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Abstract 

 

Cardiovascular Function, Cortical Thickness and Cognitive 
Performance in Middle-aged Hispanic Adults 

 

Evan Pasha, M.S. Kin. 

The University of Texas at Austin, 2014 

Supervisor:  Hirofumi Tanaka 

 
Background: Alzheimer’s disease (AD) prevalence has grown 68% in that timeframe, 

and has risen to the sixth leading cause of death in the United States. Hispanics are at 

increased risk of acquiring cardiovascular risk factors that contribute to AD pathology 

and are minimally 1.5 times more likely at any age to be diagnosed with AD. Identifying 

the roots of this ethnic disparity can lead to more effective personalized health 

interventions. Aim: To compare indices of vascular health to measures of gray matter 

integrity in middle-aged Hispanic and Caucasian adults. As a secondary outcome, we will 

examine these health statuses in relation to cognitive function. Methods: Sixty subjects 

in Caucasian (n=30) and Hispanic (n=30) groups were matched across racial 

classification by age, gender, years of education, and cognitive status. Participants’ 

arterial stiffness (carotid-femoral pulse-wave velocity and β-stiffness index), arterial 

wave reflection (augmentation index), endothelial function (flow-mediated dilation), and 

atherosclerosis (carotid arterial wall intima-media thickness) were characterized.  

Magnetic resonance imaging (MRI) estimated cortical thickness in a priori cortical 
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regions of interest known to be susceptible to vascular risk factors. Cognitive function 

was assessed with a comprehensive cognitive battery covering the domains of global 

cognitive function, language function, visuo-spatial abilities, memory function and 

attention-executive function. Results: Carotid-femoral pulse wave velocity (cfPWV) 

(p=0.02), Carotid artery β-stiffness index (p=0.01), and augmentation index (Aix) 

(p=0.05) were significantly greater in Hispanics than in Caucasians. Carotid intima-media 

thickness (IMT) and flow-mediated dilation (FMD) were not different between the 

groups. Hispanics exhibited thinner left inferior frontal gyrus (LIFG) cortical thickness 

(p=0.04) with concurrently lower language (p=0.02), memory (p=0.03), and attention-

executive functioning (p=0.02). Conclusion: Hispanics exhibited significantly greater 

cfPWV, Aix, and β-stiffness index as well as selective cortical thinning of the LIFG. 

Additionally, language, working memory and attention-executive domains of cognition 

were lower in the Hispanic group compared to their age-, gender-, education- and 

cognitive status-matched Caucasian counterparts. These results may form a basis for 

future investigations that aim to explain the increased prevalence and earlier onset of 

symptoms of AD in the Hispanic population through cardiovascular health.
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INTRODUCTION 

Although the overall mortalities from heart disease, stroke, and prostate cancer have 

declined between the years 2000 and 2010, Alzheimer’s disease (AD) prevalence has grown 68% 

in that timeframe, and has risen to the sixth leading cause of death in the United States (Thies, 

2013).  Almost a million new AD diagnoses will be expected annually by 2050 (Thies, 2013). 

People aged 65 years and older are the largest growing segment of the population and this cohort 

is expected to double by 2030, comprising 20% of the total population (CDC, 2007).  The cost of 

dementias was $203 billion in 2012, and this economic burden will continue to rise as the 

population ages (Thies, 2013). 

The Hispanic population will constitute the largest proportion (20%) of all minority 

groups (US Census, 2008). Hispanics are 3 times more likely than Caucasians at ages 55-64 

years to exhibit cognitive impairment (Thies, 2013). Additionally, Hispanics typically present 

with symptoms on average 6.8 years earlier in life than Caucasians (Clark, 2005).  Identifying 

the roots of this ethnic disparity can lead to more effective personalized health interventions. 

Such disparities may be found in the prevailing theory of AD pathogenesis, the vascular 

hypothesis. The vascular hypothesis of AD is that cerebral perfusion declines during the normal 

aging process, but worsens with the accumulation of vascular risk factors, creating a critically 

attained threshold of cerebral hypoperfusion (CATCH) that result in a faster cognitive and 

functional decline (de la Torre, 2012; Kume 2011, Solfrizzi, 2004). US-born Mexican 

Americans are more likely to develop high blood pressure, metabolic dysfunction, and 

inflammation risk factors than Caucasians (Crimmins, 2007). Many of these risk factors overlap 

with those buttressing the vascular hypothesis of AD and negatively impact cognition (den 

Heijer, 2005, Leritz, 2009) even at subclinical levels (Kennedy 2009, Leritz, 2010, 2011) 
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making early identification and prevention critical. Indeed the Hispanic population has increased 

prevalence of AD and likelihood of developing precursors with earlier symptom onset. 

Therefore, targeted study of AD pathology in Hispanics is of the utmost importance. Despite the 

approximately 73,000 articles published on AD in the last two decades (de la Torre, 2012), to 

our knowledge, no group has rigorously investigated the relationship of indices of cardiovascular 

health and gray matter in relation to cognitive function in Hispanics.  

Accordingly, the aim of the present study was to compare indices of vascular health to 

measures of gray matter integrity in middle-aged Hispanic and Caucasian adults. As a secondary 

outcome, we will examine these health statuses in relation to cognitive function. In order to 

comprehensively address these objectives, we characterized a variety of participants’ vascular 

functions, including arterial stiffness via pulse wave velocity and β-stiffness index, arterial wave 

reflection via augmentation index, endothelial function via flow-mediated dilation (FMD), and 

atherosclerosis via carotid arterial wall intima-media thickness.  Magnetic resonance imaging 

(MRI) was used to estimate cortical thickness in a priori cortical regions of interest (ROI) known 

to be susceptible to vascular risk factors (Leritz, 2011) to detect early gray matter morphological 

changes.  To assess cognitive function, participants completed a comprehensive cognitive 

battery.  We hypothesized that the Hispanic population would have greater arterial stiffness with 

reduced cortical thickness in specific brain regions related to cardiovascular disease. These 

phenotypes were expected to relate to cognitive performance and race was expected to moderate 

this relationship.  
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REVIEW OF LITERATURE 

DEMENTIA 
 Dementia is a disease that encompasses many subsets that all present in characteristic 

decline in memory and cognitive function that leads to a loss of independent function 

(Plassman, 2007). Although there are many subcategories of dementia, Alzheimer’s Disease 

(AD) is undoubtedly the most common form, accounting for an estimated 60-80% of cases 

(Thies 2013). Individuals who have the disease suffer progressively worse symptoms as 

pathology accumulates. Early symptoms of AD include apathy and depression with later 

symptoms of impaired judgment, disorientation, confusion, and difficulty speaking or walking.  

Ultimately the disease can result in mortality with respiratory infection as the most common 

immediate cause (Mölsä, 1986). The presentation of symptoms is determined by the amount of 

accumulated pathology within the individual (Stern, 2002).  While brain and cognitive reserve 

have been hypothesized to delay the presentation of AD symptoms (Stern, 2002), there is no 

cure for the disease. Sadly, one is unlikely to be found with our present technologies, simply 

because dead neurons cannot be restored to their original state (de la Torre, 2010). The 

prevalence of this debilitating disease is rising with some populations more vulnerable than 

others. 

ALZHEIMER’S DISEASE PREVALENCE AND RISK 
 The prevalence of AD has grown 68% from years 2000 through 2010 and has risen to the 

sixth leading cause of death in the United States (Thies, 2003).  The number of new AD 

diagnoses is rapidly increasing. An estimated 411,000 new cases of AD were diagnosed in 2000 

with a projected one million made annually by 2050 (Herbert, 2001). The greatest independent 

risk factor known for AD is age. The segment of the U.S. population 65 years and older is 
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expected to double by 2030 and comprise 20% of the total population (CDC, 2007).  Hispanics 

will constitute the largest minority group of this segment, representing 20% of the elder 

population. This growth is of great concern, as Hispanics are three times more likely than whites 

to exhibit cognitive impairment between the ages of 55-64 and 1.6 times at ages 85 and older. 

