
Copyright

by

John Edwin Freeze

2014

The Thesis committee for John Edwin Freeze

Certifies that this is the approved version of the following thesis:

Non-Myopic Sensor Management
Framework for Ballistic Missile Tracking

Applications

Approved By
Supervising Committee:

Maruthi Akella, Supervisor

Behcet Acikmese

Non-Myopic Sensor Management

Framework for Ballistic Missile Tracking

Applications

by

John Edwin Freeze, B.S.

Thesis

Presented to the Faculty of the Graduate School

of the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

The University of Texas at Austin

August, 2014

Non-Myopic Sensor Management

Framework for Ballistic Missile Tracking

Applications

by

John Edwin Freeze, M.S.

The University of Texas at Austin, 2014

SUPERVISOR: Maruthi Akella

When hostile missile raids are launched, protecting allied assets requires

that many targets be tracked simultaneously. In these raids, it is possible

that the number of missiles could outnumber the sensors available to measure

them. In these situations, communication between sensors can be utilized

along with dynamic task planning to increase the amount of knowledge

available concerning these missiles. Since any allied decisions must depend

on the knowledge available from the sensors, it follows that improving the

overall knowledge will improve the ability of allies to protect their assets

through improved decision making.

The goal of the this research effort is to create a Sensor Resource Man-

agement (SRM) algorithm to optimize the information available during these

missile raids, as well as strengthening the simulation framework required to

evaluate the performance of the SRM. The SRM must be capable of near-

real-time run time so that it could potentially be deployed in a real-world

iv

system. The SRM must be capable of providing time-varying assignments

to sensors, allowing more than one target to be observed by a single sensor.

The SRM must predict measurements based on sensor models to assess the

potential information gain by each assignment. Using these predictions, an

optimal allocation of all sensors must be constructed. The initial simulation,

upon which this work was built, was capable of simulating a set number of

missiles launched simultaneously, providing appropriate charts to display

the accuracy of knowledge on each target as well as their predicted impact

locations.

Communication delays are implemented within the simulation, and sen-

sor models are refined. In refining the sensor models, they are given geo-

metric limitations such as range and viewing angles. Additionally, simulated

measurements incorporate geometric considerations to provide more realis-

tic values. The SRM is also improved to account for the details added to

the simulation. These improvements include creating assignment schedules

and allowing a time-varying numbers of targets. The resulting simulation

and SRM are presented, and potential future work is discussed.

v

Contents

1 Introduction 1

1.1 Problem Definition . 1

1.2 Related Work . 3

1.3 Research Contributions . 4

2 Previous Work 7

2.1 Existing Simulation Capabilities 9

2.2 Existing Simulation Shortcomings 17

3 Contributions 19

3.1 Sensor Geometric Limitations 19

3.1.1 Adding Geometric Limitations to Sensor Models . . . 20

3.1.2 Adding Geometric Limitations to the Allocation Al-

gorithm . 21

3.1.3 Adding Geometric Limitations to Measurement Models 25

3.2 Radar Sensor Measurement Model 26

3.3 Communication Delay Between Sensors and the Command

Station . 28

3.3.1 Adding Delays in Passing Assignments to Sensors . . . 28

3.3.2 Adding Delays in Passing Measurements to the Com-

mand Station . 29

3.3.3 Adding Delayed Measurements to the State Estimates 30

3.3.4 Creating Schedules of Assignments 32

3.4 Multiple Discrimination Measurement Modes 33

vi

3.5 Sensor Splitting . 35

3.6 Dynamic Adjustment of Targets During Simulation 38

3.6.1 Adding Targets During Simulation 38

3.6.2 Removing Targets During Simulation 39

3.7 Software Modularization . 40

3.7.1 GUI-Based Scenario Generation 42

3.7.2 Data Visualization Tool 44

3.7.3 State and Discrimination Estimation Algorithms . . . 47

3.7.4 Resource Allocation Algorithm 48

3.7.5 Requirement Analysis Algorithm 54

3.7.6 Task Filtering Algorithm 54

3.7.7 Sensor Communication Function 55

4 Future Work 56

5 References 58

vii

1 Introduction

In hostile missile attack scenarios, ensuring the safety of friendly assets re-

quires that many enemy targets be tracked simultaneously. The state of

the theater rapidly changes in these scenarios, introducing uncertainty. Any

decisions made by military leaders or automated defensive networks depend

on this uncertain knowledge, and as such the effectiveness of these decisions

is highly dependent on the quality of the information available.

To reduce the uncertainty, the targets must be tracked to estimate the

current position, final impact location, and time until impact. Targets must

also be discriminated to ensure that limited resources are not squandered by

unnecessarily tracking non-threatening objects. Objects expected to impact

nearby allied assets can therefore be prioritized to ensure their protection.

Targets expected to impact at these assets must be eliminated through in-

terception. The interception process requires high precision knowledge of

target position. The ability of the existing defense mechanisms to protect

key assets is then directly tied to the ability of all sensing equipment to

reduce uncertainty in Situational Awareness (SA) of the theater.

1.1 Problem Definition

To protect allied assets from missile attacks, an assortment of systems are

available to military officials. Multi-mode radar and electro-optical and in-

frared (EO/IR) sensors are utilized to locate the missiles. Some of these

sensors are deployed permanently to fixed locations, while others may be

mounted to sea-based platforms, aerial platforms, or even space-based plat-

1

forms. These sensors are tasked with target search and detection, target ac-

quisition, target discrimination, and target tracking. When required, SAM

launchers designed for missile interception may also be employed.

Missile-based attacks on allied assets can come in a great variety of

cases. For cases with only a few missiles launched, existing protocols can

successfully protect defended assets. But in cases where these attacks involve

many missiles, the number of missiles may overwhelm the capabilities of the

existing systems if all sensors work independently. If communication and

planning between the available sensor resources could be utilized in these

situations, the tasks could be divided between them such that the required

demands could be more easily met.

To utilize this communication in planning task assignment, algorithms

must be implemented to allocate each sensor to the most favorable task.

Since the number of targets may overwhelm the number of sensors, the

allocations must not be permanently assigned. Instead, the situation must

continuously be evaluated and sensor allocations must continually change.

The allocation would also have to incorporate sensor capabilities, ensuring

that the target is within view of the allocated sensor. It is critical that these

algorithms be efficient, as dynamic task planning must occur in real-time.

This algorithm should be able to utilize communication with all avail-

able sensors to spread the necessary tasks between them. The allocations

should be made considering all possible assignments to each sensor, including

sensor-fusion tasks which involve multiple sensors observing the same target.

This communication should consider the use of sensor fusion, when multiple

measurements from differing sensors is compiled into a single, higher-fidelity

2

measurement.

1.2 Related Work

Extensive work has been conducted on the subject of tracking of multiple

targets with multiple sensors. The most basic form of these tracking algo-

rithms are myopic linear assignment algorithms [7],[10]. These algorithms

are myopic, or short-sighted, because they determine the optimal assign-

ment only for the next step, and must be repeated at each step. Linear

assignment algorithms require that each available resource be assigned to

a single target. They also assume that multiple sensor assignments to the

same target will provide a summation of the effects from each individual as-

signment. Since this ’linear addition’ property does not reflect true sensing

behavior, other algorithms have been developed which account for sensor

fusion capabilities [4]. These algorithms provide more realism at the cost

of exponentially-increasing calculations required, as the cost must now be

calculated separately for each possible combination of available sensors.

Additional improvements to myopic linear assignment algorithms in-

clude extension to non-myopic assignments [3],[6],[5]. These non-myopic

algorithms create schedules of assignments for several steps, providing a

sensor schedule for the given time period. Krishnamurthy investigated a

Markov decision process to determine the optimal non-myopic assignments

[6]. Kreucher et al. [5] utilized a cost function which allows different tasks,

including identification and tracking. An advantage of non-myopic assign-

ments is that temporarily obstructed targets can be assigned to a sensor

after the obstruction has been removed, allowing sensors to measure other

3

unobstructed targets during steps for which the obstruction exists. This ca-

pability can also benefit situations where target trajectories are temporarily

overlapping.

