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Ad hoc networks provide a flexible, infrastructure-free means to com-

municate between soldiers in war zones, aid workers in disaster areas, or

consumers in device-to-device (D2D) applications. Ad hoc networks, how-

ever, are stilled plagued by interference. Communication with millimeter-wave

(mmWave) devices offers hope to ad hoc networks through higher bandwidth,

reduced interference due to directional antennas, and a lighter interference

field due to blockage. This report uses a stochastic geometry approach to

characterize the one-way and two-way coverage probability of a mmWave ad

hoc network with directional antennas and random blockages. The coverage

probability in the presence of noise and both line-of-sight and non-line-of-sight

interference is analyzed and used to derive the transmission capacity. Several

reasonable simplifications are used to derive the transmission capacity. Per-

formance of mmWave is then analyzed in terms of area spectral efficiency and

rate coverage. The results show that mmWave networks support larger den-

sities, higher area spectral efficiencies, and better rate coverage compared to

microwave ad hoc networks.
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Chapter 1

Introduction

Ad hoc networks, illustrated in Fig. 2.1, consistently underperform

compared to wired networks and cellular networks. A main reason is due to the

self-interference created in the network. Simple protocols either create residual

interference that leads to poor signal-to-interference-plus-noise ratios (SINRs)

or try to coordinate transmissions leading to fewer transmission opportuni-

ties [19]. Previous work for microwave ad hoc networks has considered direc-

tional antennas or MIMO techniques to limit interference [12, 13, 17]. While

these methods do improve the probability of coverage, the achievable rate is

limited by the small bandwidth and interference of microwave systems. Next-

generation ad hoc networks, such as high-fidelity emergency response video or

device-to-device (D2D) entertainment applications, will require a reliably high

data rate. Millimeter-wave systems have orders-of-magnitude more bandwidth

and less interference due to signal blockage which will allow achievable rates

measured in the gigabits per second [16].

In this report, we show that mmWave ad hoc networks provide good

coverage and rate probability distributions for several different network den-

sities. We consider a narrowband mmWave channel model with independent
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fading and distance-dependent path-loss. Each distance is distributed accord-

ing to a Poisson point process and either line-of-sight (LOS) or non-line-of-

sight (NLOS) [7, 8]. The general mathematical approach is to approximate

the mmWave fading power via a Gamma random variable which can be used

to compute the Laplace functional of the interference field. We compare cov-

erage distributions from derived analytical expressions with simulated results.

To facilitate analysis, we propose ignoring NLOS interference and noise; we

also use a second-order approximation to compute, in closed form, the optimal

outage-constrained network density, or transmission capacity. The transmis-

sion capacity is the maximum spatial density of transmitters given an outage

constraint [19]. The rate coverage of mmWave ad hoc networks is compared to

microwave ad hoc network which shows that mmWave networks can support

a much higher data rate. Additionally, as many wireless communication links

require receiver to transmitter communication in the form of control messages,

the two-way transmission is analyzed. The results indicate that optimal alloca-

tion in asymmetric situations can increase performance 50-100% with respect

to equal bandwidth allocation or rate based allocation

The transmission capacity of microwave wireless systems is well studied

[17–19]. The transmission capacity of microwave ad hoc networks with direc-

tional antennas was studied in [13] but relied on Rayleigh fading, which is not

significant in mmWave communication [15], and did not include blockage. In

[17] the transmission capacity of MIMO ad hoc networks was derived, where

it was shown that the receive antennas should be used for interference can-
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cellation not for spatial multiplexing. Compared to results on MIMO, power-

efficient hardware architectures limit mmWave devices to simple beamforming

[2]. There has been considerable work in mmWave cellular networks [1, 4, 6, 7].

Cellular networks have a specific exclusion region to prevent intra-cell inter-

ference that is not present in ad hoc networks. Previous work on mmWave

ad hoc networks was largely restricted to indoor scenarios with limited range;

the new 802.11ad standard is based on mmWave technology for low mobility,

indoor environments without blockage [20].
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Chapter 2

System Model

Consider an ad hoc network where users act as transmitter or receiver.