From these and other data, the Alzheimer’s Association estimates that older Hispanics are at 

least 1.5x more likely than whites to develop AD and other forms of dementia at any age. 

Additionally, Hispanics typically present with symptoms on average 6.8 years earlier in life 

(Clark 2005).  Determining the root of the disparate prevalence of AD is of the utmost 

importance for designing effective individualized interventions for all populations. 

DISPARITY ROOTED IN GENETICS? 
 The development of AD is definitively multi-factorial, stemming from genetic 

predisposition, environmental influence and vascular risk factor clustering. The apolipoprotein E 

(ApoE) gene represents a genetic factor that increases an individual’s risk for developing AD. 

One form of the ApoE gene is inherited from each parent.  Those who inherit the e4 

polymorphism from one parent have a heighted risk of AD, and those who inherit the e4 from 

both parents have even further risk. The prevalence of this particular polymorphism is 13.1% and 

14.2% in Caucasians and Hispanics respectively (Tang 1998).  When the deleterious e4 

genotype of ApoE is inherited from one parent, whites had 3.2 times increased likelihood of 

developing AD compared to 2.2 times in Hispanics (Farrer, 1997). Therefore, the passing of this 

gene is likely not the root of the disparity in AD prevalence and onset of symptoms between 

Caucasians and Hispanics.  Ostensibly, it is more probable that differential pathology 

accumulated throughout the lifespan accounts for observed prevalence differences. 
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DISPARATE RISK FACTOR ACCUMULATION 
 Epidemiological data from the National Health and Nutrition Examination Survey 

(NHANES) III reported ethnic differences in metabolic syndrome risk factors. Metabolic 

syndrome is the possession of multiple metabolic abnormalities that are associated with greater 

risk for developing insulin resistance, cardiovascular disease and all cause mortality 

(Mozumdar, 2011).  These metabolic maladies include central obesity (waist circumference: 

>102 cm and >88; men and women respectively), dyslipidemia (triglycerides ≥150 mg/dl; HDL 

men <40 mg/dl; women <50 mg/dl), hypertension (≥130/≥85 mm Hg), and elevated fasting 

glucose (≥110 mg/dl) (Mottillo, 2010). According to NHANES III, Mexican Americans had the 

highest prevalence of Metabolic Syndrome among any demographic from 1999-2006 of 36.6% 

for men and 42.65% for women after adjusting for age  (Mozumdar, 2011).  Similarly, in a 

separate study, Mexican Americans were found more likely to develop blood pressure, 

metabolic, and inflammation risk factors than Caucasians after accounting for age and gender 

(Crimmins, 2007).  Importantly, these differences disappear when adjusting for education and 

socioeconomic status, suggesting that environmental factors may be critical.  Nonetheless, when 

placing the differences of cardiovascular and metabolic risk factor accumulation in context with 

proposed models of AD pathogenesis, racial prevalence differences of AD may be explainable. 

VASCULAR HYPOTHESIS OF ALZHEIMER’S DISEASE 
 The vascular hypothesis of AD asserts that accumulation of vascular risk factors such as 

hypertension, hyperlipidemia and metabolic syndrome exacerbates an already declining cerebral 

perfusion that occurs with aging (de la Torre, 2012). These risk factors can exist silently in 

cognitively intact individuals for decades before symptoms are expressed. These risk factors 

individually and synergistically disturb hemodynamics leading to a critically attained threshold 

of cerebral hypoperfusion (CATCH) (de la Torre, 2000). Once CATCH is reached, clearance of 
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harmful toxins that can traumatically affect neurons is limited, leading to neuronal dysfunction. 

A schematic of nuanced progression to dementia by ethnicity is proposed in Figure 1. With 

cardiovascular and cognitive health undeniably linked, potentially any risk factor or disease state 

that limits cerebral perfusion could contribute to dementia through the vascular hypothesis 

model.  While each risk factor merits individual investigation, their resulting effect of disrupted 

hemodynamics proximal toa compromised cerebral autoregulation will be discussed.  

INDICES OF CARDIOVASCULAR FUNCTION 
 Major indices of cardiovascular function that reflect cardiovascular function and help 

govern hemodynamics that are highly related to risk factor accumulation are arterial stiffness, 

blood pressure wave reflection, and β-stiffness.  Other measures of interest that reflect 

atherosclerosis and vessel function are carotid intima-media thickness (cIMT) and flow-mediated 

dilation (FMD).  

 

ARTERIAL STIFFNESS. The stiffness of a central segment of the vasculature can be assessed by 

measuring carotid-femoral pulse wave velocity (cfPWV). This value is determined by detecting 

the transit time of a pulse wave over a measured distance from sites at the carotid and femoral 

arteries (Rhee, 2008).  Increases in arterial stiffness can compound the reflection of the incident 

pressure wave.  

 

AUGMENTATION INDEX. Reflected pressure waves stem from reflection points throughout the 

arterial tree. With aging the reflected pressure waves occur earlier in the cardiac cycle, 

augmenting central systolic blood pressure and decreasing diastolic pressure (Rhee, 2008).  This 

phenomenon effectively widens the pulse pressure and exposes vessels to greater pulsatility. An 
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assessment of this reflected wave form is the augmentation index (AIx) which is calculated as 

the difference between the peak systolic pressure and the first shoulder of the incident wave 

expressed as a percentage of the pulse pressure (Rhee, 2008). 

 

ΒETA-STIFFNESS. Distending pressure plays a crucial role in determining lumenal diameter.  An 

alternative measure of arterial stiffness accounts for this relationship by calculating arterial 

compliance independent of blood pressure called the β-stiffness index. To conduct this measure, 

B-mode ultrasound is used to capture vessel diameter 2-3 centimeters proximal to the carotid 

artery bulb and is coupled with beat-to-beat pulse pressures obtained from applanation tonometry 

on the contralateral carotid artery.  β-stiffness is then calculated from diameter and pressure 

values attained over ten cardiac cycles with the equation β=ln(SBP/DBP)×D/∆D where SBP and 

DBP are systolic and diastolic blood pressure and D is diameter (Rhee, 2008).  

 

ATHEROSCLEROSIS. An early indicator of atherosclerosis in the carotid artery is cIMT.  This 

marker is also obtained from images recorded by high-resolution B-mode ultrasound also taken 

2-3 centimeters proximal to the carotid artery bulb. From these images, electronic calipers can 

trace the thickness of the intima and media of the near vessel wall during diastole over the course 

of multiple cardiac cycles, yielding an average cIMT.   

 

ENDOTHELIAL FUNCTION. The function of vascular endothelium also largely determines the 

diameter of a vessel. Flow-mediated dilation (FMD) is a non-invasive ultrasound method that is 

proposed as a marker of endothelial function. To perform FMD, the diameter of the brachial 

artery is measured with specialized software from images captured with a high-resolution 
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ultrasound probe before and after reactive hyperemia induced by five minutes of forearm cuff 

occlusion (Uehata, 1997). The difference of the pre and post diameter is expressed as a 

percentage of the baseline value.  

 

CARDIOVASCULAR FUNCTION AND COGNITION 
Each measure described above has been independently linked to cognition and AD 

pathology. A study examining the relationship between arterial and cognition determined that 

increased cfPWV was associated with lower Mini-Mental Examination Score (MMSE), a 

measure of global cognitive function (Zhong, 2014). Furthering arterial stiffness as an indicator 

of AD pathology, PWV was associated with β-amyloid deposition in the brains, a hallmark AD 

pheonotype of very elderly adults (Hughes, 2013). Furthermore, multiple studies using cfPWV 

were able predict cognitive decline (Poels, 2007; Benetos, 2011), and find associations with 

domains of cognition including psychomotor speed (Watson 2011), verbal learning, and memory 

(Waldstein, 2008) at various ages. The relationship between arterial stiffness and cognitive 

decline is wonderfully summarized in a systematic review and meta-analysis by Pase et al. 2012.  