A significant problem with these non-myopic assignments is the extreme

computational complexity. Determining the optimal non-myopic schedule

can require an incredibly high number of combinations even for relatively

small problems due to combinatorial explosion. This can be seen by the

consequences of adding a single step to the assignment schedule; the cost for

all possible assignments must be calculated based on all previous possible

assignments. These computational constraints can be prohibitive to the

creation of assignments in real-time. To solve this problem, some algorithms

have been developed to create a suboptimal assignment schedule which can

significantly reduce the number of required calculations [2],[11].

1.3 Research Contributions

The goal of this project is to develop a Sensor Resource Management (SRM)

algorithm which reduces the uncertainty of the state of the theater. The

SRM algorithm will have prior knowledge of sensor capabilities and locations

as well as the locations of any assets which must be protected. Using this

information, the algorithm must determine the optimal allocation strategy

for available sensors to reduce the uncertainty in the Situational Awareness.

The allocations must consider heterogeneous tasks and sensors which can

have differing capabilities.

In order to test potential SRM algorithms, a simulation had to be devel-

oped. A framework for the simulation was developed previously with basic

4

functionality, including implementation of sensor-fusion for measurements,

target tracking with an Extended Kalman Filter, and sensor allocation based

on the optimization of a cost function (see Section 2). This existing simula-

tion framework was the starting point for the research presented here, and

was heavily modified over the course of the project

During this project, the primary motivation was to develop, test, and

mature the previously existing methods for SRM planning. The first impli-

cation of this goal was development of the sensor allocation methods. This

goal includes, but is not limited to, non-myopic sensor scheduling, assign-

ment filtering based on feasibility, and improvement to measurement models.

From the existing framework, scheduling algorithms were purely myopic, as

they only considered the current situation. It was desired to implement non-

myopic scheduling, which evaluates the results of taking each possible mea-

surement at multiple times. In the existing simulation, assignments did not

account for sensor limitations, even though some targets could be outside of

a sensors viewing limits. Modifications had to be made to avoid assignments

which are not feasible according to sensor limitations. Measurement models

also had to be improved to incorporate sensor-target geometry, including

range and sensor power. These improvements were intended to dramati-

cally improve the realism of the simulation so that it would more accurately

reflect the true functionality of available systems.

Other features which needed to be modeled in the test bed include

communication time delays and a time-varying number of targets. The

communication time delays must be modeled within the SRM algorithm to

ensure that performance is achieved as desired. As the number of targets

5

is unlikely to be fixed for a given real-world missile attack scenario, the

simulation must be capable of ’firing’ new targets and ’intercepting’ targets,

which requires the addition and removal of targets during the simulation.

The simulation framework was the second area targeted for develop-

ment. The simulation framework should support plug and play of different

utilities, such as a different SRM optimization algorithm or updated mea-

surement models. The simulation framework had to be modified to allow

execution of the simulation from a planning system. This planning system

would allow the user to modify parameters of the simulation, including the

number of targets, when new targets are fired, sensor locations and capabil-

ities, and locations of defended assets.

In the following sections, this thesis presents the previously existing

simulation framework and SRM. Then, the modifications made to the simu-

lation and to the SRM throughout the course of this research are discussed.

Finally, potential future work and areas for improvement are described.

6

2 Previous Work

The entirety of the work presented in this thesis stems from a simulation

created previously through cooperation between the University of Texas at

Austin and Knowledge Based Systems, Incorporated (KBSI). This previ-

ously existing simulation represents the culmination of work invested prior

to the start of the research outlined in this thesis. This existing product

was intended to demonstrate a functioning simulation base that could be

improved and adapted to test a variety of sensor management algorithms.

This product was developed using MATLAB [8].

The premise of this existing simulation is that there are a number of

targets flying through the air on a ballistic trajectory. While the targets are

moving, a centralized command station attempts to estimate the position

of each target. To do this, the command station sends an assignment to

all sensors at its disposal, and each sensor returns a measurement. The

goal of the simulation is to create the command station control algorithm

which provides the optimal Situational Awareness for each consecutive time

step. It is assumed that the initial estimates for targets are provided to

the command station through a loop of the command station assignment

algorithm external to the SRM algorithm, and as such the SRM is not

tasked with detection of targets for this simulation. The structure of this

simulation can be seen in Figure 1.

7

Figure 1: Representation of the Structure for the Previously Existing Sim-
ulation

8

2.1 Existing Simulation Capabilities

To begin, the previously created simulation used a MATLAB file to initialize

the situation being simulated. This initialization file contained data on the

locations of all sensors, the performance of those sensors, the location of all

defended assets, and the true target trajectory throughout the simulation.

The target positions were calculated previously and saved into a variable to

reduce computation time during simulations.

To estimate each target’s state, an Extended Kalman Filter (EKF) was

used. Three dimensional position and velocity is estimated in this manner for

each target. EKFs are commonly used for estimating state when receiving

observations in real time, clearly matching the requirements needed for the

simulation. Using the EKF to estimate target position also allowed multiple

measurements from different sensors to be combined into a single estimate

update with ease, as this capability is built into the EKF. The EKF also

provided an estimated covariance calculation, which is a convenient tool

for determining the effect a potential measurement would have on overall

situational awareness.

Within the simulation, the sensors were capable of performing measure-

ments in two different modes; one measurement mode detected the relative

position of each target from the sensor, and the other measurement mode

detected whether the target was a threat. As stated previously, the sensors

utilized by the command station could be heterogeneous. As a result, the

measurements provided from each sensor in each measurement mode could

provide varying levels of detail.

9

Mode 1 measurements, or state measurements, may contain different

information depending on the sensor. While one sensor may be able to mea-

sure the relative range, azimuth angle, and elevation angle from the sensor

to the target, another sensor may only be capable of measuring these angles.

Additionally, each sensor is defined with a standard deviation for its mea-

surements. In the existing simulation, this standard deviation was constant

for each sensor, and all returned measurements were normally distributed

around the true target position according to the standard deviation. These

measurements were used with the EKF to estimate a target’s state and

covariance.

Mode 2 measurements, or discrimination measurements, always contain

the same information, regardless of the type of sensor. To demonstrate

target discrimination, let the binary variable Xi = {0, 1} represent the class

of target i. If target i is a threat, Xi is 1. Likewise, if the target is a

non-threat Xi is 0. When a sensor observes a target at time k, a binary

variable di,k represents the mode 2 measurement for target i. Regardless

of the true class of the target, the measurement may state that the target

is a threat (di,k = 1) or a non-threat (di,k = 0). Measurements of this

mode could contain two types of errors in the existing simulation. The first

type of error, a false positive, occurred when a non-threat was improperly

identified as a threat. If a sensor had returned a 1, then the probability

that the measurement was a false positive is α. The second possible error

in discrimination measurements was a false negative, where a target was

mistakenly classified as nonthreatening when it was a threat. If a sensor

has returned a 0 for a discrimination measurement, the probability that

10

the measurement was a false negative is β. Each sensor was assigned a

probability α and β, ranging from 0 to 1, upon initialization. In terms of α

and β,

p(di,k = 1|Xi = 0) = α

p(di,k = 0|Xi = 1) = β

For the first time step, when k = 0, the predicted threat level xi,0 was ini-

tialized to 0.5, signifying no prior knowledge with respect to discrimination.

Each time a new measurement was added, the predicted threat level was

updated using the following equations based on the returned measurement

and the prediction from the previous time step:

xi,k+1 =


(1−β)xi,k

(1−β)xi,k+α(1−xi,k) di,k+1 = 1

βxi,k
βxi,k+(1−α)(1−xi,k) di,k+1 = 0

(1)

If no new measurements had been received from sensors, discrimination es-

timates remained the same between time steps. Targets classified as threats

may require different considerations in sensor allocation than those classified

as non-threats, and as such threats were given higher priority in assignments.

A key feature of the command station implementation is its ability

to incorporate sensor fusion. When multiple measurements from different

sensors are received for the same target, the measurements are compiled into

a single, more accurate measurement. Sensor fusion was implemented for

observations made using both measurement modes. The command station is

designed to issue assignments to sensors based on a user-selected allocation

11

technique. For the existing simulation, three techniques were available. The

first technique, ’Sweep’, consisted of measuring each target in order. Once

all targets were measured, the sensors would repeat the process and measure

all targets in the same order. This technique was suboptimal, but provided

a good baseline with which to compare the other two assignment plans.

