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Nonradiative decay of excitons is a competing process to Multi-Exciton Genera-

tion (MEG) in nanoparticles. Nonradiative decay of single excitons with sufficient energy

to generate bi-excitons in Cd20Se19 and Cd83Se81 nanoparticles was studied using Tully’s

Molecular Dynamics with Quantum Transitions (MDQT) method and a CdSe pseudopo-

tential. Exciton decay rates increase with increases in nanoparticle temperature and density

of lower-lying excitonic states. There did not appear a significant effect of size on energy

decay rates. The decay dynamics generally follow a gradual decay with transitions between

nearby states. This is punctuated by periodic, short-lived periods of rapid downhill tran-

sitions that result in a large proportion of excess exciton energy being transferred to the

vibrational motion of the nanoparticle. The time for relaxation to below the 2.0Eg cutoff

was on the order of 1ps.
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Chapter 1

Introduction

The development of high efficiency light-harvesting devices has been an area of

intense research interest [2,3]. However, there are several hurdles that these photochemical

and photovoltaic devices must overcome. One such difficulty is the tuning of the absorption

spectrum of the material to maximize overlap with the ambient solar spectrum. Another

serious issue is the transport of charge carriers to the device’s electrodes before carrier

recombination can occur [4]. Finally, there is the issue of loss of energy from excitons with

energy above that of the lowest lying exciton, known as “hot” excitons, which relax rapidly

to the lowest lying excited state due to interaction with phonons [5]. These losses in the

form of heat limit the maximum thermodynamic efficiency of a standard photovoltaic device

to the Shockley-Queisser limit of approximately 32% [6].

One material that shows promise in improving photoconversion devices is that of

semiconducting nanocrystals (NCs) [3, 7]. Such nanocrystal-based devices have been la-

belled third-generation photovoltaics [2,4]. These materials exhibit quantization effects due

to the charge carriers (electrons and holes) being confined to regions of space that are less

than the de Broglie wavelength of the carriers [2]. Nanocrystals that exhibit quantum con-

finement in all three spatial dimensions are referred to as quantum dots. NCs with quantum

confinement in one or two dimensions are referred to quantum films and rods, respectively.

The quantization effects allow for size-tuning optical properties of the nanocrystals, such as

the band gap, and lead to interesting relaxation dynamics [7]. The relaxation dynamics of

quantum dots and the rate of the losses of hot exciton excess energy as heat are the central
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concern in this work.

The excess energy from hot carriers can be dissipated or converted in several ways.

First, the carriers can separate and the excess energy can be captured by the system as

increased chemical free energy or as increased electrical free energy at the device’s electrodes.

Second, a second electron-hole pair can be generated in a process akin to an inverse Auger

recombination if the excess energy is greater than or equal to the band gap of the material.

This is referred to as multiple exciton generation, or MEG [8]. MEG has also been observed

in bulk semiconductors for some time, though the energy minimum energy associated with

MEG is in the UV range, limiting functionality in photovoltaics [2]. It has been proposed

that quantum confinement may enhance MEG in NCs. Finally, in an undesired fashion, the

excess energy can be dissipated as heat via carrier-phonon interactions. This process can be

slower in QDs than in bulk due to the so-called “phonon bottleneck”, where the quantum

confinement puts a larger gap between electronic states than a single phonon can absorb.

Large gains in photoconversion devices can be gained if the first two paths dominate over

the last path [2]. The prospect of such gains in photovoltaic efficiency has made MEG in

semiconducting nanocrystals a very active area of research [2, 3, 9].

Multiple exciton generation has been reported in PbSe, PbS, PbTe, InAs, Si, and

CdSe semiconductor nanocrystals and had been the focus of intense study [9]. This work will

be centered on CdSe quantum dots. Several groups, including Rabani, Franceschetti, and

Prezdho, have been modelling multiple exciton generation rates in these CdSe QDs [5,8–10].

Prezdho has been modelling the nonadiabatic relaxation of Cd6Se6 nanoparticles using

time-domain ab initio methods [11]. While this level of theory accurately models individual

states, it is computationally infeasible to apply it to the large manifold of relevant excitonic

states in larger clusters since the density of states increases with particle size. It is important

to understand the rate of nonradiative decay in these nanocrystals at these relevant energies
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because it is a process that directly competes with MEG. If the nonradiative relaxation rate

exceeds the MEG rate, MEG will not have a significant impact on photovoltaic efficiencies

[8]. To this end, here, the nonadiabatic dynamics of singlet excitons at energies in excess

of twice the band gap, the minimum required for MEG, in CdSe nanopartices are modeled

using a pseudopotential state description for the electronic structure [8, 12] and Tully’s

“surface hopping with fewest switches” algorithm to simulate the dynamics of the system

[13].

This report is organized as follows: First, the model used to simulate the CdSe

nanoparticles will be described. Next, the surface hopping method will be outlined. A

description of the procedure follows. In the next chapter the results of the simulations will

be presented and discussed. Appendices providing detailed information about the derivation

of coupling elements and supplemental figures can be found at the end of the report.
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Chapter 2

Methods

In order to simulate the nonradiative decay of excitons in CdSe nanoparticles at

energies relevant for MEG, Tully’s Molecular Dynamics with Quantum Transitions (MDQT)

method was used [13, 14]. In the first subsection, the electronic structure model will be

described. Next, the MDQT method will be outlined. In the third subsection, the procedure

used for simulating exciton relaxation will be outlined.

2.1 Model Description

The CdSe nanoparticles studied were prepared using the method described in Refer-

ence [15]. The nanoparticles are quasi-spherical and consist of a wurtzite crystal structure.

