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The identification of predictor variables that meaningfully contribute to group differences in 

Descriptive Discriminant Analysis (DDA) has had conflicting guidance in the historical quantitative 

psychological literature. Early simulation results that tested the bias and power of the standardized 

coefficients and the structural coefficients were ambiguous, yet a consensus still emerged that the 

structural coefficients were preferred. This study reviews the historical debate and known statistical 

weaknesses of both standardized coefficients and structure coefficients, summarizes relevant 

research and proposes a Monte Carlo study that will test whether the inclusion of standardized 

coefficients in interpreting DDA results for both the two-group and three-group cases can assist 

applied researchers in meaningfully ranking variables contributing to group differences. 
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Introduction 

 

Linear Discriminant Analysis (LDA) is a core multivariate technique used in several lines of 

academic inquiry that extracts uncorrelated linear combinations from a matrix of 2 or more 

predictors to describe a known categorical division.  Analytically, canonical methods such as LDA 

subsume the univariate and parametric methods as ‘special cases’ and provide the protection against 

Type 1 ‘experimentwise’ error inflation when testing multiple hypotheses [Thompson, 1991].  

Descriptive LDA analyzes the categorical divisions for two or more categories, though the 

fundamental article introducing the technique focused on only two categories [Fisher, 1936].  The 

extension to 3 or more categories is generally attributed to Rao in 1948.  The category for each set of 

predictors is known a priori by the researcher but any differences in the vector of means between 

the categories are generally not assumed.   This question is formally tested by using multivariate 

analysis of variance (MANOVA) with the null hypothesis of 𝐻0 = 𝑢1 = 𝑢2 = ⋯𝑢𝑗, where 𝑢𝑗́ =

[𝑢1𝑗 , 𝑢2𝑗 , … , 𝑢𝑝𝑗] and 𝑢𝑗́ represents the vector of outcome variable means (the centroids).   The 

Wilks’ Λ (among others) can then be used as an omnibus test to determine if further contrast testing 

or discriminant analysis is in order [Huberty & Olejnik, 2006].   Formally, the null hypothesis tests 

the condition of no difference between any of the centroids.   

Describing specific group differences after the null hypothesis from MANOVA has been 

rejected is one of the primary applications of ‘descriptive’ LDA [Stevens, 2009].  Indeed, Fisher and 

Rao’s articles were concerned with taxonomies of biological and ethnographic distinctions.  Another 

application that has proven increasingly useful is the classification of future cases into one of several 

groups based on the observed vector’s likelihood of occurrence.  Predictive LDA, as this application 

is generally referred to in the literature, has taken on an increasing importance in the past two 
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decades as one of several algorithms found useful in computer applications of unsupervised machine 

learning [Ripley 1996].  Philosophically there has been some disagreement about which application 

of LDA, predictive or descriptive, should precede the other (Huberty & Olejnik, 2006), but 

regardless the techniques remain ‘closely aligned.’  The outcome of Predictive LDA is typically 

judged by the technique’s ability to maximize classification accuracy for a given data set (defined by 

its ‘hit rate’), while LDA’s objectives (the topic of this research paper) are realized by interpreting the 

resulting discriminant functions to better characterize the distinctions between the groups with 

regards to the underlying predictor variables.  While interpreting the underlying discriminant 

functions can have value in predictive LDA, it is of paramount importance to a researcher 

attempting to describe group differences with descriptive LDA– and some disagreement continues 

in the literature with regards to best practices around this question. 

Stevens (2009), advocates two primary methods to interpret linear discriminant functions – 

the standardized partial regression coefficients (Std b’s), defined as the raw coefficient for each 

predictor multiplied by its standard deviation, and the structural coefficients (structure-Rs), defined 

as the correlation between the discriminant function(s) and each of the underlying variables.  This 

recommendation sits upon extensive discussion in the literature with regards to the strengths, 

weaknesses and situational appropriateness for each method – analyses which can differ in the 

concreteness of their conclusions depending upon whether 2 or 3+ categories are analyzed.  

Tatsuoka (1973) argued that each approach has its uses as long as ‘we keep their different objectives 

in mind.’  Broadly, these differing ‘objectives’ center around whether the researcher wants to fully 

consider the multivariate structure when interpreting the relative contribution of the predictor 

variables, or, rather, emphasize the distinct contribution of each variable – more akin to a univariate 

interpretation.  Structural coefficients are widely acknowledged to ignore the presence of other 

variables when quantifying the relationship between the predictors and the discriminant function 
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[Finch 2010].  However, standardized coefficients have been characterized as unstable, as their 

values will change if certain variables are deleted or added [Rencher, 1992].  Two early Monte Carlo 

simulation studies in 1975, one performed by Barcikowski and Stevens, the other by Huberty, 

attempted to bring some clarity to the debate.  However, both studies did not find evidence for 

favoring one coefficient over the other unless sample sizes exceeded 100.  Nevertheless, Huberty 

and Wisenbacker extended the criticism of standardized coefficients in 1992 when they asserted that 

reliance upon the std-b’s results in ‘dubious generalizability’ given their sampling fluctuation.   

Given this shaky historical foundation, many methodologists have still made strong claims 

regarding the superiority of each coefficient.  In 1992, Huberty & Wisenbacker argued that there ‘is 

little doubt’ that the most popular approach to ordering outcome variables was to use the 

standardized coefficients while arguing that the structure-Rs are, in fact, more appropriate.  

However, Finch in 2010 did not include standardized coefficients in his simulation study to 

determine meaningful thresholds for interpreting structure-Rs citing the dominant interpretation of 

most textbooks was to recommend the use of structural coefficients.  Yet, major implementations of 

LDA software have now been designed to provide only the unstandardized coefficients and make 

no mention of the structure-Rs – leading to further methodological confusion [Venables & Ripley, 

2002].  This confusion was furthered by the results of Finch’s thorough experimental design in 2010 

that showed no compelling recommendations regarding the interpretation of structure-Rs for both 

standard rules of thumb or bootstrapping at N’s below 100.  For N’s above 100, Finch did find that 

Bootstrapping was the ‘best approach’ although power could drop to as low as .85 and the type 1 

error rate was still consistently 9% for the 100 and 150 sample size factors.  These findings resonate 

all the more given that Huberty and Wisenbacker in 1992 recommended a more ‘heuristic’ approach 

given (at that time) the lack of widespread access to the advanced computing that would allow more 

sophisticated bootstrap simulations and, implicitly, verify the superiority of the structure-Rs .  Now 
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that the computing gap has been closed, Finch’s study was able to cross many more factors in 

exploring the structure-Rs than the older simulation studies, yet the results were still somewhat 

lackluster.  At a minimum, the question remains open as to which coefficient would better assist an 

applied researcher attempting to interpret a linear discriminant function.  Barring a clear answer to 

the question of which coefficient is superior, additional insight could still be gained by determining 

how the two coefficients might be used in conjunction with one another to improve Finch’s 

estimates of power and type-1 error in an applied descriptive LDA study. 

This study hopes to further assist methodologists by extending Finch’s 2010 paper to include 

standardized coefficients and determine if their performance rivals that or exceeds structural 

coefficients in interpreting which predictor variables are most contributing to the linear discriminant 

function.  In addition, it will investigate whether a combination of the two coefficients as described 

by Stevens in 2009 may also further assist in interpretation.  Finally, it will extend the experiment to 

encompass both the two and three category conditions to determine if an increase in the 

classification dimension alters the effectiveness of using one or both of these coefficients to describe 

group differences in an applied DDA. 
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Descriptive Discriminant Analysis and Interpretation 

 

DDA for Two Groups: 

 

The discriminant function for two groups is represented by the linear combination 𝑧 = 𝒂′𝒚 

in which a row vector of coefficients 𝒂 is sought such that the distance between the two group mean 

vectors is maximized [Stevens, 2009].  The technique assumes that the two populations have equal 

covariance matrices yet different mean vectors 𝑢1 and 𝑢2.  Sample observations are distinguished by 

groups such that 𝑦11, 𝑦12. . . 𝑦1𝑛1
represent measurements on 𝑝 variables for group 1 and 

𝑦21, 𝑦22. . . 𝑦2𝑛2
 represent measurements on the same variables for group 2 with 𝑛 representing the 

number of observations in each group.  It is a strength in discriminant analysis that the n’s are not 

required to be balanced, yet the number of observations in group 1 (𝑛1) and group 2 (𝑛2) must be 

greater than 𝑝 such that 𝑛1 + 𝑛2 − 2 > 𝑝.  The single discriminant function for the two group case 

represents the linear combination that maximizes the distance between the two group mean vectors 

by ‘transforming each observation vector into a scalar’ [Rencher 2002]: 