These two optimization-based assignment plans attempted to minimize a

cost function for the next time step.

For the optimization-based allocation techniques, a weighting for each

target was calculated to ensure that targets deemed more dangerous were

given higher priority in assignments. The weights for each target ranged

from 0 to 1 based on several different estimated traits of each target. First,

the distance from the target’s predicted impact location to the closest de-

fended asset was calculated. Targets with predicted impact locations nearer

to the defended asset received higher weights. Second, target time until im-

pact was also calculated, with those targets arriving sooner receiving higher

weights. Target class is also factored in using the discrimination estimate

mentioned previously. Through this target weighting, targets which are

more dangerous were estimated to a higher level of precision than other

less-dangerous targets. It is important to note that the optimization-based

allocation techniques are all based on target estimates and not their true

simulated values.

The first optimization-based allocation technique, ’Entropy’, utilized

entropy-based calculations for the cost associated with each assignment.

The cost G associated with measuring the state of target i with sensor

12

combination j is determined by:

Gi,j = log(2π ∗ |Pi,j |) ∗Wi

Where |Pi,j | is the determinant of the expected 3x3 position covariance ma-

trix of the estimate after taking a measurement of target i with sensor

combination j, and Wi is a target weight ranging from zero to one. It should

be noted that in order to implement sensor fusion into the cost, it is nec-

essary to recalculate the cost function for each combination of sensors, and

not merely for each sensor. These combinations include each sensor indi-

vidually, all possible combinations of multiple sensors, and no sensors. As a

result, the number of calculations required increases exponentially with the

number of sensors available.

The second optimization-based allocation technique, ’Covariance’, uti-

lizes the estimated covariance of each target, as provided by the EKF, in

the formulation of the cost function. The cost G associated with measuring

the state of target i with sensor combination j is determined by:

Gi,j = (
||Pi,j,expected||2 − ||Pi,j,base||2

||Pi,j,base||2
) ∗Wi

Where ||Pi,j,expected||2 is the expected 2-norm of the covariance after a mea-

surement is taken of target i by sensor combination j, ||Pi,j,base||2 is the

2-norm of the covariance when no measurements are recorded. Except for

the use of a different cost function, the optimization technique for the Co-

variance method is identical to the technique for the Entropy method.

13

Both of the optimization-based allocation methods utilize the same cost

function with respect to discrimination assignments. This cost function is

based on the entropy, and is given by:

Gdscri,j = −p(xi,j) log2(p(xi,j))− (1− p(xi,j)) log2(1− p(xi,j))

Where p(xi,j) represents the probability that the target j is identified as

a threat after being measured by sensor combination i. This xi,j is the

same as that described by Equation 1. Incremental gains in discrimination

of targets were weighted higher than gains in state estimates, and as such

determination of target threat level was carried out before refining target

state estimates.

Once the cost function is calculated for all possible assignments, bi-

nary integer programming is utilized to determine the optimal assignment

through MATLAB’s Optimization Toolbox [9]. Binary integer programming

is utilized because each sensor can only be assigned to a single target, and

each target must be assigned some sensor combination. When the number

of targets outnumbers the number of sensors, null sensor combinations will

be assigned to targets and no measurement for the assignment is recorded.

This optimization takes the form:

min(G ∗X) (2)

subject to : A ∗X = B

To implement this optimization structure, three variables are needed. The

14

costs G for each assignment are calculated as described above and rearranged

into a row vector. The A-matrix is constructed as a matrix with dimensions

(nT ∗ nM + nS)x(nT ∗ nM ∗ nC), where nT is the number of targets,

nM is the number of measurement modes, nS is the number of sensors, and

nC = 2nS is the number of sensor combinations. The first nS rows consist of

the enumerated sensor combinations, where each column represents a sensor

combination in 0’s and 1’s, repeated nT ∗ nM times. The next nT ∗ nM

rows resemble a stretched identity matrix, with dimensions (nT ∗nM)x(nT ∗

nM ∗nC). Instead of a single ’1’ along the diagonal, this matrix contains nC

1’s on each ’diagonal’. The rest of the entries are ’0’. The B-matrix is then

constructed as a column vector with (nS + nT ∗ nM) elements, all of which

are 1’s. The optimal X is then a column vector with (nT ∗nM ∗nC) entries

which satisfies the constraints that each sensor must be assigned to exactly

one target and that each target must be assigned to exactly one (potentially

empty) sensor combination. The MATLAB binary integer programming

tool, ’bintprog’, is utilized to select the optimal assignments which satisfy

the constraints.

A key requirement for the simulation was that the relevant data from

simulations must be displayed to the user in a concise manner while simula-

tions were ongoing. To satisfy this requirement, the user is presented with

six plots which update at each time step of the simulation (see Figure 2).

The first plot shows how the discrimination parameter for several targets

varies during the length of the simulation. The second plot displays three

subplots. The first subplot shows the current target weights which are used

in the optimization. The second and third subplots display the current en-

15

Figure 2: Sample Plots from Existing Simulation with 4 Threats in 20 Tar-
gets

tropy calculations for each of the targets’ state estimates and discrimination

parameters, respectively. The third plot contains two subplots, the first of

which displays an overall estimate of situational awareness uncertainty. The

second subplot within the third plot shows each target’s time until impact,

impact distance from an asset, and the resulting weight. The fourth plot,

shown on the bottom left, displays the covariance of the estimates for the

same targets as those shown in the first plot. The fifth plot contains two sub-

plots, one for the current position covariance of all targets and another for

the discrimination parameter for all targets. Finally, the sixth plot contains

a 2-D mapping of the predicted impact locations and true impact locations

for all targets, as well as the location of all defended assets. These six plots

can be used to compare performance of the different allocation techniques.

16

2.2 Existing Simulation Shortcomings

As the existing simulation was intended to demonstrate only certain capabil-

ities, there were many aspects that were not fully developed in the interest

of providing the desired functionality with limited time. Then, aspects of

the simulation which were ignored or underdeveloped could be added or im-

proved during this research, when more time was available and more detail

was desired.

The aspect of the existing simulation which required the most attention

was related to sensor detail. Sensor limitations were not accounted for when

recording measurements, or when performing optimization. Sensors were

assumed to have infinite range and a full 360◦ field of view. Sensor viewing

limitations could not be placed on the allocation optimization or on the

recording of a measurement. Additionally, any measurement recorded by

a given sensor had the same standard deviation regardless of target range

from the sensor. This standard deviation was defined as constant for each

sensor upon simulation initialization.

The sensor implementation also assumed that communication between

the command station and each sensor was instantaneous. All assignments

that were made occurred without pause, and no capability existed for record-

ing a measurement using an assignment created in a previous time step. This

inability to delay assignments degraded the applicability of the simulation to

real problems, which require a delay in communication due to physical con-

straints. This inability to delay assignments also meant that all assignments

and measurements were constrained to be myopic, or short-term, regardless

17

of the capabilities of the allocation optimization. In order to implement non-

myopic scheduling, then, both the optimization algorithms and the sensor

measurement software would need to be altered.

Additionally, all targets within the simulation were required to be

known at initialization. New targets could not be identified or integrated

into the estimation. Targets identified as non-threats could not be ignored,

requiring additional calculations in the optimization algorithm that were

unlikely to be beneficial.

18

3 Contributions

During this research, the primary goal was refinement of the SRM and simu-

lation. Modifications were motivated by improving realism of the simulation.

These modifications primarily included adding more details for all aspects

of the simulation. Other modifications were made to improve the user in-

terface, improving the ability to modify the simulations and to evaluate the

SRM through more detailed figures.