Each user in the network has a corresponding receiver at distance r. The trans-

mitters operate at constant power with no power control. The users within

the network are points from a homogeneous Poisson point process (PPP) on

the Euclidean plane, R2, with intensity λ. The channel is accessed using an

Aloha-type protocol with parameter p; during each block, a user transmits

with probability p or remains silent with probability (1 − p). We define the

effective density, used throughout the rest of the report, as

λ := pλ̃, (2.1)

which is justified through the thinning theorem [3]. We leave the optimization

of p to future work, but provide a framework to find the solution in §4.

Assumption 2.1 : Directional beamforming is deployed at each node.

We approximate the actual beam pattern as a sectored model, as used in

[13]. The beam pattern, Gθ,M,m, is parameterized by three values: main lobe

beamwidth (θ), main lobe gain (M), and back lobe gain (m). Each interfering

node is equipped with a directional antenna. Because the underlying PPP

is isotropic in R2, we model the beam-direction of the typical node and each
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Directional Interference

Desired Signal

Typical Receiver

Figure 2.1: A dipole ad hoc network with direction antennas and blockages.
The typical receiver is encountering interference from other nearby transmit-
ters. The link distances are fixed and may be blocked by a building.

interfering node as a uniform random variable on [0, 2π]. Thus, the effective

antenna gain of the interference seen by the typical node is a discrete random

variable described by

Mi =


MM w.p. ( θ

π
)2

Mm w.p. 2 θ
π
π−θ
π

mm w.p. (π−θ
π

)2

. (2.2)

Furthermore, we assume that the typical dipole performs perfect beam align-

ment and thus has an antenna gain of MM .

Assumption 2.2 : The signal path can be either unobstructed/LOS or

blocked/NLOS, each with a different path-loss exponent. This distinction is

supported by empirical measurements conducted in Austin and Manhattan [14,

15]. It was shown that by using a random shape model of buildings to model

blockage [9], the probability that a communication link is LOS is P[LOS] =

e−βd,where β is a parameter of density of buildings, and d is the link length. We

ignore correlations between blockages, as in [8]; each blockage is determined
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independently. It was shown that the difference in the performance analysis

is small when ignoring the correlation [9]. The path-loss exponent on each

interfering link is a discrete random variable described by

αi =

{
αL w.p. e−βdi

αN w.p. 1− e−βdi
, (2.3)

where αL and αN are the LOS and NLOS path-loss exponents.

Assumption 2.3 : We assume that the typical node link is LOS for

simplicity of the analysis. This follows from the equivalent LOS ball approach

of [5]. In such a network, the number of LOS nodes with respect to the origin

is > 1. Thus, it is reasonable to expect the desired link to be LOS.

Assumption 2.4 : Nakagami fading is assumed for LOS links. In the

measurements of [14, 15], Rayleigh fading is not strongly exhibited. The claim

was made that mmWave analysis can ignore fading. To help with the ana-

lytical tractability, we model the fading as a Nakagami random variable with

parameter N . Consequently, the received signal power can be modeled as a

Gamma random variable. As N → ∞, the fading becomes a deterministic

value centered on the mean, whereas N = 1 corresponds to Rayleigh fading.

This assumption makes the analysis quite general, and flexible.

To analyze such a network, we must precisely define the coverage prob-

ability. Specifically, we are interested in P[SINR > T ] where T is the threshold

for successful packet transmission. The SINR is defined as

SINR =
PtM0h0r

−α0

N0 +
∑

i∈Φ PtMihid
−αi
i

(2.4)
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where Pt is the transmit power of each dipole, M0 is the antenna gain corre-

sponding to both main beams aligned, h0 is the fading at the dipole of interest,

r is the fixed dipole link length, α is the path-loss exponent, and N0 is the

noise power. The terms within the sum are for each interfering dipole trans-

mitter; di is used to represent the distance from the interferer to transmitter

of interest, hi is the fading field, and Mi is the discrete random antenna gain.

