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This report describes a method to control the density distribution of a

large number of autonomous agents. The approach is based on the fact that

there are a large number of agents in the system, and hence the time evolution

of the probabilistic density distribution of agents can be described as a Markov

chain. The main contribution of this paper is the synthesis of a Markov ma-

trix which will guide the multi-agent system density to a desired steady-state

density distribution, in a probabilistic sense, while satisfying some motion and

safety constraints. Also, an adaptive density control method based on real

time density feedback is introduced to synthesize a time-varying Markov ma-

trix, which leads to better convergence to the desired density distribution. Fi-

nally, a decentralized density computation method is described. This method

guarantees that all agents will have a best, and common, density estimate in

a finite, with an explicit bound, number of communication updates.
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Chapter 1

Introduction

This report describes a method to control the density distribution of

a large number of autonomous agents. Existing guidance methods for multi-

agent systems [25, 32, 34, 33, 22, 18, 4, 31] controls l individual agents motions

directly and in a tightly coupled manner in order to achieve the desired collec-

tive behavior. The proposed approach [11, 13, 12] controls the overall density

distribution directly by first synthesizing a Markov Chain that is used by lo-

cally to determine the agent motion commands and as a function of their state.

Hence, the agent motion commands are generated locally and in a decentral-

ized manner. Each agent makes independent motion plans to follow these

commands, which result in the desired collective behavior/motion.

The proposed approach is based on formulating the multi-agent co-

ordination problem as a density control problem. Here the overall density

distribution of the multi-agent system is described as a discrete probability

distribution over the operational region. The region is divided into subre-

gions, i.e., bins, and the desired probability density is prescribed for each bin.

Each agent is given a Markov chain matrix as a policy based on which the

agents make independent decisions at each time step. These decisions and
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corresponding actions lead to a time evolution the overall probability density

as the Markov chain defined by the Markov matrix. Since the density has a

probabilistic interpretation, we need very large number of agents to have the

density evolve exactly as the Markov chain defined by the Markov matrix.

Hence, with finite number of agents, the time evolution is always an approxi-

mation. The density control is decomposed into generating motion commands

between discrete time steps and motion plans are computed by each agent to

follow these commands. Consequently, the multi-agent system coordination

occurs due to higher level motion commands generated based on the Markov

matrix policy, and it is done in a decentralized manner. Since the agent mo-

tion plans are generated by each agent, the whole multi-agent system control

is achieved in a decentralized manner.

The basic idea of using a Markov chain for guiding large numbers of

swarm agents to a desired spatial distribution is quite new. Recent work in this

area [1, 3, 2] has developed the probabilistic interpretation and a Metropolis-

Hastings algorithm to synthesize feasible Markov matrices with motion con-

straints. A different Markov chain based method appeared in [8], using a

probabilistic “disablement” approach found in [23]. Other related stochastic

approaches to swarm control have appeared in the literature [26, 17, 29, 30].

The proposed approach is relatively new in that, it is the first to provide

mathematical guarantees of satisfying all key requirements, ergodicity, con-

flict avoidance, and motion constraints in a decentralized manner by directly

controlling the density distribution of the agents.
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The key technical question that is addressed is: How does higher level

coordination via Markov matrix policy incorporate agent mobility constraints?

There are two constraints that are integrated into Markov matrix design, (i)

the motion and (ii) the conflict avoidance constraints. The motion constraints

are imposed by limiting the set of bins reachable from each bin in the opera-

tional domain, i.e., an agent in a certain bin can only move to a subset of bins.

The conflict avoidance constraints (e.g., collision avoidance), also referred to

as safety constraints [5], are imposed by limiting the density for each bin,

that is, the density in each bin is not allowed to go beyond a prescribed level.

The assumption is that, if the density is below the prescribed level, then the

conflicts can be avoided locally by agents.

It is important to note that many classical results on the Markov chain

synthesis uses the Perron-Frobenius theory of primitive matrices [19, 20, 15,

6], which focuses mainly on the ergodicity of the Markov chains. Perron-

Frobenius theory is heavily leveraged here, but since it cannot handle safety

constraints with ergodicity and motion constraints, we also made connections

with Lyapunov theory [7] and the duality theory with convex optimization.

