
Copyright

by

Himanshu Chauhan

2014

The Report Committee for Himanshu Chauhan

certifies that this is the approved version of the following report:

Necessary and Sufficient Conditions on Partial Orders for

Modeling Concurrent Computations

APPROVED BY

SUPERVISING COMMITTEE:

Vijay K. Garg, Supervisor

C. Greg Plaxton

Necessary and Sufficient Conditions on Partial Orders for

Modeling Concurrent Computations

by

Himanshu Chauhan, B.S.

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2014

Necessary and Sufficient Conditions on Partial Orders for

Modeling Concurrent Computations

Himanshu Chauhan, M.S.E.

The University of Texas at Austin, 2014

Supervisor: Vijay K. Garg

Concurrent computations have been modeled using partial orders in

both event based and state based domains. We give necessary and suffi-

cient conditions on partial orders for them to be valid state based or event

based models of concurrent computations. In particular, we define notions of

width-extensibility and interleaving-consistency of partial orders, and show

that a partial order can be valid state based model of a concurrent com-

putation iff it is width-extensible. Distributed computations that involve

asynchronous message passing are a subset of concurrent computations. For

asynchronous distributed computations, a partial order can be a valid state

based model iff it is width-extensible and interleaving-consistent. We show a

duality between the event based and state based models of concurrent com-

putations, and give algorithms to convert partial orders from the event based

domain to state based domain and vice-versa.

iv

Table of Contents

Abstract iv

List of Tables vi

List of Figures vii

Chapter 1. Introduction 1

Chapter 2. Background: Posets and Lattices 6

Chapter 3. Model of Concurrent Computations 8

3.1 Event Based Model . 8

3.2 State Based Model . 10

3.3 Translation between State based and Event based models . . . 16

Chapter 4. Modeling Asynchronous Distributed Computations 27

Chapter 5. Conclusion 34

Appendix 35

Bibliography 40

v

List of Tables

1.1 Characterization of Posets and Concepts under the two models 5

vi

List of Figures

3.1 Example: Consistent Global States of a Computation 10

3.2 Event and State based models for Barriers 11

3.3 Poset on states with no valid event based poset 12

3.4 A poset that is not width-extensible 13

3.5 Event to State transform for message passing computation of
Figure 3.1a . 18

3.6 Event to State transform for barrier shown in Fig. 3.2 18

3.7 Case 1 when α3 is violated . 21

3.8 E ′

temp generated by SE transform on Ŝ of Figure 3.2b 24

3.9 Event model generated from states of Fig. 3.3 24

4.1 Illustration for proof of Lemma 5 30

vii

Chapter 1

Introduction

A distributed computation is usually modeled as a set of events or-

dered by the partial order relation called the happened-before [8] relation.

For many applications such as global predicate detection [6] and checkpoint-

ing [10], a distributed computation has also been modeled as a partial order

on the states of processes. Events and states are fundamentally different con-

cepts. Events are instantaneous and states have duration. The state captures

values of all the variables (including program counter) at a process, whereas

the event captures the transition of the system from one state to the other. 1

Although, there are multiple reports which model computations as partially

ordered sets (posets), there is no clear theory that brings out the distinction

between posets for event based computations and state based computations.

For example, consider the poset in Fig. 3.3 on page 12. Is it a valid event

based (or state based) model for some computation? What is the class of

posets that characterize event based and state based models? Any model of

a concurrent computation must also define the notion of a consistent global

state. Are the definitions different in state based and event based models?

1Alternatively, one may model states as instantaneous and events with duration. The

point is that either the state or the event must be modeled with duration.

1

One of the main goals of this report is to answer these questions. We study

the relationship between the event based models and state based models,

characterize the exact class of posets that can be used to model computa-

tions in either framework and propose a duality between the two models

that allows easy translation of algorithms from one model to the other.

We model a computation in the event domain as a labeled poset in

which every event is labeled with the subset of (sequential) processes on

which that event is shared. The labeling of events must satisfy the condition

that all events that have a label for process Pi must be totally ordered. The

notion of shared events is similar to models such as CSP [2] and CCS [9]. In

these computations, two or more processes may execute a shared event re-

sulting in state transition for them. For example, a distributed computation

with blocking sends (in which the sender waits for the receiver to be ready to

receive the message) can be modeled using shared events. We give an equiv-

alent state based model and show that a state based poset is a valid model of

a concurrent computation iff it is width-extensible (width-extensibility is de-

fined in Chapter 3). The poset in Fig. 3.3 is not width-extensible and hence

it is not a valid state based model.

The notion of consistent global states in the event based model corre-

sponds to down-sets (or, order ideals) of the poset for that model. It is well

known that the set of down-sets forms a distributive lattice 2. Conversely,

2Concepts related to posets are defined in Chapter 2

2

Birkhoff has shown that every finite distributive lattice can be generated as

the set of down-sets of a poset [1]. Thus, finite distributive lattices com-

pletely characterize the set of consistent global states in the event based

model. The notion of consistent global states in the state based model is

different and corresponds to width-antichains. Dilworth [5] proved that the

set of all width-antichains also forms a distributive lattice and Koh [7] has

shown that every finite distributive lattice can be generated as the set of

width-antichains of a poset. The lattice of width-antichains is in general a

sublattice of the lattice of down-sets. Thus, the notion of consistent global

states is different in the event based models and the state based models,

a distinction that has not been explored in distributed computing literature.

Table 1.1 captures the relationship between the structure of consistent global

states in the state model and the event model. Distributed computations in

which communication between processes is achieved by asynchronous mes-

sage passing are a special case of our analysis. Using the event set notion,

we can say that an asynchronous distributed computation is one in which the

event set of different processes are disjoint. Such a computation is usually

modeled by the Lamport’s happened-before poset of events. Even though,

such computations are sometimes modeled using happened-before poset of

states [6], the relationship between the poset for events and state is not

clear in the literature. In this report, we define a class of posets called width-

extensible and interleaving-consistent and show that a state based poset is

a valid model of an asynchronous distributed computation iff it is width-

3

extensible and interleaving-consistent.

The key contributions of this work are summarized below.

• we establish the correspondence between event based and state based

models of concurrent computations.

