GaAs(001)[32], GaAs(111)[33], sapphire(0001)[34], SrTiO3[35], Si(111)[36, 37, 38, 24]

and so on. The quality of the grown film depends much on the film-substrate com-

bination due to lattice mismatching. The lattice mismatch is calculated for different

surface of Si and for different growth direction of Bi2Te3, the lowest lattice mismatch

occurs for two cases. For Si(001) substrate, if the [11̄00] direction of Bi2Te3 is parallel

to the [11̄0] direction of the substrate, the lattice mismatch will be 14%. For Si(111)

substrate, if the [112̄0] direction of Bi2Te3 is along the [112̄] direction of the substrate,

the lattice mismatch will be 14%. Here Si(111) is a choosen over Si(001) surface for

growing Bi2Te3. Since there are van-der Waal forces between different QLs of Bi2Te3,

the growth process occurs in van-der Waal epitaxy mode, and comparatively large

lattice mismatch between Bi2Te3 and Si(111) surface can be relaxed. The growth of

Bi2Te3 on Si is important as it will offer a way of integrating TI with Si technology

for future device application.
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3.3 Substrate preparation

The high quality Bi2Te3 film was grown on Si(111) surface by MBE. The substrate

was cut from P-doped n-type Si(111) wafer (oriented within ±0.5o) with resistivity

1-20 Ω - cm. The sample was cleaned with Methanol, Acetone and Isopropyl al-

cohol before loading into the high vaccum MBE chamber. The substrate was first

degassed in resistive heating followed by direct heating at about 6000 C for 12-14

hours and then flashed at about 12000 C for 1 minute [72]. The sample was then

cooled down to room temperature and the atomically clean surface is observed by

in-situ RHEED. Figure 3.4 shows the (7 × 7) surface reconstruction of the Si(111)

surface. Figure 3.4(a) shows the reconstruction from [112̄] incidence direction and

Figure 3.4(b) is from [11̄0] incidence direction.

Figure 3.4: The RHEED pattern for (7 × 7) surface reconstruction for atomically
clean Si(111) surface (published in [72]): (a) from [112̄] incidence direction. (b) from
[11̄0] incidence direction.

3.4 Bi2Te3 growth and in-situ characterization

Krumrain et. al.[38] have optimized the growth of Bi2Te3 thin film by MBE and

studied the effect of substrate temperature, cell temperature and flux ratio to the
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growth morphology. The best flux ratio of Te to Bi is about 20 and the optimum

substrate temperature is 350o C to 450o C. Also Te atmosphere is needed after the

growth until the substrate temperature falls below 350o C to compensate Te out-

diffusion. In this case, the Te and Bi cell temperatures were maintained such that

TTe > Tsub > TBi and the beam equivalent pressure ratio was BEPTe/BEPBi ∼ 20

[72].The base pressure of the chamber was ∼ 1× 10−10 mbar and the pressure during

growth never exceeded 5 × 10−8 mbar. Te and Bi flux were generated from effusion

cell calibrated before and the fluxes were co-deposited onto Si(111)-(7 × 7) substrate

with substrate temperature of 350o C. The cell temperature for Bi was 5400C and

cell temperature of Te was 3200C. The growth is done for 5 minutes with a rate of

0.8 nm/min. After the growth the sample is annealed for 10 minutes with the same

substrate temperature in a Te overpressure environment.

3.4.1 RHEED

Figure 3.5: The RHEED pattern of the same surface after growth of Bi2Te3: (a)
from [112̄] incidence direction of Si substrate. (b) from [11̄0] incidence direction of Si
substrate.

Figure 3.5 shows the RHEED images of the epitaxially grown Bi2Te3 thin film

just after the growth. The image in Figure 3.5(a) is taken from the [112̄]Si incidence
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direction of the Si(111) substrate and Figure 3.5(b) is taken from the [11̄0]Si incidence

direction of the Si(111) substrate. The RHEED image shows sharp streaky lines

indicating an atomically sharp morphology and coincident latticed matched growth

of Bi2Te3 on Si(111) surface despite lattice mismatching between them. Figure 3.6

shows the RHEED images of the grown Bi2Te3 thin film just after the 10 minutes

annealing. The image in Figure 3.6(a) and Figure 3.6(b) are taken from the [112̄]Si and

the [11̄0]Si incidence direction of the Si(111) substrate, respectively. After annealing

there is no significant change but the streaky pattern becomes sharper.

Figure 3.6: The RHEED pattern of the same surface after 10 minutes annealing of
grown Bi2Te3 (published in [72]): (a) from [112̄] incidence direction of Si substrate.
(b) from [11̄0] incidence direction of Si substrate.

3.4.2 STM

Figure 3.7(a) shows the STM image of Bi2Te3 surface with a step. The height profile

of the step is shown in Figure 3.7(b). The step height is ∼ 1 nm and indicates height

of one QL. The expected growth direction is along [001] i.e. the c-axis of the Bi2Te3

crystal structure.
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Figure 3.7: The STM image of Bi2Te3 surface (published in [72]): (a) 200 nm × 200
nm tomographic image. (b) Height profile along the line shown in (a).

3.4.3 XPS

Figure 3.8: The XPS spectra of Bi2Te3 surface (published in [72]): (a) Bi-4f peak
positions, (b) Te-3d peak positions.

The chemical composition of the grown film was analyzed by in-situ XPS study.