Additionally, it is useful to discuss λ as the average neighbor distance

which allows some intuition to the spacing of nodes. In R2, this is defined

as dn = 1/
√
πλ. Additionally, we define the expected number of LOS inter-

fering nodes as ρ = E[#LOS] = 2πλ/β2, which follows as a direct result of

Campbell’s Theorem [7].
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Chapter 3

One-Way Ad Hoc Communication

In this chapter, we will derive the coverage probability for the one-way

transmission in the ad hoc network described in chapter 2. The coverage prob-

ability is analyzed using an approximation for the CDF of a gamma random

variable. Next, using a 2nd order Taylor expansion, the transmission capacity

is derived. Using this the area spectral efficiency is obtained. In chapter 5,

numerical plots of results are presented.

3.1 One-Way Coverage Analysis

Using tools from stochastic geometry, we derive the SINR distribution

of the typical node of a mmWave ad hoc network located at the origin. The

node has coverage if its received SINR is greater than a threshold. More

formally, the coverage is

Pc = P[SINR > T ]. (3.1)
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Using (2.4),

Pc = P
[

PtM0h0r
−α0

N +
∑

i∈Φ PtMihid
−αi
i

> T

]
(3.2)

= P
[
h0 >

Trα0

PtM0

(N +
∑
i∈Φ

PtMihi
dαii

)

]
(3.3)

= P
[
h0 >

Trα0

PtM0

(N + IΦ)

]
(3.4)

where the interference field, IΦ, is IΦLOS
+ IΦNLOS

by the Thinning Theorem,

and are thus independent. Following the approach of [5, 7],

Pc ≈
N∑
n=1

(−1)n+1

(
N

n

)
e−nKTN0EIΦL

[
e−nKTIΦL

]
×

EIΦN

[
e−nKTIΦN

]
(3.5)

where K = ηrα0

M0
, and EIΦL

,EIΦN
are the Laplace functionals of the LOS and

NLOS interference fields, respectively. The LOS field can be computed as

EIΦL
= exp

(
− 2πλ

4∑
k=1

bk×∫ ∞
0

(1− 1/(1 + aknKT/x
αL/N)N)e−βxxdx

)
, (3.6)

where bk is the thinning due to antenna gain configuration from (2.3), ak is

the corresponding normalized gain ak ∈ { mmMM
, m
M
, 1}, αL is the LOS path-loss,

and the interference field is computed without an exclusion zone, in contrast

to the cellular approach in [5, 7]. Thus the LOS Laplace functional is

EIΦL
= e−2πλ

∑
k bkP (r,T,n). (3.7)
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Note that P (r, T, n) is clearly a function of more than simply r and T , but

link distances and the SINR threshold are the two parameters we wish to vary

while analyzing the network in chapter 5. Similarly, we can compute the NLOS

Laplace functional as

EIΦN
= exp

(
− 2πλ

4∑
k=1

bk×∫ ∞
0

(1− 1/(1 + aknKT/x
αN/N)N)(1− e−βx)xdx

)
, (3.8)

where αN is the NLOS path-loss. The Laplace Functional of the NLOS inter-

ference field is

EIΦN
= e−2πλ

∑
k bkQ(r,T,n). (3.9)

Further simplifying yields the final coverage probability as

Pc =
N∑
n=1

(−1)n+1

(
N

n

)
e−nKTN0e−2πλ

∑
k bk

(
P (·)+Q(·)

)
. (3.10)

3.1.1 LOS Interference Limited Networks

Because of the differing NLOS and LOS path loss, for network densities

and building densities such that ρ := E[#LOS] ≥ 1, the network is considered

LOS Interference Limited. As such, we can neglecting the noise and NLOS

interference. As a result of the low LOS path loss, and correspondingly lower

distance (i.e shorter links are less likely to be blocked), the LOS interference

is generally several orders-of-magnitude greater than either the noise power or

NLOS interference. This further simplifies the coverage probability equation

10



to

Pc =
N∑
n=1

(−1)n+1

(
N

n

)
e−2πλ

∑
k bkP (r,T ). (3.11)

This result is verified empirically in chapter 5. For the remainder of the anal-

ysis, we will assume a LOS Interference Limited network.

