
 

 

 

 

 

 

 

 

 

Copyright 

by 

Minle Xu 

2014 

 

 



The Report Committee for Minle Xu 
Certifies that this is the approved version of the following report: 

 

 

Bayesian Ridge Estimation of Age-Period-Cohort Models 

 

 

 

 

 

 

 

APPROVED BY 

SUPERVISING COMMITTEE: 

 

 

 
Daniel A. Powers 

Carlos M. Carvalho 

 

  

Supervisor: 



Bayesian Ridge Estimation of Age-Period-Cohort Models 

 

 

by 

Minle Xu, L.L.B.; M.S. 

 

 

 Report 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Master of Science in Statistics 

 

 

The University of Texas at Austin 

August 2014 



 Dedication 

 

This report is dedicated to my supportive parents and husband Kai Yin. 

 

 



Acknowledgements 

 

I want to express my sincere gratitude to my supervisor Dr. Daniel Powers for his 

excellent guidance, patience, and providing me with an excellent atmosphere for 

completing my report. He has offered great support to me both as a Master student in 

Statistics and a Ph.D. student in Sociology. He is a model sociologist and statistician for me 

because of his broad and in-depth knowledge and devotion to his students. I would never 

have been able to finish my report without his support and help.  

I would like to give thanks to my committee member Dr. Carlos Carvalho for his 

insightful suggestions, time, and attention.  

I want to thank Dr. Mary Parker for her kindness, encouragement, and patience.  

I would like to acknowledge the academic, financial, and administrative support 

from the Department of Statistics and Data Sciences.  

I would also like to thank my parents and my brother. They are always supporting 

and encouraging me with their best wishes. 

Finally, I would like to thank my husband, Kai Yin. He is always there cheering me 

up and stands by me through the good times and bad. 

 

 

 v 



Abstract 

 

Bayesian Ridge Estimation of Age-Period-Cohort Models  

 

Minle Xu, M.S. Stat 

The University of Texas at Austin, 2014 

 

Supervisor: Daniel A. Powers 

 

Age-Period-Cohort models offer a useful framework to study trends of 

time-specific phenomena in various areas. Yet the perfect linear relationship among age, 

period, and cohort induces a singular design matrix and brings about the identification 

issue of age, period, and cohort model due to the identity Cohort = Period – Age. Over the 

last few decades, multiple methods have been proposed to cope with the identification 

issue, e.g., the intrinsic estimator (IE), which may be viewed as a limiting form of ridge 

regression. This study views the ridge estimator from a Bayesian perspective by 

introducing a prior distribution(s) for the ridge parameter(s). Data used in this study 

describe the incidence rate of cervical cancer among Ontario women from 1960 to 1994. 

Results indicate that a Bayesian ridge model with a common prior for the ridge parameter 

yields estimates of age, period, and cohort effects similar to those based on the intrinsic 

estimator and to those based on a ridge estimator. The performance of Bayesian models 

with distinctive priors for the ridge parameters of age, period, and cohort effects is affected 

more by the choice of prior distributions. In sum, a Bayesian ridge model is an alternative 

way to deal with the identification problem of age, period, and cohort model. Future studies 
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should further investigate the influences of different prior choices on Bayesian ridge 

models. 
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INTRODUCTION 

Over the last few decades the age-period-cohort (APC) model has become one of 

the core approaches in demography and sociology to study the trends of a multitude of 

social phenomena. The application and impact of APC models has spread beyond areas in 

social sciences to epidemiology and biostatistics. Discussions about using APC models to 

separate cohort effects from age and period effects on time-specific phenomena originated 

eighty years ago among social scientists (Mason & Wolfinger, 2002).   

The first temporal component of the APC model, age, specifies variation in the 

outcome of interest pertaining to different age groups due to biological process of aging, 

cumulated social experience, and changes in social roles and statuses. The period 

component represents influences associated with time periods that affect people of all age 

groups at the same time because of significant social, cultural, economic, political changes. 

Cohort refers to variations related to groups of people who experience an initial event, 

typically birth or marriage at the same year or years, and undergo subsequent social and 

historical events at the same ages (Yang & Land, 2013). For instance, age, period, and 

cohort are all related to the behavior of consumers. Therefore, age, period, and cohort make 

distinct contributions to account for time-specific social phenomena. Eliminating one of 

the three variables will leave results subject to spurious effects (Mason, Winsborough, 

Mason, & Poole, 1973). 

Despite the sound theoretical and conceptual rationale for incorporating age, 

period, and cohort simultaneously in one model to study time-specific social phenomena, 
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there is no consensus in terms of how to solve the fundamental identification problem of 

APC models. This methodological challenge results from the exact linear relationship 

between age, period, and (birth) cohort: cohort = period - age. Consequently, it is 

impossible to obtain valid estimations of the distinct effects of age, period, and cohort from 

standard regression-type models.  