 

                    𝑧1𝑖 = 𝒂′𝒚1𝑖 = 𝑎1𝑦1𝑖1 + 𝑎2𝑦1𝑖2 + ⋯ + 𝑎𝑝𝑦1𝑖𝑝, 𝑖 = 1, 2, … , 𝑛1                                [1] 

                   𝑧2𝑖 = 𝒂′𝒚2𝑖 = 𝑎1𝑦2𝑖1 + 𝑎2𝑦2𝑖2 + ⋯ + 𝑎𝑝𝑦2𝑖𝑝, 𝑖 = 1, 2, … , 𝑛2                                [2] 

 

After each observation vector is compressed into a scalar for each individual the respective means of 

these scalars can be calculated by 𝑧1̅ = ∑ 𝑧1𝑖/𝑛1𝑛1
𝑖=1  and 𝑧2̅ = ∑ 𝑧2𝑖/𝑛2𝑛2

𝑖=1  or, equivalently, 𝑧1 =

𝒂′𝒚̅1 and 𝑧2 = 𝒂′𝒚̅2 where 𝒚̅1 and 𝒚̅2 represent the vector of means for each variable in groups 1 

and 2.  The analytical task then becomes finding a single discriminant function 𝒂 that maximizes the 
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standardized difference between the n x 1 vector of composite means for each group, 𝑧1̅ and 𝑧2̅, 

such that: 

                                                       
(𝑧̅1−𝑧̅2)

2

𝑠𝑧
2 =

[𝒂′(𝒚̅1−𝒚̅2)]2

𝒂′𝑺𝑝𝑙𝒂
                                                               [3] 

Note that the maximum of Equation (3), as shown by Rencher [2006], occurs at: 

                                                          𝒂 = 𝑺𝑝𝑙
−1(𝒚̅1 − 𝒚̅2)                                                               [4] 

Or, when  𝒂  is ‘any multiple’ of 𝑺𝑝𝑙
−1(𝒚̅1 − 𝒚̅2) with 𝑺𝑝𝑙

−1 representing the inverse of the matrix of 

pooled variance.  As Rencher, Huberty and Ripley all point out, this vector is not unique – only its 

direction and relative values of the various rotations of 𝒂 are unique.  This difference can also be 

expressed as a matrix operation by substituting equation (4) into (3).  The resulting equation is the 

product of the transpose of the difference in means, the inverse of the matrix of pooled variance 

and the vector of mean differences: 

                                                  
 (𝑧̅1−𝑧̅2)

2

𝑠𝑧
2 = (𝒚̅1 − 𝒚̅2)′ 𝑺𝑝𝑙

−1 (𝒚̅1 − 𝒚̅2)                                          [5] 

Thus, the maximum difference between 𝒂′𝒚̅1 and 𝒂′𝒚̅2 can be achieved as long as the critical 

assumptions of independence, multivariate normality and equal covariance matrices are met.  The 

result of the discriminant function is a 1 x n matrix for each group representing the composite z-

score for each individual in each group. 

 

DDA for 3 or more Groups  

 

Linear Discriminant Analysis for several groups extends the goal of the two-group case and 

calculates the linear combination of variables that best separates 𝑘 groups measured by multivariate 

observations [Huberty, 2006].  While the results of an LDA for several groups cannot be expressed 

as the singular point of maximal separation as in the two group case, multi-group LDA does provide 
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an opportunity to visualize group separation on three or more observed variables upon a minimum 

of two discriminant functions [Venables & Ripley, 2002].  Equally important, interpreting the 

contributions of the underlying variables to each of the discriminant functions can provide insight 

into the relative contributions of the multivariate predictors to group separation.  This notion of 

‘relative’ contribution becomes critical in deciphering the mathematical difference between the 

standardized coefficients and the structure-Rs.  It is at the heart of the scholarly disagreement 

between Rencher and Huberty and to help underscore this point the initial multi-group discriminant 

analysis model is presented below. 

The description of the multiple group model is as follows:  For 𝑘 groups with 𝑛𝑖 

observations in the 𝑖𝑡ℎ group (with 𝑖 = 1,2, . . . 𝑘) each observation vector 𝒚𝑖𝑗 is a 1 x 𝑝 vector for 

individual 𝑗 where 𝑗 = 1,2, . . . 𝑛𝑖 [Rencher, 2002].  This vector is transformed to a scalar z value by 

the matrix expression 𝑧𝑖𝑗 = 𝒂′𝒚𝑖𝑗.  Means can then be found by 𝑧𝑖̅ = 𝒂′𝒚̅𝒊  where 𝒚̅𝒊 =

∑ 𝒚𝑖𝑗/𝑛𝑖
𝑛𝑖
𝑗=1 .  Again, we seek a vector 𝒂 that provides maximum separation between the computed 

means of the linear composites for each of the 𝑘 groups 𝑧̅1,  𝑧̅2, … ,  𝑧̅1𝑘.  As shown by Rencher in 

2002, equation 3 above can be extended to the multi-group case by substituting the H matrix (the 

between group variation) into the numerator and the E matrix (the within group variation) into the 

denominator.  Both equations are presented below for group i and individual j: 

                           𝑯 = ∑ 𝑛𝑖(𝒚̅𝒊. − 𝒚̅..)(𝒚̅𝒊. − 𝒚̅..)
′ = ∑

1

𝑛𝑖
𝒚𝒊.𝒚′𝒊. −

1

𝑁
𝒚..𝒚′..

𝑘
𝑖=1

𝑘
𝑖=1                              [6] 

                          𝑬 = ∑ ∑ (𝒚𝒊𝒋 − 𝒚̅𝒊.)(𝒚𝒊𝒋 − 𝒚̅𝒊.)′ = ∑ ∑ 𝒚𝒊𝒋𝒚′𝒊𝒋 − ∑
𝟏

𝒏𝒊
𝒚𝒊.𝒚′𝒊.

𝒌
𝒊=𝟏

𝒏𝒊
𝒋=𝟏

𝒌
𝒊=𝟏

𝒏𝒊
𝒋=𝟏

𝒌
𝒊=𝟏         [7] 

In equations 6 and 7,  i represents group i from the sequence of groups 1:k and individual j from the 

number of individuals in each group sample.  Utilizing the H and E matrices in this way allows the 

differences in group means to be accounted for in all groups and is simplified into matrix notation 

below: 
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                                                               𝜆 =
𝒂′𝑯𝒂

𝒂′𝑬𝒂
                                                                          [8] 

Cross multiplying this can be further simplified to: 

                                                           𝒂′𝑯𝒂 =  𝜆𝒂′𝑬𝒂                                                                  [9] 

Analytically, the value of 𝒂 is sought such that the maximum of 𝜆 is reached with additional 

solutions derived from (𝑬−1𝑯 − 𝜆𝑰)𝒂 = 0.  In this way, ranked Eigenvalues 𝜆1,𝜆2, … 𝜆𝑠 and their 

related eigenvectors 𝑎1, 𝑎2…𝑎𝑠 are created such that 𝜆1 > 𝜆2 and  𝜆2 > 𝜆3, etc.  The number of 

eigenvalues extracted is equivalent to the rank of H, which will be the smaller of k-1 or p [Huberty, 

2006].  From the number of extracted eigenvectors, 𝑠, a corresponding number of discriminant 

functions are created such that the eigenvalues (𝑧1, 𝑧2, 𝑧𝑠) are created by the following discriminant 

functions - 𝑧1 = 𝒂′1𝒚, 𝑧2 = 𝒂′2𝒚 … 𝑧𝑠 = 𝒂′𝑠𝒚.  These functions are uncorrelated but are not 

orthogonal as 𝒂′𝑖𝒂𝑗 = 0 for 𝑖 ≠ 𝑗 as 𝑬−1𝑯 is not symmetric (Rencher, 1998).  Finally, since these 

functions are uncorrelated it is a straightforward calculation to determine the relative importance of 

each eigenvalue’s contribution towards the maximization of group differences: 

                                                                            
𝜆1

∑ 𝜆𝑗
𝑠
𝑗=1

                                                                [10] 

So, at this stage the analyst will have either 𝑘 − 1 or 𝑝 discriminant functions and will also 

have an initial metric of the importance of each.  These functions can be tested for significance by 

using the Wilks Λ-test first on all of the eigenvalues such that Λ1 = ∏
1

1+𝜆𝑖

𝑠
𝑖=1  and, if significant, the 

largest of the eigenvalues can be assumed to be significant as well [Stevens, 2009].  The remaining 

eigenvalues can then be iteratively tested using the same approach.  It is generally acknowledged in 

the literature that functions associated with small eigenvalues can be neglected and often ‘two or 

three’ functions will suffice to describe the separation.  Where there is less agreement in the 
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historical literature is the relative importance of the underlying predictor variables in contributing to 

the discriminant functions. So, it is to these metrics that we will turn our attention to next. 