Furthermore Lyapunov theory and the resulting Linear Matrix Inequalities

(LMIs) allow not only simultaneous incorporation of these constraints in the

design, it allows to define performance metrics such as convergence rate or fuel

use.

The report is organized as follows: Chapter 2 formulates the density

control problem; Chapter 3 introduces the decentralized probabilistic density
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control algorithm; Chapter 4 introduces the desired constraints and the con-

vex formulations of these constraints; Chapter 5 presents the synthesis of the

Markov matrix; Chapter 6 presents a numerical example to illustrate the the-

oretical results of the paper and finally conlusions are stated in Chapter 7.

1.1 Notation

The following is a partial list of notation used: N+ are nonnegative

natural numbers; Rn is the n dimensional real vector space; 0 is the zero

matrix of appropriate dimensions; ei is a vector of appropriate dimension with

its ith entry +1 and its other entries zeros; x[i] = eTi x for any x ∈ Rn and

A[i, j] = eTi Aej for any A ∈ Rn×m; Q = QT � (�)0 implies that Q is a

symmetric positive (semi-)definite matrix; R > (≥)H implies that R[i, j] >

(≥)H[i, j] for all i, j; R > (≥)0 implies that R a positive (non-negative)

matrix; v ∈ Rn is said to be a probability vector if v ≥ 0 and 1Tv = 1; prob

denotes probability of a random variable; ‖v‖ is the 2-norm of the vector v;

For P = P T � 0, ‖v‖P = ‖P 1/2v||; P 1/2 = UΛ1/2UT where P = UΛUT is an

eigenvector decomposition of P ); I is the identity matrix; 1 is the matrix of

ones with appropriate dimensions; diag(A) = (A[1, 1], . . . , A[n, n]) for matrix

A; λmax(P ) and λmin(P ) are maximum and minimum eigenvalues of P = P T ;

σ(A) is the spectrum (set of eigenvalues) of A; ρ(A) is the spectral radius of A

(maxλ∈σ(A) |λ|); ⊗ denotes the Kronecker product; � represents the Hadamard

(Schur) product; A directed graph Ga(A) = (Va,Ea) of a matrix A is defined

i(A) is the indicator matrix for any matrix A, whose entries are given by
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i(A)[i, j] = 1 if A[i, j] 6= 0 and i(A)[i, j] = 0 otherwise. by letting Va be the

set of integers 1, 2, ..., n and letting E be the set of such pairs (i, j), i ∈ Va, j ∈

Va for which A[i, j] 6= 0. The adjacency matrix Aa of a graph G = (V,E) is

defined such that Aa[i, j] = 1 if (i, j) ∈ E and Aa[i, j] = 0 otherwise.
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Chapter 2

Formulation of the Density Control Problem

This section introduces the probabilistic density control (PDC) problem

formulation. The physical domain over which the agents are distributed is

denoted as R. It is assumed that region R is partitioned as the union of m

disjoint subregions Ri, i = 1, . . . ,m, such that R =
m⋃
i=1

Ri, and Ri ∩Rj = ∅ for

i 6= j. The subregions Ri are referred to as bins.

Let an agent have position r(t) at time index t ∈ N+ and x(t) be a

vector of probabilities, 1Tx(t) = 1, such that the i’th element x[i](t) is the

probability of the event that this agent will be in bin Ri at time t,

x[i](t) := prob(r(t) ∈ Ri), i = 1, ...,m. (2.1)

The time index t will also be referred to as the “stage”. Consider a group

comprised of N agents. Each agent is assumed to act independently of the

other agents, so that (2.1) holds for N separate events,

x[i](t) := prob(rk(t) ∈ Ri), k = 1, ..., N (2.2)

where rk(t) denotes the position of the k’th agent at time index t, and the

probabilities of these N events are statistically independent. We refer to x(t)

as the probabilistic density distribution. This is to be distinguished from the
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ensemble of agent positions {rk(t)}Nk=1 which, by the law of large numbers, has

a distribution that approaches x(t) as the number of agents N is increased.

