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Abstract 

 

Comparison of Direct-S Modes Produced by  

Different Source Types 

 

Nurtac Erturk, MSGeoSci 

The University of Texas at Austin, 2014 

 

Supervisor:  Bob A. Hardage 

 

Compressional and shear body waves generated by a seismic source can be 

analyzed using vertical seismic profiling (VSP) data-acquisition procedures. If a goal of 

exploration geophysics is to study the physics and exploration applications of shear 

waves, it is important to know how much S-wave energy a source puts into the earth. To 

maximize S-wave created by a source, considerable effort has been expended to create 

surface sources that apply horizontally directed impulses to the earth (horizontal vibrators 

and horizontal impacts). In my project, radial shear (SR) and transverse shear (ST) waves 

generated by different types of sources and recorded by multicomponent receivers in a 

VSP well are examined and compared. The research question is ‘can a vertical-impact 

source create shear wave energy equivalent to the S-wave energy produced by standard 

horizontal-force shear-wave sources?’  

To quantify the energy of shear-wave modes produced by different kinds of 

seismic sources, a VSP field test program was conducted at the Devine Test Site owned 

by The University of Texas at Austin.  In the VSP data acquisition phase, the orientation 
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of horizontal geophones is unknown because a borehole geophone rotates as it is lowered 

into a well, causing the horizontal geophones at each receiver station to be oriented in 

different azimuths. To study body waves, it is essential that all geophones in a vertical 

VSP array be oriented in a consistent azimuth. I mathematically rotated multi-component 

VSP sensors systems to change them from the inconsistent orientation they had at the 

time of data recording to a user-defined consistent-azimuth coordinate system. This 

rotation allowed ST and SR wave modes to be identified. After geophone rotation, direct-

S wavelet amplitudes were analyzed in 90-ms windows starting at the first-break times of 

each arriving mode.  

Analysis of the rotated data showed that SR energy created by a vertical-impact 

source, a shot-hole explosive, and an inclined-impact source differ only slightly, and that 

there is essentially no difference in ST energy among these sources. Also, the signal 

frequency of SR and ST wave modes produced by horizontal-force shear wave sources 

are essentially the same as the frequency of SR and ST wave modes generated by a 

vertical-impact source. These test data show that vertical and horizontal vibrator sources 

produce shear wave modes having amplitudes 1000 times stronger than the other energy 

sources we tested. Considering the cost of using inclined-impact sources which is 

relatively expensive compared to using a vertical-impact source, and the difficulty of 

applying inclined-impacts in some land conditions, it is possible to obtain direct-S data of 

the same quality by using only a vertical-impact source or a shot-hole explosive. The 

arguments given above demonstrate that it is not necessary to use inclined-impact sources 

or horizontal vibrators to produce shear-wave data. S-wave data of the same quality 

produced by a horizontal-force source are provided by simple vertical-impact sources and 

shot-hole explosives. 
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Chapter 1: Introduction and Background 

1.1. VECTOR AND SCALAR SOURCES 

Much seismic data, particularly marine data, have been acquired without taking 

into account the direction of particle displacement associated with a seismic wave. In 

order to interpret scalar-based data, it is not essential to know the direction of particle 

displacement. However, in multicomponent seismic technology, we must know the 

direction of particle displacement for each wave mode in order to process and interpret 

multicomponent data. 

Interpretation of recorded signal consists mainly in the observation of travel times 

by taking into account the kinematical aspect of data. However, travel times do not give 

unique evidence of fracture orientation. In the 1980’s the oil, gas, and coal mining 

industry became interested in extracting more information about the lithology of the 

subsurface in reservoir studies for hydrocarbons and in basin analysis. As a result of these 

studies, it was found that the polarization and splitting of shear waves provides important 

information about the structure of hydrocarbon reservoirs. 

Generally, shear waves are more sensitive than compressional waves to the 

internal fabric of a formation, which is described by stiffness parameters and geometrical 

distributions of micro-cracks and pores. On the other hand, the velocities of shear waves 

are not, in general, as sensitive to pore-fill as are P-waves so the combination of P-waves 

and S-waves is a valuable tool for discriminating between true and false “hot spots” in 

reservoirs filled with gas. Also, in subsurface conditions in which the pore pressure of a 

geologic formation exceeds, or is less than, the effective formation pressure, 

compressional and shear waves behave with different sensitivities. For these reasons, the 

combined use of compressional and shear waves can be a tool for discriminating between 
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gas-bearing formations and overpressured zones. Thus, the use of shear waves together 

with compressional waves can be a great auxiliary tool for reservoir geophysicists and 

also for drilling engineers. 

In the 1980’s shear waves were a developed exploration tool but they were not 

used frequently. This limitation was because shear wave data were more expensive to 

acquire and some S-wave sources caused more surface damage than corresponding 

compressional wave sources. Fertig and Krajewski (1989) showed that it is possible to 

use P-wave sources as primary or secondary sources for generating shear waves when the 

acquisition was two-component recording. The use of vertical vibrators for the 

production of converted S-waves in the subsurface and their possible generation of S-

waves in the immediate surroundings of a source station are explained in their study. The 

conversion of P-waves to S-waves requires no special field technique, and even an 

explosion not far below the earth surface can produce S-waves by mode conversion in the 

neighborhood of a source. However, these S-waves are SV-waves, whereas pure S-waves 

are generated by S-wave vibrators.  

Conducting a multicomponent seismic survey for the purpose of creating all 

possible wave modes requires the use of sources that create displacement vectors oriented 

in three orthogonal directions. Such sources are called vector sources (Figure 1.1). Both 

the direction and magnitude of particle displacement must be measured for a vector 

seismic source. In contrast, only the magnitude of particle displacement is measured for a 

scalar source. 

Full vector illumination of a geologic target requires that three vector wavefields 

be created. One wavefield has a displacement vector directed normal to its wavefront 

(indicated as wave mode c in Figure 1.1). The other two wavefields have orthogonal 

displacement vectors that are tangent to their wavefronts. Longitudinal waves (P-waves) 
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are generated by the displacement vector which is perpendicular to its wavefronts, and 

shear wave (S-waves) are produced by displacement vectors that are tangent to their 

wavefront (Hardage et al., 2011). 

1.2. WAVE MODES 

Seismic waves generated by vector sources propagate independently as a 

compressional mode, P, and as two shear modes, SV and SH, in a simple homogeneous 

earth. Particle motion related to conventional P-wave propagation is oriented in the 

direction of propagation in an isotropic medium. In contrast, particle motion for a shear 

wave is oriented normal to direction of propagation in the same medium. Particle motion 

of an S-wave is usually represented by segregating the particle motion into two 

perpendicular directions in the plane that is normal to the beam direction (Tatham and 

McCormack, 1991). These directions are labelled ‘a’ and ‘b’ in Figure 1.1. 
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Figure 1.1: Differences between vector and scalar seismic sources (From Hardage et al., 

2011). 

Figure 1.2 shows how full-elastic multicomponent seismic wavefield components 

propagate in a homogenous isotropic earth. For P-wave propagation, the particle 

displacement vector is oriented in the same direction as the ray path. A source and a 

receiver identify a vertical plane that passes through both source and receiver positions. 

In Figure 1.2, this vertical plane passes through coordinate axis Z labeled on the figure. In 

a homogenous medium, a compressional particle displacement vector lies in this vertical 

plane. 

For S-wave propagation, the polarization of a wave is dictated by the orientation 

of the source displacement vector. In Figure 1.2, an SH wave source creates a horizontal 

impulse in the X plane that is normal to the line direction between source and receiver. 

Similarly, an S displacement in the vertical Z plane creates SV shear data. 
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Figure 1.2: A full-elastic, multicomponent wavefield travelling in a homogeneous Earth 

consist of a compressional mode P and two shear modes, SV and SH. 

(Modified from Hardage et al., 2011). 

Each mode of an elastic wavefield propagates with a different velocity while 

travelling though the subsurface and each mode causes deformation in a different 

direction as it propagates.  Shear waves with vertical displacements (SV) and with 

horizontal displacement (SH) have propagation velocities that differ by only a few 

percent. However both shear velocities ( sV ) are considerably less than P-wave velocity (

pV ). The velocity ratio pV  / sV   may vary from a value of 50 or more for deep-water, 

unconsolidated, near-seafloor sediment to a value of almost 1.5 for dense, well-

consolidated rocks. 

Considering a vertical plane passing through a source station and an observation 

point is useful for understanding differences between SH and SV shear modes in a 

homogeneous media (Figure 1.3). While SV vector movement takes place in this vertical 
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plane, SH vector movement is perpendicular to the plane. Each source-receiver pair 

generates such a vertical plane, called a sagittal plane, which passes through the 

coordinates of the source station, the receiver station, and a reflection point. 

Physical properties of rocks are the same, regardless of the direction of the 

measurement, for an isotropic medium. However, for anisotropic material, rock 

properties change with the direction in which they are measured. Different elastic 

constants come into play when the earth is distorted normal to its bedding planes versus 

being moved parallel to those planes, or when an earth medium is forced to displace 

normal to fractures versus parallel to fractures. For a long time, seismic data used in oil 

and gas exploration have been limited to P-wave modes that have been used as scalar 

data. Even when P-wave data are examined as vector data, the particle displacement 

vector is sensitive to elastic constants in only one direction which does not give a full 

sensation of earth fabric. 

An advantage of using multicomponent technology is that each wave mode senses 

the elastic constants of the subsurface in three orthogonal directions (Figure 1.2). 

Therefore, unique earth information, like direction-dependent information about elastic 

constants, pore geometry, cementation, lateral alterations in rock and fluid types are 

detected by P, SH and SV wave modes as they travel from a source point to a receiver 

point. 
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Figure 1.3: Difference between SH and SV shear wave displacements for a 

homogeneous media.(Modified from Hardage et al., 2011). 

Some scientists prefer to use the terms radial shear (SR) and transverse shear (ST) 

or fast-S and slow-S when discussing shear wave propagation in stratified medium and 

restrict the terms SV and SH to S-wave propagation in homogeneous media, or to S-wave 

modes that travel only in symmetry axis planes. 

1.3. WAVE MODE VELOCITIES 

Behavior of S-wave modes was extended from a homogenous subsurface to 

stratified media by Levin (1979, 1980). Levin found that SH and SV modes travelling 

thorough a layered media exhibit velocity behavior as demonstrated on Figure 1.4. Figure 

1.4 shows a wave velocity surface for a transversely isotropic solid composed of 

alternating layers of sandstone and shale. These results show that horizontal and vertical 

P-wave velocities differ. This phenomenon explains why interval velocities computed in 

a VSP study differ from interval velocities acquired using stacking velocities and Dix 

formula in which velocities are closely related to the horizontal velocity (Tatham and 
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McCormack, 1991).  A key point seen from Figure 1.4 is at all take-off angles from the 

source except for true vertical and one angle where SH and SV wavefronts intersect, SV 

and SH modes propagate with different velocities. The SH mode has faster velocity at 

shallow take-off angles from a source point. 