A variety of methods have been proposed to solve the identification problem of 

APC models in recent decades, for instance, constrained generalized linear models 

(CGLM), the ridge estimator, the intrinsic estimator, and hierarchical APC-cross-classified 

fixed effects and random effects models (Fienberg & Mason, 1978; Fu, 2000; Yang, Fu, & 

Land 2004; Yang & Land 2008). In the following two sections, this study reviews the 

identification problem of APC model, current solutions to the identification problem in 

detail, and then introduces the Bayesian ridge model as an alternative to solving the 

identification problem of APC model by using data on the incidence rate of cervical cancer 

among Ontario women from 1960 to 1994. 
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THE IDENTIFICATION PROBLEM 

Prior to discussing the existing methods that address the identification problem of 

APC model, we first review the classical identification problem. As early as the 1970’s, 

Mason and colleagues (1973) specified the APC multiple classification model for 

cross-classified data. In the age by period two-way table, the rows and columns represent 

the main effects of age and period respectively, with the diagonals representing the 

interaction between age and period—the cohort effects. The APC multiple classification 

model is specified as 

 g(Yij)= μ + αi + βj + γk + εij,  (2-1) 

where i = 1, 2,…, α for the ith age group; j = 1, 2,…, p for jth period; and k =1, 2,…, α + p 

-1for the kth cohort. We can interpret the distinctive effects of age, period, and cohort 

through an analysis of variance (ANOVA) framework by imposing centered effects 

normalization, with  ∑ 𝛼𝑎
𝑖=1 𝑖= ∑ 𝛽𝑝

𝑗=1 𝑗
= ∑ 𝛾𝑎+𝑝−1

𝑘=1 𝑘 = 0. Yij denotes the outcome of 

interest for those from the ith age group at the jth period, g(.) is the link function for a 

generalized linear model, and μ is the grand mean of the dependent variable. The APC 

parameters are normalized so that αi denotes the difference between the grand mean μ and 

the mean of the ith age group, βj denotes the difference between the grand mean μ and the 

mean of the jth period group, and γk denotes the difference between the grand mean μ and 

the mean of the kth cohort. In a linear model specification, εij would denote a random error 

with mean 0 and variance 𝜎2. When Yij is normally distributed, model (2-1) can also be 

written in matrix form for a linear model as follows: 
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 𝐘 = 𝐗𝛃 + 𝛆, (2-2) 

where 𝐘 is a column vector of outcomes, X is the design matrix of dummy variable 

column vector, and β is a model parameter vector, 

 𝛃 = (𝜇,𝛼1,⋯𝛼𝛼−1,𝛽1,⋯𝛽𝑝−1, 𝛾1,⋯𝛾𝛼+𝑝−2)𝑇 ,    (2-3) 

where 𝛆 is a vector of random errors with mean 0 and variance 𝜎2. The ordinary least 

squares method can be used to obtain the estimates of the model parameter vector β: 

 b = (XTX)-1XTY.   (2-4) 

However, a unique estimator b does not exist due to the perfect linear relationship among 

age, period, and cohort. In this case, the design matrix X is one less than full rank. As the 

matrix XTX is singular and has an eigenvalue of 0, XTX is not invertible unless special 

numerical methods such as a Moore-Penrose generalized inverse is used. In other words, 

there are infinite solutions of b that fit the data equally well as a result of the perfect 

linear relationship among age, period, and cohort. This is the fundamental identification 

issue of the unconstrained APC model.  

 

 

 

 

 

 4 



CURRENT SOLUTIONS TO THE IDENTIFICATION PROBLEMS 

Several decades ago, scholars started to address the identification problems of 

APC models. One early method proposed by Mason and colleagues (1973) was to impose 

at least one constraint on the parameter vector β. For instance, the effects of two age 

groups, two periods, or two cohorts can be constrained to be the same with a priori 

reasoning. With such a constraint, APC models become just-identified and unique 

estimators of model parameters exist. Even though different choices of equality will not 

affect model fit, the coefficients and significance of age, period, and cohort vary 

considerably and the results can be difficult to interpret with arbitrary choices. Thus, in 

order to use the constrained generalized linear model (CGLM), it is crucial to justify the 

assumption of equality based on theoretical reasons. However, such theoretical 

information is not always available and differs in every situation.  

Another method commonly used to deal with the identification problem caused by 

perfect multicollinearity is the ridge estimator. Fu (2000) first introduced the ridge 

estimator to the APC multiple classification model whose design matrix has one less than 

full rank. The ridge estimator overcomes the identification issue by adding a ridge 

penalty to the diagonal of matrix XTX. Let X be as the m × n (n < m) design matrix and 

I the m × m identity matrix. Letting λ be the shrinkage or ridge parameter (λ ≥ 0), the 

ridge estimator is defined as  

 bR = (XTX + λI)-1XTY. (3-1) 

This equation shows that ridge parameter induces bias except when λ is equal to 0. 

Typically, the values of λ lie in the range of (10-4, 1). As λ increases, the bias increases 
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but variance decreases. The optimal value of λ that produces a little bias but substantially 

lowers the variance is the λ that minimizes the generalized cross-validation (GCV).                                                   

           GCV(λ) =  1
𝑛

 ∑ � 𝑦𝑖−𝑦𝚤�
1−tr(𝐇)/𝑛

�
2

.𝑛
𝑖=1                   (3-2) 

The hat matrix H is X (XTX + λI)-1XT here and the trace of H is the sum of its diagonal 

elements. Ultimately, the ridge estimator yields better estimation with smaller mean 

square error.  