• we provide complete characterization, by establishing necessary and

sufficient conditions, of partial orders that can model concurrent com-

putations under the state based model. We prove that the class of

width-extensible posets forms a complete characterization of the state

based models of concurrent computations, and the class of width-extensible

and interleaving-consistent posets forms a complete characterization of

the state based models of asynchronous distributed computations.

• we give algorithms to translate event based models to state based mod-

els and vice-versa. We establish the correspondence between the no-

tions of the consistent global states in the event based and the state

based models.

This report is organized as follows. Chapter 2 gives background defi-

nitions for posets. Chapter 3 gives the definition of concurrent computation

in the event based and the state based model. Chapter 4 gives the definition

of asynchronous distributed computation in the event based and the state

based model. Appendix A gives proofs of some of the technical lemmas.

4

Event Based Model State Based Model

Poset Any poset Must be ‘width-

extensible’

Consistent Global State Downset in poset Width-Antichain in

poset

Concurrent Computation ‘Shared’ events al-

lowed

No ‘shared’ states

Asynchronous Distributed

Computation

No ‘shared’ events Must be ‘interleaving-

consistent’ and

‘width-extensible’

poset

Table 1.1: Characterization of Posets and Concepts under the two models

5

Chapter 2

Background: Posets and Lattices

We assume that the reader is familiar with the basic concepts of posets

and lattices [4]. A partially ordered set (or poset) is a pair P = (X,≤) where

X is a set and ≤ is a reflexive, antisymmetric, and transitive binary relation

on X. We write x ≤ y when (x, y) ∈ P . If either x ≤ y or y ≤ x, we say

that x and y are comparable; otherwise, we say x and y are incomparable

or concurrent, and denote this relation by x || y. A subset Y ⊆ X is called

an antichain (chain), if every distinct pair of points from Y is incomparable

(comparable) in P . The width (height) of a poset is defined to be the size of

a largest antichain (chain) in the poset. All antichains of size equal to the

width of the poset are called width-antichains in this report. Let A(P) denote

the set of all width-antichains of P . Order ≤ is defined over A(P) as:

A ≤ B (A,B ∈ A(P)) iff ∀a ∈ A, ∃b ∈ B : a ≤ b in P .

Given a subset Y ⊆ X, the meet of Y , if it exists, is the greatest lower

bound of Y and the join of Y is the least upper bound. A poset P = (X,≤)

is a lattice if joins and meets exist for all finite subsets of X. Let P be a

poset with a given chain partition of width w. In a distributed computation,

P would be the set of events executed under the happened-before partial

6

order. Each chain would correspond to a total order of events executed on

a single process. In such a poset, every element e can be identified with a

tuple (i, k) which represents the kth event in the ith process.

A subset Q is a downset of P if it satisfies the constraint that if f is

in Q and e is less than or equal to f , then e is also in Q. In distributed

computing, when a distributed computation is modeled as a poset of event,

the downsets are called consistent cuts, or consistent global states [3]. The set

of downsets is closed under both union and intersection and therefore forms

a lattice under the set containment order.

7

Chapter 3

Model of Concurrent Computations

In this chapter we give event and state based models of concurrent

computations. The definition of the event based model is quite standard;

our contribution is in the definition of the state based model.

3.1 Event Based Model

A concurrent computation is usually modeled as a set of events E to-

gether with a partial order happened-before [8] denoted by →. However, im-

plicit in this model is the decomposition of these events into chains denoting

the processes where these events are executed. We make this decomposition

explicit in our model because the translation of the event based model into

the state based model depends upon the decomposition.

Definition 1 (Event Based Concurrent Computation). A concurrent compu-

tation on n processes, Ê, is a tuple (E,→, π) where E is the set of events, → is

an irreflexive partial order relation on E, and π maps every event to a subset

of processes from {1..n} such that for all i ∈ {1..n} : Ei = {e ∈ E | i ∈ π(e)} is

totally ordered under →.

Thus, π maps events on a single process to a total order, such that

8

Ei is the totally ordered set of events executed on process Pi. Note that an

event could be assigned to multiple processes. If an event e ∈ Ei ∩ Ej , then

e is a ‘shared’ event for process Pi and Pj .

Fig. 3.1(a) shows a model of a concurrent computation on two pro-

cesses in the event based model for message passing use case in which there

is no shared memory between the processes and communication is only

through messages. Fig. 3.2(a) shows a concurrent computation on two pro-

cesses that synchronize using a barrier. Note that the model of Fig. 3.2(a)

allows us to represent synchronous messages where the sender blocks for

the receiver to be ready. Such synchronous messages are represented by a

single event e such that π(e) includes the sender as well as the receiver. The

model also allows us to represent barriers which require multiple processes

to wait until all the processes participating in the barrier execute it. It can

also model behavior of finite communicating sequential processes [2].

Note: In all the figures throughout this report, events are depicted

with dark filled circles, and states are depicted with empty circles.

Definition 2 (Consistent Global State). Under the event based model, for a

computation (E,→, π), G ⊆ E is a consistent global state of the computation

if

∀e, f ∈ E : (f ∈ G) ∧ (e → f) ⇒ (e ∈ G)

Note that this definition of is independent of π and coincides with

the definition of a down-set of a poset [4]. Fig. 3.1(a) shows a computation

9

under the event based model, and the corresponding consistent global states

of the computation are shown (in a lattice format) in Fig. 3.1(c).

a b c

e f g

(a) Event Based Model

a0

a

a′

b

b′

c

c′

e0

e

e′

f

f ′

g

g′

(b) State Based Model

{}

{a} {e}

{a, b} {a, e}

{a, b, c} {a, b, e}

{a, b, c, e} {a, b, e, f}

{a, b, c, e, f} {a, b, e, f, g}

{a, b, c, e, f, g}

(c) Consistent Global States in Event
Model

{a0, e0}

{a′, e0} {a0, e
′}

{b′, e0} {a′, e′}

{c′, e0} {b′, e′}

{c′, e′} {b′, f ′}

{c′, f ′} {b′, g′}

{c′, g′}

(d) Consistent Global States in State
Model

Figure 3.1: Example: Consistent Global States of a Computation

3.2 State Based Model

For many applications such as concurrent debugging, it is more nat-

ural to model a concurrent computation based on states rather than events.