 

Figure 1.4: P-wave, SV-wave, and SH wave velocity behavior for elastic wave 

propagation in horizontally stratified media. (from Levin 1979, 1980). 

1.4. STUDYING WAVE MODES WITH VSP TECHNIQUES 

Azimuth orientations of X, Y horizontal geophones in a vertical receiver well 

vary at each station because sensors are deployed on a cable which rotates as it spools off 

a cable holder. Consequently, when sensors attain different deployment depths, 

horizontal geophones have rotated by varying amounts from station to station. These 

differences in geophone orientation produce phase shifts and amplitude variations in VSP 

data. These effects make it impossible to study P and S wave mode properties in raw, 

unprocessed VSP data. In order to describe downgoing and upgoing P and S modes, 

receivers must be oriented mathematically to uniform azimuths and to appropriate 
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inclinations. This orientation and rotation processing will be explained in detail in 

Chapter 3. 

Transformation of borehole receivers from their in situ orientations to a data space 

where receivers are aligned to emphasize P, radial-shear (SR) and transverse shear (ST) 

events has been done for many years by the VSP industry (DiSiena, et. al., 1981; 

Hardage, 2000). On Figure 1.5, transformation of receivers from X, Y, Z coordinate 

space to P, SR, ST data space is illustrated graphically. In this approach, the first arrival 

of a P-wave is analyzed at each receiver station to identify azimuth rotation angles θ and 

inclination angles   that, when applied to the 3C sensors, will cause every sensor to be 

aligned with the downgoing P-wave displacement vector oriented along ray path RS. This 

mathematical rotation causes a second sensor to be oriented with radial shear 

displacement vector SR, and a third sensor to be oriented with transverse displacement 

vector ST (Figure 1.5). 

In order to quantify the energy of compressional-wave and shear-wave modes 

produced by different kinds of vertical-force seismic sources, a field test program was 

conducted at the Devine Test Site owned by The University of Texas at Austin. This test 

area is called the Devine Test Site because of its proximity to the community of Devine, 

Texas (Figure 1.6). The Devine Test Site was constructed by Standard Oil of Ohio 

(Sohio) in the 1980’s and was used to develop crosswell seismic and electromagnetic 

profiling technologies. After Sohio was acquired by British Petroleum (BP), the test site 

was transferred to The University of Texas at Austin. An aerial photo showing the 

distribution of test wells 4, 2, and 9 on the test site is shown in Figure 1.7. The location of 

the well in which a receiver array was deployed is labeled by solid circle 4 on Figure 1.7. 

All wells are 3000 ft (914-m) deep. 
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Figure 1.5:  Reorientation of X, Y, Z receivers to P, SR, ST receivers (from Hardage et. 

al., 2011). 

 

Figure 1.6: Location of Devine Test Site in Medina County, Texas. 
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The stratigraphy penetrated by the test wells is shown on well log curves 

displayed in Figure 1.8. These logs were acquired in well 4 and describe compressional 

velocity, shear velocity, and gamma ray measurements across in the first 3000 ft of the 

seismic propagation media underneath the survey area. These log readings start 

immediately below the base of surface casing at a depth of 532 ft, and continue to TD 

(true depth) at a depth of 3000 ft. 

 

 

Figure 1.7:  Aerial photo of test site. Receivers were deployed in test well 4. 
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Figure 1.8: Compressional and shear wave velocity logs and gamma-ray log obtained in 

well 4 on the Devine Test Site. 

1.5. SOURCE-RECEIVER TEST GEOMETRY 

To record VSP data in well 4, a 24-station MaxiWave system supplied by 

Mitcham Industries was deployed. Receiver stations spanned a depth interval extending 

from 500 to 1632 ft. Log attributes inside the shaded area on Figure 1.8 describe the 

propagation medium surrounding the vertical receiver array. 

The philosophy of this wave test was inspired by a study published by Robertson 

and Corrigan (1983). In this study, a single 3C geophone was deployed in the subsurface 

to analyze SH and SV radiation patterns produced by a horizontal vibrator. In our project, 
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this technique was expanded by deploying a vertical array of twenty-four 3C geophones, 

applying three kinds of sources (vertical-force, inclined force, and horizontal force), and 

analyzing both S-wave and P-wave radiation patterns generated by these sources. 

Throughout this project the radial (inline) direction is defined as the azimuth of 

the straight line profile which continued through nine surface-based source points and the 

receiver well (Figures 1.7 and 1.9). The transverse (cross-line) direction was normal to 

the vertical plane of this profile. A horizontal vibrator was located at various azimuth 

orientations at inline source station 3 and 5 to generate data which described azimuth-

dependent attributes of S-wave radiation patterns produced by a horizontal-vibrator 

source. Figure 1.10 displays the azimuth directions that each horizontal force was applied 

to the ground at these two offset stations (#3 and #5). As shown by this diagram, a 

horizontal vibrator source was positioned in o10  azimuth increments by altering from a 

cross-line baseplate orientation ( o0  azimuth of vehicle headlights on Figure 1.10) to an 

inline baseplate orientation ( o90  azimuth of vehicle headlights). 
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Figure 1.9: Source-receiver geometry. A 24-station vertical array of 3C geophones 

spaced at intervals of 15 m spanned the depth interval from 500 to 1632 ft in 

well 4. Source stations were offset from the well at intervals of 250 ft. 

As a second type of source, inclined-impact sources were applied to the ground at 

each shot location. In this source test procedure, 20°, 30°, and 45° inclined source vectors 

were applied from opposite directions for an inline seismic line, which is parallel to the 

direction in which the data were acquired, and for a crossline seismic line, which is 

perpendicular to the acquisition direction. A diagram of this acquisition procedure is 

illustrated in Figure 1.11. 
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Figure 1.10: a) Map view of azimuth directions in which horizontal forces were applied 

at source stations 3 and 5. This figure describes the azimuth position 

assumed by a horizontal vibrator (bottom) and its base plate. b) Illustration 

of dipole source orientation. 

In this project, the line which extends from the receiver well through nine shot 

locations is called an inline profile, and the line which is normal to the direction of data 

acquisition is described as a crossline profile. With these descriptions, I also assigned one 

of inline shot directions as ‘positive’, when the direction of an impulse was oriented 

towards the receiver well. The opposite direction was defined as ‘negative’. Throughout 

the source test, thirteen types of seismic source orientations were recorded by the 
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multicomponent receiver array deployed in well-4. For both seismic lines (inline and 

crossline ), positive 20°, 30°, 45° and negative 20°, 30°, and 45° inclined force vectors  

and a vertical-impact impulse were applied to the ground at each shot location. 

 

 

Figure 1.11: Devine test area inclined-impact procedure followed by acquisition crew 

during test. (a) Side view of shot directions for a single inclination degree. 

(b) Front view of shot directions for single inclination degree. (c) Top view 

of acquisition procedure. (d) A perspective view of acquisition procedure. 

1.6. VERTICAL APERTURE OF TEST GEOMETRY 

Recording downgoing compressional and shear wave modes that cover a wide 

aperture of vertical takeoff angles from surface-source stations was an important 

requirement of the test procedure. The maximum quantity of energy included in each 

wave mode that travels away from a source station can be captured for analysis if data are 

acquired over a large aperture. The shallowest takeoff angles involved data produced at 



 17 

source station 9 (offset 1920 ft [585 m]) and recorded at downhole receiver station 24 

(depth of 500 ft [152 m]). The steepest takeoff angles involve source station 2 (offset 250 

ft [76 m]) and downhole receiver station 1 (depth of 1632 ft [497 m]).  

By supposing that raypaths from source to downhole receiver are straight lines, a 

basic approximation of aperture range generated by the geometry of the source-receiver 

pairs is shown on Figure 1.12. 

 

 

Figure 1.12: Take-off angle aperture when straight raypaths are assumed between surface 

sources and downhole receivers. 

1.7. VERTICAL FORCE SOURCES AND DIRECT S-MODES 

Vertical impacts on the earth surface or an explosion at some depth in a borehole 

are the most common sources of seismic energy onshore. It is commonly believed that a 

vertical-force source generates mainly compressional waves. However, former studies 
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show that a vertical-force source produce shear waves by conversion at depth and also in 

the immediate surrounding area of the source.  

A large amount of SV shear energy can be generated by using a vertical-force 

source. The radiation pattern for a single force vector normal to the earth surface can be 

described best in spherical coordinates (r, , ). An example of such a force vector and its 

coordinate system is shown on Figure 1.13. In this diagram, the radial component is 

assigned by subscript r, the azimuthal dependence by  , and the tangential component is 

portrayed by  . rU  will be described as a radial displacement which is only 

compressional. The tangential displacement, travelling at shear wave speed, will be 

portrayed as U . 

 

 

Figure 1.13: Vertical single force and coordinate system (From Fertig and Krajewski, 

1989). 
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The radiation patterns and comparative strengths of P and SV energy which travel 

away from the spot where this vertical-force source is stationed is shown on Figure 1.15 

for a homogeneous earth.  These P and SV radiation patterns are duplicates of analyses 

published by Miller and Pursey (1954) and White (1983).  The vertical-force source 

causes both P and SV wave modes to be generated at the spot where the source vector 

contacts the earth surface. The radial distance from the origin to the outer border of the P 

and SV radiation patterns defines comparative strengths of P and SV modes that 

propagate at any take-off angle from the source station. 

Various researchers who are interested in direct-S illumination of geologic targets 

by using vertical sources have used this model as a starting point. Wright and Carpenter 

(1962) demonstrated the radiation of direct-S modes by using shot-hole explosives in 

order to simulate tests of buried nuclear devices. They used plaster casts of shot-hole 

cavities to arrive at the conclusion that explosive detonations cause asymmetric 

displacement. They state a small component of zero mode shear wave (when rotation is 

independent of azimuth) in the immediate surroundings of a source station can become 

large at great distance. Edelman (1981) investigated S displacement vectors by tracking 

raypaths inclined at arbitrary takeoff angles. By using a method which places two 

vibrators side by side and has them operate with opposite polarities, he showed that a 

strong horizontal component (ST) can be generated in addition to a radial component 

(SR). Fertig (1984) explained that an explosive point-source at some depth below a free 

surface generates direct-S modes by the conversion of P to SV at the interface between 

Earth and air above a shot. He also stated these waves can be identified as a “spin-off ” 

using standard recording equipment and a second receiver cable with inline horizontal 

geophones without the need of extra sources. By using the radiation diagram on Figure 

1.14, Fertig and Krajewski (1989) clarified that a shot hole explosive and an air gun in a 
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mud-pit are also capable of generating direct-S modes, as a vertical vibrator does. Lynn 

and McCardle (1990) declared an air gun array in a rectangular water-pit is a VSP source 

that produces significant S-wave energy as well as P-wave energy. More recently, Zhou 

et al. (2005) demonstrated that SH and qSV modes can be recorded by using a vertical 

vibroseis source in a medium of vertical transverse isotropy (VTI). In 2007, Yang et al.  