Figure 3.8 shows the XPS peak for each individual component- Bi and Te. The

peaks for Bi is shown in Figure 3.8(a), two peaks corresponds to Bi-4f7/2 and Bi-

4f5/2 splitting with binding energies 157.7 eV and 163.1 eV respectively. Similarly the

peaks for Te is shown in Figure 3.8(b) with Te-3d5/2 and Te-3d3/2 splitting at energies
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572.3 eV and 582.6 eV respectively. The splitting is due to the corresponding outer

shell electronic configuration of Bi and Te. The peaks show a shift with respect

to those from a pure bulk material. The Bi-4f has a blue shift while the Te-3d is

red shifted. The shifts in Bi and Te are in opposite direction which indicates Bi-Te

chemical bonding and charge transfer from Bi to Te.

3.5 Bi2Te3 ex-situ characterization

The crystallinity, growth direction and thickness of the MBE grown Bi2Te3 thin film

on Si(111) sample were obtained from the corresponding XRD curve.

3.5.1 XRD

Figure 3.9 shows the rocking curve for the Si(111)/Bi2Te3 sample measured in 2θ−ω

arrangement. The XRD data shows that the crystalline quality of the grown film

is very good. The XRD spectra consists of peaks from the Si substrate, the sample

stage (Al) and the Bi2Te3 thin film. The peaks for Bi2Te3 belongs to the h = 0 = k

and l = 3n family, where only [0006], [00015] and [00018] peaks are visible. The XRD

data shows that the crystalline quality of the grown film is very good. Despite having

a lattice mismatch of 14% of Bi2Te3 with the substrate, the grown film is crystalline.

The good crystallinity of the film may be due to coincidence lattice match or good

lattice match between the supercells of Bi2Te3 and Si(111) substrate. A Bi2Te3 su-

percell of 1 interatomic distance along the [213̄0] direction and 3 interatomic distance

along the [011̄0] direction matches closely with a supercell of Si(111) consisting of 2

interatomic distance along the [11̄0] direction and 2 interatomic distance along the

[112̄] direction [36]. The lattice mismatch between Si and Bi2Te3 are 1.1% along the

[112̄] and 0.9% along the [11̄0] directions of Si [36]. Such small mismatch may be
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Figure 3.9: The XRD spectra of Bi2Te3/Si(111) sample showing peaks for substrate
Si, Bi2Te3 thin film and the sample stage (aluminium) (published in [72]). The
h = 0 = k and l = 3n family of peaks are present for Bi2Te3, and the side fringes for
the [0006] peak gives an estimate for thickness.

responsible for such good crystal quality of the film. The film thickness is also evalu-

ated from the XRD data using the peak positions of the [0006] peak of the thin film

and its nearest fringe. The thickness comes out to be about 4 nm.
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4

Transport study on Bi2Te3 thin

film

The magneto-transport studies are done on the sample using the standard Van der

Pauw geometry and standard DC measurement in a physical property measurement

system, with magnetic fields up to 9 T and temperature down to 2 K. All the resistance

data are collected by averaging over 100 measurements. The magnetoresistance data

have been taken for both positive and negative magnetic fields to eliminate parasitic

voltage effects. These results have been published in [72, 74].1

1Chapter 4 has been published partly in Applied Physics Letters 102, 163118 (2012) (reference [72]
in this thesis) and partly in Applied Physics Letters 104, 223111 (2014) (reference [74] in this thesis).
The contribution to Applied Physics Letters 102, 163118 (2012) paper has been mentioned before
in the footnote of Chapter 3. The contribution of the authors, to the Applied Physics Letters 104,
223111 (2014) paper titled Strong spin-orbit coupling and Zeeman spin splitting in angle dependent
magnetoresistance of Bi2Te3 by Rik Dey, Tanmoy Pramanik, Anupam Roy, Amritesh Rai, Samaresh
Guchhait, Sushant Sonde, Hema C. P. Movva, Luigi Colombo, Leonard F. Register and Sanjay K.
Banerjee, is as follow: Sanjay K Banerjee has conceived, designed and supervised the experiments. I
have done the transport data measurements with help from Tanmoy Pramanik, Samaresh Guchhait
and Hema C. P. Movva. I have analysed the data with help from Tanmoy Pramanik. Anupam Roy
has grown the sample in MBE and has done the XPS and STM characterizations, with assistance
from me, Sushant Shonde, Tanmoy Pramanik and Amritesh Rai. Luigi Colombo has helped us with
his insightful comments and suggestions on the growth and characterization part. I have written the
paper. Leonard F. Register has helped me in analyzing the data and writing the paper. All other
co-authors have discussed and commented on the final manuscript.
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4.1 Resistance vs Temperature

The longitudinal resistance is plotted with temperature from 2 K to 300 K, which is

shown in Figure 4.1. Around 180 K, the resistance starts to increase as carriers in the

bulk Si substrate starts to freeze out. The carriers in the Si substrate completely freeze

out at around 130 K. Below 130 K, only the carriers in the Bi2Te3 film contributes

to the resistance and the resistance shows a metallic drop up to 20 K. Below 20

K, the resistance increases as the temperature decreases, which corresponds to an

insulating behavior. The film has an insulating ground state which arises from the

electron-electron interaction and has been discussed further in coming sections. The

longitudinal resistance versus temperature is measured again with an magnetic field

of 5 T applied perpendicular to the surface. With an applied magnetic field, the

resistance have the same trend up to 20 K, but below 20 K the two resistance differs

as shown in the inset of Figure 4.1. This difference is due to suppression of localization

in an applied magnetic field, which has been discussed too in the coming sections.