3.2 One-Way Capacity Analysis

Next, we wish to characterize the transmission capacity, λε. This is the

largest λ the network can support given an SINR threshold, T and outage ε.

More simply, 1 − ε of users will have an SINR larger than T . To do this, we

simplify (3.10) as

Pc ≈
N∑
n=1

(−1)n+1

(
N

n

)(
1− 2πλΘ(·) + 2πλ2Θ2(·)

)
(3.12)

where Θ(·) =
∑

k bkP (r, T, n). We leverage the approximation, ex ≈ (1 + x +

x2/2) for small x, for the Laplace functional term. We rationalize this because

we are interested in analyzing the optimal λ for Pc near 1. As a result, the

Laplace functional will be close to 1; the argument will be close to 0. A second

order approximation is used as the first order approximation is not close for

larger outage when the Laplace functional is approximately 0.5. Because of

this approximation, Pc is now a quadratic equation in λ which can be solved

in closed-form.

Area spectral efficiency is a useful metric because it can characterize

the network performance, rather than just a single link, as SINR does. We

11



define area spectral efficiency as

ASE := λε︸︷︷︸
users
area

log2(1 + T )︸ ︷︷ ︸
getting rate R

(1− ε)︸ ︷︷ ︸
% of the time

. (3.13)

Substituting the solution to (3.12) into (3.13) yields a function of just T and

ε.
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Chapter 4

Two-way Ad Hoc Communication

The derivations from the chapter 3 are for one-way communication.

There is no consideration for the reverse link (i.e. receiver to transmitter).

In real systems, however, successful transmission usually relies on a two-way

communication link. On multiple layers of a communication link, control pack-

ets are generally used. Wireless LAN and TCP use acknowledgment packets

for instance. Upon successful reception of a message, the receiver will ac-

knowledge the success with a short ACK message. If the transmitter does

not receive the ACK, it will attempt to re-send the message. A successful

exchange, therefore, involves the receiver successfully decoding the large data

packet and the transmitter successfully decoding the control message. This

is two-way communication. The two-way transmission capacity quantifies the

maximum density of users a network can support while both the forward and

reverse link are subject to outage constraint, ε.

The same network from Fig. 2.1 is considered. The forward link is

defined as the transmitter to receiver link (i.e. what was discussed in chapter

3), while the reverse link is the receiver to transmitter control link. Frequency

division duplexing is used between the forward and reverse links. Consider the

13



bandwidth from chapter 3 split among the forward and reverse links. Hence,

Btotal is the bandwidth available to the system. The forward link is allocated

BF, while the reverse link is allocated BR := Btotal−BF. The SINR is similarly

defined as SINRF and SINRR. Correspondingly, from Shannon’s equation, the

links achieve rates, RF and RR.

4.1 Two-way Coverage Analysis

The two-way coverage probability is the probability that the forward

link and reverse link exceed an SINR threshold. More precisely,

P tw
c = P[SINRF > TF, SINRR > TR]. (4.1)

We assume that the forward and reverse link do not have the same SINR

threshold because the reverse control link is generally low-rate compared to

the forward link. In order to analyze this probability, we leverage the following

definitions and lemma.

Definition 4.1 [18]: A random variable X defined on (Ω,F,P) is increas-

ing if X(ω) ≤ X(ω′) for a partial ordering on ω, ω′. X is decreasing if −X is

increasing.

Let ω be a set of active interferes from the PPP. Then, ω′ ≥ ω if ω′

is a superset of ω. The SINR (2.4) decreases if another interferer is added:

SINR(ω) ≥ SINR(ω′). Thus, SINR is a decreasing random variable.