(2007) justified the idea that explosive and controlled seismic sources (i.e. vibrators) are 

not only pure P-wave sources but also generate pure S-wave by presenting excellent data 

examples of direct-S modes produced by both vertical vibrators and shot-hole explosives. 

 

 

Figure 1.14: P and SV radiation patterns produced when a vertical force is applied to the 

surface of a homogeneous earth. Calculations are displayed for two values 

of the Poisson's ratio of the earth layer (From Hardage et al., 2011). 
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Chapter 2: Sources 

Because source characteristics often limit resolution and signal-to-noise quality, a 

careful selection of energy source is one of the critical steps in seismic data acquisition. 

Penetration to the required depth, bandwidth for required resolution, signal-to-noise ratio, 

environment, availability, and cost are the main criteria to be considered when selecting a 

seismic source. 

A single explosive charge was the most often used seismic source in exploration 

geophysics for several decades. If the goal is to study the physics and exploration 

application of only P-waves, a single charge, which is mostly considered impulsive point 

source like dynamite, is sufficient.  However, as years of experimentation have shown, 

shear waves play a key role in hydrocarbon explorations because they contain much more 

information than compressional waves do. Understanding the importance of shear waves 

has caused multicomponent seismic technology to be developed and has led to the 

necessity of creating new seismic sources that produce shear waves. 

Processing and interpreting multicomponent seismic data can be challenging tasks 

if vector motions associated with P and S seismic displacements are not taken into 

account.  For instance, calculating the azimuth orientation of a source is not essential 

when acquiring land data with a vertical-displacement source (Hardage et al., 2011). 

However, when shear wave data are generated by a horizontal-force source, the azimuth 

orientation of the source baseplate and the direction of the first motion of the baseplate 

must be known at each shot location to avoid reversals of data polarity between source 

stations. 

Understanding the vector displacement related to each elastic wave mode is 

essential when implementing a field procedure to acquire multicomponent seismic data. It 
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will be possible to retrieve valid rock and fluid information from the data only if source 

and receivers have correct and consistent vector properties.  

2.1. SOURCE CATEGORIZATION  

Sources that create the P and S wavefield can be classified as monopoles, dipoles, 

or quadrupoles (Hardage et al., 2011). Energy generated by a monopole source 

propagates equally in all azimuth directions. Although a monopole source is considered 

as only a P-wave source, an SV shear wave mode is also generated and radiates 

uniformly in all azimuth directions. Also, P-SV converted wave modes produced in the 

subsurface at P-to-SV conversion points when a vertical-displacement source is used 

radiates equally in all azimuths. These S-wave propagations imply that an equal radiation 

in all azimuth direction is a fundamental characteristic of a monopole seismic source. 

 

 

Figure 2.1: Plan views of earth-displacement vectors generated by monopole, dipole, 

and quadruple sources (from Hardage et al., 2011). Directions of vector 

displacements are indicated by arrows. 

A standard shear wave source, which produces an earth-displacement oriented in 

a specific direction, is classified as a dipole source. When a dipole seismic source is 
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applied to the earth, the oriented displacement vector produced at the shot location is 

parallel to the earth surface. The energy radiated from a dipole seismic source is not the 

same in all azimuth directions and does not illuminate targets uniformly as does a 

vertical-force source. 

As can be seen from Figure 2.1, two perpendicular pairs of force vectors oriented 

in specific direction are generated by a quadrupole seismic source. Each vector-force 

pair, labelled A and B in Figure 2.1, produces shear waves that have opposite polarity. 

Because this kind of source is not common in exploration geophysics, only monopole 

(vertical-impact, shot-hole explosive and vertical vibrator) and dipole seismic sources ( 

inclined-impact, and horizontal vibrators) were used and compared as part of Devine Test 

Study to analyze shear wave modes produced by each source. 

2.1.1. Shot-hole Explosives 

Dynamite was the only available source until the weight-dropping technique was 

introduced in 1950’s. Because dynamite produces more energy and a broader bandwidth 

than other sources, it became the traditional seismic source that was used in hydrocarbon 

exploration for many years. Also, because buried impulsive sources often provide an 

excellent signal-to-noise ratio and reflection resolution for P-wave surveys, they were 

consistently used as seismic sources in vertical seismic profiling studies. 

Although explosives in shot holes have several advantages over other seismic 

sources, including easy portability to remote areas, broader bandwidth, high energy 

production, and ease of weathering correction, some serious drawbacks caused alternative 

sources to be developed. First, output energy and source signature can vary from one 

explosive shot location to the next station, which requires amplitude and phase 

corrections during processing. Also, because handling safety can be problem in some 
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field condition, the fate of exploration is often subject to permissions given by 

governments. Also, explosive land sources cost more than other sources because of the 

need for drilled shot holes, which is difficult and expensive in many areas. In addition to 

economic considerations, it is difficult to shoot several dynamite shots and maintain 

consistent shot wavelets in vertical seismic profiling projects. 

In spite of these disadvantages, if careful attention is given to data acquisition and 

processing, reasonably consistent shot wavelets with high energy and broad frequency 

bandwidths can be obtained.  In the Devine Test Study, 2-lbs (1 kg) of dynamite were 

placed at a depth of 20 ft (6 m) as a shot-hole explosive source. 

2.1.2. Impulsive Sources 

Vertical impulse forces applied to the surface of the ground are often favored over 

buried explosives and are viable energy sources for onshore seismic exploration because 

of their advantage related to absence of legal restrictions, environmental acceptability, 

and higher production rates. Gravity-driven weight droppers, land airguns, and other 

devices that use explosive gases to push a heavy baseplate vertically downward with a 

great force have been used as vertical-impact sources for decades. The repeatability of 

source signature and ease of forming source arrays are the main motivations for using 

impulsive sources. 

However, there are some drawbacks to be considered. In surface seismic 

applications, multiple recordings from the same shot location are necessary to acquire 

seismic data with a good signal-to-noise ratio. In addition, implementing impulsive 

sources can require special data processing methods and large source and receiver arrays 

because these source types are quite band-limited compared to explosives and generate 

high amplitude surface waves that must be removed from data. Also, before an extensive 



 25 

onshore seismic survey is started, a field test should be done to determine whether the 

selected impulsive source creates adequate energy with a good signal-to-noise ratio and 

provides an appropriate signal bandwidth at desired offset distances. The field test results 

should also assure that selected impulsive sources will not create severe shallow 

reverberations in shallow strata. 

Impulsive sources have been illustrated and discussed by various scientists 

(Dobrin 1976; Cholet and Pauc, 1981; Telford et al. 1990; Tatham and McCormack, 

1991). A vertical-impact source manufactured by United Service Alliance weighing 

33,000-lb with a 1000-psi nitrogen-spring weight-acceleration system was used in Devine 

Test Study. 
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2.1.3. Inclined Impact Sources  

Both compressional and shear wave body waves are produced by all onshore 

energy sources used in vertical seismic profilling research. If the main goal is to study the 

physics and exploration applications of shear waves, increasing the amount of shear wave 

energy is desired. To achieve this objective,  surface sources that create horizontally 

directed impulses to the earth or vibrators that produce horizontal oscillations of the 

ground need be applied (Hardage, 2000). To deliver an inclined impact force to the earth, 

a baseplate that has cleats projecting from the bottom of the plate is used. Figure 2.2 

shows how an accelerated mass impacts the baseplate at a slant angle to create vertical 

and horizontal earth displacements. The source of mass acceleration can be either  gravity 

or a mixture of gravity and compressed gas depending on a manufacturer’s concept. 

 

 

Figure 2.2: Baseplate principle associated with inclined-impact sources (modified from 

Hardage et al., 2011).  The accelerated mass causes a hybrid force vector 

composed of a horizontal component and a vertical component. 

Inclined-impact sources have been used to create shear wave modes for years. A 

tilted-impact source, called Omni Pulse, was powered by an air gun firing in a water-



 27 

filled chamber. This source was manufactured by Bolt Technology in the 1970s and 

1980s and it was a distinctive adaptation of marine air gun technology to onshore source 

technology that produced P-wave and S-wave modes. Also in the 1980s, the ARIS 

(Atlantic Richfield Inclined Source) inclined-impact source, which dropped a heavy 

weight onto a baseplate by using a rail system, was introduced by Arco Research. An 

ARIS inclined impulse source applied a tilted vector force that allowed scientists to 

acquire a mixture of P, SR, and ST modes. In spite of its advantage of producing  P, SR 

and ST wave modes, the ARIS source was not used widely to acquire surface seismic 

data because of its excessive dimensions, extreme weight, and the difficulty of moving. 

However, ARIS was a perfect static source to collect multicomponent VSP data at a fixed 

offset from a receiver well (Hardage et al., 2011). 

These two unique sources are no longer used. One replacement source is VSX™ 

developed by Vecta Technology and manufactured by United Services Alliance in Texas 

(Figure 2.3). Because high-pressure nitrogen gas is used to accelerate a heavy weight, the 

impact generated by the source is quite strong. The heavy weight can impact a baseplate 

at angles varying from vertical to 45° and from any azimuth direction. This source 

appeals to many geophysicists because of its ability to generate useful P, SR, and ST 

waves at a single source position and its high-frequency source signature that can be 

reproduced from one shot location to another. 
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Figure 2.3: VSX accelerated-weight impact source provided by Vecta Technology and 

United Services Alliance. A vertical impact or an inclined force vector can 

be delivered to the Earth by this source. Note the reaction mass can be tilted 

to either side at an angle up to 45 degrees to produce shear waves of 

opposite polarities. 

Vertical and horizontal displacement vectors associated with an inclined-impact 

source are illustrated in Figure 2.4. During data acquisition, the baseplate can be 

impacted by weight-driven force vectors, indicated as F (+) and F (-), inclined at any 

user-defined angle Θ (between 0° and 45°) from two opposing directions. If F (+) and F 

(-) are identical in magnitude and inclination from opposite directions, two force vectors 

can be added 

 

)()(  FFFV                (1) 
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to create VF , a vertical force vector which is sum of the two vertical components. 

Similarly, the subtraction of F (+) and F (-) creates horizontal force vector, HF , which 

results from adding the two opposite-polarity horizontal components. 

 

)()(  FFFH                (2) 

 

While vector VF  creates radiation patterns for P and SV, vector HF  does 

radiation patterns for SV and SH. In data-processing, equation (1) and equation (2) are 

implemented by simple arithmetic addition and subtraction of data generated by inclined 

forces F (+) and F (-). 