Yang et al. (2004) employed another approach—the intrinsic estimator— to cope 

with the identification problem of APC model. Given that the design matrix X is one less 

than full column rank, the parameter space b of APC model can be decomposed into the 

sum of two linear subspaces:  

     b = B + tB0,  (3-3) 

where t is a real value for a specific solution, B0 refers to the null subspace corresponding 

to the zero eigenvalue of matrix XTX and only relies on the design matrix X (the number 

of age, period, and cohorts), and B represents the complement non-null subspace 

orthogonal to the null space and is the intrinsic estimator. One way to compute intrinsic 

estimator is to use the Moore-Penrose generalized inverse of XTX denoted by (XTX)+ (Fu 

& Hall, 2006): 

 bIE = (XTX)+ XTY. (3-4) 

Here we focus on describing another approach to calculate intrinsic estimator—the 

principle component regression method: 

 bIE = (QL0−1𝐐
T) XTY, (3-5) 
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where Q is the n × n orthogonal matrix of eigenvectors of matrix XTX, L is an n × n 

diagonal matrix composed of the eigenvalues of XTX: ℓ1,⋯ , ℓ𝑛 , and Q𝐋0−1𝐐
T= XTX. 

Accordingly, ℓ0−1 is an n × n diagonal matrix with values ℓ1−1,⋯ , ℓ𝑛−1−1 , 0 on the 

diagonal. Thus, the intrinsic estimator is obtained by eliminating eigenvalue 0 via 

principle components. Moreover, intrinsic estimator can be generalized as a limiting form 

of ridge estimator (Fu, 2000). Specifically, intrinsic estimator is the limit of a coefficient 

vector from a ridge regression with a vanishingly small shrinkage penalty λ → 0+. When 

λ > 0, the variance of the ridge estimator is smaller than that of the intrinsic estimator. If λ is 

set to be a very small positive number, the ridge estimator will be almost equal to intrinsic 

estimator. Therefore, we might choose to use the ridge estimator rather than intrinsic 

estimator in practice. However, one difficulty of using ridge estimator lies in determining 

the optimal value of λ for a given dataset. 

When the range of the outcome variable for an APC model is bounded in the 

population (e.g. binary outcome), Browning et al. (2012) proposed a generic approach 

using maximum entropy estimator to address the deification issue of APC models. If Y 

∈ [𝑌min,𝑌max], βk ∈ [𝑌min − 𝑌max,𝑌max − 𝑌min] for all k. That is, the bounded Y leads to 

the set (partial) identification of β. The parameter vector β falls into a closed, convex 

parameter space. The central idea is to reparameterize the parameter vector β to a 

probability distribution over the set of possible solutions that has maximum entropy and 

choose the most uninformative (flat) probability distribution based on available 

information in the data. Suppose the identified set for β is given by  

 ℬ = {β|β = SP}, (3-6) 
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Where S = [s1, s2,…, sJ], the vector sj represents the vertices of ℬ; P is a vector of non- 

negative weights that sum to 1 and are used to form all of the convex combinations of the 

vertices. Hence Xβ can be expressed as XSP and P is treated as a discrete probability 

distribution over the J multivariate outcomes represented by the columns of the matrix S. 

We need to choose a distribution that does not overly favor one outcome over another 

and the probabilities are nonnegative and sum to one. The entropy function   

 H (P) = - PT logP (3-7) 

is an objective function that is maximized when the probabilities are uniform. The 

problem becomes a maximum entropy problem with a unique solution. If P* is the vector 

that solves the problem, then β*= SP*, which can be interpreted as the expected value of 

a discrete multidimensional random variables consistent with the maximum entropy 

probability distribution.  

The mixed effects model for APC analysis developed by Yang and Land (2008) 

can be conducted when repeated cross-section sample surveys are available. The 

availability of individual level observations enable us to group age and period into 

one-year length and cohort into meaningful multiple year intervals (e.g. five-year birth 

cohort). The classification of age, period, and cohort into unequal intervals eliminates the 

identification issue and finite solutions to equation (2-4) can be obtained. Because 

individuals from the same birth cohorts or survey years may share some similarities 

unique to their cohorts or survey periods, hierarchical regression models should be 

employed to account for the nonindependence of error terms and estimate error variances.   
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Specifically, Yang and Land (2008) proposed a cross-classified random-effects model 

(CCREM) and a cross-classified fixed-effects model (CCFEM). A basic level 1 equation 

for both models can be specified as: 

 Yijk= β 0jk + β1Ageijk + εijk ~ N (0, σ2).  (3-8) 

The level 2 equation of CCREM is: 

  β0jk = 𝛾0 + u0j + v0k, u0j ~ N (0, 𝜏𝑢), v0k ~ N (0, 𝜏𝑣). (3-9) 

u0j and v0k are the residual random effects of period j (averaged over all cohorts) and 

cohort k (averaged over all periods) on β0jk . The level 2 equation of CCFEM is: 

 β0jk = 𝛾0 + ∑ 𝛾1𝑗 Period𝑗
𝐽
𝑗=2  + ∑ 𝛾2𝑘 Cohort𝑘𝐾

𝑘=2 , (3-10) 

where the effects of periods and cohorts are respectively estimated by J-1 dummy variables 

for periods and K-1 dummy variables for cohorts. Conventionally, the choice between 

CCREM and CCFEM depends on two conditions: 1) The CCREM requires that the level 2 

effects are independent of level 1 predictor variables; 2) The relatively small total number 

of birth cohorts and periods suggests modeling these contextual effects as fixed. However, 

empirical results done by Yang and Land (2008) favor CCREM due to the unbalanced data 

design of repeated cross-section surveys.  