For example, we may be interested in the global state in which all processes

10

have taken their local checkpoint. We first give an intuition for state based

model of concurrent computations.

The happened-before diagram based on events in Fig. 3.1(a) is equiv-

alent to the diagram in Fig. 3.1(b), which is based on states. An event is

always executed on some state, and the state before the event’s execution

‘existed-before’ the state resulting from the execution. In Fig. 3.1(a) event

execution of a gets translated into an edge between two states, a0 the state

that existed before event a was executed, and state a′ - the state post a’s

execution. Thus, we have a0 < a′.

op1

barrier

op2

op3 op4

P1

P2

(a) Barrier in event based model

op1 1

1

barrier op22

op3 barrier 2 op4

3

3

0

0

pc

P1

P2

pc

(b) Equivalent barrier in the state based model

Figure 3.2: Event and State based models for Barriers

From now on, we restrict ourselves to states generated during an ex-

ecution of the program. Although some concepts carry over from events to

states, there are some important differences. For example, any partially or-

dered set of events in which all events on a single process are totally ordered

is a concurrent computation in the happened-before model. However, not

11

every poset of states is a valid concurrent computation. Consider the state

based computation shown as a partial order in the example of Figure 3.3. In

this example, although the states form partial orders, the induced graph in

the event based model has a cycle. The techniques involved for finding the

induced graph and detecting the cycles are shown in the next chapter. Thus

we can allow only those partial orders on states that do not induce cycle on

the order on events.

a b c

d e

Figure 3.3: Poset on states with no valid event based poset

We claim that a poset can only be a valid state based model of a

concurrent computation if it satisfies a notion called width-extensibility.

Definition 3 (Width-extensible Poset). A poset (X,<) is width-extensible if

and only if for every antichain A ⊆ X, there exists a width-antichain W con-

taining A.

Informally, when states of a concurrent computation are modeled as

a poset, this property requires that for any set of incomparable local states

there is a possible consistent global state that includes these local states. We

will show later that in the state based model, the consistent global states

correspond to width antichains (and not down-sets).

12

a b c

d e f

g h i

Figure 3.4: A poset that is not width-extensible

The poset in Fig. 3.3 is not width-extensible because there is no width-

antichain that contains b. Whereas the posets in Fig. 3.1(b) and 3.2(b), both

are width-extensible.

In the above definition we can not substitute “for all antichains” by

“for all antichains of size 1”. In the example of Fig. 3.4, there is a width-

antichain for every individual element a to i. This can be easily verified as

{a, d, g}, {b, e, h}, and {c, f, i} are all width-antichains. However, there is no

width-antichain that contains {b, i}.

However, we show that it is sufficient to restrict our attention to an-

tichains of size two.

Theorem 1. A poset (X,<) is width extensible if and only if for every antichain

A of size at most two, there exists a width-antichain W containing A.

Proof. The necessity is obvious. We prove sufficiency. We want to prove that

if every antichain of size at most two is contained in a width-antichain, then

every antichain (of any size) is also contained in a width-antichain. Let w be

the width of the poset (X,<) and {C1, C2, ..., Cw} be a chain decomposition

13

of size w. Consider an antichain A of size k, 3 ≤ k ≤ w. If w = k, then A

itself is a width-antichain, and we have the result. Suppose w > k, and A

is not contained in any width-antichain. Hence, there is some chain Ci such

that A does not have any elements from Ci. We know that for any pair of

elements a, b ∈ A, with a 6= b, the antichain {a, b} is width-extensible. Let

Ii(a, b) denote the maximal interval on Ci that contains all the elements that

are incomparable to both a and b. As {a, b} is width-extensible, we know that

Ii(a, b) is non-empty. Now consider a, b, c ∈ A, where all three are distinct.

The width-extensibility of size two antichains guarantees that Ii(a, b), Ii(b, c),

and Ii(a, c) are all non-empty. Since every pair of these intervals have non-

empty intersection, and all intervals are set of one or more consecutive states

in Ci, we get that Ii(a, b) ∩ Ii(b, c) ∩ Ii(a, c) 6= φ. This means that ∃d ∈ Ci :

(d||a)∧ (d||b)∧ (d||c), ie. d is concurrent to a, b, and c. Hence, d can be added

to A. By repeating this argument for all chains that do not have any element

in A, we can extend A to a width-antichain.

We can now define the state based model of a concurrent computation

as following:

Definition 4 (State based Concurrent Computation). A concurrent computa-

tion on n processes, Ŝ, is a tuple (S,<, π) where S is the set of local states,

(S,<) is a width-extensible poset, and π is a map from S to {1..n} such that

for all distinct states s, t ∈ S for all i ∈ {1..n}, Si = {s ∈ S|i ∈ π(s)} is totally

14

ordered under <.

π(s) = π(t) ⇒ (s < t) ∨ (t < s)

Thus, π partitions S such that every block of the partition Si is totally

ordered. The relation < between states captures the ‘existed-before’ notion

discussed earlier. Fig. 3.1(b) and 3.2(b), are state based models of event

based computations shown in Fig. 3.1(a) and 3.2(a). Note that in these

figures (of state based models), the events are shown as edge labels above

the edges that capture < (existed-before) relation on the states. We now

show the difference in the definitions of consistent global states in the state

based and event based model.

Definition 5 (Consistent Global State). Under the state based model of a con-

current computation (S,<, π), a subset T ⊆ S of size equal to the width of

poset (S,<) is a consistent global state if ∀s, t ∈ T : s||t.

It is clear that the consistent global states correspond to width-antichains.

Fig. 3.1(d) shows all the width-antichains of the state based computation of

Fig. 3.1(b).

The order “<” is defined over consistent global states using the “≤”

relation defined over width-antichains in Chapter 2. Under the state based

model, for any two consistent global states A,B we have: A < B iff A ≤

B ∧ A 6= B. Hence, A < B ⇒ ∃a ∈ A, ∃b ∈ B : a < b in (S,<).

At this point we have two notions of a consistent global state of a

concurrent computation: one in the event based model and the other in the

15

state based model. What is the relationship between these two definitions?

We show that there is ‘one-to-one’ correspondence between consistent global

states in the event based and the state based models.

