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            This report discusses a multi-stage stochastic programming model that maximizes 

expected ending time profit assuming investors can forecast a bull or bear market trend.  

If an investor can always predict the market trend correctly and pick the optimal 

stochastic strategy that matches the real market trend, intuitively his return will beat the 

market performance.  For investors with different levels of prediction accuracy, our 

analytical results support their decision of selecting the highest return strategy.  Real 

stock prices of 154 stocks on 73 trading days are collected.  The computational results 

verify that accurate prediction helps to exceed market return while portfolio profit drops 

if investors partially predict or forecast incorrectly part of the time.  A sensitivity analysis 

shows how risk control requirements affect the investor’s decision on selecting stochastic 

strategies under the same prediction accuracy.  
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1. Introduction 

This project discusses how to maximize portfolio expected return assuming investor can 

forecast market trend, which is represented by rise or fall of S&P 500 Stock Index.  Note 

that investors only anticipate if the market index rises or falls in each coming period, but 

cannot forecast how much it changes.  

 An ordinary multi-stage stochastic programming model is based upon one 

scenario tree of random assets returns.  A straightforward way of generating the scenario 

tree is to draw several random vectors (assets returns) from a multivariate normal 

distribution in each node, and then sequentially build the tree.  Historical data indicates 

constant means and variances of the random assets returns in each node.  Since stock 

returns in this scenario tree only represent the market in average, this optimal strategy is 

optimal only for a market without clear trend.   

 One question that has been asked often in modern portfolio optimization model is 

whether means and variances of historical returns can represent future returns or not.  

Since means and variances of assets returns are estimated from historical data, excellent 

investors should adjust them according to their own judgments on future market, which 

means making prediction.   

 However, forecasting individual asset return is too hard to be right.  We take a 

step back and we think predicting market trends will be relative easier.  If an investor 

predicts that market will rise tomorrow, he will pick an optimal stochastic strategy 

corresponding to a scenario tree in which means and variances of assets returns are 

adjusted for a bull market.  Details about generating the scenario tree will be presented in 

Chapter 5.  Thus, our stochastic programming approach generates multiple scenario trees 

of assets returns.  In each of them, means and variances may vary in stages and depend 

on the corresponding market trend in that stage.  Finally, we generate optimal stochastic 

strategies for scenario trees that represent all possible combinations of market trends in a 

multistage problem.  

 If an investor can always pick the optimal stochastic strategy that matches with 

the real market trend, which means he made predictions and made them right, intuitively 
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his return exceeds the market index return.  It is also interesting to see how portfolio 

profit drops if investors partially predict or forecast wrong sometimes.  For investors with 

different level of prediction accuracy, our analytical results help them select the highest 

return stochastic strategy.  To test our algorithm, real stock prices of 154 stocks in 73 

trading days are collected.  We also show that risk control requirements affect investor’s 

decision on selecting stochastic strategies under the same prediction accuracy.  

 This report is organized as follows.  Chapter 2 reviews previous studies on 

stochastic programming, risk measure conditional value at risk and market prediction.  

Chapter 3 introduces the portfolio optimization problem in this report.  Chapter 4 presents 

the equivalent deterministic linear model of stochastic model.  In Chapter 5, we show the 

procedure of generating scenario trees of market returns and scenario trees of stock 

returns.  In Chapter 6, we analyze how to utilize the optimal stochastic strategies for 

investors with imperfect market prediction.  Computational results and sensitivity 

analysis are represented in Chapter 7.  Finally, we make conclusion and discuss 

directions for further research in Chapter 8.  
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2. Literature Review 

Markowitz (1959) proposes a mean-variance approach in which portfolio optimization 

integrates the trade-off between expected returns and market volatility.  Following this 

groundbreaking work in portfolio optimization, modern portfolio theory has emerged and 

it has been studied extensively.   

 Compared with Markowitz’s mean-variance model that focuses on single-period, 

Stochastic Programming (SP) have been proposed to handle multi-period optimization 

problem.  Since late 1950s SP models have been well-studied by Dantzig (1964), Charnes 

and Cooper (1959) and others.  Birge (1997) gives a survey of general SP approach in 

terms of its computation and applications.  Yu et al. (2003) provides a survey of SP 

models developed for financial optimization.  They also summaries typical scenario 

generation methods and computational difficulty of solving large-scale problems.  While 

transaction costs are not considered in Markowitz’s model, SP model can handle it.  

Gülpınar et al. (2003) considers a multi-stage problem consists of four risky asset classes, 

a set of liabilities and risk-free assets.  Their goal is to minimize risk with specified return 

level while transaction cost is included.  Yu et al. (2004) applies SP model in bond 

markets.  In addition to maximizing expected ending time return, they minimize the 

weighted sum of shortfall costs along planning horizon.  The multistage portfolio 

optimization model in Pınar (2007) uses an objective including expected return and 

downside deviation.  When he generates scenarios, he develops a simulated market model 

and randomly create scenarios in order to approximate the market stochasticity.  

 Due to the computational difficulty of solving large-scale stochastic problem, 

several decomposition methods are proposed.  Birge (1985) develops two algorithms for 

multistage stochastic linear problem.  The first one is a nested bender’s decomposition 

method that extends two-stage L-shaped method.  The second one is a piecewise linear 

partitioning method.  Mulvey and Ruszczyński (1995) provides a new scenario 

decomposition method that temporarily relaxes non-anticipativity constraints as 

Lagrangian relaxation.  And then they approximate subproblem as diagonal quadratic 

problem and solve them using interior point algorithm.  Mulvey and Shetty (2004) 
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describes a framework for modeling large-scale financial planning problems and solves it 

by the similar approach.  

 The portfolio optimization model in this report is based on the risk measure 

named conditional value at risk (CVaR).  Rockafellar and Uryasev (2000) firstly 

introduces this risk measure to portfolio optimization problem in conjunction with a 

linear formulation.  This combination is particularly attractive as it allows an easy 

implementation based on standard linear programming software.  Consequently, CVaR 

gains increasing acceptance as a risk measure that goes beyond the classical mean-

variance model.  In the literature, rich empirical tests and analyses (Andersson et al. 

(2001); Topaloglou, Vladimirou and Zenios (2002); Rockafellar and Uryasev (2002)) 

have been conducted and confirm its applicability to a wide range of financial 

optimization problems.  

 Market prediction is one of the hottest fields of financial research lately because 

of its significant commercial benefit.  In the earlier stage, most studies about market 

prediction were mainly focused on applying artificial neural network (ANN) models for 

stock market prediction.  Kohara et al. (1997) uses prior knowledge and neural networks 

to predict the stock price.  Trippi et al. (1992) predicts the price of the S&P 500 Stock 

Index futures using an ANN model.  Newly research tends to embed artificial intelligence 

(AI) technique to improve the market prediction performance.  Tsaih, Hsu, and Lai (1998) 

combines ANN and several rule-based techniques to forecast if the S&P 500 Stock Index 

futures rises or falls on a daily basis.  Wang (2002) predicts stock price with a hybrid AI 

system and then selects investment stocks according to a set of decision-making rules and 

the predicting results. 

 In this paper, we are not providing a method that predicts stock market, but 

assume that investors are capable to predict the trend of stock market with certain level of 

accuracy.   The problem we proposed is how to maximum portfolio return via stochastic 

programming when investors are able to predict market trends with mistakes.  To our best 

knowledge, there is no such a paper that integrates stochastic programming and market 

trend prediction in portfolio optimization. 
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3. Problem Ingredients 

The timing of decisions in a multi-stage stochastic programming problem is important.  

We present it in Section 3.1. 

 This portfolio includes one risk-free asset, such as cash or Treasury bill, and a 

number of risky assets, such as stocks.  The objective is to maximize the expected ending 

time returns including all assets. When calculating the final return in the ending period, 

value of stocks are estimated by its market price in the last period.  The risk measure in 

this problem is conditional value at risk (CVaR), which is shown in Section 3.2. 

 Instead of long term planning, this project mainly focus on relative short planning 

horizon (e.g. two days).  As a consequence, we omit the interest rate of the risk-free asset 

in the model. Transaction fee are included while buying or selling stocks, except the 

initial purchase.  

3.1 Timing of decisions 

In this problem, investor buys stocks at time t = 0 without observing anything.  At next 

time point t = 1, investor observes stock returns before time t = 1 and then decide to sell 

or purchase stocks at time point t = 1.  The Figure 1 illustrates the timing of decisions in 

this problem. 