All Cadmium and Selenide ions have no more than two dangling bonds. The nanoparti-

cles were capped with trioctylphosphine oxide (TOPO) to stabilize the surface and prevent

aggregation [7, 15]. However, the effects of surface passivation were not considered in this

study, as in related previous work [11], beyond the generation of initial atomic configura-

tion. Since the phosphine oxide-Cd interaction is weak, the ability of the capping layer to

dissipate heat is not an important omission [7]. Specifically, two configurations, Cd20Se19

and Cd83Se81, were modeled. Basic information about these nanoparticles can be found in

Table 2.1. Although the model is quite simple, larger nanoparticles require a large amount

of computer memory to model with this method, at least if implemented in a direct manner.

In order to study nonadiabatic dynamics for a large number of possible exciton

states, several approximations were made. First, a semi-classical approximation was made
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Cluster Band gap(eV) Dot Radius(nm) Structure
Cd20Se19 3.80 1.19 Wurtzite
Cd83Se81 2.93 2.05 Wurtzite
Table 2.1: Basic information on studied nanoparticles.

to separate the classical and quantum coordinates. The quantum coordinates include the

excited electron and the corresponding hole. The nuclear coordinates of the system are

treated classically. The energy of the system is defined as

Etotal(r,R) = Eq(r; R) + Ec(R), (2.1)

where r is the set of quantum coordinates and R is the set of classical coordinates [16],

namely, the nuclear coordinates.

2.1.1 Quantum Subsystem

To generate the real-space single-particle pseudo-wavefunctions, a screened Hartree-

Fock Hamiltonian is approximated by a pseudopotential that was parameterized using the

experimentally determined bulk band structure. The full procedure for this process can be

found in Ref. [12]. The general form of the exact quantum Hamiltonian takes the form of

Hq =
∑
i

h1 +
∑
i

∑
j>i

W2 (2.2)

where h1 is a one-body Hamiltonian

h1(x1) = −1

2
∇2 −

∑
α

Zα
r1α

, (2.3)

W2 is two-body potential

W2(x1,x2) =
1

r212
, (2.4)

and the sum indices i and j run over all relevant electron pairs. Here, x1 is the collection of

spatial and spin coordinates for electron 1, and α runs over all atomic centers. A Hartree-
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Fock approximation is made, resulting in a screened one-body Hamiltonian, H1.

H1 = h1 + J −K (2.5)

where J and K are the standard one-electron coulomb and exchange terms, respectively [17].

The quantum Hamiltonian then becomes

Hq =
∑
i

Hi +
∑
i

∑
i<j

(Wij − (Jij −Kij)) =
∑
i

Hi +
∑
i

∑
j>i

U (2.6)

where U is a perturbation consisting of the two-electron repulsion term minus the contribu-

tion of the one-electron Hartree-Fock coulomb and exchange terms already accounted for in

H1. In order to solve for the basis wavefuctions, H1 is approximated using a semi-empirical

pseudopotential:

H1 ≈ −
1

2
∇2

r1 −
∑
α

vα(r1 −Rα) (2.7)

where H1 is the pseudopotential-approximated one-electron Hamiltonian, vα(r − Rα) is

the empirical pseudopotential for atom α, and Rα is the position of atom type α. These

pseudopotentials were previously fitted to reproduce the CdSe bulk band gap by Rabani and

co-workers and are defined in Ref [12]. The resulting single particle Schrödinger equation,

Hiθi = εiθi (2.8)

where Hi is H1 for particle i and εi is the energy of the single-particle basis function

θi [12], was solved in real space by the filter diagonalization technique [18] for all occupied

states and states up to 5.0Eg above the Fermi energy level. We define the unit Eg as the

energy associated with the nanoparticle band gap. The generation of these single particle

wavefunctions was carried out by Rabani.

In order to describe excitonic states, we first define the ground state wavefunction

as

|ψground〉 =
∣∣χ1χ1 · · ·χoccχocc · · ·χFermiχFermi

〉
, (2.9)
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where occ denotes some occupied state, Fermi is the highest occupied orbital and χ is a

spin-orbital. The spin orbital χ is defined as

χi(x1) = θi(r1)α(ω1) (2.10a)

χi(x1) = θi(r1)β(ω1) (2.10b)

where r1 is the collection of spatial coordinates of electron 1, and ω1 is the spin coordinate

of electron 1. The spin function α corresponds to a spin of +1
2 and β corresponds to a spin

of −1
2 . An excitonic state will be denoted as

|ψex
occ〉 =

∣∣χ1χ1 · · ·χexχocc · · ·χFermiχFermi

〉
(2.11)

where the excited electron has been excited from the occ occupied spin-orbital to the ex

excited spin-orbital. The modeled excitons are in a singlet state. An excitation from occ to

orbital ex can occur from either occ or occ as in the below equation

|ψex
occ〉 =

∣∣χ1χ1 · · ·χexχocc · · ·χFermiχFermi

〉
(2.12a)

|ψex
occ〉 =

∣∣χ1χ1 · · ·χoccχex · · ·χFermiχFermi

〉
. (2.12b)

In fact, neither situation results in a pure spin state if written as a single determinant [17].

Instead, we need a mixture of the two determinants as

|sψex
occ〉 =

1√
2

(∣∣ψex
occ

〉
+ |ψex

occ〉
)
. (2.13)

The ground state energy, Eground, is the standard form

E(r; R) = 〈ψground(r; R)|Hq(r; R)|ψground(r; R)〉. (2.14)

The parametric dependence on R in (2.14) is a result of taking the Born-Oppenheimer

approximation. We define the exciton energy as the difference between the excited electron

and the corresponding hole state relative to the energy of the ground state. The set of

exciton states simulated was selected based on the energies of the excitonic states relative

to the band gap energy.
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2.1.2 Classical Subsystem

The classical energy, Ec, is written as

Ec(R) =

N∑
i=1

MiṘ
2
i

2
+ V c(R), (2.15)

where Mi is the mass of nucleus i, V c is the classical potential energy surface, and N is the

number of Cd and Se nuclei in the nanoparticle. V c in this case is

V c =
∑
α

∑
β>α

V c
αβ (2.16)

where

V c
αβ =

qαqβ
rαβ

+ 4εαβ

[(
σαβ
rαβ

)6

−
(
σαβ
rαβ

)12
]
, (2.17)

σ is the radius of the potential well, ε is the well depth, rαβ refers to the distance between

atoms α and β. The interatomic pair potentials for CdSe, V c
αβ, are defined in Reference [1].