3.1 Sensor Geometric Limitations

As mentioned previously, one of the largest shortcomings of the existing

simulation was a lack of detail in the sensors. Originally the allocation

algorithms and measurement models assumed that any sensor could observe

a target anywhere in the air, with the only associated cost being the sensor

time needed to take the observation. In reality, sensors will have a limited

range within which they can make observations, and attempting to measure

targets outside of this range may or may not return an observation. Even

if an observation is returned, it will likely return a measurement that has a

much higher standard deviation. The original model also lacked information

on sensor field of view. As with range, it is was assumed that each sensor

could observe any target regardless of the relative location of the target to

the sensor. Many sensors, including IR cameras and phased array radars,

have a specific, known field of view. Objects outside of this field of view

cannot be observed reliably.

19

3.1.1 Adding Geometric Limitations to Sensor Models

To account for these geometric limitations, each sensor now has a defined

maximum range. Additionally defined for each sensor is the boresight angle,

represented by an azimuth and elevation angle, as well as a field of view,

represented by a field of view angle. The boresight angle is the direction

that the physical sensor is facing in the global reference frame, and provides

the direction of the boresight axis. The center of the field of view coincides

with the boresight axis. Targets can only be measured if the angle between

the boresight axis and the target (from the point of view of the sensor) is

less than the field of view angle. To improve usability of these sensors with

limited field of view, some of them are built with mechanisms for adjusting

their heading. Therefore, each sensor also has a defined maximum angular

rate for both azimuth and elevation.

In addition to having absolute sensor limits, many radar sensors also

have a variable field of view, characterized by an adjustable viewing ’pixel’

for recording measurements. These viewing pixels are contained within the

sensor range and field of view, and are defined by a beam angle, viewing an-

gle, and minimum and maximum viewing ranges. The beam angle describes

an axis which passes through the center of this pixel, and the viewing angle

is the angle between the boundary of the viewing pixel and the beam axis.

The minimum and maximum ranges provide the radial boundaries of the

viewing pixel. Sensors with this capability can then record measurements

for any target within the three-dimensional pixel, focusing all power avail-

able on those measurements while putting no power towards targets outside

20

of the viewing pixel that may otherwise be within the sensor limits. For

these sensors, the field of view can be limited to a narrower cone in order

to collect an observation with lower uncertainty. Alternatively, the field of

view could be enlarged to assist with target acquisition, at the cost of a

higher observation uncertainty. Additionally, some sensors are capable of

observing more than one target if there are several present within its field

of view. The cost for this capability is increased observation uncertainty

based on the target’s angle from the boresight axis, from the perspective of

the sensor. A visual representation of these sensor properties can be seen in

Figure 3.

3.1.2 Adding Geometric Limitations to the Allocation Algorithm

After modifying the sensor models to include information concerning their

geometric limitations, the next step was to impose restrictions on the allo-

cation algorithm to prohibit assignments to targets outside of sensor limits.

During each time step, the geometric limitations of each sensor is compared

to the estimated position of each target to identify the feasible assignments.

The cost function is then calculated only for these feasible assignments.

Next, a reduced form of the optimization problem from Equation 2 can be

created, and a sensor assignment can be created to aim the sensor towards

the desired target.

Determining which assignments are feasible occurs in two steps. First,

the range from each sensor to each estimated target position is calculated.

These calculations are stored in a cell matrix. Second, the azimuth and

elevation angles between each sensor’s boresight axis and estimated target

21

Figure 3: Two-Dimensional View of Sensor and Target Estimate Geometry

position is then calculated for any target within range of a given sensor.

The azimuth and elevation angles are combined into a single angle, detail-

ing the field of view angle required for a given sensor to observe a given

target. These required viewing angles are stored within another matrix.

Before performing these computations, the required viewing angle matrix is

initialized as a matrix of the MATLAB variable NaN (Not a Number). For

22

each element corresponding to a target within sensor range, the NaN entry

will be overwritten by the required viewing angle. This causes unchanged

values, those target-sensor matches which are infeasible, to remain NaN .

After calculating these values, a viable assignment will be one for which

the required viewing angle is within the known sensor limits. It should be

noted that magnitude comparisons to NaN in MATLAB return a ’false’ re-

sult. Identifying feasible assignments in this way reduces computation time

by eliminating unnecessary computations of the required viewing angles for

targets outside of sensor viewing range.

Next, the cost is computed for all viable assignments. If any required

viewing angle is beyond the sensor limits, or if any of the required limits

contains NaN , then the cost computation is skipped for that assignment.

Implementing the constraints in this way reduces the number of computa-

tions required for the optimization algorithm, since the cost is no longer

calculated for infeasible assignments. Then, a reduced form of the opti-

mization problem from Equation 2 can be created by eliminating the NaN

elements of G. These NaN entries are the infeasible assignments, and the

corresponding columns of A and rows of X must also be eliminated. It is im-

portant to note that for each infeasible sensor-target allocation, the number

of entries to be eliminated from G will be equal to the number of measure-

ment modes, as discrimination modes will be infeasible if the corresponding

state measurement is. Also, if no feasible assignment exists for sensor s,

entry s of the matrix B must also be changed from a 1 to a 0. It should be

noted that current cost function only considers the primary target in focus,

and does not measure the benefits of encompassing other targets within the

23

field of view.

To further improve efficiency in the optimization algorithm, consider-

ation of the problem geometry was used to reduce the number of sensor

combinations. Originally, the optimization was performed by measuring the

cost function for each combination of sensors on every target. Even if two

sensors were positioned such that they could never measure the same tar-

get, the cost associated with these two sensors observing each target was

checked. To avoid checking sensor combinations that are infeasible, alloca-

tion algorithm sensor groups were created. These sensor groups are defined

such that any sensors with overlapping ranges will be placed into the same

group. Then, the optimization algorithm is executed for each sensor group.

It should be noted that sensors that do not overlap may be grouped to-

gether if there is another sensor that overlaps with both sensors. Still, these

grouped but non-overlapping sensor combinations will not have a cost com-

puted due to the imposed feasibility constraints.

Once the modified allocation algorithm has provided the optimal al-

locations, accounting for sensor limitations, the allocation algorithm must

then convert the optimal allocation from a sensor to a target into a form

usable by the measurement modeling. With the implementation of sensor

limitations, now the sensor beam angle is required in each sensor assign-

ment. The sensor beam angle is the angle from the boresight axis to the

beam axis, provided as one horizontal and one vertical angle. For targets

that have static beam axes aligned with the boresight axes, this calculation

is not necessary. But for some targets, especially radar, the beam axis can

be directed to provide more accurate measurements on a desired target. The

24

assignment also includes the assigned mode of measurement, the intended

target allocation, and the minimum and maximum range assignment for

each sensor. Additionally, the resource allocation algorithm must determine

the range viewing limits for any given assignment. This code utilizes the

norm of the current estimate covariance. The returned minimum and max-

imum viewing ranges are those which minimally contain a sphere, located

at the estimated target position, with radius equal to three times the norm

of the estimated covariance. The sensor cone angle is configured during the

simulation initialization, and remains constant throughout the simulation.

For current simulations, an angle of one degree is used. While this angle is

not necessarily optimal, it is representative of a typical measurement taken

from a radar sensor.

3.1.3 Adding Geometric Limitations to Measurement Models

In the existing simulation, the allocation function also told the main simu-

lation what data could be acquired on each target using each sensor. The

main simulation would then use that data without checking the feasibility of

taking the measurement. To mend this issue, the resource allocation func-

tion now provides the measurement models with commanded sensor azimuth

and elevation angles. The simulation then checks if any targets are within

the assigned viewing angle from the commanded beam axis, adding mea-

surements if this requirement is satisfied. The process for checking feasible

assignments is the same as that used in the allocation optimization algo-

rithm, except that the true target positions are used in the measurement

modeling. This structure more closely represents the true nature of the

25

problem, where a main control station will command a specified beam axis

for a sensor, and the sensor will report what it can see at the specified head-

ing. Any targets within the cone angle will have an associated measurement

recorded, with a corresponding entry into the EKF which provides target

trajectory estimations.

3.2 Radar Sensor Measurement Model

In the existing simulation, all measurements recorded by a sensor had the

same standard deviation. This model is highly unrealistic, as there are a

great number of factors which play into the quality of a given measurement.