Lemma 1. Let (E,→, π) and (S,<, π) be event and state based models of a

computation. There is 1 − 1 correspondence between consistent global states of

(E,→, π) and consistent global states of (S,<, π).

Proof. In Appendix.

3.3 Translation between State based and Event based mod-

els

Let Ê = (E,→, π) be a computation in the event based model. Let

π decompose E into (Ei | i = 1, 2, . . . n). For each i = 1, 2, . . . n, let |Ei| =

ni(≥ 1). Suppose the elements of Ei are named as follows: Ei : (i, 1) →

(i, 2) → . . . → (i, ni − 1) → (i, ni). Note that if an event is ‘shared’ between

two processes i and j, then it will have two labels (i, x) and (j, y), with

1 ≤ x ≤ ni, and 1 ≤ y ≤ nj . By extension of this rule, an event that is

‘shared’ between k processes would have k labels. We translate an event

based model into the state based model Ŝ = (S,<, π) using the steps of

Algorithm 1. We call this algorithm the ES transform. A special case of

this transform, on disjoint chain partitions in π, was used by Koh in [7] to

prove properties of lattice of width-antichains.

The ES transform creates Ŝ - a state based model - from an event

16

Algorithm 1: ES Transform

Input: Event Based Model Ê = (E,→, π)
Output: State Based Model Ŝ = (S,<, π)

Si = {}1

for i = 1 . . . n do2

for k = 0 . . . ni do3

Add [i, k] to Si4

for k = 0 . . . ni − 1 do5

Define [i, k] < [i, k + 1] in Si6

/* Si is now (|Ei|+ 1)-element chain */

Ŝ = ∪(Si | i = 1, 2 . . . n)7

for i = 1 . . . n do8

for j = 1 . . . n && j 6= i do9

if (i, r + 1) → (j, s) in E then10

Define [i, r] < [j, s] in Ŝ11

based model Ê. Hence every chain Si contains the states of process i, such

that event (i, k), 1 ≤ k ≤ ni, causes a transition from state [i, k − 1] to [i, k]

on the state chain Si (lines 1− 7). On chain Si, the state [i, 0] represents the

initial state of the process i, and [i, ni] being the last element, represents the

final state of the process i. Lines 8 − 11 ensure that the causal dependency

induced by happened-before relation between events of different processes

is translated to existed-before relation between corresponding states. An

example of the transformation is shown in Figs. 3.5 and 3.6.

We show that Ŝ generated by applying the ES transform on Ê is a

valid state based model, i.e., it is a width-extensible poset. We first show

that it is a poset.

17

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(a) (E,→, π)

[1, 0] [1, 1] [1, 2] [1, 3]

[2, 0] [2, 1] [2, 2] [2, 3]

(b) (S,<, π)

Figure 3.5: Event to State transform for message passing computation of

Figure 3.1a

(1, 1)

(1, 2), (2, 2)

(1, 3)

(2, 1) (2, 3)

(a) Barrier in event based model

[1, 1]

[2, 1]

[1, 2]

[2, 2]

[1, 3]

[2, 3]

[1, 0]

[2, 0]

(b) Equivalent barrier in the state based model

Figure 3.6: Event to State transform for barrier shown in Fig. 3.2

Lemma 2. Ŝ is a poset under the “<” relation.

Proof. Extension of proofs in Koh’s paper [7]. In the Appendix.

We next show that (S,<, π) constructed from any (E,→, π) by apply-

ing the ES transform is width-extensible.

To that end, we first observe properties (α1), (α2), and (α3) of Ŝ.

18

Lemma 3. If Ŝ is constructed from a event based concurrent computation using

ES transformation, then:

For 1 ≤ i, j, k ≤ n

(α1) ∀i, j: [i, 0] || [j, 0]. All initial states are concurrent.

(α2) ∀i, j: [i, ni] || [j, nj]. All final states are concurrent.

(α3) ∀i, j, k: [i, s] < [j, t] ∧ [j, t− 1] < [k, u], for i 6= j ∧ j 6= k, ⇒ [i, s] < [k, u].

Proof. Extension of proofs in Koh’s paper [7]. In the Appendix.

We now describe the underlying intuition behind these conditions.

The first condition (α1) ensures that all n initial states are pairwise concur-

rent. This is a valid requirement as all the processes would start in some

default (individual) state, and at the start of the computation these states

would not have any dependency amongst them.

The second condition, given by (α2), ensures that all n final states are pair-

wise concurrent. This is also a valid requirement because irrespective of the

events/commands executed all the n processes end up in some individual

final state at the end of the computation. Hence, when the computation is

finished all the final states would not have any dependency amongst them,

and thus be concurrent to each other.

The third condition (α3) guarantees that causal dependency between events

under the state based model translates to causal dependency between corre-

sponding states under the state based model. Note that the labels of states

19

in the dependency relation are different from those of events. Suppose that

for two events e and f , we have e → f under the event based model, Ê.

Then (α3) translates that dependency from Ê to Ŝ such that the state pre-

ceding the execution of e is guaranteed to have ‘existed’ before the state that

is generated after the execution of f .

We now show the important result that any state based model that is

generated by applying the ES transform on an event based model is a valid

state based model. To be a valid state based model, it is sufficient that the

generated poset be width-extensible.

Theorem 2. Let (S,<, π) be any state based model of concurrent computation

that satisfies (α1), (α2) and (α3). Then, (S,<) is width-extensible.

Proof. In Appendix.

We have now established that every poset that provides the three con-

ditions (α1), (α2), and (α3) is width-extensible. We now prove the converse

— every width-extensible poset guarantees the three conditions α1, α2, and

α3. The goal of proving this is to establish that α1, α2, and α3 are necessary

and sufficient conditions for width-extensibility.

Theorem 3. Let (S,<) be an width-extensible poset. Consider any chain parti-

tion π of (S,<). Then, Ŝ = (S,<, π) satisfies (α1),(α2) and (α3).

Proof. We show the contrapositive. If (α1) is violated, then there exists an

initial state t such that there exists a state s different from t which is less

20

than t. Then, s is less than all states in the process containing t. Therefore,

the antichain {t} cannot be extended to a width-antichain. The proof for

(α2) is dual. If (α3) is violated, then there exists [i, s], [j, t] and [k, u], where

i 6= j ∧ j 6= k, such that [i, s] < [j, t] and [j, t − 1] < [k, u] but [i, s] 6< [k, u].