The values of the parameters can be found in Table 2.2. The Lorentz-Berthelot combining

rules are used to find σ and ε for Cd-Se pairings, as shown below [1]:

σCd−Se =
σCd + σSe

2
(2.18a)

εCd−Se =
√
εCdεSe. (2.18b)

The classical coordinates R evolve according to the following equation of motion.

MR̈ = Fc = −∇RV
c(R). (2.19)

Generally speaking, there is an electronic F q = −∇R〈ψ(r; R)|Hq(r; R)|ψ(r; R)〉

contribution to the force. However, the effect of a single electron excitation delocalized over

the nanoparticle is taken to have a negligibly small effect on the potential energy surface

of the nuclear subsystem. The quantum subsystem will only affect the classical coordinates

via momentum boosts during electronic transitions. This aspect will be discussed in detail

below.
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atom q(e−) σ(Å) ε(K)
Cd 1.18 1.98 16.8
Se -1.18 5.24 14.9

Table 2.2: Potential energy parameter values [1].

2.2 Surface Hopping Method

As mentioned previously, Tully’s MDQT was used to simulate the exciton dynamics

in our model system [13]. The quantum subsystem evolves in time according to the standard

time-dependent Schrödinger equation

i~
∂ψ(r, t; R)

∂t
= Hq(r; R)ψ(r, t; R). (2.20)

In principle, the basis set can be any set of orthonormal basis functions [13]. In this surface

hopping algorithm, the primary wavefunction, ψ, is propagated continuously in time. The

primary wavefunction is given as:

ψ(r, t; R) =
∑
i

ci(t)φi(r; R(t)), (2.21)

where we assume that atomic motion can be described by some classical trajectory, which

is undetermined at this point, so that R = R(t). The Hamiltonian Hq(r; R) then becomes

time dependent through its dependence on R(t). In the above equation, φi are the excitonic

basis wavefunctions defined in equation 2.13. The sum index i runs over all relevant singlet

excitonic states such that

|φi〉 = |sψexocc〉. (2.22)

Here, the s superscript denotes a singlet state as defined by equation 2.13 and the index i

corresponds to a unique combination of occupied occ and excited ex states. The determina-

tion of relevant states is discussed in Section 2.3. Substituting (2.21) into (2.20), multiplying

by 〈φj |, integrating over r, and dividing by i~ yields

ċk = −
∑
j

cj

(
i

~
Vkj + Ṙ(t) · dkj

)
, (2.23)
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where

Vij = 〈φi(r; R(t))|Hq(r,R(t))|φj(r; R(t))〉 (2.24)

and

dij = 〈φi(r; R(t))|∇Rφj(r; R(t))〉 (2.25)

where, as usual, only the off-diagonal terms of dij are non-zero and Vij generally includes

coulomb and exchange terms. As previously discussed, the wavefunctions are singlet states.

Our basis functions do not have an explicit dependence on time. Instead, they

depend parametrically on the nuclear coordinates R, which do have a time dependence.

Therefore, the derivative of the basis functions with respect to time must employ the chain

rule as follows∣∣∣∣∂φj(r; R(t))

∂t

〉
=

∣∣∣∣∂φj(r; R(t))

∂R

〉
· ∂R(t)

∂t
= Ṙ(t) · ∇R |φj (r; R(t))〉 . (2.26)

Multiplication of equation 2.26 by 〈sψk(r; R(t))| and using equation 2.25, we obtain〈
φk(r; R(t))

∣∣∣∣∂φj(r; R(t))

∂t

〉
= Ṙ(t) · dkj . (2.27)

We neglect the effect of nuclear fluctuations on Hq and |sψexocc〉. The thermal fluc-

tuations of the nuclear positions are small compared to the size of the entire nanoparticle

while the excitonic wavefunctions are largely delocalized. By extension, dij , and Vij become

time-independent as well. The use of this approximation facilitates the calculation of exci-

ton dynamics of the nanoparticles because it is unnecessary to solve the Schrödinger wave

equation at later time steps. Additionally, the coupling elements do not need to be recal-

culated. With this approximation, the quantum and classical subsystems are only coupled

through the classical trajectory R(t).

It is worth noting that because these |φi〉 states are singlet exciton states for a

specific electron/hole pair, the elements of Vij and dij are evaluated using equation 2.13.
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Looking at the electron and hole components of our basis functions as |φi〉 = |sψra〉 and

|φj〉 = |sψsb〉 (equation 2.12) , the off-diagonal elements in equation 2.24 become

(Vij)(a6=b and r 6=s) = 2(varbs)− vabsr (2.28)

(Vij)(a6=b,r=s or r 6=s,a=b) = varbs (2.29)

where varbs is the coulomb integral, vabsr is the exchange integral, and the integral notation

is as follows

varbs =

∫ ∫
χ∗a(x1)χr(x1)

1

r12
χ∗b(x2)χs(x2)dx1dx2. (2.30)

The diagonal components in equation 2.24 are simply the associated energy eigenvalues.

The off diagonals are essentially 〈sψra|U |sψsb〉, where U is defined in equation 2.6.