4.2 Perpendicular Field Magnetoresistance

The transverse resistance or the Hall resistance and the longitudinal resistance or the

magnetoresistance (MR) are measured at very low temperature with a perpendicularly

applied magnetic field, and are shown in Figure 4.2. The Hall resistance, with the

magnetic field B perpendicular to the sample surface at 2 K, is shown in Figure 4.2(a).

The Hall resistance is linear with field, which is clear from the linear fitting shown in

Figure 4.2(a). From the slope of the Hall resistance, we determined the charge carriers

to be electrons with a sheet carrier density of 1.2 × 1014 cm−2. The MR at 2 K, with

a magnetic field perpendicular to the sample surface, is shown in Figure 4.2(b). The
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Figure 4.1: Temperature dependence of longitudinal resistance for temperature vary-
ing 300 K to 2K (published in [72]).

perpendicular field MR has a sharp dip at small fields and the MR is linear for high

fields. The dip corresponds to the suppression of WAL effect in a magnetic field and

can be explained with the simplified HLN equation [64, 72]:

∆σ(B) =
αe2

2π2~

[
ψ

(
1

2
+
Bφ

B

)
− ln

(
Bφ

B

)]
=

αe2

2π2~
η

(
Bφ

B

) (4.1)

where, ∆σ(B) = (σ(B) − σ(0)) is the change of magnetoconductivity, e is the elec-

tronic charge, ~ is the reduced Planck constant, Bφ = ~/(4el2φ) where lφ is the phase

coherence length, ψ(x) is the digamma function dΓ(x)/dx, and η(x) is defined as

η(x) = (ψ(x+ 1
2
)− ln(x)). α is a fitting parameter with a theoretical value of 1, 0 and

−0.5 for orthogonal, unitary and simpletic case respectively [64]. Therefore α should

be −0.5 for WAL in a single surface in a TI and −1 for both the surface channels.
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The MR is fitted with R(B) ≈ R(0)−∆σ(B)R2(0) using Equation 4.1 for small fields

(0-1 T), as shown in Figure 4.2(b). We obtained a fitting parameter of α = −0.54

denoting presence of a single channel.

Figure 4.2: Hall resistance and MR with a magnetic field applied perpendicular to
the surface at 2 K (published in [72]): (a) Hall resistance shows linear dependence
with field. (b) MR is fitted with HLN for small field and MR shows linear behavior
for large fields.

The linear Hall resistance for higher magnetic fields and an α value near −0.5

for WAL effect in the MR suggests the presence of only one strongly coupled system

of carriers with a single type of carrier. However, the high carrier density implies

presence of electrons in the bulk CB along with in the surface states. Also, the

electronic transport in this film behaves as a 2D electron gas, that has been obtained

from further experiment and argument given in coming sections. This is possible,

because in the thin film limit due to confinement in one direction, the otherwise 3D

bulk states are subdivided into parallel 2D sub bands [26, 27, 55]. The top, bottom and

surface states become strongly overlapped and, therefore, strongly coupled through

scattering, which allow the system behaving like a single phase-coherent 2D channel

[26, 27, 49, 72, 75].

We have estimated the Fermi energy from the electron concentration obtained from
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the slope of the Hall resistance. We have assumed a parabolic dispersion relation for

the nominally bulk CB subbands with effective mass m∗ ≈ 0.178me [76], where me is

the free space rest mass of an electron. We have also taken the bottom of bulk CB

being about 0.3 eV above the nominal Dirac point [13]. Although, as a gap ∆ opens

up in the nominally surface states, near the Fermi energy (εF � ∆) the dispersion

relation is linear with vF ≈ 4.0 × 105 m/s [13, 42]. The estimated Fermi energy εF

= 0.58 eV. The Fermi wave vector kF ≈ εF/~vF is estimated to be 2.2 nm−1, similar

value has been reported in literature [42]. However, these estimates of εF and kF

are approximate, as a gap ∆ opens up in the nominally surface states making the

dispersion relation parabolic, and nominally CB sub-band states are only roughly

characterizeable by an effective mass approximation.

4.2.1 Weak Antilocalization Effect

The low field dip in the perpendicular field MR is due to the suppression of WAL

effect in an applied magnetic field. We have further investigated the MR behavior for

different temperatures ranging from 2 K to 20 K. Figure 4.3(a) shows the perpendic-

ular field MR for entire 0-9 T field range for different temperatures, where the dots

represent the experimental data. We first tried to fit these data using Equation 4.1

for the 0-1 T field range for different temperatures, as shown in the same figure, where

the solid lines show the fit. As we increase the temperature, the dip in MR broad-

ens and finally disappears because with increasing temperature the phase coherence

length decreases. The phase coherence length lφ = (Dτφ)1/2, where D is the diffu-

sion constant and τφ is the phase coherence time. With increasing temperature the

phase coherence time decreases so the phase coherence length decreases. The phase

coherence length lφ is obtained from the fitting parameter Bφ and is plotted with
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temperature, T , in Figure 4.3(b). The variation of lφ with temperature T is fitted by

lφ ∝ T−
1
2 . So τφ ∼ T−1 indicates 2D nature of carrier. Also τφ ∼ T−1 indicates that

the decoherence mechanism is due to electron-electron interaction [77] and not due to

electron-phonon interaction, as electron-phonon interaction would provide τφ ∼ T−3

[78].