The AIx and β-stiffness index have similarly been investigated in relation to cognition. AIx was 

shown to be an independent predictor of speed of memory, although did not affect working 

memory or attention (Pase, 2010). β-stiffness index has been proposed as a potential risk factor 

for dementia (Mororvic, 2009; Jurasic, 2009).  

Similarly, severe cIMT was associated with decreased MMSE scores in one study 

(Xiang, 2013) and poor cognitive performance in visuospatial skills and speed, verbal memory 

and verbal fluency domains in another (Lopez-Oloriz, 2013).  Finally, endothelial dysfunction 

measured by FMD is associated with mild cognitive impairment, maintenance of ability to 

perform activities of daily living yet exhibit cognitive decline, (Tremblay, 2013) measured on 
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the MMSE (Vendemiale, 2013). A different investigation showed that higher FMD predicted 

better executive function (Smith, 2011). Reduced diameter of vessels perfusing the brain may 

explain these observed relations of decreased cardiovascular and cognitive function. Plaque or 

clot formation measured with cIMT is indicated by greater thickness and typically localizes to 

bends and branches of the arterial tree.  These buildups serve to narrow the vasculature (de la 

Torre, 2009). Further limiting vessel diameter is endothelial dysfunction as measured by FMD.  

According to Poiseuille's Law, flow through a conduit is proportional to the radius of the vessel 

to the fourth power.  Therefore, any alterations in a vessel’s diameter from narrowing or loss of 

endothelial function could dramatically reduce blood flow to the brain.  

 

MIDLIFE RISK IDENTIFICATION  
 Over 73,000 research articles have been published on the topic of AD, yet to this day, 

there is no known pharmaceutical or lifestyle intervention known to reverse the effects of AD 

and restore cognitive health (de la Torre, 2012). If in fact the vascular hypothesis model 

correctly describes the pathogenesis of dementia and AD, by the time symptomatic AD has set 

in, it’s pathology is likely irreversible. As a result, a turning point in its mitigation may be early 

identification of the previously discussed risk factors during midlife.  Detection of modifiable 

risk factors and adverse cardiovascular health indices could appropriately identify individuals at 

heightened risk for subsequent AD diagnosis.  

At midlife, these risk factors are identifiable, yet CATCH may not be reached. At this 

critical time point, pharmaceutical or lifestyle interventions such as diet and exercise may protect 

against, slow or even stop the progress of non-genetic related disease. A cross-sectional study 

support this idea in which aerobic fitness was associated with higher memory performance 

(Tarumi, 2013). A case-control study in which exercise measures were obtained on average 31 
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years prior to the onset of dementia found that light and regular exercise was associated with 

reduced odds of dementia diagnosis compared to being sedentary (odds ratio [OR] =0.63, 95% 

confidence interval [CI], 0.43–0.91 and OR=0.34, 95% CI, 0.16–0.72 respectively) (Andel, 

2008). These data are encouraging that ameliorating risk factors identified in midlife through 

interventions such as aerobic exercise may stem the rise of AD.  

 

BRAIN REGIONS ASSOCIATED WITH CARDIOVASCULAR RISK FACTORS 
Clearly there an association exists between cardiovascular and cognitive health. While 

the exact mechanisms by which each risk factor may confer reduced cognitive function are 

unknown, they appear to preferentially target specific regions of the brain.  A cross-sectional 

assessment of cortical thickness across ages 43-83 identified which specific regions exhibit 

structural changes in relation to cardiovascular and metabolic risk factors and are outlined in 

Tables 1 and 2 for the left and right hemispheres respectively (Leritz, 2011). Accordingly, other 

groups buttressed these findings showing hypertension is related to cortical atrophy in regions 

related to AD (den Heijer, 2005).  Type-2 diabetes also appears related to reduced cortical 

thickness in the medial temporal lobe of patients with AD (Biessels, 2006), supporting the idea 

that acquired insulin insensitivity is deleterious to brain structure. It is argued that even at 

subclinical levels, these risk factors negatively impact brain structure and function in specific 

processing regions (Leritz, 2009). Not only do these associations exist, with advancing age, the 

presence of hypertension and dyslipidemia accelerated declines in cerebral perfusion and cortical 

atrophy in a four-year longitudinal follow-up study (Meyer, 1999). The accumulation of 

cardiovascular and metabolic risk factors disrupts normal brain function in specific brain regions, 

and their continued presence places individuals on the fast track to cognitive decline and 

dementia. The regions associated cardiovascular function are responsible for many domains of 
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cognition including global function, crystalized intelligence, information processing, visuo-

spatial processing, executive function, memory and attention. Damages to these areas may confer 

cognitive impairment and symptomatic AD.  Therefore, further investigation characterizing the 

relationship of each risk factor to specific brain regions and cognitive performance is of merit.   

 

GRAY MATTER INTEGRITY MEASUREMENT BY CORTICAL THICKNESS 
Gray matter volume is defined as the amount of grey matter that lies between the grey-

white interface and the pia mater (Winkler, 2010). Cortical thickness is a validated measure of 

gray matter, as the two are highly associated. To measure cortical thickness, magnetic resonance 

imaging (MRI) conducts T1 – weighted anatomical scans of the entire brain using a high-

resolution spoiled gradient echo sequence (256 x 256 matrix, field of view = 24 x 24 cm2, 1mm 

slice thickness, 0 gap).  From MRI scans, regions of interest can be targeted by creating spheres 

5 mm in diameter around a central coordinate for the chosen regions according to the Talairach 

and Tournoux atlas (Seo, 2007) using specialized software (Du, 2007). Using this method, 

examination of brain regions associated cardiovascular and metabolic risk factors can be 

accomplished. 

 

DOMAINS OF COGNITIVE FUNCTION AND ASSESSMENT 
 Beyond quantifying gray matter integrity as a metric of brain structure, cognitive function 

can be assessed through the use of cognitive tests directed at specific domains of cognition. The 

major domains of cognition include global cognitive function, intelligence, language, memory, 

executive function, and attention. Each of these domains are susceptible to aging and AD. The 

MMSE is a measure of global cognitive function as it incrporates questions taxing multiple 

cognitive domains.  The Weschler Adult Intelligence Scale (WASI) also has many subtests and 
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is composed of questions testing verbal comprehension, perceptual reasoning, and working 

memory. Verbal fluency can be tested by having an individual name as many words as possible 

that begin with a certain letter, or within a category such as animals. Memory can be assessed 

when a subject is asked to repeat a successively longer string of numbers with immediate or 

delayed recall in a test known as the Digit Span. When reciting the numbers in reverse order, 

executive function is challenged. Another way to assess executive function is the Trails Making 

Test (TMT). The TMT is comprised of a two tasks, A and B. In Trails A, an individual draw a 

line connecting 25 encircled numbers sequentially shown on a sheet of paper. For Trails B, the 

same task is performed except the person must alternate between numbers and letters (e.g., 1, A, 

2, B, 3, C, etc.) (Tombaugh, 2004). The California Verbal Learning Test (CVLT) has multiple 

components that tax many cognitive domains including attention, memory, language, and 

visuospatial. Each of the above stated tests can serve to identify impairments in specific domains 

of cognition that may be affected by AD. 

 

INTEGRATED APPROACH FOR AD PREVENTION 
Dementia and AD is a deadly debilitating public health problem affecting more people 

every year.  With the discovery of a cure to AD unlikely, the prevention of AD pathology is the 

best defense. Cardiovascular and metabolic risk factors are key contributors to the vascular 

dementia model explaining AD pathogenesis. The Hispanic population has both increased and 

growing prevalence of AD. Compounding this problem, Hispanics have elevated risk of 

developing AD precursors with earlier symptom onset. An integrated approach of examining 

indices of cardiovascular function in relation to brain structure and cognitive function in this 

population is of the utmost importance.  Such studies should be performed on adults during 

midlife when risk factors may be present but can still be ameliorated by individualized 
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intervention.  Future investigations should examine the effects of lifestyle interventions such as 

diet and exercise in relation to cardiovascular function, gray matter integrity and cognitive 

function. 