In order to calculate the nonadiabatic coupling vectors dij in equation 2.25, the

Hellmann-Feynman expression is used [14]. Taking the gradient of the quantum Hamiltonian

element between states i and j with respect to R, we obtain

∇R [〈φi|H1|φj〉] = 〈φi|∇RH1|φj〉+ 〈∇Rφi|H1|φj〉+ 〈φi|H1|∇Rφj〉 = 0. (2.31)

The basis functions are eigenvectors of H1, so above equation becomes

∇R [〈φi|H1|φj〉] = 〈φi|∇RH1|φj〉 − [εj − εi] 〈φi|∇Rφj〉 = 0, (2.32)

where εj is the energy of single particle state j. The the only term within H1 that depends

on R is the pseudopotential term vα. Equation 2.32 can then be rearranged as

〈φi(r; R)|∇Rφj(r; R)〉 = dij =
∑
α

〈φi|∇Rvα(r−Rα)|φj〉
εj − εi

. (2.33)

As the primary wavefunction evolves continuously, the MDQT reference wavefunc-

tion remains resolved in one of the basis functions and will periodically make a discrete,

instantaneous hop from φi → φj .
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These sudden transitions between states is a feature of surface hopping algorithms.

Tully’s “fewest switches” algorithm also results in sudden transitions in regions of coupling.

However, a swarm of trajectories will result in a flow of flux from one state to another within

regions of coupling between states [13] because different trajectories within the swarm make

the transitions at different times. It does so with a minimum number of quantum hops per

time step. The probability of switching from current state i to another state j in the interval

t→ (t+ ∆t) is

gij =
bji(t+ ∆t)∆t

aii(t+ ∆t)
, (2.34)

where

aij ≡ cic∗j , (2.35)

aii is the population in state i, and

bji ≡
2

~
Im(a∗Vkl)− 2Re(a∗jiṘ(t) · dji). (2.36)

In the present case, our pseudopotential-based basis is an approximate adiabatic

basis, and the off-diagonal elements Vij only serve to correct this approximation. Hence,

“hops” that might be induced by Vij would be unphysical and energy differences can not

be coupled to the nuclear coordinates. Since we are in a nonadiabatic scheme, there is no

mechanism for energy conservation. In this case, we use the coulomb coupling, Vij , only

in the propagation (Eq. 2.23). The Vij terms indirectly, then, affect the hopping between

excitonic states. The hopping probability is then computed using the nonadiabatic coupling

with

bji = −2Re(a∗jiṘ(t) · dji) (2.37)

In this algorithm, if gi→j is less than zero, then it is reset to zero [14]. It also needs

to be noted that ∆t must be chosen such that the populations do not significantly change
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within the interval. That is,

aii(t+ ∆t)− aii(t) ≈ ȧii∆t. (2.38)

Because of the extreme separation of quantum and classical coordinate time scales in

this system, the quantum coordinates should be integrated by a much smaller time interval

δ than the classical system; we use δt/∂t = 200. This allows for accurate integration of the

quantum coordinates [13, 14]. Additionally, the Condon approximation is in use. Due to

the separation in time scales, the transitions are taken to be instantaneous with respect to

the nuclear coordinates.

In order to select from the possible hops with the proper probability weightings, a

random number with a uniform distribution over (0, 1), ζ, is chosen. The different switching

probabilities are then ordered along the range [0,1]. A hop from state 1→ 4 would occur if

g1,2 + g1,3 < ζ < g1,4. Should the sum of the calculated switching probabilities be greater

than 1 due to the linear approximation in equation 2.38, the values are renormalized such

that the total probability equals 1 [14].

Should a hop be successfully selected, the energy transfer between the quantum

and classical subsystems occurs in the direction of the nonadiabatic coupling with velocity

rescaling such that energy is conserved [13]. If ∆Eq > 0 (“upwards” hop), the nuclear

velocities must be checked to ensure that there is enough kinetic energy parallel to the dij

vector to supply this energy. If this is not the case, the hop is rejected and the classical

velocities reverse in the direction of the nonadiabatic coupling [14]. Specifically, the new

velocities resulting from a switch from singlet exciton state i to state j, Ṙ
new

, can be found

to be

Ṙ
new
α = Ṙα − γij

dαij
mα

, (2.39)
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where dαij is the nonadiabatic coupling vector associated with atom α,

γij =
bij ±

√
b2ij + 4aij [εi − εj ]

2aij
, (2.40)

aij =
1

2

∑
α

|dij |2

mα
, (2.41)

and

bij =

N∑
α

Ṙα · dij . (2.42)

Addition applies in equation 2.40 when bjk < 0, otherwise it is subtraction. Note, that the

transition only occurs if b2ij + 4aij [εi(R) − εj(R)] ≥ 0. If this is not the case, the hop is

rejected and γij = bij/aij . This new value of γ serves to reverse the velocity along dij [14].

All hops in this scheme are dictated directly by the amplitudes in the primary wave-

function and the nonadiabatic coupling elements between initial and final states. Therefore

(see Appendix A), only electron or hole hops are possible, and not both in a single time

step δt.

2.3 Procedure Outline

Step 1. Several ranges of initial excitation energy are chosen for each nanoparticle

configuration based on the size of nanoparticle’s band gap. MEG is no longer possible for

excitons with less than 2.0Eg of excitation energy. Therefore, in this application, we do

not consider excitons with initial excitation energies of less than 2.0Eg and simulations are

terminated upon exciton decay below this energy [2,8]. Within our framework, all excitonic

states that correspond to an electron and hole pair that differ in energy by less than 2.0Eg

are considered to be cutoff states. Both computational expense and the lack of relevance

of very high energy excitons in solar cell applications play a role in determining the upper

limit of excitation energies. In general, the possible initial exciton states were sorted into
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bins of 0.1Eg width. For Cd20Se19, bins were centered at 3.0Eg, 3.5Eg, and 4.0Eg. For

Cd83Se81, 2.5Eg and 2.8Eg bins were used. The upper bound on the exciton basis was

set by adding a 0.05Eg buffer above the initial energy. The larger size and corresponding

higher density of states made calculations at higher energy levels quite time consuming.