 

Figure 1. Timing of decisions 

t = 0  Initial purchase 

t = 1  

  

t =T-1 

 

t = T 

 

Purchase/Sale 

Purchase/Sale 

 

Observe stock prices 

Observe stock prices 

Final return 

Observe stock prices 

Time  Decisions Observation 
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3.2 Conditional value at risk 

Since the notion of Conditional Value at Risk (CVaR) is an extension of Value at Risk 

(VaR), we start by presenting the definition of VaR.  Let Y be a random variable with 

densify function .  In this section, we assume Y is the value of loss of a portfolio at some 

future time.  Assume ( ) ( )y P Y y   increases strictly when 0 ( ) 1y  .  Let 0 1 

be the confidence level (e.g. 0.97  ).  Then 
1VaR ( ) ( )Y    is the  -level quantile 

of Y.   

 We define CVaR as CVaR ( ) E( | VaR ( ))Y Y Y Y   . If Y represents a loss, then 

the CVaR ( )Y  represents the conditional expectation of that loss, conditional on the loss 

exceeding the  -level quantile of Y.  

 According to Rockafellar and Uryasev (2000), we also define VaR and CVaR in 

an alternative way which is equivalent with the definition before.  

 
1

VaR ( ) argmin( ( ) )
1u

Y u Y u


   


 

 
1

CVaR ( ) min( ( ) )
1u

Y u Y u


   


 

 It is clear that VaR only represents the total probability that is covered by the left 

tail of portfolio profit’s pdf (i.e. the right tail of the pdf of loss).  In the contrary, CVaR 

extends VaR by measuring the mean of the part of distribution that is beyond VaR.  This 

is not a complete description of that piece of distribution, but it is an improvement 

compared with VaR. 

 In our problem, we maximize the expected ending time profit while satisfying risk 

control requirements, in which the CVaR at each stage should be less than a given bound.  

Following the above definition, let Y represents a loss andCVaR  to be the upper bound.  

The CVaR risk control requirement is formulated as follows. In the formulation, a and Z 

are non-negative slack variables while  and CVaR  are parameters. 

1
E( )

1
a Z CVaR


 


, where Z Y a   and 0Z   
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 Since every stage needs risk control, our model applies this constraint to every 

stage with the universal upper bound CVaR .  
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4. Modeling 

This is an equivalent deterministic linear model for the stochastic portfolio optimization 

model. The goal is to maximize the expected ending time return while satisfying CVaR 

requirements in each stage. 

Indices: 

T = planning horizon 

t = index of time 

I = set of risky assets 

i = index of asset 

  = set of nodes in a scenario tree 

tw  = index of node at stage t in a scenario tree  

Parameters 

( )ta w  = the ancestor of scenario 
tw  

u0 = investor’s initial wealth 

i  = transaction cost for purchases and sales of asset i (a percentage of the 

 transaction value) 

mt = maximum percentage of the portfolio value that can be allocated into a single 

 stock at time t 

t  = the probability level in VaR at time t 

CVaR  = represents the maximum CVaR allowed at time t. 

Random variables: 

itr  = return for asset i between time t-1 and time t 

Realization of the random variable itr : 

tw

itr  = return for asset i between time t-1 and time t in scenario wt 

Decision variables: 

ta  = slack variable for CVaR constraint at time t 

tw

tv  = the total value of the portfolio at time t in scenario wt 
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tw

itX  = amount allocated to asset i at time t in scenario wt 

tw

itA  = amount of asset i bought at time t in scenario wt 

tw

itD  = amount of asset i sold at time t in scenario wt 

tw

tC  = amount allocated to riskless asset at time t in scenario wt 

tw

tY  = represents loss exceeding VaR in scenario wt 

Objective function: 

 max T T

T

w w

T

w

p v


         (1) 

Constraints: 

 The initial portfolio value is  

 0 0 0i

i I

C X u


                        (2)  

 Constraint (3) is the conservation constraint for stocks. The value of stock at time 

t equals to the current value of stock obtained at time t-1 plus the additional amount that 

purchased or sold at time t.  

 ( )

1
t t t t tw w a w w w

it it it it itX r X A D    for , {1,2,.., 1}, ti I t T w                     (3) 

 Constraint (4) keeps tracking the cash flow at time t.  Note that transaction costs 

are included when purchasing or selling stocks. 

( )

1 (1 ) (1 )t t t tw a w w w

t t i it i it

i I i I

C C A D 

 

       for {1, 2,.., 1}, tt T w           (4) 

 The value of the portfolio at time t includes cash and current value of stocks. 

 
( ) ( )

1 1
t t t tw a w w a w

t t it it

i I

v C r X 



    for {1,2,.., }, tt T w          (5) 

 Forcing constraints for the non-negative slack variable tw
Y .  Note that 0

tw

tu v  in 

constraint (6) represents total loss at time t.  

 
0

t tw w

t t tY u v a                for {1,2,.., }, tt T w           (6) 

 Constraint (7) is the CVaR risk control constraint at time t.  

              
1

1
t t

t

w w

t t

wt

a p Y CVaR
 

 


             for {1,2,.., }t T          (7) 
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 Empirical experiences show that investment diversion is helpful in portfolio 

management in order to limit loss.  Thus, constraint (8) enforces a universal upper bound 

on the percentage of any risky asset in the portfolio, in which mt is chosen by the investor 

(e.g. 10%). 

 

 0 ( )t t tw w w

it t t it

i I

X m C X


     for , {0,1,2,.., }, ti I t T w           (8)  

, , , , , 0t t t t tw w w w w

it it it t t tX A D C Y a    for , , ti I t T w              (9) 
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5. Generate Scenario Trees of Random Assets Returns 

In our approach, we first list all possible combinations of market trend predictions in 

multi-stages and then generate scenario trees of random market index returns in which 

the mean and variance depends on the corresponding market trend prediction.  

 In each stage, an investor has three possible attitudes about the market: unclear 

(no prediction), rise or fall.  If the investor does not make prediction, the mean of random 

market index returns is zero and variance is relatively large.  If he predicts bull or bear 

market, the mean of random market index returns becomes positive or negative 

respectively and the corresponding variance shrinks.  

 In the rest of this report, we restrict the number of stages as two for simplicity.  

Thus, there are in total nine different combinations of market trend prediction during two 

stages.  For each combination, we build one scenario tree of market index returns by 

draw random variables as the pre-specified mean and variance.  

 Given nine scenario trees of index returns, we transform them into scenario trees 

of random assets returns by the Single Index Model, in which coefficients are estimated 

from historical data.  Thus, means and variances of the random assets returns may vary in 

stages and depend on the corresponding type of trend prediction. 

5.1 Scenario trees of Market trends 

Instead of considering the market in average, I classify the prediction of two days market 

trends into nine different types and develop strategies separately.  If an investor prefers 

not to make a prediction, the prediction type is defined as unclear; otherwise his 

prediction is either rise or fall.  The Table 1 illustrates all possible types.  Each type of 

prediction corresponds to stochastic problem and the solution is the optimal strategy for 

that type of trend prediction.  

 Note that the real market only is either bull or bear, so that only market trend type 

5, 6, 8, and 9 will be realized.   
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Table 1. All possible types of prediction for two days market trend 

 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9 

Day1 unclear unclear unclear rise rise rise fall fall fall 

Day2 unclear rise fall unclear rise fall unclear rise fall 

 

 For each type of market trend prediction, we generate a scenario tree of index 

returns by drawing random variables from a normal distribution in each node. The mean 

and variance of the normal distribution in each node depends on the anticipated market 

trend in that day.  If the market rises, the mean of index return is 1%; if it falls, the mean 

of index return is -1%.  If investors cannot judge, the variance of random index returns 

reduces.  Table 2 summarizes means and variances of the normal random index return 

under each type of trend prediction.   

Table 2. Means and Variances of random index returns 

Market trend Mean of index returns Variance of index returns 

unclear 0% 0.02 

rise 1% 0.01 

fall -1% 0.01 

 

 Clearly, we use random sampling to generate scenario tree of index returns.  The 

random sampling procedure for generating event tree with multi-periods may leads to 

unstable investment strategies.  An obvious way to deal with this problem is to increase 

the number of nodes in event tree, such that the approximation error decreases.  When we 

generate scenario tree of stock index returns, we draw 20 random variables in each node.  

And 20 is relative large number for this problem.  Since we only try to solve a two stages 

problem, the stochastic program is still computationally tractable. 