The distribution guidance problem is defined as follows: Given any

initial distribution x(0) such that x(0) ∈ Rm, x(0) ≥ 0, 1Tx0 = 1, it is desired

to guide the agents toward a specified steady-state distribution v such that

v ∈ Rm, v ≥ 0, 1Tv = 1,

lim
t→∞

x[i](t) = v[i] for i = 1, . . . ,m, (2.3)

subject to motion constraints given by an adjacency matrix Aa as follows:

Aa[i, j] = 0 ⇒ r(t+ 1) /∈ Rj when r(t) ∈ Ri, ∀ t ∈ N+ (2.4)

The adjacency matrix Aa of the edges of a directed graph is used to specify

the allowable transitions between bins.

The other important constraint to capture the physical limitations of

the agents is imposed on the densities in each bin to capture the ability of

agents for conflict avoidance. The density constraint is expressed as follows:

x[i](t) ≤ d[i], i = 1, . . . ,m, or more compactly in a vectorial form

x(t) ≤ d ∀ t ∈ N+. (2.5)

Clearly the assumption is that the given initial distribution does not violate

the density constraint. The idea is that by controlling the maximum number

of agents in any bin, we enable the agents to avoid any possible conflicts. For

example, if we have unmanned aerial vehicles (UAVs), by keeping the number
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of UAVs in a given bin below a prescribed number, we can guarantee that

any collisions locally detected can be avoided with a sense and avoid type

algorithm locally. An implication of this assumption is that, if the number of

agents go beyond the prescribed level, there are too many vehicles in a given

subregion that the sense and avoid algorithm at hand loses its ability to ensure

collision avoidance.

The idea behind density control is to mathematically control the prop-

agation of probability vector x, rather than individual agent positions. While

the actual distribution of agent positions n/N will generally be different from

x, it will always be equal to x on the average, and can be made arbitrarily

close to x by using a sufficiently large number of agents. In this sense, density

control simplifies the underlying mathematics by assuming that there are a

large number of agents in the system.

Here we will consider two control problems. In the first problem, each

agent is guided based on knowledge of its own position rk(t) ∈ Ri. In the

second problem, agents are guided by feeding back from their own position,

plus additional knowledge of the entire density distribution x(t). We refer to

the first problem as the probabilistic density control problem, and the second

as the probabilistic density control problem with feedback.
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Chapter 3

Decentralized Probabilistic Density Control

Algorithm

In the probabilistic density control algorithm, each agent is given a

Markov matrix and they make statistically independent decisions based on this

policy. As a result of these decisions and corresponding actions, the overall

density evolves according to the Markov chain policy.

The key idea of the probabilistic guidance law is to synthesize a col-

umn stochastic matrix [19, 6] M ∈ Rm×m, which will be referred as Markov

matrix, that determines the time evolution of the probability distribution as

the probabilistic control policy.

The entries of matrix M are defined as transition probabilities. Specif-

ically, for any t ∈ N+

M [i, j] = eTi Mej = prob (r(t+ 1) ∈ Ri|r(t) ∈ Rj)

∀i, j = 1, . . . ,m.
(3.1)

i.e., an agent in bin j transitions to bin i between two consecutive stages

with probability M [i, j]. The matrix M determines the time evolution of the

probability vector x ∈ Rm as

x(t+ 1) = Mx(t), t = 0, 1, 2, . . . ,

with x(0) ≥ 0 and 1Tx(0) = 1.
(3.2)
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Note that the probability vector x(t) stays normalized as 1Tx(t) = 1 for all

t ≥ 0. This follows from the fact that 1Tx(0) = 1 and 1TM = 1T , which

implies that 1TM tx(0) = 1TM (t−1)x(0) = . . . = 1Tx(0) = 1. Also note that

the probability of moving from one bin to another is nonnegative and the sum

of probabilities of motion from a given bin is one, that is

M ≥ 0, 1TM = 1T . (3.3)

We can characterize such matrices as follows.

Definition 1. Matrix M ∈ Rm×m is a Markov matrix, M ∈ Mm if M ≥ 0

and 1TM = 1T .