There are around 16,000 possible exciton states in the 1.5-4.0Eg range for Cd20Se19, and

about 55,000 possible exciton states in the 1.5-3.5Eg range for Cd83Se81. Moreover, the

number of electron-electron interactions grows as the number of relevant exciton states

squared. Within each bin, the different exciton states were ordered from highest to lowest

oscillator strength. This was done because a higher oscillator strength corresponds to a

stronger adsorption [17]. For each group, the 30 brightest excitonic states within ±0.5Eg of

the target energy were chosen in order to get reasonably smooth averages. The 3.0Eg group

for Cd83Se81 contains an extra 10 trajectories because these were the smallest simulations

and were performed first. It was later determined that the extra trajectories did not provide

significant extra information, so they were omitted in the other groups. These states are

treated as singlets as defined by equation 2.13.

Step 2. Because the input configurations for Cd20Se19 or Cd83Se81 were generated

with the inclusion of surface-ligand potentials that are ignored in the study [15], it is neces-

sary to optimize the nanoparticle configuration. This is achieved by integrating the classical

equations of motion with periodic quenching of the nuclear velocities until a minimized con-

figuration is achieved. Once the configuration is minimized, the system is equilibriated at

300K using Boltzmann sampling every 10 fs for 500 fs.

Step 3. Normal time evolution of the simulation begins. First, the classical coordi-

nates are integrated in time from t to (t+ ∆t) using the velocity-verlet algorithm and using

a ∆t of 1.0 fs [19].

Step 4. The quantum coordinates are integrated from t to (t+∆t) using the Runge-
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Kutta-Gill 4th order algorithm [19]. This integration is carried out over many smaller sub-

steps in order to maintain accurate integration across the multitude of electronic states. In

this case, δt = ∆t/200 [14].

Step 5. The probabilities for the reference state to make a hop are generated

using equation 2.34. A pseudorandom number with a uniform distribution across (0, 1) is

generated and compared with the switching probabilities in the manner discussed above [14].

Step 6. If no hop is selected, the procedure repeats from Step 3. If a hop is selected,

the velocity must be rescaled according to equation 2.40 and the above procedure.

Step 7. A check is made to see if the exciton has decayed to below the afore-

mentioned 2.0Eg threshold. If this condition has been met, the trajectory is terminated.

Otherwise, the procedure returns to Step 3 and continues.
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Chapter 3

Results and Discussion

In this section, we describe the results of the simulations discussed in the previous

section. Analysis includes first a discussion of the overall rate of exciton energy loss followed

by a discussion of the dynamics of this exciton decay. The trajectory groups and number

of trajectories in each group can be found in Table 3.1.

The average electronic trajectories and cluster temperatures for the groups of exciton

trajectories for Cd20Se19 and Cd83Se81 discussed in the previous section can be seen in

Figure 3.1. The temperature increase seen in this figure is a direct result of the energy

transfer from the exciton to the classical atomic coordinates via the nonadiabatic couplings.

This increase is more pronounced in Cd20Se19 than in Cd83Se81 due to both an increased

amount of initial energy to transfer and a fewer number of atomic coordinates to accept the

energy. The average electronic trajectory curves in Figure 3.1 is the average of all individual

electronic trajectories with an exciton energy greater than twice the band gap within that

particular cohort of trajectories. This method of averaging, while useful for tracking the

Nanoparticle Starting energy Number of Trajectories
Cd83Se81 2.5Eg 30

2.8Eg 30
3.0Eg 40

Cd20Se19 3.5Eg 30
4.0Eg 30

Table 3.1: Trajectory groups. All trajectories within each group are the brightest
states located within ±0.05Eg of the listed starting energy.
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overall rate of decay, does become more weighted toward the surviving trajectories at longer

times. For this reason, Figure 3.1 is cut off at 700fs to mitigate this issue.

For a more detailed look at the data, the full electronic trajectories for Cd20Se19

can be found in Figures B.1 and B.2. The corresponding plots for Cd83Se81 can similarly

be found in Figures B.3 and B.4. In these figures, some of the excitons failed to decay

below the 2.0Eg threshold before the simulation hit its wall-clock time. It was determined

that since the behaviour of trajectories appear to be consistent across the range of initial

exciton energies studied for this cluster, additional resources would not be used on these

simulations.

Figure 3.1: Average electronic energy (thick lines) and nanoparticle temperature (thin
lines) vs time. Green, orange, and violet corresponds to Cd20Se19 trajectory cohorts
starting at 4.0Eg, 3.5Eg, and 3.0Eg, respectively. Red and blue curves correspond to
Cd83Se81 trajectories starting at 2.8Eg, and 2.5Eg.
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3.1 Rate of Exciton Energy Loss

As can be seen in Figure 3.1, the rate of exciton energy loss to the atomic nuclei is

generally consistent across all of the Cd20Se19 cohorts and the group of Cd83Se81 trajectories

with a 2.8Eg (8.2eV) initial exciton energy. The lone exception to the otherwise consistent

slope of exciton energy loss occurs with lowest energy group, corresponding to Cd83Se81

with an initial exciton energy of 2.5Eg (7.325eV). This cohort has a slower rate of exciton

decay than the other sets of trajectories. However, it should be noted that the average

energy loss of the 2.8Eg initial exciton energy cohort slows and converges with the rate of

the 2.5Eg initial exciton energy cohort as it approaches the sub-2.5Eg energy range (Figure

3.2). This difference in electronic energy loss lies in the lower density of states found in the

sub-2.5Eg energy range, which can be seen in Figure 3.3.