We now do a case analysis on the relationship between [i, s] and [k, u].

[i, s]

[j, t− 1] [j, t]

[k, u]

Figure 3.7: Case 1 when α3 is violated

Case 1: [k, u] < [i, s]. Depicted in Fig. 3.7. In this case we claim that there

is no width-antichain that contains [i, s]. Since [i, s] < [j, t], for any state

w on process Pj that is concurrent with [i, s], we get w ≤ [j, t − 1]. Since

[j, t − 1] < [k, u] none of the states on process Pk greater than [k, u] are

eligible to be in the width-antichain with w. Furthermore, all states less than

or equal to [k, u] are not eligible because [k, u] < [i, s].

Case 2: [k, u] is incomparable with [i, s]. In this case we claim that there is no

width-antichain that includes both [k, u] and [i, s]. No state greater than or

equal to [j, t] can be included from Pj because [i, s] < [j, t]. No state less than

or equal to [j, t− 1] can be included from Pj because [j, t− 1] < [k, u].

Note that α3 only requires i 6= j ∧ j 6= k. It is possible that i = k. The

21

proof also holds for the case when i = k.

With these theorems, we have shown that the conditions α1, α2 and α3

are necessary and sufficient for a poset to be width-extensible. We now show

another important result. The following theorem establishes that width-

extensibility is a sufficient condition for modeling a concurrent computation

under the state based model. First, we outline how to generate an event

based model of a concurrent computation from (S,<). Let π be any chain

partition of (S,<). We construct an event based model (E ′,→, π′) of a con-

current computation by applying the SE transform (a reverse transform to

ES) whose steps are shown in Algorithm 2. Lines 1 − 11 perform a re-

versal of steps of ES transform. Lines 13− 18 try to collapse events that are

‘shared’ between processes by performing a strongly connected component

(SCC) decomposition, and using the SCCs for identifying shared events. If

an SCC has events from the same process, then that results in a same process

cycle - an invalid event based computation. Fig. 3.8 shows the E ′

temp (and

not the final E ′) generated during the execution when SE transform is ap-

plied to (S,<, π) given by Fig. 3.6 (b). After the SCC decomposition based

‘collapsing’ on this E ′

temp, the generated E ′ is same as Fig. 3.6 (a) Recall

that we claimed invalidity of a state based model poset shown in Fig. 3.3

with the reason that such a state model would cause cycles when converted

to an event based model. Let us assign state labels to the states shown in

that figure:

a = [1, 0], b = [1, 1], c = [1, 2], d = [2, 0], e = [2, 1].

22

Algorithm 2: SE Transform

Input: State Based Model Ŝ = (S,<, π)
Output: Event Based Model Ê = (E,→, π′) OR Report Ŝ invalid

for i = 1 . . . n do1

E ′

i = {}2

for k = 1 . . . ni do3

Add (i, k) to E ′

i4

for k = 1 . . . ni − 1 do5

Define (i, k) → (i, k + 1) in E ′

i6

; /* E′

i is now (|Si| − 1)-element chain */

E ′

temp = ∪(E ′

i | i = 1, 2 . . . n)7

for i = 1 . . . n do8

for j = 1 . . . n && j 6= i do9

if [i, r − 1] < [j, s] in S then10

Define (i, r) → (j, s) in E ′

temp11

E ′ = E ′

temp12

foreach SCC Cs in SCC Decomposition of E ′

temp do13

if AllOnDifferentChain (Cs) then14

Replace Cs with one element e in E ′
15

Assign all labels of nodes in Cs to e in E ′
16

else17

Report S as not width-extensible18

routine AllOnDifferentChain (SCC Cs){19

if each node in Cs is on a different chain20

return true21

else22

return false23

}24

23

(1, 1) (1, 2)

(2, 2)

(1, 3)

(2, 1) (2, 3)

Figure 3.8: E ′

temp generated by SE transform on Ŝ of Figure 3.2b

Now apply the SE transform of Alg. 2 to this state poset. The resulting

(E,→) would be the following:

(1, 1) (1, 2)

(2, 1)

Figure 3.9: Event model generated from states of Fig. 3.3

And we know from the properties of happened-before relation that

such a cycle can not exist in a valid event based model.

The next theorem shows that width-extensibility is sufficient for mod-

eling concurrent computations under the state based model.

Theorem 4. Let (S,<) be any width-extensible poset. Then, there exists a

concurrent computation for which it is the state based model.

24

Proof. We show a concurrent computation in the event based model such

that when we convert that event based computation to state based model,

we get the poset (S,<). We first create a width chain partition π of (S,<) to

get (S,<, π).

We then generate an event based model Ê ′ = (E ′,→, π′) from (S,<

, π) using SE transformation. It can be easily verified that applying the ES

transformation of Alg. 1 to (E ′,→, π′) leads to (S,<, π). It suffices to show

that (E ′,→) is a partial order.

Irreflexivity: Assume, (i, r) → (i, r) in E ′(π′). This would require r < r in Ŝ -

a contradiction.

Transitivity: Consider (i, r) → (j, s) ∧ (j, s) → (k, t) where i 6= j ∧ j 6= k. The

first relation in the event based model is possible only if [i, r − 1] < [j, s] in

Ŝ. Similarly, we also get [j, s− 1] < [k, t]. Hence:

[i, r − 1] < [j, s] ∧ [j, s− 1] < [k, t]

By using (α3) on Ŝ we have

⇒ [i, r − 1] < [k, t]

≡ (i, r) → (k, t)

in E ′.

When i = j = k, the transitivity of states on the one chain can be shown

trivially. Now let us consider the case when i = j ∧ j 6= k. Then, (i, r) →

(j, s) ∧ (j, s) → (k, t) in E ′ requires r < s, as i = j, and [j, s− 1] < [k, t] in Ŝ.

25

Observe that i = j and r < s means that r− 1, s− 1, s form a totally ordered

set, such that r−1 ≤ s−1. Hence, we get [i, r−1] ≤ [j, s−1]∧[j, s−1] < [k, t].

By transitivity of < in Ŝ, this leads to [i, r − 1] < [k, t] which is the desired

condition for (i, r) → (k, t) in E ′. The proof for the case of i 6= j, j = k is

similar.