  



 

 14 

METHODS 

PARTICIPANTS 
 One hundred and two community dwelling adults aged 40-60 years were recruited through local 

newspaper and online advertisements.  Of the 102 subjects, only those with complete 

cardiovascular and gray matter imaging data were included.  Self-identifying second generation 

Hispanic participants were targeted for recruitment to generate a state representative sample of 

demographic characteristics for that population. Subjects were then matched across racial 

classification by age, gender, years of education, and cognitive status to reduce between group 

heterogeneity and possible confounding covariates. Matching scheme resulted in the inclusion of 

60 total subjects in Caucasian (n=30) and Hispanic (n=30) groups. All participants completed a 

health history questionnaire reporting existing and past medical conditions and treatments. 

Individuals were excluded for reporting existing cardiovascular disease (e.g., coronary artery 

disease, angina pectoris, myocardial infarction, heart failure, and cardiac surgery), neurological 

disease (e.g., stroke, Parkinson’s disease, and clinically significant traumatic brain injury), or 

contraindications to Magnetic Resonance Imaging. Participants with metabolic syndrome risk 

factors (e.g., hypertension, dyslipidemia, diabetes mellitus) were included. The local institutional 

review board approved the study, and informed consent was obtained from all participants. 

COGNITIVE ASSESSMENT 
All participants completed a comprehensive cognitive battery covering five cognitive domains. 

These domains included global cognitive functioning, language function, visual-spatial abilities, 

memory functions and attention-executive functions (Haley, 2007). Global cognitive function 

was measured by the Mini-Mental State Exam (MMSE) and Wescher Abbreviated Scale of 

Intelligence (WASI-IQ). Language function was determined from the Category Fluency for 

Animals (Animals) and Speed and Capacity of Learning Processing (SCOLP) test. Visual-spatial 
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skills were measured by the Complex Figure Test (CFT) copy. The California Verbal Learning 

Test (CVLT) and Complex Figure Test (CFT) immediate recall, delayed recall, and recognition 

discrimination measured memory. Attention-executive functions were assessed by Trail Making 

Test A and B and the Controlled Oral Word Association Test (COWAT).  

VASCULAR FUNCTION ASSESSMENT 
All vascular function measures were completed after an overnight fast of at least 8 h having 

abstained from caffeine, alcohol consumption, and exercise. All measurements were taken after 

participants completed >15 min of supine rest in a quiet comfortable laboratory setting. 

 

ARTERIAL STIFFNESS. Carotid-femoral (cfPWV) was recorded as previously described (VP-

2000; Omron Healthcare, Bannockburn, IL) (Cortez-Cooper, 2003). CfPWV was obtained 

using arterial applanation tonometry incorporating an array of 15-micropiezoresistive transducers 

placed on the carotid and femoral arteries and calculated from carotid-to-femoral artery distance 

divided by transit time. The transit time was determined from the time delay between proximal 

and distal “foot” waveforms. The arterial path length was twice measured as the straight distance 

between the carotid and femoral measurement sites over the body surface using a non-elastic 

tape measure. As a secondary metric of arterial wave reflection and arterial stiffness, 

augmentation index (Aix) was calculated as pressure from the shoulder to the late peak of the 

pulse waveform divided by the pulse pressure (ΔP/PP) (Brown, 1999). 

Images of the common carotid artery were captured using an iE 33 Ultrasound System 

equipped with a high-resolution linear-array transducer (Philips, Bothell, Washington) (Tanaka 

et al. 2002).  A B-mode longitudinal image of the common carotid artery 1-2 cm proximal to the 

carotid bulb was acquired perpendicularly to the vessel so the near and far wall interfaces were 
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clearly visible. All ultrasound-derived images were saved in DICOM format and analyzed later 

with computerized image-analysis software (Vascular Research Tool Carotid Analyzer, Medical 

Imaging Applications, Coralville, IA). In concert with acquired carotid artery images, 

simultaneous recordings of pulse pressure waveforms from the contralateral common carotid 

artery were obtained using applanation tonometery (VP-2000; Omron Healthcare) (Tanaka, 

2000). Subsequently, β-stiffness index was calculated using the equations described in detail 

elsewhere (O’Rourke, 2002; Laurent, 2006) in which β=ln(SBP/DBP)×D/∆D; where SBP is 

the systolic blood pressure, DBP is the diastolic blood pressure, and D is carotid lumen diameter 

(RHEE, 2008). 

 

INTIMA-MEDIA THICKNESS. Carotid artery images obtained during the arterial stiffness 

measurement were analyzed with computerized image-analysis software (Vascular Research 

Tool Carotid Analyzer, Medical Imaging Applications, Coralville, IA). The distance between the 

leading edge of the intima-lumen interface and leading edge of the media-adventitia interface of 

the far wall was defined as the intima-media thickness (IMT). An average of at least 10 

measurements resulted in the final IMT value. A single investigator blinded to subject 

characteristics performed all image analyses.  

 

ENDOTHELIAL FUNCTION.  Brachial artery FMD was used to assess endothelial function (Vita, 

2002). A B-mode Doppler ultrasound machine (iE 33 Ultrasound System, Philips, Bothell, WA) 

with a custom transducer-holding device was used to measure brachial artery diameters and 

blood flow velocity. Brachial artery images were obtained in a longitudinal orientation located 

5–10 cm proximal to the antecubital fossa. Following baseline measurements, a blood pressure 
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cuff placed on the ipsilateral forearm distal to the elbow was inflated to 100 mmHg above 

baseline systolic blood pressure for 5 min using a rapid cuff inflator (E20, Hokanson, Bellevue, 

WA). Ultrasound-derived blood velocity and diameter data were saved as DICOM format and 

transferred to a computer using a digital image viewing software (Access Point 2004, Freeland 

Systems; Westminster, CO) for later analyses. The same investigator blinded to subject identity 

analyzed all ultrasound brachial images using image analysis software (Vascular Research Tool 

Brachial Analyzer, Medical Imaging Applications, Coralville, IA). 

FMD was expressed as the percent change in brachial artery diameters recorded during 

the pre and post occlusion phases and was calculated using the equation: ((maximum diameter – 

baseline diameter)/baseline diameter)*100. The average of 10 end-diastolic brachial artery 

diameters before blood flow occlusion was used for baseline diameters, and the average of three 

peak end-diastolic diameters during the reperfusion phase was used for maximum brachial artery 

diameter. 

NEUROIMAGING DATA ACQUISITION  
MRI data for each participant was acquired in a single session on a 3T GE Signa Excite MRI 

scanner equipped with a standard head coil. T1 – weighted anatomical scans of the entire brain 

were collected using a high-resolution spoiled gradient echo sequence (256 x 256 matrix, field of 

view = 24 x 24 cm2, 1mm slice thickness, 0 gap).  

 Scans were processed using the default settings in the Freesurfer Imaging Analysis Suite 

(v.4.5; http://surfer.nmr.mgh.harvard.edu), described in detail elsewhere (Fischl and Dale, 

2000). Cortical thickness was extracted and analyzed from apriori ROIs to expand upon 

published coordinates emperically shown to be related to cardiovascular risk factors (Leritz, 

2011): bilateral superior temporal gyri, bilatertal inferior frontal gyri, bilateral anterior cingulate 
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gyri, bilateral middle occipital, bilateral anterior cingulate gyri, bilateral inferior parietal, 

bilateral middle frontal, bilateral cingulate, bilateral supramarginal and orbital frontal cortex. 