 

 

Figure 2.4: Baseplate mechanism for an inclined-impact source (From Hardage et al., 

2011). Inclined sources, F (+) and F (-), impact from opposing directions. 

VF
(+) and HF (+) are the directions of positive polarity P-wave 

displacement and S-wave displacement. 
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2.1.4. Vibrators 

A seismic vibrator radiates energy signals into the Earth over an extended period 

of time and with a known frequency content. Vibrators can be divided into two groups in 

terms of direction of motion: vertical vibrators and horizontal vibrators. 

2.1.4.1. Vertical Vibrator 

After a long period of experimentation, the original vibrator source was developed 

by Continental Oil Company (Conoco Inc.) in 1966 and named Vibroseis™. Vibrators 

are a source type widely used in hydrocarbon exploration. 

Vertical vibrators deliver an oscillating signal rather than an impulse signal to the 

earth. This signal can persist for many seconds with the input frequency changing slowly 

over the duration of a signal sweep. 

The vibrator concept relies on the principle that if a source puts a signal 

containing a set of known frequencies into the earth, the received signal will be a data 

trace in which each earth reflection coefficient replicates that long signal. As a result, the 

raw traces recorded in the field are completely meaningless to the eye and a special 

processing method, known as the correlation process, is required to recover the reflection 

series. In Figure 2.5, an example of reflected signal from three different interfaces (A, B, 

C) is shown. The recorded trace looks incoherent and does not indicate any event arrival 

times before correlation because the reflection record consists of long superimposed 

signals from each reflection surface. 
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Figure 2.5: Sweep correlation of signal generated by a vibroseis source (modified from 

Evans, 1997). 

Vibrators have become attractive seismic sources, especially in VSP studies, 

because of several distinctive advantages. First, it is possible to obtain an increased 

signal-to-noise ratio of data by using a source array consisting of several vibroseis trucks. 

Also, their ability to move easily allows VSP data to be generated at different shot points 

in an efficient manner. In areas where a high noise level is present, vibrators are ideal 

energy sources for VSP studies because an interpretable seismic trace can be obtained 

with the aid of the correlation process, and ambient noise can be cancelled by summing 

several sweeps within the sweep range (Hardage, 2000). Although vibrators are more 

expensive than surface impulsive source, their ability to control a source waveform 

makes them attractive as energy source for onshore VSP explorations. In the Devine Test 

Study, an I/O AHV IV PLS 362 with ability to deliver up to 60.000 pounds of peak force 

was used (Figure 2.6). 



 32 

 

Figure 2.6: 60,000-lb vertical vibrator manufactured by Inova Geophysical Inc. In this 

study, this source generated a linear 8-second sweep from 8 to 96 Hz. 

2.1.4.2. Horizontal Vibrators 

To generate SR and ST wave modes, a horizontal force vector has to be applied to 

the earth by a dipole seismic source (Figure 2.1). Creating horizontal earth displacement 

is possible if only a source applies horizontally directed impulse to earth or oscillates 

horizontally. This basic condition is met by using horizontal vibrators that have a 

baseplate mechanism with metal cleats. A heavy pad in which its projections on bottom 

side extend into the ground was formerly used to transfer horizontal impact to the Earth 

(Figure 2.7). As it can be seen from figure, a large amount of SH energy can be generated 

as well as compressional wave modes with the horizontal movement of the mass that 

force the projections to shear the Earth. 
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Figure 2.7: Concept of surface shear wave generator used in vertical seismic profiling 

(Hardage, 2000). A heavy mass, M, is coupled to the Earth with the use of 

projections, P, on bottom side. While projections are pressed into the 

ground, an impulsive source is applied. Today’s technologic shear wave 

vibrators work based on the same principle. 

Horizontal vibrators use the same principle as inclined-impact sources do (Figure 

2.2). Metal cleats projecting from the bottom of baseplate are pressed into the ground by 

the weight of the vehicle to create a lateral coupling with the earth. The hydraulic drive-

system then moves the baseplate laterally and creates a horizontal force vector as 

indicated in Figure 2.8. 
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Figure 2.8: Baseplate concept associated with a horizontal vibrator. Metal cleats are 

pressed into the ground by the weight of track, and a horizontal force is 

applied to the baseplate to create horizontal force vector F. 

Because earth displacement vectors oriented in a specific azimuth are created by a 

dipole seismic source, a consistent azimuth orientation of the source at each shot location 

is an important factor to be considered to avoid data-phase inconsistency between shot 

locations. In seismic exploration in which a dipole source is used to create a force vector, 

the first motion of a baseplate defines data phase. To maintain data consistency, the 

orientations of horizontal dipole sources must be identical at each source station 

throughout seismic data acquisition. 
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Chapter 3: Methods 

This chapter discusses the methods that were applied to my data set acquired with 

inclined impacts and vertical impacts and will explain the mathematical procedure of 

geophone rotation used to segregate wave modes. One of the objectives of my thesis 

project was to apply a geophone rotation process at each VSP receiver station to 

segregate downgoing P, SR, and ST wave modes. After wave mode segregation, I present 

the opposite data polarity which appears in shear wave components impacting from 

opposite-azimuth directions at each receiver station. The main idea of processing 

inclined-impact data was that if shear wave components obtained from impacts that are 

oriented opposite to each other by 180 degrees of azimuth, are summed, then energy on 

shear components will cancel each other. Conversely, strong shear wave components will 

be obtained by subtracting data generated by two opposite inclined sources and energy on 

P-wave components will reduce to zero. 

3.1. WAVE FIELD SEPARATION WITH GEOPHONE ROTATION 

In vertical seismic profiling with a zero-offset vertical impact source, only 

upgoing and downgoing compressional waves are studied on Z vertical-geophone data. 

Because the P-wave arrives at reflectors at a normal incidence, converted waves are not 

generated. Thus energy recorded by a vertical Z geophone delivers full information about 

a P-wave field. In this case seismic data are scalar and upgoing and downgoing P-waves 

can be defined by their apparent velocity (Daures and Tariel, 1985). However, when a 

source is offset from a receiver well, the wave field becomes complicated because of the 

presence of converted P-SV waves which differ from P-waves in apparent velocity and 

direction of polarization. Because different modes of waves characterized by different 

polarizations appear in a seismic trace, seismic data are no longer scalar. Also, in the case 
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of an inclined-impact source, a complicated wavefield is an issue to be solved. For such a 

source, multi-component recording is required to reach a complete understanding of VSP 

wavefields. 

Multicomponent seismic technology has come into broad use for a variety of 

seismic applications. However, the exploration industry experiences a challenging task to 

understand how receiver component orientation and their associated acquisition and 

processing coordinate systems are related to vector wavefields (Gaiser, 1999). The 

position of shots, receivers and reflection points are defined in an XYZ-type coordinate 

system in conventional multicomponent seismic data acquisition. When dealing with a 

single wavefield such as a P-wave, this conventional coordinate system would be 

sufficient. However, when multicomponent seismic data are needed and multicomponent 

sources or receivers are used, an additional user-defined coordinate system is required to 

specify the vector components of particle motion. 

3.2. ACQUISITION COORDINATES 

A rectangular polarization coordinate system is used for 2-D or 3-D seismic 

exploration in which multicomponent data are acquired. This means that each receiver 

station records three-component seismic traces which can be described as )(tS X , )(tSY , 

and  )(tSZ . These components typically are named as vertical, in-line, and cross-line 

components, where the inline component is parallel to the direction in which receivers are 

deployed and cross-line is normal to the inline component direction. A right-handed 

coordinate system is used to describe data acquisition space as shown in Figure 3.1. 

In land-based seismic exploration, the orientation of geophone components can be 

done carefully. For instance, to align all receivers in the same azimuth direction, some 

three component receivers have levelling bubbles and can be oriented horizontally by 
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using compasses. However, in the case of vertical seismic profiling with the receiver 

array in a vertical well or in marine seismic acquisition, it is not possible to control 

geophone orientation at each receiver station.  

In vertical seismic profiling in which multicomponent data are acquired, particle 

displacement is measured on three orthogonal components at each receiver station in the 

receiver well. The Z component usually is aligned with the vertical axis, but the 

orientation of horizontal components is unknown because a borehole geophone may 

rotate around its axis on the supporting wireline cable which causes the horizontal 

components at each receiver station to be oriented in a different way (Hardage et al., 

2011). Figure 3.2 illustrates P-wave ray paths from a source offset from a receiver well 

and variable geophone orientations at two receiver stations. Such inconsistent geophone 

orientation results in undesirable amplitude changes and phase shifts in data. To resolve 

this inconsistency, multi-component sensor systems must be rotated from their positions 

at the time of recording to a user-defined coordinate system before starting to process the 

data. 

 

 

Figure 3.1: Right-handed coordinate system used in multicomponent seismic data 

acquisition. 
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Figure 3.2: Schematic of vertical seismic profile geophone orientation problem (From 

DiSiena et al, 1984). 

The horizontal projection of P-wave direct arrivals is in the same direction as the 

ray path extending from the wellhead towards the source location. Because the horizontal 

orientation of P raypaths is consistent from depth to depth, the ray path Hp shown in 

Figure 3.2 is used as fixed reference frame. Figures 3.3 and 3.4 illustrate how direct- 

arrival P-wave horizontal signals vary for different VSP geophone orientations at 

different depths. Horizontal re-orientation of geophone components causes P-wave 

energy divided onto components X and Y (Fig 3.3) to concentrate only on component X’ 

(Fig 3.4). 
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Figure 3.3: Direct P-wave arrival picks on the horizontal components of receivers X and 

Y deployed at different depths. 

 

Figure 3.4: Effect of re-orientation on direct arrivals onto horizontal component X’. 
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This coordinate transform is performed by the following equation  

 

 sincos' YXX            (1) 

 

 cossin' YXY            (2)  

 

where  defines the azimuthal rotation angle between X and reference ray path PH  as 

illustrated on Figure 3.2. This formulation became the main principle of applying 

multicomponent geophone rotation. 

3.3. COMPONENT ROTATION 

In multicomponent seismic data, particle displacement is measured on three 

orthogonal components at each receiver station in a VSP well. The vertical Z component 

usually is aligned on the vertical axis, but the orientations of horizontal components are 

unknown because a borehole geophone may rotate around its axis on the supporting 

wireline cable to cause the horizontal components at each receiver station to be oriented 

in different directions (Hardage et al., 2011). To resolve this inconsistency, multi-

component sensor systems must be rotated from their positions at the time of recording to 

a user-defined coordinate system before starting to process data. This coordinate 

transformation is accomplished through projection of the data onto new coordinate axes. 