 

Standardized Discriminant Function Coefficients 

 

The construction of the 𝒂 vector containing the coefficients of a particular linear 

discriminant function clearly possesses intuitive strengths in assessing each predictor 𝑦′𝑠 

contribution to group separation.  However, there is an additional advantage to standardizing the 𝒂 

vector so that each individual 𝑦′𝑠 contribution can be adjusted to the same scale given that many 

collected datasets will not have inherently comparable variances [Rencher, 2002].  For the two group 

case we can express the discriminant function in terms of standardized variables as shown below: 

                            𝑧1𝑖 = 𝑎1
∗ 𝑦1𝑖1−𝑦̅11

𝑠1
+ 𝑎2

∗ 𝑦1𝑖2−𝑦̅12

𝑠2
+ ⋯ + 𝑎𝑝

∗ 𝑦1𝑖𝑝−𝑦̅1𝑝

𝑠𝑝
, 𝑖 = 1,2, … 𝑛1                     [11]  

                            𝑧2𝑖 = 𝑎1
∗ 𝑦2𝑖1−𝑦̅21

𝑠1
+ 𝑎2

∗ 𝑦2𝑖2−𝑦̅22

𝑠2
+ ⋯ + 𝑎𝑝

∗ 𝑦2𝑖𝑝−𝑦̅2𝑝

𝑠𝑝
, 𝑖 = 1,2, … 𝑛2                     [12] 

The composite 𝑧1𝑖variable is computed by dividing each observation’s difference from the within 

group mean by the within sample standard deviation 𝑠𝑟 (for the 𝑟𝑡ℎ variable).  The two-group 

standardized case can be further simplified to matrix notation by taking the square root of the 𝑟𝑡ℎ 

diagonal of our 𝑆𝑝𝑙 matrix and multiplying it by our initial vector of linear discriminants, 𝒂. 

                                                               𝒂∗ = (𝑑𝑖𝑎𝑔 𝑺𝑝𝑙)
1

2 𝒂                                                       [13] 

And, intuitively, this standardizing function can be extended to the multi-group case by denoting the 

𝑟𝑡ℎ coefficient in the 𝑚𝑡ℎ discriminant function as 𝑎𝑚𝑟 , 𝑚 = 1,2, … , 𝑠; 𝑟 = 1,2, … , 𝑝 creating the 

standardized form of the within group standard deviation (pulled from 
𝑬

𝑣𝐸
 for the multi-group case) 

multiplied by the several discriminant functions that will exist in the multi-group case. 
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                                                                      𝑎𝑚𝑟
∗ = 𝑠𝑟𝑎𝑚𝑟                                                          [14] 

The resulting variables are now ‘scale-free’ and, in Rencher’s words ‘correctly reflect the joint 

contribution of the variables to the discriminant function 𝑧 (as presented for the two-group case in 

equations 11 and 12) that maximally separates the groups [2002].  This property also extends to the 

correlations among the matrix variables in the multi-group case as each discriminant function’s 

coefficient vector 𝒂 when expressed as an eigenvector 𝐸−1𝐻.  Of course, the question still remains 

on how to interpret the resulting standardized coefficients. 

For the two-group case an interpretation routine frequently mentioned in the literature 

entails examining the standardized coefficients of the resulting discriminant function and ranking the 

absolute value of the coefficients to determine which underlying variables are contributing most to 

the group differences [Rencher & Scott, 1990].  For the multi-group case the recommended analytic 

routine is similar and takes into account the presence of multiple discriminant functions.  Since the 

multiple functions are uncorrelated each of the functions can have its own unique interpretation 

(tempered by the percentage of variance described by each function) with increasingly narrow bands 

of separation explained by the succeeding functions.  Further insight can be gained by taking into 

account the signs of the variables.  Two well documented limitations of the standardized coefficients 

revolve around typical shortcomings of linear combinations:  mutability in the face of additional 

variables and stability with regards to sample size [Huberty 2006].  Both will be addressed in detail 

after the introduction of structure-Rs. 

 

Structural Coefficients 

 

Structural Coefficients represent the correlation(s) between the linear discriminant 

function(s) and each of the outcome variables.  As Finch recounted in 2010, there are two main 
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approaches to calculating these structure-Rs:  the first taking into account the total group 

correlations and the second taking into account only the within group correlations (or, 𝑅𝑤).  The 

total group correlations (𝑆𝐶𝑇 = 𝑅𝑇𝐷) have been shown to ignore the differences in group means, a 

drawback that has generally been agreed upon in the literature to be a significant one (Huberty & 

Olejnik, 2006), while the correlations to the within matrix (𝑆𝐶𝑤 = 𝑅𝑤𝐷) ‘corrects’ for this 

shortcoming.  Alternatively, as shown by Rencher in 1992, the correlation (or factor loading) for the 

two group case can be expressed as follows: 

                                                                     𝑟𝑦𝑖𝑥 =
𝑦̅1𝑖−𝑦̅2𝑖

√𝑑𝑖𝑎𝑔(𝑆𝑝𝑙)𝐷𝟐                                                   [15] 

Rencher’s analysis shows that 𝐷2 is equivalent to equation 5, and that equation 15 above is 

proportional to the univariate t-statistic and that use of this resulting coefficient ‘unintentionally’ 

reduces the multivariate setting to a univariate one as in equation [16] below: 

                                                                   𝑡𝑖 =
𝑦̅1𝑖−𝑦̅2𝑖

√(
1

𝑛1
+

1

𝑛2
)𝑑𝑖𝑎𝑔𝑆𝑝𝑙

                                                   [16] 

The interpretation of these structure-Rs follows the same recommended procedure as the 

standardized coefficients – assess the absolute value of the magnitude of the association and take the 

arbitrary signs into account when ‘labeling’ the LDF.  However, additional distinctions are critical 

when discerning between the two-group case and the multi-group case as described by Huberty and 

Weisenbacker in 1992.  These structure-Rs were proposed by Huberty and Wisenbacker as a way to 

‘account for the sampling fluctuation of [𝒂]’ in the two-group case while acknowledging that the 

multiple-group case was ‘more complicated.’  While not overtly recommending the structure-Rs in 

the multi-group case, the lack of generalizability for the standardized coefficients was again noted – 

and this debate about ranking a variable’s contribution to the LDF has even deeper roots in the 

literature. 
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Variable Ranking In DDA:  Literature Review 

 

The methodological literature regarding the interpretation of group differences from 

descriptive LDF coefficients has focused on the ranking of such coefficients to assess which of the 

underlying group of variables contributes most to those differences.  It remains to be seen whether 

or not framing the question in this way has contributed to the ensuing confusion on whether the 

structure-Rs or standardized coefficients provide more reliable results – that is, the notion of ranking 

in the multivariate context may itself be problematic [Thompson 1991].  Regardless, the results of 

most previous simulation studies that attempted to determine the superiority of one coefficient over 

the other were murky at best.   

Two initial efforts were undertaken in 1975, one by Huberty and the other by Barcikowski 

and Stevens.  Both had ambiguous results.  Huberty’s study featured two group sizes (𝑘 = 3 & 𝑘 =

5) and compared the performance of standardized coefficients (equation 14) to the structure-Rs 

(both the total and within correlations) on 10 simulated normal predictors.  Huberty’s multi-group 

simulation specified a known common covariance matrix and ‘standard normal’ scores were created 

in his simulated sampling.  His goal was to create a covariance matrix that would be common to 

applied researchers which he describes only as ‘positive and modest’ [Huberty 1975].  The common 

population matrix (Σ) was constructed according to the classical factor analysis model below 

(utilizing Huberty’s notations when possible): 

                                                           Σ =  𝐴𝑝𝑜𝑝 𝐴′𝑝𝑜𝑝 + 𝐷𝑝𝑜𝑝
2                                         [17] 

𝐴𝑝𝑜𝑝 is a 10 𝑥 𝑚 matrix of coefficients created from 𝑚 common factor loadings and 𝐷𝑝𝑜𝑝 is a 10 x 

10 diagonal matrix of coefficients of unique factors.  Effect sizes were constructed in another 

10 𝑥 𝑘 matrix and separation among the groups was achieved by multiplying the common 

covariance matrix above by the effect size matrix and obtaining the population mean matrix.   
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Sample sizes were set to 90, 150, 300 and 450 and only analyzed each predictor’s contribution to the 

first LDF.  Sample score matrices were generated by 𝑋𝑔 = 𝐴𝐹̂ + 𝐷𝑈̂ +  𝑀𝑔 in which 𝑋𝑔 is the 

matrix of the observed scores for group 𝑔 and the m x g matrix 𝐹̂ applies the factor loadings to each 

groups’ 10 variables.  Huberty recognized that the ‘weights in the two models are not directly related 

except in the two group case, but argued that this approach was valid nonetheless. 