Each ROI was selected based on their published association with cerebraovascular health, Their 

location coordinates are summarized in Table 2.  Spherical ROIs, 5 mm in diameter, were 

automatically created around the central coordinate for the chosen regions according to the 

Talairach and Tournoux atlas (SEO, 2007) using the Analysis of Functional NeuroImages 

(AFNI) software (Du, 2007).  
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STATISTICAL ANALYSES 

Shapiro–Wilk test indicated a normal (Gaussian) distribution for all continuous variables. 

Descriptive statistics were calculated for demographics, vascular and cognitive variables. 

Independent samples t-tests were performed with race as a categorical variable defining groups. 

Levene’s test indicated equal variance for all outcomes in both groups.   Univariate linear 

regression examined the association between vascular indices and cortical thickness within each 

a priori ROI. The decision to not adjust models for typical covariates was based on subject 

matching between groups.   Moderation analyses were performed using Preacher and Hayes’ 

macro to assess the interaction of race and vascular functions on each significant a priori ROI. 

To be considered significant, both the race and interaction terms had to reach the level of p<0.05.  

Data are presented as mean ± SD.  All data were analyzed using SPSS statistical analysis 

software version 22.0 (SPSS Statistics, IBM, Armonk, NY, USA). 
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RESULTS 

SUBJECT CHARACTERISTICS. Sample descriptive characteristics are reported in Table 3. Group 

matching resulted in no significant differences in any participant descriptive characteristics with 

the exception of height (p=0.01).  Blood pressure and blood cholesterol levels were not different 

between the groups.  Carotid artery β-stiffness index, pulse wave velocity, and augmentation 

index were significantly greater in Hispanics than in Caucasians. Carotid IMT and FMD were 

not different between the groups. 

 

CORTICAL THICKNESS.  Cortical thicknesses of each a priori region of interest (ROI) is 

presented in Table 4.  Mean cortical thickness was not different between the groups in most ROI 

examined.  However, the Hispanic cohort exhibited significant thinning of the left inferior frontal 

gyrus (LIFG).  

 

COGNITIVE BATTERY. No group difference was observed in MMSE score (Table 5).  Global 

cognitive function was lower in the Hispanic group on the WASI Vocabulary and FSIQ Total.  

Language difficulties were further reflected in the SCOLP tests as Hispanics performed worse on 

errors and spot the word subtests. In cognitive domains largely independent of language 

processing, the Hispanic group exhibited lower working memory on the CVLT delayed recall 

and lower performance in the attention-executive domain with the Digit Span. No differences 

were found on remaining cognitive tests. 

 

RACE INTERACTION.  Univariate regression revealed that PWV, IMT, and FMD did not predict 

left inferior frontal gyrus (LIFG) thickness. As shown in Figure 3, carotid AI did not predict 
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LIFG thickness in Caucasians, but did so in Hispanics (p=0.04). The interaction term between 

AIx and race was not significant but was trending (p=0.099). As depicted in Figure 4, β-stiffness 

index was a significant predictor of LIFG thickness in Caucasians (p=0.02) but not in Hispanics 

(p=0.90).  The interaction term of race and β-stiffness did not reach statistical significance.  
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DISCUSSION 

The present study compared measurements of vascular health and gray matter integrity 

across middle-aged Caucasian and Hispanic adults. The primary finding was significantly 

elevated pulse wave velocity, arterial wave reflection, β-stiffness accompanied by selective 

cortical atrophy in the left inferior frontal gyrus in the Hispanic adults.. Additionally, working 

memory and attention-executive domains of cognition were lower in the Hispanic group 

compared to their age-, education- and MMSE-matched Caucasian counterparts..  The present 

findings further support the vascular hypothesis of dementia where compromised cardiovascular 

health, changes in cortical morphology, and impairment of cognitive function are concurrently 

present.  These results may form a basis for future investigations that help explain the increased 

prevalence and earlier onset of symptoms of AD in the Hispanic population.  

Cardiovascular risk factors have been hypothesized to disturb arterial hemodynamics 

leading to chronic brain hypoperfusion, reduced energy substrate delivery which can lead to 

neuronal death, and ultimately cognitive dysfunction (de la Torre, 2012).  Even at subclinical 

levels, these risk factors confer impairments to brain structure and function in specific processing 

regions (den Heijer, 2005; Leritz, 2009). This model is reinforced by an investigation that 

demonstrated lower arterial stiffness was associated with occipitoparietal perfusion and enhanced 

cognitive function in middle-aged adults (Tarumi, 2013).  Additionally, chronic brain 

hypoperfusion has been linked to cortical microinfarcts (Okamoto, 2012) that lead to cognitive 

impairment (Kövari, 2007; Arvanitakis Z, 2011).  Hispanics have increased susceptibility to 

acquiring these risk factors that occurs prior to neurodegeneration and cognitive impairment 

(Vermeer, 2003). With no present cure to AD, identification and management of these risk 



 

 23 

factors through lifestyle and pharmacological interventions is essential, especially in the 

Hispanic population who exhibit heightened vulnerability.  

The LIFG is critical to executive function and inhibitory control. The LIFG is related to 

the recall of semantic information, for example deciding which part of a word’s definition is 

appropriate in context (Thompson-Schill, 1999).  Not only does the LIFG work to select the 

correct semantic information, it aids in its retrieval (Hirshorn, 2006). Dyslipidemia is associated 

with reduced cortical thickness of the LIFG (Leritz, 2011). In a study using a Go/NoGo task, 

patients with LIFG lesions made more false alarm errors than healthy controls and performed 

worse when response inhibition was most difficult (Swick, 2008). While the changes in LIFG 

thickness were not significantly associated with the observed differences in cognitive function in 

the present study, this region appears related to the working memory and attention-executive 

domains. Maintaining the structural integrity of this region may delay the onset of semantic 

recall errors. 

Undoubtedly, the greatest strength of the current investigation was the cohort of 

apparently healthy middle-aged Hispanic adults.  Matching participants across ethnicities also 

enabled isolation of vascular function, gray matter morphology, and cognitive function from the 

influence of differential covariates between the groups.  With participant matching, there were 

no group differences in key confounding factors, including the number of metabolic risk factors. 

Despite their equivalent health and global cognitive statuses, the Hispanic group demonstrated 

significantly worse vascular health, selective cortical atrophy, and domain specific cognitive 

impairment. 

Unfortunately, our modest sample size limited the statistical power to detect vascular 

mediation of impaired cognition or racial moderation of the relationships between vascular 
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health, gray matter morphology, and cognitive function. Although there was a significant relation 

between the number of metabolic syndrome components and decreased cortical thickness, this 

relationship was not significantly mediated by any measure of vascular function, nor moderated 

by race (data not shown). Therefore, we could not determine if the causation of cognitive 

impairment from cortical atrophy that can induce impaired vascular health is unique to the 

Hispanic population.  

The present investigation examined the relation of indices of vascular health and gray 

matter morphology in middle-aged Hispanic and matched Caucasian adults. In spite of the fact 

that both Hispanics and Caucasians were matched for key variables, Hispanics exhibited 

significantly greater arterial stiffness, arterial wave reflection, and β-stiffness index as well as 

selective cortical thinning of the LIFG. However, ethnicity was not found as a moderator of the 

relationship between vascular function, gray matter integrity,  and cognitive function. Future 

investigation into the physiological mechanisms behind the increased prevalence of AD in 

Hispanics is necessary, given enhanced susceptibility to cardiovascular risk factors in this 

population. Determining which risk factors are most commonly acquired in Hispanics and what 

impact each risk factor confers to vascular outcomes, brain structure, and cognitive function is 

vital. 
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APPENDIX A - TABLES 

Table 1: Left hemisphere regions associated with cardiovascular risk factors with listed Talaraich 
coordinates 
Risk!Factor! Area! X! Y! Z!
HTN! Superior!Temporal! >51! 17! 0!
Cholest! Inferior!Frontal! >44! 24! 2!
Gluc! Anterior!Cingulate!(perigenual)! >2! 36! 7!
Cholest/Gluc! Middle!Occipital! >35! >76! 16!
HTN! Anterior!Cingulate!(middle)! >1! 26! 21!
Cholest! Inferior!Parietal! >48! >24! 25!
HTN/Cholest! Middle!Frontal! >37! >29! 26!
Cholest! Cingulate! >6! 28! 31!
HTN! Supramarginal! >51! >48! 31!