 In Table 3, we illustrate an example of scenario tree of index returns under 

prediction Type 6.  In the first stage, we draw ten random values and add ten nodes to the 

tree.  For each node in the first stage, we add ten sub-nodes so that there are in total 100 

nodes in the second stage.  
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Table 3. Example of Scenario tree of index returns for prediction Type 6 

Daily market index return rate rmt  

Day1 -0.01% 1.15% 0.13% 1.63% 0.53% 1.46% 3.01% 1.74% 1.20%   

Day2 -1.97% -0.09% -2.82% -1.44% -1.45% -1.40% 0.39% -1.09% -1.53% -0.39% …(100) 

 

5.2 Single-index model 

Single index model is a simple model to measure systemic risk and firm-specific return of 

a stock in finance industry.  It shows how a stock return is influenced by the market ( i ) 

and also indicates stock return has a firm specific expected value ( i ) and un-expected 

component it .   

Define: 

itr  = return to stock i in period t 

fr  = the risk free rate (i.e. constant interest rate for cash) 

mtr  = the return to the market portfolio in period t (e.g. S&P 500 Stock Index) 

i  = the stock's alpha, or abnormal return 

i  = the stocks' beta, or responsiveness to the market return 

it  = the residual (random) returns, which are assumed independent normally 

 distributed with mean zero and standard deviation i . 

 
( )

~ (0, )

it f i i mt f it

it i

r r r r

N

  

 

    
 

 In this report, we consider investment on a daily base so that the risk free rate 
fr  

is omitted.  

 By taking a linear regression on historical data, we estimate the parameters in the 

Single-Index model for each stock.  Table 4 provides an example of the linear regression 

on an Excel table.  In the table, the second row indicates the S&P 500 Stock Index daily 

return rate from Jan 3rd to Feb. 26th 2014, which are only the first half of real data (37 

days) that we collected.  The following rows represent stock daily returns.  We use the 
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LINEST function in Excel to run a linear regression of S&P 500 daily returns and stock 

daily returns. 

Table 4. Estimate coefficients of Single-Index Model 

 20140103 … 20140225 20140226  i  i  2

i  

SP500 -0.00033  -0.00135 0.00002     

AA 0.00381  -0.01274 0.03701  1.09422 0.00377 0.00053 

AAPL -0.02197  -0.01041 -0.00902  0.35288 -0.00100 0.00029 

…         

GPC 0.00492  -0.00474 0.00511  1.47937 0.00133 0.00006 

GPS 0.02062  0.02085 0.00229  1.29564 0.00290 0.00016 

 

 Single-Index model builds the relationship between individual stock return rates 

with market return rate in a statistic model.  Now given a scenario tree of market index 

returns and this Single-index model, we create a scenario tree of random assets returns. 

 

5.3 Scenario tree of assets returns 

Given a node in the tree of market index returns, we create a node that contains returns 

for all stocks, which are represented by tr , according to the Single-Index model.  Let mtr  

represent a realization of the market index return at time t.  The corresponding return of 

stock i and time t is defined as itr .  Therefore (0, )it t i mt ir r N      for every stock i 

and time t, and we sequentially build a scenario tree of assets returns. The following 

Figure 3 illustrates the transaction. 
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Figure 2. Construct scenario tree of stock returns 

 In total, for the two-stage problem, we build nine scenario trees of assets returns.  

Each scenario tree of assets returns represents a stochastic problem that we will solve in 

Section 6.   

  

rmt 

One node in 

the tree of 

market return 

The corresponding 

node in tree of 

stock returns. tr  

(0, )it i i mt ir r N      
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6. Utilize Optimal Stochastic Strategies 

If an investor can forecast market trends with 100% accuracy, then of course he should 

always select the stochastic strategy that matches with his prediction.  In reality, such 

investor does not exist and a wrong prediction may loss serious amount of money, so 

every investor should carefully decide how to utilize those optimal stochastic strategies 

for the best return.   

 In this problem, investors have the following five options and need to choose one 

of them based on his own prediction accuracy.  If an investor predict market trend in both 

days and choose the corresponding strategy, there are four possible outcomes.  If investor 

uses the strategy that predict market trend in only one day, then two outcomes may be 

realized.  Intuitively, the risk increases as stochastic strategies forecast more trends.  But 

investors with high prediction accuracy intend to choose risky strategies to obtain more 

profit.  

 The Table 5 lists those five options and the corresponding possible outcomes.  We 

define the average returns for two days in each situation in the Table 5.  And we will give 

the formulation for each return in Table 6.  

Table 5. Investor's Options 

Investor's decision predict result Average return 

Buy index portfolio   r0 

Apply strategy that does not make prediction  r1 

Predict market trend for two days and choose from Strategy 5, 

6, 8 or 9 

Only right in day 1 r2 

Only right in day 2 r3 

both right r4 

both wrong r5 

Predict only in day 1 and choose either Strategy 4 or 7  
right r6 

wrong r7 

Predict only in day 2 and choose either Strategy 2 or 3 
right r8 

wrong r9 

 

 The return of buying index portfolio r0 is obtained from historical data.  The 

return r1 equals to the average return of applying the strategy for the Type 1 prediction 

(i.e. strategy that does not predict in both days) to every testing point.   
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 To calculate the rest of returns, we define probabilities that type 5, 6, 8 and 9 

market trends are realized as u5, u6, u8 and u9 respectively.  Let R(i, j) denote the average 

return of applying strategy i to type j market trend, where {1,2,...,9}, {5,6,8,9}i j  .  

The Table 6 summarizes the equation of calculating returns of cases in Table 5. 

Table 6. Equations of calculating average returns 

Average return Formulation  

r2 2 5 6 8 9(6,5) (5,6) (9,8) (8,9)r u R u R u R u R     

r3 3 5 6 8 9(8,5) (9,6) (5,8) (6,9)r u R u R u R u R     

r4 4 5 6 8 9(5,5) (6,6) (8,8) (9,9)r u R u R u R u R     

r5 5 5 6 8 9(9,5) (8,6) (6,8) (5,9)r u R u R u R u R     

r6 6 5 6 8 9(2,5) (3,6) (2,8) (3,9)r u R u R u R u R     

r7 7 5 6 8 9(3,5) (2,6) (3,8) (2,9)r u R u R u R u R     

r8 8 5 6 8 9(4,5) (4,6) (7,8) (7,9)r u R u R u R u R     

r9 9 5 6 8 9(7,5) (7,6) (4,8) (4,9)r u R u R u R u R     

 

 Suppose an investor knows his success probability of predicting day 1 (p1) and 

day 2 (p2) market trend respectively.  We can show his expected return of each option in 

the Table 7.  According to this table, investors can pick the strategy with the maximum 

expected return rate.  

Table 7. Expected returns 

Investor's decision Expected return 

Buy index portfolio  r0 

Apply strategy that does not make 

prediction 
r1 

Predict market trend for two days and 

choose from Strategy 5, 6, 8 or 9 1 2 2 1 2 3 1 2 4 1 2 5(1 ) (1 ) (1 )(1 )p p r p p r p p r p p r        

Predict only in day 1 and choose either 

Strategy 4 or 7 1 6 1 7(1 )p r p r   

Predict only in day 2 and choose either 

Strategy 2 or 3 2 8 2 9(1 )p r p r   
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7. Computational Results 

In the first Section 7.1, we solve the stochastic model for each scenario tree of stock 

returns.  As a consequence, we have nine optimal stochastic strategies for nine types of 

market trend predictions respectively.   

 In Section 7.2, we collect real prices of 154 stocks and S&P 500 Stock Index in 

73 trading days and classify the 72 pieces of real two-day market into 4 types: 1) rise and 

rise; 2) rise and fall; 3) fall and rise; 4) fall and fall.  Interesting statistic results about the 

real market data are presented.  In the next step Section 7.3, we apply our nine stochastic 

strategies to the real market data.   

 Assuming a perfect investor always makes right prediction and applies the right 

optimal stochastic strategy to real stock prices.  In Section 7.4, we compare his 

performances with the real market returns and the stochastic strategy that does not predict 

market trend.  Beside the prefect investor, we assume there are other investors who don’t 

predict or forecast incorrectly sometimes and we compare them with the prefect investor.  

More importantly, we test when an investor should take strategies that make prediction 

given the success probabilities of his predictions in this section. 

 The optimal return rate and investor’s decision vary when important input feature 

changes.  In the section 7.5, we will vary the risk control requirement and check how it 

affects return rates and invest decisions.  

 In 7.6, we finally summarize all computation experiments we have conducted.  

 We implement models with Java programming language and solved them using 

ILOG CPLEX 12.5 solver.  All computational tests were conducted on a 3.33 GHz 

processor with 2 GB RAM. 