To resolve this issue, a radar sensor model that accounts for many of these

details was created to provide more realistic measurements. This model is

called each time a measurement is taken and requires the following data:

• Target range from the sensor

• Sensor power

• Sensor beam angle from boresight axis

• Sensor viewing range

• Sensor viewing angle

• Angle from beam axis to target

The further a target is from a sensor, the higher the measurement uncer-

tainty will be. Sensor power is a static property of each radar sensor. Higher

26

power corresponds to a higher maximum sensing range as well as lower mea-

surement noise. The sensor beam angle and sensor viewing limits are pro-

vided within each assignment. While a higher sensor beam angle or viewing

angle will result in more measurement noise, the viewing range limits are

only used to determine whether a measurement is feasible or not.

As mentioned previously, a value of one degree is used for the sensor

viewing angle. In the original implementation of this radar sensor model,

measurements were returned for each target within the sensor viewing angle

and maximum range. As a side effect of this implementation, a problems

arose. Many targets could be measured by a single sensor with no loss in

fidelity. Although certain types of sensors are capable of returning different

measurements for multiple targets within viewing range, it is highly unrealis-

tic that these measurements would be of the same quality as a measurement

of a single target. In reality, measurements near the center of the cone would

be much more accurate than those toward the edges of the cone. Originally

it was assumed that each target measured lied close enough to the beam

axis that no other consideration was necessary.

To correct this problem, knowledge of the angle from the beam axis to

the target was added as another input into the measurement model. This

information was used to reduce measurement accuracy of targets off of the

beam axis. For targets located directly on the beam axis, measurement

sigma remains roughly the same. Standard deviations of measurements for

targets located away from the beam axis experience an increase related to

the angle difference. Additionally, measurements will only be available for

targets located within the range limits provided in the assignment algorithm.

27

Still, whenever many targets are within view of a sensors viewing pixel, the

software provides measurements for each. Since the angles required for this

accommodation are already calculated to check that the target is within

sensor view, this modification results in very little change in computational

requirements for a large improvement in practicality of the simulation.

3.3 Communication Delay Between Sensors and the Com-

mand Station

In the existing simulation, each assignment was implemented immediately

by each sensor, and each sensor immediately returned a measurement to the

estimation software. A more realistic scenario includes communication de-

lays between the command station and the sensors. Communication delays

will cause a delay between when an assignment is sent to a sensor and when

the sensor performs the commanded measurement. Additionally, the delay

will cause the state estimation software to receive the measurements at some

time later than the measurement was actually recorded. To provide more

realism, the delay between the main program and each sensor can vary. As

a result, it is possible for measurements that were taken at the same time

to arrive at the estimation software at different time steps. To allow the

measurements to arrive at different time steps, a new sensor communication

function had to be adopted.

3.3.1 Adding Delays in Passing Assignments to Sensors

The first task for the sensor communication function is to store delayed

assignments for a prescribed delay period. This delay period is determined

28

through a random number generator individually for each sensor at each time

step. The average delay and standard deviation of delay for each sensor can

be configured prior to simulations to improve realism. To store the delayed

assignments, a ’persistent’ variable is defined which retains its values across

calls to the same function. Each assignment is tagged with the time it is

received and the delay for each sensor.

After the incoming assignment is stored, the communication function

checks for the most current assignment which has been received for each

sensor after accounting for the delay period. These current assignments are

then extracted from the stored assignments and passed to the measurement

algorithm.

3.3.2 Adding Delays in Passing Measurements to the Command

Station

Once the measurements are returned from the measurement algorithm, they

must be stored until the second delay period has passed. This delay period

is calculated in the same way as the first delay period, but the calculation

is separate so that the delays can be unique. Once the delay period for

a measurement has passed, the sensor communication function returns the

tagged measurement to the command station for processing in the estimation

algorithms.

The original implementation of measurements was prohibitive to sav-

ing measurements and sending them at a later time. This implementation

involved sending a theoretical measurement for what each sensor recorded

for each target, as well as a data type mask which described what was ac-

29

tually measured. If there was no measurement of a target by a sensor, the

theoretical measurement was still passed along, with the data type mask sig-

naling that the estimation should neglect those theoretical measurements.

A great deal of unnecessary information was passed along in a format that

made extracting a single measurement at a later time rather complex.

Now, only the recorded measurements are sent back to the estimation

software. If no measurements are recorded, a null measurement matrix is

sent back (see Figure 4, Step i and Step i+1). Each measurement is tagged

with a corresponding sensor and target number, measurement time, the data

type mask, and measurement standard deviation. The data type mask is

used by the estimation software in the Kalman filter to decide what data the

sensor is capable of measuring. For example, an IR sensor cannot measure

range but will provide azimuth and elevation angles. The corresponding data

type mask stores that information. The measurement standard deviation is

also used by the EKF to determine how much to trust the new measurement.

3.3.3 Adding Delayed Measurements to the State Estimates

Once the measurements are received by the estimation software, they are

used to update the estimates. When measurements have been delayed, it

is possible that two measurements of the same target at the same time will

arrive at different times in the estimation software. These measurements

could be used to provide a more accurate estimate according to the sensor

fusion model. The current estimation software can account for the change

in uncertainty due to these fused measurements, but only if they are input

into the estimation code at the same time. To satisfy this constraint, the

30

Figure 4: Sensor Communication Representation with Communication De-
lays

estimation code must step back to a previous time step any time a new

delayed measurement is received for a target. The target state estimates

are saved at each time step, and whenever new measurements are received,

the estimate reverts to the time step just before the most-delayed of the

new measurements was taken (see Figure 5, Step i+2). Then, the estimates

at each step are updated using all available measurements until the current

time. If no delayed measurements are received, no reversion is necessary

and the state estimate from the previous time step is used (see Figure 4,

Step i+1). Finally, the same estimate update laws are used to provide the

31

estimate for the next time step, and the simulation continues as before.

3.3.4 Creating Schedules of Assignments

To allow non-myopic scheduling capabilities in the future, the sensor com-

munication software was designed with the additional capability of receiving

assignment schedules. These schedules are a list of assignments intended to

be carried out in sequential time steps. While a delay will cause sensors

to receive the assignments after they were actually commanded, sensors fol-

lowing such a schedule see no further assignment delays once the schedule

is received. The software allows the assignment schedules to be staggered,

so that a previous assignment schedule can be carried out while waiting for

an updated schedule. When the updated schedule is received, the sensors

can then switch to the new schedule. With careful planning of assignment

schedules, it is possible to reduce the influence of communication delay on

the overall system performance. For instance, if the initial steps of the

schedule are skipped, the later portion of the planned assignment schedule

will occur at the times expected instead of being delayed.

To take advantage of this strategy, the sensors follow the assignment

within a given schedule at the appropriate time. For instance, if a schedule

is received by a sensor between the second and third time steps after it

was sent, on the third time step the sensor will use the third assignment

defined in the new schedule. This feature assumes that some form of time

synchronization, such as GPS, is available to the components of the system.

The allocation algorithm also required updates to provide the sensor

schedules. The allocation algorithm currently assumes no measurement up-

32

date to the target estimates between each assignment in a schedule. As a

result, the position and covariance of each target is merely propagated for-

ward at each time step according to the update law used in the EKF with no

sensor measurement. By using the expected estimate of each target for the

assignment, the range limitations will be based on a more realistic estimate,

giving a better chance of capturing the intended target within the measure-

ment pixel. The assignment schedules operate on the assumption that no

information has been gained from any measurement in the schedule. As a

result, the schedules tend to repeat assignments and are still not truly opti-

mal schedules. To create the schedules, two methods are available. Through

the first method, the optimization algorithm may be run for each time step

of the schedule. Then, the allocation algorithm creates the assignment for

each allocation. Alternatively, the optimization algorithm may be computed

only once, and the allocation algorithm will create sensor assignments for

the same allocation at each assignment in the schedule.

3.4 Multiple Discrimination Measurement Modes

In the software produced through previous development, sensors were capa-

ble of recording measurements in two modes. This measurement resulted

in a discrimination parameter which would range between zero and one for

each target, where a one signified that the target was a verified threat. In

reality, there can be more discrimination measurement modes available to

each sensor, with each mode detecting a different type of feature for the

target. To reflect this, the number of modes has been increased, and can be

set before initialization based on the current capabilities of available sensors.