HTN = Hypertension; Cholest = Cholesterol; Gluc = Glucose. 

 
Table 2: Right hemisphere regions associated with cardiovascular risk factors with listed 
Talaraich coordinates. 
 
Risk!Factor! Area! X! Y! Z!
Gluc! OFC! 7! 29! >20!
HTN! Superior!Temporal! 51! 17! 0!
Cholest! Inferior!Frontal! 44! 24! 2!
Cholest/Gluc! Middle!Occipital! 35! >76! 16!
HTN! Anterior!Cingulate!(middle)! 1! 26! 21!
Cholest! Inferior!Parietal! 48! >24! 25!
HTN/Cholest! Middle!Frontal! 37! >29! 26!
Cholest! Cingulate!(high)! 6! 28! 31!
HTN! Supramarginal! 51! >48! 31!
HTN = Hypertension; Cholest = Cholesterol; Gluc = Glucose. 
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Table 3. Selected subject characteristics 
  

   
Caucasian Hispanic p-value 

      
Descriptive Male/Female (n) 

 
14/16 14/16 - 

 
Age (years) 

 
49.0 ± 5.2 48.4 ± 5.3 0.66 

 
Education (years) 

 
15.5 ± 2.3 15.2 ± 2.3 0.61 

 

Mini Mental State Examination 
(score) 

 
28 ± 1 27 ± 2 0.13 

 
Height (cm) 

 
172 ± 8 166 ± 10 0.01 

 
Body mass (kg) 

 
85.4 ± 17.4 85.1 ± 19.9 0.94 

 
BMI (kg/m2) 

 
28.7 ± 5.4 30.7 ± 6.8 0.21 

 
Systolic Blood Pressure (mmHg) 

 
124 ± 16 125 ± 14 0.82 

 
Diastolic Blood Pressure (mmHg) 

 
75 ± 10 75 ± 11 0.90 

 
Blood glucose (mg/dl) 

 
108 ± 29 116 ± 41 0.43 

 
LDL-cholesterol (mg/dl) 

 
118 ± 34 108 ± 32 0.30 

 
HDL-cholesterol (mg/dl) 

 
45 ± 17 48 ± 13 0.56 

 
Triglyceride (mg/dl) 

 
167 ± 85 155 ± 114 0.67 

 
Total cholesterol (mg/dl) 

 
204 ± 54 187 ± 38 0.17 

 

Metabolic Syndrome Components 
(n) 

 
2.5 ± 1.5 2.5 ± 1.5 0.96 

Vascular Pulse wave velocity (cm/s) 
 

1034 ± 178 1178 ± 264 0.02 

 
Augmentation index (%) 

 
13 ± 17 22 ± 15 0.05 

 
Beta-stiffness index (AU)   

 
6.33 ± 2.36 8.10 ± 2.04 0.01 

 

Carotid intima media thickness 
(mm) 

 
0.59 ± 0.13 0.58 ± 0.13 0.84 

 
Flow-mediated dilation (%) 

 
5.3 ± 4.0 5.1 ± 3.8 0.85 

Data are means ±SD. BMI=body mass index 
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 Table 4. Mean cortical thicknesses of each a priori Regions of interest 

  
 

Talairach Coordinates 
 

Caucasian (n=30) 
 
Hispanic (n=30) 

 

 
 X Y Z 

 

Mean Thickness (mm) 
 

 

Mean Thickness (mm) 
 p-value 

Left Superior Temporal -51 17 0 
 

2.37 ± 0.08 
 
2.35 ± 0.08 0.35 

 
Inferior Frontal -44 24 2 

 
2.55 ± 0.27 

 
2.41 ± 0.25 0.04 

 
Anterior Cingulate -2 36 7 

 
2.25 ± 0.58 

 
2.17 ± 0.46 0.57 

 
Middle occipital -35 -76 16 

 
2.33 ± 0.31 

 
2.31 ± 0.34 0.81 

 
Anterior Cingulate -1 26 21 

 
1.56 ± 0.78 

 
1.27 ± 0.69 0.14 

 
Inferior Parietal -48 -24 25 

 
2.63 ± 0.47 

 
2.66 ± 0.50 0.89 

 
Middle Frontal -37 -29 26 

 
2.11 ± 0.26 

 
2.11 ± 0.27 0.95 

 
Cingulate -6 28 31 

 
3.07 ± 0.64 

 
2.78 ± 0.63 0.08 

 
Supramarginal -51 -48 31 

 
2.44 ± 0.33 

 
2.59 ± 0.26 0.07 

          Right Orbitofrontal Cortex 7 29 -20 
 

2.38 ± 0.08 
 
2.35 ± 0.07 0.20 

 
Superior Temporal 51 17 0 

 
2.61 ± 0.58 

 
2.55 ± 0.47 0.70 

 
Inferior Frontal 44 24 2 

 
2.49 ± 0.25 

 
2.49 ± 0.35 0.94 

 
Middle Occipital 35 -76 16 

 
2.35 ± 0.25 

 
2.34 ± 0.22 0.86 

 
Anterior Cingulate 1 26 21 

 
0.47 ± 0.34 

 
0.60 ± 0.55 0.26 

 
Inferior Parietal 48 -24 25 

 
2.57 ± 0.44 

 
2.54 ± 0.42 0.78 

 
Middle Frontal 37 -29 26 

 
1.97 ± 0.63 

 
1.96 ± 0.46 0.97 

 
Cingulate 6 28 31 

 
3.06 ± 0.46 

 
3.04 ± 0.47 0.84 

 
Supramarginal 51 -48 31 

 
2.48 ± 0.31 

 
2.49 ± 0.34 0.92 

    
Data are means±SD. 
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Table 5. Cognitive Function 

  
 

Caucasian Hispanic 
 Domain Mean ± SD Mean ± SD p-value 

Global cognitive functioning    
     Mini Mental State Examination  28.4 ± 1.4 27.8 ± 1.9 0.13 
     WASI Matrix reasoning 27.3 ± 3.4 25.1 ± 3.6 0.83 
     WASI FSIQ Total 117.6 ± 12.2 109.2 ± 11.3 0.01 
Language    
     WASI Vocabulary 68.0 ± 7.7 62.9 ± 9.5 0.02 
     Speed and Capacity of Learning Processing    
          Comprehension 57.5 ± 11.9 51.3 ± 14.0 0.07 
          Errors 0.9 ± 1.7 2.0 ± 2.2 0.04 
          Spot the Word 50.9 ± 4.6 48.0 ± 5.0 0.03 
Visual–spatial    
     Complex Figure Test (CFT-Copy) 29.7 ± 4.4 29.5 ± 4.3 0.86 
Memory    
     California Verbal Learning Test (CVLT)    
           Immediate recall 11.4 ± 3.2 10.1 ± 2.7 0.09 
           Delayed recall 11.7 ± 3.3 10.8 ± 3.0 0.27 
           Recognition discrimination 3.5 ± 2.4 3.0 ± 0.8 0.25 
     Complex Figure Test (CFT)    
           Immediate recall 17.1 ± 5.5 14.8 ± 6.0 0.14 
           Delayed recall 16.8 ± 5.1 13.8 ± 5.9 0.03 
           Recognition discrimination 19.6 ± 4.3 19.8 ± 2.6 0.82 
Attention-executive    
     Trail Making Test A, Time (Trails AT)  35 ± 12.3 32.1 ± 10.5 0.32 
     Trail Making Test B, Time (Trails BT) 77.9 ± 31.8 72.9 ± 29.1 0.53 

Controlled Oral Word Association Test     
(COWAT)  35.4 ± 12.0 36.7 ± 8.1 0.63 

     WAIS-III Digit Span Subtest (Digit Span) 17.9 ± 3.9 15.5 ± 3.8 0.02 
  



 

 
 

29 

 

APPENDIX B - FIGURES 

Figure Legends 

Figure 1:  Proposed model depicting the differences of dementia pathogenesis in 

Caucasians and Hispanics. 