7.1 Generate optimal stochastic strategies 

As shown in Section 5, we develop nine stochastic problems that represent all possible 

types of trend predictions for two days.  In each stochastic problem, the mean and 

variance of random asset returns depends on the market trend prediction. Thus, the 

resulting optimal stochastic solution provides the optimal strategy if an investor picks the 

corresponding type of prediction.  
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 The model size exponentially increases as the number of sub-nodes in scenario 

tree.  Since we draw 20 sub-nodes for each node in the scenario tree, the number of 

constraints grows up to 68777, in which 94% are constraint (8).  Even though solving 

times are not the major concern, they are all within ten minutes.  

 For all nine stochastic problems, we use the same parameters in the CVaR risk 

control constraints.  We set 0.8t   and 0.005CVaR  which means conditional 

expectation of the loss is no greater than 0.005, conditional on the loss exceeding the 

80%-level qunatile of random total loss.  Clearly, this set of risk control constraints is 

quite restrictive.  We solve the nine stochastic problems and obtain the following optimal 

return rates in Table 8. 

 We would like to give an example of an optimal solution to the stochastic 

problem in which investor predicts rise in the first day and fall in the second day (Type 6 

prediction).  In this stochastic problem, market return scenarios in day 1 have positive 

means and market return scenarios in day 2 have negative means.  Therefore, we can 

expect that the optimal solution will initially purchase stocks that are positively correlated 

with market returns and then sell them out at the end of day 1. 

Table 8. Optimal return rates for nine stochastic problems 

Stochastic problem for each type 

of two-day prediction 
Optimal return rate 

1 (unclear, unclear) 1.00454 

2 (unclear, rise) 1.02087 

3 (unclear, fall) 1.00314 

4 (rise, unclear) 1.02586 

5 (rise, rise) 1.04058 

6 (rise, fall) 1.02017 

7 (fall, unclear) 1.00258 

8 (fall, rise) 1.01910 

9 (fall, fall) 1.00055 

 

 At stage 0, no information is revealed.  Suppose the initial wealth is $1.  Since 

first day is expected to be bull market, the optimal solution uses all cash to buy stock that 

are positively correlated with the market index (𝛽 > 0).  Table 9 shows the amount of 
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value allocated to asset i in stage 0.  Note that constraint (8) enforces that the amount of 

value allocated to a single asset cannot exceed 10% of total value.  

Table 9. Initial purchase at stage 0 

Stock ID Amount of value invested 𝛼 𝛽 

6 0.1 0.00357 1.40994 

10 0.1 0.00290 1.45019 

29 0.1 0.00652 1.13084 

31 0.1 -0.00639 2.67334 

33 0.1 0.00162 1.68942 

49 0.1 0.00577 2.00780 

69 0.1 0.00173 1.80162 

107 0.1 0.00116 1.56558 

125 0.1 0.00327 1.50518 

141 0.1 0.01539 1.43013 

 

 At stage 1, the asset returns between stage 0 and stage 1 are revealed.  Therefore, 

investor’s decision also depends on the realization of index return and assets returns at 

that node of the scenario tree.   

In one scenario node, the index return between stage 0 and stage 1 is 1.0112 

which means about 1.1% increase in a day.  In this case, the actions of the optimal 

solution are shown in Table 10.  At the end of stage 1, the optimal solution would invest 

$0.1021 to stock 141 and buy $0.1021 stock 92.  Notice that stock 141 is not strongly 

correlated with Index return and its 𝛼 value is relative large.  The reason of picking stock 

92 is that the Shape Ratio of stock 92 is high.  

In summary, the optimal solution takes the advantage of trend prediction.  Initially, 

it purchased as much as possible stocks that are positively correlated with index return. 

At the end of the first stage, it sold them out and bought a small amount of stocks that 

either have large abnormal return or have high Sharp Ratio.  This observation meets our 

expectation. 
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Table 10. Actions at the end of stage 1 

 Stock ID 
Amount of 

value 
𝛼 𝛽 

Sold at stage 1 

6 0.10194 0.00357 1.40994 

10 0.10192 0.00290 1.45019 

29 0.10192 0.00652 1.13084 

31 0.10236 -0.00639 2.67334 

33 0.10206 0.00162 1.68942 

49 0.10283 0.00577 2.00780 

69 0.10220 0.00173 1.80162 

107 0.10187 0.00116 1.56558 

125 0.10202 0.00327 1.50518 

Purchased at stage 1 92 0.10212 0.00253 0.11663 

Investment at end of 

stage 1 

92 0.10212 0.00253 0.11663 

141 0.10212 0.01539 1.43014 

 

7.2 Classify real market data 

We collect real prices of 154 stocks and S&P 500 Stock Index in 73 trading days.  The 

Figure 3 shows the movement of S&P 500 Stock Index in the time horizon.  In the Figure 

4, the daily return rates of S&P 500 Stock Index are shown.  The total return rate from 

Jan. 2nd to April 17th is 1.018 which is obtained by dividing the ending date index price 

by the starting date index price.  According to Figure 4, the average index return for two 

days is 1.0005.  
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Figure 3. S&P 500 Stock Index 

 

 

Figure 4. S&P 500 Stock Index daily return rate 

 If the S&P 500 Stock Index rises in one day, no matter how much it rises, we treat 

that day as a bull market trend.  If the following day is also a bull market trend, then this 

piece of two days market belongs to Type 5.  Therefore, for a two days problem, there are 

in total four types of market trends: 1) rise, rise; 2) rise, fall; 3) fall, rise; 4) fall, fall.  

They correspond to prediction Type 4, 5, 8 and 9 respectively.  
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 The Table 11 summarizes the number of real two days market trends in each type.  

When we calculate average index return for Type 5 trend, we first calculate daily index 

return rate for each piece of two days market that is in Type 5 and then take the average.  

 Note that we need to separate the 73 days data into two parts.  We used the first 

part (37 days) real market data to estimate stock’s parameters in the Single-Index model.  

In the contrast, the rest of real market data is totally out of sample test for the nine 

stochastic strategies. 

Table 11. Summary of real market data 

Trend Type Number of two day market in each trend type Average index return  

5 19 1.0116 

6 20 1.0002 

8 21 1.0005 

9 12 0.9837 

 

7.3 Apply stochastic strategies 

When we apply a stochastic strategy to a piece of two days market data, we measure how 

close in absolute value the actual S&P 500 index returns is to the scenario value and pick 

the closest one.  

 We apply all stochastic strategies to every piece of two days market data.  Some 

of them are lower than the index return rate while others that match with the real market 

trends outperform the index return.  Appendix A shows all return rate results for 72 

pieces of two-day market data.  To get an insight from those return rates, Table 12 

summarizes Appendix A and represents the average return rate of each strategy under 

each type of real two-day market data.  Note that both index return and strategy return in 

all following tables are two days return rate.  

 The bolded numbers in Table 12 represent the average return rate of applying 

stochastic strategy correctly.  For instance, compared with the average index return for 

Type 5 trends, stochastic Strategy 5 can obtain one percent extra return, which is also the 

best strategy among all strategies.   

 Table 12 provides the values of R(i, j) defined in Section 6.  
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Table 12.  Average return of each strategy 

Trend 

type 

Index 

return 

Average return rate of each stochastic strategy 

1 2 3 4 5 6 7 8 9 

5 1.0116 1.0044 1.0089 1.0037 1.0153 1.0196 1.0116 1.0048 1.0087 1.0011 

6 1.0002 1.0016 0.9931 1.0034 1.0085 1.0027 1.0099 1.0006 0.9923 1.0010 

8 1.0005 1.0024 1.0105 1.0024 0.9981 1.0051 0.9942 1.0029 1.0100 1.0016 

9 0.9837 1.0002 0.9855 0.9994 0.9804 0.9716 0.9823 0.9995 0.9856 1.0014 

 

 Suppose there is an investor who always makes right prediction and applies the 

right optimal stochastic strategy, then the expected return rate for this perfect investor 

would be (19*1.0196+20*1.0099+21*1.01+12*1.0014)/72 = 1.011.  Compared with the 

average index return 1.0005, the perfect investor can gain more than 1% extra return per 

two days.  

 Remember that the parameters in the Single-Index model are estimated according 

to the first half of the data.  We want to compare the in sample test result and out of 

sample test results.   Table 13 shows the average return of each strategy while applying to 

the first half of the data (in sample test results).  In the contrast, Table 14 summary the 

average return when we test the second half of data (out of sample test).  