The evolution of the probability density is described for a time-varying

M by the following theorem (first appeared in [1]).

Lemma 1. Suppose we have N agents in a partitioned region R = ∪mi=1Ri

where Ri ∩Rj = ∅ for i 6= j.

Let x[i](t) = prob(r(t) ∈Ri) where r(t) be the position vector of an agent at

time instance t, and

M [i, j](t) := prob(r(t+ 1) ∈ Ri|r(t) ∈ Rj). (3.4)

Then the density vector x defined over R evolves as follows

x(t+ 1) = M(t)x(t). (3.5)

Proof. Since the event of an agent being in bin i at time t is mutually exclusive

from it being in another bin j and these events are exhaustive, i.e., they cover
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all possibilities. In this case, the Total Probability theorem [28] implies that,

prob(r(t + 1) ∈ Ri) =
∑m

j=1 prob(r(t + 1) ∈ Ri|prob(r(t) ∈ Rj))prob(r(t) ∈

Rj).

Consequently, since

M [i, j](t) = prob(r(t+ 1) ∈ Ri|prob(r(t) ∈ Rj)), x[i](t+ 1) = prob(r(t+ 1) ∈

Ri),

and x[j](t] = prob(r(t) ∈ Rj), the equation (3.5) follows.

Throughout the paper, we will use M as the constant (offline) Markov

chain policy and M(t) as the time-varying (online) Markov chain policy based

on the density feedback.

Assuming that each agent is able to determine its current bin and is

given the updated Markov Policy M(t) in each time step, the probabilistic

density is controlled with the following algorithm:

PDC Algorithm with density feedback

1. Each agent determines its current bin, rk(t) ∈ Ri.

2. Each agent generates a random number z that is uniformly dis-
tributed in [0, 1].

3. Each agent goes to bin j , i.e., rk(t + 1) ∈ Rj , if
j−1∑
l=1

Mk[l, i]≤ z ≤
j∑
l=1

Mk[l, i].

Note that each agent makes independent decisions.
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Chapter 4

Convex Formulations of Constraints for

Markov Matrix Synthesis

4.1 Desired steady-state distribution

Suppose that it is desired to guide the agents to a specific steady-state

probability distribution denoted by the vector v which can be imposed on the

synthesis of the Markov Matrix with the following condition:

Mv = v (4.1)

that is, v is the eigenvector of M corresponding to its largest eigenvalue 1

[19, 16]. This constraint (4.1) guarantees that v is a stationary distribution

of M , which follows from the equation (3.2). Having Mv= v implies that: If

x(T ) = v for some T ≥ 0 then x(t) = v for all t≥ T . This implies that v is a

stationary distribution of M , that is, the probability distribution of the agents

does not change with time for t≥T .

4.2 Asymptotic Convergence

With given steady-state probability distribution v, it is desired to achieve

the asymptotic convergence of the density distribution, x(t) to v which can be

guaranteed by imposing the spectral radius condition on the synthesis of the
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matrix M :

ρ(M − v1T ) < 1. (4.2)

The necessary and sufficient conditions for asymptotic convergence to v is

given in the following Lemma, whose proof can be found in [1].

Lemma 2. Consider the Markov chain with M ∈ Mm such that Mv = v.

Then for any a probability vector x(0) ∈ Rm, it follows that limt→∞ x(t) = v

for the system (3.2) if and only if ρ(M − v1T ) < 1.

From linear system theory [9, 21], if there exists a Lyapunov matrix

P = P T � 0, the spectral radius condition (4.2) is equivalent to following

inequality for some λ ∈ [0, 1):

λ2P − (M − v1T )TP (M − v1T ) � 0 (4.3)

Note that this condition is a bilinear inequality with both M and P

as solution variables. For a discrete time dynamics system, the Lyapunov

inequality (4.3) is equivalent to the existence of matrices P =P T � 0 and G

such that the following matrix inequality holds for some λ ∈ [0, 1) [10, 2][
λ2P (M − v1T )TGT

G(M − v1T ) G+GT − P

]
� 0. (4.4)

Here, G is a prescribed quantity which is selected as G = diag(v)−1 in our

example and λ determines the convergence rate to the desired stationary dis-

tribution v.
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We have an LMI characterization because it is desired to impose addi-

tional constraints like safety constraints together with ergodicity constraints.