The rotation of multicomponent seismic data detected by orthogonal sensors in 

receiver well can be performed by using a rotation matrix R 

 

RUW            (3) 
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where U is the raw data and W is rotated data. Multicomponent seismic data typically are 

acquired in a coordinate system consisting of vertical component Z and two horizontal 

components Y and X as illustrated on Figure 3.1. If  is defined as the angle between the 

axis of the X geophone and vertical plane that passes through the source station and the 

receiver station, the operation, 
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rotates the seismic data horizontally from the field-acquisition coordinate system (X, Y, 

Z) into a new system (Z, R, T) in which R and T define radial and transverse components 

as the Z component remains constant. This matrix operation enables us to transform 

horizontal projection data from inline / crossline data coordinates to radial / transverse 

coordinates. 

A coordinate rotation in three-dimensional space can be decomposed into two 

separate 2- dimensional rotations. In the case of three-component seismology, a rotation 

in the horizontal plane (SR-ST) is followed by a rotation in the plane defined by the 

vertical component and the rotated SR component. In most cases, this second rotation 

around the T- axis by an incident angle   is needed because a P-wave arrives at each 

VSP receiver station at a different inclination angle. Equation 5 defines the matrix 

operation which allows us to rotate the data around the transverse component by leaving 

transverse component stable and concentrating energy on the radial component and 

vertical components. 
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These two rotations (Eqs. 4 and 5) can be combined into a single rotation matrix 

described by the matrix operation in the Equation 6. 
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By using matrix operation (6), rotated data traces have compressional wave 

energy concentrated on sensor P, vertical shear energy on sensor SR and horizontal shear 

energy on sensor ST. A projection of rotations is represented on Figure 3.5. In Figure 3.5, 

(B) shows a rotation of X and Y axes by an angle . Note that the direction of the vertical 

component is unaffected by this rotation. The new coordinate axes R and T after rotation 

are shown in (C) and (D). The second rotation, performed in the plane defined by the 

vertical axis and R, is illustrated in (E). In this case the angle   is measured from the 

vertical axis in the direction of R. Note that this second rotation leaves the direction of 

the rotated T component unchanged. The last position of components after rotation is 

illustrated in (F). 

3.4. AZIMUTH AND INCLINATION 

Estimating the orientation of geophones is one of the functions of 

multicomponent analysis and data processing tools. This process is done through 

knowing the source and receiver locations, using the rotation angle, and by assuming that 
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the P-wave first break energy arrives in the vertical plane containing the source and 

receiver. 

In multicomponent seismic data, receiver component orientation is defined in 

terms of azimuth and inclination. Azimuth can be expressed as the number of degrees 

east of north in which a component points. The azimuth of a component heading towards 

east is 90°, south is 180°, and west is 270°. North is considered to have a azimuth of 0°. 

In Cartesian coordinates, acquisition geometry can be used to calculate the 

theoretical azimuth which is the angle from receiver to the source by the following 

equation (Maercklin, 2010) 
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with receiver coordinates ( RR YX , ) and source coordinates ( SS YX , ). In spherical 

coordinates, the same equation can be written as 
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where the longitude and latitude of a receiver are represented as  ( RR YX , ) and those for a 

source are  represented as ( SS YX , ). 

Inclination is the number of degrees that a component is inclined from a vertical 

axis. Generally the value of inclination is described from 0° to 180° with 0° being 

vertically upward, 90° being horizontal and 180° being vertically downward. It is clear 

that not only does acquisition geometry play a key role in computing inclination angle, , 
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but also seismic velocity structure around the receiver affects the computation. Figure 3.6 

shows a random component orientation with an azimuth of 45° and inclination of 20°. 

 

 

Figure 3.5: A projection of sensor rotations. Pink arrows indicate P-wave ray paths in 

each section. (A) Component orientation of a 3C geophone before rotation. 

(B) The first rotation around Z axis. (C) View of geophone components after 

first rotation. (D) A second view of components that shows a rotation 

around the X axis. (E) The second rotation in the vertical plane. (F) Final 

view of geophone components after rotations are done. 

When a compressional wave mode activates a geophone, a positive first motion is 

detected in the direction that the P displacement points. However, in crosswell seismic 
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applications in which a source is located below a receiver, the first motion is detected in 

the negative direction. 

 

 

Figure 3.6: A random component orientation that has an inclination of 20° and an 

azimuth of 45°. 

Figure 3.7 shows how each data component behaves in terms of the azimuth 

approach of a P ray. The data exhibited in Figure 3.7 were recorded at receiver station 5 

(at the depth of 746-ft) when a 20° inclined-impact source was applied in the inline plane. 

The data were mathematically rotated in the horizontal plane by 1° from 0° to 360°. 

Points A and B (Fig. 3.7b) define the azimuth approach angle where P-wave energy is 

almost zero on the radial geophone. Similarly, point C on the transverse geophone 

describes the angle where P-wave energy is almost zero, while point D defines the point 

where P-wave energy on the transverse component reaches a maximum. The differences 
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between point A and B must be 180° for an isotropic, homogenous medium. For the same 

reason, the differences between point C and D must be 90° assuming S-waves modes 

produced by a horizontal vector source propagate along the same ray path as the P-wave 

mode. Because data were rotated only in the horizontal plane, the response of the vertical 

geophone remains constant for all azimuth rotations.  

 

 

Figure 3.7: (a) Behavior of the geophone components at receiver station 5 in terms of 

azimuth rotation of sensors. (b) Energy distribution on the components at 

receiver station 5 in term of azimuth rotation of sensors. 
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3.5. AMPLITUDE PARAMETERS 

In most multicomponent processes, the direction of particle motion is identified 

by the peak vector amplitude of a wavelet. The vector amplitude (magnitude) of the data 

in any given data window can be represented as the square root of the sum of squared 

amplitudes of data of all the data existing in that window. The peak vector amplitude iR

in Equation 9 defines the largest vector amplitude of all the vector samples in the analysis 

window. 
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iiii ZYXR            (9) 

 

The energy of the wavefield at each time sample is proportional to 
2

iR . By 

averaging the energy in a moving time window of N samples (Eq. 10), a smoother energy 

trace can be obtained (Maercklin, 2010). 
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The square root qR is the RMS amplitude. 
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Chapter 4: Analysis of VSP Data 

The objective of this section is to display how VSP data were analyzed and to 

compare data quality of different types of seismic sources in terms of the shear wave 

energy they create. Multicomponent seismic data generated by inclined impact, vertical 

impact, shot hole explosive, vertical vibrator, and horizontal vibrator were processed 

using EGL tools written in MATLAB. Each step of data processing will be explained. 

4.1. PROCEDURES BEFORE ROTATION PROCESS 

4.1.1. File Conversion  

Most seismic data are acquired in SEG-Y format, one of several standards 

developed by the Society of Exploration Geophysicists (SEG) for storing geophysical 

data. The SEG-Y format was originally developed in 1970s and has achieved widespread 

usage within the geophysical industry. The format has evolved over the years to meet 

industry requirements for data analysis and processing.  A SEG-Y file provides crucial 

information in traces and headers information which defines the geometry used to acquire 

the data. A seismic volume may be composed of one or more input SEG-Y files. In EGL 

tools, the SDF format, an acronym for Seismic Data Format, is used for seismic data 

processing. Therefore, the first data-processing step is to convert data from field 

acquisition format, SEG-Y, to SDF format. 

4.1.2. Geometry Definition   

Because the geometry of data acquisition plays a key role in data processing, 

processing software usually requires that the data be described in terms of the field 

geometry used during the data acquisition. To process data, the data should be in either 

CMP (Common Mid-Point) or CSG (Common Shot-Gather) order. Therefore, the 

geometry of the field layout, including source and receiver coordinates, group interval, 
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and station numbers must be defined in order to sort seismic data into CMP or CSG 

order. Throughout this step, source elevations and receiver depths are also defined in the 

database. In Table 1, all the shot locations used in the Devine Test Site Study acquisition 

geometry are displayed.    

 

 

Table 4.1:  Locations of source positioning in Devine Test study. Latitudes and 

longitudes are in NAD83. Northing and easting are in UTM zone 14. 

Elevations are in NAWD88. Latitudes and longitudes are in degrees. 

To obtain dependable multicomponent VSP seismic data, the source and receiver 

geometry used to record the walkaway VSP data must be defined for the seismic 

processing tool kit. The seismic acquisition geometry used in the Devine Test study is 

displayed in Figure 4.1. 

Point Latitude Longitude Northing Easting Elevation

Well 4 1 29 06 30.04670N 99 08 42.11317W 10564277.57 1594119.83 677.67

250' 2 29 06 29.66177N 99 08 39.32811W 10564238.4 1594366.74 675.26

500' 3 29 06 29.27683N 99 08 36.54305W 10564199.23 1594613.65 673.55

750' 4 29 06 28.89186N 99 08 33.75789W 10564160.06 1594860.57 669.4

1000' 5 29 06 28.50698N 99 08 30.97284W 10564120.9 1595107.48 665.88

1250' 6 29 06 28.12199N 99 08 28.18780W 10564081.73 1595354.39 662.26

1500' 7 29 06 27.73698N 99 08 25.40276W 10564042.56 1595601.3 660.72

1750' 8 29 06 27.35195N 99 08 22.61762W 10564003.39 1595848.22 657.22

1920' 9 29 08 27.09008N 99 08 20.72379W 10563976.75 1596016.12 654.6
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Figure 4.1:  Presentation of acquisition geometry in MATLAB. Red star refers shot 

location 5 offset from 1000 ft from the receiver well. Blue line represents 

multicomponent receiver array with a geophone spacing of 49.2 ft. 

4.2. EXAMINING MULTICOMPONENT VSP DATA  

As discussed in Figure 1.5, receivers must be mathematically oriented to obtain 

data acquired as if those receivers were deployed in a consistent azimuth and inclination 

orientation. This geophone rotation process involves a 2-step rotation; one rotation in the 

horizontal plane and a second rotation in the vertical plane. In step 1, the two horizontal 

geophones X and Y at each receiver station were mathematically rotated until the P-wave 

first-arrival energy on the radial component reached a maximum and the P-wave energy 

on the transverse component approached zero. In step 2, vertical and reoriented radial 

geophones were vertically rotated at each receiver station until the P-wave first-arrival 

energy on the vertical geophone became a minimum. This 2-step rotation principle is 

displayed in Figure 4.2.   
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Figure 4.2:  An example of rotation process for receiver station 22. a) Raw unprocessed 

data acquired in arbitrary azimuth and inclination orientation. b) After a 

122° rotation in the horizontal plane. Note there is no alteration on the 

vertical geophone. c) After an additional 32° rotation in the vertical plane. 
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After reorientation of each of the 24 geophones deployed in the VSP receiver well, the 

common assumptions used for separation of P and S wavefields in VSP data were 

verified. 

 Each direct wavefield used for creating direct-S radiation patterns contains some 

contamination from other companion wave modes. Because the positions of receiver 

stations and source stations are the same for all seismic sources, it can be assumed the 

amount of contamination for the re-oriented data is the same for all sources tested.  Thus 

it is reasonable to assume P and SV arrival azimuths and inclination angles for any 

source-receiver pair tested are almost the same, especially for homogenous non-layered 

media. Therefore, I believe the radiation patters presented in my project are valuable and 

informative for future studies. 