Table 13. Average return rate (in sample test) 

Trend 

type 

# of each 

trend 

type 

Index 

return 

Average return rate in the first half of data 

1 2 3 4 5 6 7 8 9 

5 9 1.0108 1.0080 1.0114 1.0067 1.0185 1.0224 1.0141 1.0086 1.0111 1.0023 

6 11 1.0011 1.0058 1.0000 1.0065 1.0179 1.0124 1.0154 1.0044 0.9988 1.0012 

8 12 1.0005 1.0031 1.0128 1.0031 1.0008 1.0084 0.9962 1.0031 1.0121 1.0014 

9 5 0.9815 0.9995 0.9812 0.9989 0.9827 0.9688 0.9844 0.9988 0.9807 1.0002 

 

Table 14. Average return rate (out of sample test) 

Trend 

type 

# of each 

trend 

type 

Index 

return 

Average return rate in the first half of data 

1 2 3 4 5 6 7 8 9 

5 10 1.0123 1.0012 1.0066 1.0010 1.0125 1.0171 1.0093 1.0013 1.0065 1.0001 

6 9 0.9991 0.9964 0.9846 0.9997 0.9969 0.9909 1.0033 0.9961 0.9843 1.0007 

8 9 1.0006 1.0015 1.0074 1.0014 0.9946 1.0007 0.9915 1.0026 1.0072 1.0019 

9 7 0.9852 1.0007 0.9886 0.9997 0.9789 0.9737 0.9808 1.0000 0.9890 1.0023 
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 The average index returns in the first half days is 1.0006 and it is 1.0005 in the second 

half days.  

 Compared with Table 13, a large proportion of return rates in Table 14 drop.  For 

example, in the first half data, an investor who makes perfect prediction obtains return rate 

(9*1.0224 + 11*1.0154 + 12*1.0121 + 5*1.002)/37 = 1.014, which exceeds average index return 

by 1.34%.  However, in the second half days (out of sample test), the perfect prediction only 

gains 1.008 return rate, which only exceeds average index returns by 0.75%.  The reason 

performance of stochastic strategies goes off in the second half data is that parameters in Single-

Index model bias for the out of sample test.  

 In the following discussion, we analyze first and second half of data as a whole. 

 

7.4 Investor’s decision of choosing strategies   

In reality, no one can predict market trend with 100 percent accuracy.  Therefore, 

investors may pick stochastic strategies that only predict one day or would rather apply 

the stochastic strategy that does not make prediction.  Table 15 shows their average 

return rates under each case and it is a realization of the Table 5.   

 The probabilities that type 5, 6, 8 and 9 market trends are realized as u5, u6, u8 and 

u9 respectively.  We assume that u5 equals to the number of Type 2 trends divided by 72.  

Similarly, u6 equals 20/72; u8 equals 21/72; u9 equals 12/72. 

 Assuming an investor knows his success probability of predicting day 1 (p1) and 

day 2 (p2) market trend respectively, how the investor picks strategies is an interesting 

question.  In general, investor can take one of the five options in Table 15.  And the 

optimal decision gives him the maximum expected return rate.  It is clear that applying 

strategy that does not forecast outperforms buying index portfolio, so we can ignore the 

first option. 
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Table 15. Investor's decision and return rates 

Investor's decision predict result Average return 

Buy index portfolio   1.0005 

Do not predict trend and take Strategy 1  1.0023 

Predict market trend for two days and choose from Strategy 5, 

6, 8 or 9 

Only right in day 1 1.0019 

Only right in day 2 1.0011 

both right 1.0111 

both wrong 0.9917 

Predict only in day 1 and choose either Strategy 4 or 7  
right 1.0062 

wrong 0.9973 

Predict only in day 2 and choose either Strategy 2 or 3 
right 1.0072 

wrong 0.9976 

 

 Table 16 shows the average return rate if investor only predicts trend in day 1 and 

takes the corresponding stochastic strategy when p1 changes from zero to 100 percent.  In 

the contrary, Table 17 shows the average return rate if investor predicts market trend in 

the second day when p2 varies.  When we compare Table 16 and 17, we observe that 

making trend prediction on day 1 incurs higher risk and profit than forecasting market 

trend on day 2.  

Table 16. Expected return rate of forecasting trend only in day 1 

p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Average 

return 
0.9986 0.9995 1.0005 1.0014 1.0024 1.0033 1.0043 1.0053 1.0062 1.0072 

 

Table 17. Expected return rate of forecasting trend only in day 2 

p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Average 

return 
0.9982 0.9991 1.0000 1.0009 1.0018 1.0027 1.0036 1.0045 1.0054 1.0062 

  

 If investor uses strategies that predict in both days, his average return rate depends 

on p1 and p2.  Table 18 shows the average returns with a discrete set of p1 and p2 pairs. 

 For each pair value of p1 and p2, investor should take the strategy with maximum 

expected return rate.  The maximum return equals to the maximum of return rate of 

strategy that does not predict, strategy that only predicts day 1 trend with p1, strategy that 
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only predicts day 2 trend with p2, and strategy that predicts two day trends with p1 and p2.  

Table 19 presents the results for a set of p1 and p2.  According to Table 19, an investor 

with estimated success probabilities p1 and p2 would know which strategy he should 

choose. 

Table 18. Expected return rate of forecasting trends in both days 

 
p2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

p1 

0.1 0.9945 0.9955 0.9966 0.9976 0.9986 0.9997 1.0007 1.0017 1.0028 1.0038 

0.2 0.9954 0.9964 0.9974 0.9984 0.9995 1.0005 1.0015 1.0025 1.0036 1.0046 

0.3 0.9962 0.9972 0.9983 0.9993 1.0003 1.0013 1.0023 1.0033 1.0044 1.0054 

0.4 0.9971 0.9981 0.9991 1.0001 1.0011 1.0021 1.0031 1.0041 1.0052 1.0062 

0.5 0.9979 0.9989 0.9999 1.0009 1.0019 1.0029 1.0039 1.0049 1.0059 1.0070 

0.6 0.9988 0.9998 1.0008 1.0018 1.0028 1.0038 1.0048 1.0058 1.0067 1.0077 

0.7 0.9997 1.0006 1.0016 1.0026 1.0036 1.0046 1.0056 1.0066 1.0075 1.0085 

0.8 1.0005 1.0015 1.0025 1.0035 1.0044 1.0054 1.0064 1.0074 1.0083 1.0093 

0.9 1.0014 1.0024 1.0033 1.0043 1.0053 1.0062 1.0072 1.0082 1.0091 1.0101 

1 1.0022 1.0032 1.0042 1.0051 1.0061 1.0070 1.0080 1.0090 1.0099 1.0109 

  

Table 19. Investor's maximum average return rate 

 
p2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

p1 

0.1 1.0023 1.0023 1.0023 1.0023 1.0023 1.0027 1.0036 1.0045 1.0054 1.0062 

0.2 1.0023 1.0023 1.0023 1.0023 1.0023 1.0027 1.0036 1.0045 1.0054 1.0062 

0.3 1.0023 1.0023 1.0023 1.0023 1.0023 1.0027 1.0036 1.0045 1.0054 1.0062 

0.4 1.0023 1.0023 1.0023 1.0023 1.0023 1.0027 1.0036 1.0045 1.0054 1.0062 

0.5 1.0024 1.0024 1.0024 1.0024 1.0024 1.0027 1.0036 1.0045 1.0054 1.0062 

0.6 1.0033 1.0033 1.0033 1.0033 1.0033 1.0034 1.0043 1.0052 1.0062 1.0071 

0.7 1.0043 1.0043 1.0043 1.0043 1.0043 1.0044 1.0053 1.0062 1.0072 1.0081 

0.8 1.0053 1.0053 1.0053 1.0053 1.0053 1.0054 1.0063 1.0072 1.0082 1.0091 

0.9 1.0062 1.0062 1.0062 1.0062 1.0062 1.0064 1.0073 1.0082 1.0092 1.0101 

1 1.0072 1.0072 1.0072 1.0072 1.0072 1.0074 1.0083 1.0093 1.0102 1.0111 

 

Do not predict trend and take Strategy 1   

Predict trend only in day 1 and choose either Strategy 4 or 7 

Predict trend only in day 2 and choose either Strategy 2 or 3 

Predict market trend for two days and choose from Strategy 5, 6, 8 or 9 
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7.5 Risk constraints sensitivity analysis 

Recall that the risk control requirements are quite restrictive in the above computational 

tests.  We want to see the effect of relaxing the risk control requirements one by one.  In 

order to make the difference significant large, we remove CVaR constraints and repeat 

the above tests, in Section 7.5.1.  Besides the CVaR constraints, we also want to study the 

effect of constraints (8) that enforces an upper bound on the portion of total value that can 

be invested in one asset.  In Section 7.5.2, we only remove constraints (8) and repeat the 

above tests. 

7.5.1 Relax CVaR constraints 

 We re-generate nine optimal stochastic strategies that are the optimal solutions to 

the nine stochastic problems respectively.  But this time, the stochastic model does not 

require to control risk via CVaR constraints.  The following Table 20 shows the optimal 

return rates for each stochastic problem. 