The results led Huberty to conclude that ‘an index of absolute contribution is. . . out of the 

question’ given that the studied variables move in concert.  The only achievable goal given the 

computing limitations in 1975 was that of determining the relative contribution of each variable.  

Counts of the rank obtained by each of the 10 variables were tabulated an analyzed for consistency 

across replications and then tested by evaluating the 𝜆2 of Kendall’s W (a measure of concordance, 

or agreement among the rankings).  His results with regards to study reliability were mixed.  

Notably, the standardized coefficients did show one major advantage:  they were much more 

accurate in identifying variables that had no contribution to group separation and this advantage may 

have been underemphasized [Huberty,1975].  An additional Monte Carlo study was run that same 

year by Barcikowski & Stevens which focused on establishing the reliability of the structure-Rs .  

While, the study found that the canonical correlations were ‘very stable upon replication’ the study 

also concluded that ‘there is no solid evidence for concluding that the components are superior to 

the coefficients’ [Barcikowski & Stevens, 1975].  It should be noted that both studies emphasized 

the instability of each coefficient when sample sizes are small with the number of subjects per 

variable suggested to be above 40. 

Thompson (1991) conducted another more general study comparing structural coefficients 

to standardized coefficients in the more general case of canonical analysis (Huberty’s study was 

limited to DA which, quoting Thompson, ‘is equivalent to a canonical analysis in which group 

membership is dummy coded’).  He cited several researchers from the mid-70’s that insisted on the 
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primacy of the structure-Rs – with at least some of this emphasis deriving from a psychometric 

position rather than a methodological one.  Essentially, some early researchers insisted that 

canonical correlation analysis demands an emphasis on structural coefficients given the ‘synthetic’ 

nature of the underlying latent variables.  Several early textbooks also emphasized that structure-Rs 

will be less influenced by sampling error.  It was this second point that was most directly addressed 

by Thompson’s study which reinforced the results of Huberty’s and Barcikowsi & Stevens’ early 

work:  the results of Thompson’s experiment suggested that the structure-Rs and standardized 

coefficients are not differentially sensitive to sampling error [Thompson, 1991].  Both Thompson’s 

and Huberty’s studies were ‘synthetic’ in that they relied on population data that were created to 

‘reflect desired variations.’   

Thompson’s method was to simulate multivariate normal populations and randomly sample 

from that generated data 1,000 times.  64 conditions were tested:  number of variables (12, 8, 6 or 

10), sample size (3, 10, 25 or 40 observations per variable) and 4 different covariance matrices (all 

correlations set to zero, within correlations set to 0 and heterogeneous between correlations, 

between correlations set to 0 and heterogeneous within correlations and a ‘homogenous’ scenario in 

which all correlations were the same and above zero.  A distinct population was created for all 4 

correlation-matrix scenarios with the first zero correlation condition representing the null 

hypothesis.  Thompson’s study allowed for the direct comparison of the standardized coefficients 

and structure-Rs for the same variable set – in particular, he focused on the ‘mean of the mean 

deviations in a given matrix from the known true population parameters’ Thompson [1991].  He 

found the mean matrix deviations for the populations were consistently small and homogenous and 

provided a good basis for comparison.  The average means of the mean matrix deviations from the 

64 parameters were comparable for the standardized coefficients (-.035) and structure-Rs (-.034) for 

the null hypothesis case and (-.042) and (-.044) for the heterogeneous/between scenario.  Standard 
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deviations for the mean matrix deviations were actually somewhat tighter for the standardized 

coefficients – but Thompson hesitated to generalize this finding. 

Two articles published in 1992 further clarified the opposing viewpoints.  In the first, 

Rencher [1992] analytically addressed the conceptual or psychometric issue by first demonstrating 

that in the two-group case the structure-Rs are equivalent to a univariate t-test on each of the 

observed variables (see equations 15 and 16).  His earlier work in 1988 had already constructed a 

similar proof with regards to the multi-group case.  When comparing 𝑘 groups on the predictor 

vector 𝑦𝑖, Rencher showed that the F-statistic is simply a function of the correlation between 𝑦𝑖 and 

all of the extracted structural coefficients [Rencher, 1988]: 

                                                                 ∑ 𝑟𝑥𝑖𝑦1
2 𝜆𝑗

𝑘
𝑗=1 =

𝑏𝑖𝑖

𝑤𝑖𝑖
=

𝑘−1

𝑛−𝑘
𝐹𝑖                                         [18] 

Again, Rencher’s point, analytically derived, was that the correlations between the variables (𝑥𝑖) and 

the canonical discriminant functions 𝑗, with the eigenvalues 𝜆𝑗 representing the diagonal elements of 

B (𝑏𝑖𝑖) and W (𝑤𝑖𝑖), provide ‘no information about the multivariate contribution of a variable.’  The 

influence of the presence of other variables is lost, so the alleged psychometric clarity of the 

structure-Rs cited by previous researchers is akin to reducing a multivariate problem to a univariate 

one.  For this reason, Rencher advocated the use of standardized coefficients [Rencher, 1992].  He 

argued, with some force, that there was no ‘middle-ground’ between the univariate and multivariate 

approaches and the implication was that by seeking additional clarity interpretive errors will be made 

by applied researchers if they insist on the static structure-Rs when interpreting LDFs. 

Huberty and Wisenbacker responded in 1992 by framing the question somewhat differently 

in recommending that the standardized coefficients be altered to account for their sampling 

fluctuation.  They begin their paper by emphasizing that the issue of determining rank or variable 

importance can be difficult in that ‘statisticians rarely concern themselves with the problem of rank’ 
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- implying that the issue of ranking variables may be an imposition of theory rather than 

computation.  While acknowledging Rencher’s analytical proof that the structure-Rs do not take into 

account the interconnectedness of the multivariate predictor matrix, Huberty & Wisenbacker 

nevertheless maintain that the use of standardized coefficients still need to be tempered due to 

problems of sampling fluctuation.  This claim is applied to the two-group and multi-group case, with 

the critical distinction that the two group case can be accounted for by taking ai
∗/rii and 

acknowledging that the multi-group case is ‘more complicated’ [Huberty & Wisenbacker, 1992].  

The paper goes onto suggest two methods focusing on the ‘F-to-Remove’ values in order to 

determine a ranking system that does not over-react to small differences in the F-values for the 

multi-group case.   

Thus, the dismissal of standardized coefficients due to their sampling fluctuation would 

seem to have its roots in an important paper that does not have the benefit of an empirical test.  

More puzzling is that Thompson’s 1991 study (among others) did provide some evidence that the 

standardized coefficients were not any more susceptible to sampling error than the structure-Rs.  

Nevertheless, Huberty & Wisenbacker’s criticism morphed into a full-blown dismissal of 

standardized coefficients in Huberty & Olejnik’s 2006 text ‘Applied MANOVA and Discriminant 

Analysis’ in which reference to the 1992 article as well as an additional text published by Joy and 

Tollefson are cited as reasons for which standardized coefficients are not suitable for variable 

ranking.  It should be noted that Joy and Tollefson’s article in the Journal for Financial and 

Quantitative Analysis recommended against standardized coefficients but did not recommend that 

structure-Rs be used – rather a competing coefficient that calculated the “the portion of the 

discriminant score separation between the groups, (𝑧1̅ − 𝑧2̅), that is attributable to the 𝑗𝑡ℎ variable” 

[Joy & Tollfeson, 1975] .  Fisher later demonstrated that these two methods were commensurate, 

and that the differences in interpretation were due to the violation of the underlying LDA 



 

17 
 

assumptions (in a cited applied finance case two key variables exhibited significant collinearity) 

[Fisher, 1978].  Finally, Huberty and Wisenbacker did not clarify how structure-Rs might remedy the 

sampling problem in the two-group case other than by implying that the correlations may do so.   