Figure 4.3: Weak Antilocalization at small fields (published in [74]): (a) Data fitting
in 0 - 1 T field range using simplified HLN formula, data shows WAL effect, (b)
variation of phase coherence length and with temperature, extracted by curve fitting
in (a).

We have fitted the perpendicular field MR in 0 - 1 T field range using the simplified

HLN equation which is valid only in low field and strong SOC regime. The fitting is

done for data points in the 0 - 1 T field range and the fitted curve is plotted for the

entire range upto 9 T. It is clear that the fitted curve matches with the experimental

data for small fields, but the deviation of experimental values from the fitting curve

is significant for large fields. So the simplified HLN equation is insufficient to explain

the MR behavior for entire range with the small range fitting parameters. Next we

have used the same Equation, i.e. Equation 4.1, to extract the fitting parameters from

the entire data range and the fitted curves are shown in Figure 4.4(a). Figure 4.4(a)

clearly shows that the fit deviates from the experimental values for both small and

large fields. This deviation implies that the full range MR can not be explained by
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the simplified version of the HLN equation.

Figure 4.4: Absence of Weak Localization: (a) simplified HLN fitting for data consid-
ering entire field range, fitting is not satisfactory. (b) WL fitting for data considering
entire field range, fitting is not good either.

The perpendicular MR at large fields is almost linear with fields, as shown in Fig-

ure 4.2(b). In literature [79, 80], such large filed linear dependence has been explained

using Abrikosov’s theory [81] where the required value of magnetic field B, needed

for observation of such linear dependence of MR with field arising from electrons in

a Dirac cone, is B = (kBT + εF )2/2e~v2F (where kB is Boltzmann constant). In our

case, the Fermi energy εF lies way above the Dirac point and the required value of

magnetic field (at T = 2 K) is B ∼ 103T � 9T, the highest applied magnetic field.

There are also a few reports in the literature [26, 28, 75, 82, 83, 84] where such linear

MR has been attributed to WL effect in TI films arising from the bulk. To exam-

ine whether the transition to the linear dependence of the MR on the magnetic field

strength for higher fields is associated with WL effect, we fit our data with [82],

∆σ(B) =
e2

2π2~

[
3

2
η

( 4
3
BSO +Bφ

B

)
− 1

2
η

(
Bφ

B

)]
(4.2)

that addresses both WL and WAL. Here, BSO = ~/(4DeτSO) where τSO is the spin

orbit scattering time. In Figure 4.4(b), the fit to MR data using Equation 4.2 is shown,

51



which is quite reasonable for low fields but not for high fields. The obtained values

of Bφ are similar to those obtained from fitting Equation 4.1 in the low field region,

and the derived BSO that is much greater than Bφ, which makes the contribution of

the first term in Equation 4.2 negligible for small B (The function η(x) approaches

zero for large x). The main characteristic of WL is negative MR behavior, which is

absent in the data. So the possibility of any WL contribution from the bulk has been

excluded even though εF is deep inside the CB. Such absence of WL has been seen in

the 2D limit of TIs where εF � ∆ [19, 75], as topologically-protected states also can

arise from topologically non-trivial 2D films with strong SOC, similar to the case of

HgTe quantum wells [24, 85, 86].

Figure 4.5: Original HLN equation fitting for entire field range (published in [74]):
(a) Full range data fitting using original HLN equation. (b) The variations of phase
coherence length and mean free path with temperature, extracted from data fit in
(a).

We guessed from the fitting using Equation 4.1 and Equation 4.2 that the original

HLN equation may describe both the low-field and high-field behaviors. The original
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HLN equation [64], which in the case of no magnetic impurity scattering is [87, 64, 74],

∆σ(B) = − e2

2π2~

[
η

(
Be

B

)
− η

(
Bφ + 2BSOz + 2BSOx

B

)
+

1

2
η

(
Bφ

B

)
− 1

2
η

(
Bφ + 4BSOx

B

)] (4.3)

Here Bn = ~/(4Deτn), τn is the characteristic time associated with elastic scattering

(n = e), spin-orbit scattering in x (or y) direction (n = SOx) and spin-orbit scattering

in z direction, (n = SOz). Here, the x and y are in the plane of the TI, and z

is normal to the plane of the TI. With the condition B, Bφ � Be, BSOx , BSOz ,

i.e. for small fields and large SOC, Equation 4.1 is just the simplified version of

Equation 4.3 [64]. These conditions are not true for the entire field range, which

is why Equation 4.1 can not properly explain the experimental data, as shown in

Figure 4.3(a) and Figure 4.4(a). Equation 4.3 has been used to fit the experimental

data, which is shown in Figure 4.5(a). Figure 4.5(a) shows that the fitted curve has an

excellent match with the experimental data for both low and high field regions. The

condition needed for HLN Equation to be valid in 2D is d < (~/(4eB)2), where d is the

film thickness. In our case d = 4 nm and ~/(4eB)2 = 4.3 nm for B = 9 T. So the HLN

Equation is less valid for high fields near 9 T, which is why there are little deviation

in fitting near 9 T. The parameter lφ is extracted from the fitting parameters Bφ and

plotted versus T in Figure 4.5(b). We obtain lφ ∝ T−
1
2 , similar to that obtained

from small range fitting of MR using Equation 4.1 and shown in Figure 4.3(b). The

extracted value of lφ = 145 nm at 2 K is consistent with previous reports [48, 49,

50, 51, 72]. Using D = (1/2)v2F τe, the elastic scattering length le = vF τe is extracted

from the parameters Be and plotted versus T in the same Figure 4.5(b). Therefore

at 2 K, le = 20 nm and the estimated kF le is ∼ 45, similar to that reported before