Table 20. Optimal return rates (without CVaR) 

Stochastic problem for each 

prediction type 
Optimal return rate 

1 (unclear, unclear) 1.01900 

2 (unclear, rise) 1.02432 

3 (unclear, fall) 1.00354 

4 (rise, unclear) 1.02503 

5 (rise, rise) 1.03961 

6 (rise, fall) 1.01856 

7 (fall, unclear) 1.00573 

8 (fall, rise) 1.02072 

9 (fall, fall) 1.00055 

 

 Then we apply those stochastic strategies to each piece of two-day market data.  

We summarize the results in Table 21.  The return rate for an investor who always makes 

right prediction is (19*1.0196+20*1.0101+21*1.0104+12*1.0013)/72 = 1.0112.  
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Table 21. Average return of each strategy (without CVaR) 

Trend 

type 

Index 

return 

Average return rate of each stochastic strategy 

1 2 3 4 5 6 7 8 9 

5 1.0116 1.0179 1.0173 1.0078 1.0148 1.0196 1.0114 1.0067 1.0107 1.0011 

6 1.0002 1.0048 1.0005 1.0060 1.0078 1.0027 1.0101 1.0015 0.9942 1.0010 

8 1.0005 1.0052 1.0068 1.0006 1.0028 1.0051 0.9942 1.0070 1.0104 1.0016 

9 0.9837 0.9763 0.9774 0.9960 0.9753 0.9716 0.9823 0.9948 0.9851 1.0013 

 

 Given this set of high risky stochastic strategies, investors also face the problem 

of utilizing them.  Table 22 shows the expected return rates when investors only predict 

one day or does not make prediction and apply the corresponding strategy.  

 In Table 22, we also compare return rates from the risky strategies with those 

from the low risk strategies (with CVaR constraints).  The strategy that does not make 

prediction gains higher profit when CVaR constraints are removed.   

Table 22. Investor's decision and return rates (without CVaR) 

Investor's decision predict result 
Average return 

without CVaR 

Average return 

with CVaR 

Buy index portfolio   1.0005 1.0005 

Apply strategy that does not make prediction  1.0036 1.0023 

Predict market trend for two days and choose 

from Strategy 5, 6, 8 or 9 

Only right in day 1 1.0017 1.0019 

Only right in day 2 1.0016 1.0011 

both right 1.0112 1.0111 

both wrong 0.9923 0.9917 

Predict only in day 1 and choose either Strategy 

4 or 7  

right 1.0075 1.0062 

wrong 0.9986 0.9973 

Predict only in day 2 and choose either Strategy 

2 or 3 

right 1.0072 1.0072 

wrong 0.9989 0.9976 

  

 Table 23 indicates the return rate if an investor only predicts in day 1 and takes 

the corresponding the high risk stochastic strategy, while Table 24 shows the return rate 

if an investor only predicts in the second day and takes the corresponding the high risk 

stochastic strategy.  If investor uses risky strategies that predict in both days, his average 

return rate depends on p1 and p2.  Table 25 shows the average returns with a discrete set 

of p1 and p2. 
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Table 23. Expected return rate of forecasting only in day 1 (without CVaR) 

p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Average 

return 
0.9997 1.0005 1.0014 1.0022 1.0030 1.0039 1.0047 1.0055 1.0064 1.0072 

 

Table 24. Expected return rate of forecasting only in day 2 (without CVaR) 

p2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Average 

return 
0.9995 1.0004 1.0013 1.0022 1.0031 1.0040 1.0048 1.0057 1.0066 1.0075 

 

Table 25. Expected return rate of forecasting in both days (without CVaR) 

 
p2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 0.1 0.9941 0.9951 0.9960 0.9970 0.9979 0.9988 0.9998 1.0007 1.0017 1.0026 

 0.2 0.9951 0.9960 0.9970 0.9979 0.9989 0.9998 1.0007 1.0017 1.0026 1.0036 

 0.3 0.9960 0.9970 0.9979 0.9989 0.9998 1.0007 1.0017 1.0026 1.0036 1.0045 

 0.4 0.9970 0.9979 0.9989 0.9998 1.0008 1.0017 1.0026 1.0036 1.0045 1.0055 

p1 0.5 0.9979 0.9989 0.9998 1.0008 1.0017 1.0027 1.0036 1.0045 1.0055 1.0064 

 0.6 0.9989 0.9998 1.0008 1.0017 1.0027 1.0036 1.0046 1.0055 1.0064 1.0074 

 0.7 0.9998 1.0008 1.0017 1.0027 1.0036 1.0046 1.0055 1.0065 1.0074 1.0084 

 0.8 1.0008 1.0017 1.0027 1.0036 1.0046 1.0055 1.0065 1.0074 1.0084 1.0093 

 0.9 1.0017 1.0027 1.0036 1.0046 1.0055 1.0065 1.0074 1.0084 1.0093 1.0103 

 1 1.0027 1.0036 1.0046 1.0055 1.0065 1.0074 1.0084 1.0093 1.0103 1.0112 

 

 Investors always would like to take the strategy with maximum average return 

rate.  Table 26 presents the maximum return rate strategy and its return rate for each pair 

of p1 and p2.  Therefore, Table 26 supports investor’s decision in choosing the best 

strategy when he knows his estimated success probabilities p1 and p2. 

 Compared with Table 19, Table 26 suggests that the high risk strategies that make 

predictions (e.g. Strategy 5, 6, 8 and 9) need higher the prediction accuracy (e.g. larger 

than 50 percent for one day prediction).  This observation makes senses since the higher 

risk strategies intend to loss more when the trend prediction is wrong. 
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Table 26. Investor's maximum average return rate (without CVaR) 

 
p2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

p1 

0.1 1.0036 1.0036 1.0036 1.0036 1.0036 1.0040 1.0048 1.0057 1.0066 1.0075 

0.2 1.0036 1.0036 1.0036 1.0036 1.0036 1.0040 1.0048 1.0057 1.0066 1.0075 

0.3 1.0036 1.0036 1.0036 1.0036 1.0036 1.0040 1.0048 1.0057 1.0066 1.0075 

0.4 1.0036 1.0036 1.0036 1.0036 1.0036 1.0040 1.0048 1.0057 1.0066 1.0075 

0.5 1.0036 1.0036 1.0036 1.0036 1.0036 1.0040 1.0048 1.0057 1.0066 1.0075 

0.6 1.0039 1.0039 1.0039 1.0039 1.0039 1.0040 1.0048 1.0057 1.0066 1.0075 

0.7 1.0047 1.0047 1.0047 1.0047 1.0047 1.0047 1.0055 1.0065 1.0074 1.0084 

0.8 1.0055 1.0055 1.0055 1.0055 1.0055 1.0055 1.0065 1.0074 1.0084 1.0093 

0.9 1.0064 1.0064 1.0064 1.0064 1.0064 1.0065 1.0074 1.0084 1.0093 1.0103 

1 1.0072 1.0072 1.0072 1.0072 1.0072 1.0074 1.0084 1.0093 1.0103 1.0112 

 

Do not predict trend and take Strategy 1   

Predict trend only in day 1 and choose either Strategy 4 or 7 

Predict trend only in day 2 and choose either Strategy 2 or 3 

Predict market trend for two days and choose from Strategy 5, 6, 8 or 9 

  

7.5.2 Relax maximum investment percentage restriction 

In this section, we study the effect of relaxing constraints (8) that enforces an upper 

bound on the percentage of total value that can be invested in one asset (stock).   

 Once again, we re-generate nine optimal stochastic strategies that are the optimal 

solutions to the nine stochastic problems respectively.  But this time, the stochastic model 

does not include constraint (8).  The following Table 27 shows the optimal return rates 

for each stochastic problem. 
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Table 27. Optimal return rates (without constraint (8)) 

Stochastic problem for each 

prediction type 
Optimal return rate 

1 (unclear, unclear) 1.01165 

2 (unclear, rise) 1.03021 

3 (unclear, fall) 1.00499 

4 (rise, unclear) 1.04613 

5 (rise, rise) 1.06086 

6 (rise, fall) 1.03055 

7 (fall, unclear) 1.00629 

8 (fall, rise) 1.02917 

9 (fall, fall) 1.00276 

 

 Then we apply those stochastic strategies to each piece of two-day market data 

and record the average return rate for each strategy in Table 28.  According to Table 28, 

the average return rate for an investor who makes perfect prediction jumps up to 

(19*1.0256 + 20*1.0236 + 21*1.0054 + 12*1.0038)/72 = 1.0155.  