Rencher responded to these criticisms by acknowledging that the standardized discriminant 

functions are indeed subject to the traditional limitations of linear combinations used in a regression 

equation:  1) that the coefficients may well change if other predictors are added or deleted and 2) 

sample size must be adequate when compared to the number of predictors in order to be 

generalizable (Rencher, 2002).  However, he is also careful to emphasize that with regards to the first 

property, in a multivariate context ‘this is exactly how we want them to behave.’  That is, in any 

multivariate context a researcher must, by definition, be interested in how the variables move in 

concert.  The focus of the disagreement then would logically pivot upon the question of sample size.  

That is, given the agreement on both sides of the debate that the structure-Rs do not take into 

account the presence of the other predictor variables (and that the standardized coefficients do), the 

recommendation to discard standardized coefficients must be due to an increased susceptibility to 

sampling fluctuation at insufficient N’s.  One (of many) key questions becomes, do structure-Rs 

perform better when sample sizes are small?  If so, there may be a reason social researchers should 

prefer them, as smaller sample sizes are more prevalent in psychological research.  But, a close 

reading of the literature has shown that there is no empirical evidence that this is the case and this 

lack of evidence in the historical literature may well be due to the previous inability to estimate the 

statistical significance of each coefficient in LDA.  Of course, we now know bootstrapping can be 

used for just such a purpose. 

The lack of a reliable method to estimate the statistical significance of structure-Rs and 

standardized coefficients may have contributed to the unnecessary dismissal of standardized 

coefficients in the literature.  Resampling methods offer a way to provide statistical tests when these 
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sampling distributions are not easily specified [Dalgleish, 1994].  Dalgleish used both the jackknife 

method and the bootstrap method to assess the statistical significance of the structure-Rs but 

purposefully omitted the standardized coefficients citing the ‘substantive’ superiority of the 

structure-Rs.  Again, his implication was that the psychological literature prefers the interpretive 

superiority of the structure-Rs.   

The jackknife technique constructs initial sample statistics using all of the data and then 

divides the existing data set up into ‘slightly reduced bodies of data’ (usually one or two), then omits 

the reduced data set and calculates pseudovalues designated below as 𝜃𝑗
∗. The variable 𝑘 represents 

the number of datasets the original dataset is divided into and 𝜃𝐹  is the coefficient of interest: 

                                                                  𝜃𝑗
∗ = 𝑘 ∗ 𝜃𝐹 − (𝑘 − 1) ∗ 𝜃−𝑗                                     [19] 

The mean and standard error of the 𝑘 pseudovalues can be constructed and differences from zero 

tested by dividing the jackknife estimate by the standard error.   

The bootstrap technique treats the sample as a population and then resamples of size 𝑛 (with 

replacement) are extracted from the original sample and the statistics of interest (in Dalgleish’s 

study, only the structure-Rs) can be computed.  Repeating this resampling multiple times allows the 

analyst to create a mean bootstrap estimate of the coefficient 𝜃𝐵 and its standard deviation 𝜎̂𝐵 with 

an implied normal distribution.  A more formal hypothesis tests can be constructed (with 𝜃 as the 

value of the targeted coefficient under the null hypothesis) according to the formula below: 

                                                                                𝑍 =
𝜃̂𝐵−𝜃

𝜎̂𝐵
                                                      [20] 

One particular problem in resampling the results of a DDA is the susceptibility of both DDA 

coefficients to permutations and/or changes in sign similar to that highlighted by Clarkson in his 

1979 study that extracted jackknifed estimates of rotated factor loadings.  For DDA, with 100’s or 

1000’s of bootstrap samples there will be cases in which the sign or function of a standardized 
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coefficient or structure-R may change from one sample to the next.  Both Finch [2010] and 

Dalgleish [1994] followed Clarkson’s approach and changed the signs of the structure-Rs and the 

function order so as to minimize the sum of squared differences between the full sample and the 

bootstrapped resamples.  Dalgleish’s study highlights other complexities in estimating the statistical 

significance of the interpretive coefficients in DDA.  He first collected data from a 1980 study that 

examined the interaction between particular types of crime and personality traits.  A full DDA 

analysis was run on a small subset of this field collected data and estimates of the structural 

coefficients were obtained and the significance of two discriminant functions confirmed by testing 

with the Wilk’s Criteria.  Bootstrapped and jackknifed estimates of the mean were then obtained and 

standard errors for the population were estimated.  Bootstrapped estimates were created with 1000 

resamples while the jackknife left out one observation at a time.  The results showed several 

significant discrepancies between the 95% bootstrapped confidence intervals and jackknifed 

estimates as well as conflicting interpretations on whether to include some of the weaker associated 

structure-Rs.  It was also true that standard errors for the second LDF showed more variability than 

the first.   

Given this interpretive quandary, Dalgleish [1994] ran a Monte Carlo study to determine if 

‘the jackknife tests and the bias corrected bootstrap are liberal or that the standard and percentile 

bootstrap are conservative.’  This required that the difficult task of simulating data with known 

structure-Rs be completed which Dalgleish tackled by creating a SAS macro that generated data 

‘based on the structural equation formulation of canonical correlation analysis.’  The problem of 

alignment reemerges with this approach.  Given that structure-Rs will not necessarily align with the 

population values Dalgleish simply discarded all non-aligning data sets and kept only those data sets 

that did align.  The data was created such that standard-Rs below the threshold of .15 were 

simulated to be 0 and only those that were found to be above the nominal cutoff of .3 were 
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simulated to have an effect.  Thus, type-1 error and coverage could be assessed for both jackknife 

techniques and the three bootstrapped confidence intervals: the standard bootstrap of 95%, the 

percentile bootstrap of 2.5% & 97.5% and the bias corrected bootstrap [Effron & Gong , 1983].  

With regards to type-1 error, the results showed the jackknife methods ‘too liberal’ with estimated 

coefficients roughly 1.5 to 2x the nominal 𝛼 levels of .01, .05 and .10.  The bootstrap method 

performed ‘very well’ if not conservatively for these same 𝛼 levels.  Coverage was also assessed for 

the 100 data sets and again, both jackknife methods performed poorly, as well as the bias-corrected 

bootstrap.  It should be noted that the strongest technique with regards to coverage (the standard 

bootstrap) had a 95% confidence interval that captured the largest structure-R of .75 only 88% of 

the time while weaker structure-Rs were captured as high as 97% – an unintuitive finding that may 

reinforce Rencher’s analytical criticisms of the structure-Rs.   

  In 2010 Finch revisited the question of which method of interpreting the structure-Rs is 

superior.  Finch’s well researched work revisited many of the central questions of rank-ordering 

predictors for their contribution to group separation including providing an experimental distinction 

between the structure-Rs when computed with total group correlations (𝑅𝐶𝑇) -- which do not 

account for group mean differences -- and within-group correlations (𝑅𝐶𝑊) which do account for 

such differences.  Interestingly, Finch advanced the historical debate over DDA interpretation from 

that of simply rank-ordering the predictors to also establishing a threshold for when a predictor 

meaningfully contributes to group differences.  Citing two major quantitative psychology texts 

(Pedhazur 1997 & Tabachnick & Fidell 2001) Finch proposed to test established ‘cut’ points by 

which the contribution of a particular variable could be deemed significant (both texts suggest an SC 

value of .3 as being important).  Additionally, relative value ranking and Dalgleish’s standard 

bootstrap approach were rolled into his study.  He classified these broadly as ‘cutoff’ methods, 
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relative ranking (such as Huberty & Olejnik and Stevens) and the inferential approach (the standard 

bootstrap).   

Taking his cue from Huberty & Olejnik, Finch did not include the standardized coefficients 

in his study.  This omission was not haphazard and was well-considered given the established 

literature.  First and foremost, Finch correctly observed that the early simulation studies to 

determine the superiority of one coefficient over the other were not conclusive and given this 

finding a researcher is reasonable in selecting just one.  The strong bias in quantitative psychology 

texts for the structure-Rs gave Finch the historical justification to focus solely on these to the 

exclusion of the standardized coefficients.  Additionally, Finch correctly pointed out the theoretical 

shortcomings of each coefficient (mutability for the standardized coefficients and predictor isolation 

for the structure Rs).  However, as indicated in the literature review above, some subtlety to the 

previous debates may have been overlooked – an issue that will be discussed further in the proposed 

study for this paper.   