 The receiver orientation procedure applied to vertical impact, shot-hole explosive, 

vertical vibrator, inclined-impact, and horizontal vibrator sources located at shot location 

5 are illustrated on Figures 4.3 through 4.19. Because the signal quality is not satisfactory 

for receivers 6 and 23, those receivers were eliminated from processing. Data windows 

spanning 40-ms from the onset of the P-wave direct arrivals on each receiver station were 

used to determine geophone azimuth and inclination angles applied in the rotation steps 

(top row of Figures 4.3 through 4.19). 

 Because different amounts of seismic energy are produced by each seismic 

source, a different gain was used to illustrate data generated by each source. A constant 

gain was used for inclined-impact, shot-hole explosive and vertical-impact sources, but a 

different gain was needed to display data generated by horizontal and vertical vibrators 

because the shear wave energy produced by these vibrator sources was much stronger 

than shear modes produced by other sources. 



 53 

 

Figure 4.3:  (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a negative 20° inclined impact was applied in the inline 

plane, at shot location 5, which was offset 1000 ft (305 m) from the array. 

(b) Data rotated to P, SR, and ST data space from initial acquisition 

coordinates. 
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Figure 4.4: (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a negative 30° inclined impact was applied in the inline 

plane, at shot location 5, which was offset 1000 ft (305 m) from the array. 

(b) Data rotated to P, SR, and ST data space from initial acquisition 

coordinates. 
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Figure 4.5: (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a negative 45° inclined impact was applied in the inline 

plane, at shot location 5, which was offset 1000 ft (305 m) from the array. 

(b) Data rotated to P, SR, and ST data space from initial acquisition 

coordinates. 
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Figure 4.6:  (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a positive 20° inclined impact was applied in the inline 

plane, at shot location 5, which was offset 1000 ft (305 m) from the array. 

(b) Data rotated to P, SR, and ST data space from initial acquisition 

coordinates. 
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Figure 4.7:  (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a positive 30° inclined impact was applied in the inline 

plane, at shot location 5, which was offset 1000 ft (305 m) from the array. 

(b) Data rotated to P, SR, and ST data space from initial acquisition 

coordinates. 
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Figure 4.8:  (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a positive 45° inclined impact was applied in the inline 

plane, at shot location 5, which was offset 1000 ft (305 m) from the array. 

(b) Data rotated to P, SR, and ST data space from initial acquisition 

coordinates. 
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Figure 4.9: (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a negative 20° inclined impact was applied in the 

crossline plane, at shot location 5, which was offset 1000 ft (305 m) from 

the array. (b) Data rotated to P, SR, and ST data space from initial 

acquisition coordinates. 
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Figure 4.10:  (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a negative 30° inclined impact was applied in the 

crossline plane, at shot location 5, which was offset 1000 ft (305 m) from 

the array. (b) Data rotated to P, SR, and ST data space from initial 

acquisition coordinates. 
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Figure 4.11: (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a negative 45° inclined impact was applied in the 

crossline plane, at shot location 5, which was offset 1000 ft (305 m) from 

the array. (b) Data rotated to P, SR, and ST data space from initial 

acquisition coordinates. 
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Figure 4.12: (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a positive 20° inclined impact was applied in the 

crossline plane, at shot location 5, which was offset 1000 ft (305 m) from 

the array. (b) Data rotated to P, SR, and ST data space from initial 

acquisition coordinates. 
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Figure 4.13: (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a positive 30° inclined impact was applied in the 

crossline plane, at shot location 5, which was offset 1000 ft (305 m) from 

the array. (b) Data rotated to P, SR, and ST data space from initial 

acquisition coordinates. 
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Figure 4.14: (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a positive 45° inclined impact was applied in the 

crossline plane, at shot location 5, which was offset 1000 ft (305 m) from 

the array. (b) Data rotated to P, SR, and ST data space from initial 

acquisition coordinates. 
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Figure 4.15:  (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a vertical impact was applied at shot location 5, which 

was offset 1000 ft (305 m) from the array. (b) Data rotated to P, SR, and ST 

data space from initial acquisition coordinates. 
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Figure 4.16: (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a shot-hole explosive was fired at shot location 5, which 

was offset 1000 ft (305 m) from the array. (b) Data rotated to P, SR, and ST 

data space from initial acquisition coordinates. 
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Figure 4.17: (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a vertical vibrator was applied at shot location 5, which 

was offset 1000 ft (305 m) from the array. (b) Data rotated to P, SR, and ST 

data space from initial acquisition coordinates. 
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Figure 4.18: (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a horizontal vibrator was applied in the inline plane, at 

shot location 5, which was offset 1000 ft (305 m) from the array. (b) Data 

rotated to P, SR, and ST data space from initial acquisition coordinates. 
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Figure 4.19:  (a) Illustration of X, Y, Z data acquired with the multicomponent vertical 

sensor array when a horizontal vibrator was applied in the crossline plane, at 

shot location 5, which was offset 1000 ft (305 m) from the array. (b) Data 

rotated to P, SR, and ST data space from initial acquisition coordinates. 
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4.2.1. Comparison of Inclined-Impact Sources Applied from Opposing Directions 

Because inclined impact vector sources create both vertical and horizontal 

displacements in the earth, two inclined-impact vectors applied from opposing directions 

should create opposite-polarity S-wave wavefields. To display this reversed-polarity 

phenomenon, the next step was to apply static time shifts to optimize the phase 

alignments of direct-S modes produced by positive-direction and negative-direction 

impacts. An example of the static corrections applied at receiver station 10 for data 

generated by positive 30° and negative 30° inclined-impact sources is illustrated in 

Figure 4.20. Figure 4.20a displays transverse-S data after direct-S modes on the 

transverse geophone are aligned for impacts applied from negative and positive direction. 

The amount of static time delay that existed in the raw transverse-S data before and after 

a static time shift can be seen from Figure 4.20b. Similarly, a static time shift applied to 

direct-S modes recorded by the radial geophone is displayed in Figures 4.20c and 20d. To 

maintain consistency between components, the same time shift was applied to both 

radial-S and transverse-S data. However, when there were different inclined-impact 

angles, a different static time shift was applied for each source. The results of applying 

appropriate time shifts to all geophones are illustrated on Figures 4.21 through 4.23. The 

static corrections displayed in Figures 4.21 through 4.23 were applied for all inclination 

angles (20°, 30°, and 45°) and for shots applied in both planes (inline and crossline). 
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Figure 4.20:  Applying static time shifts for receiver station 10 when the impacts were 

inclined -30° and +30° in the inline plane. (a) Phase-aligned direct-S mode 

on the transverse geophone. (b) Rotated transverse-S data before static time 

shift. (c) Phase-aligned direct-S mode on the radial geophone. (b) Rotated 

radial-S data before static time shift. 



 72 

 

Figure 4.21:  The data generated by positive (+20°) and negative (-20°) inclined-impact 

sources after time-shift alignment at all receiver stations. Red traces were 

produced by a positive 20° inclined impact. Black traces were generated by 

a negative 20° inclined impact. (a) Data recorded in the inline plane. (b) 

Data recorded in the crossline plane. 
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Figure 4.22: The data generated by positive (+30°) and negative (-30°) inclined-impact 

source after time-shift alignment at all receiver stations. Red traces were 

produced by a positive 30° inclined impact. Black traces were generated by 

a negative 30° inclined impact. (a) Data recorded in the inline plane. (b) 

Data recorded in the crossline plane. 
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Figure 4.23: The data generated by positive (+45°) and negative (-45°) inclined-impact 

source after time-shift alignment at all receiver stations. Red traces were 

produced by a positive 45° inclined impact. Black traces were generated by 

a negative 45° inclined impact. (a) Data recorded in the inline plane. (b) 

Data recorded in the crossline plane. 
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After data generated by two opposite-azimuth inclined sources are phase aligned, 

it is possible to isolate direct-S and direct-P modes via simple subtraction and addition 

processes. As discussed and illustrated in Figure 4.2, adding data generated by positive 

and negative inclined-impact sources strengthens their common direct-P mode but 

cancels their opposite polarity direct-S modes. Similarly, subtracting data produced by 

positive and negative inclined impacts reinforces their opposite-polarity direct-S modes 

and eliminates their equal-polarity direct-P modes. Therefore, this simple addition 

provides isolated direct-P modes, and isolated direct-S modes are obtained by simple 

subtraction. 

The displays in Figure 4.24 through 4.29 show applications of these simple 

addition and subtraction process to the data displayed in Figures 4.21 through 4.23. 

Isolated direct-P modes for various inclination angles are obtained by adding two 

wavefields generated by opposing impact directions (Figures 4.24a, 4.25a, 4.26a, 4.27a, 

4.28a, 4.29a). Similarly, the subtraction of the same wavefields produces the isolated 

direct-S modes illustrated in Figures 4.24b, 4.25b, 4.26b, 4.27b, 4.28b, 4.29b. The direct-

S modes obtained from subtraction of data applied from opposing directions are now 

comparable with the data produced by a vertical-impact source. 
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Figure 4.24:  (a) Addition of the positive and negative 20° inline inclined-impact 

wavefields displayed in Figure 4.21. Addition process yields isolated direct-

P mode and provides effective cancellation of the direct-S modes. (b) 

Subtraction of the positive and negative 20° inline inclined-impact 

wavefield illustrated in Figure 4.21. Re-enforced direct-S modes are 

obtained with an effective cancellation of the direct-P mode.  
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Figure 4.25: (a) Addition of the positive and negative 20° crossline inclined-impact 

wavefields displayed in Figure 4.21. Addition process yields isolated direct-

P mode and provides effective cancellation of the direct-S modes. (b) 

Subtraction of the positive and negative 20° crossline inclined-impact 

wavefield illustrated in Figure 4.21. Re-enforced direct-S modes are 

obtained with an effective cancellation of the direct-P mode.  
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Figure 4.26: (a) Addition of the positive and negative 30° inline inclined-impact 

wavefields displayed in Figure 4.22. Addition process yields isolated direct-

P mode and provides effective cancellation of the direct-S modes. (b) 

Subtraction of the positive and negative 30° inline inclined-impact 

wavefield illustrated in Figure 4.22. Re-enforced direct-S modes are 

obtained with an effective cancellation of the direct-P mode. 
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Figure 4.27: (a) Addition of the positive and negative 30° crossline inclined-impact 

wavefields displayed in Figure 4.22. Addition process yields isolated direct-

P mode and provides effective cancellation of the direct-S modes. (b) 