14



Definition 4.2 [18]: An event A from F is increasing if IA(ω) ≤ IA(ω′)

when ω ≤ ω′. The event is decreasing if Ac is increasing.

The coverage probability event, {SINR > T} is a decreasing event.

Now, we can use the Fortuin, Kastelyn, Ginibre (FKG) inequality [11].

Lemma 4.1 [11]: If both A,B ∈ F are increasing or decreasing events

then P (AB) ≥ P (A)P (B).

The FKG inequality can give a lower bound on the two-way coverage

probability. In [18], this was shown to be a very tight lower bound. Using

FKG, we can define the two-way coverage probability as

P tw
c ≥ P[SINRF > TF]P[SINRR > TR]. (4.2)

4.2 Two-Way Capacity Analysis

Using a similar approach as with the one-way, we use a Taylor expan-

sion of the exponential function to yield

P tx
c ≈

[
N∑
n=1

(−1)n+1

(
N

n

)(
1− 2πλΘ(TF) + 2πλ2Θ2(TF)

)]
×[

N∑
n=1

(−1)n+1

(
N

n

)(
1− 2πλΘ(TR) + 2πλ2Θ2(TR)

)]
. (4.3)

This yields a quartic equation in λ which has an analytic expression.

The general solution, however, is quite messy, and the equation would likely be

15



a page long, so it is omitted here. An analytical solver, such as Mathematica,

can easily factor the coefficients of (4.3) which can be input into a polynomial

root solver to yield the transmission capacity λε. The two-way area spectral

efficiency can be defined as

ASEtw
ε := λε

(
RF +RR

Btotal

)
(1− ε). (4.4)

The interest then becomes, given rate requirements RF and RR, what

is the allocation of bandwidth that maximizes (4.4). We explore this trade-off

in chapter 5.
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Chapter 5

Coverage and Capacity Results

We first compare our analytical expression to a Monte Carlo simulation

to show that it is indeed a good representation of the coverage probability. We

show the results for a network with and without NLOS and noise. We then

present the results for the transmission capacity, λε. Further, we compute

the area spectral efficiency in order to define the best λ, λ∗. We compare the

achievable rates for mmWave networks with classic results for microwave ad

hoc networks. The chapter is concluded with an investigation into two-way

communication. The results indicate that simply performing equal bandwidth

allocation or rate-proportional allocation is sub-optimal in asymmetric two-

way communication. Table 5.1 shows the values used throughout the chapter.

Parameter Value
λ 5× 10−5, 5× 10−4

r 50, 100, 150
β, αLOS, αNLOS 0.008, 2, 4
N0 -100 dB
hi Gamma w.p 3
θ, M , m π

6
, 8, 0.125

Pt 1W (30dBm)
N, η 3, 1.65

Table 5.1: Parameters of results.
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5.1 One-Way Communication Results

For the parameters above, namely αL and αN , the integrals from (3.10)

can be computed in closed-form. Because of the lack of exclusion zone, the

integral in (3.6) can be computed in closed-form as

P (r, T, n) =
1

β2
−
aknKTG

3,1
1,3

(
aknKTβ

2

4N

∣∣∣∣ −N

−1,0,1/2

)
2
√
πΓ(1 +N)

(5.1)

where G(·|·) is the Meijer G function. Additionally, the NLOS integral is

Q(r, T, n) =

√
NaknKTπΓ(1

2
+N)

2Γ(1 +N)
− 1

β2
+

√
aknKT/NG

5,1
1,5

(
aknKTβ

4

256N

∣∣∣∣ 1/2−N

−1/2,0,1/4,1/2,3/4

)
4
√

2π3Γ(N)
(5.2)

These equations can be readily evaulated in software such as MATLAB

or Mathematica.

5.1.1 General Coverage Analysis

First, we compare our analytical solution in (3.10) to an empirical dis-

tribution of (2.4) obtained via simulation. For the following results, Table

5.1 lists the values used to obtain the results. The parameters of (2.4) are

simulated through Monte Carlo, while (3.10) is used for the analytical model.