33

Figure 5: Updated Simulation Structure, Including Delay in Communication
and Backstepping in State Estimates

To accommodate multiple discrimination modes, a new algorithm was con-

structed based on Bayesian Network probability models to provide a single

discrimination estimate from knowledge gathered by multiple discrimination

modes.

Before the Bayesian Network could be implemented, the underlying

framework for the discrimination mode had to be expanded to accomodate

new modes. The target class variable, which contained the discrimination

estimate for each target at each time step, was the root of this expansion.

This variable now contains the estimated discrimination parameter based off

34

of each individual discrimination mode as well as the overall discrimination

estimate derived by combining the separate discrimination modes at each

time step for each target. The allocation optimization algorithm was also

expanded to check the cost of measurements using each discrimination mode

on all targets. As a result, the G matrix and A matrix used in optimization

had to be adjusted to account for these multiple discrimination modes. To

augment the G matrix, the costs for taking measurements with the new

discrimination modes was appended in at the end. The A matrix was created

using the same procedure as before to fit the appropriate size.

A Bayesian network is a statistical model that represents a set of ran-

dom variables and their conditional dependencies. To apply a Bayesian

network model to the target classification, a directed acyclical graph (DAG)

was created to define the probability that a target was threatening based

on each discrimination mode (see Figure 6). In this DAG, each discrimina-

tion mode is assigned a probability chart. This probability chart outlines the

odds of what each mode will be, based on the true target class. For instance,

if the target is a threat, the target class will be 1. Then the probability of

discrimination mode 1 being ’0’ is 20%.

3.5 Sensor Splitting

Many existing radar sensors are capable of ’beam-splitting’, during which

the radar can split its broadcasting power between two different viewing

pixels. These separate beams provide measurements which are less accurate

than a single focused beam, but the capability to measure multiple targets

increases the flexibility of the system as a whole. For beam splitting applied

35

Figure 6: Distributed Acyclical Graph Representing Conditional Dependen-
cies of Target Class Based on Discrimination Estimates

within this simulation, it is assumed that total sensor power is divided evenly

between each beam and a maximum of two beams are utilized. Each split

beam can record either a state or discrimination measurement, but two

beams from the same sensor may be configured to different measurement

modes.

To account for beam splitting within the optimization, the number

of combinations of sensors had to be expanded. Before, each sensor was

required to be ’on’, represented by a 1, or ’off’, represented by a 0. This re-

sulted in 2nS sensor combinations, where nS is the number of sensors. Now

sensors capable of beam splitting also have a third configuration that uses

36

half of the available power to record a measurement, represented by 0.5.

Thus if nSsplit sensors are capable of beam splitting, 2nS−nSsplit ∗ 3nSsplit

sensor combinations must be accounted for against each target. The cost

function is then computed as before for all feasible sensor combination and

target parings. To determine feasible sensor combinations, a reduced maxi-

mum range is used for sensors which are configured to utilize beam splitting

in the combination.

The same constraints imposed on the original optimization must still be

used for the new optimization problem. While the B matrix for optimization

remains the same, theAmatrix must be increased in size to fit the new sensor

combinations. Still, the same algorithm for creating the A matrix can be

used, as the only change is the number of combinations. Each assignment

must still satisfy the constraint, imposed by A ∗ X = B, that each sensor

uses exactly the power available to it. This is a direct result of defining split

sensors as 0.5 within the sensor combinations. If an assignment includes a

split sensor, the split sensor must be used exactly twice on different targets.

If an assignment includes no split sensors, each sensor must be used exactly

once as before. No assignment can be made using a split sensor on one

target and the same sensor unsplit on another target. The implementation

of sensor splitting increases flexibility of the simulation, but also increases

the required run time by requiring many more computations.

For sensors assigned to a beam splitting task, the assignment must

now be calculated for each split beam. The existing architecture for storing

assignments supported this capability. When the assignment involving beam

splitting is passed to the measurement model, the model is configured to half

37

of the total sensor power and the range limit is reduced accordingly. The

measurement is otherwise carried out as normal.

3.6 Dynamic Adjustment of Targets During Simulation

In the exising work, the simulations were limited to situations in which all

targets are fired simultaneously. In reality, launches are unlikely to be per-

fectly synchronized, and other launches may be initiated after the initial

volley. Sensors may also be unable to acquire certain targets until a time af-

ter they were launched, due to geometry or sensor limitations. Alternatively,

it may be desirable to cease tracking of targets that have been intercepted

or identified as non-threats. As such, the statically-defined number of tar-

gets in the previously existing simulation severely restricts the ability to

test the applications of the software. To expand the applications of the soft-

ware, code was added to allow targets to be added or neglected within the

simulation after the initial volley is launched.

3.6.1 Adding Targets During Simulation

To implement the desired changes, modifications were required within the

command station software and the allocation optimization software. The

greatest challenges associated with this change were related to locating and

updating all of the variables associated with the targets. From the approach

taken in the existing work, some of these variables were initialized once and

remained constant. These variables must be updated each time a target

is added. Other variables, such as the covariance measurements, were ini-

tialized as a matrix or cell of null values with certain dimensions, and data

38

was inserted at each time step of the simulation. These variables had to be

reallocated to make space for data related to the new targets.

Targets added to the simulation followed trajectories from a data struc-

ture which was created and saved prior to simulation. This data structure

is the same one used to define all target trajectories for targets known at

initialization, although any single target trajectory is limited to use by at

most 1 target. It is important to recall that the weight function used to

determine the optimal sensor allocation is dependent on the time until im-

pact, and as such targets added much later than the initial volley may be

viewed with less importance than potentially less-threatening targets that

are much closer to reaching their impact location.

3.6.2 Removing Targets During Simulation

During a real-world scenario, it is highly unlikely that all targets will present

a viable threat to any defended assets. Many military tools exist which are

capable of intercepting hostile targets before they can cause harm to a de-

fended asset. Even if a target is not intercepted, some targets may be

destined for impact locations in open waters, clear of any defended asset.

Also, other targets may be objects that are known to be non-threatening,

including weather balloons. For any of these cases, these targets can be iden-

tified as nonthreatening through state and discrimination measurements. If

a target can be conclusively identified as a non-threat, continuing to use sen-

sor resources to refine the estimated state or discrimination will contribute

very little benefit to overall situational awareness. However, continuing to

account for this target would waste sensor time, as well as memory and

39

computation time within the allocation algorithm. As such, the ability to

remove certain targets from the tracking provides a great benefit to the

overall system.

To implement target removal, all variables associated with a target, be-

sides its identification tag, must be removed. Still, it is desired to keep track

of which targets were removed, which prohibits completely deleting these

variables. To provide this functionality, the variables were simply replaced

with NaN . The target identification is the only exception to this change,

to ensure that knowledge of which target was removed is maintained in the

simulation and in the data visualization tools. With this target removal

function, plots will continue to update for all targets as usual, but future

information for the removed target will be blank.

3.7 Software Modularization

A large push was made to segment the simulation into smaller blocks of

code. The intent of this restructuring is to allow for a modular framework

for the software. With this modular framework, certain segments of code

could be substituted according to situation within the simulation. The form

of the modular framework can be seen in Figure 7.

To demonstrate one benefit of a modular framework, consider the code

which determines weighting of priority for sensor allocation. Under nor-

mal circumstances, sensors should be assigned targets which most improve

the overall situational awareness; however, if a certain target is nearing its

impact location that coincides with a defended asset, the target must be

intercepted. There is a threshold uncertainty that must be maintained in

40

Figure 7: Representation of the Modular Framework for the New Simulation

41

order to successfully achieve interception. Here, it is assumed that without

maintaining the threshold uncertainty limits the ability of the interception

mechanism to accomplish its task. Therefore, sensor allocation should en-

sure the threshold is met even if overall situational awareness suffers some.

Once interception has been completed, a sensor would also need to ver-

ify a successful interception. Modularized function calls allow for real-time

switching of functions when necessary.