Thus, (α1)− (α3) provide a complete characterization of a state based

model for a concurrent computation. In the next chapter, we discuss asyn-

chronous distributed computations, and show that their state based models

are a special case of models of concurrent computations formalized in this

chapter.

26

Chapter 4

Modeling Asynchronous Distributed

Computations

Asynchronous distributed computations, such as message-passing, can

be considered a special case of our model in which there are no ‘shared’

events. Thus, the event based model is defined based on a chain decompo-

sition π in which all chains are disjoint. We use a short form notation ADC

for ‘asynchronous distributed computation’ from here on. The event based

model of ADCs is given by the following definition:

Definition 6 (Event based model of ADC). An asynchronous distributed com-

putation on n processes, Ê, is a tuple (E,→, π) where E is the set of events,

→ is the happened-before relation on E, and π is a map from E to {1..n} such

that for all distinct events e, f ∈ E

π(e) = π(f) ⇒ (e → f) ∨ (f → e)

Thus, π partitions E such that every block of the partition is totally

ordered under →.

Such an event based model - with no ‘shared’ events - leads to a state

based model that satisfies some stronger properties than those satisfied by

27

the state based model of the previous section. Given that the communi-

cation between processes is asynchronous – no two processes can make a

‘jump’ together from their individual states to next states as if there was a

‘shared’ execution. Hence, the poset (S,<) exhibits a property that we call

‘interleaving-consistency’.

Definition 7 (Interleaving-consistent Poset). A poset (X,<) is interleaving-

consistent if for every width-antichain W that is not equal to the biggest width-

antichain, there exists a width-antichain W ′ > W such that |W∩W ′| = |W |−1.

Let A(X) be the set of all width-antichains of a poset (X,<). The

biggest width-antichain of (X,<) is the width-antichain A ∈ A(X) such that

∄A′ ∈ A(X) : A < A′. Informally, interleaving-consistency requires that

any possible global state (modeled as a width-antichain) can be advanced

on some process to reach another possible global state. Fig. 3.5(a) shows

an ADC under the event based model, and the corresponding poset of the

state based model in Fig. 3.5(b) is interleaving-consistent. However, the

event based computation in Fig. 3.6(a) is not an ADC, and thus the result-

ing state based model’s poset in Fig. 3.6(b) is not interleaving-consistent -

the processes make a ‘jump’ together from states [1, 1], [2, 1] to [1, 2], [2, 2].

Interleaving-consistency in a poset is captured by the following rule:

For 1 ≤ i, j ≤ n, if i 6= j, then [i, s− 1] < [j, t] ⇒ ¬([j, t− 1] < [i, s]).

Thus, for an ADC, a poset (S,<) that models its states is now charac-

terized by:

For 1 ≤ i, j, k ≤ n

28

(α1) ∀i, j: [i, 0] || [j, 0].

(α2) ∀i, j: [i, ni] || [j, nj].

(α3) ∀i, j, k: [i, s] < [j, t] ∧ [j, t− 1] < [k, u], for i 6= j ∧ j 6= k, ⇒ [i, s] < [k, u].

(α4) if i 6= j, then [i, s− 1] < [j, t] ⇒ ¬([j, t− 1] < [i, s]).

We say that ADCs are a special case of a concurrent computations as

they form a subset of concurrent computations completely characterized by

(α1)− (α3) that has an additional characteristic of (α4).

The state based model for ADCs is formally defined as:

Definition 8 (State-Based Model of ADC). An asynchronous distributed com-

putation on n processes, Ŝ is a tuple (S,<, π) where S is the set of states, < is an

irreflexive partial order relation on S such that (S,<) is a width-extensible and

interleaving-consistent poset, and π maps every state to a process from {1..n}

such that for all i ∈ {1 . . . n}, Si = {s ∈ S|i ∈ π(s)} is totally ordered under <.

Lemma 4. Suppose Ŝ = (S,<, π) is obtained by applying ES transform on a

valid event based model Ê = (E,→, π). Then Ŝ satisfies (α1) - (α4).

Proof. Proofs for (α1) - (α3) were shown in previous section. Suppose (S,<)

doesn’t satisfy (α4) and thus we have [i, s − 1] < [j, t] ⇒ ([j, t − 1] < [i, s])

in (S,<). But this would require (i, s) → (j, t) ∧ (j, t) → (i, s) in E - a

contradiction.

29

Lemma 5. Let Ŝ = (S,<, π) be as defined in Lemma 4. Then, (S,<) is

interleaving-consistent.

Proof. Suppose (S,<) satisfies (α4), but is not interleaving-consistent. Hence,

there is some antichain A of (S,<) that is not the biggest, and still can

not be extended along just one process to form another antichain A′. Let

[i, ai] denote be the element from chain i that belongs to A. Our assump-

tion means that ∄i : A − {[i, ai]} + {[i, ai + 1]} is a width-antichain. Hence

∀i, ∃j 6= i : [i, ai] < [j, aj + 1]. Given that S is finite (we can not keep

on finding a ‘new’ j for every ‘new’ i we consider), we know that to sat-

isfy this requirement there must exist k, k 6= j ∧ k 6= i such that [j, aj] <

[i, ai + 1] ∧ [k, ak] < [j, aj + 1] ∧ [i, ai] < [k, ai + 1]. See Fig. 4.1 for an

illustration. From the previous Lemma, we know that (S,<) satisfies

[i, ai] [i, ai + 1]

[j, aj] [j, aj + 1]

[k, ak + 1][k, ak]

Figure 4.1: Illustration for proof of Lemma 5

(α1)− (α3). Applying (α3) to this we get [k, ak] < [i, ai + 1]. But this leads to

[i, ai] < [k, ai + 1] ∧ [k, ak] < [i, ai + 1] - a contradiction with α4.

Theorem 5. Let (S,<) be any width-extensible, and interleaving-consistent

poset. Consider any chain partition π of (S,<). Then, Ŝ = (S,<, π) satisfies

30

(α1)− (α4).

Proof. Width-extensibility guarantees (α1)− (α3). Suppose (α4) is not satis-

fied, i.e., there exist [i, s], [j, t], for i 6= j, such that [i, s−1] < [j, t]∧([j, t−1] <

[i, s]). Let [j, r] be the largest state on Sj that is incomparable with [i, s− 1].