4.3 Motion Constraints

Additional constraints are imposed on matrix M to restrict allowable

agent motion. For example, it may not be desirable or even physically possible

for an agent in bin j to move to some other bin i in a single time step. This

transition is mathematically disallowed by setting the associated element of M

to zero, i.e., M [i, j] = 0. More generally, connectivity constraints are imposed

on the adjacency matrix for a graph associated with M . A directed graph

Ga = (Va,Ea) is defined where Va is a set of m vertices chosen to correspond

to the m bins of R, and Ea are the edges of the graph defined such that the

edge (i, j) exists if and only if there is an allowable transition from bin i to

bin j. The graph is directed in the sense that edge (i, j) which denotes an

allowable transition from i to j, is distinguished from edge (j, i) which denotes

the transition back from j to i. Let Aa be the corresponding adjacency matrix

for this graph, that is, Aa[i, j] = 1 if the transition from bin i to bin j is

allowable, and is zero otherwise. The motion constraints are imposed on M

using the following constraint,

(11T − ATa )�M = 0. (4.5)

14



4.4 Conflict Avoidance Constraints

The conflict avoidance constraints are also known as density upper

bound or safety constraints [5]. The idea is that we can avoid any possible

conflicts between agents by setting an upper bound for the density of each bin,

in other words, by limiting the maximum number of agents for each bin. The

conflict avoidance constraints ensures that the probability of the event that an

agent is in the ith bin stays below a prescribed value during the time interval,

that is,

x(t)[i] ≤ d[i] ∀ i = 0, 1, . . . ,m and ∀ t = 0, 1, . . . , (4.6)

which can also be expressed as

x(t) ≤ d ∀ t = 0, 1, . . . , where 0<d<1, 1Td>1, (4.7)

i.e., d ∈ Rm and d[i] defines the upper bound on the probability of being at

the i’th bin. Here the initial probabilistic density distribution is assumed to

satisfy the conflict avoidance constraints. These constraints are imposed in the

Markov matrix by equivalent linear inequality constraints that are presented

in the Theorem 1 whose proof can be found in [12]. The theorem is proved by

using the duality theory of convex optimization, which also provides a useful

geometrical insight. It presents an equivalent convex optimization formula-

tion that does lend itself well to computationally tractable synthesis by using

Interior Point Method (IPM) algorithms [27].

Theorem 1. Consider the Markov chain given by (3.2) with M ∈Mm. For

every x(0)≤ d, x(t)≤ d ∀t = 1, 2, ..., i.e. the density upper bound constraint

15



holds, if and only if the following equivalent condition hold:

There exist S∈Rm×m and y∈Rm such that

S ≥ 0, M + S + y1T ≥ 0,

y + d ≥
(
M + S + y1T

)
d.

(4.8)
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Chapter 5

Synthesis of Markov Matrix

5.1 LMI Synthesis Without Density Feedback

In this section, we provide the convex optimization problem for the

synthesis of the Markov matrix which satisfies the collision avoidance, ergod-

icity, and transition constraints. All these constraints have been formulated

as equivalent linear equality and linear inequality constraints in section IV.

Hence, we can construct the LMI optimization problem with the given con-

straints which minimizes the fuel or energy use. This can be achieved by

making M'I; note that M=I is a limiting case since it stops the movement

of all agents. Setting the following function as the cost we can make M as

close as to I and hence achieve the minimum fuel or energy [2]:

1T (1− diag(M)) (5.1)

With prescribed G and the convergence rate λ, the following LMI optimization

problem can be solved to find the desired Markov Matrix:

17



min
M,P,S,y

1T (1− diag(M)) s.t

1TM = 1T , M ≥ 0, Mv = v

(11T − ATa )�M = 0

S ≥ 0, M + S + y1T ≥ 0,

y + d ≥ (M + S + y1T )d[
λ2P (M − v1T )TGT

G(M − v1T ) G+GT − P

]
� 0

P = P T � 0, G = diag(v)−1

(5.2)

5.2 QP Synthesis With Density Feedback

In this section, we provide a Quadratic Programming (QP) optimiza-

tion problem for the synthesis of time-varying Markov Matrix. When the

measurements or estimation of the probabilistic density distribution is avail-

able, they can be utilized to update the Markov Matrix which leads to a better

convergence to desired density distribution. Here the assumption is that there

is a Central Processing Agent (CPA) that determines the probabilistic density.