Although the ridge estimator is an accessible approach to deal with the 

identification problem of the APC model, a suitable method to find the optimal λ for a 

given dataset may require further investigation. Fu (2000) suggested using a GCV 

approach to select an optimal value of λ. An alternative way to determine the optimal λ 

involves in Bayesian analysis. A general Bayesian interpretation of the ridge estimator has 

been noted in 1970s (Hsiang, 1975; Marquardt, 1970). Congdon (2006) explicated the use 
 9 



of Bayesian ridge priors as one possible solution to multicollinearity. As far as I know, no 

one has applied a Bayesian ridge approach to APC multiple classification models which 

are subject to perfect linear relationship between age, period and cohort. In this paper, I 

will utilize Bayesian ridge priors to solve the identification problem of APC model using 

data on cervical cancer incidence rates among Ontario women from 1960 to 1994. I will 

then compare the results to those obtained by using the intrinsic estimator and using a 

conventional ridge estimator.  
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Table 1 Cervical cancer Incidence rates in Ontario women 1960-1994 (per 105 
person-years) 

Age/Year 60-64 65-69 70-74 75-79 80-84 85-89 90-94 

20-24 3.89 3.24 2.90 2.05 2.19 1.76 1.73 

25-29 16.01 11.18 8.92 9.74 8.48 7.43 7.54 

30-34 26.02 21.14 16.23 15.84 14.54 13.67 12.71 

35-39 38.84 25.09 21.07 18.74 18.80 18.04 18.18 

40-44 47.65 32.50 22.71 20.01 18.78 16.19 18.12 

45-49 51.48 36.69 22.15 19.20 17.74 17.29 18.31 

50-54 49.12 37.26 25.51 18.41 16.66 15.41 14.07 

55-59 51.48 40.87 34.70 21.83 16.97 17.69 13.73 

60-64 47.68 42.80 29.76 22.71 20.16 17.69 16.94 

65-69 40.44 39.17 31.44 28.79 23.35 19.26 19.16 

70-74 42.4 35.32 27.78 24.31 20.27 20.19 14.95 

75-79 42.44 36.68 28.75 25.22 21.17 21.08 19.43 

80-84 41.50 29.74 31.54 22.31 20.04 15.25 21.28 

85+ 30.79 32.43 37.10 19.81 16.42 14.87 12.06 
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METHODS 

Before introducing the Bayesian ridge approach, a brief review of the Bayesian 

statistical method is presented here. Unlike the frequentist statistical paradigm that treats a 

parameter 𝜃 as an unknown fixed parameter, Bayesian statistical method views 𝜃 as a 

random quantity and uses a prior probability distribution to describe its variation. This 

prior distribution of 𝜃 is updated by taking account of information from the data to obtain 

the posterior distribution of 𝜃. According to Bayes theorem, the posterior distribution of 

𝜃 is summarized as: 

 p(𝜃|𝑦) = p(𝑦|𝜃) p(𝜃) ⁄ p(y), (4-1) 

where p(𝑦|𝜃) is the likelihood function, p(𝜃) is the prior distribution of 𝜃 before seeing the 

data. p(y) is the marginal distribution of the data defined as p(y) = ∫𝑝(𝑦|𝜃)𝑝(𝜃)𝑑(𝜃) and 

this integral can be complicated and hard to compute. However, since 𝜃 is integrated out, 

p(y) is a normalizing constant that guarantees p(𝜃|𝑦) is a proper density. Bayes theorem is 

usually expressed as p(𝜃|𝑦) ∝ p(𝑦|𝜃) p(𝜃). One commonly used Bayes estimator is the 

mean of the posterior distribution p(𝜃|𝑦) given by  

 𝜃 �= ∫𝜃p(𝜃|𝑦)𝑑(𝜃). (4-2) 

Other summary statistics include posterior median, mode, variance, credible interval, and 

interquartile range. When the posterior distribution p(𝜃|𝑦) is from a known density 

function, such summary statistics can be easily calculated. However, this is usually not the 

case especially when dealing with high-dimensional models. Under such circumstances, 

Bayesian statisticians have resorted to sampling-based estimation methods—Markov chain 
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Monte Carlo (MCMC) to draw inferences about 𝜃. Sample summary statistics calculated 

based on relatively large samples from the posterior distribution using iterative MCMC 

methods tend to equate posterior summary statistics. One useful Markov chain algorithm is 

the Gibbs sampler, which samples iteratively from the full conditional posterior 

distribution of each parameter obtained from the joint density distribution. Each parameter 

is updated sequentially and conditional on all the other parameters. When models involve 

standard distributions, the conditional posterior distributions of the parameters are also 

likely to be standard densities and sampling from such conditional posterior distributions is 

straightforward.  

BAEYSIAN RIDGE MODEL  

The ridge estimator proposed to solve the identification problem can be viewed 

from a Bayesian perspective (Congdon, 2006). For the standard regression model Y = X𝛃 

+ 𝛆 with 𝛆 distributed normally with mean 0 and variance σ2, the prior on 𝛃 can be 

assumed to be from a common normal density with mean zero and variance equal to σ2/λ. 

Then the mean of the posterior distribution of 𝛃 has the form (XTX + λI)-1XTY, which is 

identical to the ridge estimator. Different ridge priors for age, period, and cohort 

coefficients can also be specified. The inclusion of different ridge priors extends the model 

to the form of generalized ridge estimates and the posterior mean of 𝛃 then becomes (XTX 

+ ΛI)-1 XT Y, where Λ represents a vector of λ’s. 