[42, 49, 51], which indicates that the transport is diffusive and ensures the validity
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of HLN equation (kF le � 1). We observed that, at 2 K, the extracted value of Be

is 0.786 T and that of BSOx is 0.092 T, which are much less than 9 T, the highest

field value. This observation explains that Equation 4.1 is not valid to describe the

perpendicular field MR over the entire field range, although it can explain the MR

data well for small fields (<1 T), because the term in Equation 4.3 corresponding to

Equation 4.1 dominates with Bφ � Be, BSOx and BSOz . We also have obtained a very

large value for the fitting parameter BSOz satisfying BSOz � Be for all temperatures,

which implies a very small spin-orbit relaxation time (τSOz) for the surface-normal

direction. This result indicates the presence of strong SOC in this TI, which is

consistent with other reports for TIs [87, 88]. In TIs the SOC is so strong that the

precession of spin is fast enough to make the out-of plane spin-orbit relaxation time

shorter than the elastic scattering time (i.e., τSOz � τe). However, the in-plane spin-

orbit relaxation time is of the same order as the elastic scattering time (i.e., τSOx ∼ τe)

[89] and our obtained value of BSOx and Be are comparable. We also noticed that the

value of BSOx is much smaller than BSOz , i.e. τSOx is much larger than τSOz , which

suggests again that the system is 2D [64]. We have obtained τSOz ∼ 0.2 fs in the

order of ~/εF [89]. From fitting we have obtained an upper limit on τSOZ , as lowering

τSOZ below the obtained maximum limit is insensitive to fitting because of the nature

η(x) function. The actual value of τSOZ may be lower than what we have estimated.

We have also estimated τSOx ∼ 0.2 ps and τe ∼ 0.02 ps at 2 K.

4.2.2 Suppression of Zeeman Effect

The contribution of Zeeman energy in localization and electron-electron interaction

have not considered in fitting the MR data with the HLN equation. However, it is

clear that the HLN model for WAL alone can describe the perpendicular field MR
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behavior in our TI. Now we will discuss whether there are any Zeeman contribution

in perpendicular field MR.

Zeeman Effect in Localization

The Zeeman spin splitting energy, which is responsible for mixing spin singlet and

triplet states, is not considered in deriving the original HLN equation [64, 65]. Maekawa

and Fukuyama have considered the effect of Zeeman spin splitting in their theory of

localization for non-interacting electrons [65]. The MR for perpendicular magnetic

field considering the Zeeman energy is given by [65, 90],

∆σ(B) = − e2

2π2~

[
η

(
Be

B

)
− η

(
Bφ + 2BSOz + 2BSOx

B

)
− 1

2
√

1− γ

[
ψ

(
Bφ + 2BSOx

(
1 +
√

1− γ
)

B

)

−ψ

(
Bφ + 2BSOx

(
1−
√

1− γ
)

B

)]
+

1

2
ln

(
1 +

4BSOx

Bφ

)]
.

(4.4)

The ratio γ = (gµBBτSOz/2~)2 [49, 90] (g is the Zeeman g-factor and µB is the

Bohr magneton) determines the correction to the conductivity from the HLN model.

Figure 4.6(a) shows our fitting of Equation 4.4 to the MR data over the full field

range, which is almost the same as obtained by using Equation 4.3. The values of

fitting parameters Bφ, Be, BSOx are the same, and we obtained a similarly high BSOz

with very small γ. This result is a consequence of strong SOC, as strong SOC implies

large BSOz (small τSOz) which makes γ small for our fields of interest. Hence the

Zeeman effect in localization is suppressed in perpendicular field MR [49].
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Figure 4.6: Suppression of Zeeman effect in perpendicular field MR: (a) Full range
data fit by Maekawa and Fukuyama localization theory in perpendicular field, data
fitting is same as that by original HLN equation. (b) The logarithmic dependence of
conductivity with temperature, the obtained slope f is plotted with field in the inset
of (b) (published in [72]).

Zeeman Effect in Electron-Electron Interaction

Now, we will discuss about the contribution of the Zeeman effect in the EEI theory

of Lee-Ramakrishnan [66], where the correction to the Drude conductivity due to

temperature and field is given by,

δσI(B, T ) = δσ′I(T ) + δσ′′I (B, T )

where,

δσ′I(T ) =
e2

4π2~

(
2− 1

2
Fσ

)
ln

(
T

TI

)
(4.5)

δσ′′I (0, T ) = − e2

4π2~
Fσ ln

(
T

TI

)
(4.6)

δσ′′I (B, T )− δσ′′I (0, T ) = − e2

4π2~
Fσg2(B, T ) (4.7)

Here Fσ, indicating the strength of the Coulomb screening parameter, has a theoretical

value between 0 to 1 and TI is the characteristic temperature for EEI. The asymptotic

56



formula for the function g2 is

g2(B, T ) =


ln( gµBB

1.3kBT
), for gµBB � kBT

0.084( gµBB
1.3kBT

)
2
, for gµBB � kBT

(4.8)

Therefore, from Equation 4.7, the field-dependent correction due to EEI for a given

temperature and non-zero field is

∆σEEI(B, T ) = (δσI(B, T )− δσI(0, T )) = −(e2/4π2~)Fσg2(B, T ). (4.9)