Then the CPA computes a Markov Matrix and this information is communi-

cated to all agents. Later we will propose a decentralized density estimation

method to remove the need for a CPA.

We propose a receding horizon approach to synthesizing the M matrix

for given x(t). In order to do that we assume that there exists a Markov Chain

Policy M̂ , a stochastic matrix satisfying the constraints of the optimization

problem (5.2). Suppose that P is a Lyapunov matrix such that P =P T � 0

18



and, for some λ∈ [0, 1), note that this matrix can be obtained offline by simply

solving a Lyapunov inequality (4.3) for a given M̂ . Now given x(t), we first

solve (online) the following optimization problem:

min
M
‖Mx(t)− v‖P subject to

M ≥ 0, 1TM = 1T , (11T − ATa )�M = 0

x(t+ 1) = M(t)x(t), x(t+ 1) ≤ d

(5.3)

Note that the above optimization problem is a quadratic-programming (QP).

Consequently, solving the optimization problem described by (5.3) synthesizes

the Markov matrix M that leads to the closest density distribution to v, with

respect to a norm defined by P , with the least effort. Note that M = I

is a solution of the second optimization problem when x(t) = v. The next

question is whether this algorithm will lead to convergence to the desired

density distribution or not, which is answered by the following lemma[13].

Proposition 1. Suppose that there exists M̂ ∈Mm and P = P T � 0 satisfying

the inequality (4.3). Then the PDC approach that utilizes the Markov Matrix

M obtained by solving QP given by (5.3) results in limt→∞ x(t) = v for any

x(0) ≥ 0 with 1Tx(0) = 1.

Proof. Let e(t) := x(t)−v, which implies that et+1 = M(t)x(t)−v, where M(t)

is the optimal solution of the synthesis via solving the optimization problem

given by (5.3). Since M̂ is also a feasible solution of this optimization problem,
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M̂v = v, and 1Tx(t) = 1, we have

‖e(t+ 1)‖P = ‖M(t)x(t)− v‖P

≤ ‖M̂x(t)− v‖P = ‖(M̂ − v1T )x(t)‖P

= ‖(M̂ − v1T )e(t) + (M̂ − v1T )v︸ ︷︷ ︸
0

‖P

= ‖(M̂ − v1T )e(t)‖P .

The inequality (4.3) implies that, for all e(t),

λ2‖e(t)‖2P ≥ ‖(M̂ − v1T )e(t)‖2P .

Now, by using ‖e(t+ 1)‖P ≤ ‖(M̂ − v1T )e(t)‖P ,this implies that ‖e(t+ 1)‖P ≤

λ‖e(t)‖P , which then implies that ‖e(t)‖P ≤ λt‖e(0)‖P . Since λ ∈ [0, 1):

limt→∞ ‖e(t)‖P =0, which implies that limt→∞ ‖e(t)‖=0.

Based on the Proposition 1, if there exist a Markov Matrix satisfying

the constraints defined in (5.2), the following problem can be solved to update

M(t) in each time step:

min
M
‖M(t)x(t)− v‖P s.t

1TM(t) = 1T , M(t) ≥ 0, M(t)v = v

(11T − ATa )�M(t) = 0

x(t+ 1) = M(t)x(t), x(0) = x0 ≤ d

x(t) ≤ d, t = 1, 2, . . .

(5.4)
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5.3 A Decentralized Density Estimation Algorithm

This section introduces a decentralized counting algorithm for decen-

tralized density estimation used in updating the Markov matrix. It is assumed

that the bins are selected in a way that each agent can communicate with all

other agents in its bin. It is also assumed that all agents from all neighboring

bins can receive the broadcast from an agent in the bin. It is possible for the

communication radius of an agent to span multiple bins and therefore multiple

bins can be connected to each other. We define a communication adjacency

matrix that shows which bins are able to communicate to each other. Let Ac

be the corresponding communication adjacency matrix, that is, Ac[i, j] = 1 if

the communication from bin i to bin j is feasible, and is zero otherwise.