Data used to demonstrate and compare the Bayesian ridge prior model with models 

estimated by the intrinsic estimator and the ridge estimator was originally presented in Fu’s 
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study (2000). The data documented the cervical cancer incidence rates of Ontario women 

aged 20 and above from 1960 to 1994. As shown in Table 1, there are 98 observations (or 

data cells), with 14 age groups, 7 period groups, and 20 diagonals of birth cohorts. A log 

transformation was applied to the incidence rates of cervical cancer. The APC is then 

specified as 

 log(Yij)= μ + αi + βj + γk + εij, (4-3) 

where Yij  is the cervical cancer rate for age group i and period j, i = 1, 2,…,14 , j = 1, 2,…,7 

, and k =1, 2,…, 20 . ANOVA normalization was used to center the parameters in model 

(4-3). And the last age, period, and cohort category was used as the reference category 

respectively. Therefore, 

 log(Yij)= μ* + αi
* + βj

* + γk
* + εij,  (4-4) 

where μ* = μ + 𝛼� +  �̅� + �̅�, αi
* = αi - 𝛼�, βj

* =βj - �̅�; γk
*
 = γk - �̅�, and αi

* = 1, 2,…,13, j = 1, 

2,…,6 , and k =1, 2,…,19. The Bayesian model with one ridge prior for age, period, and 

cohort coefficients therefore can be summarized as follows: 

Likelihood function for the model: 𝑓(𝑌|𝜇∗,𝛽,𝜎−2,𝜆)0F

1 

Prior distributions: 𝑝(𝜇∗,𝛽,𝜎−2,𝜆) = 𝑝(𝜇∗) 𝑝(𝛽) 𝑝(𝜎−2) 𝑝(𝜆) 

The joint posterior distribution: 

𝑝(𝜇∗,𝛽,𝜎−2, 𝜆|𝑌) ∝ 𝑓(𝑌|𝜇∗,𝛽,𝜎−2,𝜆) 𝑝(𝜇∗,𝛽,𝜎−2, 𝜆) 

As sampling directly from the joint posterior distribution is not feasible here, a Gibbs 

sampler that works with conditional distributions for each parameter is used. The Gibbs 

sampler then works as follows: 

1 For the simplicity of expression, β represents all the parameters for age, period, and cohort effects.  
 14 

                                                           



1: Start with a vector of starting values for all the parameters: (𝜇0∗ ,𝛽0,𝜎0−2, 𝜆0), 

2: Sample 𝜇1∗ from 𝑝(𝜇1∗|𝛽0,𝜎0−2, 𝜆0), 

3: Sample 𝛽1 from 𝑝(𝛽1|𝜇1∗,𝜎0−2, 𝜆0), 

4: Sample 𝜎1−2 from 𝑝(𝜎1−2|𝜇1∗,𝛽1, 𝜆0), 

5. Sample 𝜆1 from 𝑝(𝜆1|𝜇1∗,𝛽1,𝜎1−2), 

6. Then repeat step 2 to step 5: e.g., sample 𝜇2∗  from 𝑝(𝜇2∗|𝛽1,𝜎1−2, 𝜆1). 

Conditionally conjugate priors were used for all the parameters in the APC model. First, a 

normal density with N(0, σ2/λ) was used as the common prior distribution for all the age, 

period, and cohort coefficients. The noninformative prior distribution of μ* is distributed as 

N(0, 104) and a vague gamma prior was used for the precision of the error term (Gelman, et 

al., 2013):  

 𝜎−2 ~ gamma (.001, .001).  (4-5) 

λ is the Bayesian ridge penalty, and a noninformative prior distribution such as gamma 

(.001, .001) can be assigned to λ. Here the prior distribution of λ is specified as 

 λ ~ gamma (1,1), (4-6) 

since the posterior estimation of age, period, and cohort effects are very similar to those 

using the noninformative gamma prior. The Bayesian estimation of any model parameters 

can be gained once the Markov chain has been run for a large number of iterations. For 

instance, the posterior mean and standard error of β based on M draws of  (𝜇∗,𝛽,𝜎−2, 𝜆) 

can be calculated as follows: 

 �̂� =  1
𝑀

 ∑ 𝛽𝑀𝑀
𝑀=1 , (4-7) 
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                             SE(𝛽) =  � 1
𝑀−1

∑ (𝛽𝑀𝑀
𝑀=1 − �̂�)2  . (4-8) 

Different Ridge Priors  

An idea that fits substantively better with the APC theory is to define three different 

priors for age, period, and cohort effects rather than using a common Bayesian ridge prior. 

Supposing that for λA, λP, and λC correspond to the ratio of the error variance and variance 

of age, period, cohort coefficients, for instance, λA = σ2/𝜎𝐴2. In other words, the age, period, 

cohort coefficients have distinctive variances 𝜎𝐴2, 𝜎𝑃2, and 𝜎𝐶2 in this case. The 

exchangeable ridge priors for the age, period, cohort coefficients are specified as  

 αi
*~ N(0, σ2/ λA),  (4-9) 

  βj
*~ N(0, σ2/ λP), (4-10) 

  γk
*~ N(0, σ2/ λC).  (4-11) 

And the priors used for λA, λP, and λC in the Bayesian model (a) were:  

 λA ~ gamma(1,1), (4-11) 

 λP ~ gamma(1,1), (4-12) 

 λC ~ gamma(1,100). (4-13) 

The prior distributions of μ* and the precision of the error term remain unchanged. To test 

the influence of priors on model performance, the priors used for λA, λP, and λC in the 

Bayesian model (b) are: 

 λA ~ gamma(1,1), (4-14) 

 λP ~ gamma(1,1), (4-15) 

 λC ~ gamma(1,1). (4-16) 
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In the present study, all analyses were conducted using the statistical software R (R 

Core Team, 2013 ) and Bayesian inferences using Gibbs sampler were conducted using 

Jags (Plummer, 2003) via the R package “rjags” (Plummer, 2014). The first 10,000 

iterations were used as burn-in and all parameter estimation was based on 50,000 posterior 

draws.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 17 



Table 2 APC Model Estimation from Intrinsic Estimator, Ridge Estimator, and Bayesian 
Model with a Ridge Prior for APC Effects. 