Finch’s study was also quite thorough but did limit itself solely to the two-group DDA 

condition with two and six predictors.  The interpretation methods were .3, .4 and .5 for the cutoff 

values as well as the bootstrapped confidence interval.  His design also allowed for the ranking of 

the simulated predictors.  Normal and non-normal distributions were also tested given the historical 

importance of multivariate normality in both DDA and predictive discriminant analysis [Finch, 

2010].  Group separation was simulated through the use of Cohen’s d (the difference between 2 

means divided by the pooled standard deviation (𝑠) for the data): 

                                                                               𝑑 =
𝑥̅1−𝑥̅2

𝑠
                                                       [21] 

                                                                  𝑠 = √
(𝑛1−1)𝑠1

2+(𝑛2−1)𝑠2
2

𝑛1+𝑛2−2
                                               [22] 



 

22 
 

Effect sizes of 0, .5 and .8, or ‘no difference, moderate difference and large difference’ with respect 

to behavioral research were used.  Simulated sample sizes were also modest:  30, 60, 100 and 150 

and were also varied by the relative size of the groups.  Two conditions were tested by Finch – the 

first in which group sizes were equal and the second in which one group was twice as large.  The 

equality of covariance assumption was also tested with an additional factor of equal covariance 

matrices and one in which one group had a standard deviation that was five times the other.  As 

mentioned above, both total-group and within-group structure-Rs were tested.  Finally, a full 

factorial analysis of variance was run by Finch on the results to determine which of the manipulated 

factors was influencing the rate at which the structure-Rs were detecting variable(s) most associated 

with group differentiation (Finch, 2010).   

Finch [2010] defined ‘power’ as the ability to ‘correctly identify variables associated with 

group separation.’  Type 1 error rate was defined as the inclusion of a non-correlated variable as 

contributing to group separation.  Finch claims that his results strongly recommend an additional 

interpretive criterion such as the standardized coefficients to assist in DDA interpretation.  Direct 

comparison of structural coefficients had grossly inadequate power in both the normal and non-

normal conditions.  For example, with an effect size of .5 and 0 in the two variable case, direct 

comparison was able to identify the significant variable only 58% of the time.  Power for the .3 

cutoff was highest, but this would be expected given its comparatively low threshold.  The standard 

bootstrap method had power that was comparable to the .5 cutoff value.  Type 1 error rate was high 

for all methods, but was least for the standard bootstrap.  Finch’s study found that Type 1 error was 

‘high’ in that it was over .1 in all cases and significantly higher than .1 for all methods other than the 

bootstrap.  Power was also slightly lower in the six variable case but for the most part Finch 

concluded that the results generalize.  Finally, it should be noted that standardized coefficients have 

been shown to correctly identify variables with no effect – a weakness in the structure-Rs that was 



 

23 
 

pronounced in Finch’s study presenting an opportunity for further research as his study did not 

include such coefficients.  Clearly, Finch’s overall conclusions were stark:  ‘using only one index, 

such as the SC’s, oversimplifies the process and may not be advisable.’    

Finch and Laking ran an additional study investigating standardized coefficients in 2008 

(while seemingly published before his 2010 article, the 2008 article was written after his initial paper 

published in 2010 was presented at a conference in 2007).  Their results bolstered Rencher’s position 

that the standardized coefficients better transmit multivariate effects than the structure-Rs in some 

two-group conditions.  For predictor variables that were normally distributed and shared equal 

covariance matrices, Finch and Laking found the standardized coefficients to be highly accurate in 

identifying variables that did not contribute to group differences.  The coefficients were accurate 

over 90% of the time in most cases and often exceeded 95% depending on the interaction between 

the experimental conditions of number of predictors and sample size.   

Additionally, when the six simulated variables all had distinct effect sizes (again, generated by 

Cohen’s d), the standardized coefficients correctly ranked the variables between 70% and 95% of 

the time depending on the simulated correlation between predictors and sample size.  For the larger 

sample size of 150, Finch and Laking found that for normally distributed predictors with 

homogenous covariance matrices, predictors simulated to differ by .5 in their weights were correctly 

ordered over 80% of the time, and when all 6 predictors differed by .8 they were correctly ordered 

over 90% of the time [Finch & Laking, 2008].  Where the standardized coefficients failed miserably 

was in the case in which one variable was associated with the group difference and the other five 

were not – a situation that would theoretically call for a univariate analysis – highlighting the 

importance of an applied researcher correctly identifying the appropriateness of the multivariate 

approach for a specific research problem.  So, Rencher’s admonition to not confuse the two worlds 

of multivariate and univariate analyses rings true in Finch’s findings.  What the 2008 study lacked 
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was a direct comparison of the standardized coefficients to the structure-Rs and an extension of the 

findings to the three group condition. 

A close reading of the results of previous studies suggests that no experimental evidence has 

been found that reinforces the often made assumption in the literature that structure-Rs are less 

susceptible to sampling variation.  Thompson commented upon this directly in 1991 when he 

argued that his study and the previous studies of Huberty and Barcikowski & Stevens ‘do not 

suggest that either structure or function coefficients are inherently sensitive to sampling error.’  In 

the two-group case, Finch clearly demonstrated that the Type 1 error rate of the structural 

coefficients was unacceptably high [Finch 2010].  His updated study with Laking reinforced this 

finding – standardized coefficients more accurately identified variables with no contribution to the 

discriminant function in the presence of multivariate effects [Finch, Laking 2008].  Given these 

findings a study that directly compares the standardized coefficients with the structure-Rs in the two 

and three group case should greatly assist the interpretation of group differences in a descriptive 

DDA as well as extend Finch’s specific findings to the three-group case. 
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Statement of Problem 

 

Increasingly, the experimental evidence has suggested that DDA’s sample size requirements 

as documented by Stevens in 2009 may have distorted many methodologist’s views of the 

standardized coefficients.  That is, one clear finding from the previous simulation studies is that 

small 𝑛′𝑠 can significantly distort the findings for both coefficients yet the standardized coefficients 

appear to have taken the brunt of the negative assessment due to this universal characteristic.  The 

Barcikowski and Stevens study recommended 40 or more observations per predictor variable in 

order to ensure a reliable Descriptive Discriminant Analysis study.  Finch’s study significantly 

reinforced this finding by concluding that ‘all of the methods examined  . . . had greater power for 

larger sample sizes’ [Finch, 2010], yet most of Finch’s simulated N’s fell below the threshold of 40 

observations per variable in his 6 variable scenarios for both studies.  Stevens recommended 20 in 

his 2009 text and also recommended that both standardized coefficients and structure-Rs be used, 

however suggesting that the structure-Rs be used for interpretation and the standardized coefficients 

be used to determine if a variable is redundant.  Regardless, it if can be confirmed that the 

standardized coefficients are no more susceptible to sampling fluctuation than the structure-Rs then 

a key objection to standardized coefficients will be significantly muted.  This finding would then 

allow the standardized coefficient’s clearly established analytical strengths in a multivariate setting to 

be emphasized.  Dalgleish’s 1994 study was the first to employ the bootstrap and jackknife 

resampling methods to statistically test the structure-Rs, yet his study dismissed standardized 

coefficients on psychometric grounds.  This dismissal carried over into Finch’s 2008 work, but 

Finch’s results led him to question whether the structure-Rs alone are sufficient for interpretation.  

An experiment that extends the resampling approach of Dalgleish to the standardized coefficients 

should bring substantial insight to the debate and is merited by the existing literature.   
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Historical criticism of standardized coefficients focused on their lack of generalizability and 

psychometric inadequacy.  Refuting the argument for psychometric superiority would be complex 

and is beyond the scope of a methodologist.  However, the claim that standardized coefficients are 

more susceptible to sampling error can be analyzed.  Structural coefficients should ‘generalize’ better 

than the standardized coefficients, an implication which has not been supported by the statistical 

literature.  Furthermore, a proven strength of standardized coefficients – their ability to detect 

predictors that are not associated with group differences has been suggested in the findings of 

several simulation studies yet underemphasized in the literature [Huberty 1975, Finch 2010].  More 

recently, Finch and Laking showed that there was considerable power in standardized coefficients 

with regards to ordering variables in a multivariate setting as long as linear assumptions were met.  