 

Table 28. Average return of each strategy (without constraint (8)) 

Trend 

type 

Index 

return 

Average return rate of each stochastic strategy 

1 2 3 4 5 6 7 8 9 

5 1.0116 1.0190 1.0214 1.0074 1.0256 1.0256 1.0263 1.0119 1.0216 1.0064 

6 1.0002 1.0053 1.0026 1.0043 1.0239 1.0239 1.0236 1.0028 1.0034 1.0031 

8 1.0005 1.0038 1.0051 1.0039 1.0127 1.0127 1.0064 1.0034 1.0054 1.0026 

9 0.9837 0.9981 0.9930 1.0019 0.9764 0.9764 0.9830 0.9979 0.9924 1.0038 

   

 In Table 29, we show the expected return rates for each option and each outcome 

and we also compare return rates from the risky strategies with those from the low risk 

strategies with constraint (8).  From Table 29, we can see that relaxing constraint (8) 

boosts up return rates for all options and all outcomes.  
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Table 29. Investor's decision and return rates (without constraint (8)) 

Investor's decision predict result 
Average return 

without constraint 8 
Average return 

with constraint 8 

Buy index portfolio   1.0005 1.0005 

Apply strategy that does not make prediction  1.0073 1.0023 

Predict market trend for two days and choose 

from Strategy 5, 6, 8 or 9 

Only right in day 1 1.0131 1.0019 

Only right in day 2 1.0074 1.0011 

both right 1.0155 1.0111 

both wrong 1.0006 0.9917 

Predict only in day 1 and choose either 

Strategy 4 or 7  

right 1.0086 1.0062 

wrong 1.0026 0.9973 

Predict only in day 2 and choose either 

Strategy 2 or 3 

right 1.0140 1.0072 

wrong 1.0037 0.9976 

  

 Investors always would like to take the strategy with maximum average return 

rate.  Table 30 presents the maximum possible average return rate strategy and the 

corresponding return rate for each pair of p1 and p2.  Therefore, it helps investors decide 

how to choose the best strategy given success probabilities p1 and p2.  

Table 30. Investor's maximum average return rate (without constraint (8)) 

 
p2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

p1 

0.1 1.0073 1.0073 1.0073 1.0073 1.0073 1.0073 1.0073 1.0074 1.0080 1.0086 

0.2 1.0073 1.0073 1.0073 1.0073 1.0073 1.0073 1.0073 1.0079 1.0085 1.0091 

0.3 1.0073 1.0073 1.0073 1.0073 1.0073 1.0076 1.0082 1.0088 1.0093 1.0099 

0.4 1.0078 1.0078 1.0078 1.0078 1.0081 1.0086 1.0091 1.0097 1.0102 1.0107 

0.5 1.0089 1.0089 1.0089 1.0089 1.0091 1.0096 1.0101 1.0105 1.0110 1.0115 

0.6 1.0099 1.0099 1.0099 1.0099 1.0102 1.0106 1.0110 1.0114 1.0119 1.0123 

0.7 1.0109 1.0109 1.0109 1.0109 1.0112 1.0116 1.0120 1.0123 1.0127 1.0131 

0.8 1.0120 1.0120 1.0120 1.0120 1.0122 1.0126 1.0129 1.0132 1.0136 1.0139 

0.9 1.0130 1.0130 1.0130 1.0130 1.0133 1.0136 1.0138 1.0141 1.0144 1.0147 

1 1.0140 1.0140 1.0140 1.0140 1.0143 1.0145 1.0148 1.0150 1.0153 1.0155 

 

Do not predict trend and take Strategy 1   

Predict trend only in day 1 and choose either Strategy 4 or 7 

Predict trend only in day 2 and choose either Strategy 2 or 3 

Predict market trend for two days and choose from Strategy 5, 6, 8 or 9 
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7.6 Computational results summary 

As the Chapter 6 generates scenario tree of asset returns for each trend type prediction, 

the beginning of Chapter 7 first solves the nine stochastic problems and obtains nine 

optimal stochastic strategies.  Section 7.2 describes the input data and then we apply 

every stochastic strategy to each piece of two-day market data in section 7.3.  Based on 

results in Section 7.3, we discuss how to utilize the optimal stochastic strategies for an 

investor with estimated prediction accuracy in Section 7.4.   

 Since the risk control requirements (CVaR constraints and maximal proportion 

constraints) in Section 7.4 is tight, we relax them in Section 7.5 as a sensitivity analysis.  

While comparing Table 15 and Table 22, it is clear that relaxing CVaR constraints 

increases the return rate difference between a successful prediction and a wrong 

prediction.  If we compare Table 19 and Table 26, we can conclude that making 

prediction and taking the corresponding high risk strategies that ignore CVaR constraints 

need higher prediction accuracy than forecasting trend and taking the strategies with 

CVaR constraints.  

 In Section 7.5.2, we relax the constraint (8) that enforces an upper bound on the 

percentage of the portfolio that we can invest into a single asset/stock.  The results shows 

that removing this constraints can increase returns rates for all action options and all 

outcomes.  One reasonable explanation is that the upper bound we proposed in 

computation experiment (e.g. mt = 10%) is too tight.  Or the sample size is not large 

enough to represent the case that one stock drops dramatically due to its firm specific 

reason while the market remains stable.  
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8. Conclusion 

In this report, we discuss how to maximize portfolio return via multi-stage stochastic 

programming assuming investors can forecast market trend.  In each stage, investors 

forecast the market trend as unclear, rise or fall.  So there are nine possible types of 

prediction about market trends in a two-stage problem.  

 Instead of generating a single scenario tree of asset returns with fixed means and 

covariance and solving the corresponding stochastic problem, we generate nine scenario 

trees of asset returns for a two-stage problem and solve them separately.  Those nine 

scenario trees represent nine possible types of prediction about market trends in two 

stages.  When we generate those nine scenario trees of asset returns, the means and 

variances of random return rates depend on market trend on each stage.  

 After solving the nine stochastic problems, we discuss how to utilize the resulting 

optimal stochastic strategies.  Compared with strategies that do not depend on trend 

forecasting, strategies that need trend prediction gain higher return if the prediction is 

right; otherwise they loss more money.  If an investor cannot forecast market trend with 

100 percent accuracy, he needs to decide which strategy he choose according to his 

prediction accuracy on day 1 and day 2.  We address this problem by providing a table in 

which investor can select the best strategy with specific prediction accuracies. 

 In this report, risk is measure by CVaR.  We firstly solve all stochastic problems 

with CVaR constraints.  But then we relax the CVaR constraints and repeat the procedure 

in order to conduct a sensitivity analysis.  While comparing the results of low risk 

stochastic model (i.e. CVaR constraints are included) and high risk stochastic model, we 

find that investors intend to forecast market trend and apply low risk stochastic model 

under the same prediction accuracy. 

 For future research, the risk aversion constraints in stochastic model should 

coordinate with investor’s prediction accuracy.  If investor can forecast with high 

accuracy, the stochastic model should take advantage of that and allow more risk in 

strategies.   
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 To extend this problem, the prediction accuracy can go beyond a universal point 

estimator.  For example, investors may predict bull market with 80 percent accuracy but 

predict bear market with 90 percent accuracy.  Moreover, the probability of a successful 

prediction can be a range rather than a point estimator.   

 In the real portfolio management, investors usually apply multi-stage stochastic 

strategy dynamically.  For example, when trend prediction in day 1 goes wrong, how to 

adjust strategy is also an interesting question.  
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Appendix A 

Appendix A shows return rate results for 72 pieces of two-day market data applying each 

stochastic strategy which considers risk control requirements. 