 Intrinsic 
Estimator 

Ridge 
Estimator 

Bayesian 
Posterior Mean 

95% Credible 
Interval 

Intercept 2.945(0.014) 2.939(0.014) 2.941(0.014) (2.913, 2.968) 

Age 20-24 -1.879(0.042) -1.858(0.116) -1.850(0.101) (-2.045, -1.660) 

Age 25-29 -0.509(0.039) -0.503(0.099) -0.501(0.087) (-0.665, -0.337) 

Age 30-34 0.047(0.039) 0.047(0.084) 0.046(0.075) (-0.096, 0.187) 

Age 35-39 0.316(0.039) 0.312(0.070) 0.310(0.063) (0.189, 0.431) 

Age 40-44 0.368(0.039) 0.362(0.057) 0.360(0.053) (0.257, 0.462) 

Age 45-49 0.354(0.040) 0.347(0.047) 0.345(0.045) (0.256, 0.433) 

Age 50-54 0.244(0.040) 0.237(0.041) 0.236(0.041) (0.155, 0.316) 

Age 55-59 0.298(0.040) 0.292(0.041) 0.290(0.041) (0.209, 0.371) 

Age 60-64 0.273(0.040) 0.268(0.047) 0.267(0.046) (0.178, 0.355) 

Age 65-69 0.278(0.039) 0.274(0.057) 0.273(0.053) (0.170, 0.375) 

Age 70-74 0.122(0.039) 0.120(0.070) 0.121(0.063) (0.001, 0.241) 

Age 75-79 0.138(0.039) 0.138(0.084) 0.139(0.075) (-0.003, 0.281) 

Age 80-84 0.036(0.039) 0.040(0.099) 0.042(0.087) (-0.121, 0.207) 

Period 60-64 0.476(0.026) 0.476(0.056) 0.475(0.050) (0.381, 0.570) 

Period 65-69 0.270(0.026) 0.269(0.042) 0.269(0.039) (0.195, 0.344) 

Period 70-74 0.081(0.026) 0.080(0.031) 0.081(0.030) (0.022, 0.139) 

Period 75-79 -0.103(0.026) -0.104(0.026) -0.103(0.026) (-0.155, -0.052)  

Period 80-84 -0.190(0.026) -0.190(0.031) -0.190(0.030) (-0.248, -0.132) 

Period 85-89 -0.263(0.026) -0.262(0.042) -0.262(0.039) (-0.336, -0.188) 

Cohort    -1879 0.090(0.098) 0.079(0.184) 0.082(0.164) (-0.236, 0.398) 
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Table 2, Cont.     

Cohort 1876-1884 0.309(0.070) 0.298(0.157) 0.296(0.139) (0.031, 0.560) 

Cohort 1881-1889 0.334(0.058) 0.329(0.137) 0.326(0.121) (0.094, 0.554) 

Cohort 1886-1894 0.268(0.052) 0.266(0.119) 0.264(0.105) (0.064, 0.463) 

Cohort 1891-1899 0.156(0.047) 0.158(0.103) 0.156(0.091) (-0.017, 0.327) 

Cohort 1896-1904 0.180(0.044) 0.183(0.086) 0.182(0.077) (0.035, 0.328) 

Cohort 1901-1909 0.133(0.041) 0.137(0.071) 0.136(0.064) (0.013, 0.259) 

Cohort 1906-1914 0.210(0.042) 0.216(0.059) 0.215(0.055) (0.109, 0.321) 

Cohort 1911-1919 0.148(0.043) 0.155(0.049) 0.155(0.048) (0.061, 0.249) 

Cohort 1916-1924 -0.013(0.043) -0.004(0.044) -0.003(0.044) (-0.089, 0.086) 

Cohort 1921-1929 -0.133(0.043) -0.123(0.044) -0.121(0.044) (-0.208, -0.034) 

Cohort 1926-1934 -0.205(0.042) -0.195(0.049) -0.193(0.048) (-0.286, -0.099) 

Cohort 1931-1939 -0.233(0.041) -0.224(0.058) -0.222(0.055) (-0.327, -0.116) 

Cohort 1936-1944 -0.234(0.040) -0.228(0.070) -0.228(0.063) (-0.350, -0.105) 

Cohort 1941-1949 -0.189(0.042) -0.186(0.086) -0.185(0.076) (-0.330, -0.039) 

Cohort 1946-1954 -0.102(0.045) -0.101(0.102) -0.102(0.090) (-0.273, 0.070) 

Cohort 1951-1959 -0.138(0.050) -0.140(0.119) -0.140(0.104) (-0.340, 0.059) 

Cohort 1956-1964 -0.145(0.057) -0.150(0.137) -0.150(0.120) (-0.379, 0.079) 