Note that r ≤ t−1. It is clear that [j, r] < [j, t] because [i, s−1] < [j, t]. Since

([j, t− 1] < [i, s]), we also get that [j, r] < [i, s].

Let W be the set of all width-antichains that include both [i, s − 1]

and [j, r]. Let A be the biggest antichain in W. We claim that there does

not exists any width-antichain A′ ≥ A such that |A′ − A| = 1, and thus not

satisfying (α4), contradicts with interleaving-consistency. If A′ differs from

A on a chain different from i and j, then it violates that A is the biggest

antichain that contains [i, s − 1] and [j, r]. Hence, to satisfy interleaving-

consistency, A′ must differ from A on either i, or j. Suppose A′ − A = [i, s]

then because A′ is a width-antichain – we get that [j, r] is incomparable with

[i, s], a contradiction. If A′ − A = [j, r + 1], then we get that [i, s − 1] is

incomparable with [j, r + 1], which contradicts the definition of [j, r].

Theorem 6. Let (S,<) be any poset that is width extensible and interleaving-

consistent. Then, there exists an ADC for which it is the state-based model.

Proof. Let π be any chain partition of (S,<). Apply SE transform of Alg. 2

to generate an event based model (E ′,→) from (S,<, π). It is trivial to verify

31

that applying ES transform of Alg. 1 to (E ′,→) leads to (S,<). It suffices to

show that (E ′,→) is a partial order.

Irreflexivity: Assume, (i, r) → (i, r) in E ′(π). This would require r < r in Ŝ -

a contradiction.

Transitivity: Consider (i, r) → (j, s) ∧ (j, s) → (k, t) where i 6= j ∧ j 6= k. The

first relation in the event based model is possible only if [i, r − 1] < [j, s] in

Ŝ. Similarly, we also get [j, s− 1] < [k, t]. Hence:

[i, r − 1] < [j, s] ∧ [j, s− 1] < [k, t]

By using (α3) on Ŝ we have

⇒ [i, r − 1] < [k, t] ≡ (i, r) → (k, t) in E ′.

When i = j = k, the transitivity of states on the one chain can be shown

trivially. Now let us consider the case when i = j ∧ j 6= k. Then, (i, r) →

(j, s) ∧ (j, s) → (k, t) in E ′ requires r < s, as i = j, and [j, s− 1] < [k, t] in Ŝ.

Observe that i = j and r < s means that r− 1, s− 1, s form a totally ordered

set, such that r−1 ≤ s−1. Hence, we get [i, r−1] ≤ [j, s−1]∧[j, s−1] < [k, t].

By transitivity of < in Ŝ, this leads to [i, r − 1] < [k, t] which is the desired

condition for (i, r) → (k, t) in E ′. The proof for the case of i 6= j, j = k is

similar.

Finally, consider the case when i = k, i 6= j ∧ r = t. In this case, the

left hand side of (i, r) → (j, s) ∧ (j, s) → (k, t) is equivalent to [i, r − 1] <

[j, s] ∧ [j, s− 1] < [i, r] as i = k, r = t. However note that (α4) prohibits this

32

case. Hence, the left hand side is false; and thus the condition is trivially

true.

33

Chapter 5

Conclusion

In this work, we developed a theory that establishes a one to one cor-

respondence between the event based and state based models of concurrent

computations. We laid down the necessary and sufficient conditions on par-

tial orders that can be ised to model the two categories, namely synchronous

and asynchronous, of concurrent computations. Our theory can be used to

directly convert any algorithm for analysis of event based models to state

based models.

34

Appendix

Lemma 1: Let (E,→, π) and (S,<, π) be event and state based models

of a computation. There is 1 − 1 correspondence between consistent global

states of (E,→, π) and consistent global states of (S,<, π).

Proof. Let G be any consistent global state of (E,→, π). We will show how to

construct the corresponding consistent global state T of (S,<, π). Suppose

that G contains at least one event from Pi. Then, let (i, k) be the largest

event from process Pi. In this case, we add [i, k] to T . If G does not contain

any event from Pi, then we add [i, 0] to T . Clearly, T has exactly n states,

one from each process. We show that the global state T is also consistent.

If not, suppose [i, s] and [j, t] be two states in T such that [i, s] < [j, t]. This

implies that (i, s + 1) → (j, t), under the event based model, contradicting

that G is consistent because G contains (j, t) but does not contain (i, s+1). It

is also easy to verify that the mapping from the set of consistent global states

is 1− 1.

Conversely, given a consistent global state T in the state based model,

we construct a consistent global state in event based model in 1− 1 manner

as follows. For all states [i, k] ∈ T we include all events (i, k′) such that

k′ ≤ k. Note that when k equals 0, no events from Pi are included. It can

again be easily verified that whenever T is a consistent global state, G is a

consistent prefix.

35

Lemma 2: Ŝ is a poset under the “<” relation.

Proof. We show that the relation “<” on Ŝ is transitive and asymmetric, and

thus irreflexive.

Claim (i) The relation “<” is asymmetric.

Proof: Let [i, r], [j, s] ∈ Ŝ such that [i, r] < [j, s]. Clearly, [j, s] 6< [i, r] if i = j;

otherwise we would get s → r in E. Assume i 6= j and [j, s] < [i, r]. Then

by definition, we have (i, r + 1) → (j, s) → (j, s + 1) → (i, r) in E, which is

impossible as it violates the asymmetry of → in E.

Claim (ii) The relation “<” is transitive.

Proof: Let [i, r], [j, s], [k, t] ∈ Ŝ such that [i, r] < [j, s] and [j, s] < [k, t]. As-

sume i 6= j and k 6= j. Then we have (i, r + 1) → (j, s) → (j, s + 1) → (k, t)

and hence (i, r + 1) → (k, t) in E, which implies that [i, r] < [k, t] whether

i = k or i 6= k. The cases for i = j or j = k can be proved similarly.

Hence Ŝ forms a poset under the “<” relation.

Lemma 3: If Ŝ is constructed from a event based asynchronous dis-

tributed computation using ES transformation, then:

(α1) ∀i, j, where 1 ≤ i, j ≤ n: [i, 0] || [j, 0]. [i, 0] represents the initial state of

the chain Si in state based model.