A similar effect can be seen with the lowest energy cohort of Cd20Se19 in Figure 3.1.

The average rate of decay decreases as the number of lower-laying states decreases. Figure

3.4 shows that the number of Cd20Se19 exciton states below a given energy level increases

much more rapidly above approximately the 2.5-2.7Eg range. This trend is the same for

Cd83Se81, though with a much larger total number of states.

In summary, the average exciton energy loss per unit time is qualitatively the same

across all cohorts that have a suitably high number of lower-lying states. It is particularly

interesting that this trend generally holds true even between cluster sizes. The lower density

of states in Cd20Se19 than in Cd83Se81 is apparently offset by the increased heating observed

in Cd20Se19; this stronger increase in velocities increase nonadiabatic coupling terms (equa-

tion 2.26). Further evidence of this temperature effect on the rate of exciton decay can be

seen in Figure 3.1, where the 2.8Eg cohort of Cd83Se81 trajectories penetrates deeper into

the lower density of states regime before slowing than the corresponding 2.5Eg cohort. The

proportion of excitons with energies above the 2.0Eg threshold can be seen in Figure 3.5.
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Figure 3.2: The average exciton energy vs. time curves for Cd83Se81 seen in Fig. 3.1
with the 2.8Eg initial exciton energy cohort shifted by -200fs to highlight convergent
slopes at similar energies.

Once again, the slopes of the curves are qualitatively the same. Of note, the 2.8Eg initial

energy cohort actually had trajectories decay faster below the energy threshold than the

2.5Eg counterpart. This further underscores the effects of temperature on the dynamics of

the system, as will be discussed further below.

3.2 Dynamics of Exciton Relaxation

The character of the exciton relaxation in Cd20Se19 and Cd83Se81 follow similar

patterns. One can qualitatively notice these patterns from Figures B.1-B.4 in the Appendix

B, which show individual trajectories. In all of the bright initial excitonic states, the electron
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Figure 3.3: Density of exciton states with respect to energy for Cd83Se81. The green
curve corresponds to the total number of exciton states that have an energy at or
below the given energy. The boxes correspond to the number of excitonic states
within each 0.1Eg bin.

was excited from an occupied orbital relatively close to the band edge. We observe that the

electron undergoes a gradual decay punctuated by brief periods with a very rapid sequence

of transitions. The hole follows a somewhat similar decay pathway upwards to the HOMO,

though the periods of rapid transitions are less pronounced. This difference is mostly due

to the fact that the holes starts within 1eV of the band edge in Cd83Se81 and within 2eV

of the band edge in Cd20Se19.

Within the framework of Tully’s fewest switches algorithm, the periods of rapid or

large gap transitions appear as a single large “hop” [13]. The “hop” size distribution for

the 2.8Eg cohort of Cd83Se81 trajectories are informative and can be found in Figure 3.6.
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Figure 3.4: Density of exciton states with respect to energy for Cd20Se19. The green
curve corresponds to the total number of exciton states that have an energy at or
below the given energy. The boxes correspond to the number of excitonic states
within each 0.1Eg bin.

The same plot for the 3.5Eg cohort of Cd20Se19 can be found in Figure 3.7. Corresponding

plots for the remaining simulations can be found in the supplemental data, Figures B.5-B.7.

These plots are all similar to the two shown.

Looking at Figures 3.6 and 3.7, the vast majority of transitions are between closely

neighbouring states. However, the number of downward transitions of this size do not signif-

icantly outnumber upward transitions. A large portion of these ±1 transitions are a result

of back-and-forth “bouncing” between neighbouring states. This trend is more pronounced

in the hole relaxation. The lower number of states within the valence band allows the strong

nonadiabatic couplings between some of the neighbouring states to influence the dynamics
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Figure 3.5: Simulated surviving fraction of excitons with exciton energy greater than
2.0Eg. The 4.0Eg cohort of Cd20Se19 is not shown; the shortest decay time observed
exceeds 1ps.
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Figure 3.6: Distribution of hop sizes in absolute number of hole states (top) and
virtual electron states (bottom) for 2.8Eg initial exciton energy cohort of Cd83Se81
trajectories. The image has been truncated vertically in order to better visualize the
tails of the distribution. The non-truncated image can be seen in the inset.
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Figure 3.7: Distribution of hop sizes in absolute number of hole states (top) and
virtual electron states (bottom) for 3.5Eg initial exciton energy cohort of Cd20Se19
trajectories. The image has been truncated vertically to better visualize the tails of
the distribution. The non-truncated image can be seen in the inset.
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to a greater degree.

A significant portion of the exciton energy is transferred to the classical coordi-

nates through a handful of large, low-probability transitions. There is an approximately

200fs delay before these states are significantly populated. Clearly, there must be adequate

nonadiabatic coupling between states to motivate such a transition. The magnitude of the

square of the nonadiabatic couplings (equation 2.25) are considered in Figures 3.8 and 3.9.