Cohort 1961-1969 -0.190(0.069) -0.199(0.157) -0.198(0.138) (-0.460, 0.067) 

λ — 0.050 0.078(0.023) (0.041, 0.132) 

Posterior variance of 
error — — 0.011(0.002) (0.008, 0.018) 

Posterior variance of 
APC coefficients — — 0.150(0.036) (0.095, 0.235) 
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RESULTS 

Table 2 presents estimates of the APC model parameters using the intrinsic 

estimator, the ridge estimator, and the Bayesian model with a common prior for age, 

period, and cohort effects. The three approaches generated very similar patterns for the 

age, period, and cohort trends as shown by the estimates and levels of significance. The 

95% credible interval indicates that the significance of age, period, and cohort effects from 

the Bayesian ridge prior model is consistent with results from the intrinsic and ridge 

estimators. For instance, the 95% credible interval for the age effect of the group aged 30 to 

34 is (-0.096, 0.187). The inclusion of zero in this interval implies that the age effect of the 

group aged 30 to 34 is 0. The results from the intrinsic or ridge estimator also indicate that 

the group aged 30 to 34 has no significant effects on women’s cervical cancer incidence 

rate since the ratio of the age coefficient to its standard error is less than 1.96. Generalized 

cross-validation (GCV) was used for selection of the optimal λ for ridge estimator and the 

plot of GCV(λ) is shown in Figure 1 which illustrates that the minimum value of GCV is 

about 0.017 in this case and the corresponding value for λ is 0.050. The posterior mean of 

λ is 0.078 and the 95% credible interval indicates the true mean of λ is within the interval 

(0.041, 0.132) with 95% probability. The ridge parameter (λ = 0.050) is within the 95% 

credible interval.  
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Figure 1 Selection of Lambda for Ridge Estimator via GCV 
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Figure 2 presents the graphical convergence diagnosis of the MCMC algorithms 

of selected parameters due to the limited space here. For each selected parameter, the 

trace plot shows the posterior sample values of a parameter during the runtime of the 

chain and the marginal density plot is the smoothened histogram of the parameter values 

from the trace plot. The first three parameters represent the effects of the first age group 

(20-24), the first period (1960-1964), the first cohort group (  -1879). The trace plots 

provide evidence of satisfactory convergence of the MCMC algorithms for these three 

parameters. The last three parameters represent the error variance, ridge parameter, and  

the variance of the APC effects. The trace plots indicate each chain is mixing well here. 

The Gelman-Rubin (GR) convergence diagnostic is used as a formal test for convergence 

that assesses whether parallel chains with dispersed initial values converge to the same 

target distribution. The GR diagnostic shows that the scale reduction factor (SRF) for 

each parameter is equal to one indicating no difference between the chains for a particular 

parameter. The multivariate potential SRF is also one, suggesting the joint convergence 

of the chains over all the parameters. Figure 3 shows the GR diagnostic plots for selected 

parameters. For each parameter, the GR plot shows the development of Gelman and 

Rubin’s shrink factor as the number of iterations increases and the shrink factor of each 

parameter eventually stabilized around one.  
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Figure 2 Trace Plots and Density Plots for the Posterior Samples of Selected Parameters. 

  

 23 



    

  

Figure 3 Plots of Gelman-Rubin's Diagnostic of Selected Parameters. 
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Table 3 APC Model Estimation from Bayesian Model (a) with Different Ridge Priors for 
APC Effects. 

 Bayesian 
Posterior Mean 

2.50% Credible 
Interval 

97.50% Credible 
Interval 

Intercept 2.943 2.918 2.968 

Age 20-24 -1.912 -2.131 -1.613 

Age 25-29 -0.544 -0.730 -0.291 

Age 30-34 0.016 -0.142 0.225 

Age 35-39 0.289 0.158 0.457 

Age 40-44 0.347 0.241 0.476 

Age 45-49 0.339 0.253 0.434 

Age 50-54 0.237 0.163 0.312 

Age 55-59 0.298 0.223 0.372 

Age 60-64 0.281 0.185 0.368 

Age 65-69 0.293 0.164 0.401 

Age 70-74 0.146 -0.024 0.277 

Age 75-79 0.170 -0.040 0.328 

Age 80-84 0.077 -0.176 0.263 

Period 60-64 0.492 0.349 0.598 

Period 65-69 0.281 0.182 0.361 

Period 70-74 0.088 0.024 0.145 

Period 75-79 -0.102 -0.149 -0.055 

Period 80-84 -0.194 -0.252 -0.130 

Period 85-89 -0.273 -0.352 -0.173 

Cohort    -1879 0.030 -0.306 0.470 
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Table 3, Cont.    

Cohort 1876-1884 0.245 -0.048 0.639 

Cohort 1881-1889 0.278 0.022 0.627 

Cohort 1886-1894 0.221 -0.002 0.522 

Cohort 1891-1899 0.118 -0.073 0.375 

Cohort 1896-1904 0.149 -0.013 0.361 

Cohort 1901-1909 0.110 -0.024 0.280 

Cohort 1906-1914 0.194 0.083 0.327 

Cohort 1911-1919 0.139 0.047 0.240 

Cohort 1916-1924 -0.012 -0.092 0.069 

Cohort 1921-1929 -0.124 -0.204 -0.045 

Cohort 1926-1934 -0.189 -0.288 -0.098 

Cohort 1931-1939 -0.210 -0.340 -0.102 

Cohort 1936-1944 -0.206 -0.375 -0.075 

Cohort 1941-1949 -0.157 -0.368 0.003 

Cohort 1946-1954 -0.066 -0.320 0.124 

Cohort 1951-1959 -0.096 -0.398 0.125 

Cohort 1956-1964 -0.098 -0.442 0.158 

Cohort 1961-1969 -0.136 -0.527 0.155 

λA 0.029 0.011 0.062 

λP 0.164 0.037 0.443 

λC 0.078 0.032 0.142 

Posterior variance of age coefficients   0.365 0.162 0.778 

Posterior variance of period coefficients   0.080 0.022 0.231 
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Table 3, Cont.    