3.7.1 GUI-Based Scenario Generation

A new graphical user interface has been implemented to simplify the ini-

tialization of the simulation. This GUI loads saved target trajectory data,

displaying the available trajectories within the Enemy Course of Action

(ECOA) panel. The user can also create their own saved target data con-

taining different ECOA trajectories. Then, the user selects how many targets

should be drawn from each ECOA in the ’Raid Size Array’ column, along

with the time which those targets are launched in the ’Launch Time Array’

column. If the user would prefer to simulate two separate volleys launched

at different times using the same ECOA, the inputs into ’Raid Size Array’

and ’Launch Time Array’ can be entered as an array as shown. The number

of target tracks available within each ECOA is limited, and the simulation

will not allow multiple copies of the same target trajectory. To ensure the

user does not exceed the limited number of trajectories for an ECOA, the

number of unused tracks for each ECOA is displayed based on the current

input settings. Once the user has selected the desired target trajectories

from the ECOA panel, the trajectories are displayed on a map of the Earth.

42

Figure 8: Graphical User Interface for Setup of Simulations

Targets shown in red are threats, whereas black trajectories correspond to

non-threatening targets. The user can also configure the simulation time

step length, the total simulation time, and the standard deviation of target

launch around the specified launch times. Then the Setup GUI displays

several parameters of the simulation, including the number of assets, the

number of target launch sites, the number of initial targets, the number of

targets added after initialization, and the number of lethal targets. Once

the user is satisfied with the setup, they can save the configuration for later

use and begin the simulation.

43

3.7.2 Data Visualization Tool

A new data visualization tool was also implemented to improve usability of

the simulation (see Figure 9). This tool was made into a separate function

to further modularize the simulation, creating plots using knowledge of the

true target positions as well as target estimates. The tool creates a sepa-

rate window containing all plots at the initialization of the simulation, and

updates every 3 time steps. Seven plots are currently available, with the

capability to add more if required. The plots can be minimized within the

window to make room for other plots, or they can be maximized to take the

full space in the window. Additionally, the number of plots shown at once

can be configured using the ’Window Config’ setting, including the options

’1x2’, ’2x2’, ’2x3’, and ’2x4’. The plotting tool also gives the user the option

to pause and resume the simulation while running.

The first plot (counter clockwise starting from top left) displays the true

target impact locations compared to the predicted target impact locations

at the current time step. Each prediction is connected to the associated true

value using a blue line for clarity. Targets that are threats are represented

in this plot with a larger circle for the true impact location and a larger, red

asterisk for the predicted impact location.

The second plot displays the time history of the position covariance for

individual targets. This position covariance is based on the EKF algorithm,

and describes close each target estimate is expected to be from the true

target. This plot is based entirely off of target estimate information, not

true target information. The sixth plot displays the discrimination estimate

44

Figure 9: Data Visualization Window in 2x4 Configuration

45

for the same targets shown in the second plot. Again, this plot is based

entirely off of estimated information, not true target knowledge. The targets

shown can be modified by configuring the ’Selected Targets’ option along

the top ribbon. In addition to plotting each target individually within each

plot, the option also exists to plot all targets on the same axes so that

their magnitudes can be compared to each other. This feature is enabled by

selecting the ’Overplot’ option in the top ribbon.

The third plot shows the information used within the ’Covariance’ op-

timization algorithm to calculate the cost functions. Two subplots are con-

tained within this plot, with the first displaying the discrimination estimate

for all simulated targets. Targets identified as threats are represented by

a ’1’, and targets perceived as nonthreatening are signified by a ’0’. The

estimated covariance for all targets is depicted in the second subplot on a

logarithmic scale. Targets that are known with more precision will have a

lower covariance. Targets which are threats are identified by a red bar, while

non-threats are green. The fifth plot similarly shows the information used

within the ’Entropy’ optimization algorithm to calculate costs. Again, two

subplots are shown with the first depicting the discrimination estimate for

all simulated targets. The second subplot displays the tracking entropy. It

should be noted that these entropy values can become negative as a result

of high-precision estimates, as the entropy calculation involves taking the

logarithm of the determinant of the covariance matrix. Again, threatening

targets are shown in red and non-threatening targets are green. Addition-

ally, a list of the target numbers for all threatening targets is shown at the

bottom right of the window under the label ’Lethal Target IDs’.

46

The fifth plot displays the weights assigned to each target. These

weights are the same ones used for prioritizing assignments in the optimiza-

tion algorithms. Since target weight is most heavily dependent on threat

class of the target, it is expected that targets identified as threats will have

weights near ’1’ while non-threatening targets will have weights closer to

’0.1’.

The seventh plot displays the time history of the total uncertainty in

Situational Awareness. This value does not have a physical meaning, but

instead provides a general sense of how well the system is performing. A

general downward trend should be observed as time progresses. It should

be noted that the total uncertainty will spike upwards whenever a target is

added to the simulation.

3.7.3 State and Discrimination Estimation Algorithms

To implement this modular framework, the code used to determine discrim-

ination parameters was isolated from the main program and put into a sep-

arate function. The discrimination function receives the new measurements

from the sensors for all discrimination modes available. It then computes

the discrimination estimate for each discrimination mode and compiles these

separate modes into a single discrimination parameter, just as before. Then

the discrimination estimation algorithm returns only a single discrimination

value ranging from zero to one for each sensor. By implementing the discrim-

ination code in this way, it can be interchanged with new code in the future

if a new discrimination model is developed. The state estimation algorithm

uses the EKF to provide updates, and as such was already isolated into its

47

own algorithm. Thus no modification was needed to allow modularization

of the state estimation algorithm.

3.7.4 Resource Allocation Algorithm

The newly developed resource allocation algorithm is a separate function

from the other algorithms, just as it was for the existing simulation. This

algorithm uses estimated target data to determine target weighting. Then,

target data and weightings are used in conjunction with measurement mod-

els to determine the optimal pairing for sensors to targets. Finally, target

estimated positions are used to define geometric assignments which can be

interpreted and followed by each sensor. These geometric assignments en-

sure that the optimal pairing is executed.

The first task performed by the resource allocation algorithm is de-

termining the priority level of each target. The target priority is used as

a weighting for the assignment algorithm assignments, and is depicted in

the target weight plot within the data visualization tool. Target weights

are based entirely off of estimated target data, including state and discrim-

ination estimates. The original weighting subfunction is based on target

impact locations, with those expected to land near defended assets given

higher priority. Any compatible weighting subfunction can replace the orig-

inal impact-location-based cost function by changing a single line of code.

To demonstrate this capability, a new prioritization subfunction was

implemented. The new subfunction utilizes a theoretical target phase, as

well as the time remaining within the phase, to determine target priorities.

Four phases exist in the current simulation. These phases are:

48

0. Initial Transient

1. Tracking and Discrimination

2. Interceptor Launch

3. Interception

The Initial Transient phase occurs directly after a target is acquired. During

this phase, the command station should attempt to bring all targets below

some maximum allowable covariance. Once this goal has been achieved, the

Tracking and Discrimination phase begins. During this phase, assignments

will prioritize discrimination of targets as long as all targets are within the

maximum allowable covariance limit. If the target is classified as a non-

threat, it will complete the rest of its trajectory in this phase. If instead

the target is classified as a threat, the limits for the Interceptor Launch

and Interception phases will be based on the requirements of the interceptor

assigned to remove the threat (see Figure 10).

Each phase lasts for a given time period which can vary between all

targets. This time period is based on the time at which the target is acquired

and the target trajectory, with targets on more shallow trajectories spend-

ing less time in each phase. Each phase also is defined by covariance limits.

For each phase, an upper and lower limit is assigned for the target covari-

ance. It is desired that each target be below its lower covariance goal before

the phase duration has passed. The lower covariance limit for any given

phase matches the upper covariance limit for the following phase. For the

Initial Transient and Tracking and Discrimination phases, these covariance

49

Figure 10: Phase Limits Based on Covariance and Time Constraints

50

limits are common for all targets. The covariance limits for the Interceptor

Launch and Interception phases are ignored initially, as only targets which

are discriminated as threats will enter into these phases. These limits are

set whenever a target becomes classified as a threat.