Start 

Date 

Trend 

Type 

Index 

Return 

Stochastic Strategy Return 

1 2 3 4 5 6 7 8 9 

0 9 0.9972 1.0011 0.9952 1.0014 0.9994 0.993 0.9951 1.0011 0.9944 1.0033 

1 8 1.0036 1.0055 1.0108 1.0046 1.0039 1.0174 1.0016 1.0048 1.0167 1.0043 

2 6 1.0059 1.0038 1.0308 1.0015 1.0173 1.0478 1.0103 1.0153 1.0298 1.0011 

3 8 1.0001 1.0002 0.9973 1 1.0136 1.0266 1.0291 1.0004 0.9978 1.0016 

4 5 1.0027 1.005 1.0054 1.0038 0.9968 0.9986 1 1.0042 1.0055 1.0035 

5 6 0.9897 1.0001 0.9803 1.0019 0.9912 0.9853 1.0021 0.9998 0.9789 1.0014 

6 8 0.9981 1.0014 1.0174 0.9988 0.9901 1.0027 0.9805 1.0011 1.0179 0.9987 

7 5 1.0160 0.9996 1.005 1.0007 1.0149 1.0292 1.0205 0.9991 1.0037 0.9992 

8 6 1.0038 1.0037 1.0011 1.0031 1.0096 1.0084 1.0074 1.0031 0.9967 1.0027 

9 9 0.9948 1.003 0.9977 1.0033 1.0098 1.0005 1.003 1.0028 0.9967 1.0021 

10 8 0.9989 1.0042 1.0092 1.003 1.0068 1.0187 1.0006 1.0066 1.0091 1.0021 

11 5 1.0033 1.0039 1.003 1.0053 1.0242 1.0191 1.0216 1.0034 1.0021 1.0047 

12 6 0.9917 1.0029 0.9933 1.0034 1.0017 0.9954 1.004 1.0035 0.9936 1.0038 

13 9 0.9704 0.9987 0.9645 1.0005 0.9947 0.9565 0.993 0.9975 0.9643 1.001 

14 9 0.9743 0.9983 0.9952 0.9978 0.9834 0.9616 0.9679 0.9988 0.9903 0.999 

15 8 1.0012 1.0003 1.0116 0.9997 0.9998 1.0068 0.9925 1.0012 1.0113 0.9998 

16 6 0.9959 1.0007 0.9873 1.0016 1.0051 1.0057 1.0135 0.9991 0.9875 1.001 

17 8 1.0009 1.0084 1.0248 1.0062 1.0043 1.0127 0.9905 1.0092 1.0164 1.0031 

18 6 1.0047 1.006 0.9816 1.0052 1.0067 0.9898 1.0165 1.0048 0.9781 1.0021 

19 9 0.9708 0.999 0.9823 0.9988 0.9901 0.9386 0.9793 0.9986 0.9591 0.9994 

20 8 0.9846 0.9986 1.012 0.9993 0.9892 0.9805 0.9695 0.9988 1.011 1.0002 

21 6 1.0056 0.9987 0.9957 0.999 1.0025 1.0075 1.016 0.9999 0.9963 0.9994 

22 8 1.0104 1.0037 1.0107 1.0031 1.0018 0.9985 0.9927 1.0044 1.0111 1.0011 

23 5 1.0259 1.0057 1.03 1.0052 1.0198 1.0361 1.0095 1.0079 1.0281 1.0031 

24 5 1.0149 1.0026 0.9973 1.0019 1.0061 1.0197 1.0234 1.0022 0.9973 1.0022 

25 5 1.0126 1.0037 1.006 1.0018 1.0084 1.0014 0.9938 1.0033 1.0053 1.002 

26 6 1.0108 1.0017 1.0077 1.0017 1.01 1.0164 1.0083 1.0014 1.008 1 

27 8 1.0055 1.0049 1.0166 1.0035 1.0057 1.0196 1.0003 1.0045 1.0151 1.0004 

28 5 1.0106 1.0065 1.0203 1.0055 1.0145 1.0262 1.0104 1.0069 1.0187 1.0036 

29 5 1.0060 1.0123 1.0443 1.0042 1.0331 1.0513 1.0054 1.0277 1.0437 1.0033 

30 6 0.9946 1.0007 0.9872 1.0013 1.0441 1.0329 1.0411 1.003 0.9857 1.0011 

31 8 0.9995 1.0024 1.0085 1.0015 1.0064 1.0051 0.9933 1.0027 1.0127 1.0015 

32 6 1.0041 1.0045 0.9987 1.0024 1.0062 1.0075 1.0113 1.0018 0.998 1.0021 
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Start 

Date 

Trend 

Type 

Index 

Return 

Stochastic Strategy Return 
1 2 3 4 5 6 7 8 9 

34 6 1.0048 0.9978 0.9998 0.9986 1.006 1.0144 1.0092 0.9989 1.0006 0.999 

35 8 0.9987 1.0001 0.9955 0.9988 1.0011 1.0041 1.0015 1.0005 0.996 0.9991 

36 5 1.0050 0.9981 0.9989 0.9989 1.0013 0.9989 0.9991 0.9984 0.9986 0.9989 

37 5 1.0077 1.0001 1.0002 1.0003 1.0026 0.9931 1 0.999 0.9926 1.0006 

38 6 0.9954 0.9983 0.9888 1 0.9975 0.991 0.9996 0.9981 0.988 1.0006 

39 8 1.0078 1.0019 1.0096 1.0007 0.9958 1.012 0.9919 1.0011 1.0195 1.0017 

40 6 1.0152 0.999 1.0087 1.0008 1.0134 1.0274 1.017 0.9986 1.0082 1.001 

41 8 1.0017 0.9939 1.0083 0.9954 0.9942 1.0132 1.0034 0.9947 1.0096 0.9976 

42 5 1.0023 0.9975 0.9928 0.9975 0.9952 1.013 1.0105 0.9977 0.9945 0.9986 

43 6 1.0001 0.998 0.9908 0.9993 0.9961 0.9889 0.9973 0.9971 0.9908 0.9994 

44 9 0.9945 1.0005 0.9941 1.0009 0.9961 0.9938 0.9964 1.0003 0.9944 1.0015 

45 8 0.9952 1.0052 0.9963 1.0036 1.0003 0.9946 0.9938 1.0056 1.001 1.0028 

46 6 0.9886 1.0064 0.9854 1.0061 1.0039 0.9788 0.9954 1.005 0.9839 1.002 

47 9 0.9855 1.0059 1.0095 1.0049 1.0004 0.9951 0.9885 1.0056 1.0064 1.0024 

48 8 1.0068 1.0056 1.0119 1.0053 1.009 1.019 1.0063 1.0056 1.0139 1.0039 

49 5 1.0169 1.0034 1.0106 1.003 1.0095 1.0218 1.0117 1.0043 1.0093 1.0021 

50 6 1.0010 0.9969 0.984 0.9994 0.9941 0.9927 1.0077 0.9969 0.9838 1.0002 

51 8 0.9999 0.9999 1.0026 0.9998 0.9921 0.9918 0.9885 1.0007 1.0025 1.0008 

52 6 1.0031 1.0083 0.9747 1.0059 1.0053 0.9801 1.0065 1.0051 0.975 1.0035 

53 9 0.9922 1.0081 1.0038 1.0088 1.0101 0.9805 0.9853 1.0083 0.9982 1.0054 

54 8 0.9995 1.0031 1.0155 1.0033 1.0031 1.0113 0.9977 1.004 1.013 1.0029 

55 6 0.9974 0.9968 0.9884 0.9985 0.9968 0.9966 1.0082 0.9963 0.9805 0.999 

56 9 0.9911 1.0007 1.0071 0.9997 0.9956 0.9953 0.9916 1.0008 0.9969 0.9993 

57 8 1.0027 1.0059 0.9943 1.0047 1.017 1 1.009 1.0069 0.9939 1.0031 

58 5 1.0126 1.0061 1.0184 1.0041 1.0133 1.0196 0.9988 1.006 1.0213 1.0027 

59 5 1.0150 1.0027 1.012 1.0035 1.0145 1.0292 1.015 1.0034 1.0117 1.002 

60 5 1.0099 0.9996 1.0044 1.0015 1.0057 1.0142 1.0097 1 1.0034 1.0011 

61 6 1.0017 1.0024 0.9864 1.0018 1.0144 0.9958 1.0025 1.0025 0.9871 1.0007 

62 9 0.9863 1.004 0.9793 1.006 1.0199 0.9913 1.0132 1.0044 0.9777 1.0028 

63 9 0.9768 1.0027 0.9835 1.003 1.0027 0.9714 0.9898 1.0028 0.9827 1.0019 

64 8 0.9930 1.0032 1.0027 1.0029 0.9914 0.9816 0.9808 1.0029 1.0028 1.0014 

65 5 1.0147 1.0069 1.0334 1.0031 1.0108 1.0327 1.0012 1.0068 1.0321 1.0012 

66 6 0.9898 0.9985 0.9584 0.9999 0.999 0.9881 1.0236 0.9961 0.9583 0.9999 

67 9 0.9698 1.0006 0.9944 1.0003 0.9882 0.9541 0.9717 0.9998 0.9794 1.0003 

68 8 0.9987 1.0034 1.0135 1.0022 0.9968 1.0025 0.9853 1.0026 1.0098 1.0012 

69 5 1.0150 1.0007 1.0088 0.999 1.0114 1.0257 1.0178 1.0007 1.0076 0.9966 

70 5 1.0173 0.9984 1.0138 0.9976 1.0109 1.0287 1.0092 0.999 1.0199 0.996 

71 5 1.0119 0.9975 1.0083 0.9992 1.0127 1.0255 1.0157 0.9975 1.0084 1.0002 
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