Posterior variance of cohort coefficients   0.135 0.058 0.309 

Posterior variance of error 0.009 0.007 0.013 
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Results from Bayesian model (a) with different ridge priors for age, period, and 

cohort effects are shown in Table 3. The Bayesian posterior estimation of age, period, 

cohort effects is similar to that from the Bayesian model with one common prior for the 

APC effects. To better illustrate the APC trends, Figure 4 shows the age, period, and cohort 

trends from Bayesian models with distinct specifications for the ridge priors. The solid line 

represents the Bayesian model with one common prior for the ridge parameter λ which is 

distributed as gamma(1, 1). The dashed line represents the Bayesian model (a) specifying 

different priors for λA, λP, and λC with λA and λP distributed as gamma(1, 1) while λC is 

distributed as gamma(1,100). The dotted line represents the Bayesian model (b) using a 

gamma(1, 1) prior for λA, λP, and λC respectively. Figure 4 clearly shows that the patterns of 

age, period, and cohort trends from model (a) resemble those from the Bayesian model 

with a common prior. For Bayesian model (b), the age and period patterns are akin to that 

from model (a); whereas the pattern of cohort differs from those from model (a). For 

instance, there are significant differences in incidence rates of cervical cancer between the 

early cohorts (born in the late 19th century) and latter cohorts (born in late 20th century) 

from model (a). However, the incidence rates of cervical cancer for the early cohorts do not 

significantly differ from those of the latter cohorts from model (b). 
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Figure 4 Bayesian Models for Age, Period, and Cohort Trends on Cervical Cancer 
Incidence Rates in Ontario Women. 
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Figure 4, Cont. 
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DISCUSSION  

The age, period, cohort accounting model serves as a critical framework to study 

time-specific phenomena, such as mortality, fertility, and disease rates. The importance of 

separating age, period, and cohort effects for time-specific phenomena poses a challenge to 

obtain unique estimates of age, period, and cohort effects simultaneously due to the perfect 

linear relationship between age, period and cohort. The last few decades have witnessed a 

proliferation of methods proposed to deal with the identification problem caused by this 

particular form of multicollinearity, e.g., the intrinsic estimator and the ridge estimator. 

This paper builds upon the traditional ridge estimator but approaches the identification 

problem from the Bayesian interpretation of ridge estimation.  

In this paper, a Bayesian ridge prior model was used to estimate the age, period, and 

cohort effects. Results from the Bayesian model with one common ridge prior for age, 

period, and cohort effects are almost identical to those from a traditional ridge estimator 

and the intrinsic estimator, suggesting that Bayesian ridge prior model is a useful 

alternative method to solve the identification problem in APC models. The downside of 

using the conventional ridge estimator is that one has to specify an optimal value for the 

ridge parameter in advance based on some criteria. For the Bayesian ridge model, there is 

no need to assign a single value to the ridge parameter because it is considered as a random 

variable. We can obtain a series of summary statistics from the posterior samples of the 

ridge parameter. Further, the random property of the ridge parameter λ in the Bayesian 

model makes the interpretation of the 95% credible interval more straightforward than the 

95% confidence interval from traditional statistics.  
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A natural extension of the Bayesian model with a common prior for the ridge 

parameter is to define disparate priors for the corresponding ridge parameters for age, 

period, and cohort effects. This approach accords with the theory of APC modeling in 

essence and is of great advantage if prior information on the age, period, and cohort effects 

is available from meta-analysis based on previous findings. Under this circumstance 

information from the relevant literature can be incorporated into model estimation by 

specifying informative priors for age, period, and cohort ridge parameters and the posterior 

estimation of age, period, cohort effects will be more accurate and close to the true values. 

The current study demonstrates that the choice of appropriate prior distributions for the 

ridge parameters is very important as it will affect the posterior means of the age, period, 

and cohort effects, especially the pattern of the cohort trend in this case.  

Although this study touches upon the sensitivity issue associated with choices of 

prior distributions, it is beyond the scope of this study to thoroughly examine the influences 

of different prior distributions on the APC model performance. However, one should be 

cautious when choosing prior distributions for the ridge parameters as the choices of 

informative priors will impose large influence on the posterior estimation, especially when 

sample size is small. If no prior information is available, the use of noninformative or 

diffuse prior distributions is recommended because noninformative priors are more 

objective compared to subjective elicited priors and leads to Bayesian posterior means 

close to the maximum likelihood estimates (Congdon, 2006).    

To conclude, the Bayesian ridge model provides an alternative way to cope with the 

identification problem inherent in the APC model due to the perfect linear relationship 
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between age, period, and cohort. Even though noninformative priors can be used to obtain 

Bayesian estimates of age, period, and cohort effects, informative priors based on the APC 

theory or previous empirical findings will make the posterior estimation more meaningful.  
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