There are non-negligible couplings between widely separated states that allow these large

transitions to occur.
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Figure 3.8: The square of the nonadiabatic couplings between hole states (top) and
between electron states (bottom) for Cd83Se81. The color legend has been truncated
so detail can be viewed. The non-truncated plots can be found in Appendix B. The
maximum reaches 48000 for hole states and 31000 for electron states
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Figure 3.9: The square of the nonadiabatic couplings between hole states (top) and
between electron virtual states (bottom) for Cd20Se19. The color legend has been
truncated so detail can be viewed. The non-truncated plots can be found in Appendix
B. The maximum reaches 7800 for hole states and 680 for electrons states.
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Chapter 4

Conclusions

We have simulated singlet exciton decay in Cd20Se19 and Cd83Se81 using MDQT

and Rabani’s model for CdSe [12]. The simulations were initiated at 300K and with exciton

energies in the 2.5-4.0Eg energy range. The exciton cooling seen in Cd20Se19 and Cd83Se81

simulations was on the order of 1ps and exhibited a dependence on the exciton density

of states and the temperature of the cluster. These factors seemed to generally balance

each other out, as evidenced by the relatively consistent rate of relaxation across both

cluster sizes and the initial exciton energy ranges. The time needed for an exciton to relax

below 2.0Eg, the point where Multiple Exciton Generation is no longer possible, is highly

dependent on the initial exciton energy.

The exciton relaxation seems to follow a gradual pattern of decay punctuated by

brief and intermittent periods of rapid relaxation. In both clusters, the average rates of

exciton cooling slowed as the number of lower-laying states rapidly drops off near the 2.0Eg

cutoff. The rate of exciton relaxation also appeared to increase with temperature, raising

the values for the nonadiabatic couplings between states.

Other structures were not modelled in this study. The large number of exciton

states and the full matrix of off-diagonal Hamiltonian terms led to memory and CPU time

constraints. The memory constraints were the most problematic for Cd83Se81 due to its

higher density of states. The increase in the density of states with cluster size does outweigh

the decrease in the band gap with increasing size. Large-memory computer systems would

in principle be able to model larger clusters, such as Cd151Se147 and Cd232Se251. Analogous
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pair potentials and electronic pseudopotentials already exist for zinc-blende CdSe nanopar-

ticles, so these systems would be a natural extension for this study [1, 12]. Additionally,

this model could be applied to several other II-VI semiconducting nanocrystals, such as

InAs [8].
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Appendix A

Singlet-Singlet Coupling Elements

In this section, the coupling terms will be defined. Much of the mathematical

framework is based on the “Many Electron Wave Functions and Operators” chapter of

Szabo and Ostlund’s Modern Quantum Chemistry book [17].

The ground electronic state is a determinant of occupied single electron basis func-

tions, as defined by equation 2.9. Exciton determinants were defined in equation 2.11.

Because the spin-orbitals are orthonormal, the determinant |Ψr
a〉 is orthogonal to |Ψs

b〉 for

all b 6= a and r 6= s [17]. As a result,

〈
Ψr
a

∣∣Ψr
b 6=a
〉

=
〈

Ψr
a

∣∣∣Ψr 6=s
a

〉
=
〈

Ψr
a

∣∣∣Ψr 6=s
a6=b

〉
= 0. (A.1)

Here, a, b refer to hole states, r, s refer to excited electron states, and i, j are generalized

indexes.

As was discussed previously in Section 2.1.1 (equation 2.12), the electronic states

studied were all defined as singlet states. This means that the particular coupling element

〈i|O|j〉 takes the form of

〈sψra|O|sψsb〉 =
1

2

(
〈ψra|+ 〈ψra|

)
O(|ψsb〉+ |ψs

b
〉) (A.2)

=
1

2

(
〈ψra|O|ψsb〉+ 〈ψra|O|ψsb〉+ 〈ψra|O|ψsb〉+ 〈ψra|O|ψsb〉

)
. (A.3)

Because there is no direct difference between the spin-up and spin-down states within the

model in use, the first and fourth terms in equation A.3 are identical to each other. The

same applies to the second and third terms. The spin states only affect the final form of the
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electronic couplings. The final result can then be written matching spin and non-matching

spin terms:

〈sψra|O|sψ
s
b〉 =

1

2
(2〈ψra|O|ψsb〉+ 2〈ψra|O|ψsb〉). (A.4)

A.1 Nonadiabatic Coupling

The nonadiabatic coupling vector is defined generally in equation 2.25 and more

specifically in equation 2.33. Because the overlap between two state determinants is zero

if a 6= b or r 6= s and the ∇R operator can only operate on one state, dij = 0 if two state

determinants differ by more than one term. For example, consider 〈ψra|d|ψra〉. The two

determinants, in maximum coincidence are:

|ψra〉 = | · · ·χrχa · · · 〉

|ψra〉 = | · · ·χaχr · · · 〉

Substituting these determinants into 2.33, we obtain:

〈sψra(r; R)|∇R
sψra(r; R)〉 =

∑
α

〈χrχa|∇Rvα(r−R)|χaχr〉
εj − εi

, (A.5)

which, written out becomes

∑
α

〈χrχa|∇Rvα(r−R)|χaχr〉
εj − εi

=
1

εj − εi

∑
α

(∫
χ∗r(x1)∇Rvα(r1 −R)χa(x1)dx1

)∫
χ∗a(x2)χr(x2)dx2 = 0. (A.6)

As can be seen in the right-hand integral, ∇Rvα(r1 − R) does not affect coordinate x2.

Since we use an orthonormal basis, this integral has a zero value. This will be the case

any time the two determinants in question differ by more than one term. Additionally, if

〈φi|φi〉 = 1, taking the gradient of φi with respect to R, like in equation 2.25, results in

〈φi|∇R|φi〉 = 0.

33



It should also be noticed that there is no way to have the spin-up and spin-down

determinants to differ by less than two terms. In this sense, only the spin-matching case in

equation A.4 has a non-zero value.