For the simulation, a PPP was generated over an area of 4km2, which we

believe to be large enough when compared to the selected dipole lengths.

18



We used Gamma of order 3 for the fading in the analytical model with an

η = N(N !)(−1/N) as shown in [7]. In the simulation, no fading is used.

Fig. 5.1 shows the comparison for the analytical SINR distribution

with the empirical given a λ = 0.00005 or dn ≈ 80. In this network, ρ ≈ 5, but

the performance is still fantastic. This can be attributed to the directional

antennas limiting the interference seen by the typical node. For r = 50m,

the analytical expression yields nearly the same coverage as the simulation.

The difference for r = 100m is about 1 dB for small SINR, but increases

to 2-3 dB for SINR above 15 dB. The analytical expression is less accurate

for r = 150m, the difference is 5 dB for SINR greater than 10 dB; yet, for

small outage probabilities, the difference between the analytical expression

and simulation is 2-3 dB.

Fig. 5.2 compares the coverage distribution results for a much denser

network; a λ = 0.0005 which corresponds to dn ≈ 25, and ρ ≈ 50. The analyt-

ical expression provides a very good approximation for the three link lengths

shown. While the coverage is seemingly much worse for this dense network,

the achievable rate is still quite high. Because of the large antenna array gain

of mmWave, the interference strength is not entirely devastating even with 50

users within the LOS of the typical node. The run-time of the analytical ex-

pression was much better compared to the simulation in this denser network.

The data for Fig 5.2 from (3.10) was generated in 30 secs whereas the simula-

tion was created in several minutes. This difference increases greatly with the

number of nodes.
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Figure 5.1: Coverage probability of an ad hoc network with λ = 5× 10−5
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Figure 5.2: Coverage probability of an ad hoc network with λ = 5× 10−4
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Figure 5.3: Noise and NLOS interference are negligible.

5.1.2 LOS Only

In the subsequent results, we argue that noise and NLOS interference

is negligible with respect the LOS interference strength. Using the analytical

(3.10), Fig. 5.3 shows the difference using for r = 100m for the values of λ. As

shown, the points without noise and NLOS interference lie nearly directly on

the line. While not shown, the simulation results indicate the same conclusion.
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5.1.3 Transmission Capacity

Using N = 3, as was shown to be a tight approximation, and solving

for λ yields

λε =
−U +

√
U2 + 4εV

2V
(5.3)

with U = 6Θ(r, T, 1)π−6Θ(r, T, 2)π+2Θ(r, T, 3)π, and V = −6Θ2(r, T, 1)π2+

6Θ2(r, T, 2)π2 + 2Θ2(r, T, 3)π2. Some care must be taken when using (5.3)

because of the existence of two solutions (which both may be < 1 and positive).

In (5.3), we only take the positive solution as V is negative and the negative

solution leads to a larger λ. In practice, this solution would yield a hyper-

dense network (e.g. average n radius < 10m). To solve for the density of

nodes required, with an outage constraint ε, given the building density β, and

SINR threshold T , (5.3) is used.

Fig. 5.4 shows the relationship between providing a higher SINR (and

thus rate) to users while maintaining a constant outage constraint. As ex-

pected, the shortest dipole length can support the highest density of users.

A linear increase in SINR (in dB) results in an exponential decrease in the

density of users in the network. We include a comparison with microwave ad

hoc networks [3]. The mmWave network can support a much higher density

of nodes. A natural question is to ask which λε is the best? Next, we will

leverage the area spectral efficiency to answer this question.
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5.1.4 Area Spectral Efficiency

Fig. 5.5 shows the area spectral efficiency of an ad hoc network with

a 10% outage constraint. If a larger outage can be tolerated, the ASE is 50-

100% higher in the 20% outage case (not shown). Additionally, increasing

the link length from 50 to 75 decreases the ASE substantially. The shape of

the curves suggests an optimal density with respect to ASE. This leads to the

optimization problem

λ∗ = argmax
λε

λεlog2(1 + T )(1− ε) (5.4)

We leave the exploration of solutions to this problem for future work.