Figure 2: Augmentation index significantly predicts left inferior frontal cortex thickness 

in Hispanics but not in Caucasians. Open circles represent individual cases of the 

Hispanic cohort while the dashed line represents the group’s line of best fit. Closed 

circles represent individual cases of the Caucasian cohort while the full line represents 

the group’s line of best fit. 

Figure 3:  β-stiffness significantly predicts left inferior frontal cortex thickness in 

Caucasians but not in Hispanics. Open circles represent individual cases of the Hispanic 

cohort while the dashed line represents the group’s line of best fit. Closed circles 

represent individual cases of the Caucasian cohort while the full line represents the 

group’s line of best fit.  
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Figure 1. 
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Figure 2.
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Figure 3. 
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APPENDIX – C 

APPROVED BY IRB ON: 08/25/2008 EXPIRES ON: 08/27/2009 

 IRB#2007-09-0142 Informed Consent to Participate in Research The University of 
Texas at Austin  

You have been invited to participate in a research study. This form provides you with 
information about the study. Please read the information below and ask questions about 
anything you don’t understand before deciding whether or not to take part. Your 
participation is entirely voluntary and you can refuse to participate without penalty or 
loss of benefits to which you are otherwise entitled. If you are a student, your decision to 
participate or not to participate as a test subject will NOT affect your grade in any course.  
 
Title of Research Study: Family history of hypertension and brain function  
 
Principal Investigator(s): Andreana P. Haley, Ph.D., Department of Psychology, (512) 
232-0863  
Co-Investigator(s): Hirofumi Tanaka, Ph.D., Department of Kinesiology, (512) 232-
4801  
Graham McDougall, Ph.D., School of Nursing, (512) 471-7936  
 
Funding source: N/A  
 
What is the purpose of this study? The purpose of this study is to understand how 
family history of hypertension affects brain function. If you decide to participate, you 
will be one of about 120 people in this study.  
 
What will be done if you take part in this research study? If you agree to participate 
in this study, you will be asked to complete a screening visit and, if eligible, two research 
visits scheduled within two weeks of each other. Each visit will last approximately two-
to-three hours. During one of the study visits, images of your brain will be taken using a 
General Electric 3.0 Tesla Magnetic Resonance Imaging (MRI) scanner at the UT 
Imaging Research Center. The MRI scanner is a machine that enables us to acquire 
images of the brain non-invasively by manipulating magnetic fields. During that visit you 
will also be asked to complete some paper-and-pencil tests of attention, memory, and 
visuospatial functioning. During a separate visit, you will be asked to go to the 
Cardiovascular Aging Laboratory at the Department of Kinesiology at UT (Bellmont 
Hall) and complete some non-invasive assessments of cardiovascular functioning similar 
to the ones you may undergo during a visit to a Cardiologist (e.g., blood pressure 
assessment, echocardiogram, ultrasound assessment of the carotid artery).  
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Screening Visit (~2 hours)  
During this visit:  
 Your blood pressure will be measured non-invasively by the arm cuff technique 
(as in your Doctor's office).  
Blood samples will be taken to get information on your cholesterol, blood sugar, stress 
hormones, proteins related to inflammation and arterial stiffening, and gene information. 
Genetic research is about finding the specific location of genes on chromosomes, learning  

 
how genes work, and developing treatments and cures for diseases that are genetically 
based. The information will only include those genes that are closely related to the 
purpose of the study (genetic risk for developing hypertension) but not linked to the risk  
for other disease states. Your blood sample will be stored up to 10 years to give the 
researchers enough time to analyze the sample and then disposed of it properly according 
to the university guidelines. A small blood sample (4 teaspoons) will be drawn from you 
after a 12-hour fast. We will also test for diabetes by having you drink a sugary drink and 
measure your blood sugar after two hours with another blood draw (4 teaspoons).  
 
Cardiovascular Assessment Visit (~2 hours)  
During this visit:  
 Your blood pressure will be measured non-invasively by the arm cuff technique 
(as in your Doctor's office).  
 Your heart structure and function will be measured non-invasively by putting a 
gel on the chest and placing a device called a transducer of an ultrasound machine on the 
chest.  
 Hardening of your artery will be measured non-invasively by; i) placing a device 
called a transducer of an ultrasound machine on the skin of the carotid (neck), femoral 
(hip joint), and wrist arteries; and ii) placing two pencil-like devices over various arteries 
(carotid, femoral, brachial, wrist, and ankle arteries). An ultrasound machine is the same 
machine that is used to evaluate the development of a baby during pregnancy. Your blood 
pressure will also be measured non-invasively by placing a pencil-like device over the 
carotid (neck) artery.  
 Changes in blood pressure regulating system will be induced by a) squeezing a 
gripping device with a hand as hard as you can (handgrip exercise); b) placing a foot or 
hand in ice cold water for 2 minutes; and c) blowing air into a small tube for 15-20 
seconds. Heart rate, blood pressure, and carotid (neck) artery will be measured non-
invasively during these procedures.  
 
MRI/Cognitive Testing Visit (~2 hours)  
During this visit, you may be asked to do some or all of the following:  

Lie on a table that will be slid into the MRI scanner (so that your head and upper 
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 body are inside the magnet tube);  
 Wear earplugs and/or headphones to reduce the noise made by the MRI scanner 
(the magnets can make very loud noises);  
 Have foam pads placed around your head to help you hold your head still during 
the MRI scan, so that the scans will be clear;  
 Be fitted with a bite bar made of impression compound that will help to stabilize 
your head.  

Have your hands resting on plastic response pads, similar to wearing gloves.  
 Lie still throughout your time in the MRI scanner;  
 View various visual stimuli and/or listen to sounds. You may be also asked to 
make judgments, recall certain words or pictures, or make finger, hand, or eye 
movements.  
 Complete a brief battery of paper-and-pencil measures of cognitive function such 
as tests of memory, attention, and visuospatial skills. 
 
In each experimental session, anatomical images (images that show us the structures in 
your brain) will be obtained during the study. In addition to the anatomical images, 
functional images may be obtained for about 20-30 minutes. Functional images are scans 
that show us how the brain works by illustrating what the brain is actively doing while 
you view various stimuli and/or perform particular tasks. The researcher will tell you 
before you enter the scanner exactly how long each procedure will take, and during the 
exam the researcher will tell you when each procedure will occur over the intercom. We 
also plan to acquire images containing information about blood perfusion in your brain as 
well as information about chemical composition. You will not be required to do any tasks 
during those scans, but to relax and lie quietly in the scanner.  
The Project Duration is: Your participation will be 120-180 minutes for one-to-three 
sessions. The researchers will be conducting the study for approximately 36 months. 
However, it will take you no more than one month to complete all of your visits.  
Approximate Number of Participants: 120  
What are the possible discomforts and risks?  
Screening Visit:  
 A slight risk of fainting, bruising, or infection related to the blood draw.  
 
Cardiovascular Visit: The investigators have made every effort to keep the risks and 
discomforts to a minimum. You will be carefully screened at the beginning of this study 
to see if you could participate safely. But, the potential risks associated with this study 
include:  
 Some discomfort associated with placing a hand or a foot in cold water.  
 A slight risk of dizziness and/or fainting associated with rapid changes in blood 
pressure.  
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 A possible risk that genetic testing might reveal information regarding a carrier or 
disease state that requires difficult choices regarding your current or future health, 
insurance coverage, career, marriage, or reproductive options. As previously stated, we 
intend to only pursue genes related to the development of hypertension. Due to the 
preliminary nature of this inquiry, all information obtained will be used for research 
purposes only and will not be provided to anyone including individual participants.  
A possibility of accidentally exposing your health/medical information. All precautions 
will be taken to separate identifying information from data collected during the study.  
 