And, while Rencher’s criticism of the structure-Rs’ predictor isolation have been absorbed and 

relayed in the modern literature, it has not yet been definitively shown in a simulation study that 

standardized coefficients either 1) perform better or 2) are needed to augment the interpretation of 

structure-Rs.  This study will conduct two experiments to directly compare these two coefficients in 

both the two and three group conditions.  It will build itself upon the simulation work of Huberty 

[1975], Barcikowski & Stevens [1975], Thompson [1991], Finch [2010] and Finch and Laking [2008].   
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Research Study 

The literature review above has suggested that standardized coefficients may have been 

prematurely dismissed in the quantitative psychology literature with regards to the ranking and 

interpretation of variables contributing to group separation in a significant discriminant function.  

To determine the extent to which standardized coefficients might assist an applied researcher, two 

separate resampling studies are being proposed that will directly compare the std-b’s performance to 

the structure-Rs.  The first study will extend the work of Finch’s 2010 two-group DDA study which 

compared three methods of interpreting structure-Rs:  traditional cutoff methods, comparison of 

relative magnitudes and bootstrapping (due to the poor performance of the jackknife technique in 

Finch’s study, this resampling method is not included in the current proposal).  This study will build 

upon Finch’s evaluation of the structure-Rs by including an additional calculation for the 

standardized coefficients.  Both coefficients can then be examined in relation to both ‘Power’ and 

‘Type-1 Error’ as defined by Finch in his 2010 study (quoted to highlight Finch’s acknowledgement 

that for the proposed testing of the cutoff values there will be no formal hypothesis test per se) .  

The proposed methods and factors will closely mirror Finch’s design and will rely on Cohen’s D to 

simulate group separation.   

The second study will tackle the more complicated problem of the three-group case.  For 

this simulation study the method will model itself after Thompson’s 1994 study and Huberty’s in 

1975 by specifying uniquely interesting covariance matrices to generate data rather than relying on 

the univariate metric of Cohen’s D in the two-group case.  However, I will extend these studies by 

bootstrapping both the standardized coefficients and structure-Rs to examine Power and Type-1 

Error in the more complex multivariate case of interpreting group differences for three-group DDA.  
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The number of factors will differ from the two group simulation in that the simulation method 

becomes more complex as will be elaborated upon further below.   

Conditions for the Study Comparing Contributions to Group Differences in Two Groups 

 The first proposed study will operate under the two-group condition.  The R function lda() 

authored by B.D. Ripley as part of the MASS package will be used to generate unstandardized DDA 

coefficients according to equation (4).  These scaling coefficients will be transformed first into the 

standardized coefficients by equation [14] and subsequently into structure-Rs by equation [15].  1000 

Bootstrapped estimates of each coefficient will be generated using the standard Z score [equation 

20].  Several conditions shown to impact the performance of both predictive LDA and descriptive 

LDA will then be varied systematically.   

 The first condition varied is effect size and will be consistent with those used in the Finch’s 

2008 study and be limited to sizes of 0, .5 and .8 with the addition of .3 for the 6 variable case.  The 

reasoning is two-fold.  First, as noted by Finch, these effect sizes were associated by Cohen with no 

difference, moderate difference and large difference [Cohen, 1988].  Second, keeping to these values 

will allow a direct comparison to Finch’s initial study.  Following Finch’s conceptual approach, the 

rnorm() function in the R software package will be used to generate a ‘control’ data set for the first 

group which will be composed of simulated variables of mean 0 and a standard deviation of 1.  

Group separation will then be created by utilizing Cohen’s D (equations 21 and 22) though 

operationally this will again mirror Finch by plugging the desired effect value of Cohen’s d (0, .5 or 

.8) into the mean parameter of the rnorm() function to achieve the targeted separation.  However, 

the combination of effects will be varied somewhat and a small effect size of .3 will be added to the 

six variable case so that 1) the task of ranking can be made more clear-cut and 2) conditions that 
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contain multiple variables with no effect in the six-variable case can be constructed – a difference 

from Finch’s design.  The blend of effect sizes for the two variable case is shown in the table below: 

            

And for the six variable case:  

     

Unlike Finch’s study, I will leave two and three unrelated variables in the second group and only 

utilize 5 of the 6 variables once (the ‘Challenge’ condition).  This will be to explicitly test each 

coefficient’s ability to correctly detect multiple variables that are not contributing to group effects in 

the first two 6 variable conditions.  As the effect conditions will not be fully crossed, this factor will 

have 3 conditions approximating each coefficient’s general ability to differentiate between strong 

(the 0/.8 and 0/.3/.8 conditions), moderate (the 0/.5 and 0/.3/.5/.8) and a ‘challenge’ condition 

(.5/.8 and 0/.25/.33/.5/.66/.8). 

 The second condition will be the distribution of predictor variables.  As noted in several 

instances of the statistical literature, two-group DDA has a ‘common alternative’ in logistic 
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regression which uses group membership as the dependent variable and then models the log-

likelihood of said membership.  It has also been suggested that under conditions of multivariate 

normality and identical covariance matrices that DDA is preferable to logistic regression but that 

logistic regression is preferable when these assumptions are violated [Press and Wilson, 1978].  

Because of this important distinction for a practical researcher, two conditions for the predictor 

variables will be varied:  normal and non-normal.  Again, the non-normal condition will build upon 

Finch’s study and use the Fleishman method [1978] to simulate non-normal data with skew 1.75 and 

kurtosis of 3.75.  It should also be noted that the distribution type was found to have significant 

interactions with correctly identifying variables associated with group separation in Finch’s study. 

 The third condition will test the performance when the equality of the covariance matrices 

between groups is varied between equal and unequal (again mirroring Finch).  Unequal covariance 

matrices will be created by simulating one group with 3x the value of the standard deviation as the 

other.  Finch’s study used a value 5x and this condition was found to have a marked effect.  By 

dialing down the difference in the covariance matrices additional insight can be gained in this 

experiment by not only comparing sensitivity of each coefficient to the equality of covariance 

assumption but by also determining the degree to which a 3x and a 5x value between two groups 

might affect performance.   

 The fourth condition varied was number of predictors.  The key studies of Huberty [1975], 

Barcikowski and Stevens [1975], Dalgleish [1994], Thompson [1991] and Finch [2008] showed some 

variability in this condition for their studies.  Earlier studies by Barcikowski and Stevens were 

criticized for having too many to be practical by Thompson, while Huberty and Thompson 

generated p’s with 10 and 12 predictors respectively.  Finch limited his study to 2 and 6 and 

concluded that these two conditions were ‘very similar’ though Type-1 Error rates were slightly 
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lower in the six variable case.  In that I suspect the two variable case may perform differently for the 

two coefficients when standardized coefficients are analyzed, I will keep the two variable condition 

and to maintain comparability between the studies I will also use Finch’s condition of 6 predictors.  

Future work can analyze the performance on an increasing number of predictors if the findings of 

this study merit further investigation.   

 The fifth condition was sample size.  With the literature recommending between 20 [Stevens, 

2002] and 40 [Barcikowski and Stevens 1975] cases per predictor variable, this study will vary four 

conditions:  40, 80, 120 and 240.  These differ somewhat from Finch’s study but follow his general 

direction of including small to medium sized studies.   

Finally, while Finch did vary the correlation among predictor variables, this study will not 

include this as a condition given the large number of factors already in play.  An overall moderate 

correlation of .3 will be assumed for the 2 and 6 predictor variables – a number reflective of likely 

research scenarios and more realistic than assuming no correlation.   

 The resulting 3 x 2 x 2 x 2 x 4 (3 effect size scenarios by 2 distribution types by 2 equality of 

covariance assumptions by 2 predictors by 4 sample sizes) results in 192 conditions.  1,000 data sets 

will be simulated for each condition and 1,000 bootstrapped datasets (sampled with replacement) 

will then be created for each replication.  The single linear discriminant function will be estimated 

for each bootstrapped dataset by the lda() function from Ripley’s MASS package in R using 

maximum likelihood estimation (method = ‘mle’).  The structure-Rs and standardized coefficients 

will be captured and stored and a bootstrapped mean and standard deviation will be constructed for 

both.  Given the slightly superior performance of the percentile bootstrap in Dalgleish’s study over 

the standard bootstrap, the percentile bootstrap (2.5%, 97.5%) will be used to estimate Power for 

the effects simulated to be nonzero and Type-1 Error for effects simulated to be zero.  Traditional 
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cut scores of .3, .4 and .5 will also easily be evaluated though expectations are not high for this 

method due to its poor performance in Finch’s study. 