The counting process consists of the following steps. When a density

update is requested, all agents broadcast their ID and their current bin num-

bers. This enables each agent to determine the number of agents located in

its own bin. After the first step, the agents broadcast the number of agents

in the bins that they know of and update this data with the new information

from other agents. This step is repeated until the information is uniformly

shared among all bins. The propagation of density information across the bins

is illustrated in Figure 5.1. With this method, it is guaranteed that each agent

will be able to compute the correct density after a finite number of commu-

nication updates. Anc > 0 where n is the number of steps required to achieve

uniformly shared information. Note that it is guaranteed that n ≤ m− 1 [14].
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Figure 5.1: An illustration of decentralized density computation algorithm
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Chapter 6

Numerical Example

This example demonstrates the probabilistic density control algorithm

on a multi-agent system of N = 1500 autonomous agents that are distributed

on a U-shaped region R which is partitioned to 7 equally sized rectangular

bins. Initially, the agents are assumed to be uniformly distributed in first two

bins, i.e.

x(0)=[0.5 0.5 0 0 0 0 0]T .

The convergence rate, desired density distribution and the density upper bound

are set as

λ=0.975, x(0)=[0.5 0.5 0 0 0 0 0]T ,

v = [0.05 0.05 0.05 0.07 0.07 0.35 0.36]T and d=[0.5 0.5 0.15 0.14 0.13 0.5 0.5]T

respectively. For this example, it is desired that an agent can travel at most

two bins in a single time step and it cannot perform a transverse transition(e.g.

transition from 2nd bin to 5th bin). The adjacency (motion constraint) matrix
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which satisfies such constraints is given as follows:

Aa =



1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1


.

The convex optimization problem given in (5.2) is solved by using YALMIP

[24].

Using the result of the the Proposition 1, since there exists a Markov

Chain Matrix satisfying the constraints of the problem (5.2), we were able

to compute a time-varying Markov matrix to control the multi-agent system.

The density evolution in the prescribed region is shown in Figure 6.1. The

performance of the density control is evaluated by recording the evolution of

the error x(t)−v in each bin. For comparison purposes simulation is performed

for four different cases: (i) Constant M without density constraint; (ii) Time-

varying M without density constraint; (iii) Constant M with density constraint;

(iv) Time-varying M with density constraint. Error growth for all cases are

shown in Figure 6.2 and the time histories of the density for the bins are shown

in Figure 6.3. For the constant M case, the densities in the bins located at

the bottom in Figure 6.1 (3rd,4th and 5thbin) go beyond the desired upper

bounds for a faster convergence rate when the density constraints are not

imposed. Then imposing the safety constrains reduced the convergence rates

but provided safety. Updating the Markov Matrix in each time step enhances
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Figure 6.1: Evolution of density distribution with time.

the convergence rate drastically in both cases i.e. with and without the density

constraints.
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Figure 6.2: Evolution of error with time for four different cases
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Figure 6.3: Time history of the density of each bin for four different cases.
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Chapter 7

Conclusions

This report presented a Markov chain based method for controlling the

probabilistic density distribution , which is decentralized in the sense that each

agent makes statistically independent decisions to achieve the prescribed final

distribution. Two approaches has been considered for the synthesis of Markov

chain: LMI based (offline) method without density feedback; ii) Time-varying

(online) method with density feedback. For both approaches, the Markov chain

is synthesized as a solution of a convex optimization problem. To impose the

desired constraints such as ergodicity, motion and safety constraints on the

Markov chain, each constraint is expressed as a linear equality or inequality

constraint on the Markov matrix. Also a decentralized counting algorithm

for density estimation is introduced which guarantees finite time convergence.

The results are illustrated in a numerical example for both cases. The online

method with density feedback produces better convergence than the no density

feedback case while putting safety constraints slows down the convergence to

desired distribution.
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