Identifying information will be kept securely locked in a cabinet at the Department of 
Psychology.  
 
MRI visit: There are no known significant risks or side effects associated with MRI 
scans. The magnetic fields, at the strengths used, are not harmful and the MRI scanning 
procedures used are within the Food and Drug Administration [FDA] guidelines for 
radiofrequency electromagnetic field exposure created by the MRI.  
There is a risk if metal objects are near the MRI because they can be drawn into the MRI 
scanner and that could hurt someone in or near the machine. Metal objects might be in a 
body if a person has electrically, magnetically, or mechanically activated implants (such 
as cardiac pacemakers), or clips on blood vessels in their brain, or other metallic objects 
in their body such as shrapnel, bullets, buckshot, or metal fragments. To protect against 
this risk, you will be carefully screened for previous exposure to metallic fragments or to 
implanted devices. You will also be asked to place all metallic and magnetic objects in 
your possession (e.g. keys, jewelry, credit cards) in a locker outside the MRI room. The 
scanner room is also screened for such items before you are allowed to enter.  
Although there are no known risks of an MRI scan to the unborn fetus, we will not let 
you take part in the study if you are or might be pregnant.  
Some people have reported mild discomfort during MRI scans, such as:  
 Claustrophobia (fear of enclosed spaces). You will be asked to lie on a table that 
slides into a horizontal cylinder only slightly wider than your body in all directions and 
your head will be secured to help you stay still. If you are likely to be uncomfortable or 
afraid in enclosed spaces, you should let the researcher in charge of the scan know.  
 Reaction to noise levels. The MRI scanner makes loud knocking or beeping 
sounds during scans; earplugs and/or headphones will be provided to help reduce this 
noise.  
 Peripheral nerve stimulation. Because magnetic gradients are used during scans, 
the possibility exists for peripheral nerve stimulation. If this happens, you may feel 
twitching or tingling sensations, typically along your arms, torso, or back.  

Dizziness and nausea, which may occur if you suddenly move your head while 
APPROVED BY IRB ON: 08/25/2008 EXPIRES ON: 08/27/2009 
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you are in the MRI and it is active (not in a rest period).  
 You may feel some warmth from the radio frequency coils, the cables to the coils, 
or the response and physiological monitoring devices. The MRI scanner is set so that this 
heating will be no more than one degree of body temperature.  
 
You may notify the research staff at any time if you feel uncomfortable, no matter what 
the reason. You will be in contact with the research staff at all times you are in the MRI 
scanner through an intercom system mounted in the MRI scanner. You will also be told 
how let the operator know if you wish to immediately stop scanning and be removed 
from the magnet. The MRI scan can be stopped at any time at your request. If you think 
that you have experienced a research-related injury, report this to the director of the  
 
Imaging Research Center, Dr. Michael Domjan, domjan@psy.utexas.edu, (512) 471-
7702.  
 
What are the possible benefits to you or to others?  
You will receive the following: 1) results of tests and physiological measures (taken by 
the investigators) with potential health relevance such as blood pressure readings, 
measurement of blood cholesterol levels and screening for diabetes. You may also 
experience the satisfaction of contributing to scientific knowledge that could result in the 
documentation of a benefit to reduce the risk of vascular cognitive impairment in men 
and women. Or you may receive no direct benefit at all.  
 
If you choose to take part in this study, will it cost you anything? There are no costs 
to you for participating as a test subject.  
 
Will you receive compensation for your participation in this study? You will receive 
25 dollars to complete the screening visit, 35 dollars for the first study visit, and 65 
dollars for the second study visit. 
 
What if you are injured because of the study? Many forms of research involve some 
risk of injury. If any complications arose, the researchers would assist you by referring 
you to appropriate medical practitioners, but the University has no program or plan to 
provide treatment for research related injury or payment in the event of a medical 
problem. If injuries occur as a result of study activity, eligible University students may be 
treated at the usual level of care with the usual cost for services at the Student Health 
Center, but the University has no policy to provide payment in the event of a medical 
problem. In the unlikely event of a research related injury, please contact the principal 
investigator. If you do not want to take part in this study, what other options are 
available to you? Your participation in this study is entirely voluntary. You may refuse  
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to participate or withdraw at any time without penalty or loss of benefits to which you are 
otherwise entitled. Nonparticipation or withdrawal will not affect your grades or 
academic standing.  
 
How can you withdraw from this research study and whom should you call if you 
have questions?  
 
If you wish to stop your participation in this research study for any reason, you 
should contact the principal investigator: Andreana Haley at (512) 232-0863. You 
should also call the principal investigator for any questions, concerns, or complaints 
about the research. You are free to withdraw your consent and stop participation in 
this research study at any time without penalty or loss of benefits for which you may 
be entitled. Throughout the study, the researchers will notify you of new 
information that may become available and that might affect your decision to 
remain in the study.  
 
In addition, if you have questions about your rights as a research participant, or if 
you have complaints, concerns, or questions about the research, please contact Jody 
Jensen, Ph.D., Chair, The University of Texas at Austin Institutional Review Board 
for the Protection of Human Subjects, or the Office of Research Compliance and 
Support at (512) 232-2685.  
How will your privacy and the confidentiality of your research records be 
protected?  
 
Images generated in this study will be stored on the Department of Psychology server, 
with the primary reference field being the study or scan number, which is automatically 
generated by the MRI system. Personal information linking a participant with a scan will 
be maintained in a manually generated log, which will be stored in a securely locked 
cabinet in the Department of Psychology. This is to insure that there is an “air gap” 
between the images/data generated for research purposes and personal identifying 
information. The Department of Psychology sever is backed up on a daily basis. Access 
to the scans/data on the server is password protected and only available to relevant 
researchers.  
 
All scans and paperwork (cognitive and cardiovascular assessment data) will be protected 
to the extent provided by law.  
 
Possible Discovery of Findings Related to Medical Imaging  
If you volunteer for this research study, the MRI scans that we will perform are NOT 
necessarily equivalent to MRI scans used to diagnose medical problems. Many  
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potentially serious problems may be undetectable on these scans. A negative MRI should 
not be used to avoid a visit to your primary physician. If you are having physical 
symptoms that you are concerned about, you should see your primary physician, who will 
determine the examinations required to arrive at a proper medical diagnosis.  
 
If in the unlikely event it becomes necessary for the Institutional Review Board to 
review your research records, then the University of Texas at Austin will protect the 
confidentiality of those records to the extent permitted by law. Your research 
records will not be released without your consent unless required by law or a court 
order. The data resulting from your participation may be made available to other 
researchers in the future for research purposes not detailed within this consent 
form. In these cases, the data will contain no identifying information that could 
associate you with it, or with your participation in any study.  
 
Will the researchers benefit from your participation in this study? N/A  
 
Signatures:  
 
As a representative of this study, I have explained the purpose, the procedures, the 
benefits, and the risks that are involved in this research study:  
 
_____________________________________ _                                                          __  
Signature and printed name of person obtaining consent    Date  
 
You have been informed about this study’s purpose, procedures, possible benefits 
and risks, and you have received a copy of this form. You have been given the 
opportunity to ask questions before you sign, and you have been told that you can 
ask other questions at any time. You voluntarily agree to participate in this study. 
By signing this form, you are not waiving any of your legal rights.  
 
___________________________________________________________________ 
Printed Name of Subject Date  
 
___________________________________________________________________ 
Signature of Subject Date  
 
___________________________________________________________________  
Signature of Principal Investigator Date 
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Medical Release 
 
Name and address of Personal Physician  
________________________________________________________________________
_  
I hereby agree to have the Principal Investigator or the Medical Director of the 
Imaging Research Center report to my Personal Physician findings of potential 
medical significance that might be obtained as a result of my participation in this 
study.  
______________________________________________________________________ 
Signature of Subject Date 
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