Figure 4.5(a) shows that the original HLN equation alone can explain the perpendic-

ular field MR and we do not need the ∆σEEI(B) term from EEI. This result indicates

that the Zeeman spin splitting term in EEI (Equation 4.7) is suppressed, which is

consistent with previous theoretical and experimental reports [49, 66, 91]. A fitting

using EEI theory for perpendicular field MR has been reported before [51], where

they have found a small value of Fσ, which also indicates that the effect of EEI is

limited. This behavior is again associated with strong SOC. Spin-orbit scattering

causes the mixing of up and down spin channels and thus suppresses the spin triplet

term contributing to EEI [66]. To observe the effect of spin splitting term in MR,

the condition gµBB � ~/τSOz must be satisfied [66, 92]. Due to small τSOz we do

not get any contribution from that term in the considered B field range. Although

while deriving the EEI theory strong SOC have not been taken into account, no fur-

ther theory is needed to fit the perpendicular field MR data as HLN theory alone is

sufficient to explain it.

However, the singlet term in the EEI theory (Equation 4.5 and Equation 4.6)
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should produce a ln(T ) correction with slope [66],

f = (2π2~/e2)[dσ/d(lnT )] = (1− 3Fσ/4). (4.10)

The logarithmic dependence of conductivity with temperature is plotted in Fig-

ure 4.6(b) where we observe an insulating ground state in our sample which is due

to EEI effect as WAL predicts a metallic ground state. For the ln(T ) dependence of

magnetoconductivity at zero field, both EEI (the singlet term) and WAL effect are

responsible, but the coefficient in the ln(T ) dependence has opposite signs for the

EEI and WAL. The effect from localization is [64, 66],

∆σL(B = 0, T ) =
e2

2π2~
αp ln

(
T

TL

)
(4.11)

where α = 0.5, p = −1 (from the relation τφ ∝ T p), and TL is a characteristic

temperature associated with localization. For higher fields where the WAL effect

is suppressed, we should obtain slope of f = (1 − 3Fσ/4) from the EEI theory of

Lee-Ramakrishnan below the characteristic temperature (TL ≈ TI), which appears to

be ∼ 20 K in our case. However, the obtained slope f (= 1.05) is about 1 within

experimental error. In strong SOC material, the theory of Coulomb interactions in

the spin singlet channel explains this difference in slope, as described in literature

[57, 93]. Similar experimental results have been reported by others [49, 53, 54]. The

corresponding slope f is plotted against field in the inset of Figure 4.6(b). The original

HLN equation alone can describe the change of slope f with magnetic field as observed

in the experimental data. Therefore, the term ∆σEEI(B) has no contribution to the

perpendicular MR.

We also observed the angular dependence of MR to obtain a better understanding
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Figure 4.7: Effect of Zeeman splitting in angle dependent MR (published in [72]): (a)
The variation of magnetoconductivity with field for different field orientations. (b)
The same data as in (a) are plotted with perpendicular component of the field.

of the Zeeman contribution in different field orientations. The magnetoconductivity

is shown in Figure 4.7(a) for different field orientations ranging from 0 degrees (for

perpendicular field) to 90 degrees (for parallel field). In Figure 4.7(b), the magneto-

conductivity for different orientations has been also plotted against the perpendicular

component of field. The magnetoconductivity for angles below 45 degrees shows al-

most no deviation from the no-tilt limit. The magnetoconductivity for tilt angle 60

degrees shows a small deviation. For tilt angles greater than 75 degrees, the devia-

tion is significant and is clearly visible in the magnetoconductivity. This behavior is

because the ratio γ is small for small tilt due to large τSOz , but γ increases as the tilt

increases and becomes nearly 4 times larger at a 75 degrees tilt angle with respect to

zero degrees tilt angle. Our result is consistent with other reports [49, 94].

4.3 Parallel Field Magnetoresistance

We have seen that strong SOC suppresses the Zeeman effect and the EEI effect in

perpendicular field MR, and only HLN theory of localization is enough to explain

the perpendicular field MR data. However, HLN theory of localization has no contri-
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Figure 4.8: MR with field parallel to the surface (published in [72]): (a) B2 depen-
dence of MR with field for small fields. (b) ln(B) dependence of MR with field at
large fields.

bution to MR with magnetic field parallel to the sample surface, and so there must

be contributions from the Zeeman effect and the EEI effect. Both the Zeeman ef-

fect and the EEI effect produce a parallel field MR that has parabolic dependence

with field for low fields and has logarithmic dependence with field for high fields. In

Figure 4.8(a), the ∆σ(B) for small field values up to 0.8 T with field parallel to the

sample surface has been shown. We fit the data to B2 dependence for MR at low

field for different ranges, but it is clear that the parabolic fit is not good for field

ranges greater than 0.4 T. We also have fitted ∆σ(B) data in the large field range

with a ln(B) behavior, as shown in Figure 4.8(b), and from Equation 4.9 the slope

Fσ = (4π2~/e2)[|dσ/d(lnB)|] is ∼ 0.7.