The last feature to discuss with respect to dij is the situation in which the two spin

determinants in question have the same excited electron state. A perturbation can bring

the two determinants into maximum coincidence as below.

|ψra〉 =| · · ·χrχa · · ·χbχb · · · 〉 (A.7a)

|ψrb 〉 = | · · ·χaχa · · ·χrχb · · · 〉 = −| · · ·χrχa · · ·χaχb · · · 〉 (A.7b)

This negative 1 carries through the calculation. These two determinants now differ by one

term. In summation,

∑
α

〈sψra|∇Rvα(r−R)|sψsb〉 =
∑
α

(
1

εr − εs
〈χr|∇Rvα|χs〉δab −

1

εa − εb
〈χa|∇Rvα|χb〉δrs

)
(A.8)

where δab is the Kronecker delta function for a and b. Using a single index for each exciton

state, we obtain the definition for dij seen in equation 2.25.

A.2 Off-diagonal Coulomb Couplings

As discussed in Section 2.2, the off diagonal coulomb couplings, Vij , are defined

by 2.24. Again, the off-diagonal elements of the Hamiltonian reduce to the element of U,

which is defined in equation 2.6. This is the two-electron term minus the H1 coulomb and

exchange terms (J1 and K1, respectively) found in equation 2.6.

These one-electron J and K terms between general states j and k operating on

spin-orbital χj can be expressed as

Jk(x1)χj(x1) =

(∫
dx2χ

∗
k(x2)r

−1
12 χk(x2)

)
χj(x1) (A.9)
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and

Kk(x1)χj(x1) =

(∫
dx2χ

∗
k(x2)r

−1
12 χj(x2)

)
χk(x1). (A.10)

Since these one-electron coulomb and exchange terms are one-electron operators,

they follow the same general rules as the nonadiabatic coupling vector discussed in the

previous section. These operators are zero if the two spin-determinants differ by more than

one term. Therefore, these operators do not directly couple states with opposing spin. The

only difference between these operators and the nonadiabatic coupling vector is the diagonal

terms are not zero. The results of Jk and Kk operating of state χk is

Jk(x1)χk(x1) =
∑
i

(∫
dx2χ

∗
k(x2)r

−1
12 χk(x2)

)
χi(x1) (A.11)

and

Kk(x1)χk(x1) =
∑
i

(∫
dx2χ

∗
k(x2)r

−1
12 χi(x2)

)
χk(x1). (A.12)

The two-electron coulomb and exchange terms are simply:

〈χrχa|W2|χsχb〉 = varbs − vabsr (A.13)

where the vijkl notation is defined previously in equation 2.30. Within our framework,

these integrals can couple any two exciton states. The only non-obvious behavior of these

integrals is that the exchange operator is zero in the case of opposing spins. Since the

exchange operator exchanges electron coordinate x1 and x2, an overlap of opposing spin

states occurs. Because of this, the exchange integrals for opposing spins is

vabsr =

∫ ∫
dx1dx2χ

∗
a(x1)χb(x1)r

−1
12 χ

∗
s(x2)χr(x2) = 0. (A.14)

Applying these results to equation A.4, we obtain the following results for a 6= b and

r 6= s:

〈χrχa|W2|χsχb〉 = 2varbs − vabsr. (A.15)
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Similarly, if the determinants differ by one term, such as if a = b,

〈χrχa|W2|χsχa〉 =
∑
j

2vjrjs − vjjsr. (A.16)

Finally, the diagonal elements are

〈χrχa|W2|χrχa〉 =
∑
ij

2vjiji − vjjii. (A.17)

When the two determinants differ by less than two terms, W2 is functionally identical

to J and K. The only difference between W2 and J −K is that the opposing-spin coulomb

term in equation A.4 is non-zero. The results of W2 − (J − K) are summarized in Table

A.1.

〈sΨr
a|U |sΨs

b〉 a = b a 6= b
r = s varar varbr
r 6= s varas 2varbs − vabsr

Table A.1: Elements of U = W2 − (J1 −K1) for different combinations of excitonic
determinants. The notation for the integral vijkl is defined in equation 2.30.
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Appendix B

Supplemental Data

Figure B.1: Individual electronic trajectories for Cd20Se19. The top group (4.0Eg
initial exciton energy) ends early due to simulation wall clock limits. Thicker lines
correspond to average energy of surviving excitons within that cohort, the same shown
in Figure 3.1.
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Figure B.2: Individual electronic trajectories for Cd20Se19 with electron and hole
trajectories separated.
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Figure B.3: Individual electronic trajectories for Cd83Se81.The thicker lines corre-
spond to the average energy of surviving excitons within that cohort, the same shown
in Figure 3.1.
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Figure B.4: Individual electronic trajectories for Cd83Se81 with electron and hole
trajectories separated.
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Figure B.5: Distribution of hop sizes in absolute number of hole states(top) and
virtual electron states (bottom) for 2.5Eg initial exciton energy cohort of Cd83Se81
trajectories. The image has been truncated vertically order to better visualize the
tails of the distribution. The unscaled image can be seen in the inset.
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Figure B.6: Distribution of hop sizes in absolute number of hole states (top) and
virtual electron states (bottom) for 3.0Eg initial exciton energy cohort of Cd20Se19
trajectories. The image has been truncated vertically to better visualize the tails of
the distribution. The non-truncated image can be seen in the inset.
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Figure B.7: Distribution of hop sizes in absolute number of hole states (top) and
virtual electron states (bottom) for 4.0Eg initial exciton energy cohort of Cd20Se19
trajectories. The image has been truncated vertically to better visualize the tails of
the distribution. The non-truncated image can be seen in the inset.
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Figure B.8: The square of the nonadiabatic couplings between hole states (top) and
electron virtual states (bottom) for Cd83Se81. This is the same data seen in Figure
3.8, though the key now spans the entire range of d2 to highlight the strong coupling
between nearby states.
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Figure B.9: The square of the nonadiabatic couplings between hole states (top) and
electron virtual states (bottom) for Cd20Se19. This is the same data seen in Figure
3.9, though the key now spans the entire range of d2 to highlight the strong coupling
between nearby states.
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