36

(α2) ∀i, j, where 1 ≤ i, j ≤ n: [i, ni] || [j, nj]. [i, ni] represents the last element

of Si.

(α3) ∀i, j, k, where 1 ≤ i, j, k ≤ n: [i, s] < [j, t] ∧ [j, t − 1] < [k, u], for i 6=

j ∧ j 6= k, ⇒ [i, s] < [k, u].

Proof. (α1) follows immediately from the construction of Ŝ because there is

no state [i, s] such that [i, s] < [i, 0] for any i. That is, on any state chain Si

there does not exist a state that is a precursor to the initial state of Si. Hence,

all the initial states must be concurrent.

Similarly (α2) follows when applied to the last states of Si in a similar

manner - as there is no state on any state chain Si that is a successor of the

final state of Si.

(α3): [i, s] < [j, t] ∧ [j, t− 1] < [k, u]. Using the construction rules, we

can infer that (i, s + 1) → (j, t) ∧ (j, t) → (k, u) in E. Which by transitivity

means (i, s+ 1) → (k, u). Hence, [i, s] < [k, u] in S.

Theorem 3: Let (S,<, π) be any state based model of concurrent com-

putation that satisfies (α1), (α2) and (α3). Then, (S,<) is width-extensible.

Proof. We show that any antichain A ⊂ S can be extended to a width an-

tichain. It is sufficient to show that when |A| < n, there exists an antichain

A ⊂ B such that |B| = |A| + 1. Consider any process Pi that does not

37

contribute a state to A. We will show that there exists a state in Si that is

concurrent with all states in A. Let s and s′ be two distinct states in A.

We first claim that for any state s and any process Pi, there exists a

nonempty sequence of consecutive states called the “ interval concurrent to

s on Pi” and denoted by Ii(s) such that:

1. Ii(s) ⊆ Si — i.e., the interval consists of only states from process Pi,

and

2. ∀t ∈ Ii(s) : t||s — i.e., all states in the interval are concurrent with s.

For a state v ∈ Si, let index(v) denote the index of state v on Si. Thus

0 ≤ index(v) ≤ ni. Define Ii(s).lo = min{v | v ∈ Si ∧ v 6< s}. This is

well-defined since [i, ni] 6< s due to (α2). Similarly, on account of (α1), we

can define Ii(s).hi = max{v | v ∈ Si ∧ s 6< v}.

We show that Ii(s).lo ≤ Ii(s).hi by the following case analysis.

Case 1: There exists v : Ii(s).hi < v < Ii(s).lo.

Since v < Ii(s).lo implies v < s and Ii(s).hi < v implies s < v, we get a

contradiction (v < s < v).

Case 2: index(Ii(s).hi) + 1 = index(Ii(s).lo.

Let Ii(s).lo be rth state on Si, i.e., Ii(s).lo = [i, r]. Then, Ii(s).hi = [i, r − 1].

Let s correspond to state [j, t]. From the definition of Ii(s).lo, [i, r−1] < [j, t].

From the definition of Ii(s).hi, [j, t] < [i, r]. We now have, [j, t] < [i, r] and

[i, r− 1] < [j, t]. From (α3), we get [j, t] < [j, t] which contradicts irreflexivity

of <.

38

From the above discussion it follows that Ii(s).lo ≤ Ii(s).hi. Further-

more, for any state t such that Ii(s).lo ≤ t ≤ Ii(s).hi, t 6< s and s 6< t holds.

From the above claim, we know that Ii(s) and Ii(s
′) are both non-

empty. We show that Ii(s) ∩ Ii(s
′) 6= ∅. If not, without loss of generality

assume that Ii(s).hi < Ii(s
′).lo.

Case 1: index(Ii(s).hi) + 1 = index(Ii(s
′).lo).

Let Ii(s).hi be rth state on Si, i.e., Ii(s).hi = [i, r]. Then, Ii(s
′).lo = [i, r + 1].

Suppose that s = [j, u] and s′ = [k, v]. From the definition of Ii(s).hi we get

that [j, u] < [i, r+1]. From the definition of Ii(s
′).lo we get that [i, r] < [k, v].

Hence, from (α3), we get that [j, u] < [k, v] contradicting that s and s′ are

concurrent.

Case 2: There exists v : Ii(s).hi < v < Ii(s
′).lo.

This implies that s < v (because Ii(s).hi precedes v) and v < s′ (because v

precedes Ii(s
′).lo). Thus s < s′, a contradiction with (A) being an antichain.

Therefore, Ii(s) ∩ Ii(s
′) 6= ∅.

Because any interval Ii(s) is a total order, it follows that:

⋂

s∈A

Ii(s) 6= ∅

We now choose any state in
⋂

s∈A Ii(s) to extend A.

39

Bibliography

[1] G. Birkhoff. On the combination of subalgebras. Proc. Camb. Phil.

Soc., 29:441–464, 1933.

[2] Stephen D Brookes, Charles AR Hoare, and Andrew W Roscoe. A

theory of communicating sequential processes. Journal of the ACM

(JACM), 31(3):560–599, 1984.

[3] K. M. Chandy and L. Lamport. Distributed snapshots: Determining

global states of distributed systems. ACM Trans. Comput. Syst.,

3(1):63–75, February 1985.

[4] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.

Cambridge University Press, Cambridge, UK, 1990.

[5] R. P. Dilworth. A decomposition theorem for partially ordered sets.

Ann. Math. 51, pages 161–166, 1950.

[6] V. K. Garg and B. Waldecker. Detection of weak unstable predicates in

distributed programs. IEEE Trans. on Parallel and Distributed Systems,

5(3):299–307, March 1994.

[7] KM Koh. On the lattice of maximum-sized antichains of a finite poset.

Algebra Universalis, 17(1):73–86, 1983.

40

[8] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Commun. of the ACM, 21(7):558–565, July 1978.

[9] Robin Milner. A calculus of communicating systems. Springer-Verlag

New York, Inc., 1982.

[10] R. H. B. Netzer and J. Xu. Necessary and sufficent conditions for

consistent global snapshots. IEEE Trans. on Parallel and Distributed

Systems, 6(2):165–169, February 1995.

41