Subtraction of the positive and negative 30° crossline inclined-impact 

wavefield illustrated in Figure 4.22. Re-enforced direct-S modes are 

obtained with an effective cancellation of the direct-P mode.  
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Figure 4.28: (a) Addition of the positive and negative 45° inline inclined-impact 

wavefields displayed in Figure 4.23. Addition process yields isolated direct-

P mode and provides effective cancellation of the direct-S modes. (b) 

Subtraction of the positive and negative 45° inline inclined-impact 

wavefield illustrated in Figure 4.23. Re-enforced direct-S modes are 

obtained with an effective cancellation of the direct-P mode. 
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Figure 4.29: (a) Addition of the positive and negative 45° crossline inclined-impact 

wavefields displayed in Figure 4.23. Addition process yields isolated direct-

P mode and provides effective cancellation of the direct-S modes. (b) 

Subtraction of the positive and negative 45° crossline inclined-impact 

wavefield illustrated in Figure 4.23. Re-enforced direct-S modes are 

obtained with an effective cancellation of the direct-P mode.  
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4.2.2. Comparison of Direct-S modes Produced by Impact Vector Sources 

One purpose of my thesis is to compare direct-S modes produced by a vertical 

impact, an inclined-impact and a shot-hole explosive in order to determine similarities 

and differences among these sources. These comparisons may test the hypothesis that a 

vertical-force source and its companion horizontal-force sources generate equivalent 

direct-S modes. The data recorded when the VSX source (Figure 2.3) applied a vertical 

impact to the earth at source station 5 and when a shot-hole explosive was fired at the 

same source station are displayed in Figures 4.15 and 4.16. The raw vertical impact and 

shot-hole explosive data were processed with the same strategy as the inclined-impact 

data were. After geophone rotation processes were done for shot-explosive and vertical-

impact data, direct-S wavefields produced by vertical impact and 30° inclined-impact 

sources were compared by plotting two S-wave wavefields as overlays (Figure 4.30) to 

understand similarities and differences between the wavefields. When a bulk time shift is 

applied to optimize phase alignment of the inclined-impact data, we observed that the two 

sets of direct-S traces are essentially identical but have opposite polarity. The close 

correlation between the superimposed wavefields in Figure 4.30 supports the principle 

that a vertical-force source and horizontal-force source create the same direct-S 

wavefield. To display phase shifts and reversed polarities of direct-S wavefields and to 

compare energy strengths of direct-S modes in equal time windows, a bulk normal move 

out (NMO) correction is applied (Figures 4.31 through 4.36).  
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Figure 4.30:  Direct-S modes generated by a vertical impact (black) and by inclined 

impact (red). The incident angle of inclined-impact source was 30° in (a) the 

inline plane and (b) in the crossline plane. A bulk time shift was applied to 

vertical-impact data to minimize phase differences.  
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Figure 4.31: Comparison of shear wave components for vertical-impact data and data 

obtained by subtracting 20° inclined impacts applied from opposite 

directions in the inline plane. Vertical-impact data after geophone rotation 

are displayed as black wiggle traces. Red wiggle traces represent the 

subtraction of opposite-azimuth inclined-impact data. (a) Raw data. (b) 

Time-shifted data. (c) Differences between red and black traces. 
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Figure 4.32: Comparison of shear wave components for vertical-impact data and data 

obtained by subtracting 20° inclined impacts applied from opposite 

directions in the crossline plane. Vertical-impact data after geophone 

rotation are displayed as black wiggle traces. Red wiggle traces represent 

the subtraction of opposite-azimuth inclined-impact data. (a) Raw data. (b) 

Time-shifted data. (c) Differences between red and black traces. 
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Figure 4.33: Comparison of shear wave components for vertical-impact data and data 

obtained by subtracting 30° inclined impacts applied from opposite 

directions in the inline plane. Vertical-impact data after geophone rotation 

are displayed as black wiggle traces. Red wiggle traces represent the 

subtraction of opposite-azimuth inclined-impact data. (a) Raw data. (b) 

Time-shifted data. (c) Differences between red and black traces. 
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Figure 4.34:  Comparison of shear wave components for vertical-impact data and data 

obtained by subtracting 30° inclined impacts applied from opposite 

directions in the crossline plane. Vertical-impact data after geophone 

rotation are displayed as black wiggle traces. Red wiggle traces represent 

the subtraction of opposite-azimuth inclined-impact data. (a) Raw data. (b) 

Time-shifted data. (c) Differences between red and black traces. 
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Figure 4.35:  Comparison of shear wave components for vertical-impact data and data 

obtained by subtracting 45° inclined impacts applied from opposite 

directions in the inline plane. Vertical-impact data after geophone rotation 

are displayed as black wiggle traces. Red wiggle traces represent the 

subtraction of opposite-azimuth inclined-impact data. (a) Raw data. (b) 

Time-shifted data. (c) Differences between red and black traces. 
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Figure 4.36:  Comparison of shear wave components for vertical-impact data and data 

obtained by subtracting 45° inclined impacts applied from opposite 

directions in the crossline plane. Vertical-impact data after geophone 

rotation are displayed as black wiggle traces. Red wiggle traces represent 

the subtraction of opposite-azimuth inclined-impact data. (a) Raw data. (b) 

Time-shifted data. (c) Differences between red and black traces. 

 

The time difference between data generated by two different impacts must be 

resolved (Figures 4.31a, 4.32a, 4.33a, 4.34a, 4.35a, and 4.36a). After a time shift to align 

first arrivals, wiggle traces for both data sets seem to have almost same shear response 

wave with opposite polarity (Figures 4.31b, 4.32b, 4.33b, 4.34b, 4.35b, and 4.36b). By 

adding the red and black wiggle traces, energy on each panel cancels each other (Figures 

4.31c, 4.32c, 4.33c, 4.34c, 4.35c, and 4.36c).  

In addition to the same direct-S wavefields, it is important to compare the energy 

level of direct-S modes produced by a vertical impact, shot-hole explosive and inclined 
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impacts. RMS amplitudes of direct-S first arrivals produced by these sources are 

analyzed and compared in Figures 4.37 and 4.38.  Wavelet amplitudes were analyzed and 

calculated in 90-ms windows starting at the first-break time of each first arrival. For each 

wave mode, wiggles captured by the same window represent the downgoing illuminating 

wavefield.  

 

 

Figure 4.37:  Comparison of the amplitude strengths of radial-S direct modes generated 

by a vertical impact, a range of inclined impacts, and a shot-hole explosive. 

The explosive source was a 1-kg (2.2-lb) charge placed at a depth of 6 m 

(20-ft). A= domain of shallow reverberations. B= domain of representative 

body waves. 
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Figure 4.38: Comparison of the amplitude strengths of transverse-S direct modes 

generated by a vertical impact, a range of inclined impacts, and a shot-hole 

explosive. The explosive source was a 1-kg (2.2-lb) charge placed at a depth 

of 6 m (20-ft). A= domain of shallow reverberations. B= domain of 

representative body waves. 

To compare energy contents in a fair way, the amplitudes of the data generated by 

the vertical impact are multiplied by 2 because the amplitudes of inclined-impact sources 

contain energy generated by two opposing impacts. Because of the large offset distance 

of the same (1000 ft) large amplitude reverberating refractions are captured by the 

shallowest receivers displayed in domain A (Figures 4.37 and 4.38). The data recorded at 

stations deeper than receiver station 5 (depth = 697 ft) displayed in domain B (Figures 

4.37 and 4.38) are more representative of the amplitudes of shear body waves that 

illuminate deeper targets. Figures 4.37 and 4.38 show that a vertical impact, an inclined 

impact, and a 1-kg shot-hole explosive at a depth of 6 m produce almost the same amount 

of direct-S illumination energy. These figures also reveal an interesting point that shear 

rate of decay of wave energy embedded in transverse-S and radial-S modes produced by 
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an inclined-impact or a vertical impact source is less than that of the rate of decay of 

shear wave energy produced by a shot-hole explosive.   

Another objective of this project is to compare the frequency spectra of S-wave 

data produced by inclined-impact, vertical-impact, and shot-hole explosive sources. 

Frequency attributes of the wave modes produced by the sources are displayed as Figures 

4.39 through 4.48. These displays illustrate the data windows spanning the downgoing 

illumination wavelets where frequency spectra were analyzed. The data highlighted in the 

analysis window have negligible non-mode noise and are almost pure S-wave-mode 

signal. Therefore, a reasonable indication of the signal-frequency content for each 

downgoing S-wave illumination wavefield is indicated by each calculated frequency 

spectrum. Amplitudes that are more than 10 dB below the peak of an amplitude spectrum 

are considered to be too small to make a significant contribution and are ignored.   The 

frequency spectrum extending above each 10 dB defines the effective signal frequency 

contents of each wave mode.  
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Figure 4.39:  Frequency analysis of transverse-S modes produced by a 20° inclined-

impact source applied in the inline direction. Amplitudes of the frequency 

spectra define relative strengths of the transverse direct-S mode propagating 

away from source station 5. 
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Figure 4.40:  Frequency analysis of radial-S modes produced by a 20° inclined-impact 

source applied in the inline direction. Amplitudes of the frequency spectra 

define relative strengths of the radial direct-S mode propagating away from 

source station 5. 
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Figure 4.41: Frequency analysis of transverse-S modes produced by a 30° inclined-

impact source applied in the inline direction. Amplitudes of the frequency 

spectra define relative strengths of the transverse direct-S mode propagating 

away from source station 5. 
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Figure 4.42:  Frequency analysis of radial-S modes produced by a 30° inclined-impact 

source applied in the inline direction. Amplitudes of the frequency spectra 

define relative strengths of the radial direct-S mode propagating away from 

source station 5. 
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Figure 4.43:  Frequency analysis of transverse-S modes produced by a 45° inclined-

impact source applied in the inline direction. Amplitudes of the frequency 

spectra define relative strengths of the transverse direct-S mode propagating 

away from source station 5. 
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Figure 4.44: Frequency analysis of radial-S modes produced by a 45° inclined-impact 

source applied in the inline direction. Amplitudes of the frequency spectra 

define relative strengths of the radial direct-S mode propagating away from 

source station 5. 
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Figure 4.45: Frequency analysis of transverse-S modes produced by a shot-hole 

explosive buried at a depth of 6 m (20 ft). Amplitudes of the frequency 

spectra define relative strengths of the transverse direct-S mode propagating 

away from source station 5. 
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Figure 4.46:  Frequency analysis of radial-S modes produced by a shot-hole explosive 

buried at a depth of 6 m (20 ft). Amplitudes of the frequency spectra define 

relative strengths of the radial direct-S mode propagating away from source 

station 5. 
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Figure 4.47:  Frequency analysis of transverse-S modes produced by a vertical-impact 

source applied at source station 5. Amplitudes of the frequency spectra 

define relative strengths of the transverse direct-S mode propagating away 

from source station 5. 
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Figure 4.48:  Frequency analysis of radial-S modes produced by a vertical-impact source 

applied at source station 5. Amplitudes of the frequency spectra define 

relative strengths of the radial direct-S mode propagating away from source 

station 5. 