4.3.1 Localization Effect for non-interacting electrons

The Zeeman effect has been considered by Maekawa and Fukuyama [65] in deriv-

ing theory of localization for non-interacting electrons. According to Maekawa and

Fukuyama theory of localization, the correction to MR for parallel field is given by
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[65, 72],

∆σL(B) = − e2

4π2~

[
ln

∣∣∣∣1 + 2

(
y + z

x− y

)
τφ
τe

∣∣∣∣
− 1√

1− γ
ln

∣∣∣∣∣
τe
τφ

+ y+z
x−y (1 +

√
1− γ)

τe
τφ

+ y+z
x−y (1−

√
1− γ)

∣∣∣∣∣
] (4.12)

where x = τ−10 , y = τ−1SOz
, z = τ−1SOx

and γ =
(
gµBBτe

~

(
x−y
y+z

))2
. The parallel field MR

data has been tried to fit with Equation 4.12 and is shown in Figure 4.9(a). The fitted

curve has deviations from the experimental data and is not capable of explaining the

full range MR for low temperatures. The experimental data has a strong temperature

dependency that is not captured in Equation 4.12, as only temperature dependency

in the equation is coming from τφ (τφ ∼ T−1).

Figure 4.9: Zeeman effect and the EEI effect in parallel field MR (published in [74]):
(a) The full range data are fitted by Maekawa and Fukuyama theory of localization
for parallel field, fitting is not satisfactory. (b) The full range data fitted by the EEI
theory of Lee and Ramakrishnan, fitting is better than fit in (a).

4.3.2 Electron Electron Interaction Effect

The single particle localization theory of Maekawa and Fukuyama is not enough to

describe our data. We considered the EEI theory of Lee-Ramakrishnan [66] where

the Zeeman contribution is taken into account via Hartree-Fock method. In the EEI
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theory [66] Equation 4.9 gives the field dependence of the conductivity at a particular

temperature, considering the Zeeman spin splitting,

∆σEEI(B, T ) = − e2

4π2~
Fσg2(B, T ) (4.13)

where,

Fσ = −4 +
8
(
1 + F

2

)
ln
(
1 + F

2

)
F

, (4.14)

with

F =

∫∞
0
dΩ v(q = 2kF sin( θ

2
))∫∞

0
dΩ v(0)

. (4.15)

Here, v(q) is the Fourier transform of screened Coulomb potential and the integral is

on the Fermi surface over the solid angle Ω. The function g2 is given by [66],

g2(B, T ) =

∫ ∞
0

dω ln

∣∣∣∣∣1−
(
gµBB/kBT

ω

)2
∣∣∣∣∣ d2dω2

ω

eω − 1
. (4.16)

The parallel field MR data has been fitted with the EEI theory and is shown in

Figure 4.9(b). The fitting using EEI theory is substantially better than the previous fit

and has all the qualitative features of the original data. The temperature dependency

of the experimental data can be understood from the EEI theory quite well. The

fitting parameters obtained from the fitting are Fσ = 0.94, g = 7.5 at 2 K, which

are in the range of previously obtained values [50, 51, 95, 96]. Still the fitted curve

deviates from the original data as clearly visible in Figure 4.9(b).

In literature [50, 51], a combined model has been used where the contribution

from localization and EEI have been added [74],

∆σ(B) = ∆σL(B) + ∆σEEI(B). (4.17)
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The fitting using the combined model have excellent agreement to our experimental

data over the entire field range, which is shown in Figure 4.10(a). Although the

expression for EEI neglects spin-orbit scattering for in-plane spin polarization, it

serves as a very good approximation because 1/τSOx is very small [66]. The value of

the fitting parameters, extracted from the ∆σEEI(B) contribution in the combined

model fitting, are Fσ = 0.66, g = 10 at 2 K. The perpendicular field MR data fitting

gives lφ = 145 nm and le = 20.5 nm, and using these values we obtained the ratio

(x − y)/(y + z) from the ∆σL(B) contribution in the combined model fitting. The

ratio (x−y)/(y+z) should be large due to strong SOC in Bi2Te3, instead we obtained

a small value. Such small value of the ratio (x − y)/(y + z) has been reported for

Bi2Se3 [51] and is not well understood. From relative deviations in fitting shown in

Figure 4.9(a) and Figure 4.9(b), it is clear that the contribution of the term ∆σL(B)

is less than ∆σEEI(B), i.e the parallel field MR is mainly due to contribution from

EEI. Such small contribution from the ∆σL(B) term may be the reason for such small

value of the ratio (x− y)/(y+ z). That the contribution of EEI is mainly responsible

for the parallel field MR is also clear from the fact that at high fields the slope from

the logarithmic dependence of MR with field is Fσ ∼ 0.7, as shown in Figure 4.8(b).

Figure 4.10: Combined model fit for entire parallel field MR (published in [74]):
(a) Parallel field MR fitted by the combined model for entire field range. (b) The
extracted Fσ and the g-factor are plotted versus temperature.
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The Zeeman g-factor and strength of Coulomb interaction Fσ are extracted from

the combined model fit and are plotted versus T in Figure 4.10(b). The extracted

g-factor, in our case, is 10-25 over the 2-20 K range and matches well with previously

reported values of g for Bi2Se3 and Bi2Te3 [95, 96]. From EEI theory, the condi-

tion that the parallel field MR will be parabolic for small fields, is gµBB<kBT or

B<(kBT/gµB) ∼ 0.3 T for T = 2 K. The parabolic MR is valid up to 0.3 T field, and

so we obtained a good B2 fit for field up to 0.4 T, as shown in Figure 4.8(a). The rea-

son that Fσ is increasing and the g-factor is decreasing with decreasing temperature

is not clear. We have estimated Fσ from Equation 4.14 and Equation 4.15 to match

it with our value. We first assumed a 3D screening, and to calculate the screened

Coulomb potential we used the Thomas-Fermi approximation in 3D [97], where the

Thomas-Fermi wave vector kTF is given by,

kTF = (m∗e2kF/επ
2~2)