Conditions for the Study Comparing Contributions to Differences between Three Groups 

 The second study will operate under the three group condition and will be more restrained 

in its design.  Finch’s study in 2008 found broadly that 1) the percentile bootstrap was the preferred 

method for interpreting structure-Rs when sample sizes were greater than 100 and 2) relying solely 

on structure-Rs ‘oversimplifies’ the process.   Finch’s resampling techniques were rooted in 

Dalgleish’s 1994 study which found the percentile bootstrap and standard bootstrap to be the most 

effective methods in interpreting group differences in a three group DDA.  However, Dalgleish’s 

data generation approach for the three group case was somewhat limited with regards to broader 

generalizations for methodologists.  In his study, Dalgleish extracted the structure-R parameters and 

covariance matrix of an actual DDA study and invoked a SAS macro to generate 1,000 data sets 

based on the canonical correlations for each discriminant function and structure-Rs for the entire 

correlation matrix.  When the structure-Rs did not ‘align’ with the generated population data 

Dalgleish discarded the data set which may have weakened the generalizability of the study.  As 

stated before, Dalgleish also dismissed the standardized coefficients from his study.  Finally, there 

was no discussion of whether Dalgleish’s seed data was multivariate normal or had equal covariance 

matrices:  critical assumptions that have been shown to influence DDA results.  Interestingly, 

Thompson’s Monte Carlo study laid the groundwork for an empirical comparison of the 

standardized coefficients and structure-Rs but compared only the mean deviance of the 1,000 

generated data sets.  So, a compact study blending the bootstrapping approach of Dalgleish [1994] 

and the data generation approach of Thompson [1991] and Huberty [1975] would inform the 
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literature by extending the two-group comparison of the standardized coefficients and structure-Rs 

to the three group case.   

 This second study will generate 1000 multivariate normal data sets per condition for three 

groups using the mvrnorm() function in Ripley’s MASS package for R.  The function allows the 

specification of a vector of means according to a pre-specified covariance matrix.  Matrix 

decomposition in the mvrnorm() function is performed via an eigenvector decomposition rather 

than the Choleski decomposition [Ripley, 1987].  For simplicity, a common covariance matrix 

assuming ‘modest’ correlations between the variables will be specified similar to Thompson in 

(1991) and Huberty (1975). The initial matrix will be populated with normal scores with mean of 

zero.  Effect sizes will be achieved following Huberty’s 1975 methodology that constructed a (p x k) 

population weight matrix from which a population mean matrix can be obtained.  For each 

generated data set 1000 bootstrapped datasets will be created and scaling coefficients for each LDF 

(2 for this design) and the proportion of discriminatory power of each LDF as calculated by [10] will 

each be captured for each replication.  From these datasets the standardized coefficients will be 

calculated for each bootstrapped data set via equation [14] and then the structure-Rs via 𝑆𝐶𝑤 =

𝑅𝑤𝐷.  In keeping with many methodological findings only the within correlations will be used to 

construct the structure-Rs.  Trial runs of this experiment have suggested that the first LDF accounts 

for roughly 78% to 82% of the discriminatory power and if this holds true, only the first LDF will 

be analyzed in keeping with Huberty [1975].  The number of variables in the three group simulation 

will be limited to 2 and 6 and composes the first condition of the study.  Other conditions shown to 

impact the performance of multi-group DDA will be varied as follows. 

 The second condition that will be varied is effect size.  Similar to the proposed two-group 

design, three effect sizes will be constructed representing moderate, strong and ‘challenging’ group 
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separation.  Finch utilized Cohen’s D in 2008 when varying effect sizes between .5 and .8, both 

values representing univariate measures that become more problematic when analyzing the three 

group case.  Thompson’s 1991 study utilized correlations of .1, .25 and .6 when constructing his 

population correlation matrices.  Given that Finch’s values are somewhat commensurate with 

Thompson’s work I will construct the ‘population weight’ matrix using only .5 and .8 in the manner 

proposed in the tables below for both the two variable and six variable case. 

           

                            

These three general effect sizes are modeled after the two group case and will test each coefficient’s 

ability to differentiate between strong (0/.8 and 0/.3/.8) effects, moderate effects (0/.5 and 

0/.3/.5/.8) and a more difficult ‘challenge’ condition.   
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 The third condition will be sample size.  The same four sample sizes will be used in this 

experiment as in the two-group case as the recommendations for number of observations per 

variable do not increase in the literature as the number of groups is increased.  Therefore, this 

condition will vary with 40, 80, 120 and 240 as the sample size values. 

 Finally, it should be noted that I am not proposing to test each coefficient’s performance in 

lieu of violations of two important assumptions of three-group DDA:  multivariate normality and 

the equality of covariance matrices.  The reasons for this are two-fold.  First, the complexity of 

simulating non-normal multivariate data with differing covariance matrices is a complex computing 

problem that is just now receiving attention in the literature [Mair, Satorra, Bentler, 2012].  Second, 

given the increased complexity of the three group case I thought it better to limit the number of 

conditions initially to determine if there was differential performance under this optimal case and 

leave the testing of the assumptions for a later study that could build on the foundations of this 

research. 

 The resulting 2 x 3 x 4 (two p values by three effect sizes (strong, medium and ‘challenge’) 

by 4 sample sizes (40, 80, 120 and 240) results in 24 conditions.  1000 data sets will be generated as 

described above using the mvrnorm() function and 1000 bootstrapped dataframes will then be 

constructed.  The results of the study will be evaluated as described in the two group case: bootstrap 

estimates of the mean 𝜃𝐵 and standard deviation 𝜎̂𝐵 will be compiled and the percentile bootstrap 

CI will be determined.  Power and Type-1 Error will be assessed and sample results table will be 

presented below.  Finally, as in the two-group case, cut scores of .3, .4 and .5 will also be evaluated.   
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Expected Results 

 Put succinctly, I expect Rencher’s analytical conclusion that standardized coefficients better 

convey the multivariate nature of the data to be supported by these studies.  Bootstrapping will 

allow the statistical testing of both the standardized coefficients and the structure-Rs by providing a 

mean estimate of each and its standard error for each condition [Dalgleish 1994].  This will allow a 

standard two-tailed Z-test under the null hypothesis that each variable does not contribute to group 

separation (or that the bootstrapped coefficient is equal to zero).  Formally, this is expressed below 

for each coefficient: 

𝑯𝟎: 𝜃𝑠𝑡𝑟.𝑟𝐵
=  0 

𝑯𝟏: 𝜃𝑠𝑡𝑟.𝑟𝐵
≠  0 

𝑯𝟎: 𝜃𝑠𝑡𝑑.𝑏𝐵
=  0 

𝑯𝟏: 𝜃𝑠𝑡𝑑.𝑏𝐵
≠  0 

 Several interesting questions can be pursued with the bootstrapped estimates.  First, the 

efficacy of the cutoff values of .3, .4 and .5 can be judged by recording the number of times an effect 

designed to be greater than zero had bootstrapped coefficient values greater than the cutoff.  Of 

course, power of the cut scores can be assessed as well.  In this scenario, I expect that cut scores 

formed from the standardized coefficients will have better performance than those created from the 

structure-Rs.  Second, statistical significance testing of each of the coefficients can be performed 

using the bootstrap percentile confidence interval and traditional two-tailed Z-testing.  This will 

allow the explicit comparison of the sampling variability of the two coefficients at small and 

moderate sample sizes and should answer the question of whether one coefficient ‘generalizes’ 
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better than the other.  I expect to find that in fact their generalizability is either comparable or that 

standardized coefficients outperform (slightly) the structure-Rs.   

 The gist of the study will lie in comparing power and Type-1 Error for my effect size 

combinations – which have been explicitly set up to determine if standardized coefficients better 

convey the multivariate nature of the variables.  Multiple relationships in the six variable case have 

been set to zero, and I expect the standardized coefficients have better Type-1 Error performance in 

these scenarios.  Table C presented below provides a sample chart that will be populated with the 

percentage of bootstrapped estimates that incorrectly detected a significant effect for the zero coded 

variables.  Power will also be calculated though I have fewer expectations with regards to these 

findings.  Table A and B listed below provides a proposed table of results that will tabulate the 

percentage bootstrapped estimates that correctly identified the strong, moderate and small effects 

for the nonzero effect size variables in both the normal and non-normal condition for the two 

group case.  Tables for the three-group case will be similarly constructed albeit with fewer 

conditions as explained in the three group research design.  Finally, each ‘challenge’ condition was 

explicitly set up so that the variables can be ranked according to their cumulative increasing effect 

sizes.  The percentage of simulations in which the rankings were correct will be directly compared 

for the two coefficients.  It is here that I expect the standardized coefficients to significantly 

outperform the structure-Rs. 
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Sample Table A:   
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Sample Table B:       
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Sample Table C:   
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