Frequency and amplitude-level characteristics of direct-S modes produced by 

impact sources and measured by the downhole vertical-receiver array are displayed on 

Table-4.2. On this table, calculated amplitudes are listed as “order of magnitude” 

quantities instead of listing as specific numerical values. These listed amplitudes and 

frequency characteristics define some important principles which are;  

a. All three impact sources produce radial and transverse shear wave modes 

having the same amplitudes.  

b.  Frequency content of direct-S modes produced by a shot-hole explosive, 

vertical-impact source, and inclined-impact sources differ only slightly.  

c. Frequency analysis of transverse-S modes produced by a vertical impact 

source shows that an obvious spectral notch appears around 20-Hz. This 



 103 

phenomenon should be taken into account in the selection of seismic sources 

for geological layering where that frequency plays a key role in distinguishing 

one formation from another. 

 

 

 

Table 4.2:  Amplitude and frequency attributes of direct-S wave modes measured by 

downhole sensors. Amplitudes and frequency bandwidths were calculated 

from Figures 4.39 - 4.48 for shot station 5. 

4.2.3. Comparison of Direct-S modes Produced by Vertical and Horizontal 

Vibrators  

A seismic source that generates strong direct-S modes and zero direct-P modes 

can be considered as a perfect S-wave source. Because P-SV reflections from a deep 

interface may contaminate S-S reflections from a shallow interface, possessing a “perfect 

S-wave source” is always desired in seismic exploration that aims to produce S-imaging 

of targets. Recent technology provides only two operational seismic sources that produce 

robust direct-S modes and simultaneously create small amplitude direct-P modes: an 

inclined-impact source and a horizontal vibrator.  

Radiation patterns of shear waves produced by a horizontal vibrator have been 

studied and compared by various scientists (Robertson and Corrigan, 1983; Dankbaar, 

Amplitude (RMS) Shot-Hole Explosive Vertical-Impact Inclined-Impact 

Radial Shear 104 104 104

Transverse Shear 10
4

10
4

10
4

Frequency Contents (Hz) Shot-Hole Explosive Vertical-Impact Inclined-Impact 

Radial Shear 23 25 24-29

Transverse Shear 19 24 22-27
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1983; Easley 1992; Sun and Jones 1993; Alkan, 2012). To visually compare wavefields 

produced by horizontal and vertical vibrator sources, a convenient and basic method that 

overlays wiggle traces displays of direct-S modes was used in this project so that arrival 

times and wavelet attributes of the modes can be easily compared. These wavefield 

comparisons are illustrated on Figure 4.49. 

Because the horizontal vibrator was mistakenly oriented in the wrong direction 

during the field test, an opposite polarity appeared between the direct-S radial mode 

propagating from the horizontal vibrator and the vertical vibrator. In other words, the 

direction of the radial-S vector produced by the horizontal vibrator was away from 

receiver well, but the radial-S vector generated by the vertical vibrator was pointing at the 

receiver well. 

 

 

Figure 4.49:  Radial and transverse direct-S wavefields produced by a vertical vibrator 

(red traces) and horizontal vibrator (black traces). Vibrators were located at 

the same shot location. 
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Rather than reverse the polarity of one of the direct-S radial modes on Figure 

4.49, I left them as shown because a dual-color display of opposite polarity helps in the 

comparison of direct-S wavefields. For transverse-S wavefields, polarities and wavelet 

attributes are almost identical and support the concept that the direct-S modes produced 

by a vertical vibrator are equivalent to the direct-S modes generated by a horizontal 

vibrator.  

In the Devine Test Study, a horizontal vibrator was used in both the inline and the 

crossline direction as displayed in Figure 1.10 in Chapter 1.  A wavelet attribute 

comparison of wave modes produced by inline and crossline horizontal vibrators is 

displayed in Figure 4.50. The perfect match in the wavelet attributes with opposite 

polarity confirms the equivalence of direct-S modes produced by an inline and crossline 

horizontal vibrator.  
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Figure 4.50: Comparison of wavefields produced by an inline horizontal vibrator (red 

traces) and crossline horizontal vibrator (black traces). Vibrators were 

located at the same shot location. 

RMS amplitudes of direct-S first arrivals produced by a horizontal vibrator (inline 

and crossline) and a vertical vibrator are analyzed and compared in Figures 4.51 and 

4.52.  Wavelet amplitudes were analyzed and calculated in 90-ms windows starting at the 

first-break times of each arriving direct-S mode. For each wave mode, wiggles captured 

by the same window represent the downgoing illuminating wavefield.  
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Figure 4.51: Comparison of the amplitude strengths of radial-S direct modes generated 

by a vertical vibrator and a horizontal vibrator applied in inline and crossline 

directions. 

 

Figure 4.52:  Comparison of the amplitude strengths of transverse-S direct modes 

generated by a vertical vibrator and a horizontal vibrator applied in inline 

and crossline directions. 
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Figures 4.51 and 4.52 show that P-wave energy radiated by a vertical vibrator 

causes complicated amplitude variations in radial-S data due to reverberations between 

shallow interfaces (Fig. 4.51). On the other hand, these amplitude variations are less 

complicated for transverse-S mode (Fig.4.52). In calculating the energy of first arrivals at 

downhole receiver stations, raypaths from source to receivers were assumed to be straight 

lines. Thus the raypath lengths were the same for all seismic sources tested (Figure 1.12). 

Energy variations caused by differences in the directivity of S-waves (Figure 4.52)  were 

not considered. 

Quantifications of the similarities and differences in frequency content of direct-S 

modes produced by vertical-force and horizontal-force vibrators are displayed on Figures 

4.53 through 4.55.  During the frequency analyses of vibrators sources, the same 

principles applied to impact-force sources were followed. However, for vibrator data, 

amplitudes that are more than 5 dB below the peak of an amplitude spectrum are 

considered to be too small to make a significant contribution and are ignored to obtain a 

reasonable indication of the signal-frequency content for each downgoing illumination 

wavefield.  
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Figure 4.53: Frequency analysis of radial-S (a) and transverse-S (b) modes produced by a 

horizontal vibrator applied in the inline direction. Amplitudes of the 

frequency spectra define relative strengths of the radial and transverse 

direct-S mode propagating away from source station 5. 
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Figure 4.54:  Frequency analysis of radial-S (a) and transverse-S (b) modes produced by a 

horizontal vibrator applied in the crossline direction. Amplitudes of the 

frequency spectra define relative strengths of the radial and transverse 

direct-S mode propagating away from source station 5. 
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Figure 4.55:  Frequency analysis of radial-S (a) and transverse-S (b) modes produced by a 

vertical-vibrator source. Amplitudes of the frequency spectra define relative 

strengths of the radial and transverse direct-S mode propagating away from 

source station 5.  
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Frequency and amplitude-level characteristics of direct-S modes produced by 

vibrator sources are summarized on Table-4.3. 

  

 

Table 4.3: Amplitude and frequency attributes of direct-S wave modes produced by 

horizontal and vertical vibrator sources. Amplitudes and frequency 

bandwidths were calculated from Figures 4.53 - 4.55 for shot station 5. 

Similar to previous analyses, calculated energy levels are tabulated as “order of 

magnitude” quantities instead of listing them as specific numerical values. Some key 

principles can be reached from these energy levels and frequency characteristics: 

a. The signal frequency of SR and ST wave modes produced by a horizontal 

vibrator are almost the same signal frequency generated by a vertical vibrator.  

b. Horizontal vibrators produce shear wave energy equivalent to shear wave 

energy produced by vertical vibrator.  

c. Vibrator sources produce shear wave energy having amplitudes 1000 times 

bigger than the amplitudes produced by impact sources (Table 4.2). 

 

 

Amplitude (RMS) Horizontal Vibrator Vertical Vibrator

Radial Shear 107 107

Transverse Shear 10
7

10
7

Frequency Contents (Hz) Horizontal Vibrator Vertical Vibrator

Radial Shear 17-22 22

Transverse Shear 19-21 23
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Chapter 5: Conclusions 

The main goal of my thesis project was to analyze direct-S wave modes generated 

by different types of seismic sources and document the differences and similarities 

among these seismic sources. Data captured by a vertical sensor array at the Devine Test 

Site from various seismic sources have been analyzed in terms of their amplitude 

strengths and frequency contents. In the VSP data acquisition phase, the orientation of 

horizontal geophones is unknown because a borehole geophone rotates horizontally as it 

is lowered into the well, causing azimuthal inconsistency between geophones. To study 

body waves, multi-component VSP sensors were mathematically rotated to change them 

from the inconsistent orientation they had at the time of recording to user-defined, 

consistent-azimuth coordinate system. This geophone rotation allowed SH and SR wave 

modes to be identified.  

Direct-S amplitude strengths were calculated by using a basic procedure of 

calculating RMS amplitudes in a 90-ms windows starting at the first-break times of each 

arriving direct-S mode. Analysis of rotated data shows that amplitudes of radial and 

transverse direct-S modes produced by a vertical impact source, a shot-hole explosive 

and an inclined-impact source differ only slightly. This outcome is confirmed by the 

receiver stations deployed in the deeper half of the vertical geophone array because true 

body waves are captured by these deeper receiver stations; whereas shallow receivers 

record body waves as well as refractions and reverberations from shallow interfaces. The 

signal frequency and energy strength of radial direct-S and transverse direct-S modes 

produced by horizontal-force shear wave sources are essentially the same as the 

frequency and energy strength of radial direct-S and transverse direct-S modes 

propagating from a vertical-impact source.  
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Although there are similarities between horizontal-force shear wave sources and 

vertical impact sources, an obvious spectral notch at approximately  20-Hz in transverse-

S data when the source is a vertical-impact should be taken into account before deciding 

which seismic source should be used. Another point to be considered is that shear wave 

energy produced by a shot-hole explosive decays faster than S energy created by an 

inclined-impact or a vertical impact source and is less energetic for receivers deployed in 

the deeper region of the body-wave domain. Also, while reverberations from shallow 

interfaces cause complicated amplitude variations for radial-S mode data, these amplitude 

variations are less complicated for transverse-S mode data.  

The analysis of VSP data produced by horizontal and vertical vibrators confirms 

that vertical and horizontal vibrator sources generate shear wave modes having 

amplitudes 1000 times stronger than the other energy sources we tested. As a conclusion, 

the work presented in this project demonstrated that it is possible to obtain direct-S data 

of the same quality by using only a vertical-impact source or a shot-hole explosive. The 

arguments given above confirm the idea that it is not necessary to use inclined-impact 

sources or horizontal vibrators to generate shear wave data. S-wave data of the same 

quality produced by a horizontal-force source are provided by simple vertical vibrators, 

vertical-impact sources, and shot-hole explosives.  
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