1
2 . (4.18)

where ε is an effective permittivity for the TI and its surroundings. Here ε is taken to

be that of free space because in our case the mean in-plane distance between electrons

(order of k−1F ) is in the same order as film thickness and most of the electric field lines

pass through the surrounding media [98, 99]. In our case, the calculated Thomas-

Fermi screening length (inverse of kTF ∼ 5 nm) is also comparable to the thickness,

suggesting that in our thin film the screening is approaching 2D. The two cases for

2D electrons have been considered next: electrons in a parabolic conduction band,

and electrons in a linear Dirac cone. For calculating screened Coulomb potential in

2D screening, Lindhard theory [100] have been used. Lindhard theory gives [100],

v(q) = (2πe2/ε)(1/(q + k0)), (4.19)
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where k0 is the screening wave vector. For parabolic dispersion, the theory [100] gives

k0 = (m∗e2/2επ~2) (4.20)

and for linear dispersion the theory [100] gives

k0 = (e2kF/2επ~vF ). (4.21)

For parabolic dispersion, assuming εF = 0.58 eV lying 0.28 eV above the assumed

band edge, we obtain F = 0.81 and Fσ = 0.72 at 2 K. For linear dispersion, at 2 K

we obtain F = 0.89, Fσ = 0.78 irrespective of Fermi energy εF . Given the various

approximations, these numbers perhaps are not substantially different. The value

obtained at 2 K from the data fitting in Figure 4.10(a) is Fσ = 0.66, is comparable

to these calculated values, and to other reported experimental values [50, 51].

4.4 Angle Dependent Anisotropic Magnetoresis-

tance

In Figure 4.7(b), we have observed that for field orientation less than 75◦, the MR

shows very little deviations from no tilt case. The Zeeman effect and the EEI effect are

suppressed in perpendicular field MR due to strong SOC and change in perpendicular

field MR can be described by HLN theory alone. The Zeeman effect and the EEI

effect are significant in MR only when the field is near parallel. We have observed

the angular dependence of magnetoconductivity as shown in Figure 4.11. Figure 4.11

shows magnetoconductivity versus θ (the angle between the magnetic field and the

surface normal) for different temperatures and different field values.
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Figure 4.11: Anisotropic MR for different fields and different temperatures (published
in [74]): The MR is plotted with different field orientations for different field value
and different temperatures (a) - (d). The MR shows anisotropy with respect the
field direction. The data is fitted with the original HLN equation and the fitting is
satisfactory.

The magnetoconductivity shows anisotropy with respect to the field direction.

This anisotropy is mainly because the perpendicular component of the magnetic field

is responsible for suppressing the WAL effect and causing a change in conductivity as

the field component varies with angle. To fit the data accordingly, we have used [74]

∆σ(B cos θ) = σ(B cos θ)− σ(B cos(θ = 90◦)), (4.22)

and replaced the σ(B, θ = 90◦) data-point by σ(B = 0), as the change in MR for par-

allel field is due to the Zeeman effect and that effect is not taken care in HLN theory.
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Figure 4.11 shows fitting of the experimental data with the original HLN Equation,

Equation 4.3. We found that HLN theory can describe the angular dependency quite

well. The small anomalies in fitting at angles near 90◦ is due to the Zeeman effect.
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Thesis summary

This thesis presents detailed magneto-transport studies of epitaxially grown Bi2Te3

topological insulator thin films on Si(111), with magnetic field parallel and perpendic-

ular to the sample surface. Methods of growing the film by molecular beam epitaxy,

and characterizing the grown film by reflection high energy electron diffraction, scan-

ning tunnelling microscopy, x-ray photoelectron spectroscopy and x-ray diffraction

have been presented. The quality and the crystallinity of the films reported here are

very good, despite a large lattice mismatch between the film and the substrate. This

molecular beam epitaxy grown topological insulator film will be useful for integration

with Si technology for further device application. The parallel and perpendicular

field magnetoresistance data have been analyzed with existing theory, which gives

information about useful charge and spin transport parameters. The perpendicular

field MR data has been explained with the original Hikami-Larkin-Nagaoka theory,

which suggest weak antilocalization in the thin film. The Zeeman effect is found

to be suppressed in the perpendicular field magnetoresistance due to the presence

of strong spin orbit coupling in the thin films. The parallel field magnetoresistance

data has been explained with the combination of the localization theory of Maekawa-
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Fukuyama and the electron-electron interaction theory of Lee-Ramakrishnan, consid-

ering Zeeman spin splitting effect in both the theory. The magnetoresistance exhibits

anisotropy with respect to the field direction. A large spin-orbit relaxation time for

spin polarization parallel to the plane and a small spin-orbit relaxation time for spin

polarization normal to the plane have been found. The large spin-orbit relaxation

time for spin polarization parallel to the plane leads to Zeeman spin splitting contri-

butions in parallel field magnetoresistance, while the small spin-orbit relaxation time

for spin polarization normal to the plane leads to suppression of that in perpendic-

ular field magnetoresistance. The phase coherence length, the mean free path, the

Zeeman g-factor and the strength of Coulomb screening also have been estimated.

The estimation of these charge and spin transport parameters are useful consider-

ing spintronics application of topological insulator magneto-electric devices. Further

comparison of these parameters can be performed for different topological insulator

materials with different type of magnetic and non-magnetic impurity doping. Also the

angle-dependent anisotropy of magnetoresistance can be used in anisotropic magnetic

sensor applications.
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