Fig. 5.6 shows the numerically obtained λ∗ from Fig. 5.5. Notice that if the

dipole length is 50, the optimal density is about what was shown in Fig. 5.2

while a dipole length of 150 optimal density is roughly what was shown in Fig.

5.1. Furthermore, the optimal density is exponentially decreasing in r.

5.1.5 Rate Analysis

Lastly, we wish to analyze the rate achieved by mmWave ad hoc net-

works. As alluded to earlier, the potential for extremely high data rates is real

with mmWave networks. Fig. 5.7 shows the rate coverage probability, where

R = W log2(1 + T ), and W is the system bandwidth.

The system bandwidth used in Fig. 5.7 is 100MHz for the mmWave and

20MHz for the microwave system. While the bandwidth is only a 5× increase,

we see orders of magnitude increase in the rate coverage for mmWave (note
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the densities: the higher density microwave network barely appeared on the

plot and was omitted). Because of the propagation properties of the higher

frequency wave, this reduces or eliminates much of the interference.

5.2 Two-Way Communication Results

The results presented in this section consider a system under rate con-

straints. We show that, in asymmetric traffic, the transmission capacity of a

two-way network is can be vastly improved compared to equal bandwidth al-

location or rate-proportional allocation. The two-way area spectral efficiency

is compared to one-way area spectral efficiency. We show that 75% of the

one-way efficiency can be achieved for outage of 10% which is a 100% increase

over the baseline equal allocation. In all the results, the dipole link length is

50m.

5.2.1 Impact of Asymmetric Traffic

We consider asymmetric traffic. For example, in TCP assuming 1000

byte data packets, the receiver must reply with 40 byte ACK packets [10].

Hence, the rate asymmetry in TCP is 1/25. The following results consider a

system bandwidth of 100MHz, a forward rate requirement of 200Mbps, and a

reverse link rate requirement of 8Mbps.

Fig. 5.8 shows the transmission capacity as a function of forward band-

width allocation. As more bandwidth is added to the forward link, the required

SINRF decreases to meet the rate requirement. Because the reverse link rate
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30



requirement is quite small, the increase in SINRR does not change the cover-

age probability much (i.e. we are operating at very low SINRR which is where

the coverage probability plateaus to 1). Fig. 5.8 shows the naivet of simply

splitting the bandwidth in half. A nearly 2x improvement in transmission ca-

pacity is achieved by going from 50% to the optimal allocation of 90%. What

is somewhat more surprising is that a 1/25 split (i.e. splitting according to

the rate requirement) results in nearly the same performance as a naive 50/50

allocation. Lastly, Fig. 5.8 shows that this allocation is invariant to outage

constraint.

Fig 5.9 shows the performance gains in terms of area spectral efficiency

that can be achieved by various bandwidth allocations. In all curves, the

sum rate of the system is 208Mbps. As expected from Fig. 5.8, the area

spectral efficiency is the worst in the naive 50/50 bandwidth allocation. The

rate based (96%/4%) allocation performs better, but additional gains can be

made by further optimizing the allocation. With the optimal allocation, the

two-way system can achieve 75% the area spectral efficiency of the one-way

system.
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Chapter 6

Conclusion

We presented an analysis that characterized the performance of mmWave

ad hoc networks for both one-way and two-way communication. We analyzed

the coverage probability, showing that mmWave ad hoc networks have quite fa-

vorable SINR distributions even in fairly dense networks. We proposed several

reasonable simplifications in order to derive outage-optimal network densities,

area spectral efficiency, and the rate coverage of mmWave ad hoc networks.

As the next-generation of wireless networks are developed, there are many

candidate technologies. We believe that mmWave ad hoc networks can help

meet the anticipated 1000× increase in capacity that will be needed for D2D

or emergency applications in the coming decade.
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