The phase-based weighting function takes the form:

Wtstate = Wtmin +
1− e−∆x

1 + e∆T
(Wtmax −Wtmin) (3)

In this equation, Wtstate is the weight for a measurement of the state of a

given target given that Wtmin is the minimum allowable weight and Wtmax

is the maximum allowable weight. ∆x is the difference between the actual

phase x and the desired phase xRef . The desired phase is determined by

comparing the duration of each phase, as determined through requirements

analysis, to the time since target acquisition. The desired phase is an integer

value. The actual phase is determined by comparing the target covariance to

the limits for each phase. The actual phase is a real number determined by

linearly interpolating between the covariance limits. Then, ∆x is the highest

value between 0 and xRef −x. Then, ∆t is the time difference between the

end of the actual phase and the current time. If the actual phase is behind

the desired phase, it is possible for ∆t to be less than zero. The result will

be a sharp increase in the weight value for this target. Figure 11 depicts

this weight function across various values of ∆x and ∆t for Wmin = 1 and

Wmax = 1000.

When attempting to intercept targets, a limited window is available

to launch the interceptors. Since discrimination of targets is only intended

51

Figure 11: Phase-Based Weight Function Plot for State Measurements

52

to determine which targets must be intercepted, performing discrimination

assignments after the Tracking and Discrimination phase has ended will not

provide useful information. To ensure that the discrimination measurements

occur while the desired phase is the Tracking and Discrimination phase, a

different weight is assigned for the discrimination of targets. This discrimi-

nation weight is ’0’ for any target when xRef is past this phase. Using this

weighting ensures that no resources will waste time checking the threat level

of a target which has passed its interception window. Before the Tracking

and Discrimination phase begins, the weight for discrimination values is set

to Wmin. This ensures that discrimination will be considered during the Ini-

tial Transient phase, but only if all other target covariances are within the

lower limit of this phase. During the discrimination phase, the weight for

the discrimination of each target is calculated using Equation 3, except that

∆x = 0.9. By using this equation, priority will be placed on the discrimina-

tion measurements unless ∆x > 0.9, which occurs when a target is nearing

the upper limit of its phase. The discrimination weight is then calculated

using:

Wtdscr =


0 xRef > 1

Wmin xRef < 1

Wmin + 1−e−0.9

1+e∆t xRef = 1

(4)

After the weight has been determined for each function, the optimal

assignments are determined as before.

53

3.7.5 Requirement Analysis Algorithm

The requirement analysis algorithm provides the command station with the

requirements for each target. These requirements may change based on

the weighting function used, but may also be empty if no requirements are

needed. For instance, the impact-location-based weighting function will de-

termine weights based entirely off of the impact location, target class, and

time until impact. No constraints are needed for this weighting function. Al-

ternatively, the phase-based weighting function must be provided covariance

and time constraints for each phase. This function provides these values.

During the Initial Transient phase, no upper covariance limit is placed on

the target. During the Interception phase, the lower limit is set to 0, al-

though it is known that this value cannot be achieved. This limit is used to

ensure that the high precision required for this phase is achieved.

3.7.6 Task Filtering Algorithm

The task filtering algorithm receives information about the target estimates

and the target priority levels. With this information, the task filtering al-

gorithm notifies the resource allocation algorithm of which targets may be

ignored. Currently this algorithm is configured to remove targets with dis-

crimination estimates below 0.02. When a target meets the criteria for

removal, the task filtering algorithm calls the target removal function and

keeps a record of the removed target.

54

3.7.7 Sensor Communication Function

The sensor communication function provides the measurements to the com-

mand station after receiving the optimal assignments from the resource al-

location algorithm (see Section 3.3). The communication delay between the

command station and each sensor is accounted for within this sensor commu-

nication function. This function uses true target and sensor knowledge from

the simulation to determine measurements according to the measurement

model function (see Section 3.2).

55

4 Future Work

While it has been shown that many improvements have been made to the

simulation and SRM, there are still several areas in which the system could

be improved. The simulation would greatly benefit from an improvement to

its speed. MATLAB was used to implement the entirety of the simulation

due to its ease of use. Still, it is known that the cost of using this easy-to-use

tool is that run times can be much slower for code in MATLAB compared

to other low-level languages, such as C++. In the future, some of the more

time-intensive algorithms could be implemented in C++ or another similar

language to improve the simulation run time. Even if another language

is not used for implementation, there is still room for improvement in the

speed of the simulation. Very little time was spent attempting to improve

simulation run times, so it is possible that modifications to the simulation,

even in MATLAB itself, could improve the speed of the simulations.

Improvements to the sensor scheduling could also be investigated. While

the simulation is capable of producing a sensor schedule for several time

steps, the schedule is still myopic and only considers the current time step

when allocating the sensors in each step of the schedule. If non-myopic op-

timization is implemented, it is likely that an improved cost function must

also be implemented, as the allocation algorithm is currently one of the more

time-intensive components of the entire simulation.

In addition to these improvements, effort could also be spent increasing

the available capabilities of the system. This ability to add new features is an

intended consequence of the modularization of the code. New optimization

56

cost functions could be investigated and tested using the simulation model.

Once they were tested, they could be evaluated against other cost functions

currently available, at a variety of test cases, to determine which is more

effective.

57

5 References

[1] Y. Bar-Shalom. Multitarget-Multisensor Tracking. Artech House,

Boston, Massachussetts, 1990.

[2] A. Chhetri. Sensor scheduling and efficient algorithm implementation

for target tracking. PhD thesis, Arizona State University, May 2006.

[3] A. Chhetri, D. Morrell, and A. Papandreou-Suppappola. Nonmyopic

sensor scheduling and its efficient implementation for target tracking

applications. Applied Signal Processing, 2006(1):1–19, 2006.

[4] P. Dodin, J. Verliac, and V. Nimier. Analysis of the multisensor multi-

target tracking resource allocation problem. In FUSION 2000, volume 2

of Information Fusion, 2000. IEEE, 2000.

[5] C. Kreucher, K. Kastella, and A. Hero. Sensor management using an

active sensing approach. Signal Processing, 85(1):607–624, 2005.

[6] V. Krishnamurthy. Algorithms for optimal scheduling and management

of hidden markov model sensors. Signal Processing, 50(6):1382–1397,

2002.

[7] A. Manne. A target-assignment problem. Operations Research,

6(3):346–351, 1958.

[8] MATLAB. version 8.1.0 (R2013a). The MathWorks Inc., Natick, Mas-

sachusetts, 2013.

[9] MATLAB and Optimization Toolbox Release 2013a. version 8.1.0

(R2013a). The MathWorks Inc., Natick, Massachusetts, 2013.

58

[10] J. Nash. Optimal allocation of tracking resources. In Decision and

Control, volume 6 of Adaptive Processes and A Special Symposium on

Fuzzy Set Theory and Applications. IEEE, 1977.

[11] A Sinha, T. Kirubarajan, and M. Farooq. Performance evaluation of

the randomized heuristic approach for multidimensional association. In

SPIE 5809, volume 33 of Signal Processing, Sensor Fusion, and Target

Recognition. SPIE, 2005.

[12] L. Stone, R. Streit, T. Corwin, and K. Bell. Bayesian Multiple Target

Tracking. Artech House, Boston, Massachussetts, 2013.

59

	Introduction
	Problem Definition
	Related Work
	Research Contributions

	Previous Work
	Existing Simulation Capabilities
	Existing Simulation Shortcomings

	Contributions
	Sensor Geometric Limitations
	Adding Geometric Limitations to Sensor Models
	Adding Geometric Limitations to the Allocation Algorithm
	Adding Geometric Limitations to Measurement Models

	Radar Sensor Measurement Model
	Communication Delay Between Sensors and the Command Station
	Adding Delays in Passing Assignments to Sensors
	Adding Delays in Passing Measurements to the Command Station
	Adding Delayed Measurements to the State Estimates
	Creating Schedules of Assignments

	Multiple Discrimination Measurement Modes
	Sensor Splitting
	Dynamic Adjustment of Targets During Simulation
	Adding Targets During Simulation
	Removing Targets During Simulation

	Software Modularization
	GUI-Based Scenario Generation
	Data Visualization Tool
	State and Discrimination Estimation Algorithms
	Resource Allocation Algorithm
	Requirement Analysis Algorithm
	Task Filtering Algorithm
	Sensor Communication Function

	Future Work
	References

